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Chapter I 

INTRODUCTION 

Power spectral density (PSD) estimates of a given time 

series of data have been widely used in signal processing, 

optics, geophysics, bio-engineering, statistical 

mathematics, and economics. In the last two and a half 

decades numerous techniques and algori thins [ 1] have been 

devised for efficiently estimating the PSD. The PSD 

provides a frequency domain description of the second order 

statistics of a wide sense stationary process while the 

autocorrelation gives the corresponding time domain 

description. In fact, the PSD and the autocorrelation form 

a Fourier transform pair. A time series of infinite length 

is required to compute its PSD. Since an infinitely long 

data record is not available, we have to estimate the PSD. 

There are numerous applications of PSD estimates [2, pp. 

179]. Especially, in the field of signal processing, the 

power spectral density is an important tool in analyzing 

data, filter design, target tracking, and parameter 

estimation. Geophysicists use PSD estimates extensively to 

study the behavior of various geological phenomena, e.g. 

earthquakes, geomagnetic micropulsations, sunspot numbers, 

etc. Spectral estimates are useful to aeronautical design 
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engineers in suggesting how various parts· of the aircraft 

structure need to be designed to minimize the risk of 

structural damage due to the buffeting of turbulant air. 

Statisticians estimate the power spectrum in model 

building, design of experiments, and frequency response 

studies of economic time series. Finally, we mention the 

use of PSD estimates as a diagonistic tool, when applied to 

the electroencephalogram (EEG) or electrocardiogram (ECG). 

Current methods of spectrum estimation can be broadly 

grouped into two classes. The first one is the classical 

approach, which includes the periodogram method, 

autocorrelation methods and its variants (Bartlett, 1953, 

[3]; Grenander and Rosenblatt, 1957, [4]; Blackman and 

Tukey, 1958, [SJ; Jenkins and Watts, 1968, [6]; Koopmans, 

1974, [7]). The second one is based on parametric modelling. 

This includes the maximum entropy method or MEM (Burg, 1967, 

[8]), one step linear prediction (Parzen, 1969, [9]), and 

spectral estimation using ARMA models (Tretter and 

Steiglitz, 1967, [10]; Gutowski, Robinson and Treitel, 1978, 

[ 11]). Parametric spectral estimation exhibits a superior 

resolution property for short data records in comparison to 

the classical approach. But the classical approach is 

popular because the classical methods are fairly easy to 

implement and can be computed efficiently by using the Fast 
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Fourier Transform ( FFT) . There is a considerable body of 

literature on parametric spectral estimators ( [ 12], [ 13]). 

Here we study only the MEM estimator. 

The MEM estimator is also known as the Burg spectral 

estimator (BSE). In analogy with the Welch spectral 

estimation procedure [ 14], it was initially expected that 

the quality of the BSE could be improved by segmenting the 

available data record, applying the BSE to each segment, and 

a subsequent averaging of the relevant parameters or 

functions associated with each segment. The underlying idea 

was that the BSE was suitable for short data records, so 

that relatively little would be lost in terms of spectral 

resolution and hopefully much could be gained in terms of 

spectral estimation variance. We note that this approach 

should not work for large records as in that case the Burg 

estimator already performs close to the Cramer-Rao bound. 

The aim is specifically for spectral estimator quality 

improvement when applied to relatively short records. 

Motivated by this idea, the author investigated the effect 

of segment averaging on the quality of the BSE estimator. 

The BSE is classified as an auto-regressive (AR) 

estimator. In Chapter 2 a tutorial review of the asymptotic 

properties of the AR spectral estimator (ARSPE) is given. 

Mainly the findings of Akaike [15], Kromer [16], Berk [17], 
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and Sakai [18] have been presented. The mean and variance 

for the modified Burg spectral estimator (MBSE) using 

several averaging techniques are derived in Chapter 3. The 

MBSE is a modified form of the BSE, where some averaging 

techniques are employed. The available N data points are 

segmented into M non-overlapping sections, so that each 

section has N/M data points. Three types of averaging 

technique are used with the MBSE. In the first method (AVA) 

the AR parameters, evaluated for each section, are averaged 

and the resulting average AR parameters yield an associated 

spectral density estimate. The second method (AVK) averages 

the reflection coefficients, the average of which leads to 

the corresponding 

(AVP) evaluates 

spectral 

the PSD 

estimate. The final approach 

estimate associated with each 

segment and then averages these directly. In this thesis, 

sometimes the reference to AVA, AVK or AVP will essentially 

mean the modified Burg spectral estimator using the 

corresponding averaging technique. In Chapter 3 the lower 

bound for the mean and variance of the reflection 

coefficients is also derived. Simulation results are 

presented and carefully studied in Chapter 4. The empirical 

and approximate theoretical variances of the respective 

estimation errors are compared against the theoretical 

Cramer-Rao lower bound (CRLB). The performances of the Welch 



5 

spectral estimator and the MBSE using averaging techniques 

are also compared. Finally, the conclusion of this 

investigation is given in Chapter 5. Some guidelines are 

given so that the results for the MBSE may be generalized to 

all other AR estimators. 



Chapter II 

ASYMPTOTIC PROPERTIES OF THE AR SPECTRAL 
ESTIMATOR (ARSPE) 

2.1 INTRODUCTION 

In time series analysis two approaches have dominated. 

One approach uses time domain analysis and the other uses 

the frequency domain. In the time domain approach some 

parametric model is postulated and this model is then fitted 

to the observed data by estimating its parameters. One of 

these parametric models is the AR or all-pole model. This 

model is widely used because the estimation of its 

parameters requires the solution of a system of linear 

equations only, which can be easily done. Moreover, it is 

efficient in representing the data because lower order 

models generally yield satisfactory results in fitting the 

data. Assuming the input of this model to be a zero mean 

white gaussian noise, the PSD estimate of the observed time 

series is given by the product of the variance of the white 

input noise and the magnitude squared of the model transfer 

function, evaluated on the unit circle in the z-domain. The 

AR model gives a good resolution of the power spectral 

density peaks. 

6 
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Until now only the asymptotic properties of the ARSPE 

have been derived. The term 'asymptotic' implies that these 

properties provide a good prediction of the actual 

performance of the estimator when the amount of data is 

sufficiently large with respect to the order of the system. 

Initially, the error covariance matrices of the estimates of 

AR parameters using the Yule-Walker (YW) equations were 

derived [ 19, 20]. The derivation of the variance of the 

ARSPE estimates followed [15, 16, 17, 18, 21, 22]. 

The first classical paper on the asymptotic distribution 

of the estimates of the AR coefficients for a process of 

known order with independent innovations was presented by 

Mann and Wald ( 1943) [ 19]. Later, Anderson and Walker 

(1964) [20] gave the limit distribution of AR parameters 

from any linear stochastic process. 

Akaike (1969) [15] has derived the variance of the ARSPE 

estimates in a limit distribution sense and his theorems 

(Theorem 1 and 2, [15]) are based on the assumption that the 

time series was produced by a finite autoregression. Then 

Kromer (1970) [16] presented significant results on the 

asymptotic behaviour of the ARSPE. Followed by this, Berk 

(1973) [17], Baggeroer (1976) [21], Huzzi (1977) [22] and 

Sakai (1978) [18] published papers on the asymptotic 

properties. of the ARSPE estimates. In all of them, the 
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authors assumed some strict conditions on the data which are 

mentioned in the next section. Since their assumptions and 

approaches are different, the expressions of the variances 

of the PSD estimates are not the same. However, numerical 

evaluation of these expressions showed the same results. 

The ARSPE class consists of a large number of spectral 

estimators, each of which estimates the AR coefficients in a 

different way. But asymptotically all these estimates 

converge to the same solution. So, by the words 'asymptotic 

properties 

statistical 

estimators. 

of the ARSPE' 

properties of 

we include the 

all types of AR 

asymptotic 

spectral 

In the following section we shall review some 

of the more significant work. We like to mention that the 

results shown in the next section will not be used in our 

investigation for we have dealt with a moderate number of 

data points. However, we feel it necessary to give the 

readers an overview of the results obtained for the 

asymptotic case. 

2.2 VARIANCE OF THE ARSPE ESTIMATE 

2.2.1 Akaike Derivation 

Akaike [ 15] has considered a time series { xt l from a 

realization of a finite order autoregressive process defined 

by 



p 
xt = E amxt-m + Et 

m=l 

9 

(2-1) 
where {Et} is a zero mean white noise with finite variance 

E(E 2 t)=a 2 and finite fourth order moment. The roots of the 

characteristic equation 

p 
1 +Ea zm = O 

m 
m=l 

(2-2) 

are lying outside the unit circle in the z-plane. The total 

number of observations we will use is N. The estimates {S, m 

m=l,2, ... ,p} of the autoregressive coefficients are obtained 

by solving the approximate YW equations 

p/\ /\ A 
Erk a = - rk' -m m 

m=l 

where 

N-lkl 
l: xt+lklxt/N 

t=l 

k=l, 2 I • • • Ip 

(2-3) 

The power spectral density function P(w) of the process {xt} 

is given by 

P(w) = p 
11 + i: a exp(-jwm) 1 2 

m 
m=l 

An estimate ~ 2 of 0 2 is given by 

(2-4a) 



"'2 " p" /\ o = r 0 + l: a r m m 
m=l 

Akaike then defines 
/\ 

Aa = a - a m m m' 

a 

p 

10 

Ap(w) = 1 + l: amexp(-jwm) 
m=l 

I\ 

(2-4b) 

,I\ 

Ao2 02 - 02 

(2-Sa) 
J\ 

AP ( w) = P(w) P(w) 

(2-Sb) 

(2-Sc) 

AIA (w)l 2 = IA (w)l 2 - IA (w)l 2 
p p p 

If the process {xt} is 
I\ 

(2-Sd) 

. I\ strictly stationary and ergodic, a m 

and o2 converge to a and o2 with probability one as N, the m 

m1mber of data points, tends to infinity.. Even though the 

estimate of the power spectral density is reciprocal of the 

quadratic function of estimates of the autoregressive 

coefficients, in the limit its vari ability is attributed 

mainly to the linear term. On the basis of a result of 

Anderson and Walker, Akaike has introduced a linear 

transformation of the data to get a set of mutually 

orthogonal variables ./ffaa m ( m=l, 2 f • • • Ip) • Under the 

assumption of strict stationarity and mutual independence of 

he has proved that the distribution of v'f.faa m 
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converges, as N tends to infinity, to a p-dimensional 

gaussian distribution with zero mean vector and variance 

matrix a 2 R- 1 where R is a pxp matrix with { i, j) element 

equal to E{xt .xt .). Akaike also obtained the result that 
-1 -J 

N 
IN{ r { £ 2 t/N) - a 2 } and INaam tend to be independent 

t=l 
in their limit distribution. He further showed that 

INaP{w)/P{w) has a limit distribution with a variance 

composed of two components: one due to the relative 

variation of ~2 and the other due to that of jAP{w)j 2 • His 

final result is given below 

= EE" - l} 

p-1 
+ 4P { w. ) P { w . ) r Re { ck { w. ) } Re { ck { w . ) } 

1 J 1 J 
k=O 

(2-6) 
where 

and E [.} denotes the expectation in the limit distribution 
00 

of the quantity within the brace. When i=j it gives the 

asymptotic variance of the ARSPE estimates. It should be 

noted that the foregoing result is also valid when the model 

order pis greater than the order of the process. 
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2.2.2 Kromer Derivation 

Kromer [16] has determined the asymptotic distribution of 

the estimated spectral density as first the number N of 

observations and subsequently the order p of the 

autoregression goes to infinity. He has compared the 

asymptotic properties of the ARSPE estimates with that of 

conventional windowed periodogram estimates. His findings 

are summarized by the following results. 

a. The ARSPE estimates are asymptotically unbiased. 

b. The ARSPE estimates are asymptotically normal. 

c. The variance of the estimated PSD is given by 

;'\ 

Var{P(w)} = (2/v}P 2 (w) 
(2-7) 

where vis the number of degrees of freedom and is related 

to the order of the AR process p by v=N/p. This result 

holds for large N and p and is valid for smooth spectra 

where oP(w)/ow is not high. 

2.2.3 Berk Derivation 

Berk [17] has dealt with a stationary process {xt} with 

some regularity assumptions which are mentioned later. He 

has shown that the autoregression yields a consistent 

estimator of the spectral density of {xt} when the order p 

is asymptotically sufficient to overcome the bias. Assuming 
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p goes to infinity so that the bias from using a finite 

autoregression vanishes at a sufficient rate, the ARSPE 

estimates 

distributed, 

are 

and 

furthermore 

uncorrelated 

asymptotically 

at different 

normally 

fixed 

frequencies. Comparing with the spectral estimates based on 

a windowed periodogram he has found that the asymptotic 

variances for both estimators are the same. 

Berk has defined the linear process {xt} by 

Xt =Et+ bltt-1 + b2€t-2 + ••• 
(2-Ba) 

where b 1 , b2 , ... are real numbers and {tt} is a sequence of 

independent identically distributed (i.i.d.) zero mean 

random variables with variance E{t 2 t)=a 2 • The polynomial 

is bounded away from zero for lzl~l so 

that the process is invertible. We have therefore 

= € t 
(2-8b) 

where 

is bounded away from zero, I z I ~l. Berk uses a least squares 

predictor of order p for fitting the data with the AR model 

of (2-8b), or actually a truncation thereof. The estimated 

AR coefficients are determined from approximate YW equations 
A A A 

Ra - - r 
(2-9) 

where 



I\ 

R = 

" r = 

N-1 
T l: X.X./(N-p) -J-J 

j=p 

N-1 
l: Xjxj+l/(N-p) 

j=p 

14 

T X. = [x.,x. 1 , ... ,x. +ll · -J J J- J-p 

The resulting estimated PSD is given by 

I\ 

P(w} = 

where 

"' 2 a 

p 
A i 

1 + l: aiz 
i=l 

"z A p II. I\ 
a = ro + l: a r mm 

m=l 

(2-10) 

The corresponding theoretical quantities are P(w}, Ap(z}, 

and R. If and are the 

eigenvalues of R, then [23) 

(2-11} 

Using the latter and assuming the following regularity 

conditions 

i) A(w) is nonzero for -~<w<~, 
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ii) E(e'\) < oo, 

iii) The choice of p in terms of N is such that 

iv) The choice of p in terms of N is such that 

In( lap+ll + 1ap+2I + ... ) -+ 0 

Berk obtained the following results . 

.I\ 
a) P(w) converges to P(w) in probability under the above 

mentioned conditions. 

b) The joint asymptotic distribution of 

A A 
l(N/p) {P(O)-P(O)}, v'(N/p) {P(w 1 )-P(w 1 )}, • • • I 

A A 
v'(N/p) {P(wp)-P(wp)}, /(N/p) {P(ir)-P(ir)}, 

is independent, normal, zero mean with variances 

2.2.4 Sakai Derivation 

Sakai [ 18) has used the periodogram technique to 

investigate the properties of ARSPE estimates. He has shown 

numerically that the behavior of the variances is similar to 

the earlier results of Kromer and Berk for stationary 
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processes. He has considered a time series {xt} which 

consists of q sinusoids and additive zero mean stationary 

gaussian noise tt. So, 

q 
jw.t * -jwit 

xt = t (Bie 1 + Bie ) + tt 
i=l 

( 2-12) 

where * denotes the complex conjugate and {Bi} are complex 

constants. The AR parameters are then estimated from 

approximate YW equations, where the autocorrelation matrix 

is estimated from the data in the same manner as Akaike has 

done. The ARSPE estimate is given by 

" P(w) = 

where 

" A(w) = 

2,r~(w)A(-w) 

p 
" " j iw t. a.e , 

1 
i=O 

( 2-13) 

Sakai then proves that for a sufficiently large number of 

data points the ARSPE estimate " P(w) can be expressed in 

terms of the periodogram IN(s) as follows. 

I\ 1T 
P(w) = J G(w, s) IN( s)ds 

-,r (2-14) 

where 



G{w,s) 

17 

N 
"t . 

E xte-J sl 2 /(2TIN) 

t=l 

p 
= P(w)A(s) [ E {R- 1H(w) }ejis + o- 2 A(-s)] 

i=l 
.c. P(w)g(w,s) 

H(w) = 2Re[{(ejw)/A(w)] 

= [ j w j 2w e 'e , ... , 

The symbol = indicates that both sides are asymptotically 

equivalent. Thus, the ARSPE can be viewed as a smoothed 

periodogram with a data-dependent "spectral window" G( w, s). 

Finally, Sakai expressed the asymptotic covariance between 

P{wi) and P(wj) by the following relation 

TI -TI 
= J J g(wi,s 1 )g(wj,s 2 )Cov{IN(s 1 )IN(s 2 )}ds 1ds 2 

TI -TI 
(2-15) 

where 

/\ 

~P(wi) = P(wi) - P(wi) 

At present the above expression does not permit clear-cut 

analytic interpretations. 
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2.3 SUMMARY 

Let us now summarize the significant findings of Akaike, 

Kromer, Berk and Sakai. All of them showed that 

asymptotically the ARSPE is consistent. Furthermore, 
I\ 

from their results it is found that l(N/p) {P(w)-P(w) }/P(w) 

has a normal limiting distribution with zero mean and 

variance 

N. E [ { 
!J.P ( w) 

P(w) 

2p 

4p 

for w=f=O, ,r 

for w=O, ,r 
(2-16) 

The above expression (2-16) indicates that the asymptotic 

variance of the ARSPE estimates is approximately equivalent 

to that of the windowed periodogram with a suitably chosen 

truncation length [24). 



Chapter III 

STATISTICAL PROPERTIES OF THE MODIFIED BURG 
SPECTRAL ESTIMATOR (MBSE) 

3.1 INTRODUCTION 

In the past decade, there has been strong interest and 

much activity in developing high resolution power spectrum 

estimation techniques, particularly for short data records. 

Especially the Burg spectral estimation technique, also 

called maximum entropy spectral analysis (MESA), has 

received much attention in this regard. The MEM spectrum of 

a stationary process results from maximizing the entropy of 

that process. It has been found that the MEM of spectral 

estimation is equivalent to the least squares fitting of an 

AR model to the process [25]. It was also shown that if the 

maximum entropy spectra are calculated for m=l,2, ... ,p, 

where pis the order of the model, and the average of the 

reciprocals of these spectra is determined, then this 

average is equal to the reciprocal of the maximum likelihood 

spectrum [26, 27]. 

