
Understanding Application Behaviours for Android
Security: A Systematic Characterization

Haipeng Cai
Department of Computer Science

Virginia Tech
hcai@vt.edu

Barbara Ryder
Department of Computer Science

Virginia Tech
ryder@vt.edu

ABSTRACT
In contrast to most existing research on Android focusing on
specific security issues, there is little broad understanding of
Android application run-time characteristics and their security
implications. To mitigate this gap, we present the first dynamic
characterization study of Android applications that targets such a
broad understanding for Android security. Through lightweight
method-level profiling, we have collected 33GB traces of method
calls and inter-component communication (ICC) from 114 popular
Android applications on Google Play and 61 communicating pairs
among them that enabled an extensive empirical investigation of
the run-time behaviours of Android applications. Our study
revealed that (1) the Android framework was the target of 88.3%
of all calls during application executions, (2) callbacks accounted
for merely 3% of the total method calls, (3) 75% of ICCs did not
carry any data payloads with those doing so preferring bundles
over URIs, (4) 85% of sensitive data sources and sinks targeted
one or two top categories of information or operations which were
also most likely to constitute data leaks. We discuss the security
implications of our findings to secure development and effective
security defense of modern Android applications.

1. INTRODUCTION
The Android platform and its user applications (commonly

called apps) now dominate the mobile computing arena, including
smartphones, tablets, and other consumer electronics [12, 43].
Android developers are increasingly creating apps that cover a
growing range of functionalities. Meanwhile, accompanying the
rapid growth of Android apps is a surge of security threats and
attacks of various forms [12, 43]. In this context, it becomes
crucial for both developers and end users to understand the
particular software ecosystem of Android for effectively
developing and securing Android apps.

While written in Java, Android apps have set themselves apart
from traditional Java programs by how they are built and the
environment in which they execute. Android apps are usually
highly reliant on the Android SDK and other third-party
libraries [23, 44]. In fact, many of the distinct characteristics of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Android apps have led to unique challenges in developing sound
and effective code-based security analyses, resulting in
specialization and customization for Android of analyses
originally designed for traditional object-oriented programs.

Specifically, the framework-based nature of Android apps
requires substantial modeling of the Android runtime for static
analyses [23, 30, 44] to achieve accuracy. Implicit invocation
between components in Android apps through a mechanism called
inter-component communication (ICC) requires special treatments
(e.g., ICC resolution [37, 38]) for a soundy [29] whole-program
analysis. In addition, the event-driven paradigm in Android
programming accounts for many challenges in Android security
analyses, such as determining application and component
lifecycles [1, 30, 44] and callback control flows [1, 48].

Most current security solutions aimed at specific issues and
threats [43], with merely a few works offering broader views of
security characteristics of Android [9, 14, 15, 17, 32]. Recently,
more studies on Android apps appeared [16, 17, 25, 34, 41] but
targeted static characterizations by examining the code rather than
run-time behaviours of the apps. Existing dynamic studies for
Android address specific apps (e.g., [45]) or focus on malware
only (e.g., [49]) rather than performing a general behavioural
characterization. Thus, there remains very little understanding of
Android apps from the perspective of run-time characteristics and
behaviours that underlie their security, the focus of our study.

We randomly chose 114 of the latest Android apps from Google
Play and 61 linked pairs among them, extensively exercised each
app and app pair with automatically generated inputs, and
gathered 33GB traces of ordinary function calls and ICCs. From
these traces, which capture how Android apps are typically used,
we calculated metrics relevant to security analysis challenges
including the interaction between user code and libraries,
distribution of components and ICCs, classification of callbacks,
and categorization of security-sensitive data accesses. The metrics
constitute the first dynamic characterization of Android apps that
informs both a broad understanding of Android security and the
development of future security defense solutions for Android.

The main contributions of this work include:
• A dynamic study of the layered structure and functionality

distribution of Android apps, which sheds light on the security
implications of their run-time construction. The study reveals
that (1) Android apps are extremely framework-intensive, with
90% of all callers and callees being SDK methods and (2)
60–90% of all exercised components are Activities, which
receive over 60% of all exercised lifecycle callbacks.
• An intensive investigation of ICC, the main communication

mechanism in Android, which suggests optimization strategies
for ICC-involved security analyses of Android apps. The
investigation reveals that (1) 75% of ICCs do not carry any

1

10.1145/1235

data payloads and (2) ICCs that carry data payloads largely
favor using bundles (20%) over URIs (5%) to do so.
• A detailed characterization of sensitive API calls during long

Android app executions, which informs code-based analysis of
sensitive-data accesses for improved cost-effectiveness. The
characterization reveals that (1) over 92% of exercised API
calls accessing sensitive data focus on network information
and (2) nearly 85% of exercised API calls possibly leaking
sensitive data are account setting or logging operations.
• An open-source dynamic study toolkit including various

categorizations that can be used for future characterization
studies and general understanding of Android applications.
• A benchmark suite of 45 unique, dynamically communicating

app pairs (via ICC) that can be used for other Android studies
and analyses, especially for dynamic inter-app analyses.

2. BACKGROUND
Android is now the most popular operating system (OS)

running on smartphones and other types of mobile devices. To
facilitate the development of user applications, the Android OS
provides a rich set of application APIs as part of its sophisticated
SDK framework, which implements comprehensive functionalities
commonly used on various mobile devices. These APIs serve as
the only interface for applications to access the device, and the
framework-based paradigm allows for quick creation of user
applications through extending and customizing SDK classes and
interfaces. The Android framework communicates with
applications and manages application executions via various
callbacks, including lifecycle methods and event handlers [1].

Four types of components are defined in the Android
framework, Activity, Service, Broadcast Receiver, and Content
Provider, as the top-level abstraction of user interface, background
service, response to broadcasts, and data storage, respectively, in
user applications [11]. The SDK includes dedicated APIs for ICC
via which components communicate by passing messages called
Intents. ICCs can link components both within the same app (i.e.,
internal ICC) and across multiple apps (i.e., external ICC).
Application components send and receive Intents by invoking ICC
APIs either explicitly or implicitly. For an explicit ICC, the source
component specifies to which target component the Intent is sent;
for an implicit ICC, the component which will receive the Intent is
determined by the framework at runtime.

Some information on mobile devices is security-sensitive, such
as device ID, location data, and contacts [10, 11]. Taint analysis
commonly identifies sensitive information leakage by detecting
the existence of feasible program paths, called taint flow, between
predefined taint sources and taint sinks [1, 8]. In Android, taint
sources are the APIs through which apps access sensitive
information (i.e., sensitive APIs). The Android SDK also provides
APIs (inclusive of those for ICCs) through which apps can send
their internal data to other apps either on the same device or on
remote devices (e.g., sending data to network and writing to
external storage). These APIs potentially constitute operations that
are security-critical as they may lead to data leakage (i.e., critical
APIs or taint sinks).

3. EXPERIMENTAL METHODOLOGY
We traced method calls and ICCs to understand the dynamic

features of applications in Android. The resulting traces capture
coarse-grained (method-level) control flows but not data flows.
Nonetheless, such traces can reveal a broad scope of important
dynamic characteristics regarding the typical behaviours and

security-related traits of Android apps. Next, we elaborate on the
design of our empirical study—benchmark apps, inputs used for
the dynamic analysis, metrics calculated, and study procedure.

3.1 Benchmarks and Test Inputs
Our goal was to study at least 100 unique Android apps among

which at least 50 pairs could potentially communicate through
explicit or implicit inter-app ICCs. We first downloaded 3,000 free
apps from Google Play that were ranked the most popular at the
end of 2015. Then, we statically analyzed the ICCs of each app
using the most precise current ICC analysis [37], and found
potentially communicating app pairs by matching the ICCs across
apps [3]. This process led to a pool of over one million such pairs
linked via either explicit or implicit ICCs, or both.

Next, we randomly picked 20 different pairs and removed them
from the pool, performed our instrumentation, and then ran the
instrumented code on an Android emulator [19]. To ensure that we
gathered useful traces and that our study reflected the use of the
latest Android SDK features, we discarded pairs in which at least
one app was built on a version of Android SDK lower than 5.0
(API 21) or failed to run on the emulator after the instrumentation.
We repeated this random selection until reaching >=50 pairs.
Eventually, we obtained 61 different app pairs that included 114
unique apps, which covered 25 of the total 27 Google Play app
categories. Accordingly, 114 single-app traces and 61 app-pair
(inter-app) traces formed the basis of our study. This benchmark
suite is considerably larger than those used by existing dynamic
analyses for Android [2, 7, 8, 26, 31, 33].

