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Chapter I

INTRODUCTION

Power spectral density (PSD) estimates of a given time
series of data have been widely used in signal processing,
optics, geophysics, bio-engineering, statistical
mathematics, and economics. In the last two and a half
decades numerous techniques and algorithms [1l] have been
devised for efficiently estimating the PSD. The PSD
provides a frequency domain description of the second order
statistics of a wide sense stationary process while the
autocorrelation gives the corresponding time domain
description. In fact, the PSD and the autocorrelation form
a Fourier transform pair. A time series of infinite length
is required to compute its PSD. Since an infinitely long
data record is not available,'we have to estimate the PSD.

There are numerous applications of PSD estimates [2, pp.
179]. Especially, in the field of signal processing, the
power spectral density is an important tool in analyzing
data, filter design, target tracking, and parameter
estimation. Geophysicists use PSD estimates extensively to
study the behavior of various geological phenomena, e.q.
earthquakes, geomagnetic micropulsations, sunspot numbers,

etc. Spectral estimates are useful to aeronautical design



engineers in suggesting how various parts of the aircraft
structure need to be designed to minimize the risk of
structural damage due to the buffeting of turbulant air.
Statisticians estimate the power spectrum in model
building, design of experiments, and frequency response
studies of economic time series. Finally, we mention the
use of PSD estimates as a diagonistic tool, when applied to
the electroencephalogram (EEG) or electrocardiogram (ECG).
Current methods of spectrum estimation can be broadly
grouped into two classes. The first one is the classical
approach, which includes the periodogram method,
autocorrelation methods and its variants (Bartlett, 1953,
[3]; Grenander and Rosenblatt, 1957, [4]; Blackman and
Tukey, 1958, [5]; Jenkins and Watts, 1968, [6]; Koopmans,
1974, [7]). The second one is based on parametric modelling.
This includes the maximum entropy method or MEM (Burg, 1967,
[8]), one step linear prediction (Parzen, 1969, [9]), and
spectral estimation using ARMA models (Tretter and
Steiglitz, 1967, [10]; Gutowski, Robinson and Treitel, 1978,
[11]). Parametric spectral estimation exhibits a superior
resolution property for short data records in comparison to
the <classical approach. But the <classical approach is
popular because the classical methods are fairly easy to

implement and can be computed efficiently by using the Fast



Fourier Transform (FET). There is a considerable body of
literature on parametric spectral estimators ([12], [13]).
Here we study only the MEM estimator.

The MEM estimator is also known as the Burg spectral
estimator (BSE). In analogy with the Welch spectral
estimation procedure [14], it was initially expected that
the quality of the BSE could be improved by segmenting the
available data record, applying the BSE to each segment, and
a subsequent averaging of the relevant parameters or
functions associated with each segment. The underlying idea
was that the BSE was suitable for short data records, so
that relatively little would be lost in terms of spectral
resolution. and hopefully much could be gained in terms of
spectral estimation variance. We note that this approach
should not work for large records as in that case the Burg
estimator already performs close to the Cramer-Rao bound.
The aim 1is specifically for spectral estimator quality
improvement when applied to relatively short records.
Motivated by this idea, the author investigated the effect
of segment averaging on the quality of the BSE estimator.

The BSE 1is <classified as an auto-regressive (AR)
estimator. In Chapter 2 a tutorial review of the asymptotic
properties of the AR spectral estimator (ARSPE) is given.

Mainly the findings of Akaike [15], Kromer [16], Berk [17],



and Sakai [18] have been presented. The mean and variance
for the modified Burg spectral estimator (MBSE) wusing
several‘averaging techniques are derived in Chapter 3. The
MBSE is a modified form of the BSE, where some averaging
techniques are employed. The available N data points are
segmented into M non-overlapping sections, so that each
section has N/M data points. Three types of averaging
technique are used with the MBSE. 1In the first method (AVA)
the AR parameters, evaluated for each section, are averaged
and the resulting average AR parameters yield an associated
spectral density estimate. The second method (AVK) averages
the reflection coefficients, the average of which leads to
the corresponding spectral estimate. The final approach
(AVP) evaluates the PSD estimate associated with each
segment and then averages these directly. In this thesis,
sometimes the reference to AVA, AVK or AVP will essentially
mean the modified Burg spectral estimator wusing the
corresponding averaging technique. In Chapter 3 the lower
bound for the mean and variance of the reflection
coefficients 1is also derived. Simulation results are
presented and carefully studied in Chapter 4. The empirical
and approximate theoretical variances of the respective
estimation errors are compared against the theoretical

Cramer-Rao lower bound (CRLB). The performances of the Welch



spectral estimator and the MBSE using averaging techniques
are also compared. Finally, the conclusion of this
investigation is given in Chapter 5. Some guidelines are
given so that the results for the MBSE may be generalized to

all other AR estimators.



Chapter II

ASYMPTOTIC PROPERTIES OF THE AR SPECTRAL
ESTIMATOR (ARSPE)

2.1 INTRODUCTION

In time series analysis two approaches have dominated.
One approach uses time domain analysis and the other uses
the frequency domain. In the time domain approach some
parametric model is postulated and this model is then fitted
to the observed data by estimating its parameters. One of
these parametric models is the AR or all-pole model. This
model 1is widely wused because the estimation of its
parameters requires the solution of a system of 1linear
equations only, which can be easily done. Moreover, it is
efficient in representing the data because lower order
models generally yield satisfactory results in fitting the
data. Assuming the input of this model to be a zero mean
white gaussian noise, the PSD estimate of the observed time
series is given by the product of the variance of the white
input noise and the magnitude squared of the model transfer
function, evaluated on the unit circle in the z-domain. The
AR model gives a good resolution of the power spectral

density peaks.



Until now only the asymptotic properties of the ARSPE
have been derived. The term 'asymptotic' implies that these
properties provide a good prediction of the actual
performance of the estimator when the amount of data is
sufficiently large with respect to the order of the system.
Initially, the error covariance matrices of the estimates of
AR parameters using the Yule-Walker (YW) equations were
derived [19, 20]. The derivation of the variance of the
ARSPE estimates followed [15, 16, 17, 18, 21, 22].

The first classical paper on the asymptotic distribution
of the estimates of the AR coefficients for a process of
known order with independent innovations was presented by
Mann and Wald (1943) [19]. Later, Anderson and Walker
(1964) [20] gave the 1limit distribution of AR parameters
from any linear stochastic process.

Akaike (1969) [15] has derived the variance of the ARSPE
estimates in a limit distribution sense and his theorems
(Theorem 1 and 2, [15]) are based on the assumption that the
time series was produced by a finite autoregression. Then
Kromer (1970) [16] presented significant results on the
asymptotic behaviour of the ARSPE. Followed by this, Berk
(1973) [17], Baggercer (1976) ([21], Huzzi (1977) [22] and
Sakai (1978) [18] published papers on the asymptotic

properties. of the ARSPE estimates. In all of them, the



authors assumed some strict conditions on the data which are
mentioned in the next section. Since their assumptions and
approaches are different, the expressions of the variances
of the PSD estimates are not the same. However, numerical
evaluation of these expressions showed the same results.

The ARSPE class consists of a large number of spectral
estimators, each of which estimates the AR coefficients in a
different way. But asymptotically all these estimates
converge to the same solution. So, by the words 'asymptotic
properties of the ARSPE' we include the asymptotic
statistical properties of all types of AR spectrél
estimators. In the following section we shall review some
of the more significant work. We like to mention that the
results shown in the next section will not be used in our
investigation for we have dealt with a moderate number of
data points. However, we feel it necessary to give the
readers an overview of the results obtained for the

asymptotic case.

2.2 VARIANCE OF THE ARSPE ESTIMATE

2.2.1 Akaike Derivation

Akaike [15] has considered a time series {x from a

£}

realization of a finite order autoregressive process defined

by



X, = -1 ax + e
-m
. (2-1)
where {st} is a zero mean white noise with finite wvariance
E(szt)=o2 and finite fourth order moment. The roots of the
characteristic equation
p
1+1azt=0
m

m=1
(2-2)

are lying outside the unit circle in the z-plane. The total
number of observations we will use is N. The estimates {Sm,
m=1,2,...,p} of the autoregressive coefficients are obtained

by solving the approximate YW equations

P

3 A A ’ _
rk-mam = - Ty k=1,2,...,p
m=1
(2-3)
where
A N-|k]|

t=1
The power spectral density function P(w) of the process {xt}

is given by

P(w) = —
[1 + 2 amexp(-jwm)l2
m=1
(2-4a)

An estimate o? of o? is given by
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P
%2 = Qo + 1 A7
mm
m=1
(2-4b)
Akaike then defines
Aam = gm - a, Ac? = g% - g2
(2-5a)
T A
a= [al,az,...,ap] AP(w) = P(w) - P(w)
(2-5Db)
p .
Ap(w) =1+ 1 amexp(-me)
m=1
(2-5c¢)
A
All’%p(w)l2 = IAp(w)Iz - Il‘xp(w)l2 |
(2-5d)

If the process {xt} is strictly stationary and ergodic, Qm
and 32 converge to a_ and o? with probability one as N, the
number of data points, tends to infinity. Even though the
estimate of the power spectral density is reciprocal of the
quadratic function of estimates of the autoregressive
coefficients, in the 1limit its wvariability is attributed
mainly to the linear term. On the basis of a result of
Anderson and Walker, Akaike has introduced a linear
transformation of the data to get a set of mutually
orthogonal variables JNAam (m=1,2,...,p). Under the

assumption of strict stationarity and mutual independence of

{et}, he has proved that the distribution of JNAam
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converges, as N tends to infinity, to a p-dimensional
gaussian distribution with 2zero mean vector and variance

matrix o?R-! where R is a pxp matrix with (i,j) element

equal to E(Xt-ixt-j)' Akaike also obtained the result that
N

VN{ & uﬂt/N) - o?} and /NA%n tend to be independent
t=1

in their 1limit distribution. He further showed that
VNAP(w)/P(w) has a limit distribution with a variance
composed of two components: one due to the relative
variation of 0? and the other due to that of igp(w)lz. His

final result is given below

AP(wi) AP(wj) _ Ee*
BN e P T s Y
i J (Ee?)?
p-1
+ 4P(wi)P(wj) I Re{Ck(wi)}Re{Ck(wj)}
k=0
(2-6)
where
A (0) Ay(u) .
Cpe(w) . —— exp{ju(k+1)}
P
and EQ{.} denotes the expectation in the limit distribution

of the gquantity within the brace. When i=j it gives the
asymptotic variance of the ARSPE estimates. It should be
noted that the foregoing result is also valid when the model

order p is greater than the order of the process.
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2.2.2 Kromer Derivation

Kromer [16] has determined the asymptotic distribution of
the estimated spectral density as first the number N of
observations and subsequently the order p of the
autoregression goes to infinity. He has compared the
asymptotic properties of the ARSPE estimates with that of
conventional windowed periodogram estimates. His findings

are summarized by the following results.

a. The ARSPE estimates are asymptotically unbiased.
b. The ARSPE estimates are asymptotically normal.
c. The.variance of the estimated PSD is given by
var{B(u)} = (2/v)P*(w)
(2-7)
where v is the number of degrees of freedom and is related
to the order of the AR process p by v=N/p. This result

helds for large N and p and is valid for smooth spectra

where 6P(w)/8w is not high.

2.2.3 Berk Derivation

Berk [17] has dealt with a stationary process {x with

£}

some regularity assumptions which are mentioned later. He
has shown that the autoregression vyields a consistent

estimator of the spectral density of {x when the order p

+

is asymptotically sufficient to overcome the bias. Assuming
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p goes to infinity so that the bias from using a finite
autoregression vanishes at a sufficient rate, the ARSPE
estimates are furthermore asymptotically normally
distributed, and uncorrelated at different fixed
frequencies. Comparing with the spectral estimates based on
a windowed periodogram he has found that the asymptotic
variances for both estimators are the same.
Berk has defined the linear process {xt} by

X, = ¢

t +b

-+

t ¥ P1geg 28t

(2-8a)
where bl' b2, ... are real numbers and {st} is a sequence of
independent identically distributed (i.i.d.) zero mean
random variables with variance E(szt)=oz. The polynomial
B(z)=1+blz+b2z2+... is bounded away from zero for |z]|<1l so
that the process is invertible. We have therefore

S T R L

(2-8b)

where

A(z) =1+ ajz + az® + ... = 1/B(z2)

is bounded away from zero, |z|<l. Berk uses a least squares
predictor of order p for fitting the data with the AR model
of (2-8b), or actually a truncation thereof. The estimated

AR coefficients are determined from approximate YW equations

(2-9)

where
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N-1

£ X.XT/(N-p)
RSt

J=p

o>
1

N-1
j=p

i >
I

= [x.,x P X T

X. . PR
X, j¥5-1 j-p+1!

The resulting estimated PSD is given by

Az

A [o]
P(w) = 2“|?\p(e3w) IZ
(2-10)
where
b
A A l
A (z) =1+ 1% a.z
o) i
i=1
Az A pl\ A
c¢* =r. + % a.r
0 m™m
m=1

The corresponding theoretical quantities are P(w), Ap(z),

2
c?, and R. If O<P1<P(w)<P2 and wl<w2<...<wp are the
eigenvalues of R, then [23]
0 < ZnPl < Wy < W, < ... < wp < 21TP2

(2-11)
Using the latter and assuming the following regularity
conditions

i) A(w) is nonzero for -m<w<m,
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ii) E(s“t) < e,

iii) The <choice of p in terms of N 1is such that
p’/N * 0,

iv) The <choice of p in terms of N 1s such that
/n(lap+1|+|ap+2|+...) + 0

Berk obtained the following results.

A
a) P(w) converges to P(w) in probability under the above

mentioned conditions.

b) The joint asymptotic distribution of

/IN/BY {2(0)-P(0)}, YIN/B) (B (uy)-P(uy)},

V(N/p){ﬁ(wp)-P(wp)}. /IN/B) {B(m)-B(m) ], O<uy <. i<u <m

is independent, normal, zero mean with wvariances

4pP%(0), 2P2(w1), cees 2P2(wp), 4P% ()

2.2.4 Sakai Derivation

Sakai [18] has wused the periodogram technique to
investigate the properties of ARSPE estimates. He has shown
numerically that the behavior of the variances is similar to

the earlier results of Kromer and Berk for stationary
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processes. He has considered a time series {x which

£}
consists of g sinusoids and additive zero mean stationary

gaussian noise ey - So,
q .
Juyt x "Juyt
Xy = z (Bie + Bie ) + £e
i=1

(2-12)
where * denotes the complex conjugate and {Bi} are complex
constants. The AR parameters are then estimated from
approximate YW equations, where the autocorrelation matrix
is estimated from the data in the same manner as Akaike has

done. The ARSPE estimate is given by

A 82
P(w) = iB(w)A(-u)
(2-13)
where
p . .
A(w) = = aieilw, 8p = 1
i=0

Sakai then proves that for a sufficiently large number of
. A

data points the ARSPE estimate P(w) can be expressed in

terms of the periodogram IN(s) as follows.

A T
P(w) = 71 G(w,s)IN(s)ds

-

(2-14)

where



17

N
I (s) = | fx.e ItS|2 /(20N
t=1
p . .
G(w,s) = P(w)A(s)[ £ {R-'H(w)}el'® + o-2a(-s)]
i=1

£ P(uw)g(u,s)

H(w) = 2Re(£(eT¥)/A(0)]

7 e o o g4

E(ejw) - [ejw, eij e]pw]T

The symbol = indicates that both sides are asymptotically
equivalent. Thus, the ARSPE can be viewed as a smoothed
periodogram with a data-dependent "spectral window" G(w,s).
Finally, Sakai expressed the asymptotic covariance between

P(wi) and P(wj) by the following relation

AP(wi) AP(wj)

E[
P(wi) P(wj)
T -7
= [ J g(wi,sl)g(wj,sz)Cov{IN(sl)IN(sz)}dslds2
T -7
(2-15)
where

AP(wi) = §(wi) - P(wi)

At present the above expression does not permit clear-cut

analytic interpretations.
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2.3 SUMMARY

Let us now summarize the significant findings of Akaike,
Kromer, Berk and Sakai. All of them showed that
asymptotically the ARSPE 1is consistent. Furthermore,
from their results it is found that v{N/P){P(w)-P(w)}/P(u)

has a normal 1limiting distribution with =zero mean and

variance
AP (w) 2p for w0, T
N.E[{— }?] =
P(w) 4p for w=0, =

(2-16)

The above expression (2-16) indicates that the asymptotic
variance of the ARSPE estimates is approximately equivalent
to that of the windowed periodogram with a suitably chosen

truncation length [24].



Chapter III

STATISTICAL PROPERTIES OF THE MODIFIED BURG
SPECTRAL ESTIMATOR (MBSE)

3.1 INTRODUCTION

In the past decade, there has been strong interest and
much activity in developing high resolution power spectrum
estimation techniques, particularly for short data records.
Especially the Burg spectral estimation technique, also
called maximum entropy spectral analysis (MESA), has
received much attention in this regard. The MEM spectrum of
a stationary process results from maximizing the entropy of
that process. It has‘been found that the MEM of spectral
estimation is equivalent to the least squares fitting of an
AR model to the process [25]. It was also shown that if the
maximum entropy spectra are calculated for m=1,2,...,p,
where p is the order of the model, and the average of the
reciprocals of these spectra 1is determined, then this
average is equal to the reciprocal of the maximum likelihood
spectrum [26, 27].