The BSE is based on the assumption that the received data 

sequence was generated by a white noise driven AR system. In 

this thesis, we are assuming that the stochastic process 

generating the N data points is zero mean, 

19 
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gaussian, wide sense stationary and ergodic (Al) 1 . The Burg 

spectral estimate [28) is then given by 

I\ d 2 
P(w) = I · "' " z=eJw, A(z)A(z- 1 } 

(3-1) 

where 
p 

I\ 
A( z) = 1 + l: " i a. z 1,p 

i=l 

N-1 
o2 = l: x2i/(NrO) 

i=O 
with ~O the autocorrelation at lag zero associated with the 

i\ 
filter 1/A(z}. It is to be noted that the estimated gain 

factor ~ 2 is different from that proposed by Burg [28). Burg 

estimates the gain factor from the sum of the squares of 

forward and backward errors which is minimized with respect 

to the reflection coefficient. The order p of the AR model 

(Fig. 1) is assumed known. The AR coefficients 

{~i,pll=l are determined by using the Levinson-Durbin 

" algorithm and the reflection coefficients {Km}~=l are 

estimated according to the Burg method [29]. 

1 This assumption is denoted by Al. 
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Figure 1: The Autoregressive Lattice Filter 

N .... 
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N-1 
2 l: f b t,m-1 t-l,m-1 

t=m 
N-1 

t (f 2 t,m-l + b 2 t-l,m-1> 
t=m 

m 
" b = ta. xt . t,m 1,m -m+i 

i=O 

(3-2) 

the forward respectively backward error at the mth stage. 

The reflection coefficient is defined as the partial 

correlation coefficient between the forward and backward 

prediction residuals. In the AR lattice filter approach 

reflection coefficient is analogous to the reflection 

coefficient of an acoustic tube model. The forward 

prediction residual or error is equal to (xn-~n) where xn is 

generated by a one step linear predictor using the last p 

samples. Similarly the backward error is equal to A (x -x) n n 
where x is generated by a one step linear predictor using n 
the next p samples. It is worth mentioning that the Burg 

method for estimating reflection coefficients is equivalent 

to the harmonic mean method where the sum of forward and 
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backward errors is minimized with respect to the reflection 

coefficient. Here no assumptions are made regarding the 

data outside of the observation interval and all the 

available data are maximally utilized. 

Let us now focus our attention on the statistical 

properties of the BSE. In the previous chapter we have 

discussed the significant results of the asymptotic behavior 

of the ARSPE. Since the BSE is purely AR, the asymptotic 

mean and variance can be derived from those results. We 

are, however, dealing with a moderate number of data points 

so that large sample results do not necessarily apply. By a 

moderate number of data points we mean that the le~gth of 

the record is a few times the order of the estimated AR 

model. The Burg method is data adaptive and hence nonlinear. 

Still there is a one-to-one relation between the reflection 

coefficients and the corresponding AR coefficients, i.e. 

" " ..§!p = [al,p' 
I\ 
a2 I ,p 

• • • I 

• • • I 

(3-3a) 

(3-3b) 

Also there is a one-to-one relationship between the AR 

coefficients and the corresponding PSD estimate (3-1). If 
/\ 

the statistics of K were known then using a Jacobian -p 
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transformation twice, the mean and variance of the AR PSD 

" estimate could be determined. However, the function f (~) 
,I\ 

is nonlinear and the exact statistics of K for a moderate -p 

number of data points are difficult to evaluate. Considering 

all these problems, we are led to derive approximate values 

for the mean and variance of the BSE estimate. 

Here we have investigated the effect of segment averaging 

on the quality of the BSE. We have defined the modified Burg 

spectral estimator (MBSE) as the Burg spectral estimator 

where some averaging techniques are applied. Note that when 

number of sections is 1 the MBSE and the BSE are same. 

Three types of averaging technique are applied. The 

available data sequence is segmented into M nonoverlapping 

sections where each section has N/M data points. In the 

first method (AVA), the AR parameters are evaluated for each 

section, then averaged, and the resulting average AR 

parameters yield an associated spectral density estimate. 

The second 

coefficients, 

method 

the 

(AVK) 

average 

averages 

of which 

the 

leads 

reflection 

to the 

corresponding spectral density estimate. The final approach 

(AVP) evaluates the PSD estimate associated with each 

segment, and then averages these directly. 
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3.2 SEPARATION OF ERROR 

Let us assume that the rational transfer function H(z), 

for the system generating the data, is known. The exact 

autocorrelation sequence {ri}l=O for the data can then 

be determined [ 30]. The optimum pth order AR model which 

fits the data string with minimum mean square error, 

satisfies the YW equations, 

"' R a - - r p,p-p -p' 
(3-4) 

where 

a = [a1 , a2 , -p Ip / p • • • I 

and R is a symmetric Toeplitz matrix with first row p,p 
T 

!p-1). 

Let P(w) be the actual PSD of the data, and let P(w) be 

-the PSD of the output of the filter 1/A(z) driven by white 

noise. Then ~P(w)=P(w)-P(w) is the fixed deterministic 

error for modelling the given data as an AR(p) process. In 
. " the real world, r. is not known. Let the MBSE give a as an 1 -p 

,.., " estimate of gp with P(w} as the corresponding PSD estimate. 

Then the bias of the PSD estimate can be written as 

" " B{P(w)J = P(w) - E{P(w)J 

"' I\ "' = {P(w) - P(w) J [E{P(w) J p ( w) l 
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"" " . = AP(w) E { AP ( w)} 
(3-Sa) 

For the mean square error we find 

" " MSE{P(w)} = E{P(w) P(w) }2 

"' ,,., " " = AP2 (w) 2AP(w)E{AP(w)} + E{AP2 (w)} 
(3-Sb) 

The mean and variance expressions are 
" ~ " E{P(w)} = P(w) + E{AP(w)J 

(3-Sc) 

,, " I\ 
Var{P(w)J = MSE{P(w)J B2 [P(w) J 

( 3-Sd). 
,.. 

We have thus introduced an intermediate function P(w) to 

find the mean and variance of the PSD estimate. It is 
.I\ ,,., 

evident that as N tends to infinity P(w) approaches P(w). 

Furthermore, note that, unlike often done, we have not 
A ,., 

assumed that E{P(w)} equals P(w) as N is not very large. If 
,.., 

H(z) is known then AP(w) can be evaluated. Next we have to 

" " derive E[~P(w)J and E{~P 2 (w)J in order to evaluate (3-Sa) to 

( 3-Sd). 
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.I\ .... 
3.3 APPROXIMATION OF E{AP(w)} AND E{AP2 (w)j 

Two different methods are used to evaluate approximate 
.I\ " 

values of E{AP(w)} and E{AP2 (w)}. One of them is the 

approximation of Sakai and the other one uses the Taylor 

series approximation. Both of these methods yield good 

results, even for a moderate number of data points. 

3.3.1 Approximation according to Sakai 

Sakai et al. [31] have applied a periodogram technique to 

derive the ARSPE variance. That is not our purpose however, 

as we use his approximation technique to find an expression 

" for E{AP(w)} only. We will refer to this method as 'Sakai 

Approximation'. From (eqn. 31, [31]) (see Appendix A for the 

derivation of this equation) 

where 

j2w e I 
jpw T 

• • • I e l 
" " .., Aa2 = a2 - a2' 

and 

" E { AP2 ( w) J = 

Aa -p " = a -p 

(3-6a) 

N 
- a -p 

(3-6b) 
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It is worth noting that the second term on the right hand 

side of equation (3-6b) has the same form as the CRLB for 

parametric spectral estimators. It has been found from 

simulation results that the first and last terms on the 

right hand side of equation (3-6b) are much less significant 

than the second term. Hence, the variance of the MBSE 

estimates using this equation is expected to be nearly the 

same as the variance computed from the CRLB. We assume that 
I\ I\ 

Ao2 and Asp are uncorrelated (A2) 2 • We have also considered 

N-1 
E (Ad 2 ) I x2. ( .1.. 1 )/N = - -;:;-

1 ro ro 
i=O 

(3-7a) 

where and are the autocorrelation at 

(3-7b) 

lag zero 
,.., 

associated with the filters 1/A(z) and 1/A(z) respectively, 

and 

A( z > 

Now we 

compute 

( 3-6b). 

p 
I\ i = 1 + I E(a. )z 1,p 

i=l 

J\ 
have to derive E(Asp) and E(Ai Aa_T) -p -p 

" J\ 

. E { AP ( w) } and E { AP2 ( w) } according 

But E(A~p) and E(Aa AaT) depend on -p -p 

2 This assumption is denoted by A2. 

(3-7c) 

in order to 

to (3-6a) and 

the method of 
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averaging. Later it will be shown that E(Aip) and 

E(A~pdi~) depend implicitly on the number of observations 

N. 

3.3.2 Approximation using Taylor series expansion 
;.. ,.,, 

Since we are estimating A(z) for A(z) and both have the 

same order p, it is expected that the error 

{ ll/A(z)l 2 -ll/A(z)! 2 } will be small for a moderate number of 

data points. So, in this method, using the Taylor series we 
.... "' 

have expanded P(w) around P(w) and neglected all the terms 

higher than the first order. Taking the expected value, we 

get 

"' ... i5P ) TE(Aip) E{AP(w} = ( i5a. -p 
(3-Sa) 

and 
,.. "' A ( _g_ ) TE ( A~ At?) ( 0! E{dP 2 (w} = ) oa -p -p i5~p -p 

(3-8b) 

where 
,., IV N "" ( i5P ) = ...§.L ..Q.L ~ ]T oa iSa , iSa , • • • I iSa -p l,p 2,p p,p 

The quantities E(Aa ) and E(Ai Aa.T) found in the Sakai -p -p -p 

method are also used in (3-Ba) and (3-Sb). It is to be noted 

that in the Taylor method we have considered the gain factor 

a 2 to constitute a priori information, resulting from a 
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previous  estimation  step. 

identical  results. 

If ~~  is  zero  both  methods  give 

The  gain  factor  is,  however,  not  a  known  parameter,  and 

it  needs _to be  estimated.  Then 

..., "' 
11 • oP II oP T " 

E { ~p ( w) } = ( 00 2 ) E ( ~a 2 ) +  ( o'a ) E ( ~~p) 
-p 

and 

Since 

oP 
oa 
-p 

= = 
N jW 
P(w)H(e  ) 

(3-9a) 

(3-9b) 

we  find  that  (3-9a)  and  (3-9b)  are  identical  to  the 

expressions  in  (3-6a)  and  (3-6b)  respectively.  Thus  Sakai 

approximation  and  Taylor  approximation  will  give  the  same 

result.  Both  methods  behave  exactly  the  same  since  only  the 

first  order  linear  terms  have  been  considered.  However,  we 

can  introduce  the  second  order  term  in  the  expression  for 
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" E{6P(w)} because  up  to  the  second  order  statistics  of {aipl 

can  be  determined. 

- ,.. 
E{6P(w)} :: ( ~~  )E(6a2) + ( ~i )TE(aip> + 

-p 

where 

w = ( 
_ 6_ 

) ( 
_6 _ 

)TP(w) 
6a 6a -p  -p 

p p 

E(6aTW6a) I 
,, " 

= I W .. E(6a. 6a. ) -p  -p J.,J i,p J,P 
i=l  j=l 

.1. E ( 6aTW6a ) 
2 -p  -p 

(3-10) 

But  from  the  simulation  results,  it  has  been  found  that  the 

third  term  on  the  right  hand  side  of  (3-10)  overestimates 

"' the  error {6P(w)} near  the  location  of  poles  which  are  close 

to  the  unit  circle  in  the  z-domain  ( see  Appendix  B  for 

details).  In  our  simulation  results  we  have  used  (3-8a)  and 

(3-8b)  for  the  Taylor  approximation  to  analyze  the  effect  of 

neglecting  the  variance  of a2• 

3.4  AR  COEFFICIENT  AVERAGING (AVA) 

In  this  averaging  method,  the  predictor  coefficients  are 

computed  from  each  of  the  M  sections  where  each  section  has 

N/M  data  points.  The  predictor  coefficients  are  then 

" averaged  to  obtain  the  estimated  AR  filter  1/A(z).  The 

following  relations  can  be  derived  easily. 



A 
a -p 

M " = l: a /M -rn,p 
rn=l 

A 
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E(Aa) -p =E[(~a /M)-a]=E(") -m,p -p ~m,p 
m=l 

E(A ) E (I K J)~ ~m,p = + m,p -m,p-1 

" K m,p 

(3-11) 
,.., 

- a -p 

(3-12a) 

(3-12b) 

where J is the reverse operator matrix which is defined as 

J ~ I 1 

e e 

(3-12c) 

A A 
Assuming that K and any one element of a are weakly m,p -m,p-1 
correlated (A3) 3 , it is found from (3-12b} that 

" E(K ) m,p 
(3-12d) 

3 This assumption is denoted by A3. 



33 

We note that assumption A3 was experimentally found to hold, 

even for a moderate number of data points. Therefore, 
I\ 

E( 2m,p> can be calculated recursively from (3-12d) 

(3-19a); the derivation of (3-19a) will be shown later. 
. A I\T To approximate E(8sp8~p)' we first find 

E(8~ 8aT> " N " N T -p -p = E(~p - 2p)(~p - ~p) 

= E " "T) (~p~p 
N NT + a a -p-p a EcaT> -p -p E(~ )aT -p -p 

and 

(3-13a) 

and 

M 

E [ ! 

m=l 

M 

M 

! {~ aT J/M2] -m,p-k,p 
k=l 

M M 

= ! E(~ aT )/M 2 + ! -m,p-m,p ! E(~ aT )/M 2 
-m,p-k,p 

m=l m=l k=l 
ktm 

= E(" A-T )/M ~m,p~m,p 
(3-13b) 

by assuming a and ak (m~k) are uncorrelated, i.e. any -m,p. - Ip 
4 " AT two segments are uncorrelated (A4) . For E(a a ) -m,p-m,p 

we have 

" "T E(a a ) -m,p-m,p - 'I " l " T "' = E (I+K J)a l [a 1 (I+K J) m,p -m,p- -m,p- m,p 
.. , 
K L m,p . 

(3-13c) 

4 This assumption is denoted by A4. 
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Now using assumption A3 it can be shown that 

E(a aT ) T -m,p-m,p = 2x2 
(3-13d) 

where 

A ~ 

Tl,l: r + E(K )(Jr+rJ) + E(K 2 )JrJ m,p m,p 

T1 , 2 = ECK >E<" > + E(K 2 )JE(a 1 > m,p !m,p-1 m,p -m,p-

I\ 

= E(K 2 ) m,p 

" " T r = E(a a ) -m,p-1-m,p-l 

So, E(" "T ) ~m,p~m,p can be calculated recursively from 

(3-12d), (3-13d), (3-19a) and (3-19b). The derivation of 

(3-19a) and (3-19b) will be shown later. Thus using (3-12a) 
. " ,.. ,.. T to (3-13d) we can determine E(Asp) and E(AsPAsp) for the 

AVA method. Finally, the approximate mean and variance of 

the MBSE estimates using this method are evaluated from 

equations (3-Sa) to (3-Sd). 
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3.5 REFLECTION COEFFICIENT AVERAGING (AVK) 

Here the reflection coefficients computed from each of M 

sections are averaged. The AR parameters associated with the 

averaged reflection coefficients are then computed using the 

Levinson-Durbin algorithm. For the approximate value of 

" E(Agp), applying A3, we get 

"' M /\ 
KP= EK /M m,p 

m=l 

I\ 
= E(a) -p "' - a -p 

/\ A /\ 
E(a) = {I+ E(K )J}E(a 1 ) -p m,p -p-

I\ 
E(K ) m,p 

(3-14) 

(3-15a) 

(3-15b) 
This has the same form as ( 3-12d) in the AVA method. For 

" "T this method E ( Aa Aa ) -p -p 
A3 and A4 we find 

is the same as (3-13a). Now using 



E(~ ~T) = E -p-p 
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{I+; (K )J/M}~ 11 
m,p -p- I 

m=l 

~ ,\ J' 1. ( K ) /M m,p 
m=l 

M " M "' 
"T (I+ I: K J/M) x [a m,p -p-1 

I: K /M] m,p 
m=l rn=l 

" = f+E(K ) (Jf+fJ)+QJfJ m,p " " E(K )E(a l) m,p -p-

A "T "T E(K )E(a 1 )+QE(a 1 )J m,p -p- -p-
(3-lSc) 

where 

r = E(~ ~_T ) -p-1-p-l 

A A 
Q = E(K 2 )/M + (M-l}E 2 {K )/M m,p m,p 

" " "T Hence, as in the AVA method both E(a) and E(a a) can be -p -p-p 

calculated using a recursive technique. 
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3.6 POWER SPECTRAL DENSITY AVERAGING (AVP) 

First, the PSD function associated with each segment is 

evaluated. This averaging technique gives the average of 

these estimates. This method is analogous to the Welch 

spectral estimation method for reducing the variance of 

periodogram estimators. The approach to determine the 

approximate mean and variance of the MBSE estimates is 

somewhat different from those used in the AVA and AVK 

methods. Here we have 

" P(w) = M " 
i: P (w)/M m 

m=l 

Under assumption A4 we get 

.... " E { AP ( w ) } = E { AP ( w ) l , . m 
" " AP ( w) = P ( w) m m 

" " E{AP2 (w)}/M + (M-l)E 2 {AP (w)}/M m m 

(3-16) 

,-, 
P(w) 

(3-17a) 

(3-17b) 

" Equations (3-6a) and (3-6b) are used to evaluate E { AP ( w) } 

" "' and E { AP 2 ( w) l . E ( Aa ) m -p and E(Aa A1?) -p -p 

m 

are computed from 

(3-12a) to (3-13d) where M is always set to one. Finally, 

from (3-Sa) to (3-Sd) the mean and variance of the PSD 

estimate can be determined. 
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3.7 
/\, ... 