Since the objective of our study is to understand the general
characteristics of latest Android apps from function call traces, it
is essential that the traces are able to reveal typical Android
application behaviours. Thus, the quality of inputs to be used for
generating the traces is critical.

Previous dynamic studies of Android apps, using much smaller
benchmark suites, mostly resorted to manual (expert)
inputs [2, 7, 8, 26, 33], because the coverage of automatically
generated Android inputs was regarded as too low. We chose to
use automatically generated inputs for two reasons. First,
manually manipulating various Android apps is expensive, subject
to human bias and uneven expertise, and an unscalable strategy for
dynamic analysis. Second, state-of-the-art automatic Android
input generators can achieve practically as high code coverage as
human experts [31] and are scalable. The latest, most
comprehensive comparison of such generators showed that the
Monkey [21] tool, part of the Android SDK, won over its peer
approaches in terms of both (statement) coverage alone and overall
evaluation [4].1Therefore, we utilized the Monkey tool shipped
with the Android SDK 6.0 (the latest release). Although Monkey
does not generate many system events directly, it triggers those
events indirectly through UI events. By overall average, our test
inputs achieved statement coverage of 54.5%, close to the highest
coverage reported in the literature (60%) which was attained with
experienced-human inputs on a much smaller benchmark suite [4].

3.2 Metrics
We express the dynamic characteristics of Android apps via

three high-level categories of metrics, each consisting of several
supporting measures, as defined as follows.

General metrics—concerning the composition and distribution
of app executions with respect to their usage of different layers of
functionalities: user code (UserCode), third-party libraries
1DynoDroid [31] was developed for outdated Android platforms;
we confirmed that it did not work for the latest apps in our study.

2

(3rdLib), and the SDK (SDK). Specific measures include (1) the
distribution of function call targets over these layers, (2) the
interaction among the layers (i.e., calling relations and frequency),
and (3) the extent and categorization of callback usage.

ICC metrics—concerning the primary Android mechanism for
inter-component interaction within single apps and across multiple
apps. ICC has been a major security attack surface in Android [3,
32, 39] as well as a feature of Android application programming
that sets it apart from ordinary Java programming. Specifically,
we measure (1) the distribution of the four types of components
(see Section 2) in Android app executions, (2) the categorization
of run-time ICCs with respect to their scope (internal/external) and
linkage (implicit/explicit), and (3) the data payloads carried by ICC
Intents with respect to different ICC categories.

Security metrics—concerning the production, consumption,
and potential leakage of sensitive data in Android app executions.
We measure (1) the extent of use of the producers (i.e., sources)
and consumers (i.e., sinks), (2) the categories of information
accessed by executed sources and operations performed by
executed sinks, and (3) the occurrence of sensitive data leaks via
control-flow paths (call sequences) connecting sources to sinks.

We examine two views of each measure: instance and unique,
except for call frequency and ICC categorization reported only for
all instances of calls. The instance view is associated with the full
execution traces we analyzed; the unique view is associated with
the source code covered by the test inputs. Therefore, the instance
view captures the run-time behaviour of the apps with call
frequencies while the unique view considers specific callsites in
the source code that are executed at least once. These two views
are complementary to each other, together conveying the dynamic
characteristics and behaviours of Android applications.

3.3 Procedure
To collect the operational profiles of the benchmark apps, we

first ran our tool to instrument each app for monitoring ICC Intents
and all method calls. Next, we ran each instrumented individual
app separately and then each app pair, gathering 114 single-app
traces and 61 inter-app traces (when multiple target apps in
inter-app ICCs are available, one was randomly chosen). All of
our experiments were performed on a Google Nexus One emulator
with the latest Android SDK (6.0/API level 23), 2G RAM, and 1G
SD storage, running on a Ubuntu 15.04 host with 8G memory and
2.6GHz processors. To avoid possible side effects of inconsistent
emulator settings, we started the installation and execution of each
app or app pair in a fresh clean environment of the emulator (with
respect to built-in apps, user data, and system settings, etc.).

For each individual app, Monkey inputs were provided for up to
one hour of execution. For each app pair, the two apps ran
concurrently, taking Monkey inputs alternately for an hour. These
one-hour-long runs have allowed Monkey to achieve the highest
coverage among existing automatic input generators for Android
as substantiated by the latest comparative study [4]. In both the
single- and inter-app settings, there were events generated by
Monkey that led to system halts of the host machine before the
timeout was reached; we discarded the corresponding traces and
repeated the same run again until we obtained an hour long trace.
Similarly, we ignored app crashes and had Monkey restart the app.

To reduce the impact of possible non-determinism in the
benchmarks, we repeated each experiment three times and took
the average of these repetitions. We checked the repeated traces
for each app and app pair, and found only very small deviations
among them. Thus, we used the mean over the repetitions for each
metric as the final metric value per app and per app pair.

4. STUDY TOOLKIT
Figure 1 depicts the workflow of our toolkit DROIDFAX, includ-

ing its three phases as well as inputs and outputs.
Pre-processing. After obtaining the benchmark app pairs as

described in Section 3.1, the static code analysis instruments the
Android (Dalvik) bytecode of each app for method call profiling
and ICC Intent tracing. This first phase also produces relevant
static information for each app using class hierarchy analysis
(CHA), including the component type each class belongs to (i.e.,
the top component class it inherits) and callback interface each
method implements in the app. This information is used for
computing trace statistics in the third phase. Both the
instrumentation and CHA are implemented on top of Soot [28].

Profiling. The second phase runs the instrumented code of each
individual app and app pair to produce the single- and inter-app
traces in the respective settings. DROIDFAX records method calls
and ICC Intents using the Android logging utility and collects the
traces using the logcat tool [20] that is part of the SDK.

Characterization. The third phase analyzes the traces by first
building a dynamic call graph. Each node of the graph is the
signature of a method (executed as a caller or callee), and each
edge represents a dynamic call which is annotated with the
frequency (i.e., number of instances) of that call. Also, for each
ICC, the graph has an edge going from the sending API (e.g.,
startActivity) to the receiving API (e.g., getIntent) of
that ICC. This phase computes various metrics using the call
graph and the static information computed in the first phase. From
single-app traces, DROIDFAX calculates all three categories of
metrics. From inter-app traces only the ICC metrics are computed.
In order to categorize event handlers, DROIDFAX utilizes a
predefined categorization of callback interfaces, which we
manually produced from the uncategorized list used by
FlowDroid [1]. We did the categorization based on our
understanding of each interface gained from the official Android
SDK documentation. (Categorization of lifecycle callbacks was
done using CHA.) Another input to this phase is the lists of
sources and sinks that we defined by manually improving the
training set of SuSi [40] hence producing a more precise
categorization. To facilitate reproduction and reuse, the entire
implementation of DROIDFAX is open source. Also publicly
available are our study results, the categorization of event handlers
we created, and the improved source and sink categorization.2

5. RESEARCH QUESTIONS
With the three classes of metrics described above, our empirical

study seeks answers to the following research questions.
RQ1: How heavily are the SDK and other libraries used by

Android apps? This question addresses the construction of
Android apps in terms of their use of different layers of code and
the interaction among them. Answering this question offers
empirical evidence on the extent of the framework-intensive nature
of Android apps—previous works only suggested the existence of
that nature through static analysis [23, 30]. RQ1 is answered using
the first two measures of the general metrics.

RQ2: How intensively are callbacks invoked in Android apps?
It is well known that callbacks, including lifecycle methods and
event handlers, are widely defined or registered in Android app
code [1, 44, 48]. This research question addresses their actual
usage in Android app executions, that is, the frequency of callback
invocation and the distribution of different types of callbacks.
RQ2 is answered using the third measure of the general metrics.
2Links to all these will be included in the camera-ready version.

3

ICC analysis

Benchmark app pairs Static code analysis

Instrumented
apps

Run with single-
app setting

Run with inter-
app setting

Single‐app
traces

Inter‐app
traces

Static information of apps

Compute
ICC metrics

Compute
all metrics

Free Android apps
Study
result
report

1. Pre-processing 2. Profiling 3. Characterization

List of callback
interfaces

Lists of sources
and sinks

Figure 1: The three phases in the workflow of our study toolkit DROIDFAX, including its inputs and outputs.

RQ3: How do Android app components communicate using the
ICC mechanism? Much prior research has targeted Android
security concerning ICCs [3, 32, 37, 39], yet it remains unclear
how often ICCs occur relative to regular function calls during the
executions of Android apps, how different types of ICCs are used
distinctly, and whether all ICCs constitute security threats. The
answer to each of these questions is subsumed by RQ3, and is
investigated using the ICC metrics.

