
A Knowledge-Based Simulation Optimization System

with Machine Learning

by

Ingrid W. M. Crouch

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Managenicnt Science

APPROVED:

fo PR
oe bo (hees

- Loren P. Rees, Chairman

Clim Q f VY ing ke KL pe

Allen G. Greenwood forry R. Rakes

° /? A

WV co? . \

he 2 (A Pe Yh A
Robert T. Sumichrast Bernard W, Taylor, il

May 6, 1992

Blacksburg, Virginia

A Knowledge-Based Simulation Optimization System

with Machine Learning

by

Ingrid W. M. Crouch

Loren P. Rees, Chairman

Management Science

(ABSTRACT)

A knowledge-based system is formulated to guide the search strategy selection process in simulation

optimization. This system includes a framework for machine learning which enhances the know-

ledge base and thereby improves the ability of the system to guide optimizations. Response surfaces

(i.e., the response of a simulation model to all possible input combinations) are first classified based

on estimates of various surface characteristics. Then heuristics are applied to choose the most ap-

propriate search strategy. As the search is carried out and more information about the surface be-

comes available, the knowledge-based system reclassifies the response surface and, if appropriate,

selects a different search strategy. Periodically the system’s Learner is invoked to upgrade the

knowledge base. Specifically, judgments are made to improve the heuristic knowledge (rules) in the

knowledge base (i.e., rules are added, modified, or combined). The Learner makes these judgments

using information from two sources. The first source is past experience -- all the information gen-

erated during previous simulation optimizations. The second source is results of experiments that

the Learner performs to test hypotheses regarding rules in the knowledge base.

The great benefits of simulation optimization (coupled with the high cost) have highlighted the need

for efficient algorithms to guide the selection of search strategies. Earlier work in simulation opti-

mization has led to the development of different search strategies for finding optimal-response-

producing input levels. These strategies include response surface methodology, simulated

annealing, random search, genetic algorithms, and single-factor search. Depending on the charac-

teristics of the response surface (e.g., presence or absence of local optima, number of inputs, vari-

ance), some strategies can be more efficient and effective than others at finding an optimal solution.

If the response surface were perfectly characterized, the most appropriate search strategy could,

ideally, be immediately selected. However, characterization of the surface itself requires simulation

runs. The knowledge-based system formulated here provides an effective approach to guiding

search strategy selection in simulation optimization.

Acknowledgements

First, I would like to thank my chairman and advisor Professor Loren Paul Rees; I am indebted

to him for his work with me during my graduate studies. He has always been encouraging, helpful,

willing to share his ideas with me, and fun to work with. He has taught me much -- both directly

and by example -- about research, teaching, and service to others, which I will take with me into

my professional and personal life.

I would like to thank Dr. Allen G. Greenwood for sharing his ideas with me, for helping to refine

the content and presentation of this dissertation, and for serving on my committee.

I would like to thank Professor Bernard W. Taylor, III, Head of the Department of Management

Science, for providing facilities and financial support during my graduate studies, and also for

serving on my committee.

I would like to thank Dr. Terry R. Rakes and Dr. Robert T. Sumichrast for their contributions to

my education and for serving on my committee.

I would like to thank Dr. Lance A. Matheson for substituting for Dr. Greenwood during my oral

comprehensive exam and my final defense.

Acknowledgements iv

I would like to thank Gerry Chenault, Tracy McCoy, Sylvia Seavey, and Teena Long for help and

assistance in numerous ways during my time in this department.

Renato Panis, Lars Wiegmann, Barry Wray, Jack Leu, Fernando Siochi, Mark Coffin, Wendy

Ceccucci, Gerald Kohers, Chris McCart, and especially Ina Samanta Markham have greatly en-

hanced my years in the Management Science department.

Special thanks go to my parents, Tor and Bergljot Moksvold, and my sister, Karen Moksvold, for

their encouragement and support throughout my education.

Finally, I would like to thank my husband, Jeffrey Crouch, for constant encouragement, support,

help, and fun during these years of graduate study.

Acknowledgements v

Table of Contents

Chapter 1: Introduction 2.0... .. cece eee eee eee ere e eee ee eee ee eee eens 1

Simulation and Simulation Optimization 2.0... 0... cece eee eee teens 3

Knowledge-Based (Expert) Systems 2.0... 0... eee eee eee ee ete e eens 5

Machine Learning 1.0... ... cece ee te ee ee eee eee eee ee eee een ees 7

Framework 1.20... 0. ene ene eee ee eee eee eee eens 9

Purpose of Research .. 1.0... eee ct ee eee nee ee een ennees 11

Scope and Limitations 2.0.0... ec eee eee eee eee eens 12

Plan of Presentation 2.0... ccc cee ee eee te eee nee ete eens 13

Chapter 2: Literature Review 2.0.0... .. ccc eect ee tee eee tenet ee een eenes 14

The Simulation Optimization Problem 0... cc cee eee eee eee e eens 14

The Simulation Optimization Process Using RSM cee ee tens 17

Problems Inherent in the Process 0... cece cc eee eee eee eee eens 19

Simulation Optimization Related Software0. 0... ccc ce eee eens 22

Applying AI Technology to Simulation and Statistical Analysis--22-000- 24

Unbundling the Process 2... cee et ee eee eee ee ee eee eee ees 27

Simulation Optimization in a Knowledge-Based Context 00. c eee ee eee eee 31

Table of Contents vi

Database 2... ce ee ee ee ee eee ee ee eee eee eee ee ee eens 34

Rule base 2... ee eee en ee ee ee eee eee ee eee 36

Methodology base 2.6... . ee ee eee ee eee eee ees 39

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization0- 41

Background 2.0... ee eee eee eee eee eee eee eens 4]