DERIVATION OF E(Kml AND E(K 2m1 
The magnitude of the reflection coefficients using the· 

Burg method are always less than one, which corresponds to a 

stable model. Since it is difficult to get the exact value, 

an approximate value of the above quantities will be 

derived. For convenience, we have dropped the subscript 

indicating the segment number from the notation for the 

reflection coefficients. Let us rewrite (3-2) as y/z where 

N +- N/M 

N-1 
Y = - 2 r ft,m-lbt-l,m-1 

t=m 

z = 
N-1 

r (f 2 t,m-l + b 2 t-l,m-l) 
t=m 

(3-18a) 

(3-18b) 

Here N is replaced by N/M because for any mth section there 

" are only N/M data points and K is determined using this m 

number of data points. We assume that the probability 

densities p(y,z) are concentrated near their center of 

" gravity (n ,n ), y z and K m is smooth in the vicinity of this 

point (A5) 5 • Then taking the expected value of the terms in 

the Taylor series expansion of y/z around and 

retaining up to second order moments, the following results 

5 This assumption is denoted by AS. 
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are obtained (see Appendix C). 

.... i - µy, z 11yµOz E ( Km ) ~ 11 2 + 11 l 11z z z 
(3-19a) 

and 
11 2 y 

11 z + 
z 

(3-19b) 

where 

11z = E(z), 11y = E(y)' 

µyo = Var(y), µOz = Var ( z) , µyz = Cov(yz) 

Using the gaussian fourth order moment rule,- it can be shown 

(see Appendix C) that 
11Y = - 2(N-m)o 1/N 

(3-20a) 

(3-20b) 
N-m-1 

µyo= 4[Ky + L 2(N-m-t)(o3 2 + 0405)}/N 2 

t=l 
(3-20c) 

N-m-1 
µOz= [Kz + t 4(N-m-t)(2r 3 2 + 04 2 + 05 2)}/N2 

t=l 
(3-20d) 

N-m-1 
µyz = - 2[Kyz + t 4(N-m-t}o 3 (r4 + r5 )J/N 2 

t=l 
(3-20e} 

where 



01 = 

02 = 

03 = 

04 = 

rn-1 
! 

i=O 

rn-1 
! 

i=O 

m-1 
! 

i=O 

m-1 
! 

i=O 

m-1 
!' 

i=O 
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rn-1 /\ "' 
E E(a. 1 )E(a. 1 )r m-i-j J.,m- J,m-

j=O 

m-1 
E "' " ) r. . E(a. 1 )E(a. 1 J., m- J , m- J.- J 

j-0 

m-1 
A /\ 

! E(a. 1 )E(a. 1 )rt+· . i,m- J,m- i-J 
j=O 

m-1 
E .;\ "' )rt .. E(a. 1 )E(a. 1 i,m- J,m- +m-i-J 

j=O 

m-1 ,.. ... 
! E(a. 1 )E(a. 1 )rt · · J.,m- J,m- -m+J.+J 

j=O 

K = 4(N-m){o 2 + o 2 ) z 1 2 

In the above derivations we have treated the predictor 

coefficients 
A 

(a. ) J., m to behave as constant parameters 
A A A 

E (a. ) . 1,m It is to be noted that E(K ) and E(K 2 ) depend m m 
implicitly on the number of data points, N/M, in each 

section. We also note that the the variance of any 

reflection coefficient decreases to zero as N/M approaches 

infinity. 
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" 3.8 LOWER BOUND FOR THE MEAN AND VARIANCE OF K ~- -~ ~~ ~- -m 
In this section we derive the lower bound for the mean 

i\ 

and variance of the reflection coefficient K for any stage m 

m. From (3-2) we get 

N-1 
2 

= - N}: ft,m-lbt-1,m-l 
t=m 

(3-2la) 

N-1 " " 
}: {Km - E(Km)}[f 2t,m-1 + b 2t-l,m-1} 

t=m 

N-1 A 

= - }: [ 2 ft,m-lbt-l,m-l + E(Km){f 2t,m-l + b 2t-l,m-l}l 
t=m 

Taking expected values on both sides yields 

N-1 " " 
}: E[ {Km - E(Km)} [f2t,m-l + b2t-l,m-l}l 

t=m 

where 

F t,m-1 

t=m 

B t-1,m-l 

C = E(f b ) t,m-1 t,m-1 t-1,m-1 

Now we can write 

(3-2lb) 

(3-22) 
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N-1 ,.,, 11 N-1 " ,.. 
r IE[ {Krn-E(Krn)Jf 2t,rn-ll I + r IE[ {Krn-E(Krn)Jb 2t-l,rn-ll I 

t=rn t=rn 

(3-23) 

It is to be noted that the forward error ft,rn-l and t'he 

backward error bt-l,rn-l are wide sense stationary, so that 

their mean values are independent of t. Using the Cauchy-

Schwartz inequality, we find 

I\ A A A 

IE[ {Km - E(Km) jf2t,rn-1 l I 2 ~ E[ {Km - E(Krn) J2 ]E(f4t,rn-l) 

(3-24a) 

and 
I\ I\ 

~ E[ {Krn-E(Krn)l2]E(b4t-l,rn-l) 

Hence we find 

For the stationary case F 1 m- equals B 1 m-

(3-24b) 

(3-25) 

equals E ( b 4 t- l, m-l), so that a theoretical lower bound for 
A 

the variance of K is given by 
m 

" 
" Var(K) m 

[Cm-1 + E(K )F 112 
~ m m-

E(f4t,m-l) 
(3-26) 
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From the derivation of (3-26) it is difficult to show 

whether this inequality gives a tight lower bound or not. 

Also this bound does not exhibit any relationship between 

the number of observations and the variance of the 

reflection coefficient at stage m. However, from the 

simulated results we find that this bound holds for the 

reflection coefficient at the first stage. For the first 

stage, the error sequences are the same as the data series. 

But for subsequent stages the forward and backward residuals 

become nonlinear functions of the data and the exact 

statistics of these residuals are difficult to derive from 

the known statistics of the data. We can not, as a result, 

readily evaluate the lower bound for the variance of the 

reflection coefficients of the higher order AR models. 

Taking the expected value on both sides of (3-2la) yields 

N-1 " 
t E{Km(f2t,m-l + b2t-l,m-1)l = - 2(N-m)Cm-l 

t=m 
(3-27) 

We know that µll ~ µ02 µ20 (32], so we can write 

" E { K f 2 l rn t,rn-1 ~ l{Var(K )Var(f 2t 1 )}+E(K )E(f 2t l) rn ,rn- rn ,m-

(3-28a) 
As a result 
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(3-28b) 

This yields 
I\ 

cm-l + [Var(Km)Var(f 2t,m-l)} 2 

Fm-1 
(3-28c) 

because for stationarity Fm-l equals Bm-l and Var(f 2t,m-l) 

equals 
,, 

· Var(K ) m 

Var(b2t-l,m-1>. 

in ( 3-28c), the 

Substituting the lower limit of 

lower bound for the mean of the 
I\ 

estimate of K is given by m 

C m-1 
F m-1 

(3-29) 

It is interesting to note that the total number of 

observations N is not explicitly present in the expression 

" for the lower bound of Var(K ). However, when the mean value m 
I\ 

of K approaches its m 
lower bound then 

A 

the variance of K m 

goes to zero. This theoretical lower bound can be achieved 

when the number of observations approaches infinity. In 

this regard it is worth mentioning that the asymptotic 

covariance matrix for the reflection coefficients has been 

derived elsewhere (33]. 
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3.9 THE CRLB FOR THE VARIANCE OF THE MBSE ESTIMATE 

A useful method for evaluating the performance of an 

estimator is to study the variance of the estimation error. 

The Cramer-Rao lower bound (CRLB) gives the theoretical 

lower bound on the estimation error variance of any unbiased 

estimator [34, 35]. The CRLB is generally used as a tool for 

measuring the efficiency of any estimator. It has been shown 

[36] that the achievable accuracy from the maximum 

likelihood estimator (MLE) in terms of covariance is based 

on the Cramer-Rao inequality, i.e. 

i\ 
Cov[ ~] A = F-1 

(3-30) 
I\ 

where ~ is the vector of estimated parameters for£, Fis 

the so-called Fisher information matrix, and L is the 

likelihood function for N observations. Almost all the 

common methods (e.g. autocorrelation, autocovariance, 

forward-backward, Burg method, etc.) for estimating the 

reflection coefficients are ML estimates when the data 

length becomes asymptotically large [33]. Therefore, we see 

that this lower bound can be achieved asymptotically by any 

unbiased estimator. 

Here we are interested in the CRLB for the variance of 

the MBSE estimates. Detailed derivations of the CRLB for 
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"' the variance of a parametric PSD estimate S(1,w) of a 

stationary zero mean process are given in [37]. From (eqn. 

3-23,[37]) we get 
" T Var{S(~ 1 w)} ~ {ViS(2,w)} F- 1 {V~S(~,w)} 

where 

V = 
~ 

" J\ 
A 2 B(z)B(z- 1 ) 

= a " ... lz=ejw 
A(z)A(z- 1 ) 

c5 
c5al 

S(~ 1 w), • • • I 

c5 

T ... , bm, a] 

_c5_ S(~ 1 w), c5a n 
c5 

c5bl 
S(1,w), • • • I c5b S(~ 1 w), 

m 

(3-31) 

c5 T 6 S(g,w)] 
a -

A theorem due to Whittle (Theorem 9, [ 38]) can be used to 

compute F numerically. 
1T 

F = 1:L J V ( g, w) VT ( g, w) dw 
4,r - - - -

-,r 

(3-32) 

where 

But this method can give numerical problems for spectra with 

sharp peaks unless special care is taken in the numerical 

integration algorithm. Moreover, numerical integration may 
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not give the exact integral value. Friedlander [39, 40] has 

presented an elegant method for the exact computation of the 

Fisher information matrix. From his results we find that the 

"' CRLB for Var{S(~,w}l can be expressed as an explicit 

function of the model parameters based on certain properties 

of stationary covariance matrices. The Fisher information 

matrix for the autoregressive moving average (ARMA) 

parameters is given by 

F = N R -R 0 xx xz 
-R R 0 zx zz 

OT OT 2/a 2 

(3-33a) 

where 

R T A AT]_1 = [AlAl xx 2 2 

R T B BT]_1 = [B1Bl zz 2 2 

R T B ATJ_1 = [A1Bl -xz 2 2 

A = 1 1 

al 

e 

1 



a q 
a q-1 
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e 

q = max{ m, n l 

and Bl' B2 are similarly defined 

Hence, for a pure AR process we get 

F-1 1 
[ A1Ai 

T /2] = - A2A2 N 
OT 

as Al' 

and for a pure moving average (MA) process 

F-1 = 

Thus we find that F- 1 decreases as 

A2 respectively. 

(3-33b) 

(3-33c) 

1/N and hence 

asymptotically the variance of the PSD estimates decreases 

with the inverse of the number of observations, and no 

unbiased estimator exists whose error variance dies out 

faster than 1/N. 
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Although the MBSE is not an unbiased estimator for short 

data records and the CRLB provides a tight bound only 

asymptotically, we still compute the CRLB for the variance 

of the MBSE estimates in order to provide a standard against 

which to measure our results. It can be shown that all 

three averaging methods become equivalent when the data 

length is asymptotically large and the covariance of the 

estimated parameters then depends on the total number of 

data points. For example, in the AVA method, the covariance 

of the estimated parameters for any section is reduced by 

M/N. But when the AR parameters from all the segments are 

averaged, the covariance matrix is again reduced by 1/M i.e. 

in effect the covariance of the averaged AR parameters is 

reduced by 1/N. 

Here we have computed the CRLB in two ways. The CRLB is 

evaluated for the system generating the data ('Cramer data') 
,.., 

and also for the AR model 1/A( z) which is to be estimated 

('Cramer model'). The 'Cramer data' bound should give the 

lowest bound achievable by the most efficient estimator for 

the given particular process. The 'Cramer model' bound 

should give the lowest bound achievable by any ARSPE for the 

given model order. We like to emphasize again that these 

bounds hold for unbiased estimators when the data length is 

asymptotically large. 
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3.10 SUMMARY 

In this chapter we have formulated two approximation 

techniques to derive the theoretical mean and variance of 

the modified Burg spectral estimator (MBSE). We have defined 

an MBSE as the Burg spectral estimator (BSE) with some 

averaging technique applied. Three different types of 

segment averaging are considered. The first one (AVA) 

averages the autoregressive (AR) coefficients computed from 

each section. The resulting averaged AR parameters then 

yield the power spectral density (PSD) estimate. The second 

one (AVK) averages the reflection coefficients evaluated 

from each segment; these averaged reflection coefficients 

are used to compute the corresponding spectral density 

estimate. The final approach (AVP) evaluates the PSD 

estimate associated with each segment, and then averages 

these directly. Two approximation methods, namely the Sakai 

approximation and the Taylor approximation, are formulated 

to evaluate the statistical properties of the modified Burg 

spectral estimator. The Taylor approximation is different 

from the other one mainly because it neglects the bias and 

variance of the gain factor of the power spectral density 

estimate. Both approximation methods use a recursion 

technique to evaluate the approximate mean and variance of 

the MBSE estimates. We have also derived the lower bound for 
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the mean and variance of the reflection coefficient 

estimates. But we have failed to present any significant 

analysis of this theoretical bound for the variance of the 

reflection coefficient computed from the Burg method. 

Finally, we have discussed the theoretical Cramer-Rao lower 

bound for the variances of parametric spectral estimators 

with special reference to the modified Burg spectral 

estimator. 



Chapter IV 

SIMULATION RESULTS 

In this chapter the effect of segment averaging on the 

quality of the BSE is investigated experimentally. When any 

segment averaging technique is applied on the BSE, the 

resulting estimator is defined as a modified Burg spectral 

estimator (MBSE). We compute the PSD estimate from a given 

time series generated by computer. We are concerned 

specifically with the statistical properties of these PSD 

estimates. Three different types of time series are 

considered. They are generated by MA, AR, and ARMA filters 

respectively, driven by white noise. AVA, AVK and AVP 

methods are then applied to each type of process for 

estimating the PSD using the MBSE. The analytical values of 

the mean and variance of the MBSE estimates are compared 

against the corresponding sample mean and sample variance. 

The CRLB bounds are also computed for analyzing the results. 

The Welch method, which uses a segment averaging technique, 

has also been used to evaluate PSD estimates and bias, 

variance and mean square error are compared with those 

obtained from the MBSE procedure. The numerical methods 

presented here are by no means exhaustive but they do serve 

to illustrate some interesting properties as pointed out in 

52 
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subsequent sections. All observations made are pertinent to 

the few data types considered, but as they represent high 

pass, low pass, and band pass processes it is expected that 

our results would be applicable for a large class of 

processes. In Appendix Dall computer programs (in FORTRAN) 

used in this simulation are included. 

4.1 EXPERIMENTAL PROCEDURE 

We have simulated three different classes of time series 

by driving AR, MA, and ARMA filters respectively, with zero 

mean white Gaussian noise. Thus we have obtained data 

representing MA, AR, and ARMA processes. These data 

sequences result in PSD estimates for the processes. Fifty 

statistically independent realizations for each type of time 

series were generated in order to compute the sample mean 

and the sample variance of the PSD estimates. The first 128 

data points of each realization were discarded to allow the 

transient, that arises in the generation of the process, to 

decay. The variance of the noise is adjusted in such a way 

that the average power of the filter output is unity. 

Alternatively, the data points are normalized so that the 

sample autocorrelation at lag zero is unity. This 

normalization should correspond to the average power of 

unity since theoretically the following relation holds. 
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1T 
1 
2,r I P(w)dw 

-,r 

For convenience, we have also normalized the 

frequency w by dividing it by ir. 

(4-1) 
radian 

The sequences so generated were analyzed using four 

different segment averaging techniques: AVA, AVK, AVP and 

the Welch procedure. The N data points are divided into M 

nonoverlapping sections, so that each section has N/M data 

points. For each section, the AR parameters, the reflection 

coefficients, the MBSE estimates, and the Fourier transforms 

of the weighted data as in the Welch procedure are computed. 

According to the type of averaging technique the appropriate 

parameters are then averaged. In this experiment we have 

taken 128 data points which can be considered a moderate 

amount. By 'a moderate amount' we mean that the data length 

is a few times greater than the order of the estimated model 

or the data length is small enough so that asymptotic 

results do not apply. The performance of the above methods 

is investigated for l, 2, 4, 8 and 16 sections. 

The order p of the AR model which is used to fit the data 

is assumed known. For AVA the PSD estimates are given by 

I\ 

p ( w) = I 1 + a~f ( e j w ) ! 2 

(4-2a) 
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where the a is the average of the AR parameter vector a -p -m,p 
evaluated for each section m, and 02 is the estimated gain 

factor. For AVK the PSD estimates are given by 

I\ 
P(w) = 

I\ 2 
0 

(4-2b) 

where ~ is the AR coefficient vector associated with the -p 
averaged reflection coefficients. For AVP the PSD estimates 

are given by 
M 

/\ 2 
A 1 a 
P(w) m = }: "' 1' _i(eJW)l2 M 11 + (~m,p) 

m=l 
(4-2c) 

It is noted that for the AVP method o2 , m=l,2, ... ,M, is m 

computed from the mth section consisting of N/M samples 

whereas in the AVA and AVK methods we compute the gain 

factor from N samples. For the Welch method the PSD 

estimates at equally spaced frequencies are given by 

M 

Bw (2irMk/N) = xx 
1 i 
M }: WN/M(2irMk/N), N k=O, 1, ... , M-1 

where 

i=l 

M_ 
NU 

(N/M)-1 

I r x~wtexp(-j2irMkt/N) 1 2 

t=O 

(4-2d) 



u = Ji 
N 

(N/M)-1 
r 
t=O 

w2 
t 
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We have only used the rectangular window and hence the 

weighting function wt is unity. An appropriate FFT algorithm 

is used to compute w!/M(2TIMk/N) so that the number of 

computations is reduced. It is easy to implement an FFT on a 

data sequence of length 2 to the power M. There are 

different ways to estimate the gain factor for spectral 

matching. For example, o2 can be estimated from the squares 

of the forward and the backward residual sequences which is 

minimized with respect to the reflection coefficient; it can 

also be estimated from (2-4b). However, we have found that 

the following estimate gives satisfactory results in the 

sense that both the estimated and the actual PSD have the 

same average power level. 

II 2 
0 = 

N-1 11 

}: x 2 /(Nr) t 0 
t=O (4-3) 

The CRLB for the variance of the MBSE estimates is 

computed for measuring the efficiency of this estimator. The 

CRLB is evaluated in two ways. It is computed for the system 

generating the data ('Cramer data' ) and also for the AR 
..... 

model 1/A( z) which is implicitly to be estimated ('Cramer 

model'). Though the CRLB gives a tight bound for a large 
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amount of data for unbiased estimators, it is still found to 

provide a useful reference for the MBSE which operates on a 

moderate amount of data. 

4.2 MODIFIED BURG SPECTRAL ESTIMATOR (MBSE) 

4.2.1 MA Data 

A third order low pass MA filter is used to generate the 

data sequence of an MA process. The zeros of the MA filter 

are: a real one at -0.60538 and a pair of complex conjugate 

zeros at -0.072085±j0.63833 in the z-plane. The true 

autocorrelation sequence of this MA process is evaluated by 

means of the algorithm presented by Dugre et al. [30). The 

autocorrelation sequence is then normalized and shown in 

Fig. 2a. It is worth to mention that the exact 

autocorrelation at lag (q+l) or more is alway~ zero for an 

MA(q) process. 