RQ4: How is sensitive information accessed in Android apps?
Addressing the secure usage of sensitive information has been the
focus of various previous works, including taint analysis [1, 44],
privilege escalation defense [2, 30], and data leakage detection [3,
50]. However, how often that usage is exercised or which kinds
of sensitive information are mostly accessed has not been studied.
RQ4 explores these unanswered questions, and also addresses how
risky the accesses can be according to the reachability of API calls
from taint sources to taint sinks, all using the security metrics.

6. EMPIRICAL RESULTS
This section presents the results of our study, reporting the three

categories of metrics with respect to relevant research questions.
For call frequencies, we reported the number of instances of each
executed callsite throughout all single-app traces using
scatterplots. For each of the other metrics, which was consistently
expressed as a percentage, we first calculated the percentage (from
the three repetitions as described above) for each app (or each app
pair) separately. Then we reported either the distribution of all
these percentages using boxplots or their summary statistics (mean
and standard deviation) using tables. In each boxplot, the lower
whisker, the lower and upper boundaries of the box, and the upper
whisker indicate the minimum, the first and third quartiles, and the
maximum, respectively; The horizontal line in the box indicates
the median and the diamond indicates the mean. We have set the
whiskers to extend to the data extremes (so no outliers are shown).

For each category of metrics, we first present the results in
detail and then summarize and discuss the most important
observations from an average-case perspective. We also offer
insights into the implications of our empirical findings and
demonstrate how our results can be used in future secure
development and security defense of Android apps.

6.1 General Characteristics of Android Apps
To gain a general understanding of Android app behaviours, we

investigated the structure of their execution in terms of three layers
of functionality (i.e., UserCode, SDK, and 3rdLib), the interaction
among these layers, and the usage of callbacks.

6.1.1 Composition of Code and Execution
The composition of the method call trace of each Android app

is characterized in terms of the percentages of executed callsites
(i.e., in the unique view) and of call instances (i.e., in the instance
view) accessing user code, third-party libraries, and the Android
SDK. Figure 2 shows the distribution of these three layers in the

UserCode 3rdLib SDK

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 (
un

iq
ue

 v
ie

w
) class

method

UserCode 3rdLib SDK

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 (
in

st
an

ce
 v

ie
w

) class
method

Figure 2: Percentage distribution (y axis) of the three code layers (x
axis) over all executed callsites (left) and all call instances (right).

single-app traces of the 114 benchmark apps, with each group of
boxplots depicting both class and method granularity.

The unique view reveals that consistently all the subject apps
heavily rely on library functionalities, especially the SDK, in
performing their tasks. On average, at both class and method
levels, only about 10% of all executed methods and classes were
defined in user code, 25% to 30% were in various non-SDK
libraries, and the rest were from the Android framework. Clearly,
the results show that the SDK dominated these apps, and suggest
that on average an Android app tends to be quite dependent on
SDK functionality. At the coarser level of class, different Android
apps exhibited even stronger uniformity in their execution
composition, as implied by the relatively smaller interquartile
ranges at that level of granularity.

Counting all call instances, the instance view further confirms
the framework-dependent nature of Android apps. This view
shows that SDK code was executed the most frequently among the
three layers, suggesting that run-time behaviours of the SDK
dominate. The observation that almost 90% (on average) of all
calls were to the SDK code in most apps corroborates that
Android apps are highly framework-intensive. In contrast,
Android apps tend to execute their user code relatively
occasionally—in fact, only 25% of the apps had over 5% of these
calls to user code targets and none had over 40%.

6.1.2 Inter-layer Code Interaction
Figure 3 scatter-plots the frequency of each executed callsite per

app. The data points are categorized by the calling relationships,
denoted in the format of caller layer→callee layer, among the
three code layers. Each plot shows the call-frequency ranking for
one of the nine categories of inter-layer interaction. The breadth of
each plot indicates the total number of executed callsites in the
corresponding interaction category, while the height suggests the
range of frequencies of all those calls. To better distinguish
categories, logarithmic scales are used on both axes. For instance,
the rightmost plot represents the frequency ranking for calls
between SDK methods (SDK->SDK), covering over 200K
callsites with the highest individual call frequency of about 800K.

Consistent with the results in Figure 2, these plots confirm that
(1) many more SDK and third-party library APIs were called than
user methods and (2) the total number of unique SDK callees

4

1e+00 1e+02 1e+04 1e+06

1e
+

00
1e

+
02

1e
+

04
1e

+
06

SDK −> UserCode
3rdLib −> UserCode
SDK −> 3rdLib
UserCode −> 3rdLib
UserCode −> UserCode
UserCode −> SDK
3rdLib −> 3rdLib
3rdLib −> SDK
SDK −> SDK

Call

F
re

qu
en

cy

Figure 3: Executed callsites of all benchmark apps (x axis) ordered
non-descendingly by their frequencies (y axis). The legend labels
listed from the top to the bottom correspond to the scatter plots
ordered from the left to the right by their maximal x-coordinates.

50.342%
20.183%

8.029%
17.768%

3.281%
0.331%
0.045%
0.018%
0.004%

0% 10% 20% 30% 40% 50% 60%

SDK‐>SDK
3rdLib‐>SDK

3rdLib‐>3rdLib
UserCode‐>SDK

UserCode‐>UserCode
USerCode‐>3rdLib

SDK‐>3rdLib
3rdLib‐>UserCode
SDK‐>UserCode

Figure 4: Percentages of different categories of inter-layer call in-
stances over all benchmark app executions.

dominated all callees. The plots reveal that categories having
larger numbers of callsites mostly had larger frequency maxima as
well. The most frequently exercised calls were from SDK, which
also received the calls of the highest frequency (from user code).

Figure 4 shows the percentage of call instances in each
inter-layer interaction category over the total call instances in all
benchmark app executions. Noticeably, the majority (61.7%) of
call instances over all apps happened within the same
layer—dominated by the SDK layer (50.3%)—rather than across
layers. The busiest callees were SDK APIs (88.3% in total),
invoked mostly from SDK (50.3%) followed by third-party
libraries (20.2%). User functions were called very rarely by any
callers (no more than 4%), reconfirming our previous observation
from Figure 2. The results reveal that the vast majority of calls to
third-party library functions were from the same layer of code.
Calls to UserCode from SDK or 3rdLib were callbacks from the
framework and other libraries to application methods. The much
smaller numbers and lower frequencies of such calls show that
user-code callbacks were executed comparatively rarely.

In summary, results on inter-layer code interaction further
confirm the highly framework-intensive nature of Android apps,
indicating that the Android framework tends to do the majority of
application tasks while user code often just relays computations to
the SDK and various other libraries.

6.1.3 Usage of Callbacks
We examined the extent of callback usage (over the three code

layers) in the benchmark apps through the distribution of
percentages of callback method invocations. As shown by
Figure 5, on average no more than 3% of all executed callsites (in
the unique view) targeted either lifecycle callbacks or event
handlers. Overall, there were more unique lifecycle callbacks than
distinct event handlers used by these apps. In a few apps, no more

lifecycle method event handler

0
5

10
15

20
pe

rc
en

ta
ge

 (
un

iq
ue

 v
ie

w
)

lifecycle method event handler

0
5

10
15

20
25

pe
rc

en
ta

ge
 (

in
st

an
ce

 v
ie

w
)

Figure 5: Percentage distribution (y axis) of callbacks (x axis) over
all executed callsites (left) and all call instances (right).

Table 1: Lifecycle methods breakdown over all categories
Category Unique view Instance view
Activity 59.63% (38.93%) 60.98% (40.78%)
Application 27.03% (33.22%) 29.24% (36.96%)
BroadcastReceiver 1.25% (3.96%) 0.29% (1.70%)
ContentProvider 3.12% (10.96%) 0.88% (6.52%)
Service 0.50% (2.82%) 0.13% (0.92%)

than 20% of all executed callsites were for lifecycle management
while at most 12% were for handling other kinds of events.

The instance view indicates that callbacks were not invoked
very frequently. The average percentage of either type of callback
invocations was under 2%, indicating that callbacks, while
prevalently defined and registered in Android apps [1, 48], tend to
be only lightly used at runtime. This observation is consistent with
the call frequency ranking of Figure 3, where we have seen that
relatively small numbers and low frequencies of calls invoking
user code from the SDK or other libraries. Comparing the two
types of callbacks in the instance view reveals that (1) event
handlers were called much more frequently than lifecycle
callbacks and (2) there were apps executing event handlers
substantially (up to 27% of total call instances) yet none of the 114
apps had more than 10% of calls targeting lifecycle methods.

To look further into the callback usage, we categorized lifecycle
callbacks by their enclosing classes with respect to the four types
of application components (see Section 2) and the Application
type corresponding to the android.app.Application class
defined in the SDK. The percentage of each category over the total
lifecycle callbacks is listed in Table 1, including the means and
corresponding standard deviations (in parentheses) of such
percentages over all benchmark apps.