The BSE is based on the assumption that the received data
sequence was generated by a white noise driven AR system. In

this thesis, we are assuming that the stochastic process

N-1

generating the N data points {xt}tzo

is zero mean,

19
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1
gaussian, wide sense stationary and ergodic (Al) . The Burg

spectral estimate [28] is then given by

A 32
P(w) = — = lzzejw, -TSWET
A(z)A(z-1)
(3-1)
where
p .
A(z) =1+ 1 &, _z*
i,p
i=1
N N-1
2 - 2 2
o £ x*,/(NEy)
i=0

with ?O the autocorrelation at lag zero associated with the
filter l/A(z). It is to be noted that the estimated gain
factor 62 is different from that proposed by Burg [28]. Burg
estimates the gain factor from the sum of the squares of
forward and backward errors which is minimized with respect
to the reflection coefficient. The order p of the AR model
(Fig. 1) is assumed known. The AR coefficients
ggi,p}?=1 are determined by using the Levinson-Durbin

algorithm and the reflection coefficients {%m}p are

m=1
estimated according to the Burg method [29].

! This assumption is denoted by Al.



f £ f f
n,o + n,l n,p-l n'p
)Q > san > +~—-—}
+ +
+ +
—> 7z - +’ +)->1 z—‘L-> e —>z-1 >
n,Oo bn,l bn,n-—l bn,p

Figure 1:

The Autoregressive Lattice Filter

j %4
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N-1
2L £ po1Pe-1,m2
~ t=m
Kn = N-1
2 2
t (£ t,m-1 +b t-l,m-l)
t=m
(3-2)
where
m A
ft,m =1 ai,mxt-i
i=o
m
bt,m =1 a1,mxt-m+1

the forward respectively backward error at the mth stage.
The reflection coefficient 1is defined as the partial
correlation coefficient between the forward and backward
prediction residuals. In the AR lattice filter approach
reflection coefficient 1is analogous to the reflection
coefficient of an acoustic tube model. The forward
prediction residual or error is equal to (xn—ﬁn) where X is
generated by a one step linear predictor using the last p
samples. Similarly the backward error is equal to (xn-ﬂn)
where X, is generated by a one step linear predictor using
the next p samples. It 1s worth mentioning that the Burg
method for estimating reflection coefficients is equivalent

to the harmonic mean method where the sum of forward and
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backward errors is minimized with respect to the reflection
coefficient. Here no assumptions are made regarding the
data outside of the observation interval and all the
available data are maximally utilized.

Let us now focus our attention on the statistical
properties of the BSE. In the previous chapter we have
discussed the significant results of the asymptotic behavior
of the ARSPE. Since the BSE is purely AR, the asymptotic
meén and variance can be derived from those results. We
are, however, dealing with a moderate number of data points
so that large sample results do not necessarily apply. By a
moderate number of data points we mean that the length of
the record is a few times the order of the estimated AR
model. The Burg method is data adaptive and hence nonlinear.
St;ll there is a one-to-one relation between the reflection
coefficients and the corresponding AR coefficients, 1i.e.
A A
a =f(£p), where

P

P (3-3a)

[
~
>
~

A

gp 11 21
(3-3b)

Also there is a one-to-one relationship between the AR

coefficients and the corresponding PSD estimate (3-1). If

A
the statistics of gp were known then using a Jacobian
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transformation twice, the mean and variance of the AR PSD
estimate could be determined. However, the functioﬁ f(%p)
is nonlinear and the exact statistics of ﬁp for a moderate
number of data points are difficult to evaluate. Considering
all these problems, we are led to derive approximate values
for the mean and variance of the BSE estimate.

Here we have investigated the effect of segment averaging
on the quality of the BSE. We have defined the modified Burg
spectral estimator (MBSE) as the Burg spectral estimator
where some averaging techniques are applied. Note that when
number of sections is 1 the MBSE and the BSE are same.
Three types of averaging technique are applied. The
available data sequence is segmented into M nonoverlapping
sections where each section has N/M data points. In the
first method (AVA), the AR parameters are evaluated for each
section, then averaged, and the resulting average AR
parameters yield an associated spectral density estimate.
The second method (AVK) averages the reflection
coefficients, the average of which leads to the
corresponding spectral density estimate. The final approach
(AVP) evaluates the PSD estimate associated with each

segment, and then averages these directly.
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3.2 SEPARATION OF ERROR

Let us assume that the rational transfer function H(z),
for the system generating the data, is known. The exact
autocorrelation sequence {ri}§=0 for the data can then
be determined [30]. The optimum pth order AR model which
fits the data string with minimum mean square error,

satisfies the YW equations,

~

R a = -r,
p.p7p -P
(3-4)

where

r = |[r r r ]T

-p ll 2/ A 4 p

3 o=(3, ., 3, ., ....3 T

=p l,p" "2,p p.p
and Rp P is a symmetric Toeplitz matrix with first row

T

(rg x5q)-

Let P(w) be the actual PSD of the data, and let g(w) be
the PSD of the output of the filter l/g(z) driven by white
noise. Then AP(w)=P(w)-P(w) is the fixed deterministic
error for modelling the given data as an AR(p) process. In
the real world, ry is not known. Let the MBSE give ép as an
estimate of Ep with %(w) as the corresponding PSD estimate.
Then the bias of the PSD estimate can be written as

B{B(u)} = P(w) - E{P(w)]

= {P(u) - B(w)} - [E{P(u}] - P(u)]
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= AP(w) - E{AP(u)]

(3-5a)
For the mean square error we find
MSE{P(w)] = E{P(uw) - B(w)}?
= 8P2(u) - 24P (w)E{AP(w)} + E{AP?(w)]}
(3-5b)
The mean and variance expressions are
E{B(u)} = B(w) + E{4B(u)]
(3-5¢)
Var{P(w)} = MSE{B(w)} - B*{B(u)]
(3-5d).

We have thus introduced an intermediate function E(w) to
find the mean and variance of the PSD estimate. It is
evident that as N tends to infinity §(w) approaches §(wy
Fﬁrthermore, note that, unlike often done, we have not
assumed that E{@(w)} equals g(w) as N is not very large. If
H(z) is known then &§(w) can be evaluated. Next we have to
derive E{A%(w)} and E{A%z(w)} in order to evaluate (3-5a) to

(3-5d).
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3.3 APPROXIMATION OF E{AB(w)] AND E{AP?(w)]

Two different methods are used to evaluate approximate
values of E{A%(w)} and E{Aﬁz(w)}. One of them is the
approximation of Sakai and the other one uses the Taylor
series approximation. Both of these methods vyield good

results, even for a moderate number of data points.

3.3.1 Approximation according to Sakai

Sakai et al. [31] have applied a periodogram technique to
derive the ARSPE variance. That is not our purpose however,
as we use his approximation technique to find an expression
for E{Aﬁ(w)} only. We will refer to this method as 'Sakai
Approximation'. From (eqn. 31,([31]) (see Appendix A for the
derivation of this equation)

E{aB(u)} = P(w)[5-?E(86%) - HT(eI¥)E(4A )]

P
(3-6a)
where
. jw
H(el¥) = 2req-2(& )
A(ejw)
g(el¥) = (&Y, 320, |, oIPuyT
AG? = 5% - 2, A A =3 -3
-p -p -p

and
E(8B?(0)} = B2(0) [S-*E[(£5%)7) + B (e7*)E (a3 43])E(eT*)

~

- 20-23T(e3“)E(A'82A§p)]

(3-6b)
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It is worth noting that the second term on the right hand
side of equation (3-6b) has the same form as the CRLB for
parametric spectral estimators. It has been found from
simulation results that the first and last terms on the
right hand side of equation (3-6b) are much less significant
than the second term. Hence, the variance of the MBSE
estimates using this equation is expected to be nearly the
same as the variance computed from the CRLB. We assume that

A6% and Agp are uncorrelated (A2)2. We have also considered

N-1
A 1 1
E(ac?) = I x*. (= -= )/N
1 ro ro
i=0
(3-7a)
E{(A32)2} = E2(AG?)
(3-7b)

where ?O and EO are the autocorrelation at lag zero
associated with the filters l/g(z) and l/R(z) respectively,

and

(3-7¢)
Now we have to derive E(A%p) and EHAQ Aég) in order to

g5
A
compute .E{A%(w)} and E{AP?*(w)} according to (3-6a) and

(3-6b). But E(Aép) and E(Ag Agg) depend on the method of

P

2 This assumption is denoted by A2.
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averaging. Later it will be shown that E(Aﬁp) and
E(AépAéi) depend implicitly on the number of observations

N.

<

3.3.2 Approximation using Taylor series expansion

Since we are estimating a(z) for X(z) and both have the
same order P. it is expected that the error
{ll/&(z)|2-|1/5(z)|=} will be small for a moderate number of
data points. So, in this method, using the Taylor series we
have expanded %(w) around %(w) and neglected all the terms

higher than the first order. Taking the expected value, we

get
A ~
E{aP(v] = (45 )TE(aA)
-p
(3-8a)
and
A, ., 8P . T.,.a .aT., 6P
p
(3-8b)
where
(BB _ B 5B 8 T
5§p éal,p 6a2,p Gap,p

The guantities E(Aép) and EXA% Aég) found in the Sakai

P
method are also used in (3-8a) and (3-8b). It is to be noted

that in the Taylor method we have considered the gain factor

2

o} to constitute a priori information, resulting from a
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previous estimation step. If AG? is zero both methods give

identical results.

The gain factor is, however, not a Kknown parameter, and

it needs to be estimated. Then

3 - '55 Al i%’_ T A
EUB(W)] = gz B+ (57 )TE)
(3-9a)
and
A 5P
E{8P*(w)} = ( g3z )?E[(40%)?]
82 T, . A ,aT., 6 &P
+ ( == ) E(Aa_dra’)( 57— )
5 ap,ha 5
£ I ay
§P §P_ \T_, .A
+ 2( g7 )0 e ) E(8380%)
(3-9b)
Since
Gf’ ~ 2
=T = 6-2P(w)
3 o~ jw ~ 3
g% = - 2P(w)Re{%e—Jw—)} = - B(w)H(el¥)
P A(e”")

we find that (3-9a) and (3-9b) are identical to the
expressicns 1in (3-6a) and (3-6b) respectively. Thus Sakai
approximation and Taylor approximation will give the same
result. Both methods behave exactly the same since only the
first order linear terms have been considered. However, we

can introduce the second order term in the expression for
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E{A%(w)} because up to the second order statistics of {A% }

can be determined.

A . 5§ A 5§ T A 1 AT, A
B(AF(w)] = (ggT )E(SY ¢ (5 ) E(E) + 7 EQE )
(3-10)
where
-, 6 5§ Ty
W= (55 ) s ) E(w)
P P
. P p
E(Aa_WAA ) = I I W. .E(AA. _AA.
(4apWa2p) i,37(8%1, %35, p)
i=1 j=1

But from the simulation results, it has been found that the
third term on the right hand side of (3-10) overestimates
the error {A@(w)}‘near the location of poles which are close
to the unit circle in the z-domain (see Appendix B for
details). In our simulation results we have used (3-8a) and

(3-8b) for the Taylor approximation to analyze the effect of

neglecting the variance of 5.

3.4 AR COEFFICIENT AVERAGING (AVA)

In this averaging method, the predictor coefficients are
computed from each of the M sections where each section has
N/M data points. The predictor coefficients are then
averaged to obtain the estimated AR filter l/g(z). The

following relations can be derived easily.
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A = t4 om
-pP -m,p
m=1
(3-11)
E(Aa_) = E| ? M ] = E(A 5
a = - = -
a5 ( am,p/ ) 3, (émlp) a,
m=1
(3-12a)
A - A
E(, o) SE| (I +K D3
A
K
m,p
(3-12b)

where J is the reverse operator matrix which is defined as

lip

(3-12¢)

A A
Assuming that Km and any one element of a are weakly

/P m,p-1
correlated (A3)3, it is found from (3-12b) that

E(A ) = | {1 + E(R. _J)IE(]

(3-124)

3 This assumption is denoted by A3.
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We note that assumption A3 was experimentally found to hold

even for a moderate number of data points. Therefore,

E(gm p) can be calculated recursively from (3-12d) and

(3-19a); the derivation of (3-19a) will be shown later.

To approximate E(AgpAég), we first find

~ ~ T
E(Aa_A = E(a_ - i -
(a3 030) = E(3, - B)(3, - &)
A AT ~ ~T ~ AT A ~T
= E + a a_ - a E(a - E
(2,37) + & & - EE(&) - E(3))8
(3-13a)
and
M M
A AT - A AT 2
E(épép) =E[ I I {a pék,p}/M ]
m=1 k=1
M M M
= AT 2 2
I E(am pam p)/M + Z z E(am p2 k p)/M
m=1 m=1 k=1
k¥m
A
= E(ém,pém,p)/l"l + (M- l)E(a m,p )E(_k p) /M
(3-13b)
by assuming ém p and ék (mfk) are uncorrelated, i.e. any
4 AT
two segments are uncorrelated (A4) For E.’(am pém p)
we have
AT - A T A
E(gm p2 m p) = E (I+K J)am p-1 [am p- 1(I+K ,pJ) Km,p]
K
L ™P
- - (3-13c¢c)

4 This assumption is denoted by A4.
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Now using assumption A3 it can be shown that

A AT _
E(-ém,p-'-’lm,p) = Tox2
(3-13d)
where
A A
-— 2
Tl,l =T + E(Km’p)(JT+FJ) + E(K m,p)JI'J
T. . = E(K. )E(A + E(R:_ _)JE(B )
1,2 - ( m,p) (émlp_l) ( m,p) ém,p-l
T, .= (1 17T T, o = E(R:_ )
2,1 1,2 2,2 m,p
_ A AT
r= E(-'Ez‘m,p-l-'i-lm,p-l)

So, E(A &Y

a ) can be calculated recursively from
“m,p-m,p

(3-12d), (3-13d), (3-19a) and (3-19b). The derivation of
(3-19a) and (3-19b) will be shown later. Thus using (3-12a)
to (3-13d) we can determine E(Aép) and E(AépAég) for the

AVA method. Finally, the approximate mean and variance of
the MBSE estimates using this method are evaluated from

equations (3-5a) to (3-5d).
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3.5 REFLECTION COEFFICIENT AVERAGING (AVK)

Here the reflection coefficients computed from each of M
sections are averaged. The AR parameters associated with the
averaged reflection coefficients are then computed using the
Levinson-Durbin algorithm. For the approximate value of

E(Aép), applying A3, we get

A M 4
Kp = I Km,p/M
m=1
(3-14)
E(Aa)) = E(3y) - 3,
(3-15a)
A - A A
E(3,) = | {I + E(K )JIE(3, ;)
E(Qm'p)
(3-15b)

This has the same form as (3-12d) in the AVA method. For
this method E(AépAég) is the same as (3-13a). Now using

A3 and A4 we find
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u -
A AT A A
E(a = E I + % (K J/M
(3,3;) { (Ky o)I/MI3 o
m=1
M A
I (Km,p)/M
m=1
M . M A
x (2 (I + Km’pJ/M) z Km,p/M]
p-1
m=1 =1
= [ T+E(R_ ) (JT+13)+QITJ E(R. _)E(A_ .||
m, p %, p)E(2p-1)
+ QJE(a
(3p-1)
A AT AT
| B, p)E(2p 1) *9E (8, _1)Y 2
(3-15c¢)
where
_ A AT
I = E(ay_135_4)
Az 2 A
Q = E(K m’p)/M + (M-1)E (Km,p)/M
Hence, as in the AVA method both E(%p) and E(ap%g) can be

calculated using a recursive technique.
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3.6 POWER SPECTRAL DENSITY AVERAGING (AVP)

First, the PSD function associated with each segment is
evaluated. This averaging technique gives the average of
these estimates. This method 1is analogous to the Welch
spectral estimation method for reducing the wvariance of
periodogram estimators. The approach to determine the
approximate mean and variance of the MBSE estimates 1is
somewhat different from those used in the AVA and AVK

methods. Here we have

A M,
P(u) = £ B_(u)/M
m=1
(3-16)
Under assumption A4 we get
E{aP(s)} = E{4B (0}, 2B () = B (w) - B(w)
(3-17a)
E{AP?(u)] = E{aB?_(w)}/M + (M-l)Ez{Agm(w)}/M
(3-17b)

Equations (3-6a) and (3-6b) are used to evaluate E{Aﬁm(w)}
and E{Aﬁzm(w)}. E(Aép) and E(AapA%g) are computed from

(3-12a) to (3-13d) where M is always set to one. Finally,
from (3-5a) to (3-5d) the mean and variance of the PSD

estimate can be determined.
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3.7  DERIVATION OF E(K ) AND E(R? )

The magnitude of the reflection coefficients using the
Burg method are always less than one, which corresponds to a
stable model. Since it is difficult to get the exact value,
an approximate value of the above quantities ‘will be
derived. For convenience, we have dropped the subscript

indicating the segment number from the notation for the

reflection coefficients. Let us rewrite (3-2) as y/z where

N « N/M
N-1
Yy =-21£f 1151 m-1
t=m
(3-18a)
N-1
= 2 2
z E% m-1 Y Peoq 1)
t=m
(3-18b)

Here N is replaced by N/M because for any mth section there
are only N/M data points and ﬁm is determined using this
number of data points. We assume that the probability
densities p(y.z) are ccncentrated near their center of
gravity (ny,nz), and ﬁm is smooth in the vicinity of this
point (AS)S. Then taking the expected value of the terms in

the Taylor series expansion of y/z around (ny,n ) and

z
retaining up to second order moments, the following results

> This assumption is denoted by AS.
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are obtained (see Appendix C).