We have assumed a fifth order AR model for fitting the 

data of the MA process. Now AVA, AVK and AVP methods are 

applied to this data sequence for estimating the PSD of the 

process. The actual PSD of the MA process has a relatively 

small dynamic range, i.e. oP(w)/ow is not too high. Let us 

first analyze the results of the AVA method. From Fig. 3a it 

is evident that the bias increases with an increase in the 

number of segments, particularly in the frequency band 
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where most of the power lies. However, it is observed that 

this increment is small as long as the number of sections, 

M, does not exceed 4. For sixteen sections, the AVA method 

failed to give a good estimate of the actual PSD. The number 

of data points per section is only 8 when Mis 16; and this 

number of data points is very small with respect to the 

order of the AR(S) model. To estimate the AR parameters for 

each section we first have to estimate the autocorrelation 

sequence from lag zero to lag five from the 8 data points. 
I'\ For short data records the variance of r. is very high. As 

l. 

a result the variance of the AR parameters is also high. We 

get therefore, a poor estimate of the PSD when Mis 16. In 

fact, it has been observed that when the number of segments 

exceeds M, the transition level for 128 data points, the 
0 

performance of the AVA method starts to deteriorate rapidly; 

this will be shown later. We define M sections as a 
0 

transition point or level because if the number of sections 

exceeds M0 the efficiency of the estimator starts to 

degrade. The sample mean of the PSD estimates is then 

compared against the theoretical mean evaluated from the 

Sakai approximation and the Taylor approximation. It is 

shown in Figs. 3b, 3c and 3d that the expected mean computed 

from the Sakai approximation follows the sample mean more 

closely than that computed from the Taylor approximation. 
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Hence, it can be stated that the Sakai approximation gives 

better results in comparison to the Taylor approximation. 

This observation is expected because in the Taylor 

approximation t~ 2 is assumed zero, which is not true. Again, 

when Mis 16, both approximation methods are substantially 

different and both fail to give the expected mean value of 

the PSD estimates (see Fig. 3d). The data from the 

immediately adjacent sections might well be correlated when 

the segment length is of the order of the process 

correlation and thus it could violate assumption A4 on which 

these approximation methods are based. 

From Fig. 4a we find that the variance of the PSD 

estimates does not change appreciably for 1, 2 and 4 

sections. However only at the zero frequency, which is the 

main peak frequency of the actual PSD, it is observed that 

the variance decreases with an increase in the number of 

sections, but this decrement is small. So, it can be 

inferred that the variance of the PSD estimates does not 

steadily decrease with an increase in the number of 

sections. 

sections, 

It appears that up to a certain number of 

say M, the segmentation 
0 

has little effect on the 

variance; as if the variance depends on the total number of 

data points, a behavior similar to the CRLB. The variance of 

the PSD estimates for 16 sections is high in comparison to 
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the variance for 1, 2 and 4 sections. The reason is that 

when Mis 16, the estimated AR parameters for each section 

vary too much from their mean values. The theoretical 

variance of the PSD estimates computed from the Sakai 

approximation 

Figs. 4b, 4c 

corresponding 

and the Taylor 

and 4d. They 

sample variance. 

approximation are shown in 

are compared against the 

It has been observed that 

both approximation methods give almost the same variance. So 

we can see that the gain factor has a negligible effect on 

the variance. The 'Cramer data' bound and the 'Cramer model' 

bound are also shown in Figs. 4b, 4c and 4d. It is noted 

from these figures that in most cases the 'Cramer data' 

bound is lower than the sample variance of the PSD 

estimates, even though the MBSE is not an unbiased estimator 

for short data records. The 'Cramer model' lower bound has a 

shape similar to the sample variance but the average levels 

are different. The sample variance of the MBSE estimates is 

found to be close to the theoretical lower bound when the 

number of segments is less than or equal to 4, i.e. the MBSE 

is still efficient for a moderate number of data points. 

The 'Cramer model' bound is supposed to give the theoretical 

lower bound for the variance of the MBSE. But we have found 

that generally the 'Cramer model' bound is not lower than 

the sample variance in the frequency band where most of the 
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power lies. The underlying reason is that the CRLB is based 

on the unbiasedness property of the parametric estimator. It 

is mentioned in [37] that the exact bound of the variance of 

a biased parametric estimator depends on the gradient of the 

bias with respect to the true parameters. We quote [37] 

" ... no matter how small the bias is, as long as its gradient is 

not zero, parametric estimates with variances lower than the 

bound can be expected." 

An interesting relation is found between the 'Cramer model' 

bound and the variances evaluated from the approximation 

methods. The 'Cramer model' bound is found to follow closely 

the variances given by the approximation methods and the 

'Cramer model' bound always remains lower than those 

variances. 

The mean square error (MSE) of the PSD estimates is shown 

in Fig. Sa. It is noted from this figure that the MSE 

increases by a small amount when the number of segments is 

increased up to 4. So, a little will be lost if we divide 

the 128 data points in up to 4 segments. It is evident tha~ 

when M is 16, the MSE wi 11 be pretty high for the reasons 

mentioned earlier. In Figs. Sb to Sd the theoretical MSEs of 

the MBSE estimates, computed from the Sakai approximation 

and the Taylor approximation, are shown. The behavior of 
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these MSEs is found to be similar to that of the sample MSE. 

The theoretical lower bound of the MSE of the estimates can 

be computed from the 'Cramer model' bound and is defined as 

follows 
rl 

MSE('Cramer model') = aP 2 (w} + Var('Cramer model') 
(4-4) 

Again we find that the sample MSE of the PSD estimates is 

lower than this theoretical lower bound for the reasons 

mentioned earlier. 

Let us now focus our attention on the results obtained 

from the AVK method. In Figs 6a to 6c the PSD estimates for 

different number of sections are shown. Simultaneously, the 

expected mean computed from the approximation methods and 

the true PSD of the MA process are also shown. In Figs. 7a 

to 7c the sample variance and the corresponding analytical 

variances of the PSD estimates are shown. Finally, the 

sample MSE of the estimates and the corresponding MSE 

evaluated from the approximation methods are plotted in 

Figs. 8a to 8c. The theoretical lower bound is also computed 

for the purpose of comparison. After close scrutiny of these 

figures we find that the AVA and AVK methods give almost the 

same results. However, it is noticed that the performance of 

the AVK method is comparatively better than that of the AVA 

method. 
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The AVP method is the worst among these three averaging 

techniques because it gives the largest variance of the PSD 

estimates. Especially when the number of sections is 16, the 

AVP method completely fails to estimate the PSD of the 

process (see Figs. 9c, 10c and llc). It gives a very high 

variance at the normalized radian frequencies zero and one. 

Even for 4 sections the results are not very satisfactory 

(see Figs. 9b, 10b and llb). The sample mean, sample 

variance, and sample MSE of the estimates are shown in Figs. 

9a, lOa, and lla for 1, 2, 4 and 16 sections. Since in this 

method the PSD estimates computed from each section are 

directly averaged, it is expected that the averaged PSD 

estimate will be more erratic. As the poles of the estimated 

AR model for each section cannot concentrate around their 

mean position for MA data, we observe that the sample 

variance is higher than that of the AVA and AVK methods. 

Unlike both AVA and AVK methods, it is observed that at the 

zero frequency the variance increases with the number of 

sections. We like to mention that for only one section, the 

AVA, AVK and AVP methods give identical results since no 

averaging is performed and in this case we are simply using 

the BSE. 
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4.2.2 AR Data ---
A fourth order band pass AR filter is used to generate 

the data sequence of an AR process. The poles of the AR 

filter are: two real ones at ±0. 8 and a pair of complex 

conjugate poles at +O. S±jO. 75 in the z-plane. The exact 

normalized autocorrelation sequence of the AR process is 

computed and shown in Fig. 2b. This autocorrelation sequence 

oscillates between positive and negative values and it goes 

nearly to zero for a lag higher than 32. 

We have assumed the order of the AR model to be the same 

as that of the data generator. Now AVA, AVK and AVP methods 

are applied to this data sequence for estimating the PSD of 

the process. Let us study the results of the AVA method. 

From Fig. 12a it is evident that the bias increases with an 

increase in the number of segments, particularly in the 

frequency band where most of the power lies. However, it is 

observed that this increment is small as long as the number 

of sections does not exceed 4. For 16 sections the AVA 

method fails to give a good estimate of the actual PSD, 

because the data length per section is short with respect to 

the length of the process correlation. As a result, the 

variances of the AR parameters increase, which is reflected 

in the corresponding PSD estimates. It is evident that 

somewhere between 4 and 16 sections, there is a transition 
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point M; and the AVA method starts to lose its efficiency 
0 

when M exceeds M. The sample mean of the PSD estimates is 
0 

compared against the theoretical mean evaluated from the 

Sakai approximation and the Taylor approximation. It is 

shown in Figs. 12b and 12c that the mean computed from the 

Sakai approximation follows the sample mean more closely 

than that computed from the Taylor approximation. Hence, it 

can be stated that the Sakai approximation gives better 

results in comparison to the Taylor approximation. We made 

the same statement for MA data in the case of the AVA 

method. Another important characteristic of the 

approximation methods can be observed from Figs. 12b and 

12c. This characteristic is that the main peak frequencies 

given by the approximation methods do not match exactly with 

the main peak frequency w of the estimated PSD, when Mis p 
greater than one and the difference between the main peak 

frequencies increases with M. Again for 16 segments, both 

approximation methods fail to give the expected mean value 

of the PSD estimates (see Fig. 12d). Here the actual PSD has 

a large dynamic range. So, the first derivatives of P(w) 

with respect to the AR parameters are very high near the 

main peak frequency wp of O. 31 for the actual PSD (see 

Appendix B) . As a result it is observed that both the 

approximation methods change sharply near the main peak 
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frequency and the Taylor approximation method even gives 

negative values for the expected mean of the PSD estimates 

around that frequency. For 16 sections the bias of the 

estimated AR parameters is quite large so that the high 

values of the first derivatives are not offset. However, for 

1, 2, and 4 sections the high values of H(ejw) are offset by 

small values of the bias. The second reason for the failure 

of the approximation methods using 16 sections, is the short 

data records per segment and hence successive sections might 

well be correlated. We mentioned earlier that the true 

autocorrelation of the AR process has decayed to near zero 

at la~ 32 or more, so adjacent sections are actually 

correlated when Mis 16. Thus assumption A4 certainly does 

not hold for 16 segments in the AR data case. 

From Fig. 13a we find that the variances of the PSD 

estimates are almost the same for 1, 2, and 4 sections. 

However, at the peak frequencies 0, 0.31, and 1, the 

variance decreases with an increase in the number of 

sections but this decrement is small. As in the MA data 

case for the AVA method, we can state that the variance of 

the PSD estimates does not steadily decrease with an 

increase in the number of sections. It appears that up to a 

certain number of sections, the segmentation has only a 

small positive effect on the variance; as if the variance 
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depends largely on the total number of data points, a 

behavior similar to the CRLB. The variance of the PSD 

estimates for 16 sections is high in comparison to the 

variances for 1, 2, and 4. The reason is again that for such 

a short data record per section, the variances of the AR 

parameters are exceedingly high. The theoretical variance 

of the PSD estimates computed from the Sakai approximation 

and the Taylor approximation are shown in Figs. 13b, 13c and 

13d. They are compared against the corresponding sample 

variance. It has been observed that both approximation 

methods give almost the same variance. So we see that the 

gain factor has a negligible effect on the variance. The 

'Cramer data' bounds are also shown in Figs. 13b, 13c and 

13d. Here we have not shown the 'Cramer model' bound because 

the system generating AR data and the AR model are the same. 

The 'Cramer data and the 'Cramer model' bounds will be 

identical therefore. Similar results as in the MA data case 

are observed with regard to the 'Cramer data' bound. Unlike 

in the MA data case for the AVA method, it is found that the 

sample variance is always less than the 'Cramer data' bound 

around the main peak frequency because the gradient of the 

bias is not negligible in that frequency band. 

The MSE of the PSD estimates is shown in Fig. 14a. It is 

noted from these figures that the MSE is increased by a 
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small amount when the number of segments is increased up to 

4 segments. So, a little will be lost if we divide the 128 

data points in up to 4 segments and thereby we can operate 

on a smaller number of data points, but doing it more often. 

It is evident that for 16 sections the MSE will be fairly 

high. In Figs. 14b to 14d the theoretical MSEs of the MBSE 

estimates, computed from the Sakai approximation and the 

Taylor approximation, are shown. The behavior of these MSEs 

is found to be similar to that of the sample MSE. The 

theoretical lower bound of the MSE of the estimates can be 

computed from the 'Cramer model' bound. Again we find that 

the sample MSE of the PSD estimates is lower than this 

plausible 

of the 

theoretical lower bound. In this case, the 

explanation is that the gradient of the bias 

estimator may not be negligible whereas in the 'Cramer 

model' bound we assumed this gradient to be zero. 

Let us now examine the results obtained from the AVK 

method. In Figs. 15a to 15c the PSD estimates for different 

number of sections are shown. Simultaneously, the expected 

mean computed from the approximation methods and the true 

PSD of the AR process are also shown. In Figs. 16a to 16c 

the sample variance and the corresponding analytical 

variances of the PSD estimates are shown. Finally, the 

sample MSE of the estimates and the corresponding MSE 
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evaluated from the approximation methods are plotted in 

Figs. 17a to 17c. The theoretical lower bound is also 

computed for the purpose of comparison. After an extensive 

study of these figures we find that the AVA and the AVK 

methods give almost the same results. However, as in the MA 

data case it is noticed that the performance of the AVK 

method is better than that of the AVA method to a certain 

degree, especially with respect to the variances of the PSD 

estimates. 

The AVP method is the worst among these three averaging 

techniques because it gives the largest variance of the PSD 

estimates. Particularly when M is 16 the AVP method 

completely fails to estimate the PSD of the process ( see 

Figs. 18c, 19c and 20c). It gives a very high variance at 

frequencies 0, l, and .31; the latter is the main peak 

frequency w For 4 sections, the results are shown in Figs. p 
18b, 19b and 20b. Unlike in the MA data case for the AVP 

method, when Mis 4, the results are quite satisfactory. The 

sample mean, sample variance, and sample MSE of the 

estimates are plotted in Figs. 18a, 19a, and 20a for 1, 2, 4 

and 16 sections. Here, since both the generating system and 

the AR model are the same, the poles of the estimated AR 

model for each section are concentrated around the actual 

poles, at least for up to 4 sections. We see that the PSD 
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estimates are smoother than for the MA data case for the AVP 

method. 

4.2.3 ARMA Data 

The coloring fi 1 ter used to generate the data for an 

ARMA(3,2) process has three poles: a real one at +0.8 and a 

pair of complex conjugate poles at -0.S±j0.5 in the z-plane. 

A pair of zeros of the filter is at +O.S±j0.5. So, this is a 

high pass filter. The exact normalized autocorrelation 

sequence of the ARMA process is computed and shown in Fig. 

2c. This autocorrelation sequence oscillates between 

positive and negative values and it goes nearly to zero at 

lag 14. Here the actual PSD has a relatively large dynamic 

range. 

We have assumed the fifth order AR model to fit the data. 

AVA, AVK and AVP methods are then applied to this data 

sequence for estimating the PSD of the process. Let us 

investigate the results of the AVA method. From Fig. 21a it 

is found that the bias increases with an increase in the 

number of segments, particularly in the frequency band 

where most of the power lies. However, it is observed that 

this increment is very insignificant as long as the number 

of segments does not exceed 4. Even for 16 sections the AVA 

method does not give a poor estimate of the actual PSD. The 



71 

reason is that the autocorrelation sequence dies out for a 

relatively small amount of lag and this process also has 

predominantly AR characteristics. We like to state that 

although the autocorrelation is zero for lags in excess of 3 

in the MA data case, 16 segments do not give a good estimate 

because a finite order AR model cannot fit the data exactly. 

However, the PSD estimate for 16 segments is distinctly 

different from the corresponding estimates for 1, 2, and 4 

sections. The peak frequency of the PSD estimates is quite 

far away from the actual peak frequency wp which is at 0.76 

and it is expected that as the order of the AR model is 

increased, the estimate will resemble the actual PSD more. 

The sample mean of the PSD estimate is compared against the 

theoretical mean evaluated from the Sakai approximation and 

the Taylor approximation. It is shown in Figs. 21b and 21c 

that the mean computed from the Sakai approximation follows 

the sample mean more closely than that from the Taylor 

approximation. Hence, it can be stated that the Sakai 

approximation gives better results in comparison to the 

Taylor approximation. We made the same statement for the MA 

data case for the AVA method. Like the AR data case for the 

AVA method, it is noted that the main peak frequencies 

evaluated from the approximation methods do not correspond 

to the main peak frequency of the estimated PSD when M is 
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greater than one, and the difference between the main peak 

frequencies increases with M. Again for 16 sections both 

approximation methods fail to give the expected mean value 

of the PSD estimates (see Fig. 21d). 

From Fig. 22a we have found that the variances of the PSD 

estimates are almost the same for 1, 2 and 4 sections. 

Unlike the MA and AR data case for the AVA method, the 

variance does not decrease at the main peak frequency with 

an increase in the number of sections. Hence it is shown 

that the variance of the PSD estimates does not steadily 

decrease with an increase in the number of sections. The 

variance of the PSD estimates for 16 sections is high in 

comparison to the variances for l, 2 and 4 sections. Using 

only 8 data points per segment it is not possible to 

estimate the AR parameters with low variances when the order 

of the model is 5. The theoretical variance of the PSD 

estimates computed from the Sakai approximation and the 

Taylor approximation are shown in Figs. 22b, 22c and 22d. 

They are compared against the corresponding sample variance. 

It is observed that both approximation methods give almost 

the same variance. We see that the gain factor has a 

negligible effect on the variance. The 'Cramer data' and the 

'Cramer model' bounds are also shown in Figs. 22b, 22c and 

22d. As seen in the MA data case, we observe here the same 
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relations between the theoretical lower bounds and the 

sample variance. The 'Cramer data' bound is lower than the 

sample variance whereas the 'Cramer model' bound is higher, 

particularly in the frequency region where most of the power 

lies. Moreover·, the shape of the 'Cramer model' bound is 

similar to the sample variance but the average levels are 

different. 

The MSEs of the PSD estimates are shown in Fig. 

Note from these figures that the MSE increases 

23a. 

by an 

insignificant amount when the number of segments is 

increased up to 4 sections. So, a little will be lost if we 

segment the data in up to 4 sections, and thereby we can 

operate on a smaller number of data points per section, but 

doing it M times, instead of operating once on the full 

length of data. It is evident that for 16 segments the MSE 

will be fairly high. In Figs. 23b to 23d the theoretical 

MSEs of the MBSE estimates, computed from the Sakai 

approximation and the Taylor approximation, are shown. The 

behavior of these MSEs is found to be similar to the sample 

MSE. The theoretical lower bound of the MSE of the estimates 

can be computed from the 'Cramer model' bound. Again we 

find that the sample MSE of the PSD estimates is lower than 

this theoretical lower bound because the unbiasedness 

assumption for the estimator is not valid. 
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Let us now analyze the results obtained from the AVK 

method. In Figs. 24a to 24c the PSD estimates for different 

number of sections are shown. Simultaneously, the expected 

mean computed from the approximation methods and the true 

PSD of the MA process are also shown. In Figs. 25a to 25c 

the sample variance and the corresponding analytical 

variances of the PSD estimates are shown. Finally, the 

sample MSE of the estimates and the corresponding MSE 

evaluated from the approximation methods are plotted in 

Figs. 26a to 26c. The theoretical lower bounds are also 

computed for the purpose of comparison. After an extensive 

study of these figures we find that the AVA and the AVK 

methods give almost the same results. However, as in the MA 

data case it is noted that the performance of the AVK method 

is better than that of the AVA method to a certain extent. 