As shown, Activity lifecycle methods both dominated the targets
of all executed callsites and were invoked most frequently. The
second most handled lifecycle events were associated with the
application as a whole. Events handled by the other three types of
components were marginal, totaling less than 5% on average in
terms of the number of executed callsites and merely 1.5% when
counting all call instances of lifecycle methods. The large
variances of these means suggest considerable differences in this
categorization across the set of apps. Nevertheless, the majority of
lifecycle method callsites and call instances were dealing with
various Activities, possibly due to the fact that Android apps
usually have abundant user interfaces (UI) and rely on frequent
user interaction. This observation justifies focusing on selected
callbacks in modeling lifecycles of an Android app as a whole,
such as considering Activity only when analyzing static control
flows for lifecycle callbacks [48], to reduce analysis complexity
and/or to achieve better performance.

Exploring the data further, Table 2 presents a two-level
breakdown for event handlers according to our manual

5

Table 2: Event handlers breakdown over significant categories
Category Unique view Instance view

UI
event

App bar 14.71% (29.94%) 16.50% (35.93%)
Dialog 2.65% (6.28%) 0.25% (1.16%)
View 25.69% (35.96%) 24.74% (39.81%)
Widget 1.41% (5.46%) 0.22% (1.76%)

System
event

App mgmt. 43.92% (42.21%) 47.30% (47.58%)
Hardware mgmt. 0.26% (1.61%) 0.04% (0.52%)
Media control 0.43% (2.55%) 0.03% (0.19%)

categorization of those callbacks (see Section 4). If at least one of
the benchmark apps had over 1% of all executed callsites and all
call instances falling in a (second-level) category, we regarded that
category as significant. We only report significant categories.

Overall, the total percentages of callbacks handling system
events and such percentages of callbacks handling UI events are
close in both views. The substantial variances of the means imply
the existence of apps at two extremes—those predominantly
having invocations of event handler callbacks responding to
system events, and those predominantly having callbacks triggered
by UI events. A more detailed look reveals that the majority of UI
event handlers dealt with two particular kinds of user interfaces,
View and App bar, while user events on Dialog or Widget were
much less frequent. On average, most system event handlers
responded to events that serve application management (mgmt.),
with a few others dealing with hardware management and media
control. Given these results, Android app analyses of event
handlers [1, 44, 48] could be customized or optimized for better
cost-effectiveness while remaining soundy [29] by prioritizing
analysis of those in the most commonly used categories.

6.1.4 Summary and Discussion
The general metrics show that at runtime Android apps (1)

depend heavily on the SDK—over 70% of unique methods
executed are defined in the SDK and (2) are highly
framework-intensive—almost 90% of all method instances are
those of SDK methods, and the largest numbers (over 10K) of
calls with the highest frequencies (over 100K) targeted methods in
the SDK. Thus, deeper understanding of the SDK and its interface
is essential for secure Android app development. Meanwhile, the
security of the Android framework itself should be well addressed
in securing the Android software ecosystem as a whole. The
overwhelming dominance of SDK in app executions also implies
lesser impact of UserCode obfuscation than expected, and
uncovers potential benefits of SDK optimizations.

In addition, Activity as the dominating component type
(accounting for 60–90% of all component instances) is also the
predominant (about 60%) target of lifecycle method calls, which
indicates that Android apps are generally rich in user interfaces.
Therefore, Android app analyses should pay sufficient attention to
application features that are relevant to UI elements (e.g.,
UI-induced data and control flows). Since invocations of various
callbacks account for only small percentages (less than 5%) of all
method calls, it may be practical and rewarding to fully track
callback data/control flows for fine-grained dynamic security
analyses. Finally, giving priority to the very few top categories of
lifecycle methods and event handlers would render lifecycle
modeling, taint analysis, and callback control flow analysis more
cost-effective (e.g., sacrificing some safety for higher scalability).

6.2 ICC Characterization
ICCs constitute the primary communication channel between the

four types of components in Android. We first look at component
distribution in the app executions before examining the interaction

Activity Ser vice Receiver ContentProvider

0
20

40
60

80
10

0

pe
rc

en
ta

ge
 (u

ni
qu

e
vi

ew
)

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 (
in

st
an

ce
 v

ie
w

)

Activity Ser vice Receiver ContentProvider

Figure 6: Distribution (y axis) of all executed callsites (left) and
total call instances (right) over the four component types (x axis).

single−app inter−app

internal-explicit internal-implicit external-explicit external-implicit

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 (
in

st
an

ce
 v

ie
w

)

Figure 7: Percentage distribution (y axis) of all ICCs over four
categories (x axis) in single-app versus inter-app executions.

between them through ICCs. We then characterize whether data
payloads are carried (i.e., data carriage) in the ICCs. We report the
measures based on ICC Intents with respect to single- and inter-app
traces separately and compare findings in these two communication
settings for a more detailed ICC characterization. We calculated
the percentage of ICC calls executed over all ICC callsites in each
app and then averaged those percentages over all apps in our study
obtaining a mean of 56.67% (standard deviation of 21.39%).

6.2.1 Component Distribution
Figure 6 shows the distribution of executed callsites and call

instances over different component types. In the unique view,
despite the existence of (four) outlier apps which had
ContentProviders dominate all their invoked components, by far
the majority of our benchmark apps used Activities the most (over
60% on average) among all components executed. Receivers were
used substantially too (about 30% on average), consistent with the
previous observation that these apps had significant percentages of
callbacks handling system events over all invoked callbacks (as
seen in Table 2). In terms of run-time behaviour, the instance view
further confirmed that Activity was the most often executed
component type (over 90% on average).

6.2.2 ICC Categorization
Having an understanding of the usage of different types of

components, we now break down all exercised ICCs (which link
components), as shown in Figure 7, over four possible categories
(on the x axis) in single- and inter-app traces separately. Each data
point in the boxplots represents the percentage of ICCs in a
particular category over all the ICCs for one app or app pair.

In the single-app setting, the results show similar mean
percentages of internal-explicit, external-explicit, and
external-implicit ICCs. By contrast, internal-implicit ICCs were
rarely executed. Internal-explicit ICCs had the largest mean and
median suggesting the dominance of that category in most apps,
despite the apparent non-uniformity in the overall ICC distribution

6

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 (
in

st
an

ce
 v

ie
w

)

standard−data only bundle−data only both forms of data

single−app inter−app

Figure 8: Percentage (y axis) of ICCs that carried data payloads in
different forms (x axis) over all ICCs exercised.

among half of the apps (as seen from the generally small
medians). Note that there were still considerable percentages of
external ICCs in single-app traces because system and built-in
apps (e.g., photo viewer, camera, maps, etc.) often communicated
with our benchmark apps (usually via implicit ICCs).

In the inter-app setting, external-explicit and external-implicit
ICCs combined (over 80% on average) dominated the internal
ones (around 10%) in most app pairs. Dominating internal ICCs
were seen only in a few outlier cases, and the majority of those
ICCs were explicit. On average, external-explicit ICCs accounted
for much higher percentages (70%) than external-implicit ones
(20%). We inspected the traces and found that some implicit ICCs
did not succeed because there were no receiver apps available on
the device to handle the requests sent. In such cases, the execution
was interrupted and the partial trace was ignored.

Our study reveals that less than 0.2% of method invocations
were API calls for either sending or receiving ICCs. This marginal
percentage implies that the overwhelming majority of calls were
between methods within individual components. With respect to
the total call instances, components communicated with other
components only occasionally (e.g., when an intra-component
computation completed and results were ready to deliver). About
47% of all ICCs were between two Activity components; among
the other ICCs, more than 55% were initiated also by Activities.
These observations are expected given the dominance of Activity
among all component types (see Figure 6); this implies that the
predominant use of ICCs in Android apps was for the
communication between various user interfaces.

6.2.3 Data Carriage
Part of the reason for ICCs to become a major security attack

surface is that they can carry, hence possibly leak, sensitive and/or
private data. Thus, we investigated the ICC data carriage of
single-app and app-pair executions. There are two ways in
Android in which ICCs can carry data in an Intent: via the data
field of the ICC Intent object, specified only through a URI, and
via the extras field of that object (i.e., a bundle of any
additional data accessible as a key-value structure). We refer to
these two forms as standard and bundle data, respectively.