A n u n_u
E(K) = =L - L2 , y0z
m n, n, n
z
and
A St Mo Yoy
E(K? ) = z + 3 T
m n, N,
where
n, = E(y), n, = E(z),
uyo = Var(y)., Hop = Var(z),

(3-19a)
n,H
oL Y%
n
z
(3-19Db)
uyz = Cov(yz)

Using the gaussian fourth order moment rule, it can be shown

(see Appendix C) that

Ny = = 2(N-m)¥ /N
(3-20a)
n, = 2(N-m)¥,/N
(3-20b)
N-m-1
- —_——— 2
Moo T Alky, I 2(N-m-t) (%57 4 ¥, 00) J/N
t=1
(3-20c)
N-m-1
Mog = Iy T (N-m-t) (2057 + %7+ ¥ T) /N2
t=1
(3-20d)
N-m-1
byz = 7 2lRyy T T A(NImoR) T (T, ¢ Eg) /N
t=1
(3-20e)

where
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1 m-1

N A A
15 08 PE@y po)BEy poa) e
i=0 §=0
m-1 m-1 a N
Xz = I z E(ai,m-l)E(aj,m-l)ri-j
i=0 j-0
m-1 m-1 A A
35 0 REE p )Ry pnoi)Teasog
i=0 j=0
m-1 m-1 o R
T, = L L E(E; o IE@Ey p1)Teepmoiog
i=0 j=0
m-1 m-1 a A
¥g = T D E(Ey n)E(Ry pia)Teomei+;
i=0 j=0
— _ 2 2
Ky = (N m)(X1 + 32 )
- _ 2 2
€, = 4(N-m) (37 + 7,7)
Kyp = HN-M)T,T,

In the above derivations we have treated the predictor

. . A
coefficients (a,
i,m

) to behave as constant parameters
E(3; ). It is to be noted that E(ﬁm) and E(%ﬂn) depend
implicitly on the number of data points, N/M, in each
section. We also note that the the variance of any

reflection coefficient decreases to zero as N/M approaches

infinity.



41

3.8 LOWER BOUND FOR THE MEAN AND VARIANCE OF ﬁm

In this section we derive the lower bound for the mean
and variance of the reflection coefficient ﬁm for any stage
m. From (3-2) we get

N-1 N-1
L o5 R g + b2 = -2 5 ¢ b
N m t,m-1 t-1,m-1 N t,m-1"t-1,m-1
t= t=
(3-21a)

N-1 A A
- 2
E{K, - E(K)}{f*, _, *+D

t=m
N-1 A

- _ 2
= - b [2f, o1Peo1 m-1 m) ¢ m-1 t-1,m-1}]
t=m

Taking expected values on both sides yields

N-1

A
2 2
z E[{Km - E(Km)}{f t,m-1 *b t-l,m-lil
t=m
N_l A
=-1 [th,m-l * E(Km)(Ft,m-l * Bt-l,m-l)]
=m
(3-22)
where
— 2 —_ 2
Feom-1 = B¢ 1) Beo1,m-1 = B¢ 1 m-1)
Ce,m-1 = E(f¢ mo1Peo1,m-1)

Now we can write



N-1 A A N-1 A A
DEUK mE(K ) JE2, o g 1] + % |E{{K -E(K_)]b*

=m t=m

t-l,m-l]I

> | (N-m){2Cc__; + E(ﬁm)(Fm_l * B_q) 1l
(3-23)

It is to be noted that the forward error ft m-1 and the

backward error b are wide sense stationary, so that

t-1,m-1

their mean values are independent of t. Using the Cauchy-

Schwartz inequality, we find

EC(R - B(R )12, (117 < EL(R - E(K)}?IE(£"

t,m-l)
(3-24a)

t,m- m

and
LK ~E(K) }b?

t-1,m-1)
(3-24b)

o1 m) 17 € ELR-E(R) 121D

Hence we find

(N-m)/@ar(ﬁm)[/%(f“t,m_l) * /gkb“t-l,m-ll

> (N-m){2Cc__, + E(ﬁm)(Fm-l * Bpop)!
(3-25)

. [
For the stationary case Fm-l equals Bm-l and E(f t,m-l)

equals E(b* so that a theoretical lower bound for

t-1,m-1"
the variance of ﬁm is given by

(C + E(ﬁm)Fm_llz

E(f°

m-1

A .
Var(K_ ) =
m t,m—l)

(3-26)
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From the derivation of (3-26) it 1is difficult to show
whether this inequality gives a tight lower bound or not.
Also this bound does not exhibit any relationship between
the number of observations and the variance of the
reflection coefficient at stage m. However, from the
simulated results we find that this bound holds for the
reflection coefficient at the first stage. For the first
stage, the error sequences are the same as the data series.
But for subsequent stages the forward and backward residuals
become nonlinear functions of the data and the exact
statistics of these residuals are diffieult to derive from
the known statistics of the data. We can not, as a fesult,
readily evaluate the lower bound for the variance of the
reflection coefficients of the higher order AR models.

Taking the expected value on both sides of (3-21la) yields

N-1 ,
2 2 = - -
EE{RK (£% 19 * Pleog p-1)) = 0 2(N-mCp
t=m
(3-27)
We know that Hiq < Ho2M20 [32], so we can write
5 2 L3 2 ) 2
E{K £2, o4} < JQVar(Km)Var(f £ome1) VPERECE o
(3-28a)

As a result
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E(K,)(Fp_q * Bp_y) * YIVar(Rp)vVar(£2, | 1))

A 2 _
+ /{var (R )Var(b® _y 1)1 > - 2C
(3-28b)
This yields
A
C__, *+ {Var(K_ )Var(f? )12
E(ﬁ ) > - m-1 m t,m-1
m F
m-1
(3-28c)

. . 2
begause for stationarity F,_, equals B, and Var(f’, _ .)

equals Var(b? Substituting the lower 1limit of

t—l,m-l)’

2y
’Var(Km) in (3-28c), the lower bound for the mean of the

A
estimate of Km is given by

cm-l

Fm-l

N
E(Km) 2 -

(3-29)

It is 1interesting to note +that the total number of
observations N is not explicitly presentbin the expression
for the lower bound of Var(%m). However, when the mean value
of ﬁm approaches its lower bound then the variance of ﬁm
goes to zero. This theoretical lower bound can be achieved
when the number of observations approaches infinity. In
this regard it is worth mentioning that the asymptotic

covariance matrix for the reflection coefficients has been

derived elsewhere [33].
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3.9 THE CRLB FOR THE VARIANCE OF THE MBSE ESTIMATE

A useful method for evaluating the performance of an
estimator is to study the variance of the estimation error.
The Cramer-Rao lower bound (CRLB) gives the theoretical
lower bound on the estimation error variance of any unbiased
estimator (34, 35]. The CRLB is generally used as a tool for
measuring the efficiency of any estimator. It has been shown
[36] that the achievable accuracy from the maximum
likelihood estimator (MLE) in terms of covariance is based

on the Cramer-Rao inequality, i.e.

§2 1lnL
5bsbT

=

cov(B] > [-E{ }1-1 & o
(3-30)

where E is the vector of estimated parameters for b, F is
the so-called Fisher information matrix, and L 1is the
likelihood function for N observations. Almost all the
common methods (e.qg. autocorrelation, autocovariance,
forward-backward, Burg method, etc.) for estimating the
reflection coefficients are ML estimates when the data
length becomes asymptotically large [33]. Therefore, we see
that this lower bound can be achieved asymptotically by any
unbiased estimator.

Here we are interested in the CRLB for the wvariance of

the MBSE estimates. Detailed derivations of the CRLB for
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)
the variance of a parametric PSD estimate S(g,w) of a
stationary zero mean process are given in [37]. From (eqn.

3-23,[37]) we get
var(S(g,e)} > {V S(g,0)} F-1{7 S(g,0)]

(3-31)
where
A B 8 1
S(g'w) = 32 A(Z)A(z ) |z=ejw
A(z)A(z-')
- T
g = [al, ceesoBn, bl' ey bm’ o]
=7 & s
vg - [ 531 S(glw)l c ey aan S(g:w),
) § 8 T
-G_b_l S(g/w)/ e e ey Eb-m S(g/w)/ E‘ S(glw)]

A theorem due to Whittle (Theorem 9, [38]) can be used to

compute F numerically.

m
N T
F = I V(g,w)V™(g,w)du
-7
(3-32)
where

_ 1

y_(glw) - W VgES(_g_,w)}

But this method can give numerical problems for spectra with
sharp peaks unless special care 1is taken in the numerical

integration algorithm. Moreover, numerical integration may
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not give the exact integral value. Friedlander [39, 40] has
presented an elegant method for the exact computation of the
~Fisher informatioﬁ matrix. From his results we find that the
CRLB for Var{g(g,w)} can be expressed as an explicit
function of the model parameters based on certain properties
of stationary covariance matrices. The Fisher information
matrix for the autoregressive moving average (ARMA)

parameters is given by

FE=NI R, “Rez 0
“Rox R,z 0
ot ot 2/
(3-33a)
where
_ T _ Ty 1
Rxx = [AlAl AZAZ]
IR I
R,, = [ByB] - ByB)l
_ T _ T, 1
sz - [AlBl BzA2]
Al =11
a1
C]
L-aq_l a1 1_
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A2 = aq
341
)
ay . . . aq_1 1

g = max{ m, n }

and Bl’ 82 are similarly defined as Al’ A2 respectively.

Hence, for a pure AR process we get

T

= X T _
F N AlAl A2A2 o]
ot 02/2
(3-33b)
and for a pure moving average (MA) process
oo L T _ g gl
F N BlBl BZB2 o)
of o2/2
L (3-33c¢c)

Thus we find that F-! decreases as 1/N and hence
asymptotically the variance of the PSD estimates decreases
with the inverse of the number of observations, and no
unbiased estimator exists whose error variance dies out

faster than 1/N.
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Although the MBSE is not an unbiased estimator for short
data records and the CRLB provides a tight bound only
asymptotically, we still compute the CRLB for the variance
of the MBSE estimates in order to provide a standard against
which to measure our results. It can be shown that all
three averaging methods become equivalent when the data
length is asymptotically large and the covariance of the
estimated parameters then depends on the total number of
data points. For example, in the AVA method, the covariance
of the estimated parameters for any section is reduced by
M/N. But when the AR parameters from all the segments are
averaged, the covariance matrix is again reduced by 1/M i.e.
in effect the covariance of the averaged AR parameters is
reduced by 1/N.

Here we have computed the CRLB in two ways. The CRLB is
evaluated for the system generating the data ('Cramer data')
and also for the AR model l/X(z) which is to be estimated
('Cramer model'). The 'Cramer data' bound should give the
lowest bound achievable by the most efficient estimator for
the given particular process. The 'Cramer model' bound
should give the lowest bound achievable by any ARSPE for the
given model order. We 1like to emphasize again that these
bounds hold for unbiased estimators when the data length is

asymptotically large.
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3.10 SUMMARY

In this chapter we have formulated two approximation
techniques to derive the theoretical mean and variance of
the modified Burg spectral estimator (MBSE). We have defined
an MBSE as the Burg spectral estimator (BSE) with some
averaging technique applied. Three different types of
segment averaging are considered. The first one (AVA)
averages the autoregressive (AR) coefficients computed from
each section. The resulting averaged AR parameters then
vield the power spectral density (PSD) estimate. The second
one (AVK) averages the reflection coefficients evaluated
from each segment; these averaged reflection coefficients
are used to compute the corresponding spectral density
estimate. The final approach (AVP) evaluates the PSD
estimate associated with each segment, and then averages
these directly. Two approximation methods, namely the Sakai
approximation and the Taylor approximation, are formulated
to evaluate the statistical properties of the modified Burg
spectral estimator. The Taylor approximation 1is different
from the other one mainly because it neglects the bias and
variance of the gain factor of the power spectral density
estimate. Both approximation methods wuse a recursion
technique to evaluate the approximate mean and variance of

the MBSE estimates. We have also derived the lower bound for
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the mean and variance of the reflection coefficient
estimates. But we have failed to present any significant
analysis of this theoretical bound for the variance of the
reflection coefficient computed from the Burg method.
Finally, we have discussed the theoretical Cramer-Rao lower
bound for the variances of parametric spectral estimators
with special reference to the modified Burg spectral

estimator.



Chapter IV

SIMULATION RESULTS

In this chapter the effect of segment averaging on the
quality of the BSE is investigated experimentally. When any
segment averaging technique is applied on the BSE, the
resulting estimator is defined as a modified Burg spectral
estimator (MBSE). We compute the PSD estimate from a given
time series generated by computer. We are concerned
specifically with the statistical properties of these PSD
estimates. Three different types of time series are
considered. They are generated by MA, AR, and ARMA filters
respectively, driven by white noise. AVA, AVK and AVP
methods are then applied to each type of process for
estimating the PSD using the MBSE. The analytical values of
the mean and variance of the MBSE estimates are compared
against the corresponding sample mean and sample variance.
The CRLB bounds are also computed for analyzing‘the results.
The Welch method, which uses a segment averaging technique,
has also been used to evaluate PSD estimates and bias,
variance and mean square error are compared with those
obtained from the MBSE procedure. The numerical methods
presented here are by no means exhaustive but they do serve

to illustrate some interesting properties as pointed out in

52
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subsequent sections. All observations made are pertinent to
the few data types considered, but as they represent high
pass, low pass, and band pass processes it is expected that
our results would be applicable for a large class of
processes. In Appendix D all cémputer programs (in FORTRAN)

used in this simulation are included.

4.1 EXPERIMENTAL PROCEDURE

We have simulated three different classes of time series
by driving AR, MA, and ARMA filters respectively, with zero
mean white Gaussian noise. Thus we have obtained data
representing MA, AR, and ARMA processes. These data
sequences result in PSD estimates for the processes. Fifty
statistically independent realizations for each type of time
series were generated in order to compute the sample mean
and the sample variance of the PSD estimates. The first 128
data points of each realization were discarded to allow the
transient, that arises in the generation of the process, to
decay. The variance of the noise is adjusted in such a way
that the average power of the filter output is unity.
Alternatively, the data points are normalized so that the
sample autocorrelation at lag zero 1is unity. This
normalization should correspond to the average power of

unity since theoretically the following relation holds.
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(4-1)

For convenience, we have also normalized the radian
frequency w by dividing it by =.

The sequences so generated were analyzed using four
different segment averaging techniques: AVA, AVK, AVP and
the Welch procedure. The N data points are divided into M
nonoverlapping sections, so that each section has N/M data
points. For each section, the AR parameters, the reflection
coefficients, the MBSE estimates, and the Fourier transforms
of the weighted data as in the Welch procedure are computed.
According to the type of averaging technique the appropriate
parameters are then averaged. In this experiment we have
taken 128 data points which can be considered a moderate
amount. By 'a moderate amount' we mean that the data length
is a few times greater than the order of the estimated model
or the data 1length 1is small enough so that asymptotic
results do not apply. The performance of the above methods
is investigated for 1, 2, 4, 8 and 16 sections.

The order p of the AR model which is used to fit the data
is assumed known. For AVA the PSD estimates are given by

A
9]

11+ AE(ed) )

2

%(w) =

(4-2a)
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where the %p is the average of the AR parameter vector ém P

evaluated for each section m, and 62 is the estimated gain

factor. For AVK the PSD estimates are given by
A

c .
f;';(e“’w

[

Plu) = 11+ 4

(4-2b)
where gp is the AR coefficient vector associated with the
averaged reflection coefficients. For AVP the PSD estimates

are given by

M
Sz
g(w) = 2 z A T Jw
= ™ 2
Mot 1 (B, ) B
m=1
(4-2c)
It is noted that for the AVP method sz, m=1,2,...,M, is

computed from the mth section consisting of N/M samples
whereas in the AVA and AVK methods we compute the gain
factor from N samples. For the Welch method the PSD

estimates at equally spaced frequencies are given by

M
w _ 1 i - N_
BXX(Zka/N) = ™ L WN/M(Zan/N), k=0,1, ..., M 1

i=1

(4-2d)
where
(N/M)-1
i , _ M i s 2

WN/M(Zan/N) = U | z xtwtexp( j2mMkt/N) |

t=0
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(N/M)-1

-M 2

U = N z w
t=0

We have only used the rectangular window and hence the

t

weighting function Wy is unity. An appropriate FFT algorithm
i
N/

computations is reduced. It is easy to implement an FFT on a

is used to compute W M(21er/N) so that the number of

data sequence of 1length 2 to the power M. There are
different ways to estimate the gain factor for spectral
matching. For example, o¢? can be estimated from the squares
of the forward and the backward residual sequences which is
minimized with respect to the reflection coefficient; it can
also be estimated from (2-4b). However, we have found that
the following estimate gives satisfactory results in the
sense that both the estimated and the actual PSD have the

same average power level.