The AVP method is the worst among these three averaging 

techniques because it gives the largest variance of the PSD 

estimates. Particularly for 16 segments the AVP method 

completely fails to estimate the PSD of the process ( see 

Figs. 27c, 28c and 29c). It gives a very high variance at 

frequencies 0, 1, and .76; the latter is again the main peak 

frequency. For 4 sections the results are shown in Figs 

27b, 28b and 29b. Unlike in the MA data case for AVP, the 

results for 4 sections are quite satisfactory. The sample 



75 

mean, sample variance, and sample MSE of the estimates are 

plotted in Figs. 27a, 28a, and 29a for 1, 2, 4 and 16 

sections. We note that the PSD estimates follow an erratic 

behavior when Mis higher than 4. 

We refer collectively to Figs. 30 to 38 where the mean, 

variance and mean square error of the PSD estimates for 8 

sections are shown for all the three data cases using the 

three averaging techniques. Comparing with the corresponding 

estimates for l, 2, 4 and 16 sections we find that in the MA 

data, AR data, and ARMA data cases, the transition point is 

reached for AVA, AVK and AVP methods when the number of 

sections is 8. In fact, it has been found that when the 

number of segments is more than eight for 128 data points, 

the performance of the three methods starts to degrade 

rapidly. Particularly in the ARMA data case when the number 

of sections exceeds 8 the estimated peak frequency starts to 

drift away from the peak frequencies for 1, 2, and 4 

sections. We find therefore M0 is actually 8 for our three 

data cases using the three averaging methods. 

Let us now find the number of operations (NOPS) required 

to compute the PSD estimates of the modified Burg spectral 

estimators. We consider each basic mathematical operation, 

namely multiplication, division, addition, and subtraction, 

as a single operation. In the following table (Table 1) the 
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TABLE 1 

NUMBER OF COMPUTATIONS REQUIRED TO EVALUATE PSD ESTIMATES 

Method 

AVA 

AVK 

AVP 

Number of operations 

2N(p+l) + M(¥ + Spz + 43p -6- - 8) 

2p3 Spz + 35p + 5 +- +~ 3 6 

2N(p+l) + M(~ 6 + spz + 43p _ 
6 

~ 9p2 + 23p + 5 + 3 +y- 6 

2N(p+l) + M( 15p3 15p 2 + llp + -6- + -2-

N = number of samples 

p = order of AR model 

M = number of sections 

8) 

126) 
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total number of operations for computing the PSD estimates 

using the AVA, AVK, and AVP methods are given. The plots of 

the number of operations versus number of sections for these 

methods are shown in Fig. 39. It is evident from this figure 

that the total NOPS is maximum for the AVP method whereas 

for the AVA method it is minimum. The difference between the 

NOPS for the AVA and AVK methods is very small for low order 

AR models. We note that for any averaging method the NOPS 

increases with the number of sections. So, the NOPS for 

modified Burg spectral estimator is higher than the 

corresponding NOPS for Burg spectral estimator. 

4.3 WELCH PROCEDURE 

The Welch procedure has been applied to estimate the PSD 

of the MA, AR, and ARMA processes which were generated. This 

method uses the segment averaging technique. So, it is 

useful to make a comparative study between this method and 

the MBSE. This method is a modification of the Bartlett 

procedure. In this case the window wt is applied to the data 

segments directly before computation of the periodogram. We 

have considered only the rectangular window and 

nonoverlapping sections. Theoretically it has been proved 

that as the number of segments increases, the bias of the 

PSD estimates increases but the variance decreases. Welch 
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[ 41] shows that if the segments of xt are nonoverlapping, 

then 

Var[B:x(w)] ~ I 2 N/M(w)/M 
(4-5) 

where is the periodogram of the process. This 

method smoothes the periodogram. As a result resolution 

decreases. 

In Figs. 30 to 38 we have shown the sample mean, sample 

variance and sample MSE of the PSD estimates computed from 

the Welch procedure. Simultaneously these are compared 

against the AVA, AVK and AVP methods. Here we have 

considered only 4 and 8 sections. After studying these 

figures, our findings indicate the following results. 

a) The bias increases and the variance decreases with an 

increase in the number of sections when the Welch 

method is used for MA, AR, and ARMA data. At the same 

time, the MSE increases and resolution reduces. The 

variance 

('Cramer 

increased. 

approaches 

data') as 

the 

the 

theoretical lower bound 

number of sections is 

b) The AVA and AVK methods give comparatively better 

estimates in terms of variance than the Welch 

procedure for most of the cases. 
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c) Though both the AVP method and the Welch procedure use· 

the same averaging technique, but different spectral 

estimators, the AVP method gives relatively poor 

est.imates at normalized frequencies O, w , and 1. p 

4.4 SUMMARY 

Let us now summarize the significant simulation results 

which are mentioned in the previous sections. The 

statistical properties of the AVA and AVK methods are almost 

the same for all three cases (see Fig. 40). Intensive 

studies reveal that the AVK method is slightly better than 

the AVA method with respect to the variance of the PSD 

estimates. The AVP method gives the worst results among the 

three averaging techniques. In most of the cases the 

variances at the peak frequencies of the actual PSD decrease 

as the number of sections is increased up to a certain 

point, say M0 , for both the AVA and AVK methods. However 

this reduction in the variances is not significant. From 

the experimental results we find that M0 is 8 when the total 

number of data is 128. The MSEs of the PSD estimates 

remains almost the same for these two methods up to M0 

sections. When the number of sections exceeds M0 , both 

methods start to degrade. The MBSE estimates are found to 

follow the theoretical bound closely even for a moderate 
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number of data points provided the number of sections is 

less than or equal to M . 
0 

In comparison to the Taylor 

approximation method, the Sakai approximation method gives 

better results in terms of mean and mean square error of the 

estimates. That is, the expected mean and the mean square 

error given by this method follow more closely the 

corresponding sample mean and sample mean square error. But 

both approximation methods give the same value for the 

variances of the power spectral density estimates. The 

Taylor approximation is different from the other one mainly 

because it neglects the bias and variance of the gain factor 

of the power spectral density estimate. Hence, these 

results imply that the variance of the gain factor has very 

little effect on the variance of the power spectral density 

estimates, while the bias of the gain factor has a 

considerable effect on the expected mean of the estimates. 

The 'Cramer data' bound is found to be lower than the sample 

variance in most of the cases and the 'Cramer model' bound 

has a shape similar to that of the sample variance, but the 

average levels are different. Finally, it is found that the 

approximation methods give good predictions and the segment 

averaging techniques do not reduce the variance of the PSD 

estimates appreciably. 
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Chapter V 

CONCLUSION 

The effect of segment averaging on the quality of the 

Burg spectral estimator has been analyzed. When a segment 

averaging method is applied to the Burg spectral estimator, 

we define the resulting estimator as a modified Burg 

spectral estimator (MBSE). Three different types of segment 

averaging are considered. The first one (AVA) averages the 

autoregressive coefficients computed from each section. The 

resulting averaged autoregressive parameters then yield the 

power spectral density estimate. The second one (AVK) 

averages the reflection coefficients evaluated from each 

segment. These averaged reflection coefficients are then 

used to compu_te the corresponding spectral density estimate. 

The final approach (AVP) evaiuates the power spectral 

density estimate associated with each segment, and then 

averages these directly. 

Our numerical simulation studies reveal that the AVA and 

AVK methods are better than the AVP method, particularly 

with respect to the variances of the power spectral density 

estimates. The AVP method gives the largest variance and the 

other two methods give almost the same but considerably 

lower variance than the AVP method, especially around the 
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peak frequencies of the actual power spectral density. 

Moreover, the power spectral density estimates of the 

modified Burg spectral estimator using the AVA and AVK 

methods are comparatively smoother than the corresponding 

estimates of the same estimator employing the AVP method. It 

is observed that the variance of the MBSE estimates follows 

the theoretical Cramer-Rao lower bound even for a moderate 

number of data points. When the number of samples per 

segment is a few times the order of the estimated 

autoregressive model this amount of samples is considered 

moderate. As the number of sections exceeds a certain level 

so that the number of observations per section is small 

relative to the dynamics of the data, the efficiency of the 

modified Burg spectral estimator declines rapidly. 

Comparative study shows that the AVA and AVK methods give 

better estimates in terms of variance than the Welch 

procedure. We note that the AVP method and the Welch 

procedure use the same averaging technique but different 

spectral estimators. The latter must explains therefore 

that the AVP method gives relatively poor estimates at 

radian frequencies 0, wp, and~- wp is the peak frequency of 

the actual power spectral density. 

To analyze the statistical properties of the modified 

Burg spectral estimator, two approximation methods are 
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formulated, namely the Sakai approximation and the Taylor 

approximation. The basic difference between these two is 

that in the Taylor approximation we neglect the bias and 

variance of the gain factor of the power spectral density 

estimate. The expected mean and mean square error predicted 

by the Sakai method follow the corresponding sample mean and 

sample mean square error more closely than the prediction 

from the Taylor method. Both approximation methods, however, 

give the same value for the variances of the power spectral 

density estimates. These results imply that the variance of 

the gain factor has little effect on the variance of the 

power spectral density estimates whereas the bias of the 

gain factor has a considerable effect on the expected mean 

of the estimates. Both methods employ a recursive technique 

to find the approximate mean and variance of the estimates 

of the modified Burg spectral estimator. The following 

assumptions are made in the derivation of the approximation 

methods: 

a) the given process is zero mean, gaussian, wide sense 

stationary, and ergodic, 

b) the gain factor and any one of the autoregressive 

parameters of the power spectral density estimate are 

uncorrelated, 
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c) reflection coefficient at mth stage is weakly 

correlated with any one element of the corresponding 

autoregressive coefficient vector of (m-l)th stage, 

d) samples in successive segments are uncorrelated, 

e) the probability density function of any reflection 

coefficient is concentrated near its mean value. 

These assumptions were found to be practically tenable for a 

moderate number of data points and hence both the Sakai 

approximation and the Taylor approximation methods give good 

predictions. For very short records however, both these 

methods fail to give the expected mean and variance of the 

estimates since the last three assumptions are not valid. 

The algorithms, used for evaluating the approximate mean and 

variance of the modified Burg spectral estimators, may be 

modified to compute the same for any autoregressive spectral 

estimator. Only the derivation of the mean and variance of 

the reflection coefficients will change from one type of 

autoregressive estimator to another. This is a result of the 

different reflection coefficient definition for each type of 

autoregressive estimator. 

A lower bound for the variance of a reflection 

coefficient using the Burg method has been derived. This 

bound found to hold for the first order autoregressive 

model. For reflection coefficients of higher order stages 
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however, it is difficult to confirm experimentally the 

validity of this theoretical lower bound, because the exact 

statistics of the forward and backward error sequences are 

not known. Further investigation is needed to determine 

whether this theoretical bound provides a tight bound. 

Considering all the aspects of the three averaging 

methods we like to recommend the AVK method for the modified 

Burg spectral estimator. The AVA method has almost the same 

characteristics as the AVK method. We do not suggest to use 

the AVP method. It is found that when the number of data per 

section is moderate the performances of the modified Burg 

spectral estimator do not differ too much from that of the 

Burg spectral estimator. However, the total number of 

operations is higher for the modified Burg spectral 

estimator. So, for ~oderate amount of data it is better to 

use the Burg spectral estimator. Finally, from this 

investigation it is found that segment averaging does not 

appreciably reduce the variance of the modified Burg 

spectral estimator. This is logical because the modified 

Burg spectral estimator performs close to the theoretical 

Cramer-Rao bound even for a moderate number of samples. The 

only advantage of modified Burg spectral estimator therefore 

lies in operating on a smaller number of samples per 

segment, but doing it more often, instead of operating once 

on the full length of data. 
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Appendix A 

DERIVATION OF EQUATION (3-6) 

~ ~ N 

AP(w) = P(w) P(w) 

= 

= 

where 

Now 

IA(ejw)°l 2 

A~2 IA(ejw)l 2 - a2 AIA(ejw)l 2 

IA(ejw) 12 - IA(ejw) 12 

p 
= 11 + E ~. ej wi I 2 

l. 'p 
i=l 

p p 

i=l i=l 
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where 
A /\ -Aa. = a. - a. 1,p 1,p 1,p 

r(ejw)= [ jw j2w ejwp]T ., e ,e , ... , 

So, 

Al·lcejw) l 2 =2Re{l(ejw)/;T(e-jw)Ai}+/;T(ejw)AiAiT,;(e-jw) 
- - - (A-3) 

Assuming 

2Re{A(ejw)tT(e-jw)Ai} >> fT(ejw)AiAiTf(e-jw) 

we get 

AIA(ejw) 12 : 2Re{A(ejw)!T(e-jw)A;} 

Again we assume that 

1/IA(ejw)l 2 : l/lA(ejw)l 2 

Substituting (A-5) and (A-6) in (A-7), we have 

AP(w) : 1 _ [Aa2 - 2o2Re{A(ejw)~~(e-jw)Aa}] 
IA(eJw)l 2 IA(eJw)l 2 

"2 
= p ( w) [ Aa {{T(~jw) 

A(eJw) 02 

Therefore, 

" E { AP ( w) } ,., ,.., " T jw " : P(w)[a- 2E(Aa2 ) - H (e )E(A~)] 

where 
HT(ejw) - iT(ejw) + _tT(e-jw) 

- A(ejw) A(e-jw) 

T jw 
= 2Ref/; (e ):1 

A(eJw) 

(A-4) 

(A-5) 

(A-6) 

(A-7) 

(A-8) 



Appendix B 

TAYLOR SERIES EXPANSION OF PSD FUNCTION 

Expanding P{a) in a Taylor series 

00 

1 o 
= P { _g ) + t nJ { A a lo¢ 1 + • • . + o n 

Aap~ ) P {f) I ¢=a 
p - -

n=l 
{B-1) 

where 

"' Aa. = a. ai 1 1 

Hence, 
I\ 

AP ( ~) = P{~) - p {§:) 

p p p 
t oP t ! tai1Aai2 

0 2p 
= Aailo¢ il + 21 0¢. 1·6it>. 2 • 1 1 
il=l il=l i2=1 

p p 

+ • • • + 
onP 

t t Aa. 1 ... Aa . 6 I .i. 
1 ip n1 ¢. 1 ... oii,- ~=a 

• 1 ip -
il=l ip=l 

{B-2) 
Here 

p {~) 
o2 

= 
A{z)A{z- 1 ) 

(B-3) 
So, 

6P i z 
<Sa. = 2P[Re[A{z)J] 

1 (B-4) 
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(B-.5) 

4P 2 i-j zk 
+ 302 Re{z }Re{A(z)} 

4P 2 k-i zj 
+ 302 Re{z }Re{A(z)} 

4P 2 j-k zi 
+ 30 2 Re { z } Re { A ( z) } 

(B-6) 

and so on. If 6a is within the region of convergence and all 

the partial derivatives of P(~) with respect to the AR 

coefficients exist, the Taylor series expansion A of P ( a) 

converges. Since the poles of a stable AR model are not on 

the unit circle in the z-domain, the above conditions of 

convergence are satisfied. However, when the poles approach 

the unit circle the rate of convergence goes down. The 

partial derivatives of P(~) with respect to the AR 

coefficients are shown in Fig. 41. It is observed that the 

derivative increases with the order near the location of 

poles. So, if is not sufficiently small the series 

will not converge monotonically; the series will have damped 

oscillatory behavior. Here we observed that the rate of 

decrement of (i-~)n is higher than the rate of increment of 
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the nth order derivative. As a result the series converges. 

But when we take the expected value on both sides of (B-2), 

the series does not converge monotonically. Because even if 

(a=a)n is small it does not guarantee that E(a-a)n will be 

small. For this reason we find that the third term on the 

right hand side of (3-10) overestimates the error {AP(w)_} 

near the location of poles which are close to the unit 

circle in the z-domain. 



Appendix C 

DERIVATION OF EQUATIONS (3-19) AND (3-20) 

Let g(y,z) be a function of two random variables y and 

z. Expanding g(y,z) into a Taylor series about the mean 

values of y and z and then taking the expected value [33] 

yields 

E{g(y,z)} 

(C-1) 
an,d 

E{g2(y,z)} = g2(Tly,Tlz) + µ [ (~)2 + /l2g] 
yo oy oy2 

+ 2µ [ og og + go2 g 1 
yz oy oz oyoz 

+ µ [(og>2 + go 2g 1 
Oz oy oz2 

(C-2) 
where 

Tly = E(y), nz = E(z), 

µyo = Var(y), µOz= Var(z), µyz = Cov(yz) 
(C-3) 

Let 
A 
K = g(y,z) = y/z m 

(C-4) 
So, ,\ " oK o2K m -1/z, m 0 6y = 6y2° = 

" " " oK o2K o2K 
_..!!l = -y/z2' m 2y/z 3 , 

m -l/z 2 ~= --= oz oyoz 
(C-5) 
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Substituting (C-4) in (C-1) and (C-2) we get 

and 

" 
Tl 2 

~ 
Tl 2 z 

+ 

E(K 2 ) = m 
y 

Let us now derive equation (3-20). 

E(y) 

where 

N-1 
2 

= - NE[ l: ft,m-lbt-l,m-1 1 
t=m 

N-1 m-1 m-1 
2 A A = - -N l: E { l: l: a. 1a . 1xt . xt . l 1,m- J,m- -1 -rn+J 

t=m i=O j=O 
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i=O j=O 
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where 

rn-1 rn-1 
" " ! ! E(a. 1 )E(a. 1 )r .. 1,m- J,rn- 1-J 

i=O j=O 

In the above derivation we have treated the predictor 

coefficient a. 
1, rn 

N-1 
E(y 2 )=~E ! 

N2 
tl=rn 

A to behave as the constant E(a. ). 
1, rn 

N-1 

! ftl,m-lbtl-l,rn-lft2,rn-lbt2-l,rn-1 

t2=m 

N-1 N-1 m-1 m-1 m-1 m-1 
4 ! ! ! [a. la. lak la =-E ! ! ! 
N2 1,m- J,m- ,rn- p,m-1 

tl=m t2=m i=O j=O k=O p=O 

(C-10) 
Using the fourth order moment rule for the gaussian process, 

we get 

N-1 
E(p2)=1_ ! 

N2 
tl=m 

Therefore 

N-1 m-1 m-1 
! ! ... 