The Classifier KBSOS Architecture 2.0.0.0... eee ne nent eee tees 44

The Classifier Process Flow 0.0... . ccc ee ee eee een eee eee eens 51

OVEIVIEW oe ee ee ee eee ee eee ee eee ee ee eee Sl

USER module 2... Le ee eee ene eet ne eens 54

CLASSIFIER module 2.0... 0... ce tenn eee eee e enna 54

STRATEGY SELECTOR module 1.0... . ec ee ee eee nee 59

STRATEGY DETAILER module 00... 0... ee een ees 59

SEARCH module 2... 0... cc ee eee ee eet te eee eee nnn eeas 62

|S. 00 0) 0) (rc 63

ConclusionS 2.2... ee eee ee eee eee eee ees 72

Chapter 4: Machine Learning in the Simulation-Optimization Domain 74

Background 2.0... ee eee eee eee eee eee 74

Knowledge-based simulation optimization cc cece eee eee eee eee 74

Learning: definitions and taxonomies 0... c cece ce eee eee teen eees 77

General Learner Architecture 0... tec cee een tee e nen e nee 82

OVETVIEW 2.1 en eee eee ee ene eee nee eee eee 82

General learning flow diagram 6... eee eee ees 86

What There is to Learn ina KBSOS 2... ee ete eee eee 89

Implementation Considerations 0.0 cece eee eee eee eee enes 92

TIMING eee eee eee eee eee eee nee ee ene 92

The learning session 6.0... ee ee ee eee eee ee teen eee eens 94

Table of Contents vii

Controller: Most Frequently Occurring Strategy .. 1... .. 0. cee eee eee 101

Specialization: Input 2... 0... ee ee ete eee ee teens 103

Specialization: Retrieve 2.0... eee ee ee eee eee ee eee 103

Specialization: Modify... 0... 0... cee ee eee ete nee enna 103

Specialization: Testing for new common features 2... cece eee eee ees 104

Specialization: ASSIPN 6... tee ee eee eee ee een ee eens 105

Specialization: Store and Memory 0. cece eee ee teens 106

Specialization: Explain 2.6.0... eee ee eee ee eee eee ee eens 106

Specialization: Repair .. 0... ce eee eee ee ee eee ee eee eens 107

SUMMALY 6 ee ee ee ee ee eee eee eee eens 108

Chapter 5: Contributions and Future Work cc cece eee eee eee e ene 109

Contributions 2... ee ee ee eee teen eee e eens 109

Knowledge-based simulation optimization system 00. ee eee eee eee ees 109

Learner oo ee ee eee ee eee ee ee eee eee es 110

Future Work 20. eee eee ee eee eee eee e ee eees 111

Near-term plans 6... ee ee eee eee eee e eee n eens 111

Long-term plans 2... eee ee ete tee e nee nee nn eees 112

Bibliography 2.0... .. ccc ccc cc ec ce eee eee eee tee eee eee eee ete teense eens 114

VIA Cc ec ct cee ee eee ee eee ee eee eee eee eee eee eee eee eens 118

Table of Contents Viii

List of Illustrations

Figure 1.

Figure 1.

Figure 1.

Figure 2.

Figure 2.

Figure 2.

Figure 2.

Figure 2.

Figure 3.

Figure 3.

Figure 3.

Figure 3.

Figure 3.

Figure 3.

Figure 3.

Figure 3.

Figure 3.

: The simulation optimization Processcssccssssccssssnsccssstecssstscessssaseessseaees

: Expert system architecture

: Greenwood-Rees-Crouch simulation optimization architecture

: The simulation optimization processcccscccsssscccsessceeessseeccssseeeseeseeeeesneees

: Strategic overview of the simulation process

: The analysis environment component cast in a knowledge-based context

: An example relational data model in the knowledge kernel

: Example rules in the knowledge kernel

: Greenwood-Rees-Crouch simulation optimization architecture

: A simulation optimizer with a classifier and heuristics

: The Classifier knowledge-based simulation optimization architecture

: Process flow of the Classifier KBSOS

: A detailed view of the Classifier KBSOS

: Simulation runs suggested by the shotgun

: Determination of global vs. local optima

: The true response surface without error

: Contour plot of the true surface

List of Illustrations

10

15

29

33

35

38

45

48

50

52

53

57

60

64

66

Figure 3.10: The neural network estimates of the surface 68

Figure 3.11: Contour plots indicating regions of fit 71

Figure 4. 1: The simulation optimization processcscccssccsssccesssccssscecesscecsseeeseseeesteees 76

Figure 4. 2: Greenwood-Rees-Crouch simulation optimization architecture 78

Figure 4. 3: Visualization of the Learner and its environs 79

Figure 4. 4: The Learner architecture 83

Figure 4. 5: The Learner in the context of the Smith-data example 85

Figure 4. 6: The learning process 88

Figure 4. 7: An overview of the Classifier KBSOS 90

Figure 4. 8: Marking simulation optimization cases for learning 93

Figure 4. 9: Controller flowchart 96

Figure 4.10: The specialization and rule modification process 97

Figure 4.11: The parameter modification process 99

Figure 4.12: The generalization process 100

Figure 4.13: Specialization example 102

List of Illustrations

List of Tables

Table 3.1: Example strategy selector rules

List of Tables

POO EO OOOH ETE EEE HE CE EEO HEFCE EHD DOSE LEDER HEHEEEH ED OH ESSEC SD OODELESENES

xi

Chapter 1: Introduction

Simulation plays a critical role in many fields, from traffic modeling to personnel and job shop

scheduling to military campaign planning. Simulation permits study of systems which cannot fea-

sibly be constructed or experimented upon in the “real world,” and which are too complex to be

analytically modeled.

When a given set of input conditions is run through a simulation model, the simulation model

output(s) provides an estimate of how the true system would respond to these inputs. A response

surface is defined as the response of the simulation model to all possible input combinations. For

many applications it is desired to find the best possible (i.e. optimum) response or attain specific

goals for the response of the system. Although simulation is very useful in predicting the system

outcome or response for a given set of input conditions, it does not of itself indicate the input

conditions required to achieve the desired outcome. The process of finding the input conditions

that will yield the optimal (or near-optimal) system response is referred to as simulation optimiza-

tion, and can be very expensive and time consuming.

Earlier work in simulation optimization has led to the development of different search strategies for

finding optimal-response-producing input levels. These strategies include, among others, response

surface methodology, simulated annealing, random search, genetic algorithms, and single-factor

Chapter 1: Introduction 1

search. Depending on the characteristics of the response surface (e.g., presence or absence of local

optima, number of inputs, variance, etc.), some strategies can be more efficient and effective than

others at finding an optimal solution. The great benefits of simulation optimization (coupled with

the high cost) have highlighted the need for efficient algorithms to guide the selection of search

strategies. If the response surface were perfectly characterized, the most appropriate search strategy

could, ideally, be immediately selected. However, characterization of the surface itself requires

simulation runs.

In this work a knowledge-based system is formulated to guide the strategy-selection process in

simulation optimization. A scheme for classifying a response surface and then applying heuristics

to choose the most appropriate search strategy is described. As the search progresses and more

information about the surface becomes available, the knowledge-based simulation optimization

system (KBSOS) reclassifies the response surface and changes the search strategy accordingly.

A framework for machine learning in the context of this knowledge-based simulation optimization

system is also presented. The goal of the “learner” is to improve the ability of the KBSOS to guide

future optimizations. Specifically, the heuristic knowledge (rules) in the knowledge base is im-

proved (e.g., rules are added, modified, or combined). The learner makes judgments using infor-

mation from two sources. The first source is past experience -- all the information generated during

previous simulation optimizations. The second source is results of experiments that the learner

performs to test hypotheses regarding KBSOS rules.

The next sections of this chapter present concepts and terms that are foundational to the subse-

quent discussions of the knowledge-based simulation optimization system and learner. First, sim-

ulation and issues in simulation optimization are explored. Expert or knowledge-based systems and

machine learning are discussed in the following two sections. Finally, the impetus for combining

simulation optimization with a knowledge-based system and machine learning is presented, and the

plan for the rest of the dissertation 1s given.

Chapter 1: Introduction 2

Stmulation and Simulation Optimization

A simulation model can be thought of as a “black box,” with controllable inputs feeding into the

box, and the simulation model’s responses leaving the box as outputs. The simulation model

provides an approximation of how the true system it represents would respond to the given inputs.

Each response can be considered to be a function of the inputs with a random error term added.

Figure 1.1 depicts the simulation-model box together with another black box in a feedback loop

around it. This second box represents the simulation optimizer. The optimizer takes outputs of

the simulation model and uses them to suggest new values for the inputs to the stimulation model.

The objective of the optimizer is to find inputs that will result in optimal or satisficing responses

from the simulation model.