. N-1 .
2 - .2
c? = I xt /(Nro)

t=0 (a-3)
The CRLB for the wvariance of the MBSE estimates 1is
computed for measuring the efficiency of this estimator. The
CRLB is evaluated in two ways. It is computed for the system
generating the data ('Cramer data') and also for thé AR
model l/z(z) which is implicitly to be estimated ('Cramer

model'). Though the CRLB gives a tight bound for a large
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amount of data for unbiased estimators, it is still found to
provide a useful reference for the MBSE which operates on a

moderate amount of data.

4.2 MODIFIED BURG SPECTRAL ESTIMATOR (MBSE)

4.2.1 MA Data

A third order low pass MA filter is used to generate the
data sequence of an MA process. The zeros of the MA filter
are; a real one at -0.60538 and a pair of complex conjugate
zeros at -0.072085+j0.63833 in the z-plane. The true
autocorrelation sequence of this MA process is evaluated by
means of the algorithm presented by Dugre et al. [30]. The
autocorrelation sequence is then normalized and shown in
Fig. 2a. It 1is worth to mention that the exact
autocorrelation at lag (g+l) or more is always zero for an
MA(g) process.

We have assumed a fifth order AR model for fitting the
data of the MA process. Now AVA, AVK and AVP methods are
applied to this data sequence for estimating the PSD of the
process. The actual PSD of the MA process has a relatively
small dynamic range, i.e. §6P(w)/6w is not too high. Let us
first analyze the results of the AVA method. From Fig. 3a it
is evident that the bias increases with an increase in the

number of segments, particularly in the frequency band
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where most of the power lies. However, it is observed that
this increment is small as long as the number of sections,
M, does not exceed 4. For sixteen sections, the AVA method
failed to give a good estimate of the actual PSD. The number
of data points per section is only 8 when M is 16; and this
number of data points is very small with respect to the
order of the AR(5) model. To estimate the AR parameters for
each section we first have to estimate the autocorrelation
sequence from lag zero to lag five from the 8 data points.
For short data records the variance of ?i is very high. As
a result the variance of the AR parameters is also high. We
get therefore, a poor estimate of the PSD when M is 16. In
fact, it has been observed that when the number of segments
exceeds Mo’ the transition level for 128 data points, the
performance of the AVA method starts to deteriorate rapidly;
this will be shown later. We define Mo sections as a
transition point or level because if the number of sections
exceeds Mo the efficiency of the estimator starts to
degrade. The sample mean of the PSD estimates is then
compared against the theoretical mean evaluated from the
Sakai approximation and the Taylor approximation. It is
shown in Figs. 3b, 3c and 3d that the expected mean computed
from the Sakai approximation follows the sample mean more

closely than that computed from the Taylor approximation.
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Hence, it can be stated that the Sakai approximation gives
better results in comparison to the Taylor approximation.
This observation 1is expected because 1in the Taylor
approximation AG? is assumed zero, which is not true. Again,
when M is 16, both approximation methods are substantially
different and both fail to give the expected mean value of
the PSD estimates (see Fig. 3d). The data from the
immediately adjacent sections might well be correlated when
the‘ segment length 1is of the order of the process
correlation and thus it could violate assumption A4 on which
these approximation methods are based.

From Fig. 4a we find that the variance of the PSD
estimates does not change appreciably for 1, 2 and 4
sections. However only at the zero frequency, which is the
main peak frequency of the actual PSD, it is observed that
the variance decreases with an increase in the number of
sections, but this decrement is small. So, it can be
inferred that the variance of the PSD estimates does not
steadily decrease with an increase 1in the number of
sections. It appears that up to a certain number of
sections, say Mo’ the segmentation has little effect on the
variance; as if the variance depends on the total number of
data points, a behavior similar to the CRLB. The variance of

the PSD estimates for 16 sections is high in comparison to
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the variance for 1, 2 and 4 sections. The reason is that
when M is 16, the estimated AR parameters for each section
vary too much from their mean wvalues. The theoretical
variance of the PSD estimates computed from the Sakai
approximation and the Taylor approximation are shown in
Figs. 4b, 4c and 4d. They are compared against the
corresponding sample variance. It has been observed that
both approximation methods give almost the same variance. So
we éan see that the gain factor has a negligible effect on
the variance. The 'Cramer data' bound and the 'Cramer model'
bound are also shown in Figs. 4b, 4c and 4d. It is noted
from these figures that in most cases the 'Cramer data'
bound 1is lower than the sample variance of the PSD
estimates, even though the MBSE is not an unbiased estimator
for short data records. The 'Cramer model' lower bound has a
shape similar to the sample variance but the average levels
are different. The sample variance of the MBSE estimates 1is
found to be close to the theoretical lower bound when the
number of segments is less than or equal to 4, i.e. the MBSE
is still efficient for a moderate number of data points.
The 'Cramer model' bound is supposed to give the theoretical
lower bound for the variance of the MBSE. But we have found
that generally the 'Cramer model' bound is not lower than

the sample variance in the frequency band where most of the
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power lies. The underlying reason is that the CRLB is based
on the unbiasedness property of the parametric estimator. It
is mentioned in [37] that the exact bound of the variance of
a biased parametric estimator depends on the gradient of the

bias with respect to the true parameters. We quote [37]

"...no matter how small the bias is, as long as its gradient is

not zero, parametric estimates with variances /lower than the

bound can be expected.”

An interesting relation is found between the 'Cramer model'
bound and the variances evaluated from the approximation
methods. The 'Cramer model' bound is found to follow closely
the variances given by the approximation methods and the
'"Cramer model' bound always remains lower than those
variances.

The mean square error (MSE) of the PSD estimates is shown
in Fig. S5a. It is noted from this figure that the MSE
increases by a small amount when the number of segments is
increased up to 4. So, a little will be lost if we divide
the 128 data points in up to 4 segments. It is evident that
when M is 16, the MSE will be pretty high for the reasons
mentioned earlier. In Figs. 5b to 5d the theoretical MSEs of
the MBSE estimates, computed from the Sakai approximation

and the Taylor approximation, are shown. The behavior of
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these MSEs is found to be similar to that of the sample MSE.
The theoretical lower bound of the MSE of the estimates can
be computed from the 'Cramer model' bound and is defined as
follows

MSE( 'Cramer model') = Agz(w) + Var('Cramer model')

(4-4)
Again we find that the sample MSE of the PSD estimates is
lower than this theoretical lower bound for the reasons
mentioned earlier.

Let us now focus our attention on the results obtained
from the AVK method. In Figs 6a to 6¢c the PSD estimates for
different number of sections are shown. Simultaneously, the
expected mean computed from the approximation methods and
the true PSD of the MA process are also shown. In Figs. 7a
to 7c the sample variance and the corresponding analytical
variances of the PSD estimates are shown. Finally, the
sample MSE of the estimates and the corresponding MSE
evaluated from the approximation methods are plotted in
Figs. 8a to 8c. The theoretical lower bound is also computed
for the purpose of comparison. After close scrutiny of these
figures we find that the AVA and AVK methods give almost the
same results. However, it is noticed that the performance of
the AVK method is comparatively better than that of the AVA

method.
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The AVP»method is the worst among these three averaging
techniques because it gives the largest variance of the PSD
estimates. Especially when the number of sections is 16, the
AVP method completely fails to estimate the PSD of the
process (see Figs. 9c¢c, 10c and 1llc). It gives a very high
variance at the normalized radian frequencies zero and one.
Even for 4 sections the results are not very satisfactory
(see Figs. 9b, 10b and 11b). The sample mean, sample
variance, and sample MSE of the estimates are shown in Figs.
9a, 10a, and lla for 1, 2, 4 and 16 sections. Since in this
method the PSD estimates computed from each section are
directly averaged, it 1is expected that the averaged PSD
estimate will be more erratic. As the poles of the estimated
AR model for each section cannot concentrate around their
mean position for MA data, we observe that the sample
variance 1is higher than that of the AVA and AVK methods.
Unlike both AVA and AVK methods, it is observed that at the
zero frequency the variance increases with the number of
sections. We like to mention that for only one section, the
AVA, AVK and AVP methods give identical results since no
averaging is performed and in this case we are simply using

the BSE.
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4.2.2 AR Data

A fourth order band pass AR filter is used to generate
the data sequence of an AR process. The poles of the AR
filter are: two real ones at +0.8 and a pair of complex
conjugate poles at +0.5+j0.75 in the 2z-plane. The exact
normalized autocorrelation sequence of the AR process 1is
computed and shown in Fig. 2b. This autocorrelation segquence
oscillates between positive and negative wvalues and it goes
nearly to zero for a lag higher than 32.

We have assumed the order of the AR model to be the same
as that of the data generator. Now AVA, AVK and AVP methods
are applied to this data sequence for estimating the PSD of
the process. Let us study the results of the AVA method.
From Fig. 12a it is evident that the bias increases with an
increase in the number of segments, particularly in the
frequency band where most of the power lies. However, it is
observed that this increment is small as long as the number
of sections does not exceed 4. For 16 sections the AVA
method fails to give a good estimate of the actual PSD,
because the data length per section is short with respect to
the length of the process correlation. As a result, the
variances of the AR parameters increase, which is reflected
in the corresponding PSD estimates. It 1is evident that

somewhere between 4 and 16 sections, there is a transition
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point Mo; and the AVA method starts to lose its efficiency
when M exceeds Mo’ The sample mean of the PSD estimates is
compared against the theoretical mean evaluated from the
Sakai approximation and the Taylor approximation. It is
shown in Figs. 12b and 12c¢ that the mean computed from the
Sakai approximation follows the sample mean more closely
than that computed from the Taylor approximation. Hence, it
can be stated that the Sakai approximation gives better
results in comparison to the Taylor approximation. We made
the same statement for MA data in the case of the AVA
method. Another important characteristic of the
approximation methods can be observed from Figs. 12b and
12c. This characteristic is that the main peak frequencies
given by the approximation methods do not match exactly with
the main peak frequency wp of the estimated PSD, when M is
greater than one and the difference between the main peak
frequencies increases with M. Again for 16 segments, both
approximation methods fail to give the expected mean value
of the PSD estimates (see Fig. 12d). Here the actual PSD has
a large dynamic range. So, the first derivatives of P(w)
with respect to the AR parameters are very high near the
main peak frequency wp of 0.31 for the actual PSD (see
Appendix B). As a result it is observed that both the

approximation methods change sharply near the main peak
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frequency and the Taylor approximation method even gives
negative values for the expected mean of the PSD estimates
around that frequency. For 16 sections the bias of the
estimated AR parameters is quite large so that the high
values of the first derivatives are not offset. However, for
l, 2, and 4 sections the high wvalues of g(ejw) are offset by
small values of the bias. The second reason for the failure
of the approximation methods using 16 sections, is the short
data records per segment and hence successive sections might
well be correlated. We mentioned earlier that the true
autocorrelation of the AR process has decayed to near zero
at lag 32 or more, so adjacent sections are actually
correlated when M is 16. Thus assumption A4 certainly does
not hold for 16 segments in the AR data case.

From Fig. 13a we find that the variances of the PSD
estimates are almost the same for 1, 2, and 4 sections.
However, at the peak frequencies O, 0.31, and 1, the
variance decreases with an increase 1in the number of
sections but this decrement is small. As in the MA data
case for the AVA method, we can state that the variance of
the PSD estimates does not steadily decrease with an
increase in the number of sections. It appears that up to a
certain number of sections, the segmentation has only a

small positive effect on the variance; as if the variance
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depends largely on the total number of data points, a
behavior similar to the CRLB. The variance of the PSD
estimates for 16 sections is high in comparison to the
variances for 1, 2, and 4. The reason is again that for such
a short data record per section, the variances of the AR
parameters are exceedingly high. The theoretical variance
of the PSD estimates computed from the Sakai approximation
and the Taylor approximation are shown in Figs. 13b, 13c¢ and
13d. They are compared against the corresponding sample
variance. It has been observed that both approximation
methods give almost the same variance. So we see that the
gain factor has a negligible effect on the variance. The
'Cramer data' bounds are also shown in Figs. 13b, 13c and
13d. Here we have not shown the 'Cramer model' bound because
the system generating AR data and the AR model are the same.
The 'Cramer data ' and the 'Cramer model' bounds will be
identical therefore. Similar results as in the MA data case
are observed with regard to the 'Cramer data' bound. Unlike
in the MA data case for the AVA method, it is found that the
sample variance is always less than the 'Cramer data' bound
around the main peak frequency because the gradient of the
bias is not negligible in that frequency band.

The MSE of the PSD estimates is shown in Fig. 14a. It is

noted from these figures that the MSE is increased by a
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small amount when the number of segments is increased up to
4 segments. So, a little will be lost if we divide the 128
data points in up to 4 segments and thereby we can operate
on a smaller number of data points, but doing it more often.
It is evident that for 16 sections the MSE will be fairly
high. In Figs. 14b to 14d the theoretical MSEs of the MBSE
estimates, computed from the Sakai approximation and the
Taylor approximation, are shown. The behavior of these MSEs
is found to be similar to that of the sample MSE. The
theoretical lower bound of the MSE of the estimates can be
computed from the 'Cramer model' bound. Again we find that
the sample MSE of the PSD estimates is lower than this
theoretical lower bound. In this <case, the plausible
explanation 1is that the gradient of the bias of the
estimator may not be negligible whereas in the 'Cramer
model' bound we assumed this gradient to be zero.

Let us now examine the results obtained from the AVK
method. 1In Figs. 15a to 15c¢ the PSD estimates for different
number of sections are shown. Simultaneously, the expected
mean computed from the approximation methods and the true
PSD of the AR process are also shown. In Figs. 1l6a to 1l6c¢c
the sample variance and the corresponding analytical
variances of the PSD estimates are shown. Finally, the

sample MSE of the estimates and the corresponding MSE
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evaluated from the approximation methods are plotted in
Figs. 17a to 17c. The theoretical 1lower bound is also
computed for the purpose of comparison. After an extensive
study of these figures we find that the AVA and the AVK
methods give almost the same results. However, as in the MA
data case it 1is noticed that the performance of the AVK
method is better than that of the AVA method to a certain
degree, especially with respect to the variances of the PSD
estimates.

The AVP method is the worst among these three averaging
techniques because it gives the largest variance of the PSD
estimates. Particularly when M 1is 16 the AVP method
completely fails to estimate the PSD of the process (see
Figs. 18c, 19¢c and 20c). It gives a very high variance at
frequencies 0O, 1, and .31; the latter is the main peak
frequency wp. For 4 sections, the results are shown in Figs.
18b, 19b and 20b. Unlike in the MA data case for the AVP
method, when M is 4, the results are quite satisfactory. The
sample mean, sample variance, and sample MSE of the
estimates are plotted in Figs. 18a, 19a, and 20a for 1, 2, 4
and 16 sections. Here, since bbth the generating system and
the AR model afe the same, the poles of the estimated AR
model for each section are concentrated around the actual

poles, at least for up to 4 sections. We see that the PSD
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estimates are smoother than for the MA data case for the AVP

method.

4.2.3 ARMA Data

The coloring filter used to generate the data for an
ARMA(3,2) process has three poles: a real one at +0.8 and a
pair of complex conjugate poles at -0.5+jO.5 in the z-plane.
A pair of zeros of the filter is at +0.5%j0.5. So, this is a
high pass filter. The exact normalized autocorrelation
sequence of the ARMA process is computed and shown in Fig.
2c. This autocorrelation sequence oscillates between
positive and negative values and it goes nearly to zero at
lag 14. Here the actual PSD has a relatively large dynamic
range.

We have assumed the fifth order AR model to fit the data.
AVA, AVK and AVP methods are then applied to this data
sequence for estimating the PSD of the process. Let us
investigate the results of the AVA method. From Fig. 2la it
is found that the bias increases with an increase in the
number of segments, particularly in the frequency band
where most of the power lies. However, it is observed that
this increment is very insignificant as long as the number
of segments does not exceed 4. Even for 16 sections the AVA

method does not give a poor estimate of the actual PSD. The
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reason is that the autocorrelation sequence dies out for a
relatively small amount of lag and this process also has
predominantly AR characteristics. We 1like to state that
although the autocorrelation is zero for lags in excess of 3
in the MA data case, 16 segments do not give a good estimate
because a finite order AR model cannot fit the data exactly.
However, the PSD estimate for 16 segments is distinctly
different from the corresponding estimates for 1, 2, and 4
sections. The peak frequency of the PSD estimates is quite
far away from the actual peak frequency wp which is at 0.76
and it is expected that as the order of the AR model is
increased, the estimate will resemble the actual PSD more.
The sample mean of the PSD estimate is compared against the
theoretical mean evaluated from the Sakai approximation and
the Taylor approximation. It is shown in Figs. 21b and 21lc
that the mean computed from the Sakai approximation follows
the sample mean more closely than that from the Taylor
approximation. Hence, it can be stated that the Sakai
approximation gives better results in comparison to the
Taylor approximation. We made the same statement for the MA
data case for the AVA method. Like the AR data case for the
AVA method, it is noted that the main peak frequencies
evaluated from the approximation methods do not correspond

to the main peak frequency of the estimated PSD when M is
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greater than one, and the difference between the main peak
frequencies increases with M. Again for 16 sections both
approximation methods fail to give the expected mean value
of the PSD estimates (see Fig. 21d).