Figure 8 shows that there were only small differences in the
percentage distribution between the two communication (i.e.,
single- and inter-app) settings, indicating that the setting did not
much affect these observations. On average no more than 5% of
ICCs transferred standard data only, while bundle-only ICCs were
over 20% on average of the same total. However, very few ICCs
carried both standard and bundle data at the same time. Regardless
of the existence of outlier apps that passed either or both forms of
data in almost all their exercised ICCs, the general observations
are that (1) the ICCs that carried data account for a lesser
proportion (25%) of the total and (2) bundles were favored (15%

more) over URIs. An immediate implication of this observation to
data-leak detection is that checking only the data field of Intents
is inadequate as it misses the majority of potential data leaks.
Instead, security analyses of ICC-based data leaks should carefully
examine the bundles contained in ICC Intents [26].

Looking further at these data-carrying ICCs (see Appendix A
for details), we also found that Intents containing standard data
payloads (either standard-data only or both forms of data) were
predominantly external-implicit ones, despite the setting.

6.2.4 Summary and Discussion
Our ICC categorization (Figure 7) reveals that components of

the same apps communicate rarely through implicit ICCs (less
than 1% on average) as opposed to through explicit ICCs (almost
40% and over 10% in the single- and inter-app settings,
respectively); components across apps (i.e., in the inter-app
setting) use implicit ICCs (about 20%) also much less often than
using explicit ICCs (over 70%). This dominance of explicit ICCs
over implicit ones suggests that conservatively linking components
via implicit ICCs (i.e., through the action, category,
data tests [39, 44]) may lead to large imprecision in static
analyses of ICC-induced information flows. Our ICC data-carriage
characterization (Figure 8) reveals that most (75%) ICCs do not
carry any data and those carrying data tend to do so preferably via
bundles (over 20%) instead of URIs (below 5%). Thus, security
analyses including ICCs may benefit from prioritizing
examination of ICCs carrying data, especially those using
bundles, to obtain more effective results within a time budget. The
preference of data-carrying ICCs for bundles also calls for deeper
analysis of the extras fields in Intents. As almost all ICCs
carrying data via URIs are implicit and across apps, the data
field of Intents needs attention in inter-app data-leak detection.

The characteristics of ICCs in single-app executions are
different from those in inter-app settings: (1) percentages of all
internal ICCs are much more substantial in the single-app setting
(nearly 40%) than in the inter-app setting (about 10%), whereas
the latter saw much (40%) larger percentages of all external ICCs
than the former; (2) percentages of all explicit ICCs are similar for
both settings, whereas percentages of all implicit ICCs are
noticeably (about 10%) higher in the single-app setting; (3)
percentages of implicit data-carrying ICCs, either internal or
external, are similar between the two settings, whereas
percentages of explicit data-carrying ICCs are noticeably different.
The single-app setting saw 35% more internal-explicit ICCs
carrying data payloads than the inter-app setting, while the
inter-app setting saw almost 50% more external-explicit ICCs
carrying data payloads than the single-app setting. Due to these
differences, an ICC-involved single-app analysis can produce
results considerably different from those given by an inter-app
analysis that deals with ICCs. There has been no concrete
assessment of the effects of these differences. Nevertheless, an
accurate ICC analysis should consider its communication context
in terms of specific, potential communicating peer apps.

6.3 Security-Sensitive Data Accesses
Much of Android security analysis has been concerned with

inappropriate accesses to security-sensitive data, including the
abuse of sensitive data by an app and risky escape of the data out
of an app. To understand the security implications of those
accesses, we investigated in our benchmarks (1) the usage of
sensitive and critical APIs, (2) the categories of sensitive data the
APIs accessed and categories of critical operations the APIs
performed, and (3) the possibility of data leaks at runtime.

7

source sink

0
5

10
15

20
25

30
pe

rc
en

ta
ge

 (
un

iq
ue

 v
ie

w
)

source sink

0
10

20
30

40
50

pe
rc

en
ta

ge
 (

in
st

an
ce

 v
ie

w
)

Figure 9: Percentage distribution (y axis) of sources and sinks (x
axis) over all executed callsites (left) and all call instances (right).

Table 3: Source breakdown over significant categories
Category Unique view Instance view
ACCOUNT_INFO 0.03% (0.24%) 0.08% (0.90%)
CALENDAR_INFO 0.77% (2.58%) 0.69% (2.46%)
LOCATION_INFO 0.19% (1.10%) 0.10% (0.90%)
NETWORK_INFO 92.75% (22.01%) 93.70% (22.14%)
SYSTEM_SETTINGS 1.05% (2.47%) 0.24% (1.11%)

6.3.1 Usage of Sources and Sinks
Since sensitive data in Android is accessed via invocations of

sensitive and critical SDK APIs, understandings the production and
consumption of sensitive data requires examining the frequency of
API calls that are data sources or sinks as a percentage of all method
calls, as shown in Figure 9.

Overall, the benchmark apps tended to retrieve sensitive
information often, containing on average one sensitive API call
out of every ten unique method invocations during their
executions. Half of the apps had an even larger proportion (up to
20%) of sensitive API calls. All the apps invoked such calls (at
least 2%) to retrieve sensitive information, but there were apps that
never invoked sinks which may consume and leak sensitive data.
According to the unique view, sources were exercised much more
extensively than were sinks in most individual apps.

The instance view shows that sources were invoked also much
more frequently than sinks. The majority of the apps had total
source API calls account for about 15% of total call instances,
with the highest up to 50%. In comparison, 75% of the apps saw
less than 5% sink calls among all their method calls, up to 45% in
some outlier apps. In short, the apps had considerably intensive
accesses to sensitive information, yet did not perform potentially
data-leaking operations as often.

The exercised sources and sinks were run-time projections of the
predefined lists [40] of (17,920 unique) sources and (7,229 unique)
sinks used, respectively. Thus, the percentages of source and sink
calls we reported are directly influenced by the sizes of these lists.
The much longer list of predefined sources compared to the shorter
list of predefined sinks partially explains the substantially higher
ratios of source calls than sink calls.

6.3.2 Categorization of Sensitive Data Accesses
One way to further examine how Android apps use sensitive

information is to look into the information itself accessed by the
apps and operations that may leak such information. To that end,
we categorized the source and sink API calls according to the
kinds of data retrieved by the sources and operations performed by
the sinks. Knowing which kinds of information Android apps tend
to access most and which types of critical operations are most
performed can inform end users about the potential risks of
leaking security-sensitive data when using the apps, as well as
help security analysts make right choices and/or configurations of
security-inspection tools when using the tools for app vetting.

Table 4: Sink breakdown over significant categories
Category Unique view Instance view
ACCOUNT_SETTINGS 65.52% (32.04%) 66.67% (35.14%)
FILE 0.39% (1.44%) 0.31% (2.23%)
LOG 18.71% (25.12%) 15.95% (27.37%)
NETWORK 2.19% (4.93%) 0.63% (2.73%)
SMS_MMS 0.47% (2.29%) 0.28% (2.48%)
SYSTEM_SETTINGS 4.24% (6.65%) 7.68% (16.90%)

For each category Table 3 lists the percentage of unique sources
and source instances accessing sensitive information in that
category over corresponding totals, in the same format as Table 1.
Categories having maximal percentage below 1% are omitted.
There were only five categories of sensitive information noticeably
accessed by the benchmark apps. Network information was
dominant in both views. Such information was previously noted as
widely accessed in Android apps [17], yet the overwhelming
dominance (92–93% on average) of this category has not been
reported. System settings, calender, and location related data were
also among the most common categories [10, 14, 17].

A similar breakdown of sinks over six significant categories is
summarized in Table 4. Interestingly, the dominant category was
associated with account settings, suggesting that the Android apps
deal with account management intensively relative to other kinds
of critical operations. Applying possibly sensitive data in
managing accounts does not seem to constitute a data-leak risk,
yet such risks can occur when a user shares account settings across
apps (e.g., user age and location data used in the settings for an
account on one app may be disclosed to another app where the
user logs in to the same account). The second most prevalent
potential consumer of sensitive data was logging operations,
which can disclose such data via external storage. Similarly to
account-setting operations, API calls for system settings can lead
to data leakage as well. Lastly, network and message-service
operations are capable of leaking data through network
connections to remote apps and devices. In fact, these categories
of sinks were previously recognized as the major means of leaking
data out of Android apps or the mobile device [8, 10].

In all, despite the large variances of the means, our results
reveal that security-sensitive accesses in Android apps are not
targeted broadly in terms of the categories of information accessed
and operations executed. Instead, only very few kinds of sensitive
data and critical operations, which are indeed highly relevant to
common mobile device functionalities, are most frequently
involved. This finding suggests that one way of optimizing
information-flow-analysis-based security defense solutions
(e.g., [1, 44]) could be to narrow down the search space of
vulnerable flows to those involving data and operations of the
predominating categories. The analysis performance might be
greatly boosted without increasing false negatives substantially by
ignoring a marginal portion of vulnerable flows.