The usefulness of simulation optimization and the costs involved in it have motivated the devel-

opment of different strategies to search for optimal-response-producing input levels. These strate-

gies range from random and single-factor searches to response surface methodology (RSM) to

simulated annealing and genetic algorithms. Meketon (1987) divides simulation optimization

strategies into three general categories: nonlinear programming techniques, RSM, and stochastic

approximation.

An important decision that must be made in simulation optimization is which search strategy to

employ. Some work has been done to aid this decision, although Meketon concludes that

“Optimization for simulation, to date, remains an art, not a science.” He considers the information

available (or assumed) about the simulation, and groups optimization methods accordingly to help

narrow the field of choices. Safizadeh (1990) discusses a variety of strategies and their application.

He concludes that generally RSM approaches are the most effective, although some new develop-

ments look promising. Smith (1973) performed an empirical study of the effectiveness of several

search strategies (random search, single factor search, and four variations of RSM) on a variety of

Chapter 1: Introduction 3

Inputs Outputs

Simulation

Model

i

o
e
 o
e

e
e

NS ,

i

S
y

 SE SILLA

Figure 1.1: The simulation-optimization process

Chapter 1: Introduction

surfaces. He found that the relative effectiveness of the each of the strategies varied depending on

the characteristics of the response surface (presence of local optima, random error, number of

controllable inputs, etc.).

Surveys of simulation optimization lead to two conclusions. First, organized guidance is needed

to help users choose appropriate search strategies. Safizadeh explains that “for successful design

and analysis of simulation, one should be well versed in several disciplines.” Because of this, users

are inhibited from using simulation optimization (and thereby simulation). He concludes that there

is, therefore, a need to “develop interactive programs which direct a user to an appropriate opti-

mization technique.” Second, research findings may be translatable into heuristics which could be

used in an expert or knowledge-based system to guide strategy selection.

Not only are heuristics needed for selecting search strategies, they are also used in carrying out the

strategies. Consider, for example, the search strategy RSM. Many judgments are necessary to

implement this strategy; among them are: choice of experimental design, region of fit, step size, and

when to change search direction. It is possible that these types of heuristics could also be included

in a knowledge-based (expert) system.

Knowledge-Based (Expert) Systems

Expert or knowledge-based systems is a branch of artificial intelligence that has grown in promi-

nence and application in the last ten to twenty years. Feigenbaum has defined an expert system

as “an intelligent computer program that uses knowledge and inference procedures to solve prob-

lems that are difficult enough to require significant human expertise for their solution” (Harmon

and King 1985). Expert systems are set apart from traditional computer applications in that they

can: manipulate symbols (words, phrases, lists of words, etc.); reason using heuristics (“rules of

Chapter I: Introduction 5

thumb” developed over time by experts); function with uncertain or incomplete knowledge (tradi-

tional programs usually stop executing if needed information is unavailable); and explain how a

conclusion was reached or why requested information is needed.

The benefits of expert systems are many. An expert’s knowledge about his/her field of interest can

be captured in an expert system, making it available to non-experts, freeing up the individual to

tackle other important problems and tasks, and providing a mechanism for “keeping the knowledge

alive” even after the expert leaves the firm or organization. If the application is one for which a

team of experts is usually required, the expert system makes it possible to have the expertise of these

different individuals available in one place, twenty-four hours per day, seven days per week. Expert

systems do not have “off” days -- they do not get sick or take vacations, and they always remember

everything they have learned.

These benefits address some of the issues raised in the last section. An expert system could give a

non-expert access to simulation optimization expertise; this could encourage more use of simulation

and simulation optimization. Also, simulation optimization expertise and research findings could

be assembled in one expert system, whereas now the information is distributed in time and ge-

ographical location among many different researchers, practitioners, and publications.

Rolston (1988) describes a typical expert system architecture as having five parts, as shown in figure

1.2. The knowledge base contains domain-specific knowledge: facts, procedural rules (well-defined

rules that describe invariant sequences of events and relations), and heuristic rules (rules of thumb

usually developed through years of experience which provide direction when procedural rules are

not available or relevant). The inference engine retrieves knowledge from the knowledge base and

infers new knowledge from it as required by the user. The explanatory facility, when asked, pro-

vides the user with explanations of how a conclusion was reached or why certain information is

being requested from the user. The knowledge update facility is a mechanism for updating and/or

modifying the knowledge stored in the system. Finally, the user interface connects the user to the

other parts of the system. Expert systems are beginning to include another component, the pro-

Chapter 1: Introduction 6

gram interface. This component allows expert systems to call and be called by external programs

-- spreadsheets, databases, FORTRAN programs, etc. -- and greatly adds to their flexibility.

Traditionally, expert systems have been written in the artificial intelligence languages LISP and

PROLOG. The complexity of the systems and the languages in which they were written restricted

the broad development, and therefore, use of expert systems. This situation has changed and con-

tinues to change dramatically since the advent of expert system shells.

An expert system shell is just what the name implies -- the shell of an expert system. Shells contain

all the components of an expert system except domain-specific knowledge. Hence one shell can

be used to create a variety of expert systems by varying the knowledge base on which it operates.

Shells are available for mainframes, minicomputers, and personal computers, with varying levels

of complexity, flexibility and cost. For this research the shell VP-Expert (1989) is used on a per-

sonal computer.

In recent years there has been a trend toward using the term “knowledge-based systems” instead

of “expert systems” since not all such systems contain truly exclusive, expert-level knowledge. The

terms are often used interchangeably; in this work knowledge-based systems is generally used.

Machine Learning

Although the proposed knowledge-based system will provide guidance for carrying out simulation

optimizations, it will not include all known search strategies or classification characteristics. These

are things that can be added over time, as appropriate, via machine learning. “Machine learning”

means that a computer system (the machine) improves its software over time (learns). How this

Chapter !: Introduction 7

KNOWLEDGE

ENGINEERS
iy

USER

INTERFACE
KNOWLEDGE
UPDATE
FACILITY

EXPLANATORY f
FACILITY Ff

KNOWLEDGE

BASE

INFERENCE
ENGINE

Figure 1.2: Expert system architecture

Chapter 1: Introduction

can be done for simulation optimization will be discussed in a later chapter; consider first why it

should be done.

According to Forsyth and Rada (1986), “learning algorithms attempt to achieve one or more of the

following goals: provide more accurate solutions; cover a wider range of problems; obtain answers

more economically; and/or simplify codified knowledge.” These goals can easily be translated into

the simulation optimization context. The introduction of new search strategies or improved surface

classification (which provides for more appropriate strategy choices) can result in more accurate

solutions (closer to the true optimum) and more economical solutions (fewer simulation runs used

to find the optimal response). Simplifying codified knowledge (i.e., the rules in the knowledge base)

by removing classifications that do not contribute to strategy selection or by combining overlapping

rules provides two benefits. It will streamline the knowledge base, thereby saving storage space and

reducing execution time, and will increase our understanding of what information about a surface

is essential to successful simulation optimization.

Framework

Greenwood, Rees, and Crouch (GRC) (to appear) present an architecture for a knowledge-based

system which separates the heuristic knowledge imbedded in simulation optimization from fixed

procedural aspects. As shown in figure 1.3, this architecture has three components.

The key component is the Knowledge Kernel, since knowledge -- heuristic and procedural -- is the

essence of the system. The Knowledge Kernel contains facts (data) about different simulation op-

timization cases, analytical procedures, and heuristic rules to guide the simulation-optimization

process.