From Fig. 22a we have found that the variances of the PSD
estimates are almost the same for 1, 2 and 4 sections.
Unlike the MA and AR data case for the AVA method, the
variance does not decrease at the main peak frequency with
an increase in the number of sections. Hence it is shown
that the variance of the PSD estimates does not steadily
decrease with an increase in the number of sections. The
variance of the PSD estimates for 16 sections is high in
comparison to the variances for 1, 2 and 4 sections. Using
only 8 data points per segment it 1is not possible to
estimate the AR parameters with low variances when the order
of the model is 5. The theoretical variance of the PSD
estimates computed from the Sakai approximation and the
Taylor approximation are shown in Figs. 22b, 22c and 22d.
They are compared against the corresponding sample variance.
It is observed that both approximation methods give almost
the same variance. We see that the gain factor has a
negligible effect on thé variance. The 'Cramer data' and the
'Cramer model' bounds are also shown in Figs. 22b, 22c¢ and

22d. As seen in the MA data case, we observe here the same
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relations between the theoretical lower bounds and the
sample variance. The 'Cramer data' bound is lower than the
sample variance whereas the 'Cramer model' bound is higher,
particularly in the frequency region where most of the power
lies. Moreover, the shape of the 'Cramer model' bound is
similar to the sample variance but the average levels are
different.

The MSEs of the PSD estimates are shown in Fig. 23a.
Note from these figures that the MSE increases by an
insignificant amount when the number of segments 1is
increased up to 4 sections. So, a little will be lost if we
segment the data in up to 4 sections, and thereby we can
operate on a smaller number of data points per section, but
doing it M times, instead of operating once on the full
length of data. It is evident that for 16 segments the MSE
will be fairly high. In Figs. 23b to 23d the theoretical
MSEs of the MBSE estimates, computed from the Sakai
approximation and the Taylor approximation, are shown. The
behavior of these MSEs is found to be similar to the sample
MSE. The theoretical lower bound of the MSE of the estimates
can be computed from the 'Cramer model' bound. Again we
find that the sample MSE of the PSD estimates is lower than
this theoretical 1lower bound because the unbiasedness

assumption for the estimator is not wvalid.
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Let us now analyze the results obtained from the AVK
method. 1In Figs. 24a to 24c the PSD estimates for different
number of sections are shown. Simultaneously, the expected
mean computed from the approximation methods and the true
PSD of the MA process are also shown. In Figs. 25a to 25c
the sample variance and the corresponding analytical
variances of the PSD estimates are shown. Finally, the
sample MSE of the estimates and the corresponding MSE
evaluated from the approximation methods are plotted in
Figs. 26a to 26c. The theoretical lower bounds are also
computed for the purpose of comparison. After an extensive
study of these figures we find that the AVA and the AVK
methods give almost the same results. However, as in the MA
data case it is noted that the performance of the AVK method
is better than that of the AVA method to a certain extent.

The AVP method is the worst among these three averaging
techniques because it gives the largest variance of the PSD
estimates. Particularly for 16 segments the AVP method
completely fails to estimate the PSD of the process (see
Figs. 27c, 28c and 29c). It gives a very high variance at
frequencies O, 1, and .76; the latter is again the main peak
frequency. For 4 sections the results are shown in Figs
27b, 28b and 29b. Unlike in the MA data case for AVP, the

results for 4 sections are quite satisfactory. The sample
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mean, sample variance, and sample MSE of the estimates are
plotted in Figs. 27a, 28a, and 29a for 1, 2, 4 and 16
sections. We note that the PSD estimates follow an erratic
behavior when M is higher than 4.

We refer collectively to Figs. 30 to 38 where the mean,
variance and mean square error of the PSD estimates for 8
sections are shown for all the three data cases using the
three averaging techniques. Comparing with the corresponding
estimates for 1, 2, 4 and 16 sections we find that in the MA
data, AR data, and ARMA data cases, the transition point is
reached for AVA, AVK and AVP methods when the number of
sections 1is 8. In fact, it has been found that when the
number of segments is more than eight for 128 data points,
the performance of the three methods starts to degrade
rapidly. Particularly in the ARMA data case when the number
of sections exceeds 8 the estimated peak frequency starts to
drift away from the peak frequencies for 1, 2, and 4
sections. We find therefore Mo is actually 8 for our three
data cases using the three averaging methods.

Let us now find the number of operations (NOPS) required
to compute the PSD estimates of the modified Burg spectral
estimators. We consider each basic mathematical operation,
namely multiplication, division, addition, and subtraction,

as a single operation. In the following table (Table 1) the
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TABLE 1

NUMBER OF COMPUTATIONS REQUIRED TO EVALUATE PSD ESTIMATES

Method Number of operations

AVA 2N(p+1) + M(l—é}-)-: + spr + 2P _ g
+ §p3 + gpz + 32p + 5

AVK 2N(p+1) + M(%E’ + 5p? + 2B _ g)

2p? 9p? 23p
+3 * 5 et 5

3 2
AVP 2N(p+1l) + M(E%D- + 1—2—3 + 1lp + 1286)
N = number of samples

order of AR model

number of sections
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total number of operations for computing the PSD estimates
using the AVA, AVK, and AVP methods are given. The plots of
the number of operations versus number of sections for these
methods are shown in Fig. 39. It is evident from this figure
that the total NOPS is maximum for the AVP method whereas
for the AVA method it is minimum. The difference between the
NOPS for the AVA and AVK methods is very small for low order
AR models. We note that for any averaging method the NOPS
increases with the number of sections. So, the NOPS for
modified Burg spectral estimator 1is higher than the

corresponding NOPS for Burg spectral estimator.

4.3 WELCH PROCEDURE

The Welch procedure has been applied to estimate the PSD
of the MA, AR, and ARMA processes which were generated. This
method uses the segment averaging technique. So, it is
useful to make a comparative study between this method and
the MBSE. This method is a modification of the Bartlett
procedure. In this case the window We is applied to the data
segments directly before computation of the periodogram. We
have considered only the rectangular window and
nonoverlapping sections. Theoretically it has been proved

that as the number of segments increases, the bias of the

PSD estimates increases but the wvariance decreases. Welch
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[41] shows that if the segments of X, are nonoverlapping,
then

Var[B;':X(w)] = IzN/M(w)/M

(4-5)

where IN/M(w) is the periodogram of the process. This
method smoothes the periodogram. As a result resolution
decreases.

In Figs. 30 to 38 we have shown the sample mean, sample

vafiance and sample MSE of the PSD estimates computed from

the Welch procedure. Simultaneously these are compared
against the AVA, AVK and AVP methods. Here we have
considered only 4 and 8 sections. After studying these

figures, our findings indicate the following results.

a) The bias increases and the variance decreases with an
increase in the number of sections when the Welch
method is used for MA, AR, and ARMA data. At the same
time, the MSE increases and resolution reduces. The
variance approaches the theoretical lower Dbound
('Cramer data') as the number of sections 1is
increased.

b) The AVA and AVK methods give comparatively Dbetter
estimates in terms of variance than the Welch

procedure for most of the cases.
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c) Though both the AVP method and the Welch procedure use’
the same averaging technique, but different spectral
estimators, the AVP method gives relatively poor

estimates at normalized frequencies O, wp, and 1.

4.4 SUMMARY

Let us now summarize the significant simulation results
which are mentioned 1in the previous sections. The
statistical properties of the AVA and AVK methods are almost
the same for all three cases (see Fig. 40). Intensive
studies reveal that the AVK method is slightly better than
the AVA method with respect to the variance of the PSD
estimates. The AVP method gives the worst results among the
three averaging techniques. In most of the cases the
variances at the peak frequencies of the actual PSD decrease
as the number of sections is increased up to a certain
point, say Mo’ for both the AVA and AVK methods. However
this reduction in the variances is not significant. From
the experimental results we find that Mo is 8 when the total
number of data is 128. The MSEs of the PSD estimates
remains almost the same for these two methods up to Mo
sections. When the number of sections exceeds Mo’ both
methods start to degrade. The MBSE estimates are found to

follow the theoretical bound closely even for a moderate
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number of data points provided the number of sections is
less than or equal to Mo' In comparison to the Taylor
approximation method, the Sakai approximation method gives
better results in terms of mean and mean square error of the
estimates. That is, the expected mean and the mean square
error given by this method follow more closely the
corresponding sample mean and sample mean square error. But
both approximation methods give the same value for the
variances of the power spectral density estimates. The
Taylor approximation is different from the other one mainly
because it neglects the bias and variance of the gain factor
of the power spectral density estimate. Hence, these
results imply that the variance of the gain factor has very
little effect on the variance of the power spectral density
estimates, while the bias of the gain factor has a
considerable effect on the expected mean of the estimates.
The 'Cramer data' bound is found to be lower than the sample
variance in most of the cases and the 'Cramer model' bound
has a shape similar to that of the sample variance, but the
average levels are different. Finally, it is found that the
approximation methods give good predictions and the segment
averaging techniques do not reduce the variance of the PSD

estimates appreciably.



81

DATA AR(4)

4.00

- L peY
S
3 -
T T T o T @ L m B
&
8 13
- “*~ m
g
= To : 1 .
001 oo or'o o1 0 020~ 0s°0- 08°0
NO[ 18733400
g
(3]
g
- Pe

2.00

DATA MA(3I)

‘1 3'0 L3°0 050 EE'0 AN 0o*
» ¢ NO 110134809

%.00

Qe

32.00

26.00

Autocorrelation versus lag

Fig. 2



~ -7 T T T L} T T
b L]
r
n 1
o
©
- x  TRUE PSO 1
NSEC» 1
p °
n:“ + NSECe 2 h
i
& % NSEC: 4
18
.- zZ NSECy 16
I
o
——
- PRt FEL &\c —
& y } ' 4 y { f
(‘u n U3 0.25 .. otn 0.63 0.75 0.88 1.00
FREQ.(1=P1)
4
| 1 L R [ r T T
d -
(4
" p
x MNSEC: 4 |
o  SAKAl
" s TAWLOR |
4
I3
\
. \
N
\
o
£ N,
TS Rt e
Iy T
< 4 4 + q 4 } ! |
) 0.13 0.25 0.63 0.5 0.F? 1.

Fig. 3

2.25 3.00 37 4

OIER

1.£3

x  NSEC: 1
o SRKAI
IS TAYLOR

£
ot ‘\\\\~
\“#——e-——c\,“ -
g 4 4 } } } } —
%00 0.13 0.25 0.30 0.50 0.63 0.75 0.69 1.on
FREQ.(1=P])
o
9
- T ) T T T T L
£
T ]
8
nl x NSEC: 16 T
& SAKA)
¥
ot J
Pl D ‘ +  TANLOR
&
o —
o —
K
ol B
——
g y y | | y
Qoo 0.13 0.25 0.63 0.75

0.33 0.50
FREQ. (1=P[)

Mean PSD for MA(3) data using AVA on AR(5) model

Z8



IZZ123)

VTS

vea-qr

ST T T 1 ¥ L} ¥

NSEC: 1

NSEC: 2

NOECH 4

NSEC: 16

CRNMER DATA

8
2 | | } { J } }
‘.00 0.13 0.35 0.30 0.50 0.63 0.75 0.69
FREO.11=P1)
o
@
W i o | 1 T T T I REE
o
ol \
© X, .
FEvAN
~\ ¥ -\,
0 AN
Y N
@ -)\ - ° .
o \ NSECs 4
m
cig SAKAY
ul
X TATLOR
P
‘5"" CRAMER DATA
2 |
I
Y
b
8
8y . |

.0

—1
Gy U.25

t.00

w 1 T T T T T
g 4
o
8
i x  NSEC: 1 ]
m
23 o SAIAL
Lley
(o p
Z 4+ TAVLOR
£a % CRAMER DATA
>
O 7  CRAMER MODEL
T
- 2.
8 ~ ,/’{'//:
g } { | y y { )
'0.00 0.13 0.25 0.38 0.50 0.63 0.7 0.08 1.0
FREQ. (1=P])
8
g ¥ ¥ T i L T T
”
5
vl N x  NSEC: 16 1
-
<
a & SAKI
_VED x u\ 4+ TAYLOR 1
a 3§
o % CRAMER DATA
we
ol 00! 4
p4 7 CRAMER MODEL
.[ll()
aov
>
21
o
B N2
. \_,A:
g } } y } 4 | 4
'0.00 .13 0.25 0.63 0.75 0.8 1.00

0.38 0.50
FREQ.(1=P1}

Fig. 4 Variance of PSD for MA(3) data using AVA on AR(5) model

€8



o}
6.00

1

NSEC+ 1 b .

e g |
° NSEC+ 2 ) o
<
8 NEECH» 4 8
i NSEC: 16 ] Ny NSEC+ 1
m
CRAMER HOOEL S SAIKAL
0e)
&7 TavLor 1
[
W vy CRAMER MODEL
iy
21

(0]

~ Q7. gee

& 8
& ¥ ,///5\
8 8 =
" ) } } 4 y 4 4 & { | t } } } ]
'0.00 0' 13 g.2s 0.38 0.50 0.63 0.75 0.88 1.00 'u.00 0.13 0.25 0.38 0.0 0.63 0.75 0.68 £.00
FREQ. (1=P1) FRED. (1=P1)
] 8
- \ -y j—— s . . . - o i T T T T
d.
; 8
o \\\ - w q
/\ x  MSEC: 16
G 8
3 : SAKA
* \ x  NSEC: 4 7 A ° I i
) m Yi
2 \ o SAKAL S, + TAMLOR
ta ™
pad \ @ Ri
0 \ TAYTLOR B u{q-L CRAMER MODEL |
. C:
t CRAMER MODEL g
w g
¥ Tr
8 8 il
v "
i s e
; 8 e
] { | { } y y | } y } } } ) }
v 013 0.25 0.3n 0.50 0.63 0.75 0.00 1.00 '0.00 a.13 0.25 0.30 0.50 0.63 0.75 0.88 1.00
FREQ.(1=P1) FREQ.(1=P[)

Fig. 5 Mean square error of PSD for MA(3) data using AVA on AR(5) model

8



3.0

PONIR

1

0.75

i
g
4
o
.
4.83

3.75

0.0

r 4
B ot
. sl
x  TRUE PSD ] " \\ x  NSEC:i 4 1
o NSEC: 1 N o SAAl
¥
N T TAYLOR ]
4+ NSEC: 2 F.“ . .
x NSEC: 4 &
ap
z  NSEC: 16 1 -
r
i st
Wg_‘;==._{____P:Ff g
MG | . . , N
0.7s 0.08 1.00 %o 0.13 0.25 0.38 0. 0.63 0.75 0.68 1.00
FREG.(1=P])
a
- T T T T T T (s
Ce
R
™| 4
8 1
ol x NSEC: 16
o SAAl
4
a6 + TAYLOR ]

0.13 0.25

&
Q.00

Fig. 6 Mean PSD for MA(3) data using AVK on AR(5) model

0.30 0.50
FREQ.(UI=P])

S8



6.0

c.C

e

VESIONCE(T3)

-1C.

-24.C0

-6.0C

;rEO,CU

12.00 .

1 U ™ L T T 1) L4 ¥ T T T T T T
- 8 i
3 NSEC+ | l wf
- NSECs 2 g
NSEC: 4 1 k2 x  NSEC: 4 1
o
NSEC 16 [S2Y o SAAl
te
CRANMER DATA | P 4+ TATLOR
ié‘g x  CRAMER DATA
>u
T 2z  CRAMER MODEL
Y
n‘ |
il N
8 ::§§§\a__4‘;$’-_
) y | y ) Bl ;
(O] a3 0.25 [P 0.50 63 0.7% 0.89 1.00 ‘0.00 0.13 0.88 1.00
FREQ.(1=P1)
8
!" T r T L} T T T
C.
o
v
~ 7
8
e NSECs 16 7
14
o, sArAl
v
25 F TAYLOR 1
a L
au CRAMER MODEL
>u
N \\
b .
A N
8 \:_/’i:
£]. I { | | | |
‘v.u0 0.13 0.25 0.33 0.70  , 0.63 0.5 0.08 1.00
FREQ. € 1=11)

Fig.