/\ A 
! [E(a. 1 ) ... E(a 1 ) 1,rn- p,m-

t2=m i=O j=O 
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+rtl-t2+m-i-prtl-t2-m+j+kll 
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N-1-m m-1 m-1 
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Simplifying we get 
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(C-13) 

In a similar way equations (3-20c) and (3-20d) can be derived. 
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Appendix D 

COMPUTER PROGRAM LISTING 

FORTRAN PROGRAM LISTING FOR COMPUTING POWER SPECTRAL 
DENSITY ESTIMATES OF THE MODIFIED BURG SPECTRAL ---ESTIMATOR 

THIS PROGRAM COMPUTES THE POWER SPECTRAL DENSITY 
ESTIMATES OF THE MODIFIED BURG SPECTRAL ESTIMATOR. THE 
SAMPLE MEAN, SAMPLE VARIANCE AND SAMPLE MEAN SQUARE 
ERROR OF THE ESTIMATES ARE ALSO EVALUATED. HERE THREE 
TYPES OF AVERAGING TECHNIQUE ARE EMPLOYED, NAMELY AVA, 
AVK AND AVP. ONLY ONE AVERAGING METHOD CAN BE USED AT A 
TIME. IMSL SUBROUTINE IS USED FOR MATRIX INVERSION. 

THIS IS AN INTERACTIVE PROGRAM. THE USER HAS TO ENTER 
ALL THE VARIABLES (ORDER OF THE AR MODEL, NUMBER OF DATA 
POINTS, NUMBER OF SECTIONS, AND NUMBER OF REALIZATIONS) 
WHILE BEEN PROMPTED BY THE PROGRAM. THE COEFFICIENTS OF 
THE FILTER SHOULD BE ENTERED IN THE FILE 'ARMACOEF DATA' 
(DEVICE NUMBER 11) WITH THE FOLLOWING FORMATTING: 

Q [ ORDER OF MA PART ( IUT) ] 
B(O) B(l) ... B(Q) [MA COEFFICIENTS (FLOAT)] 
P [ORDER OF AR PART (INT)] 
A(O) A(l) ... A(P) [AR COEFFICIENTS (FLOAT)] 

THE OUTPUT IS STORED IN THE FILES DEFINED AS 
FOLLOWS: 

DEVICE NO. 

1 
2 
3 
4 

FILE 

ASP DATA 
MEAN DATA 
VAR DATA 
MSE DATA 

DATA STORED 

ACTUAL PSD 
ESTIMATED MEAN OF PSD 

ESTIMATED VARIANCE OF PSD (DB) 
ESTIMATED MEAN SQUARE ERROR 
OF PSD (DB) 

C*********************************************************** 
C 
C MAIN: COMPUTES THE SAMPLE MEAN, SAMPLE VARIANCE AND 
C SAMPLE MEAN SQUARE ERROR OF PSD ESTIMATES. 
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C 
C*********************************************************** 
C 

C 

DIMENSION A(0:20),B(0:20),E(512),X(512),ASP(l29), 
#PSD(S0,129) 

INTEGER P,Q,PQ 
REAL MEAN,MSQER 
DOUBLE PRECISION DSEED 
DATA NMAX/20/ 

C READ INPUT DATA 
C 

WRITE(6,701) 
701 FORMAT(lX, 'ENTER ORDER OF AR MODEL:') 

READ(S,*) NSTAGE 
WRITE(6,702) 

702 FORMAT(lX, 'ENTER NUMBER OF DATA POINTS :') 
READ(S,*) NX 
WRITE(6,703) 

703 FORMAT(lX, 'ENTER NUMBER OF SECTIONS :') 
READ(S,*) NSEC 
WRITE(6,704) 

704 FORMAT(lX, 'ENTER NUMBER OF REALIZATIONS:') 
READ ( 5 , * ) I RL 
WRITE(6,705) 
WRITE(6,706) 
WRITE(6,707) 
WRITE(6,708) 

705 FORMAT(lX, 'WHICH AVERAGING METHOD DO YOU WANT.') 
706 FORMAT(lX, 'l : AVA METHOD') 
707 FORMAT(lX, '2 : AVK METHOD') 
708 FORMAT(lX, '3 : AVP METHOD') 

C 
READ(S,*) IFLAG 

READ(ll,*) Q 
READ(ll,*) (B(I),I=O,Q) 
READ(ll,*) P 
READ(ll,*) (A(I),I=O,P) 

C 
C FIND MAX(P,Q) 
C 

PQ=MAX(P,Q) 
IF(P.EQ.Q) GO TO 991 
IF(PQ.EQ.P) GO TO 11 
GO TO 12 

11 QPl=Q+l 
DO 13 I=QPl,PQ 
B(I)=O. 

13 CONTINUE 
GO TO 991 



12 PPl=P+l 
DO 14 I=PPl,PQ 
A( I )=O. 

14 CONTINUE 
C 
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C COMPUTE ACTUAL POWER SPECTRAL DENSITY 
C 

CALL PWR(A,B,P,Q,PQ,NMAX,ASP) 
C 
C GENERATE NORMALIZED DATA 
C 

NXl=NX+l28 
DSEED=3214567.DO 

C 
IR=O 

999 . IR=IR+l 
WRITE (6,709) IR 

709 FORMAT(lX, 'REALIZATION NUMBER', IS) 
CALL GGNML(DSEED,NXl,E) 

C 
RHAT=O. 
DO 21 I=l,NXl 
X(I)=B(O)*E(I)/A(O) 
DO 22 J=l,PQ 
IF(I.EQ.J) GO TO 23 
X(I)=-A(J)*X(I-J)/A(O)+B(J)*E(I-J)/A(O)+X(I) 

22 CONTINUE 
23 IF(I.LE.NX) GO TO 21 

RHAT=X(I)**2+RHAT 
21 CONTINUE 

RHAT=RHAT/FLOAT(NX) 
C 

DO 25 I=l,NX 
X(I)=X(NX+I)/SQRT(RHAT) 

25 CONTINUE 
C 
C SELECT THE TYPE OF AVERAGING METHOD 
C 

C 

C 

IF(IFLAG.EQ.l) CALL AVA(X,PSD,RHAT,NSTAGE,NX,NSEC,IR, 
#NMAX) 

IF(IFLAG.EQ.2) CALL AVK(X,PSD,RHAT,NSTAGE,NX,NSEC,IR, 
#NMAX) 

IF(IFLAG.EQ.3) CALL AVP(X,PSD,RHAT,NSTAGE,NX,NSEC,IR, 
#NMAX) 

IF(IR.LT.IRL) GO TO 999 

C COMPUTE THE SAMPLE MEAN, SAMPLE VARIANCE, AND SAMPLE 
C MEAN SQUARE ERROR OF PSD ESTIMATES 
C 



PI=4. *ATAN(l.) 
N=l29 
AINC=PI/(N-1) 
DO 44 I=l,N 
RI=I 
W=AINC*(RI-1.) 
MEAN=O. 
DO 45 J=l,IRL 
MEAN=MEAN+PSD(J,I) 
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45 CONTINUE 
MEAN=MEAN/FLOAT(IRL) 
VAR=O. 
MSQER=O. 
DO 46 J=l,IRL 
VAR=(PSD(J,I)-MEAN)**2+VAR 
MSQER=(PSD(J,I)-ASP(I))**2+MSQER 

46 CONTINUE 
VAR=VAR/FLOAT(IRL) 
MSQER=MSQER/FLOAT(IRL) 
VAR=lO.*ALOGlO(VAR) 
MSQER=lO.*ALOGlO(MSQER) 
W=W/PI 
WRITE(l,777) W,ASP(I) 
WRITE(2,777) W,MEAN 
WRITE(3,777) W,VAR 
WRITE(4,777) W,MSQER 

777 FORMAT(2El6.6) 
44 CONTINUE 
C 
110 STOP 

END 
C 
C*********************************************************** 
C 
C AVA: COMPUTES POWER SPECTRAL DENSITY ESTIMATES 
C USING AVERAGED AR COEFFICIENTS. 
C 
C*********************************************************** 
C 

C 

C 

SUBROUTINE AVA(X,PSD,RHAT,NSTAGE,NX,NSEC,IR,NMAX) 

DIMENSION A(20),B(20),SIG(512),X(512),PHI(20,20), 
#SCR(20),AVA(20),PSD(S0,129) 

REAL K(20) 

C INITIALIZE VARIABLES 
C 

L=O 
DO 30 I=l,NSTAGE 
AVA(I)=O. 
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30 CONTINUE 
C 
C DIVIDE DATA SEQUENCE IN TOM SEGMENTS 
C 
111 NSIG=NX/NSEC 

DO 40 I=l,NSIG 
SIG(I)=X(L*NSIG+I) 

40 CONTINUE 
C 
C COMPUTE AUTOREGRESSIVE AND REFLECTION COEFFICIENTS 
C 

DO 50 M=l,NSTAGE 
CALL COVAR(SIG,NSIG,M,PHI,NMAX) 
CALL CLHARM(PHI,NMAX,M,A,K(M),SCR) 

50 CONTINUE 
C 

DO 60 I=l,NSTAGE 
AVA(I)=AVA(I)+A(I) 

60 CONTINUE 
C 

IF(L.EQ.(NSEC-1)) GO TO 555 
L=L+l 
GO TO 111 

C 
C AVERAGE AR COEFFICIENTS 
C 
555 DO 70 I=l,NSTAGE 

A(I+l)=AVA(I)/FLOAT(NSEC) 
70 CONTINUE 

C 

NB=O 
B(l)=l. 
A(l)=l. 

C FIND GAIN FACTOR SO THAT AVERAGE POWER IS UNITY 
C 

CALL RSEQ(A,B,NSTAGE,NB,RO,NMAX) 
C 
C COMPUTE PSD ESTIMATE 
C 

SGMASQ=l./RO 
CALL PWRSPC(A,NSTAGE,NMAX,SGMASQ,IR,PSD) 

C 
RETURN 
END 

C 
C*********************************************************** 
C 
C CLHARM: COVARIANCE LATTICE ROUTINE FOR HARMONIC MEAN 
C METHOD. IT COMPUTES THE REFLECTION COEFFICIENT 
C OF STAGE M, GIVEN THE COVARIANCE MATRIX OF THE 
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C SIGNAL AND THE PREDICTOR COEFFICIENTS UP TO 
C STAGE M-1. 
C (R. VISWANATHAN AND J. MAKHOUL, "EFFICIENT LATTICE 
C METHODS FOR LINEAR PREDICTION", PROGRAMS FOR DIGITAL 
C SIGNAL PROCESSING, IEEE PRESS) 
C 
C*********************************************************** 
C 

C 

SUBROUTINE CLHARM(PHI,NMAX,M,A,K,ERROR,SCR) 
DIMENSION PHI(NMAX,NMAX),A(NMAX),SCR(NMAX) 
REAL K 

IF(M.GT.l) GO TO 20 
C 
C EXPLICIT COMPUTATION OF THE FIRST STAGE REFLECTION 
C COEFFICIENT 
C 

FPLUSB=PHI(l,l)+PHI(2,2) 
C=PHI(l,2) 
K=O. 
IF(C.EQ.0.0) GO TO 10 
K=-2.*C/FPLUSB 

10 A(l)=K 
GO TO 90 

C 
C RECURSIVE COMPUTATION OF THEM-TH STAGE (M.GE.2) 
C REFLECTION COEFFICIENT 
C 
20 MPl=M+l 

MMl=M-1 
SUMl=O. 
SUM3=0. 
SUM4=0. 
SUM6=0. 
DO 30 I=l,MMl 
IPl=I+l 
SCR(I)=A(I) 
MPlMI=MPl-I 
SUMl=SUMl+A(I)*(PHI(l,IPl}+PHI(MPl,MPlMI)) 
SUM3=SUM3+A(I)*(PHI(l,MP1MI)+PHI(IP1,MP1}} 
Y=A(I)**2 
SUM4=SUM4+Y*(PHI(IPl,IPl)+PHI(MPlMI,MPlMI)) 
SUM6=SUM6+Y*PHI(IP1,MP1MI) 

30 CONTINUE 
SUM7=0. 
SUM9=0. 
IF(M.EQ.2) GO TO 60 
MM2=M-2 
DO 50 I=l,MM2 
IPl=I+l 
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MPlMI=MPl-I 
DO 40 J=IPl,MMl 
Y=A(I)*A(J) 
MPlMJ=MPl-J 
SUM7=SUM7+Y*(PHI(IP1,J+l)+PHI(MP1MI,MP1MJ)) 
SUM9=SUM9+Y*(PHI(IP1,MP1MJ)+PHI(J+l,MP1MI)) 

40 CONTINUE 
50 CONTINUE 
60 FPLUSB=PHI(l,l)+PHI(MPl,MP1)+2.*(SUMl+SUM7)+SUM4 

C=PHI(l,MP1)+SUM3+SUM6+SUM9 
K=O. 
IF(C.EQ.0.0) GO TO 70 
K=-2.*C/FPLUSB 

10· CONTINUE 
C 
C ·RECURSION TO CONVERT REFLECTION COEFFICIENT TO 
C PREDICTOR COEFFICIENT 
C 

DO 80 I=l,MMl 
MMI=M-I 
A(I)=SCR(I)+K*SCR(MMI) 

80 CONTINUE 

C 

C 

A(M)=K 

RETURN 
END 

C*********************************************************** 
C 
C 
C 
C 
C 
C 
C 

COVAR: COMPUTES (M+l)X(M+l) COVARIANCE MATRIX 
CORRESPONDING TO THE LATTICE STAGE M. 

(R. VISWANATHAN AND J. MAKHOUL, "EFFICIENT LATTICE 
METHODS FOR LINEAR PREDICTION", PROGRAMS FOR DIGITAL 
SIGNAL PROCESSING, IEEE PRESS) 

C*********************************************************** 
C 

C 

C 
C 
C 

SUBROUTINE COVAR(SIG,NSIG,M,PHI,NMAX) 
DIMENSION SIG(NSIG),PHI(NMAX,NMAX) 

IF(M.GT.l) GO TO 20 

FIRST STAGE: M=l 

TEMPl=O. 
TEMP2=0. 

" 

DO 10 K=2,NSIG 
TEMPl=TEMPl+SIG(K)**2 
TEMP2=TEMP2+SIG(K)*SIG(K-1) 

10 CONTINUE 



C 
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PHI(l,l)=TEMPl 
PHI(l,2)=TEMP2 
PHI(2,l)=TEMP2 
PHI(2,2)=TEMPl+SIG(l)**2-SIG(NSIG)**2 
RETURN 

C M-TH STAGE, M.GE.2 
C 
20 MPl=M+l 

NSPl=NSIG+l 
NSM=NSPl-M 
DO 30 J=2,MP1 
NSJ=NSPl+l-J 
PHI(MPl,J)=PHI(M,J-1)-SIG(NSM)*SIG(NSJ) 
PHI(J,MPl)=PHI(MPl,J) 

30 CONTINUE 
TEMPl=O. 
DO 40 K=MPl,NSIG 
KMM=K-M 
TEMPl=TEMPl+SIG(K)*SIG(KMM) 

40 CONTINUE 
PHI(MPl,l)=TEMPl 
PHI(l,MPl)=TEMPl 
DO 60 I=l,M 
MPlMI=MPl-I 
DO 50 J=I,M 
MPlMJ=MPl-J 
PHI(I,J)=PHI(I,J)-SIG(MPlMI)*SIG(MPlMJ) 
PHI(J,I)=PHI(I,J) 

50 CONTINUE 
60 CONTINUE 

C 

RETURN 
END 

C*********************************************************** 
C 
C PWRSPC: COMPUTE POWER SPECTRAL DENSITY FOR AR MODEL 
C 
C*********************************************************** 
C 

C 

C 

SUBROUTINE PWRSPC(A,NSTAGE,NMAX,BETASQ,IR,Pl) 
DIMENSION A(NMAX),Pl(50,129) 
COMPLEX Z,H 

PI=4.*ATAN(l.) 
N=l29 
AINC=PI/(N-1) 

DO 30 I=l,N 
RI=I 



W=AINC* (RI-1.) 
H= ( 0., 0.) 
DO 40 J=l,NSTAGE 
RJ=J 
Z=CMPLX(O.,-W*RJ) 
Z=CEXP(Z) 
H=A(J+l)*Z+H 

40 CONTINUE 
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H=H+l 
Pl(IR,I)=BETASQ/(CABS(H)**2) 

30 CONTINUE 
C 

RETURN 
END. 

C 
C*********************************************************** 
C 
C RSEQ: COMPUTE THE CORRELATION SEQUENCE GENERATED BY ARMA 
C FILTER 
C (DUGRE, J.P., BEEX, A. A. AND SCHARF, L. L., 
C "GENERATING COVARIANCE SEQUENCES AND THE CALCULATION .. " 
C IEEE TRANS., VOL. ASSP-28, FEB: '80.) 
C 
C*********************************************************** 
C 

C 

SUBROUTINE RSEQ(A,B,N,M,RO,NMAX) 
DIMENSION A(NMAX),B(NMAX),H(20),D(20),R(20),AR(20,20), 

#WKAREA(20) 

MPl=M+l 
NPl=N+l 

C 
C COMPUTE IMPULSE RESPONSE 
C 

DO 10 I=l,MPl 
H( I) =B (I) 
IF(NPl.EQ.l) GO TO 10 
DO 20 J=2,NP1 
IF((I-J+l).LT.l) GO TO 10 
H(I)=H(I)-A(J)*H(I-J+l) 

20 CONTINUE 
10 CONTINUE 
C 
C COMPUTE 'D' VECTOR 
C 

ND=NPl 
IF(NPl.LT.MPl) ND=MPl 
DO 30 I=l,ND 
D( I )=O. 
IF(I.GE.(MPl+l)) GO TO 31 
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MJ=MPl-I+l 
DO 40 J=l,MJ 
D(I)=D(I)+H(J)*B(J+I-1) 

40 CONTINUE 
31 R ( I ) =D ( I ) 
30 CONTINUE 
C 
C COMPUTE MATRIX 'AR' 
C 

IF(NPl.EQ.l) GO TO 89 
DO 55 I=l,NPl 
AR(I,l)=A(I) 
AR(l,I)=A(I) 

55 CONTINUE 
C 

DO 60 I=2,NP1 
DO 70 J=2,NP1 
AR(I,J)=O. 
IF((I+J-1).LT.l .OR. (I+J-1).GT.NPl) GO TO 80 
AR(I,J)=A(I+J-1) 

80 IF((I-J+l).LT.l .OR. (I-J+l).GT.NPl) GO TO 70 
AR(I,J)=AR(I,J)+A(I-J+l) 

70 CONTINUE 
60 CONTINUE 
C 
C SOLVE AR*R=D 
C 

IDGT=O 
IM=l 
CALL LEQTlF(AR,IM,NPl,NMAX,R,IDGT,WKAREA,IER) 
IF(IER.NE.O) WRITE(6,200) !ER 

200 FORMAT(lX, 'MATRIX INVERSION NOT POSSIBLE' ,IS) 
C 
89 RO=R(l) 
C 

RETURN 
END 

C 
C*********************************************************** 
C 
C PWR: COMPUTE POWER SPECTRAL DENSITY FOR A GIVEN ARMA 
C DATA 
C 
C*********************************************************** 
C 

C 

SUBROUTINE PWR(AA,BB,NN,MM,NM,NMAX,ASP) 
DIMENSION AA(NMAX),BB(NMAX),ASP(l29) 
COMPLEX Z,ANUM,DNUM 

PI=4. *ATAN(l.) 