Chapter 1: Introduction 9

INFERENCE ENGINE

OWLEDGE KERNEL

DATABASE METHODOLOGY RULE

BASE BASE

OBSERVATIONS ANALYTICAL PROCEDURES GENERAL PRINCIPLES

RESULTS INTERFACES DOMAIN-SPECIFIC RULES

HISTORY QUERIES INTER-STRATEGY VARIABLE

RULES

CHARACTERISTICS DISPLAYS
INTRA-STRATEGY VARIABLE
RULES

CONTROLLER
PROCESSING SUPPORT

¢ database management
¢ graphics package
* statistical analysis
programs

* report generators

Figure 1.3: Greenwood-Rees-Crouch simulation optimization architecture

Chapter |: Introduction 10

The Inference Engine draws conclusions and selectively ‘“‘fires” rules stored in the knowledge base.

Processing Support provides software for such needs as database management, graphics, and re-

ports.

GRC also present a framework for machine learning in the simulation optimization context, in

which the learner would use information from the database portion of the knowledge kernel to

make inferences about the art of simulation optimization and then modify the rule base accordingly.

They discuss different types of learning which could be used to improve the heuristics in the

knowledge kernel.

However, GRC do not explicitly stipulate how to decide which search strategies should be used

under which simulation conditions, or how to organize and perform the different learning types in

this context. These issues are the subject of this dissertation.

Purpose of Research

Although Greenwood, Rees and Crouch allowed for strategy selection in their knowledge kernel,

they gave no prescription for how to determine which search strategy should be applied to a given

surface; they merely specified that rules be used to select a strategy. Also, there was no overall or-

ganized scheme elucidated for determining the mapping between response surfaces and search

Strategies. It is these major gaps or limitations that are now addressed.

This research suggests a classifier approach to specifying the response-surface to search-strategy

mapping. The first contribution is a methodology whereby simulation response surfaces are clas-

sified using a set of characteristics specifically chosen to differentiate between the available search

strategies. In short, a classifier categorizes a given surface, and then heuristics (stored in a know-

Chapter 1: Introduction 11

ledge base) recommend a specific search strategy. This is demonstrated with an example response

surface.

The second contribution of this research is the design of a learner tailored for the knowledge-based

simulation optimization system discussed above. Greenwood, Rees and Crouch introduced the

concept of machine learning in the simulation optimization domain. In this work their ideas are

developed further -- the architecture of the learner is revamped and a process by which learning can

take place is presented.

Scope and Limitations

The knowledge-based simulation optimization system described will provide guidance for opti-

mization of simulation models with continuous inputs. (Capability to deal with discrete inputs can

be added in the future.) However, it does not consider every possible classification characteristic

or search strategy; which other characteristics and strategies would be useful is an important subject

for future study. The learner does, however, provide machanisms for introducing new classification

characteristics and search strategies to the KBSOS.

The learner design is discussed in detail, and some aspects are demonstrated. A fully-functioning

learner is not demonstrated however; this would require a large library of simulation optimization

cases and is beyond the scope of this dissertation.

Chapter 1: Introduction 12

Plan of Presentation

The next chapter surveys related literature, and especially delves more deeply into the work by

Greenwood, Rees and Crouch. Chapter three describes the knowledge-based simulation opti-

mization system, which uses heuristics to select most appropriate search strategies based upon the

classification and periodic reclassification of response surfaces. Chapter four presents the learner,

which is designed to improve the heuristic knowledge in the simulation optimization system of the

previous chapter. Chapter five summarizes contributions and presents a plan for furthering the state

of the art in a learning knowledge-based simulation optimization system.

Chapter I: Introduction 13

Chapter 2: Literature Review

The Simulation Optimization Problem

The simulation-optimization process is exemplified in figure 2.1 by two “black boxes.” The first

box represents the simulation model, which combines n controllable input factors (represented by

the X;’s) in a manner that approximates the behavior of some real system and produces a set of m

output or response values (represented by the Y;’s). The responses are typically measures of merit

or performance of the system being modeled and are stochastic or exhibit random variation (mostly

as a result of a set of uncontrollable factors not directly considered in the model). The responses

can be considered as functions of the controllable inputs and a random error term (represented by

the ¢;’s); 1.e., there are m distinct (n+ 1)-dimensional hypersurfaces, each having its own character-

istic random variation.

The second box in figure 2.1 represents the optimizer, which determines the scenario (the value of

the input factors or X’s) that will result in the “best’’ response, i.e., find the value of the decision

variables that “optimize” in some sense the output of the system. The optimizer drives the

search/experimentation process based on a set of user-supplied goals/criteria. For example, a mil-

Chapter 2: Literature Review 14

Controllable

input variables
(factors)

SIMULATION

MODEL

Figure 2.1: The Simulation Optimization Process

Chapter 2: Literature Review

OPTIMIZER
(SATISFICER)

Y = f(X) + &

be ae ee ee ee ee ee oe >

Output
(response)
variables

[— ee oie eee —

Y =f(X) +e:
m m

1S

itary analyst searches for the best combination of planes and tanks (controllable input variables

X, and Xz) that result in minimum casualties, maximum territory captured and greatest materiel

damage inflicted on the enemy (output responses Y,, Y2, and Y3).

Typically, problems represented in a simulation framework cannot be stated in an explicit math-

ematical expression; this precludes the application of standard optimization methods. Since the true

response surfaces are usually unknown, they are most often approximated by a polynomial function

fitted to the output data generated by the simulation. In fact, true optimization is usually unob-

tainable; a more pragmatic approach is to locate an improved solution or satisfactory level of goal

attainment, called satisficing. Therefore, the optimizer depicted in figure 2.1 is often referred to as

a “‘satisficer.” Hereafter, our reference to a satisficer will mean any automated optimizer or satisficer.

One set of statistical tools that has been extensively applied to the problem of simulation opti-

mization is response surface methodology (RSM). It is a sequential approach that is both an

adaptive (observed response influences the value of subsequent controllable factors) and

derivative-based (establishes the direction of search) approach. Its beginnings are traced to the work

of Box and Wilson (1951) on determining optimum operating conditions in the chemical industry.

Myers, Khuri, and Carter (1989) provide a more general definition of RSM: “... a collection of

tools in design and data analysis that enhance the exploration of a region of design variables in one

or more responses.” For more information on RSM, the interested reader is referred to: Box and

Draper (1987), Brightman (1978), Khuri and Cornell (1987), Mead and Pike (1975), Myers (1971),

and Myers, Khuri and Carter (1989).

In order to lay the groundwork for a discussion of the problems inherent in the simulation-

optimization process, the following section provides a brief overview of how RSM is used to opti-

mize simulation results. RSM is not, of course, the only search technique used for simulation

optimization; however, for the sake of brevity, most examples and references in this chapter will

use RSM to illustrate simulation optimization issues and concepts.

Chapter 2: Literature Review 16

The Simulation Optimization Process Using RSM

The application of RSM to the problem of simulation optimization is outlined in this section. It

is illustrated through the software program SATSIM (SATisficing SIMulation) by Rees, Clayton

and Taylor (1985). We are not touting SATSIM as the best way to solve the simulation satisficing

or optimization problem. Rather it is used as a means to illustrate the point that this process is a

coupling of “art” and “science.” SATSIM is only one implementation of RSM applied to simu-

lation; it happens to be the one most familiar to us.