Alternatively, with the knowledge from a dynamic analysis, the
long lists of predefined sources and sinks used by static analyses
could be pruned to focus on the ones used most often. For example,
based on our results, considering just one or two top categories
of sources and sinks would allow static taint analyses to capture
taint flows between over 85% of all sources and sinks, providing
a slightly unsafe but rapid solution—both previous studies and our
experience suggest that cutting the lists significantly may lead to
substantial analysis performance gains [1, 44].

6.3.3 Occurrence of Sensitive Data Leaks
Sensitive operations (source API calls) are insecure only if the

sensitive information they retrieve flows to some sinks. Critical

8

risky source risky sink

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 (u
ni

qu
e

vi
ew

)

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 (i
ns

ta
nc

e
vi

ew
)

risky source risky sink

Figure 10: Percentage distribution (y axis) of risky sources and
risky sinks over all invoked sources and sinks, respectively.

operations (sink API calls) are insecure only if the information
they access is indeed private and/or security sensitive. Thus, the
occurrence of sensitive data leaks is contingent on the existence of
feasible information flow paths from sources to sinks. In fact, at
the core of taint analysis is a reachability analysis discovering
such flow paths. Traditionally, taint analysis examines sensitive
information leaks through data flow analysis at statement [1,44] or
finer-grained levels [8]. In our study, we approximated feasible
taint flows at method level by traversing the dynamic call graph of
DROIDFAX (see Section 4): we considered a sink reachable from
a source if their least common ancestor (on the graph) called the
sink after calling the source during app execution. We identified
sources reaching at least one sink (i.e. risky sources) and sinks
reachable from at least one source (i.e., risky sinks) in the traces.

Figure 10 depicts the distribution of percentages of risky
sources (risky sinks) over the total exercised sources (sinks) for
each individual app. The unique view shows that on average 20%
of exercised sources could leak the sensitive data they retrieved
and 50% of exercised sinks could access (hence leak) sensitive
data. Given our conservative approximation, it was expected that
these results are imprecise. However, the large numbers may still
indicate the prevalence of method-level control flows that allow
for sensitive data leaks in the benchmarks. Since there were many
more sources exercised than sinks (see Figure 9), a sink was more
likely to be reachable from a source than a source to have a
reachable sink, thus higher percentages of risky sinks were seen
than were percentages of risky sources.

The instance view shows a similar contrast between risky
sources and sinks, but much lower percentages of both (8% and
25% by average) over all instances of source and sink calls. This
observation implies that although considerable percentages of
exercised sources and sinks were risky, the risky sources and sinks
were not as much frequently called as non-risky ones.

Further examining the types of information accessed by the
risky sources and types of operations performed by the risky sinks
revealed that the more prevalent types of sources and sinks were
more likely to be risky as well, in both the unique and instance
views (see Appendix B for the detailed categorization results).

6.3.4 Summary and Discussion
Our security metrics show that (1) sensitive information

accesses and critical operations are commonly involved in
Android app executions, though they are not heavily executed
(accounting for less than 15% of all calls even with respect to the
highly-comprehensive lists of predefined sources and sinks), (2)
the target information of sources and target operations of sinks are
both in narrow scopes: over 90% of sources focus on accessing
network information, while about 85% of sinks focus on
operations related to account setting and logging, (3) substantial
portions of exercised sources and sinks can potentially channel

data leaks thus be risky, (4) these risky sources and sinks tend to
be executed less frequently than non-risky ones, and (5) the more
commonly accessed sensitive data tends to be more likely to be
leaked, and the more commonly invoked critical operations tend to
be more likely to leak sensitive data.

In light of these findings, Android app security analysis may
prioritize on the few predominant categories of sources and sinks
to avoid being overly conservative in discovering taint flows to
gain better overall tradeoffs between precision and efficiency. End
users and security experts should also pay more attention to these
highly accessed categories to make better decisions on permission
management and app vetting. The large room that method-level
control flows left for potential data leaks calls for effective app
protection against such threats which would need more
fine-grained (than method level) and comprehensive (checking
data flows also) analysis. Meanwhile, the rapid call-graph-based
source-sink reachability computation may quickly and largely
reduce the inspection scope of precise dynamic taint analysis and
data-leak detection to achieve better scalability (by focusing on
the risky sources and sinks).

6.4 Inter-App Benchmark Suite
Several Android app benchmark suites have been shared by

researchers [1, 44, 49] but all target a single-app static analysis.
For an inter-app dynamic analysis, a suite of apps with known
communicating peers in the same suite is more desirable. At the
early stage of our study, we faced the challenge of finding such a
suite. Now we have created one and released it for public reuse.

Our study results have confirmed that out of the 61 potentially
communicating app pairs (based on static ICC resolution and
matching) 45 have ICCs between the pair that have been exercised
readily by random inputs. Of these 45 pairs, 23 have ICCs going
in both directions between the app pair. The package names and
exercised ICC statistics of each pair are available for download
from our project website (see Section 4), where we have hosted
corresponding APKs for free, handy downloads too.

6.5 Threats to Validity
One threat to internal validity of our study results lies in

possible errors in the implementation of our toolkit DROIDFAX
and various experimentation scripts. To reduce this threat, we have
conducted careful code review of the toolkit and scripts in addition
to manual verification of their functional correctness against our
experimental design. The maturity of the Soot framework
supporting our toolkit also helps increase the credibility of our
tool implementation. Another internal threat comes from the
possibility of missing or incorrectly placing profiling probes
during the instrumentation due to code obfuscation, which has
been a significant block for static analysis of Android
apps [12, 31]. However, our manual inspection of Soot Jimple [28]
code and call traces for the benchmark apps revealed that for the
few obfuscated apps this did not affect our simple static analysis.

Primary threats to external validity concern our choice of
benchmark apps and the test inputs we used for dynamic analysis.
First, we studied a limited number of Android apps, which may
not be representative of all Android apps on the market or in use.
To mitigate this threat, we started with a much larger pool of apps
that were ranked as top popular apps recently, and picked each
benchmark app from that pool randomly. In addition, our study
targeted relatively new apps which were built on Android SDK 5.0
or above. Thus, our results may not generalize to older apps.
However, with the Android app market migrating to newer
platforms [22], we believe that studying Android apps with respect

9

to more recent platforms gives more valuable information for the
development and protection of future Android applications.

As any other dynamic analyses, our empirical results are subject
to the coverage of the test inputs we used—some behaviours of the
benchmarks might not have been exercised. To reduce this threat,
we used the tool that gives the highest coverage among peer
tools [4] (and only 5% lower than the highest reported so far
which was achieved by manual inputs in a much smaller-scale
study [31]). Nonetheless, our conclusions and insights are limited
to the covered app behaviours, and inputs of considerably higher
coverage may give stronger/different results (by reusing our
methodology and toolkit). Possible non-determinism in the chosen
apps could also be a threat, so we repeated our experiments three
times and took the average metric values for each app and app
pair, and found only marginal variances for most apps and pairs.

The main threat to conclusion validity concerns the distribution
of underlying data points, in light of the large variances of metric
values, for a few measures (e.g., categorization of data-carrying
ICCs and callbacks). In those cases, the non-uniformity of the data
distribution prevented stronger claims, but it did not affect the
current observations. As none of the benchmarks were known as
malicious, our results may not generalize to malware.

7. RELATED WORK
7.1 Dynamic Analysis for Understanding

Various dynamic analysis techniques have been employed for
program understanding in general [6], of which the most relevant
to us is execution trace analysis (e.g., [35, 46]). Yet, many existing
works of this kind concerned techniques aiming at effectively
exploring the traces themselves, such as trace reduction [24] and
visualization [5]; and others serve different purposes other than
directly for understanding the behaviour of programs, including
evolution tracking [18] and architecture extraction [27].

We also employed trace analysis for program-understanding
purposes. However, instead of exploring the traces directly or
improving trace analysis techniques, we focused on studying the
functionality structure and runtime behaviour of programs by
utilizing execution traces as a means. Also, we target mobile
applications, unlike the majority of prior approaches which
addressed other domains such as traditional desktop software.

A few dynamic analyses focusing on Android involved tracing
method calls as well, for malware detection [46], app profile
generation [45], and access control policy extraction [13]. Yet,
their main goal was to serve individual apps thus different from
ours of characterizing Android application programming as a
whole. In addition, their call tracing aimed at Android APIs only,
whereas our execution traces covered all method calls including
methods defined in user code and third-party libraries.