7

Variance of PSD for MA(3) data using AVK on AR(5) model

98



JEERTD)

~ e~

2.0

o
g .
“ S R el Sttt = == b. = T U 1 v 1 f :
v HUEC 1 |
© NSCCo 2
H NSEC 4 |
¢ x  NSEC: 4 .
NSEC+ 16
) o SAKAl
) CRANELR MOUCL
B s+ TANLOR
v g  CRAMER MOUEL
n
g
& =%
! 7 \\k,/:é
AT
8
Bl | 4 } } } | } |
'0.00 RE) 0.25 0 0 <0 0.63 0.75 0.80 1.00 0.75 0.68 1.00
FREQ.(1=P])
g
Yy T ' 1 T T 1
C L]
a
« J
NSEC: 16
g SAKAI
o
- TAYLOR
m
Dﬂ
8 CRAMER DATA
£ 1
o CRAMER MODEL
w
O
1y,
N
o
1
v
8
8 , , . , , . ,
‘u.c0 0.13 0.25 3 0.75 0.60 1.00

0.38 0.50 0.6
FREG.(1=P[)

Fig. 8 Mean square error of PSD for MA(3) data using AVK on AR(5) model

L8



[y == S s - b. & v — v d - 1

i 1 T 1 l T
o '
(33 L
o -4 -
w w
o
O o
> ©
¢ x  TRUE PSD - x  NSEC: 4
SAKAL
I3 o NEEC: 1 o
o . N
" & NSECs 2 7] o TAYLOR
. ]
A NSEC» 4 &
| X -
v o
& 2z NSEC. 18 ~
& c
< B -
) ‘"';':"‘ e S Y Y U S S N g | | | ) | | -
“V.co 013 0.25 0. 0.50 0.63 0.75 0.88 100 V.00 0.13 025 0.39 0.c0 0.63 0.7 0.03
FREQ.(1=P1) FREQ.(1=PI)
8
;\‘ ST T r Nl ) T -
C.
g
Sy 4
< x  MSEC: 16 1
o  SKAl
s TANLOR 1
&
o ]
o R
et el | = = O e v e e e e
Q.o 0.13 0.25 € .6 0.7 0.9 1w

0.3 .<n
FRLQ.C1=P1) "

Fig. 9 Mean PSD for MA(3) data .using AVP on AR(5) model

88



42.2)

Reo)

-18.09

r—:‘o.m

Fig.

R SEELS N
= \\g A
| ]
0.63 0.7 OI.OG 1
Pl

|

v

b/

.00

2
- v T T T T r bo o T T T T T T L
&
| “ g
x  NSEC: 1
8
o NSEC. 2 ] LY x  NSEC» 4 .
NSEC 4 @
+ ECH o, o  SOKAL
. % NSEC: 1B O TAYLOR 1
\ '}J\ /W a +
J 7  CRAMER DATA e
\\'\ v /;\ 4o % CRAMER DAIA
NS W N >a
RSN :\ D 2z CRAMER MODEL
Wy ;
Af m '\
. v . g
PR, \ N /
AN N ?tﬂ7<\\\ A
r—\.\\,\ o= B Ne-— e
¢ { 4 3 ; b & } { } } | | |
.00 0.13 025 0.30 0 50 0.63 0.75 0.08 .00 0.00 0.13 o.2s 0.3 0.50 0.63 0.7 0.68 L.
FREQ. C12P1) ! FREQ. (1=P1)
8
2‘ L T T L T
c.
g
p' . -
x  NSEC: 16
@ o SRKAl E
3 + TAILOR
w3 AMER
07 x CRAMER DATA |
a
w 2z  CRAMER MODEL
ao
>0
| \A
d

10 Variance of PSD for MA(3) data using AVP on AR(5) model

68



o 8
8 4
[ —p —e— e = . T - b . o T U T T — T T
o I
: 8
o b w ’
x  NXECi 1
8 3
@ 6 MIEC: 2 o x NSEC: 4 1
m s+ NSECh 4 8, o SAKAI
o, [
e v i \.f-\’\ /\M %  MNSEC: 16 B + TAYLOR :
. I M
Gl /" AN ;\ R 2 CRANCR MODEL :‘YI‘J CRAMER MODEL
) : - \/\ /\/ x‘.:j v
7 l Vo R \\/\ .l o N
et ST g A
e - S
NG % G= e
g \_ \;__'_:a—— 8
ll:: - —— ‘ { 1 } ! 1 1 [-': 1. ! ! ! J. ; i}
0w 9. .25 ). 0.c. ).6 .75 X . '0.00 0.13 0.25 0.31 _ 0.50 0.63 0.75 0.60 1.00
0 v J.1) 0.25 4] ;'I(Lﬂ,l|:;’|| 0.63 0 0.69 1.00 FREQ. (1=1)
g
‘:l‘ T T T Bl T T T
c .
8
8 g
x  NSEC: 16
] ° SRKA| 4
+ TAYLOR

X CRAMCR MODEL .

1,S2.ER2(D3)

-6.

N
N
\

-18.09

3.0

Fig. 11 Mean square error of PSD for MA(3) data using AVP on AR(5) model

06



[
133

a

-

PORER

3.¢7

1.50

6.C2

4 cC

T T T T L A T
x  TRUE PSD .
o NSEC:i 1
s+ NSEC: 2 1
X NSEC: 4
7 NSEC: 16 .

2 A T
& ) s Pt
B 13 0.25 0.30 0.50 0.63 0.75 0.68 1.00
FREG.( =PI}
o
Q
w T T Ll T L T
8
" 4
8 |
<1 x NSEC: 4
SAKA
gt © !
~ 1
« s+ TAILOR
W]
X
&g
a 1
8
N\
)
g — g ] 7
YV 13 0.25 0. 0.50 0.63 0.75 0.68 V.00
FREQ.(1=P1)

Fig. 12

6.20

T T
8
ol J
8
- x  MNSECh 1
° SAKAL
8
o YLOR 1
« s AL
u
g
[
~t 1
8
- e
8 . e |
%.00 0.13 0.25 ©0.38 0. 0.63 0.75 0.08 .
FREQ.(1=PI)
g8
w T T T T T T T
2
«T -4
8\ i
nr x  NSEC: 16
o SAKAl
2
et tan Y 4+ TAYLOR ]
ui
= 4
O Y§§>&\\ —
) =y —
st ey
2
=L R
8
m } } } } ! ! :
‘0.00 0.13 0.25 0.63 0.7 0.60 '

0.30 0.50
FREQ. 1 1=P]

Mean PSD for AR(4) data using AVA on AR(4) model

16



a,.

16.C0

-6.00

[
it
L
[y
L7

VAR|A!
-26.20

.0

x  NSEC: 1
o NSECy 2
4+ NSEC: 4
X NSEC: 16
2z  CRAMER DAIA

0.0

16.C2

-17.20

V‘SQIQ.\':E (31

-8

-33.00

5.C0

-6.C0

50.0

NSEC: 4

x

SAKAI
TAYLOR
CRANER DATR

CRAMER MOODEL

Vi

N X 9+ o

Fig.

13

{
0.03

Variance of PSD

for AR(4)

16.00

Rl T T T T T T
8
whk J
x  MNSEC: 1
8
ot © SRKAI g
80 4+ TATLOR
-0
o= % CRAMER DATA
a
xXo
ga
gl ]
v
8
8l
' 1
8
8 } } } } . b }
'0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.68 1.00
FREQ.(1=P])
8
.£ T L T T T T T
8
“ 4
NSEC: 16
g™\ X
© x o SAKAL 4
8n + TAYLOR
-0
g’{ . x  CRAMER DATA
a
£
gr_ // ]
8
gl J
g —
8 ' | } 4 y i }
‘0.00 0.13 0.25 0.0 0.50 0.63 0.75 0.80 1.00
FREQ.(1=P])

data using AVA on AR(4) model

26



7
‘-e T T T 1 T T T
) x NSEC 1
w B
o NSECy 2
8. + NSEC: 4
@ 4
o x  NSEC: 16
(18
e z  CRAMER MODEL
i
(}) Y
93 N —
zg. Q
3 \/ -
o
o &
® B
"
€ —,
2 y | { | { i 4
‘0 (0 0.13 0.25 0.30 0.50 0.63 0.75 0.88 1.00
FREG.(1=P1)
8
] T T T T T T T
8
w R
x NSEC: 4
8
u; . o SAKA] B
8;} + TAYLOR
[ X  CRAMER MOEL |
w' /
(@]
O!B
3 E |
¥
8
g
g ) } ' y y j )
'v.uo 013 0.2s 0.63 0.75 0.88 1.00

Fig.

14

0.30 0.50
FIKEQ.11=P1)

16.C0

-17.0d

M.S0.ERR(CS)

-28.C0

-39.00

5.00

-6.00

F—SO‘OO

X 4+ O X

NSECe |
SRKAL
TAYLOR

CRAHER HODEL

0.25

-2.00

M.SQ.ERR(DB)

-26.C0

-14.00

-38.00

:50.00

0.3 0.0
FRFAQ. (V1 =P1)

Mean square error of PSD for AR(4) data using AVA on AR(4) model

€6



8 8
o T T v T 1 T b . © T T T T T T T
3 8
~T 1 w R
8 8
w x  TRUE PSD 1 - x NSEC: 4 h
o o NSEC: 1 8 o SAKAl
@ L
" 4 NSECy» 2 h e + TAYLOR b
] W
€ NSEC: 4
&2 X ! | 23
" > NSEC: 16 ~ |
8 8
R -
g} ] M S R ﬁ, T } Ty N
R 13 0.5 0.3 0.50 0.63 0.75 0.08 00 .00 0.13 0.25 0.38 0.50 0.63 0.7 0.88 1.00
FREQ. (1=P1) e ! FREQ. (1=P[)
8
w T T T T i T T
C.
2
.
8
" x  NSEC: 16 k
sAKAL
a
w
=} s TANLOR 1
o«
ul
B
(%] o —
o ]
8
= B
8
" | } } } } } }
'0.00 0.13 0.25 0.30 0.50 0.63 0.75 0.60 1.00
FREO.tL1=PI V¥

Fig. 15 Mean PSD for AR(4) data using AVK on AR(4) model

¥6



16.CO

NSEC: 1
NSECe 2
NSEC: 4
NSEC: 16

CRANER DATA

NSEC»
SAKAL

TAYLOR

CRAMER DATA

g
{ ! { 4 4 2 } |
.00 0‘.!) 0.25 0.30 0.50 0.63 Q.75 0. 68 ‘0.00 0.13 0.25
FREQ.(1=P1}
8
“ T T T
C.

g
ot e
8 x  NSEC: 16
o J

- sAKAl

a o

o8

o + TAYLOR

&' CRAMER DATA
5l ]
8
L8 4
8
2 } } .
‘.00 0.13 0.75 0.88 1.00°

Fig. 16 Variance of PSD for AR(4) data using AVK on AR(4) model

S6



8 8
2 T Li 1 T T T b L] ‘—‘-’ T T T T T T T
2 NSEC: 1 g
w -1 w h
NSEC 2 x NSEC: 4
8 8
b NSEC 4 i M1 o SAxAl ]
n NSEC: 16 o + TALOR
o3 =8
&e CRANER MODEL el %  CRANMER MODEL
w! /: L
a T — [+
u\g 7, 0'28
z?l: \ / ] z?} i
.
£l ) Rl
g 8
g } | y } { y ; } 4 } y ] y
'0.00 3 0.25 0.30 0.50 0.63 0.7s 0.88 1.00° 0.00 0.13 0.25 0.38 0.50 0.63 0.7 D’.Bﬂ 1.00
FREQ.(1=P1) FREQ. (1=PI)
8
N ¥ L T T T T T
c L] :
81
9[ A
< x NSEC: 16
8
ol o SAKAl ]
%‘g +  TAILOR
gsl % CRAMER MODEL
&3
o
8
t“? 3
8
RL
:
8
8 } } ! { { ;
'0.00 0.13 0.25 0.38 0.50 . 0.63 0.75 0.88 1.00
FREQ.11=P])

Fig.

17

Mean square error of PSD for AR(4) data

using AVK on AR(4) model

96



15.CO

12.5C

12.00

POWER
: €0

8
T T T T T 1o T b . o T T T T T T T
8
J 8 W
8 .
x  TRUE PSD E © x NSEC: 4 b
o MNSEC: 1 SAKAL
2
4 NSEC: 2 E u-‘ + TAYLOR b
(1]
x NSEC: 4 z
ag
2 NSEC: 16 E " E
8
} | { 1 : T 8 - - - ] pag—
%00 0.13 0.25 0.38 0.50 0.63 0.7s 0.e8 1.00 %00 0.13 0.25 0.38 0.50 0.63 0.7 0.68 1.00
FREQ.(1=P]) FREQ.(1=PI)
8
"e T T T ¥ T T T
C.
8
o i
8
@ x NSEC: 16 h
o SAKAl
g
(zm + TAYLOR "‘
u)
X
&g
- \\ i
= =%
8 ._J
ef 1
8
L 1 } } 4 } = 1
'0.00 0.13 0.25 0.3 0. 0.63 0.75 0.88 1.00
FREQ.(1=P1)

Fig. 18 Mean PSD for AR(4) data using AVP on AR(4) model

L6



[Rer-3]

VERIBNCE

-24.C3

J

2.9

-37.20

;-so.tr,

8
T T 1 T T L b . e T T T T T T T
8
n “ E
NSEC: 1
NSEC: 4
NSEC+ 2 8 x
4 et o SKAl 1
NSEC: 4 o
[ TAYLOR
NSEC: 16 o +
P % CRAMER DATA
CRANER DATA a
i
gL
8
8l
8~ [
2 } } | + ) } }
.00 '0.00 0.13 0.2 ©0.38 0.50 0.63 0.75 0.68
FREQ.(1=PI)
8
g T T T T T T T
c L]
2
g -
x  NSEC: 16
8
B o saxal i
8{} + TATLOR
§: X CRANER DATA
a
oo
ao
>
o~ -4
D
8
&L 4
T
§ —
8 { } 4 { { ] {
‘v.00 0.3 0.25 0.63 0.75 0.68 1.00

Fig.

19

0.30 0.50
FREQ.(1=PI)

Variance of PSD for AR(4) data using AVP on AR(4) model

86



8 8
g: T T T T T T T b L] .2 T T T T T T i
4 8
w E “ J
\ f 4 X NSEC. 1 o x  NSEC: 4
.E N \j\/ VI Heee: 2 . @ o SwAl 4
- \ N ' -
E}:}_ \ /./ } roEer 4 233' + TAYLOR
g_ Q o NSEC: 16 E:‘.r CRAMER MODEL /.
&) CRAMER HODEL o
vig Vg
IZ:: :ﬂ: i
g 8
k| £l
8 8
3 £ e 5 e { ! ) I 3 } 4 } I} l' r |
'0.00 0.13 0.25 0.38 0.50 .63 0.75 0.88 1.00 ‘0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.68 1.00
FREQ. (1=P1) FREQ. (1=P1)
8
lu\: T T T T T T T
C .
NSECs 16
SAKR|
TAYLOR
CRAMER MODEL
q
1
8
2 ' } ' ' — ? L
'v.00 0.13 0.25 0.30 0.50  0.63 0.7s 0.68 1.00
FREQ.(1=P[) -
Fig. 20 Mean square error of PSD for AR(4) data using AVP on AR(4) model

66



.38 0.50
FREQ.L1=P])

3 8
- T T T T T — T ") T T T N T T L
Iy b . !;
ol x  TRUE PSD T X heeet T
RV . o SAKAL
8 m
nT + NSEC: 2 T + TR 1
x  NSEC: 4
€ 2
2™ 2z NSEC: 16 P
w w
b 3
&g =7}
e 3
ol 01' e
S ~?\“4;,—_—1--——;-—‘ >y S ‘\\\*—r~—g__4 1 1 I !
¥ U s 4 4 i 4 ¥ ) o ¥ \J
s s PP A Ty rE™ o o8 T .00 V.00 0.13 0.25 0.38 0. 0.75 0.89 1.00

SO 0.63
FREQ.U1=P])

8 2
“w T T T T T T v T T T T T T T
d L]
= ®
*T x  NSEC 4 h ot x NSEC: 16
o  SRKAl o SAKAL
A 8
T + TAYLOR ) LJ3 ¢+ TAYLOR
2 ®
o h ~T
@ [+ 4
v %
& I T3
8 R
ol b ol
%
o> ;/ —_—
] PP S L ' | o s SPEREE = } 4 ' -
V.o 0.13 0.25 0.3 0.<0 0.63 0.75 o.es 1.00 %00 0.13 0.25 0.38 0. 0.63 0.7s 0.68 1.00
FREQ. (1=P1)

Fig. 21

SQ
FREQ.(1=P1)