The general idea in SATSIM is to place a feedback loop around a simulation model and adjust the

input factors of the simulation model based on a growing history of simulation responses or outputs

(as was depicted in figure 2.1). The control mechanism in the feedback loop is called a satisficer

in SATSIM because the output variables are not all optimized. Instead, each response is compared

to a user-specified aspiration level, and the system attempts, if it is feasible, to drive the response

level beyond this goal. While most problems in simulation optimization involve multiple re-

sponses, there is no standard way to combine the multiple responses. Several approaches are pro-

posed in the literature: Montgomery and Bettencourt (1977), Biles and Swain (1977 and 1979),

Rees, Clayton and Taylor (1985). For brevity and with no loss in generality, we assume in all

subsequent discussion that only one response/goal is being considered.

The optimization process begins with specifying the relevant variables, parameter values, and initial

conditions. Each response (system operating characteristic that is to be optimized or satisfied) and

its desired level of achievement is stipulated. The controllable factors (decision variables, inputs,

Xi's) are identified along with any limits or operating constraints that need to be considered. Pre-

liminary experimentation or screening may be necessary to reduce the number of factors under

consideration. An initial experimental region and a starting point (in terms of the X;’s) are estab-

lished and SATSIM specifies an experimental design about that point. Since the most common

Chapter 2: Literature Review 17

search procedure, steepest ascent, is sensitive to the relative spacing of the levels of the decision

variables, they must be appropriately scaled or coded.

Before any searching can begin, observations (samples) must be taken at each design point; i.e.,

SATSIM executes the simulation model and determines a response value for each input point.

Normally it is assumed that these samples are a long way from the optimum and the higher-order

polynomial terms of the model used to fit these data are not significant; therefore, a first-order

model ts sufficient. A plane (or hyperplane) is then fit through the output points using ordinary

least squares regression and checked using analysis of variance for lack of fit.

If the least-squares fit is “good” (slopes are significant and the model does not demonstrate a sig-

nificant lack of fit) a search -- typically steepest ascent when the goal is to maximize the response

value -- is begun. SATSIM_ steps out in the direction of steepest slope as indicated by the re-

gression coefficients and requests that an additional simulation run be made. SATSIM continues

to step out in the direction of steepest ascent as long as the simulation output increases. When a

decrease is observed, SATSIM returns to its previous point and asks that another experimental

design be specified, and the entire sequence repeats.

The above process continues until the top of the surface (regarded as a hill to be climbed in the

two-factor case) is achieved, or at least the aspiration level is reached, if either is possible. A series

of first-order designs and steepest ascent are used until there is a significant lack of fit, 1.e., second-

order terms begin to dominate. At this point a second-order design is constructed, usually through

augmentation of the first-order design with additional design points. SATSIM executes the simu-

lation model and determines a response value for each design point. A second-order model is then

fit through the observations using ordinary least-squares regression and checked using analysis of

variance for lack of fit. A canonical analysis is used to examine the nature of the curvature of the

fitted surface (max, min, saddle, ridge). Ridge analysis (analogous to the steepest ascent procedure

used for first-order designs) can be used with the second-order model to guide the search toward

an improved solution.

Chapter 2: Literature Review 18

Problems Inherent in the Process

Although RSM is probably the most widely-used approach for finding the optimal solution to a

simulation problem, it has several limiting assumptions, e.g., continuous variables, single unimodal

response, polynomial models with normally-distributed error term estimated using ordinary least-

squares regression methods. Since it is not a panacea, there are many other approaches reported

in the literature. Whereas RSM is considered an adaptive, derivative-based procedure, there are also

adaptive non-derivative based search techniques (e.g., coordinate, pattern), non-adaptive methods

(e.g., random, grid), and many hybrid approaches. The important point to recognize is that any

simulation optimizer should not be limited to any one approach; it should contain many different

procedures and a mechanism to provide advice on the appropriate time to apply each procedure.

Normally, in order for this to be effective, there needs to be a monitoring device to track the be-

havior of the observed response and characterize it in such a manner that there can be advice on

what to do next.

The simulation optimization process is usually not as straightforward as the one described in the

previous section. Typically the decisions at each step are more ambiguous and uncertain and the

overall process is more iterative and less sequential; e.g., it is often necessary to return to a first-

order design and explore another region, even after the analysis has progressed to the second-order

design phase. This is especially true if the response function is complex and/or involves consider-

able variation.

Within RSM, there are many issues to which there are no clear answers -- issues that rely heavily

on judgment and heuristics. Some possible solutions to these problems are reported in the litera-

ture, but most reside in the minds of practicing RSM professionals.

One such issue in RSM is which procedure to use at each point in the analysis process, e.g., when

should a certain design be constructed, and when should a particular search technique be employed?

Chapter 2: Literature Review 19

While there is not a lot of research published in this area, there has been enough to indicate that

some procedures perform better than others under certain conditions. Smith (1973) empirically

evaluated search techniques in a decision-theory framework and developed guidelines for their ap-

plication. In essence, he attempted to find a partial answer to one main question: for a specified

number of controllable factors and available computer runs, what is the best search technique to

use and how much gain is expected from using this technique on response surfaces having specific

characteristics. He found, for example, that single-factor search strategies are nearly always domi-

nated by the performance of other techniques; random search is not necessarily better even when

a large number of factors is considered. Along the same line, Montgomery and Evans (1975) ex-

plored how well six second-order RSM designs performed on six known surfaces, each considered

at six levels of experimental error. The results from both of these studies, as will be discussed later

in this chapter, can easily be translated into a rule base for use in an expert system.

Another difficult issue in RSM analysis involves determining the appropriate step size to take in a

specified search direction. Normally the step size is chosen in proportion to the spacing between

the upper and lower levels of the design. Biles (1975) provides an alternative approach that uses

regression. A related issue involves the question of when to stop searching in a specified direction

and invest in a new experiment. Most often the search continues until there is a drop in the re-

sponse; Myers and Khuri (1979) offer an alternative that accounts for the possible occurrence of a

false drop in the response.

Yet another problem is how to allocate a limited number of simulation experiments. Daughety and

Turnquist (1978 and 1981) present a novel “budget focused” multistage search procedure that al-

locates simulation experiments both temporally (number of stages and number of experiments in

each stage) and spatially (within each stage, the optimal allocation of experiments to some region

of search). Another unique feature of their approach is that after each stage’s experiments are run,

a response surface is estimated using all of the experimental observations made so far. The surface

is based on actual simulation results and “pseudo-experiments” generated by cubic spline functions.

The resulting surface provides the starting point and search direction for the next stage.

Chapter 2: Literature Review 20

The problems discussed above are not peculiar to RSM. They are inherent generally in any of the

specific techniques used to optimize simulations; the use of any single methodology brings with it

a set of limiting assumptions. Any single procedure will be more iterative, and less sequential as

response functions become more complex. There is a need for heuristics and expertise to be ex-

plicitly incorporated into the optimizer -- be it to assist in the technical details of search issues or

the specification of design matters.

The above annotation of the problems associated with simulation optimization should make it clear

that there are judgments that either the user or a program must make. Such judgmental decisions

include: how large to make the region of fit over which the experimental design is placed and the

regression performed, what step size should be taken along the direction of steepest ascent, what

particular experimental design should be used, etc. These decisions depend, in part, on the cost to

the user of each simulation run, which statistical criterion (bias, mean-squared error, variance) is

most appropriate, prior knowledge about the response function, practical knowledge on which

search technique (Box’s complex-search, simulated annealing) works best with which design and in

which environment (type of surface, amount of variation), etc.