7.2 Android Security Analysis
Recent years have seen a growing body of research on securing

Android apps against a wide range of security issues [12]. Among
the rich set of proposed solutions [43], modeling the Android SDK
and other libraries [1, 44], approximating the Android runtime
environment [23, 30], and analyzing lifecycle callbacks and event
handlers [1, 48] are the main underlying techniques for a variety of
specific vulnerability and malware defense approaches [43].
Examples of such specific approaches include information flow
analysis [8, 42] in general and taint analysis [1, 36] in particular.

In comparison, we are concerned about similar aspects of the
Android platform and its applications, such as different layers of
app code and interactions among them, as well as lifecycle

methods and event handlers. We also performed a coarse (i.e.,
method level) and approximated (i.e., control-flow based) taint
analysis. However, rather than proposing or enhancing these
techniques themselves, we empirically characterized sample
Android apps with respect to relevant app features and investigated
how such features discovered from our study would affect the
design of those techniques. Also, different from many of them that
are purely static analyses, our work is dynamic. On the other hand,
compared to existing dynamic approaches to security analysis for
Android which were mostly platform extensions (i.e., modifying
the SDK itself), our work did not change the Android framework
but only instrumented in Android apps directly as in [26].

7.3 Characterization of Android Apps
Empirical works targeting Android also have emerged lately.

Previous studies have covered a broad scope of topics ranging
from general security vulnerabilities [10], resource usage [17], and
battery consumption [16] to permission management [15], code
reuse [41], ICC robustness [32], SDK stability [34] and user
perception of security and privacy [14]. In contrast, our work aims
at the general characterization of Android applications from the
point of view of programming paradigms and language constructs.
Also, different from these prior works which leveraged static
analysis and/or user studies (e.g., survey and interview), we utilize
comprehensive method call profiling and message-passing tracing
to investigate the dynamic semantics of Android apps.

For categorizing data accessed by sensitive and critical API
calls, we created lists of predefined sources and sinks from those
used in [40], where frequencies of source and sink usage in
malware samples were studied. Several other works on Android
app characterization also targeted Android malware [47, 49].
These studies either utilized static analysis [40, 47] or relied on
manual investigation [49]. In contrast, we targeted understanding
the run-time behaviours of benign Android apps via dynamic
analysis, which potentially complements those previous studies.

8. CONCLUSION
We presented the first systematic dynamic study of Android

apps that targets a general understanding of application security in
Android from the perspective of run-time app behaviours. To that
end, we traced method calls and ICC Intents from one-hour
continuous executions of 114 top popular apps randomly selected
from Google Play and 61 communicating pairs among them. We
developed an open-source toolkit DROIDFAX and applied it to
characterize the execution structure, usage of lifecycle callbacks
and event handlers, ICC calls and data payloads, and sensitive data
accesses of Android apps at runtime. We also have produced an
app-pair benchmark suite and its exercised ICC statistics that are
particularly useful for dynamic Android inter-app analysis.

Our results reveal that (1) Android apps are heavily dependent
on various libraries, especially the Android SDK, to perform their
tasks, (2) only a small portion of method calls target lifecycle
callbacks or event handlers, (3) most ICCs during Android app
executions do not carry any data payloads and the rest pass data
mainly via bundles instead of URIs, (4) while sensitive and critical
APIs are substantially invoked, they mostly focus on only a few
kinds of information and operations, and (5) the more commonly
accessed sensitive information is more likely to be leaked, and the
more commonly performed critical operations are more likely to
leak sensitive data. We have offered considerable insights into the
security implications of our empirical findings that potentially
inform both secure development of future Android apps and the
design of cost-effective security defense solutions for Android.

10

9. REFERENCES
[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. L. Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In PLDI, 2014.

[2] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi,
and B. Shastry. Towards taming privilege-escalation attacks
on Android. In NDSS, 2012.

[3] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in Android. In
MobiSys, pages 239–252, 2011.

[4] S. R. Choudhary, A. Gorla, and A. Orso. Automated test
input generation for android: Are we there yet?(e). In
Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pages 429–440.
IEEE, 2015.

[5] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van
Deursen, and J. J. van Wijk. Execution trace analysis through
massive sequence and circular bundle views. Journal of
Systems and Software, 81(12):2252–2268, 2008.

[6] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen,
and R. Koschke. A systematic survey of program
comprehension through dynamic analysis. IEEE
Transactions on Software Engineering, 35(5):684–702, 2009.

[7] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach.
QUIRE: Lightweight provenance for smart phone operating
systems. In USENIX Security Symposium, 2011.

[8] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Sheth. TaintDroid: An information-flow
tracking system for realtime privacy monitoring on
smartphones. In OSDI, pages 393–407, 2010.

[9] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of Android application security. In Proc. of the 20th USENIX
Security Symposium. USENIX Association, 2011.

[10] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of android application security. In Proceedings of the 20th
USENIX Conference on Security, pages 21–21, 2011.

[11] W. Enck, M. Ongtang, and P. McDaniel. Understanding
android security. IEEE security & privacy, (1):50–57, 2009.

[12] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur,
M. Conti, and M. Rajarajan. Android security: a survey of
issues, malware penetration, and defenses. Communications
Surveys & Tutorials, IEEE, 17(2):998–1022, 2015.

[13] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In Proceedings of the 18th
ACM conference on Computer and communications security,
pages 627–638. ACM, 2011.

[14] A. P. Felt, S. Egelman, and D. Wagner. I’ve got 99 problems,
but vibration ain’t one: a survey of smartphone users’
concerns. In Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices,
pages 33–44. ACM, 2012.

[15] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: User attention,
comprehension, and behavior. In Proceedings of the Eighth
Symposium on Usable Privacy and Security, page 3. ACM,
2012.

[16] D. Ferreira, A. K. Dey, and V. Kostakos. Understanding
human-smartphone concerns: a study of battery life. In
Pervasive computing, pages 19–33. Springer, 2011.

[17] D. Ferreira, V. Kostakos, A. R. Beresford, J. Lindqvist, and
A. K. Dey. Securacy: an empirical investigation of android

applications’ network usage, privacy and security. In
Proceedings of the 8th ACM Conference on Security &
Privacy in Wireless and Mobile Networks, page 11. ACM,
2015.

[18] M. Fischer, J. Oberleitner, H. Gall, and T. Gschwind. System
evolution tracking through execution trace analysis. In
Program Comprehension, 2005. IWPC 2005. Proceedings.
13th International Workshop on, pages 237–246. IEEE,
2005.

[19] Google. Android emulator.
http://developer.android.com/tools/help/emulator.html, 2015.

[20] Google. Android logcat.
http://developer.android.com/tools/help/logcat.html, 2015.

[21] Google. Android Monkey.
http://developer.android.com/tools/help/monkey.html, 2015.

[22] Google. Android Developer Dashboard.
http://developer.android.com/about/dashboards/index.html,
2016.

[23] M. Gordon, D. Kim, J. Perkins, L. Gilhamy, N. Nguyen, and
M. Rinard. Information-flow analysis of Android
applications in DroidSafe. In NDSS, 2015.

[24] A. Hamou-Lhadj and T. Lethbridge. Summarizing the
content of large traces to facilitate the understanding of the
behaviour of a software system. In Program Comprehension,
2006. ICPC 2006. 14th IEEE International Conference on,
pages 181–190. IEEE, 2006.

[25] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and
E. Stroulia. Understanding android fragmentation with topic
analysis of vendor-specific bugs. In Reverse Engineering
(WCRE), 2012 19th Working Conference on, pages 83–92.
IEEE, 2012.

[26] R. Hay, O. Tripp, and M. Pistoia. Dynamic detection of
inter-application communication vulnerabilities in android.
In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, pages 118–128. ACM, 2015.

[27] T. Israr, M. Woodside, and G. Franks. Interaction tree
algorithms to extract effective architecture and layered
performance models from traces. Journal of Systems and
Software, 80(4):474–492, 2007.

[28] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. Soot - a Java
bytecode optimization framework. In Cetus Users and
Compiler Infrastructure Workshop, 2011.

[29] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N.
Amaral, B.-Y. E. Chang, S. Z. Guyer, U. P. Khedker,
A. Møller, and D. Vardoulakis. In defense of soundiness: a
manifesto. Commun. ACM, 58(2):44–46, 2015.

[30] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX: statically
vetting Android apps for component hijacking
vulnerabilities. In CCS, 2012.

[31] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input
generation system for android apps. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software
Engineering, pages 224–234. ACM, 2013.

[32] A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer.
An empirical study of the robustness of inter-component
communication in android. In Dependable Systems and
Networks (DSN), 2012 42nd Annual IEEE/IFIP
International Conference on, pages 1–12. IEEE, 2012.