Mean PSD for ARMA(3,2) data using AVA on AR(5) model

00T



8 8
2 L T T T T T T 2 T T T T T T T
£ . 8
er x  MSEC: 1 e x  NSEC: 1
8 o NSEC: 2 8 o SAKAL
e el
T s NSECH 4 ! + JATLOR
1] 4]
SN % NSEC: 18 o8 CRAMER DATA
el be
&'t CRANER DATA g' CRAMER MODEL
&8
>g | R
4 ‘ g
8 8
o o
T M E
S
8 E %f
a ' ) I 1 ! ! L w 4 } 4 } + — 4
‘0.00 2.13 05 0.38 0.50 0.63 0.75 . '0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.68 1.00
FREQ. (1=P() ¢.es 1o FREQ.(1=PI)
& 8
c ;
2 T T T T T T —T 4 T T T T T T L
8 d.
~
ot [\\ i+
> x  NSEC: 16
8
o & o SAKAL o
T NSEC» ol ]
@ a s TAYLOR
28 o SAKAI a3,
wo S %  CRAMER DATA
(91 4 Wi
P + TAYLOR P 4
2 & 7  CRAMER HODEL
&a CRAMER DATA Eem
>0 X gn!
K z  CRAMER MODEL 1 8l i
8 .
o :
91 J 21 R
L}
£
g 8
) neas o; 50 0553 0575 E‘ee 1.00 8 } ‘ } } } } }
) 1= ) N : - 0.00 0.13 0.25 0.39 0.50 0.63 0.75 0.88 1.00
FREQ. (1=P1) FREQ.(1=P1)

Variance of PSD for ARMA(3,2) data using AVA on AR(5) model

I0T



8
g T L T T T T T
8 LH
oT r:-‘
Z 1==]
8
2
-1 x  NSEC: 1 1
m
a3 o NSEC: 2
&g
W s NSEC: 4 T
o
g %  NSEC: 16
g
' 2  CRAMER MODEL
8
°
b 1
8
3 4 } $ 5 } Ir i
‘0.00 0.13 0.25 0.35 0.50 0.63 0.7 0.89 1.00
FREQ.(1=P])
8
g T T T T RJ T T
8
il
8
o
3
o
o8
&8
&
o
Vo
2
®

-40.00

p-sn.oo

10.00

-10.00

M.SO.ERRIDB)
-20.00

-30.00

~40.00

NSEC» 1
SAxAl
TARYLOR

CRAMER MOOEL

8
2 4 4 { } { } 4
‘0. 0.13 0.25 0.38 0.50 0.63 0.75 0.68 1.00
FREQ.(1=P1)
8
@
- AJ T T T T T T
8
[}
8
¢
@
o8
[
& TAYLOR
o
g CRAMER MODEL
o
& 4
8
& 4
g8
8 } } 4 } } } :
‘0. 0.13 0.25 0.39 0.63 0.75 0.88 1.00

0.50
FREG.t1=PI)

Fig. 23 Mean square error of PSD for ARMA(3,2) data using AVA on AR(5) model

4o}



PONER

1.5

2.0

€0t

o
o
T T T w T
o
TRUE PSD < NEC: 4
HSECH saal
b
NSEC 2 - TAYLOR
NSEC: 4
S
NSEC: 16 o
o
ur
é()
3
-
@
(=]
2 Sl
=i} } } e
0.25 0.38 0.50 0.68 1.00 U . 0.25
FREQ.(1=P])
o
w
- T
K
@ x  NSEC: 16
o SAKAl
8
n + TAYLOR
14
~
@
i)
3
84}
r
(=}
~
8 ‘Ak-!-,w,_—!;;.—_./.
%00 0.13 0.25

Fig. 24 Mean PSD for ARMA(3,2) data using AVK on AR(5) model



8 8
g T T T b L] E T - T Bl Lo L T T
o g
ol x  NSEC: 1 of x NSEC: 4
8 o NSEC: 2 I o SAKAL
] e
T 4+ NSEC: 4 ok + TATLOR
m @
e NSEC: 16 on % CRAHER DATA
(WY . ul;
o CRAMER DATA 70 2z  CRAMER MODEL
a
43 &8
>a n )
&) HER\Y
‘
8 // 8 \\
o o .
e 4 gt
' \3\~ =" > \t:/;/
=1 AN
8 8 =
2 . 4 } { } } } 2 y | y | | | |
‘o Q.13 0.2s 0.38 0.50 0.63 0.75 0.88 1.00 ‘v.00 0.13 0.25 0.31 0.50 0.63 0.75 0.60
FREQ.(1=P1) FREQ. (1=P1)
8
c.
- T T T T T LI - T
C. \
8 S——]
of x NSEC: 16 b
—_
8 o SAxal
]
' +  TAYLOR 1
x  CRAMER DATA

Fig. 25

CRAMER MODEL

o

}

0.13

' '
0.25 0.30 0
FREQ.(

.50
1=PI)

{
0.63

0.75

0.08 1.00

Variance of PSD for ARMA(3,2) data using AVK on AR(5) model

P01



g 8
; b s
[ Jp——— . v f T , r . = T T T T L T T
L
3 8
8 x \4\ ot .
o - —
i/f Ry =
8 g
2t NSECH 1 o x NSEC: 4 .
“'"\ om
G NSECY 2 23 o SAKAl
& is
ai NSECH 4 Lt s TANLOR 1
: (9]
33 NSEC: 16 ::?8 % CRAMER MODEL
£, Ri
“ CRAMER HOOEL - ' 1
o . 5
g . '
!
8 8
ﬁ 3 1 1 1 I Il 3 @ % } I } 4 4 + 4
‘0. ) 0.25 0.30 0.50 0.63 0.75 0.e8 1.00 0. 0.13 0.2s 0.38 0.50 0.63 0.75 0.68 1.00
veo o FREQ.LizPL) FREQ. (1=P1)
8
g T T T T T T T
Co
8
wr x NSEC: 16
8 o SRKAl
8l
~ +  TALOR 1
o |
231\ % CRAMER MODEL
@
-3 ]
&3
o
8
£
8. ]
g
L3 4
8
) t } 4 ¢ } -r 4
‘0,00 0.13 0.25 63 0.75 0.68 1.00

Fig. 26

0.38 0.50 0.
FREQ.(1=P]) -

Mean square error of PSD for ARMA(3,2) data using AVK on AR(5) model

SOT



8 8
£ T T T T T T b L] w T T T T T T
8 ©
R 1 <t MSEC: 4 1
8 . sAxAl
&1 x  TRUE PSD 1 ol TAYLOR 1
NSEC: |
8 ° ' g
st NSEC: 2 ot 1
g * & :
%
3 £Ct 4 Y
2y x oo 2 ~
=r Z NSEC: 16 =T 8
8 s
vl ol T
-
";Zl/ \
o] — } ’ B i } Bl - — g 1 } | |
%A 0.13 0.25 0.38 0.50 0.63 7S 0.88 1.00 % [V ] 0.2 0.30 0.50 0.63 .75 0.00 1.00
FREQ.(1=P1) FREQ.(1=P])
8
R T T T T T T
Ce.
8
8 x NSEC: 16 ]
8 6 SAKAl
<
~ ¢+ TAYMOR )
8
-]
[' 4
L)
X
£8
o
8
o
/7A’<’AA&\\'~
- et ST
Q' 00 0.13 0.25 ) 0.75 1.00

0
FREO 0=Pl

Fig. 27 Mean PSD for ARMA(3,2) data using AVP on AR(5) model

901



10.00 25.00 40.00

-5.0

VARTANZE(D3)
-35.00 -20.CC

&S0.00

8
T T T T T T \ b . = T T T T T T T
8
I x  NSECs 1 ] oT x  NSECe 4
o NSEC: 2 8 o SAKAl
o
+ NSEC: 4 v +  TALOR 1
m
% NSEC: 16 /Q\g o8 CRANER DATA
: e o 4
CRAMER DATAR g' ’ CRAMER MOOEL
Eﬁ
aqo
\ >a
.1 el ]
3
a
i h
N
8 =
) y ; y ¢ | } g ) — y y { !
o0 0.13 0.2% 0.38 0.50 0.63 0.75 0.88 1.00 ‘v.00 0.13 Q.25 0.36 0.50 0.63 0.75 0.88 1.00
FKEQ. ¢ 1=PI ) FREQ. (1=PI)
8
9 T ¥ ¥ T T L] T
Ce
8
Kr x NSEC: 16
g o SAxAl
2 +  TAYLOR
[o2]
S¢ % CRAMER DATA \
[TV hyd -
W -4
g- CRANER MODEL
e
Bl ]
8
8 s
2 T } } } }
‘u. 0.25 .63 0.75 0.00 1.00

Fig. 28 Variance of PSD for ARMA(3,2) data using AVP on AR(5) model

LOT



8 8
‘;‘ A T T T T T T b . e T T T T T T T
8 g
e x  NSECs 1 °r x  NSEC: 4
g o NSEC: 2 8 o SAKAl
. o
2 + NSEC: 4 T N TAYLOR 1
a ~-4 m
98 % NSEC: 16 W% Og %  CRAMER MODEL
™ . 4 @S
oy CRAMER MODEL 1 arl _
o Q
g ‘38
i 8 )
8 8
0l 4 < .
v '
8 8
] i 3 3 1 L 1 4 b + ' + } ) ' } o
K )3 ). . .75 0.80 1.00 ‘0.00 0.13 0.25 0.38 0.50 0.63 0.7 ©0.08 )
G C FREQ. L1=P1)
8
o
- T T T T T T T
C L]
8
Kr x  NSEC: 16
o SAxAl
| + TAYLOR
o
=5 CRAMER MODEL \.-
[ 4t
aw -4
&
o
8
=g i
\
8
L3 4
"
8
a 't 4 } i 5 e !
'v.o0 Q.13 0.2 0.63 0.75 0.08 1.00

Fig. 29 Mean square error of PSD for ARMA(3,2)

data using AVP on AR(5) model

80T



POXER

g b #
e T T ] L T T T Y . - T T T T T T T
K g
~ 1 " E
8 8
- X TRUE PSD N ~ X TRUE PSD T
o HELCH 4 SEC. & HELCH 4 SEC.
4 4
1 ¢ HELCH B SEC. 1] a:'; ¢ HELCH 8 SEC. 1]
w
% AVA 4 SEC. 3 % AVK 4 SEC.
o ag
= 2z AVA B SEC. h - Z AvVK B SEC. 1
r© ®
ol T ) P J
. oy
N [ S E e S o 8 S—r—=e—, !
a } } } } } } } d } } } } + } }
V.00 0.13 0.25 0.38 0.50 0.63 0.75 0.80 1.00 YV'.oo 0.13 0.25 0.38 0.50 0.63 0.75 0.68 1.00
FREQ.(1=P]) FREQ. (1sP])
8
[ T T R T T T T
c L]

2

ot p

8

x  TRUE PSD 1

o HELCH 4 SEC.

4.50

s HELCH B SEC. T

AVP 4 SEC.

POWER

3.00

AvVP B8 SEC. 7

1.50

0.0

Fig. 30 Mean PSD for MA(3) data using Welch method and MBSE (AR(5) model)

60T



N X 4% o X

HELCH 4 SEC.
HELCH B SEC.
AVK 4 SEC.
RAVK 8 SEC.

CRANER DATA

8 8
o T T T T T T T b . o T T
2 i
o e ~
8 HELCH 4 SEC. 8
d . 1
! HELCH 8 SEC. -
8 80
ou AVA 4 SEC. =
ba Hel
i’ AVA B SEC. &'
I «
e CRAER DATA a8
>0 I }»
5 WX E :
p& \ ]
S -
2 ~ _ g
o \\ X:/- W
d 1 I} I} 4 ! 5 ! g. 43 IS
‘v 00 013 025 o 06) 0.1 v.00 1.00 o 0o 0.13 0.25
FREQ.(1=P1)
8
w
- ¥ T T T A} T T
Ce
2
= 1
§ . HELCH 4 SEC. ]
a WELCH © SEC.
=3
%’»f AvP 4 sEC.
o AVP 8 SEC.
a8
2 CRAMER DATA |
2
A
!
©
8
8 . .
‘v 00 0.13 0.25

Fig. 31

Variance of PSD for

MA(3) data using Welch method and MBSE (AR(5) model)

o1t



9.00

€3

~4.00 2

M.SC0.ERRID3)
-10.5

3.8%

-17.C5

300

}

N X 9% o X

HELCH 4 SEC.
HELCH B SEC. ]
AVK 4 SEC.
AVK 8 SEC.

CRAMER MODEL

and MBSE (AR(5) model)

8
T T T 1 - T T b . o T
\\\ ] z
\\\{4\\
i £ x  HELCH 4 SEC. g
‘\ o HELCH B SEC. Tt
+ VA 4 SEC. 8g
@g
% AVA B SEC. T g3t
2z  CRAGER MODEL 8g
- £i|
A@\/\/\/ g
/1:._. Se4 ¢l &t
\/ 8
N 1 4 I 4 ' } R' '
0.13 02 d’BFqI«EO.:;I?PI) 0.63 0.75 0.00 1.00 '0.00 0.13 0.25
8
e T T T T T T
C.
8
9 -
8
~T x  HELCH 4 SEC. A
68 o HELCH 8 SEC.
st o AP asec.
vc"gg x AVP 8 SEC.
1 2z  CRAMER MODEL
8
8
N
8
ﬂ 4 3 ] ! } 4
‘0.00 0.13 0.25 0.3 0.50 0.63 0.75 0.60 i
FREQ.(1=P1)
Fig. 32 Mean square error of PSD for MA(3) data using Welch method

TITT



8
o T T T T T T T o T T T T —T
8 3
~T E ~T
8 8
ol x  TRUE PSD E v
WELCH 4 SEC.
8 ° ] 8.
" o HELCH 8 SEC. &
il u
é, . % AVA 4 SEC. ot
. \ 2 AR BSEC. .
&l \\.,, | 2
\ .
8. + l + §i&' - = 9~——ﬁ-1"‘",‘ 8 g J }
Yw o3 vz L P'ls;opl , o6 075 oes  1.00 Vw o013 o0z o0 B0 05, O
8
L J v ¥  § T
Ce
8
T .
8
wl x TJRUE PSO T
g o HELCH 4 SEC.
o 4 HELCH 8 SEC. ]
e x AVP 4 SEC.
agt:
o z AvP B SEC.
8
8 \
V. wo 0.3
Fig. 33 Mean PSD for AR(4) data using Welch method and MBSE (AR(4) model)

N X 9% o X

TRUE PSD
HELCH 4 SEC.
HELCH B SEC.
RVK 4 SEC.

AVK B8 SEC.

e
B B

T e
0.7s 0.68

1.00

211



8 8
£ T T T T T T T b L 2 T T T T T T T
g x  HELCH 4 SEC. 8 HELCH 4 SEC. |
w ‘\,\ w
{\ o HELCH 8 SEC. WELCH 8 SEC.
8] "\ 7 8
> ~. AVA 4 SEC. ; AVK 4 SEC.
6l \/ + ] @ ]
p $ AVA 8 SEC. @ AVK 8 SEC.
88 = x 88 SE
[N N~ z CRAMER DATA | e CRAMER DATA
o o3
a I
gy g8
>4 >0
gl ] 81
. ,
8 8
4 X gL
" 1
8 8 \\
9 4 } 4 i f * f/ " 3 i I + — 4 f +
K 013 02 ).38 0 50 3 0.7 0.08 1.00 '0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.68 1.00
v ! B %o 0% FREQ. (1P1)
8
o
- T T T T T T L
C L]
8 X HELCH 4 SEC.
“w E
© HELCH 8 SEC.
8 ¢+ RAVP 4 SEC.
wi -4
. X AVP 8 SEC.
]
og R
|§: 2 CRAMER DATA
E.
T
gl
8
L3
g v
2 ) } } } } { }
'v.00 0.13 0.25 0.63 0.75 0.60 1.00

Fig.