We believe the judgments and decisions described above to be the “art” and “craft” of RSM.

Notice that we have termed these decisions art and not magic or luck. Individuals with years of

experience either teaching or consulting in the RSM area consistently appear to have better strate-

gies and success in “getting to the top” of surfaces than do those without this experience. This leads

us to believe that there is genuine expertise in the art of RSM that can be acquired, refined, and

organized into a knowledge base that can assist conventional programs like SATSIM.

The other aspect of RSM and simulation optimization that should be clear at this point, especially

from the overview of the process provided in the previous section, is that any simulation satisficer

such as SATSIM utilizes many statistically-based procedures and methodologies, e.g., experimental

design, ordinary least-squares regression, analysis of variance, direction of steepest ascent, canonical

analysis, and ridge analysis. This is the “science” part of RSM. These are well-defined procedures

Chapter 2: Literature Review 21

and algorithms. Conventional (procedural) programming languages lend themselves well to im-

plementing such procedures. In fact, as discussed in the next section, there are many third-

generation language subroutines, modules, programs, and packages that exist for these procedures.

The following section provides a brief overview of the current state of simulation optimization

software. The review clearly demonstrates that no software explicitly recognizes the heuristic and

algorithmic aspects of the problem. It also is clear that no prior framework or architecture has

addressed this concern.

Simulation Optimization Related Software

Myers et al. (1989) note there is a severe shortage of general RSM software. This is also true, until

recently, of the general area of statistics that is related to the design of experiments, at least in

comparison to data analysis software. Nachtsheim (1987), in his review of computer-aided design

tools, notes that interactive experimental design software has just recently started to emerge; some

packages he describes include tools for optimizing response surfaces.

The idea of an integrated simulation satisficer is certainly not new -- there are several reports of such

systems in the literature. Smith nearly 15 years ago outlined, in several articles (1973, 1974, and

1976), the need for an automated optimizer for computer simulations. He (Smith, 1973) identified

the need to include efficient strategies (search technique, screening method, variance reduction) and

replace the existing trial-and-error procedures. The satisficer program, described in Smith (1975),

included not only design and regression algorithms but heuristics that governed their use. Unfor-

tunately the links between the algorithms and the rules for their application were “hardwired”; of

course, based on the computer technology of the time, this was to be expected.

Chapter 2: Literature Review 22

All of the other simulation optimization software reported in the literature is similar to that de-

scribed by Smith, at least in terms of their framework. They are written in third-generation lan-

guages, with algorithms and heuristics bundled within the computer code. For example, Pegden

and Gately (1980) incorporated a FORTRAN-based optimization routine (a non-derivative based

pattern search) into the simulation language SLAM. Bengu and Haddock (1986) combined a

simulation generator (translates a description of a system into a SIMAN-based simulation program)

and an optimization subroutine. Their generator is limited to continuous-review inventory systems;

and their satisficer is limited to finding the optimal inventory-control policy using single and

multivariable, derivative-free, unconstrained search procedures. Rees, Clayton, and Taylor (1985),

in an interactive computer program called SATSIM, combined the techniques of RSM with goal

programming concepts to obtain satisfactory solutions to multiple-response simulation models.

All of the aforementioned programs have several limiting features in common; they: utilize a few

solution approaches, incorporate few heuristics (the heuristics that are included are built in), are

not easily adapted to conditions that are not pre-planned, are not easily modified, and intermingle

control and data. These characteristics should not reflect negatively on the systems’ developers; they

used the computer technology that existed at the time.

The main problems with SATSIM and other available programs pertain to the storage of heuristic

knowledge. The first problem is that it is very cumbersome to store heuristic knowledge in a

third-generation language. The heuristics used to provide guidance to SATSIM are quite complex;

fifth-generation languages and expert system shells now exist that can represent knowledge much

more naturally. The second problem is related to the first: the art and science of simulation opti-

mization are so intermingled that it is not wise or practical to insert the needed “artsy” heuristics

into the middle of the “scientific” code. Any attempt to do so, particularly in a learning environ-

ment (where new heuristics would be added automatically as experience is gained), would result in

unstructured, non-modularized, and probably undecipherable computer code.

Chapter 2: Literature Review 23

What is needed is an explicit recognition of the dual nature of simulation optimization -- the algo-

rithmic and heuristic aspects of the problem. Once this is realized, it is clear current programs must

be “unbundled.” Artificial Intelligence technology can facilitate this, as is discussed in the following

section.

Applying AI Technology to Simulation and Statistical

Analysis

Artificial Intelligence (AI) technology in general, and expert systems (ES) in particular, are starting

to be applied to a variety of problems in simulation and statistical analysis. Since simulation opti-

mization is the focus of this work and since that process depends heavily on the use of statistical

tools, this section briefly reviews the application of AI technology to both of these related areas.

Simulation and expert systems are being combined for a variety of reasons. An expert system can

be used as a front-end processor for model formulation or model generation, as an aid in debugging,

and as a back-end processor for statistical interpretation and monitoring. In this context, the sim-

ulation optimizer described in this chapter would be considered a back-end processor.

Shannon, Mayer, and Adelsberger (1985) discuss the evolving new field of Al-based expert simu-

lation systems. They note that simulation models and languages have contained many ideas pres-

ently being used in AI; e.g., in both cases, entities carry descriptive attributes that can be changed

dynamically (analogous to frames), entity flow through the system can be dynamically modified

(analogous to production rules), and knowledge is represented as a network. There are also several

distinct differences. For example, simulation involves numeric processing functions, integrated

control and infornation, explicit solution steps, and programs that operate on user’s instructions.

Chapter 2: Literature Review 24

In contrast, AI involves symbolic processing functions, separated contro! and information, solution

steps that involve pattern-invoked searches, and programs that utilize built-in expertise and the

ability to learn and modify themselves as needed.

O'Keefe (1986) presents a taxonomy of four ways to combine simulation and ES. The first alter-

native is to imbed either the simulation tool or the ES tool within the other. A second approach

is to separate the software so that they operate in parallel, yet interact with each other. In both of

these approaches, the user interacts with only one of the tools. A third possibility is for both tools

to cooperate in order to accomplish some task (they may share data). The user may directly

interact with both software or interact through a larger enveloping software environment. The final

way to combine the two tools is to use the ES as an intelligent front end, i.e., place it between the

simulation package and the user. In this context, the sumulation optimizer that we propose fits best

into the third scheme, where the two modeling tools interact in a cooperative environment.

Finally, Reddy, Fox, and Husain (1986) described a KBS (Knowledge-Based Simulation) system

that focuses on automating the simulation life-cycle, and in particular automating the analysis of

results -- it can conduct experiments and rate scenarios to make a recommendation. The KBS

system is an interpreter that accesses a model and provides simulation, model checking, and data

analysis.

Since a simulation optimizer must include a wide variety of statistical procedures, it is important

to survey the research directed at applying AI technology and ES to the general area of statistical

analysis.