[33] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun.
Analysis of the communication between colluding
applications on modern smartphones. In Proceedings of the

11

http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/logcat.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/about/dashboards/index.html

28th Annual Computer Security Applications Conference,
pages 51–60. ACM, 2012.

[34] T. McDonnell, B. Ray, and M. Kim. An empirical study of
api stability and adoption in the android ecosystem. In
Software Maintenance (ICSM), 2013 29th IEEE
International Conference on, pages 70–79. IEEE, 2013.

[35] J. Moc and D. A. Carr. Understanding distributed systems
via execution trace data. In Proceedings of International
Workshop on Program Comprehension, pages 60–67, 2001.

[36] J. Newsome and D. X. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In Proc. of the Network and
Distributed System Security Symposium. The Internet
Society, 2005.

[37] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel.
Composite constant propagation: Application to android
inter-component communication analysis. In Proceedings of
the 37th International Conference on Software Engineering,
pages 77–88, 2015.

[38] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. Le Traon. Effective inter-component
communication mapping in android with epicc: An essential
step towards holistic security analysis. In Proceedings of
USENIX Security Symposium, 2013.

[39] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. L. Traon. Effective inter-component
communication mapping in Android with Epicc: An
essential step towards holistic security analysis. In USENIX
Security Symposium, 2013.

[40] S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning
approach for classifying and categorizing android sources
and sinks. In NDSS, 2014.

[41] I. J. M. Ruiz, M. Nagappan, B. Adams, and A. E. Hassan.
Understanding reuse in the android market. In Program
Comprehension (ICPC), 2012 IEEE 20th International
Conference on, pages 113–122. IEEE, 2012.

[42] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora,
B. Dhandapani, E. J. Lehner, S. Y. Ko, and L. Ziarek.
Information flows as a permission mechanism. In ASE, pages
515–526, 2014.

[43] D. J. Tan, T.-W. Chua, V. L. Thing, et al. Securing android: a
survey, taxonomy, and challenges. ACM Computing Surveys
(CSUR), 47(4):58, 2015.

[44] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A precise and
general inter-component data flow analysis framework for
security vetting of Android apps. In CCS, pages 1329–1341,
2014.

[45] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos.
Profiledroid: multi-layer profiling of android applications. In
Proceedings of the 18th annual international conference on
Mobile computing and networking, pages 137–148. ACM,
2012.

[46] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu.
Droidmat: Android malware detection through manifest and
API calls tracing. In Information Security (Asia JCIS), 2012
Seventh Asia Joint Conference on, pages 62–69. IEEE, 2012.

[47] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras.
Droidminer: Automated mining and characterization of
fine-grained malicious behaviors in android applications. In
Computer Security-ESORICS 2014, pages 163–182.
Springer, 2014.

[48] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static

control-flow analysis of user-driven callbacks in android
applications. In Proceedings of the 37th International
Conference on Software Engineering-Volume 1, pages
89–99. IEEE Press, 2015.

[49] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Security and Privacy (SP),
2012 IEEE Symposium on, pages 95–109. IEEE, 2012.

[50] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming
information-stealing smartphone applications (on android).
In Trust and Trustworthy Computing, pages 93–107.
Springer, 2011.

APPENDIX
A. CATEGORIZATION OF ICC INTENTS

CONTAINING DATA PAYLOADS

single−app inter−app

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 (i
ns

ta
nc

e
vi

ew
)

int_ex int_im ext_ex ext_im

(a) standard data only

single−app inter−app

int_ex int_im ext_ex ext_im

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 (i
ns

ta
nc

e
vi

ew
)

(b) bundle data only

single−app inter−app

int_ex int_im ext_ex ext_im

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 (i
ns

ta
nc

e
vi

ew
)

(c) both forms of data
Figure 11: The distribution of ICCs carrying standard data only (a),
bundle data only (b), and both forms of data (c) over the four ICC
categories, in both single- and inter-app settings.

Figure 11 depicts the results of our deeper look at the data
carriage of ICCs. The three charts, 11a, 11b, and 11c, break down
the ICCs that carried standard data only, bundle data only, and
both forms of data, respectively, showing the same categorization
as in Figure 7 for these ICCs—the four possible categories as

12

listed on the x axis: internal explicit (int_ex), internal implicit
(int_im), external explicit (ext_ex), and external implicit (ext_im).
Each data point (i.e., percentage) was calculated the same way as
for Figure 7 except that the population was not the total ICC
Intents but those carrying data of either or both forms.

Chart 11a reveals that the few standard-data-only ICCs (around
5% of all) were uniformly all (100%) external implicit; that is, the
apps tended to exchange data with peers by specifying URIs and
using implicit ICCs if they did not pass anything through the
extras field of the ICC Intents. This finding was consistent
between the single- and inter-app settings.

Chart 11b shows that, in the single-app setting, over 80% of the
ICCs that only used bundles to pass data were employed for
explicitly exchanging the data between intra-app components, as
seen by most of the individual apps. By comparison, external
ICCs, especially explicit ones, very rarely contained data only in
their extras field despite a few outlier apps having ICCs doing
that considerably. In the inter-app setting, the largest mean and
median for external explicit ICCs suggest that there were more
app pairs exchanging bundle-only data explicitly than pairs where
the apps pass such data between components with the other three
categories of ICCs. In contrast, there were almost no app pairs
where the apps pass bundle-only data using internal implicit ICCs.

Finally, chart 11c shows how the ICCs carrying both standard
and bundle data, only found in a few outlier apps (see chart 8), are
distributed over the four ICC categories. In both settings, external
implicit ICCs (with median percentage close to 100%) dominated
the other three categories (with median percentage of almost zero)
of such both-data ICCs in most apps or app pairs.

B. CATEGORIZATION OF RISKY
SOURCES AND SINKS

Table 5: Risky source breakdown over significant categories
Category Unique view Instance view
ACCOUNT_INFO 0.08% (0.75%) 0.47% (5.20%)
CALENDAR_INFO 0.74% (3.70%) 0.60% (4.48%)
LOCATION_INFO 0.06% (0.67%) 0.02% (0.19%)
NETWORK_INFO 84.22% (35.37%) 84.06% (35.74%)
SYSTEM_SETTINGS 0.11% (1.51%) 0.06% (0.79%)

Table 6: Risky sink breakdown over significant categories
Category Unique view Instance view
ACCOUNT_SETTINGS 67.33% (37.12%) 66.05% (40.09%)
FILE 0.24% (1.55%) 0.28% (2.51%)
LOG 13.47% (23.81%) 12.35% (27.46%)
NETWORK 0.67% (3.78%) 0.47% (3.74%)
SMS_MMS 0.13% (0.85%) 0.03% (0.46%)
SYSTEM_SETTINGS 3.37% (6.34%) 6.02% (15.27%)

Tables 5 and 6 present the results on the categorization of risky
sources and risky sinks according to the types of sensitive
information accessed and kinds of critical operations performed,
in the same format as Tables 3 and 4, respectively.

The results show that (1) the top (significant) categories were
consistent with those of all exercised sources and sinks (see
Tables 3 and 4), (2) the distributions of risky sources and sinks
were also consistent with those for the total sources and sinks
invoked during app executions. Meanwhile, the most dominant
category of exercised sources (i.e., network information) was less
dominant among the risky categories, and account information

tended to be relatively more commonly accessed by risky sources.
As to the sink categorization, though, the category of account
settings appeared to be even more dominant, while the category of
logging operations appeared to be considerably less, among risky
sinks than it was among all exercised sinks.

Nevertheless, the general observations from this detailed
categorization are that (1) the more prevalently accessed types of
information (e.g., network information followed by system
settings) were also the more dominant types accessed by risky
sources, and (2) the more commonly invoked types of critical
operations (e.g., account settings followed by logging) were the
more dominant types performed by risky sinks as well.

13

	Introduction
	Background
	Experimental Methodology
	Benchmarks and Test Inputs
	Metrics
	Procedure

	Study Toolkit
	Research Questions
	Empirical Results
	General Characteristics of Android Apps
	Composition of Code and Execution
	Inter-layer Code Interaction
	Usage of Callbacks
	Summary and Discussion

	ICC Characterization
	Component Distribution
	ICC Categorization
	Data Carriage
	Summary and Discussion

	Security-Sensitive Data Accesses
	Usage of Sources and Sinks
	Categorization of Sensitive Data Accesses
	Occurrence of Sensitive Data Leaks
	Summary and Discussion

	Inter-App Benchmark Suite
	Threats to Validity

	Related Work
	Dynamic Analysis for Understanding
	Android Security Analysis
	Characterization of Android Apps

	Conclusion
	References
	Categorization of ICC Intents Containing Data Payloads
	Categorization of Risky Sources and Sinks