34 Variance of PSD for

AR(4) data using Welch method and MBSE (AR(4) model)

€TT



16.00

.2l -6.00 S5.00

-17

M. SC.ERR(DS)
-23.03 :

-39.00

o Se.®

8
As T T T T T T b . e T T T T \ Y T
N x  HELCH 4 SEC. _ 5 x HELCH 4 SEC. |
¥ o HELCH 8 SEC. o WELCH 8 SEC.
8
+ AVA 4 SEC. | b s+ AVK 4 SEC. ]
\ x AvA 8 SEC. & x AVK 8 SEC.
z  CRANER MODEL g__' . 2z  CRAMER MODEL
\, , !
7 88
£2
Mrj 1 &t 1
8
4 sl p
i
S—— R ¢
i J ]
4 } 4 + + + + 3 ¥ g } ¥ 0.63 0.75 0 60 1.00
). ). 2 0.38 0.0 0.63 0.7 0.00 1.00 '0.00 013 025 0.38 0.5 i
w 0.13 0.25 Frea. Ciskl) FREQ.(1=P])
g !
é T T T T T T T
Ce
8K X  WELCH 4 sec. |
w
o HELCH B SEC.
8
> RVP 4 SEC.
“.' o
o AVP 8 SEC.
=]
e CRAMER MODEL
wif
o
8
Ez; |
8
Rl
8 —_
8 i 4 Il J ,’ ? e
‘0.00 0.13 0.2s .63 0.75 0.08 1.00

Fig. 35 Mean square error of PSD for AR(4) data using Welch method

and MBSE (AR(4) model)

PTT



STT

2
- T T T T T T b . - T T T T T T T
k B
g x  TRUE PSD - x TRUE PSO -
o MELCH 4 SEC. g o HELCH 4 SEC.
8 3
at o+  HELCH B SEC. - o HELCH B SEC.
x AVA 4 SEC. x AVK 4 SEC.
K 8
. AVA 8 SEC. ~ Z RvK B SEC.
&"l Z S
5 g
&2 ag
: g
o h o}
/'}
8. ‘\~“;." =—:l:cciyslmes ‘{‘11:3./‘ 1 1 ir\"‘:‘ —2 "'_‘-r/ 1 1 1 1
U oo 013 oS 0 38 0.50 0.63 0.75 0.68 1.00 . 0.13 0.25 0.38 0.50 0.63 0.7s 0. 1.0
FREQ.(1=P]) FREQ.(1=P])
3
- T T L ——
Ce.
K‘ 4
wT x TRUE PSD
o HELCH 4 SEC.
8
wt 4 HELCH 8 SEC.
x AVP 4 SEC.
8
~T 2z AvP 8 SEC.
[ 4
w
2
€3
r
d&\
8] g .. et} - N N
%00 0.13 0.2s 0.38 ). 0.63 0.7 0.68 1.00
FREG.}=Pl)

Fig. 36 Mean PSD for ARMA(3,2) data using Welch method and MBSE (AR(5) model)



o
10.00

o

L]

10.00

8 8{
o o
8 8
e g
Tt HELCH 4 SEC. = X  HWELCH 4 seC.
- m
m
o3 o HELCH 8 SEC. cen © HELCH 8 SEC.
wo Y 4
%_"-3 - s AvA 4 sEC. ] ?’ + AVK 4 secC.
€3 % AVA 8 SEC. §8_ % AVK 8 SEC.
>5 R 4
b 2  CRAMER DATA : ¢ z CRAMER DATA
8 8
o < J
’ - - .
8 = 8
8 + J + + 4 } ¢ a‘om AT = e R e o= o 1.00
) E) AT IS 0.08 1.00 ' : ' "FREQ. (12P1) ’
g '
o.
- T T T T T T T
Ce
8
oT x  HELCH 4 SEC.
8 o HELCH 8 SEC.
o
v + RVP 4 SEC. T
)
og x AVP 8 SEC.
Wwo .
N 2z CRAMER DATA ]
a
g8
>gl J
.
8
<
T i
8
B i I 5 . ! } ! L
‘0.00 0.13 0.25 0.39 050 . 0.63 0.7s 0.68 1.00
FREQ.(1=PI)

Fig. 37 Variance of PSD for ARMA(3,2) data using Welch

method and MBSE (AR(5) model)

911



M.£0.EPRICS!

8 8
2 T T T T T ¥ T b . e T T T -7 T T T
a
9
. A g
8 8
] e
o g HELCH 4 SEC. 7 T x  MELCH 4 SEC.
m
0 ® HELCH 8 SEC. 23 o HELCH 8 SEC.
o
' + AVA 4 sEC. 1 Eng ¢ AVK 4 SEC, T
o
M x AVA 8 SCC. ‘28_ x  AVK B SEC.
2 R
| z CRANER MODEL ~ : z CRAMER MODEL |
8 8
gl ! g ]
g 8
2 } y 4 ) } 4 } 8 } } } 1 } ' 4
u W 013 025 0.3 0.50 0.63 0.75 0.08 1.00 '0.00 0.13 0.2 0.38 0.50 0.63 0.75 0.68 1.00
FREQ.(1=P1) FREQ.{1=P1)
8
3 — T T T T T T
C.

8

wl WELCH 4 SEC.

8 HELCH 8 SEC.

4

AVP 4 SEC.

RAVP 8 SEC.

<17.00
N X % o X

CRAMER MODEL

M.SG.ERR(DB)
-28.00

-39.00

8
3 } Il 1 Il 4 }
‘o Y

Fig. 38 Mean square error of PSD for ARMA(3,2) data using Welch method

and MBSE (AR(5) model)

LTI



1.E+8

NC.

0 OPS.

(] [ ] [l
.00 8.83 16.75 24.63 32.50 40.38  48.25 56.13 64.00

NO. OF SEC.

Fig. 39 Number of operations versus number of segments

811



TANZE(DD)

ves

8 8
(O
] | . ]
T T T T T b . b T T T T T T T
NOOCL FR(S)  DATA MAC3)
8 MODEL AR(4)  DATA ARI4)
w . 8
& J
8 ) NSEC: |
¥ NSECH | 1 ‘f NSEC+ 4 AVA
'
o NSEC+ 4 AVK
B NSEC: 4 AVA 83 '
o NSEC: 4 Avk s NSEC: 4 AVP |
o3
a
g NSEC+ 4 AVP o
o aos
3 >4
\
; =N g
S ® 1
13 =
: g
s.: , . , , \ . \ g &
'0.00 0.13 0.25 0.33 0.50 0.¢3 0.75 0.60 1.00 g } ! { g } + +
FIEQ. 1 1=P1) '0.00 0.3 0.2s 0.30 0.50 0.63 0.75 0.88 1.00
FREQ.11=P])
g
o
- T T T T T T T
C. HODEL ARIS)  DATA ARMA(3.2)
8
o x  NSEC: 1
8 o NSEC: 4 AVA
o
N 4+ NSEC: 4 AVK ]
o
og % NSEC: 4 AVP
Wwo
%N: . -
g
ro
aqo
i
W -
8
o
el 4
d ’
==
8
8 } { { } } y ;
v 013 025 0.30 0.50 0.63 0.75 0.63 1.00
FREQ.11=P1)

Fig. 40 Variance of PSD estimates of modified Burg spectral estimators

6TT



8 8
ﬁ T T T T T T L] # T T T L T T L)
b .
8 X ‘P/6'1 d ; X lP/GaS
: | + - ]
O 8'p/218a)° o 8'P/218a,°
8 t 8'p/316a)° L8 + &'p/3t6ay’
T‘JE | Om [
2 X s'p/atsa 2 X &'p/a18a,t
8 8
yol > \/r\ = " yh I
& g /‘
E‘-j . | E_ AN .
(<]
8 G r
; — ¢ <
8 8
g‘ J y } } f ; } kﬁ } 0’25 0’33 0550 TJ’S; 0’75 olm 1.00
y ) . ). ). . g ‘0. 0.13 A A A . A A K
0.00 0.13 0.25 OFSFaREO. :Jls:Pl ) 0.63 0.7 0.88 1.00 0.00 1 FREQ. CioP1)
g 8
L4 T T T T B T T 2 T T L] T T T T
G d.
: G
H X 6B/8a, 1 | X 6p/sa, |
. & 8'p/218a," & §'p/218a,8a,
m -
Y- 8°P/318a,’ w0 4 8'P/318a 6a 8a
o7 + 4 s PRLPLLEY
.8 X 8'P/atsa,t = X 8'P/416a 8, 8a 82,
wi | : wet S :
e >
- -
st L
o >
§~ 1 té‘.’ - 1

-116.6

-21.67

I } I 4 I } — I I Il 3 } }

g-mm

Fig4l

&35.00

03 0% 063 075 088 1.00 " 013 025 03 _ 05 06 07 o8 V.00
FREQ.(i=P1) : ® FREQ. (1=P1) >

Partial derivatives of PSD with respect to AR parameters (AR(4) model)

0Z1



Chapter V

CONCLUSION

The effect of segment averaging on the quality of the
Burg spectral estimator has been analyzed. When a segment
averaging method is applied to the Burg spectral estimator,
we define the resulting estimator as a modified Burg
spectral estimator (MBSE). Three different types of segment
avefaging are considered. The first one (AVA) averages the
autoregressive coefficients computed from each section. The
resulting averaged autoregressive parameters then yield the
power spectral density estimate. The second one (AVK)
averages the reflection coefficients evaluated from each
segment. These averaged reflection coefficients are then
used to compute the corresponding spectral density estimate.
The final approach (AVP) evaluates the power spectral
density estimate associated with each segment, and then
averages these directly.

Our numerical simulation studies reveal that the AVA and
AVK methods are better than the AVP method, particularly
with respect to the variances of the power spectral density
estimates. The AVP method gives the largest variance and the
other two methods give almost the same but considerably

lower variance than the AVP method, especially around the
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peak frequencies of the actual power spectral density.
Moreover, the power spectral density estimates of the
modified Burg spectral estimator wusing the AVA and AVK
methods are comparatively smoother than the corresponding
estimates of the same estimator employing the AVP method. It
is observed that the variance of the MBSE estimates follows
the theoretical Cramer-Rao lower bound even for a moderate
number of data points. When the number of samples per
segment 1is a few times the order of the estimated
autoregressive model this amount of samplés is considered
moderate. As the number of sections exceeds a certain level
so that the number of observations per section is small
relative to the dynamics of the data, the efficiency of the
modified Burg spectral estimator declines rapidly.
Comparative study shows that the AVA and AVK methods give
better estimates in terms of variance than the Welch
procedure. We note that the AVP method and the Welch
procedure use the same averaging technique but different
spectral estimators. The 1latter must explains therefore
that the AVP method gives relatively poor estimates at
radian frequencies O, wp, and . wp is the peak frequency of
fhe actual power spectral density.

To analyze the statistical properties of the modified

Burg spectral estimator, two approximation methods are
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formulated, namely the Sakai approximation and the Taylo:
approximation. The basic difference between these two is
that in the Taylor approximation we neglect the bias and
variance of the gain factor of the power spectral density
estimate. The expected mean and mean square error predicted
by the Sakai method follow the corresponding sample mean and
sample mean square error more closely than the prediction
from the Taylor method. Both approximation methods, however,
give the same value for the variances of the power spectrél
density estimates. These results imply that the variance of
the gain factor has 1little effect on the variance of the
power spectral density estimates whereas the bias of the
gain factor has a considerable effect on the expected mean
of the estimates. Both methods employ a recursive technique
to find the approximate mean and variance of the estimates
of the modified Burg spectral estimator. The following
assumptions are made in the derivation of the approximation
methods:
a) the given process 1is zero mean, gaussian, wide sense
stationary, and ergodic,
b) the gain factor and any one of the autoregressive
parameters of the power spectral density estimate are

uncorrelated,
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c) reflection <coefficient at mth stage is weakly
correlated with any one element of the corresponding
autoregressive coefficient vector of (m-1)th stage,

d) samples in successive segments are uncorrelated,

e) the probability density function of any reflection
coefficient is concentrated near its mean value.

These assumptions were found to be practically tenable for a
moderate number of data points and hence both the Sakai
approximation and the Taylor approximation methods give good
predictions. For very short records however, both these
methods fail to give the expected mean and variance of the
estimates since the last three assumptions are not wvalid.
The algorithms, used for evaluating the approximate mean and
variance of the modified Burg spectral estimators, may be
modified to compute the same for any autoregressive spectral
estimator. Only the derivation of the mean and variance of
the reflection coefficients will change from one type of
autoregressive estimator to another. This is a result of the
different reflection coefficient definition for each type of
autoregressive estimator.

A lower bound for the variance of a reflection

coefficient using the Burg.method has been derived. This
bound found to hold for the first order autoregressive

model. For reflection coefficients of higher order stages
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however, it 1is difficult to confirm experimentally the
validity of this theoretical lower bound, because the exact
statistics of the forward and backward error segquences are
not known. Further investigation is needed to determine
whether this theoretical bound provides a tight bound.
Considering all the aspects of the three averaging
methods we like to recommend the AVK method for the modified
Burg spectral estimator. The AVA method has almost the same
characteristics as the AVK method. We do not suggest to use
the AVP method. It is found that when the number of data pér
section is moderate the performances of the modified Burg
spectral estimator do not differ too much from that of the
Burg spectral estimator. However, the total number of
operations 1is higher for the modified Burg spectral
estimator. So, for moderate amount of data it is better to
use the Burg spectral estimator. Finally, from this
investigation it is found that segment averaging does not
appreciably reduce the variance of the modified Burg
spectral estimator. This is logical because the modified
Burg spectral estimator performs close to the theoretical
Cramer-Rao bound even for a moderate number of samples. The
only advantage of modified Burg spectral estimator therefore
lies in operating on a smaller number of samples per
segment, but doing it more often, instead of operating once

on the full length of data.
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Appendix A

DERIVATION OF EQUATION (3-6)

AP (w) = P(w) - P(w)

3 52 52
Ia(ed¥y1z ja(ed?y)e

262 1A(e?¥) 12 - §2a1R(edY) |2
1R(e?®) 121K (e?¥) )2

(A-1)
where
AG? = §% -3?2
a s s L
AlA(e??) 2 = |A(ed?) )2 - |A(edY) 2
Now
. p . .
Aradwyi2 = A jwi, ,
|A(e” ") | [1+ L 3 p® |
i=1
p . - p 0 .
_ ~ Jwl A Jwl, 2
= |1+ L ailpe + L Aailpe |
i=1 i=1

= 1A(edY) + £T(eI¥)na)2
= 1R(ed¥) 2 + R(e 19T (390l

+ Reed®)gT(e )08 + £T(eI%)a2a2Tg(e7Y)
= = = (A-2)

130



131

where
A A ~

baj,p T 2i,p 7 %i,p

E(ejw)z [erlejzwl e .. /erp]T

So,
218 (e7%) 12=2re (B (e7°)5T (277431457 (7*) 02081 (73Y)
- - - (A-3)
Assuming
2Re (K (eI T (e739)aa) >> £T(eT¥)at02TE (7Y
| = = = (A-4)
we get
ala(ed¥) |2 = 2re(K(eT¥)ET(e7T%) a4
= (A-5)
Again we assume that
171839y 12 = 1/]A(7Y) 2
(A-6)

Substituting (A-5) and (A-6) in (A-7), we have

AP (w) = _:_l,___ (452 - 257Re (A(e3)gT (e Jw)Agl]
1B 12 K (eI¥) |2
Ty Ll CLld WA CRA T
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Therefore,
E(aB(u)] = B(a) [3-2E(857) - H'(eI*)E(4d)]
(A-8)
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Appendix B

TAYLOR SERIES EXPANSION OF PSD FUNCTION

Expanding P(a) in a Taylor series

Ay = 1 [ § \n
P(a) = P(a) + & n| (Aa15¢1 + .. F Aapw ) P(g)l2=§
n=1
(B-1)
where
o T
a [al, a,, , ap]
Aa, = 3. - a
i i i
Hence,
AP(a) = P(a) - P(a)
P 5P i i 62P
=3I Aa,——— + I I Aa. . ha.., =
ilée 1 il 7iz2 2!6¢ilﬁ¢i2
il=1 il=1 i2=1
P p
n
5P
+ ... + I L Aa.,...Aa, |
il ip n!6¢il...5¢ip $=a
il=1 ip=1
(B-2)
Here
2
P(a) = —
A(z)A(z"1)
(B-3)
So,
i
6P _ _ z
5a. - 2P[Re{A(z)}]
(B-4)
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§2p  _ 2t 23 p2 .
Z!Gaiaaj = (4P)Re{A(Z)}Re{A(z)} - ;—2- Re{zl 3}
(B-5)
2 - - (8P)Re (i JRe{E 2
3!6ai6aj6ak - ( ) e{A(z)} e{A(Z)}Re{A(Z)}
2 - k
+<§§3Re{zl J}Re{A%Z)}
2 s j
+‘§§3Re{zk l}Re{A?z)}
2 - i
+ 2 Re(z] k}Re{A?z)}
(B-6)

and so on. If Aa is within the region of convergence and all
the partial derivatives of P(a) with respect to the AR
coefficients exist, the Taylor series expansion of P(g)
converges. Since the poles of a stable AR model are not on
the unit circle in the z-domain, the above conditions of
convergence are safisfied. However, when the polés approach
the unit circle the rate of convergence goes down. The
partial derivatives of P(a) with respect to the AR
coefficients are shown in Fig. 41. It is observed that the
derivative increases with the order near the location of
poles. So, if (g-g) is not sufficiently small the series
will not converge monotonically; the series will have damped
oscillatory behavior. Here we observed that the rate of

decrement of (§-§)n is higher than the rate of increment of
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the nth order derivative. As a result the series converges.
But when we take the expected value on botb sides of (B-2),
the series does not converge monotonically. Because even if
(a=a)n is small it does not guarantee that E(a-—a)n will be
small. For this reason we find that the third term on the
right hand side of (3-10) overestimates the error {AP(w)}

near the location of poles which are close to the unit

circle in the z-domain.



Appendix C

DERIVATION OF EQUATIONS (3-19) AND (3-20)

Let g(y,z) be a function of two random variables y and
2. Expanding g(y.,z) into a Taylor series about the mean

values of y and z and then taking the expected value [33]

yields
2 2 2
Efg(y.z)} = g(ny,nz)+uyo ; g+uyza J *Hg, g
28y? dydz 2622
(C-1)
and
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(C-2)
where
n, = E(y), n, = E(z2),
Hyo T Var(y), W, = Var(z), Myz = Cov(yz)
(C-3)
Let
A
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(C-4)
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Substituting (C-4) in (C-1) and (C-2) we get

Bk ) = Y - wz o, lvoz
m n, n, n,
(C-6)
and
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Let us now derive equation (3-20).
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where
m-1 m-1 N R
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i=0 j=0

In the above derivation we have treated the predictor

).

coefficient Qi m to behave as the constant E(Qi
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Using the fourth order moment rule for the gaussian process,
we get
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