C 

N=l29 
AINC=PI/(N-1) 

NMP=NM+l 
DO 10 I=l,N 
RI=I 
W=AINC* (RI-1.) 
ANUM=(O.,O.) 
DNUM= ( 0 . , 0 . ) 
DO 20 J=l,NMP 
RJ=J 
Z=CMPLX(O.,-W*(RJ-1)) 
Z=CEXP(Z) 
ANUM=BB(J)*Z+ANUM 
DNUM=AA(J)*Z+ANUM 

20. CONTINUE 
ASP(I)=CABS(ANUM/DNUM) 
ASP(I)=ASP(I)**2 

10 CONTINUE 
C 
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CALL RSEQ(AA,BB,NN,MM,RO,NMAX) 
DO 12 I=l,N 
ASP(I)=ASP(I)/RO 

12 CONTINUE 
C 

C 

RETURN 
END 

C*********************************************************** 
C 
C AVK: COMPUTES POWER SPECTRAL DENSITY ESTIMATES 
C USING AVERAGED REFLECTION COEFFICIENTS 
C 
C*********************************************************** 
C 

SUBROUTINE AVK(X,PSD,RHAT,NSTAGE,NX,NSEC,IR,NMAX) 
DIMENSION A(20),B(20),SIG(Sl2),X(S12),PHI(20,20) 

#SCR(20),AVK(20),PSD(S0,129),AP(20) 
REAL K(20) 

C 
C INITIALIZE VARIABLES 
C 

L=O 
DO 30 I=l,NSTAGE 
AVK(I)=O. 

30 CONTINUE 
C 
C DIVIDE DATA SEQUENCE IN TOM SEGMENTS 
C 
111 NSIG=NX/NSEC 



DO 40 I=l,NSIG 
SIG(I}=X(L*NSIG+I} 

40 CONTINUE 
C 

150 

C COMPUTE AUTOREGRESSIVE AND REFLECTION COEFFICIENTS 
C 

DO 50 M=l,NSTAGE 
CALL COVAR(SIG,NSIG,M,PHI,NMAX} 
CALL CLHARM(PHI,NMAX,M,A,K(M},ERROR,SCR) 

50 CONTINUE 
C 

DO 60 I=l,NSTAGE 
AVK(I}=AVK(I}+K(I) 

60 CONTINUE 
C 

IF(L.EQ.(NSEC-1)) GO TO 555 
L=L+l 
GO TO 111 

C 
C AVERAGE REFLECTION COEFFICIENTS 
C 
555 DO 70 I=l,NSTAGE 

K(I}=AVK(I)/FLOAT(NSEC) 
70 CONTINUE 
C 

A(l}=K(l} 
AP(l)=K(l) 
DO 80 I=2,NSTAGE 
A (I) =K( I) 
MMl=I-1 
DO 90 J=l,MMl 
A(J)=AP(J)+K(I)*AP(I-J) 

90 CONTINUE 
DO 93 J=l,I 
AP(J)=A(J) 

93 CONTINUE 
80 CONTINUE 
C 

DO 95· I=l,NSTAGE 
A(I+l)=AP(I) 

85 CONTINUE 

C 

NB=O 
B(l)=l. 
A(l)=l. 

C FIND GAIN FACTOR SO THAT AVERAGE POWER IS UNITY 
C 

CALL RSEQ(A,B,NSTAGE,NB,RO,NMAX) 
C 
C COMPUTE PSD ESTIMATE 



151 

C 
SGMASQ=l./RO 
CALL PWRSPC(A,NSTAGE,SGMASQ,IR,PSD) 

C 
RETURN 
END 

C 
C*********************************************************** 
C 
C AVP: COMPUTES POWER SPECTRAL DENSITY ESTIMATES 
C USING AVERAGED PSD ESTIMATES 
C 
C*********************************************************** 
C 

SUBROUTINE AVP(X,PSD,RHAT,NSTAGE,NX,NSEC,IR,NMAX) 
DIMENSION PHI(20,20),A(20),SCR(20),SIG(512),X(512), 

#PSD(50,129),AA(20),BB(20),PP(l29),AVP(l29) 
REAL K(20) 

C 
C INITIALIZE VARIABLES 
C 

L=O 
DO 30 I=l,129 
AVP(I)=O. 

30 CONTINUE 
C 
C DIVIDE DATA SEQUENCE IN TOM SEGMENTS 
C 

NSIG=NX/NSEC 
111 RHAT=O. 

DO 40 I=l,NSIG 
SIG(I)=X(L*NSIG+I) 
RHAT=RHAT+SIG(I)**2 

40 CONTINUE 
RHAT=RHAT/FLOAT(NSIG) 

C 
C COMPUTE AUTOREGRESSIVE AND REFLECTION COEFFICIENTS 
C 

DO 50 M=l,NSTAGE 
CALL COVAR2(SIG,NSIG,M,PHI,NMAX) 
CALL CLHARM(PHI,NMAX,M,A,K(M),ERROR,SCR) 

50 CONTINUE 
C 
C FIND GAIN FACTOR SO THAT AVERAGE POWER IS UNITY 
C 

NB=O 
DO 65 I=I,NSTAGE 
AA(I+l)=A(I) 

65 CONTINUE 
AA(l)=l. 
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B(l)=l. 
C 

CALL RSEQ(AA,B,NSTAGE,NB,RO,NMAX) 
BTASQ=RHAT/RO 

C 
C EVALUATE PSD ESTIMATE 
C 

CALL PWRSPC(AA,NSTAGE,NMAX,BTASQ,PP) 
C 

DO 60 I=l,129 
AVP(I)=AVP(I)+PP(I) 

60 CONTINUE 
C 

IF(L.EQ.(NSEC-1)) GO TO 555 
L=L+l 
GO TO 111 

C 
C AVERAGE PSD ESTIMATES 
C 
555 DO 70 I=l,129 

PSD(IR,I)=AVP(I)/FLOAT(NSEC) 
70 CONTINUE 
C 
110 STOP 

END 

D.2 FORTRAN PROGRAM LISTING FOR COMPUTING APPROXIMATE MEAN - --AND VARIANCE OF THE MODIFIED BURG SPECTRAL ESTIMATOR 

C THIS PROGRAM COMPUTES THE APPROXIMATE MEAN AND 
C VARIANCE OF THE MBSE ESTIMATES USING THE SAKAI AND 
C TAYLOR APPROXIMATION METHODS. THIS PROGRAM ALSO 
C EVALUATES THE THEORETICAL CRAMER-RAO LOWER BOUND 
C ('CRAMER MODEL' BOUND) FOR THE VARIANCE OF ESTIMATES. 
C IMSL SUBROUTINE IS USED FOR MATRIX INVERSION. 
C 
C THIS IS AN INTERACTIVE PROGRAM. THE USER HAS TO ENTER 
C ALL THE VARIABLES (ORDER OF THE AR MODEL, NUMBER OF DATA 
C POINTS, NUMBER OF SECTIONS, AND NUMBER OF REALIZATIONS) 
C WHILE BEEN PROMPTED BY THE PROGRAM. THE COEFFICIENTS OF 
C THE FILTER SHOULD BE ENTERED IN THE FILE 'ARMACOEF DATA' 
C (DEVICE NUMBER 11) WITH THE FOLLOWING FORMATTING: 
C 
C M [ORDER OF MA PART (INT)] 
C B(O) B(l) ... B(M) [MA COEFFICIENTS (FLOAT)] 



C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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N [ORDER OF AR PART (INT)] 
A(O) A(l) ... A(N) [AR COEFFICIENTS (FLOAT)] 

THE OUTPUT IS STORED IN THE FILES DEFINED AS 
FOLLOWS: 

DEVICE NO. 

1 
2 
3 
4 

5 

6 
7 

8 

9 
10 

FILE 

ASP DATA 
PWR DATA 
MINS DATA 
VARS DATA 

MSES DATA 

MINT DATA 
VART DATA 

MSET DATA 

VARC DATA 
MSEC DATA 

DATA STORED 

ACTUAL PSD 
PSD ESTIMATED FROM AR MODEL 
APPROX. MEAN (SAKAI) OF PSD 
APPROX. VARIANCE (SAKAI) OF 
PSD IN DB 
APPROX. MEAN SQ. ERROR (SAKAI) 
OF PSD IN DB 
APPROX. MEAN (TAYLOR) OF PSD 
APPROX. VARIANCE (TAYLOR) OF 
PSD IN DB 
APPROX. MEAN SQ. ERROR (TAYLOR) 
OF PSD IN DB 
CRLB MODEL BOUND FOR VARIANCE 
CRLB MODEL BOUND FOR MEAN SQ. 
ERROR 

C*********************************************************** 
C 
C 
C 
C 
C 
C 
C 

MAIN: COMPUTES THE APPROXIMATE MEAN AND VARIANCE USING 
THE SAKAI APPROXIMATION AND THE TAYLOR 
APPROXIMATION METHODS. ALSO COMPUTES THE 'CRAMER 
MODEL' BOUND FOR THE VARIANCE AND MEAN SQUARE 
ERROR OF PSD ESTIMATES. 

C*********************************************************** 
C 

C 

DIMENSION A(0:20},B(0:20},R(512},COVA(20,20},D(20,20}, 
#EDELA(20},CVDELA(20,20),P(l29},H(20},VART(l29), 
#AS(20},BS(20},SMEAN(20),SA(20) 

REAL MEANA(20},MEANK,MINS,MINT,ASP(129) 
DATA NMAX/20/ 

C READ INPUT DATA 
C 

NMAX=20 
READ(ll,*) M 
READ(ll,*) (B(I),I=O,M) 
READ(ll,*) N 
READ(ll,*) (A(I),I=O,N) 
WRITE(6,ll) 

11 FORMAT(lX, 'GIVE THE VALUE OF NSTAGE:') 



READ(S,*) NSTAGE 
WRITE(6,12) 
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12 FORMAT(lX, 'GIVE THE VALUE OF NSAMPLE:') 
READ(S,*) NSMPL 
WRITE(6,13) 

13 FORMAT(lX, 'GIVE THE VALUE OF NSECTION:') 
READ(S,*) NSEC 
WRITE(6,14) 

14 FORMAT(lX, 'SELECT AVERAGING METHOD:') 
WRITE(6,15) 

15 FORMAT(lX, 'AVA=l, AVK=2, AVP=3') 
READ ( 5 , * ) I FG 

C 
C FIND MAX(N,M) 
C 

NM=MAX(N,M) 
IF(N.EQ.M) GO TO 991 
IF(NM.EQ.N) GO TO 61 
GO TO 62 

61 MPl=M+l 
DO 63 I=MPl,NM 
B ( I )=O. 

63 CONTINUE 
GO TO 991 

62 NPl=N+l 
DO 64 I=NPl,NM 
A( I )=O. 

64 CONTINUE 
C 
C COMPUTE ACTUAL POWER SPECTRAL DENSITY 
C 
991 CALL PWR(A,B,N,M,NM,NSTAGE,NSMPL,NMAX,ASP) 
C 
C EVALUATE ACTUAL AUTOCORRELATION SEQUENCE 
C 

RNSCT=NSEC 
NSMPL=NSMPL/NSEC 
IF(IFG.EQ.3) NSEC=l 
IFLAG=O 
CALL RSEQ(A,B,N,M,R,NSTAGE,NSMPL,NMAX,IFLAG) 

C 
C COMPUTE APPROX. BIAS AND VARIANCE OF AR COEFFICIENTS 
C ESTIMATES 
C 

DO 10 NST=l,NSTAGE 
CALL KSTAT(NST,R,MEANA,MEANK,VARK,NSMPL) 
CALL AREST(AS,BS,N,M,R,NST,NMAX) 
CALL VAR(MEANA,NST,MEANK,VARK,COVA,NSEC,NMAX,IFG) 
CALL BIAS(AS,NST,EDELA,MEANA,MEANK,NMAX) 

10 CONTINUE 



C 
DO 32 I=l,NSTAGE 
SA(I)=AS(I+l) 
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32 CONTINUE 
C 
C FIND ERROR COVARIANCE MATRIX OF AR COEFFICIENTS 
C 

CALL VARDEL(SA,NSTAGE,MEANA,COVA,CVDELA,NSEC,NMAX,IFG) 
C 
C DETERMINE PSD ESTIMATE FROM THE AR MODEL 
C 

IFLAG=l 
CALL RSEQ(AS,BS,N,M,R,NSTAGE,NSMPL,NMAX,IFLAG) 
SGMSQ=l./R(l) 
CALL PWRSPC(SA,NSTAGE,SGMSQ,P,NMAX) 

C 
C COMPUTE BIAS OF GAIN FACTOR 
C 

DO 49 I=l,NSTAGE 
SMEAN(I+l)=MEANA(I) 

49 CONTINUE 

C 

C 

SMEAN(l)=l. 

CALL RSEQ(SMEAN,BS,N,M,R,NSTAGE,NSMPL,NMAX,IFLAG) 
SGMSQT=l./R(l) 

DELSGM=SGMSQT-SGMSQ 
C 
C COMPUTE APPROX. MEAN AND MEAN SQUARE OF P(w) 
C USING THE SAKAI METHOD AND THE TAYLOR METHOD 
C 

C 

PI=4. *ATAN(l.) 
NPT=l29 
AINC=PI/(NPT-1) 

DO 20 L=l,NPT 
RL=L 
W=AINC*(RL-1.) 
VARS=O. 
VART(L)=O. 
MINS=O. 
CALL HMAT(SA,NSTAGE,H,W,NMAX) 
DO 30 I=l,NSTAGE 
DO 31 J=l,NSTAGE 
VARS=VARS+H(I)*CVDELA(I,J)*H(J) 
VART(L)=VART(L)+H(I)*CVDELA(I,J)*H(J) 

31 CONTINUE 
VARS=VARS-2.*H(I)*EDELA(I)*DELSGM/SGMSQ 
MINS=MINS-H(I)*EDELA(I) 

30 CONTINUE 



C 
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VARS=(VARS+(DELSGM**2)/(SGMSQ**2))*(P(L)**2) 
VART(L)=VART(L)*(P(L)**2) 
MINS=(MINS+DELSGM/SGMSQ)*P(L) 
IF(IFG.EQ.3) VARS=VARS/RNSCT+(RNSCT-l.)*(MINS**2)/RNSCT 
W=W/PI 
SQERRS=(ASP(L)-P(L))**2+VARS-2.*(ASP(L)-P(L))*MINS 
VARS=SQERRS-(ASP(L)-P(L)-MINS)**2 
MINS=P(L)+MINS 
VARS=lO.*ALOGlO(VARS) 
SQERRS=lO.*ALOGlO(SQERRS) 

WRITE(l,100) W,ASP(L) 
WRITE(2,100) W,P(L) 
WRITE(3,100) W,MINS 
WRITE(4,100) W,VARS 
WRITE(S,100) W,SQERRS 

100 FORMAT(2E16.6) 
C 
20 CONTINUE 
C 

DO 70 L=l,NPT 
RL=L 
W=AINC* (RL-1.) 
MINT=O. 
PP=P(L) 
CALL HMAT(SA,NSTAGE,H,W,NMAX) 
DO 80 I=l,NSTAGE 
MINT=MINT-H(I)*EDELA(I)*P(L) 

80 CONTINUE 
IF(IFG.EQ.3) VART(L)=VART(L)/RNSCT+(RNSCT-1.) 

#*(MINT**2)/RNSCT 
W=W/PI 
SQERRT=(ASP(L)-P(L))**2+VART(L)-2.*(ASP(L)-P(L))*MINT 
VART(L)=SQERRT-(ASP(L)-P(L)-MINT)**2 
MINT=P(L)+MINT 
VART(L)=lO.*ALOGlO(VART(L)) 
SQERRT=lO.*ALOGlO(SQERRT) 
WRITE(6,100) W,MINT 
WRITE(7,100) W,VART(L) 
WRITE(8,100) W,SQERRT 

70 CONTINUE 
C 
C COMPUTE THE 'CRAMER MODEL' BOUND 
C 

C 
CALL CRAMER(SA,NSTAGE,CVDELA,NSMPL,RNSCT,NMAX) 

DO 23 L=l,NPT 
RL=L 
W=AINC* ( RL-1. ) 
VARC=O. 
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CALL HMAT(SA,NSTAGE,H,W,NMAX) 
DO 24 I=l,NSTAGE 
DO 24 J=l,NSTAGE 
VARC=VARC+H(I)*CVDELA(I,J)*H(J) 

24 CONTINUE 
VARC=(VARC+2)*(P(L)**2) 
W=W/PI 
SQERRC=(ASP(L)-P(L))**2+VARC 
VARC=lO.*ALOGlO(VARC) 
SQERRC=lO.*ALOGlO(SQERRC) 
WRITE(9,100) W,VARC 
WRITE(l0,100) W,SQERRC 

23 CONTINUE 
C 
999 STOP 

END 
C 
C*********************************************************** 
C . 
C TRANS: TRANSPOSE THE MATRIX 
C 
C*********************************************************** 
C 

SUBROUTINE TRANS(A,B,N,M,NMAX) 
DIMENSION A(NMAX,NMAX),B(NMAX,NMAX) 

C 
DO 10 I=l,M 
DO 10 J=l,N 
B(I,J)=A(J,I) 

10 CONTINUE 
C 

C 

RETURN 
END 

C********************************************************** 
C 
C MULMAT: MULTIPLY TWO MATRICES 
C 
C********************************************************** 
C 

C 

SUBROUTINE MULMAT(A,B,C,N,M,L,NMAX) 
DIMENSION A(NMAX,NMAX),B(NMAX,NMAX),C(NMAX,NMAX) 

DO 10 I=l,N 
DO 10 J=l,L 
C(I,J)=O. 
DO 10 K=l,M 
C(I,J)=A(I,K)*B(K,J)+C(I,J) 

10 CONTINUE 
C 



., 

C 

RETURN 
END 

158 

C*********************************************************** 
C 
C 
C 
C 
C 
C 
C 

RSEQ: COMPUTE AUTOCORRELATION SEQUENCE 

(DUGRE, J.P., BEEX, A. A., AND SCHARF, L. L., 
"GENERATING COVARIANCE SEQUENCES AND THE CALCULATION 
IEEE TRANS., VOL. ASSP-28, FEB. '80.) 