Al technology is starting to be applied to general statistical analysis software. Remus and

Kottemann (1986) discuss the movement toward developing an intelligent DSS for statistical anal-

ysis. They indicate that the current state-of-the-art statistical packages (e.g., SPSS, SAS, MINI-

TAB) require the user to provide the data, choose the appropriate statistical technique and give the

analysis commands, and interprets the results. They indicate that many of the judgments involved

Chapter 2: Literature Review 25

in this process -- e.g., what tests to use, how to properly conduct the tests -- can be formalized using

artificial intelligence techniques.

Gale and Pregibon (1985) identify two tasks in which statisticians are being assisted by expert sys-

tem techniques -- data analysis (application of statistical tools to a particular set of data to reach

some conclusion) and experimental design (planning the collection of data so that it can be easily

analyzed to reach a conclusion). They identify the area of intelligent interfaces (provide guidance,

interpretation, and instruction) to the many existing statistical software packages as one potentially

fruitful area for AI to contribute to data analysis. They also indicate that AI can be used to help

structure some areas of statistical knowledge that are not yet well formalized -- e.g., how methods

are chosen and applied to analyze data in practice (a process they called strategy).

Hahn (1985) proposes three general levels of intelligent statistical software: (1) computerized an-

swering and referral service (computerized encyclopedia or indexes to direct users to sources of in-

formation), (2) expert guidance embedded in statistical programs (e.g., determining the appropriate

model or transformation, explaining the meaning or significance of certain terms, directing the

user’s attention to special features of the data, suggesting further evaluations or alternative analyses),

and (3) automated statistical consulting and data analysis (guide the analyst to a solution of a gen-

eral statistical problem). He also describes some of the issues involved with their development and

some potential future directions. In terms of Hahn’s taxonomy, the simulation optimizer that we

describe best fits into the second category.

One statistical analysis software package, Data Desk Professional developed by Velleman and

Velleman (1988), has incorporated some knowledge on how statistical methods work together.

Greenwood, Rees, and Crouch (to appear) present a new simulation optimization framework which

incorporates AJ technology. This is described further in the next section.

Chapter 2: Literature Review 26

Unbundling the Process

The strategic overview of the simulation-optimization process presented in Greenwood, Rees and

Crouch (GRC) (to appear) provides the means to handle the differing needs of both the heuristic

(“art”) and procedural (“science”) aspects of the problem, yet permits the two to interact in a

flexible and responsive environment. This approach is supportive of, and more congruent with, the

general analysis process than any alternative proposed to date. As such, it is the foundation for this

dissertation, and will therefore be discussed below in some detail.

The GRC framework requires the simulation-optimization process to be viewed in a totally differ-

ent manner. Unlike the work that has been done to date at the micro level -- e.g., improved designs,

search techniques -- this research is aimed at the macro or strategic level. The first part of the

framework considers the simulation optimization process from a strategic overview perspective and

addresses two basic issues: what are the fundamental variables in the simulation optimization

process, and what is the analysis environment in which these variables are explored.

In order to identify the primary variables in simulation optimization, the process is first defined in

terms of a single goal: determine the best ‘move’ to make (place to explore or experiment) given

the present location (in terms of level of response and region explored), what has occurred up to

this point (previous steps taken and results), and what resources are available. This leads to the

identification of four primary heuristic factors that are fundamental to the simulation optimization

process: search technique, experimental design, step size, and region of fit; these are referred to as

the “strategy variables.”

The values of the strategy variables are established in an “analysis environment” that utilizes a va-

riety of techniques and approaches from two broad domains. The first domain, referred to as the

science of simulation optimization, is characterized as static, structured, algorithmic, and proce-

dural. The second domain, referred to as the art of simulation optimization, is characterized as

Chapter 2: Literature Review 27

dynamic, unstructured, heuristic, and non-procedural. The GRC framework unbundles these two

domains. The analysis environment will be explored more fully in the next section, which deals

with representing the simulation optimization process in a knowledge-base context.

The relationship between the strategy variables and analysis environment is illustrated in figure 2.2.

The top portion represents the analysis environment with its two domains, the art and science of

simulation optimization. The two domains are used to establish the value of the strategy variables,

as shown in the middle portion of figure 2.2. The strategy variables are then used to define the

parameters of a specific simulation experiment(s). The results obtained from executing the simu-

lation model are stored in a database and subsequently used to determine the next operation.

At the most fundamental level, the simulation optimization process is driven by the four strategy

variables. The variables constitute two general operations: “design” and “search”. Both operations

are used to specify where experiments are to be performed, 1.e., the specification of the factor levels

where the simulation is to be executed in order to measure the response(s). The two operations

differ in that the first involves multiple observations to gather information about a region; the sec-

ond uses one (or sometimes several) observations to test for improvement.

As shown in figure 2.2, the two operations and four strategy variables are highly interrelated and

depend on many sources of information from the analysis environment, including process history

and prior results (e.g., experimental design, regression analysis, search techniques), and heuristics,

expertise, and judgments (e.g., how all of the entities are related, what has been successful in the

past). The information from these sources may be conveyed in a variety of displays or views, de-

pending on whether the information is being conveyed to a human user or to logical objects within

a computer system.

The first operation, referred to as “design,” defines the locations where a set of simulations is to

be performed in order to gather information on the immediate environment. The two strategy

Chapter 2: Literature Review 28

ANALYSIS ENVIRONMENT

"SCIENCE" domain "ART" domain

* static ¢ dynamic
e structured ¢ un- or semi-structured
¢ algorithmic ¢ heuristic

¢ procedural ® non-procedural

STRATEGY VARIABLES

we em ce w ecw en ee eee eee eee eee ll lt ew we meter tc eee tone
wee me mew ee meee eee eee ee ee lll el tt ks ae st ee
eect tt + oe tee ee i Gy te
eee eB ee tt i
eee et HF Cpe eee fea nae

. Piitf Search

resign ke Hit] technique]
MBI OES EE direction) f:::

reece e jes eses

Factor levels

Simulation

experiment(s) Response

Figure 2.2: Strategic overview of the simulation process

Chapter 2: Literature Review

variables associated with the design operation are the size of the design region and the type of design

to construct (random, factorial, central composite (CCD), etc.).

The second operation, referred to as “search,” uses the sample information from the design opera-

tion to explore in a promising new direction. As mentioned above, the search operation normally

involves a single simulation experiment (of course a series of searches is possible). The two strategy

variables related to search are the type of technique to use in order to determine the search direction

(steepest ascent, Box’s complex, ridge analysis, etc.) and the step size to take in that direction.

An important benefit of the unbundled satisficer is that this design promotes modularity, as will

be seen even more clearly in the remainder of this chapter. New and different procedural routines

(i.e., experimental designs and searches) can be “plugged into” the satisficer along with the heuristics

that suggest when to invoke them.

To illustrate the GRC framework, consider a simple example. First suppose that, based on the past

operations, the satisficer prescribes the next operation to be design. In particular assume the

design-type strategy variable is currently set to the value “CCD.” Also suppose that based on a

previous operation it is inferred that a full design is not necessary and the CCD can be constructed

by augmenting an earlier first-order design, thereby defining the design-region strategy variable.

These decisions are made by both domains in the analysis environment -- the art domain utilizes

expertise and heuristics to decide what to do; the science domain utilizes procedures and algorithms

to decide how it should be done.