II 

C*********************************************************** 
C 

C 

C 
C 
C 

20 
10 
C 
C 
C 

40 
31 
30 
C 
C 
C 

SUBROUTINE RSEQ(A,B,N,M,R,NSTAGE,NSMPL,NMAX,IFLAG) 
DIMENSION A(NMAX),B(NMAX),H(20),D(20),E(20), 

#C(20,20),WKAREA(20),R(512) 

MPl=M+l 
NPl=N+l 

EVALUATE IMPULSE RESPONSE 

DO 10 I=l,MPl 
H( I )=B (I) 
IF ( NP 1. EQ . 1 ) GO TO 10 
DO 20 J=2,NP1 
IF((I-J+l).LT.1) GO TO 10 
H(I)=H(I)-A(J)*H(I-J+l) 
CONTINUE 
CONTINUE 

COMPUTE 'D' VECTOR 

ND=NPl 
IF(NPl.LT.MPl) ND=MPl 
DO 30 I=l,ND 
D ( I )=O. 
IF(I.GE.(MPl+l)) GO TO 31 
MJ=MPl-I+l 
DO 40 J=l,MJ 
D(I)=D(I)+H(J)*B(J+I-1) 
CONTINUE 
E ( I )=D (I) 
CONTINUE 

FORM MATRIX 'C' 

IF(NPl. EQ. l) GO TO 89 
DO 55 I=l,NPl 
C(I,l)=A(I) 



C ( 1, I ) =A ( I ) 
55 CONTINUE 
C 
C SOLVE C*E=D 
C 

DO 60 I=2,NP1 
DO 70 J=2,NP1 
C(I,J)=O. 
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IF((I+J-1).LT.1 .OR. (I+J-1).GT.NPl) GO TO 80 
C(I,J)=A(I+J-1) 

80 IF((I-J+l) .LT.1 .OR. (I-J+l) .GT.NPl) GO TO 70 
C(I,J)=C(I,J)+A(I-J+l) 

70 CONTINUE 
60 CONTINUE 
C 

C 

IDGT=O 
IM=l 

CALL LEQTlF(C,IM,NPl,NMAX,E,IDGT,WKAREA,IER) 
IF(IER.NE.O) WRITE(6,200) IER 

200 FORMAT(lX, 'MATRIX INVERSION NOT POSSIBLE, IER=' ,IS) 
C 
C COMPUTE AUTOCORRELATION SEQUENCE 
C 
89 Nl=NSMPL+l 

DO 90 I=l,Nl 
IF(I.GE.(NPl+l)) GO TO 92 
R( I }=E (I) 
GO TO 90 

92 R( I }=O. 
IF(I.LE.MPl) R(I)=D(I} 
DO 101 J=2,NP1 
R(I)=R(I)-A(J)*R(I-J+l} 

101 CONTINUE 
90 CONTINUE 
C 

C 
IF(IFLAG.EQ.l) RETURN 

Q=R(l} 
DO 91 I=l,Nl 
RI=I-1 
R ( I } =R ( I ) /Q 

91 CONTINUE 
C 

RETURN 
END 

C 
C*********************************************************** 
C 
C AREST: DETERMINE AR COEFFS. OF PTH ORDER AR MODEL 
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C 
C*********************************************************** 
C 

SUBROUTINE AREST(A,B,N,M,R,NSTAGE,NMAX) 
DIMENSION A(NMAX),B(NMAX),R(Sl2),RMAT(20,20),RVEC(20), 

#WKAREA(20) 
C 
C FORM COVARIANCE MATRIX RMAT 
C 

DO 10 I=l,NSTAGE 
DO 20 J=I,NSTAGE 
RMAT(I,J)=R(J-I+l) 
RMAT(J,I)=RMAT(I,J) 

20 CONTINUE 
RVEC(I)=-R(I+l) 

10 CONTINUE 
C 
C SOLVE FOR AR COEFFICIENTS 
C 

C 

IM=l 
IDGT=O 
CALL LEQTlF(RMAT,IM,NSTAGE,NMAX,RVEC,IDGT,WKAREA,IER) 
IF(IER.NE.O) WRITE(6,*) IER 

N=NSTAGE 
DO 30 I=l,NSTAGE 
A(I+l)=RVEC(I) 

30 CONTINUE 

C 

M=O 
A(l)=l. 
B( 1 )=l. 

RETURN 
END 

C 
C*********************************************************** 
C 
C PWR: EVALUATE POWER SPECTRAL DENSITY FOR A GIVEN ARMA 
C DATA 
C 
C*********************************************************** 
C 

C 

C 

SUBROUTINE PWR(AA,BB,NN,MM,NM,NSTAGE,NSMPL,NMAX,ASP) 
DIMENSION AA(NMAX),BB(NMAX),ASP(l29),R(Sl2) 
COMPLEX Z,ANUM,DNUM 

PI=4. *ATAN( 1.) 
N=129 
AINC=PI/(N-1) 



NMP=NM+l 
DO 10 I=l,N 
RI=I 
W=AINC*(RI-1.) 
ANUM= ( 0 . , 0 . ) 
DNUM= ( 0 . , 0 . ) 
DO 20 J=l,NMP 
RJ=J 
Z=CMPLX(O.,-W*(RJ-1)) 
Z=CEXP(Z) 
ANUM=BB(J)*Z+ANUM 
DNUM=AA(J)*Z+ANUM 
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20 CONTINUE 
ASP(I)=CABS(ANUM/DNUM) 
ASP(I)=ASP(I)**2 

10 CONTINUE 
C 

IFLAG=l 
CALL RSEQ(AA,BB,NN,MM,R,NSTAGE,NSMPL,NMAX,IFLAG) 
DO 12 I=l,N 
ASP(I)=ASP(I)/R(l) 

12 CONTINUE 
C 

RETURN 
END 

C 
C*********************************************************** 
C 
C PWRSPC: COMPUTE POWER SPECTRAL DENSITY FOR AR MODEL 
C 
C*********************************************************** 
C 

C 

C 

SUBROUTINE PWRSPC(A,NSTAGE,BETASQ,Pl,NMAX) 
DIMENSION A(NMAX),Pl(l29) 
COMPLEX Z,H 

PI=4.*ATAN(l.) 
N=l29 
AINC=PI/(N-1) 

DO 30 I=l,N 
RI=I 
W=AINC*(RI-1.) 
H=( 0., 0.) 
DO 40 J=l,NSTAGE 
RJ=J 
Z=CMPLX(O.,-W*RJ) 
Z=CEXP(Z) 
H=A(J)*Z+H 

40 CONTINUE 
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H=H+l. 
Pl(I)=BETASQ/(CABS(H)**2) 

30 CONTINUE 
C 

C 

RETURN 
END 

C*********************************************************** 
C 
C HMAT: DETERMINE 'H' MATRIX 
C 
C*********************************************************** 
C 

C 

SUBROUTINE HMAT(A,NSTAGE,H,W,NMAX) 
DIMENSION A(NMAX},H(NMAX) 
COMPLEX Z,DNUM 

DNUM= ( 1. , 0 . ) 
DO 10 I=l,NSTAGE 
RI=I 
Z=CMPLX ( 0. , W*RI) 
Z=CEXP(Z) 
DNUM=DNUM+A(I)*Z 

10 CONTINUE 
C 

DO 20 I=l,NSTAGE 
RI=I 
Z=CMPLX ( 0. , W*RI ) 
Z=CEXP(Z) 
H(I)=2.*REAL(Z/DNUM) 

20 CONTINUE 
C 

C 

RETURN 
END 

C*********************************************************** 
C 
C BIAS: EVALUATE MEAN AND BIAS OF AR COEFFS. 
C 
C*********************************************************** 
C 

C 

C 

SUBROUTINE BIAS(A,N,EDELA,MEANA,MEANK,NMAX) 
DIMENSION A(NMAX},EDELA(NMAX},EAHAT(20) 
REAL MEANA(NMAX),MEANK 

IF(N.NE.l) GO TO 79 
MEANA(l)=MEANK 
EDELA(l)=MEANA(l)-A(2) 
RETURN 
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79 NMl=N-1 
DO 10 I=l,NMl 
EAHAT(I)=MEANA(I)+MEANK*MEANA(N-I) 

10 CONTINUE 
EAHAT(N)=MEANK 

C 
DO .20 I=l,N 
MEANA(I)=EAHAT(I) 

20 CONTINUE 
C 

DO 30 I=l,N. 
EDELA(I)=MEANA(I)-A(I+l) 

30 CONTINUE 
C 

RETURN 
END 

C 
C*********************************************************** 
C 
C VARDEL: DETERMINE ERROR COVARIANCE MATRIX OF AR COEFFS. 
C 
C*********************************************************** 
C 

C 

SUBROUTINE VARDEL(A,NSTAGE,MEANA,COVA,CVDELA,NSEC, 
#NMAX,IFG) 

DIMENSION A(NMAX),CVDELA(NMAX,NMAX),COVA(NMAX,NMAX), 
#TEMP1(20,20),TEMP2(20,20),COVAHT(20,20) 

REAL MEANA(NMAX),AA(20,20),MAA(20,20) 

RNSEC=NSEC 
DO 32 I=l,NSTAGE 
AA(I,l)=A(I) 
MAA(I,l)=MEANA(I) 

32 CONTINUE 
C 

C 

CALL TRANS(AA,TEMPl,NSTAGE,l,NMAX) 
CALL MULMAT(AA,TEMP1,TEMP2,NSTAGE,l,NSTAGE,NMAX) 

DO 10 I=l,NSTAGE 
DO 10 J=l,NSTAGE 
IF(IFG.EQ.1.0R.IFG.EQ.3) CVDELA(I,J)=TEMP2(I,J) 

#+COVA(I,J)/RNSEC 
IF(IFG.EQ.2) CVDELA(I~J)=TEMP2(I,J)+COVA(I,J) 

10 CONTINUE 
C 

C 

CALL TRANS(MAA,TEMPl,NSTAGE,l,NMAX) 
IF(IFG.EQ.2) GO TO 43 
CALL MULMAT(MAA,TEMP1,TEMP2,NSTAGE,l,NSTAGE,NMAX) 

DO 20 I=l,NSTAGE 
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DO 20 J=l,NSTAGE 
CVDELA(I,J)=(RNSEC-1.)*TEMP2(I,J)/RNSEC+CVDELA(I,J) 

20 CONTINUE 
C 
43 CALL MULMAT(AA,TEMP1,TEMP2,NSTAGE,l,NSTAGE,NMAX) 
C 

DO 30 I=l,NSTAGE 
DO 30 J=l,NSTAGE 
CVDELA(I,J)=CVDELA(I,J)-TEMP2(I,J)-TEMP2(J,I) 

30 CONTINUE 
C 

RETURN 
END 

C 
C*********************************************************** 
C 
C KSTAT: COMPUTE MEAN AND MEAN SQUARE OF REFLECTION COEFF. 
C 
C*********************************************************** 
C 

C 

SUBROUTINE KSTAT(NST,RR,MEANA,MEANK,VARK,NSMPL) 
DIMENSION RR(0:511),R(-511:511) 
REAL MEANK,MEANA(l:20),MEANAA(0:19) 
INTEGER T 

C INITIALIZE VARIABLES 
C 

NSMPLM=NSMPL-1 
DO 9 I=l,NSMPLM 
R(I)=RR(I) 
R(-I )=RR( I) 

9 CONTINUE 

C 

C 

R(O)=RR(O) 

NSTM=NST-1 
NM=NSMPL-NST-1 
RNSMPL=NSMPL 
RNST=NST 

IF(NSTM.EQ.O) GO TO 74 
96 DO 73 I=l,NSTM 

MEANAA(I)=MEANA(I) 
73 CONTINUE 
74 MEANAA(O)=l. 
C 

EP=O. 
EQ=O. 
EPQ=O. 
EPSQ=O. 
EQSQ=O. 
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DO 11 Il=O,NSTM 
DO 11 I2=0,NSTM 
EP=EP+MEANAA(Il)*MEANAA(I2)*R(NST-Il-I2) 
EQ=EQ+MEANAA(Il)*MEANAA(I2)*R(Il-I2) 

11 CONTINUE 

C 

R4=EP 
R5=EQ 
EP=-2.*(RNSMPL-RNST)*EP/RNSMPL 
EQ=2.*(RNSMPL-RNST)*EQ/RNSMPL 

DO 51 T=l,NM 
Rl=O. 
R2=0 . 

. R3=0. 
DO 61 Il=O,NSTM 
DO 61 I2=0,NSTM 
Rl=Rl+MEANAA(Il)*MEANAA(I2)*R(T+Il-I2) 
R2=R2+MEANAA(Il)*MEANAA(I2)*R(T+NST-Il-I2) 
R3=R3+MEANAA(Il)*MEANAA(I2)*R(T-NST+Il+I2) 

61 CONTINUE 
C 

RT=T 
EPSQ=EPSQ+2.*(RNSMPL-RNST-RT)*(Rl**2+R2*R3) 
EQSQ=EQSQ+4.*(RNSMPL-RNST-RT)*(2.*R1**2+R2**2+R3**2) 
EPQ=EPQ+4.*(RNSMPL-RNST-RT)*Rl*(R2+R3) 

51 CONTINUE 
C 

C 

C 

C 

EPSQ=EPSQ+(RNSMPL-RNST)*(R4**2+R5**2) 
EQSQ=EQSQ+4.*(RNSMPL-RNST)*(R4**2+R5**2) 
EPQ=EPQ+4.*(RNSMPL-RNST)*(R4*R5) 

EPQ=-2.*EPQ/(RNSMPL**2) 
EPSQ=4.*EPSQ/(RNSMPL**2) 
EQSQ=EQSQ/(RNSMPL**2) 

MEANK=EP/EQ-EPQ/(EQ**2)+EQSQ*EP/(EQ**3) 
VARK=(EP/EQ)**2+EPSQ/(EQ**2)+EQSQ*((EP**2)/(EQ**4) 

# +2.*(EP**2)/(EQ**4))-4.*EPQ*EP/(EQ**3) 

97 RETURN 
END 

C 
C*********************************************************** 
C 
C VAR: EVALUATES APPROX. VARIANCE OF AR COEFFICIENTS 
C 
C*********************************************************** 
C 

SUBROUTINE VAR(MEANA,N,MEANK,VARK,COVA,NSEC,NMAX,IFG) 
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DIMENSION COVA(NMAX,NMAX),UNITJ(20,20),Tl(20,20),· 
#T2(20,20) 

REAL MEANA(NMAX),MEANK,T3(20,20) 

IF(N.NE.l) GO TO 75 
COVA(l,l)=VARK 
RETURN 

C FORM REVERSE OPERATOR MATRIX J 
C 
75 NMl=N-1 

DO 10 I=l,NMl 
DO 10 J=l,NMl 
UNITJ(I,J)=O. 
IF(J.EQ.(NMl-I+l)) UNITJ(I,J)=l. 

10 CONTINUE 
C 
C EVALUATES COVARIANCE MATRIX OF AR COEFFICIENTS 
C 

C 

C 

CALL MULMAT(UNITJ,COVA,Tl,NMl,NMl,NMl,NMAX) 
CALL MULMAT(COVA,UNITJ,T2,NM1,NM1,NM1,NMAX) 
CALL MULMAT(Tl,UNITJ,T3,NM1,NM1,NM1,NMAX) 

IF(IFG.EQ.l.OR.IFG.EQ.3) GO TO 73 
RNSEC=NSEC 
VARK=(VARK/RNSEC)+(RNSEC-l.)*(MEANK**2)/RNSEC 

73 DO 20 I=l,NMl 
DO 20 J=l,NMl 
COVA(I,J)=COVA(I,J)+MEANK*Tl(I,J)+MEANK*T2(I,J) 

#+VARK*T3(I,J) 
20 CONTINUE 
C 

DO 30 I=l,NMl 
COVA(I,N)=MEANK*MEANA(I)+VARK*MEANA(N-I) 
COVA(N,I)=COVA(I,N) 

30 CONTINUE 
C 

COVA(N,N)=VARK 
C 

C 

RETURN 
END 

C*********************************************************** 
C 
C CRAMER: DETERMINE THEORETICAL CRAMER LOWER BOUND 
C FOR VARIANCE 
C 
C*********************************************************** 
C 
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SUBROUTINE CRAMER(A,NSTAGE,COVA,NSMPL,RNSCT,NMAX) 
DIMENSION A(NMAX),COVA(NMAX,NMAX),Al(20,20),AT1(20,20), 

#B1(20,20),A2(20,20),AT2(20,20),B2(20,20) 

DO 10 I=l,NSTAGE 
DO 10 J=l,NSTAGE 
Al(I,J)=O. 
IF((I-J+l).LE.O) GO TO 10 
Al(I,J)=A(I-J+l) 

10 CONTINUE 
C 

DO 20 I=l,NSTAGE 
DO 20 J=l,NSTAGE 
A2(I,J)=O. 
IF((NSTAGE-I+J+l).GT.(NSTAGE+l)) GO TO 20 
A2(I,J)=A(NSTAGE-I+J+l) 

20 CONTINUE 
C 

C 

CALL TRANS(Al,ATl,NSTAGE,NSTAGE,NMAX) 
CALL MULMAT(Al,ATl,Bl,NSTAGE,NSTAGE,NSTAGE,NMAX) 
CALL TRANS(A2,AT2,NSTAGE,NSTAGE,NMAX) 
CALL MULMAT(A2,AT2,B2,NSTAGE,NSTAGE,NSTAGE,NMAX) 

RNSMPL=NSMPL 
DO 30 I=l,NSTAGE 
DO 30 J=l,NSTAGE 
COVA(I,J)=(Bl(I,J)-B2(I,J))/(RNSMPL*RNSCT) 

30 CONTINUE 
C 

RETURN 
END 
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THE EFFECT OF SEGMENT AVERAGING ON THE QUALITY 
OF THE BURG SPECTRAL ESTIMATOR 

by 

Md. Anisur Rahman 

(ABSTRACT) 

The Burg spectral estimator (BSE) exhibits better peak 

resolution than conventional linear spectral estimators, 

particularly for short data records. Based on this property, 

the quality of the BSE is investigated with the available 

data record segmented and the relevant parameters or 

functions associated with each segment averaged. Averaging 

of autoregressive coefficients, reflection coefficients, or 

spectral density functions is used with the BSE and the 

corresponding performances are studied. Approximate 

expressions for the mean and variance of these modified Burg 

spectral estimators are derived. Lower bounds for the mean 

and variance of reflection coefficients are also deduced. 

Finally, the variance of the estimation errors associated 

with the modified power spectral density estimators is 

compared against the theoretical Cramer-Rao lower bound. 
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