Once the values of the strategy variables have been set, several procedures are executed. First, a

library procedure is executed to specify where the new simulation runs need to be made. (An

interface program handles the protocol between the particular experimental design program and the

database.) The design information is passed to a simulation program, the experimentation runs are

made, and the responses are recorded in the satisficer’s database. Note that another interface pro-

gram is used to link the general satisficer with specific computer simulation models and packages

Chapter 2: Literature Review 30

(GPSS, SLAM, SIMSCRIPT, etc.). That interface contains the protocol for extracting the factor

settings for each experiment from the database and translating them to a form readable by the

simulation program. It also contains the protocol to receive response values from the simulation

and record them in the satisficer’s database.

Finally (for the purposes of this example), after the sumulation runs have been completed, regression

and ANOVA procedures are called to fit a second-order surface and test it for lack of fit. The re-

sults are passed along to the analysis environment and are used to determine the next operation and

the new values of the strategy variables.

The GRC framework is designed to specifically address the problems described earlier that are in-

herent in the simulation optimization process. It embraces the application of a wide variety of

techniques and approaches. It truly supports the analysis process; 1.e., it does not drive it, nor does

it force the process to be procedural and linear in nature. It also exploits the application of Artificial

Intelligence (AI) technologies; i.e., it calls for intelligence to be placed around or among statistical

procedures and not into existing statistical programs. It provides a fresh look at how simulation

optimization software should be structured and designed and identifies existing computer technol-

ogies that are available to meet this need. The framework is expanded in the next section by de-

scribing the analysis environment in more detail.

Simulation Optimization in a Knowledge-Based Context

This section presents the second contribution of the GRC paper: further development of their

framework, focused on the analysis environment that was introduced above. As shown in figure

2.3, the analysis environment is represented in a knowledge-based context by defining it in terms

of three components: an inference engine (the problem processor that carries out the reasoning), a

Chapter 2: Literature Review 31

knowledge kernel (contains facts and expertise), and a set of processing support software. In terms

of the framework, the main component of the analysis environment is the knowledge kernel. It

will be described in detail following a brief discussion of the other two components. (These com-

ponents are dealt with quickly because they are more widely known concepts.)

The inference engine contains general problem-solving strategies that search through available in-

formation and rules until a decision or solution is found. Most commercial expert system shells

(e.g., GoldWorks, VP-Expert, etc.) contain an inferencing mechanism. Two common reasoning

or search strategies used in expert systems are backward and forward chaining.

Processing support software consists of ancillary computer packages and programs that are called

from within an expert system. They are specific implementations of tasks needed by the satisficer,

e.g., relational database management systems, database query languages, graphics packages, statis-

tical analysis software, report generators, and special procedures or subroutines (written in

FORTRAN, C, PASCAL, etc.).

The knowledge kernel component of the analysis environment contains all of the information

needed to set the strategy variables and decide what operations are to be performed at what time.

Three types of knowledge are represented in the kernel -- facts, expertise, and methodologies; they

are stored in a database, a rule base, and a methodology base, respectively. Each of these is dis-

cussed in the following subsections. Note that the knowledge representations are discussed in

conceptual terms, which may differ from physical representations. (For example, if the knowledge

is physically represented in terms of frames, then the database and rule base elements can be com-

bined in the frame context.) For simplicity in this paper, we treat the database and rule base as

separate representations.

Chapter 2: Literature Review 32

INFERENCE ENGINE

OWLEDGE KERNEL

DATABASE METHODOLOGY RULE

BASE BASE

OBSERVATIONS ANALYTICAL PROCEDURES GENERAL PRINCIPLES

RESULTS INTERFACES DOMAIN-SPECIFIC RULES

HISTORY QUERIES INTER-STRATEGY VARIABLE
RULES

CHARACTERISTICS DISPLAYS
INTRA-STRATEGY VARIABLE
RULES

CONTROLLER
PROCESSING SUPPORT

¢ database management
* graphics package
* statistical analysis
programs

¢ report generators
e

Figure 2.3: The analysis environment component (of figure 2.2) cast in a
knowledge-based context

Chapter 2: Literature Review 33

Database

The database portion of the knowledge kernel is used to store four types of information needed in

the simulation optimization process: observations, results, history, and characteristics.

Figure 2.4 provides an example of how the first two types of information -- observations and results

-- are related and how their data may be represented in the knowledge kernel. The information in

figure 2.4 is structured using a relational data model approach. This type of diagram, where each

data item is represented as an “object,” is helpful in structuring both traditional relational databases

and frame-based expert systems. The first type of information stored in the database, observations,

includes the specific factor and response values for each simulation experiment. They are stored in

the “settings” and “observations” data items in figure 2.4. The second type of information stored

in the database, results, includes output from statistical analyses (regression slopes, ANOVA sum-

of-squares, etc.). They are represented by the “regression” and “reg-parameters” data items in fig-

ure 2.4. The other data items in figure 2.4 contain additional details on each factor and response,

as well as a record of which set of sample points was used in each analysis. (A single simulation

experiment can be a part of several groups of observations or samples, and results from a single

experiment can be used in more than one analysis.)

With the data stored in the manner shown in figure 2.4 and with the appropriate set of queries, one

can easily determine such information as the estimated coefficients for a particular regression anal-

ysis, how well the model fit, what set of observations was used, and if necessary, the individual

values for each of the factors that were used in the analysis.

The third database element, history, provides a longitudinal record of what operations were per-

formed when. This record in conjunction with rules can be used to modify the strategy variables.

For example, if the last two operations performed by the satisficer were gradient searches in the

same direction, and each resulted in improvement in the sampled response, then this information

Chapter 2: Literature Review 34

SAMPLE

s-no name
1 Search

RESPONSE

Y mame UL LL goal UoM
Yl yield 100 SO max %

N _N

OBSERVATION REGRESSION

o-no s-no Y Y-value date reg-no s-no Y bg SSbg SST SSE
1 1 Yi 75 5/4/92 1 1 Yl 4.3 7565 974.0 26.0

FACTOR |

X name UL LL UoM
Xl temp. 400 100 degrees

Lo 1]

[SAMPLE REG-PARAMETERS _|
o-no X X-value | reg-no X bj SS

1 XI 180 1X1 1.04 56.25

Figure 2.4: An example relational data model in the knowledge kernel

Chapter 2: Literature Review

could be used to fire a rule that accelerates the search by increasing the step size. The historical

information, in conjunction with the appropriate logic in the rule base, could also monitor the re-

sponse function, characterize it (e.g., many local optima, constant variance), and build a history of

its behavior.

The final database element, referred to as characteristic data, stores descriptive information on the

various techniques used by the satisficer (e.g., how many observations are needed for a particular

design, whether the design is first-order, rotatable, etc.). It could also include descriptions of known

response functions. Periodically, this information could be compared to collected sample data, as

described above, so that the response function under investigation could be classified in terms of

shape (e.g., symmetric, ridge, flat), degree of variability, etc.

Rule base

The rule base portion of the knowledge kernel in figure 2.3 is subdivided like the database portion,

but the elements of the rule base are more hierarchical, i.e., the lower-level rules are not fired until

many of the upper-level rules have been processed. The manager or controller portion contains the

lowest-level rule set. It is used for such management tasks as initializing the system when starting

a new problem, re-starting the analysis of a problem that had been temporarily suspended, main-

taining the history of operations, etc. It is also concerned with ensuring that the proper sequence

of operations is followed, determining when it is necessary to collect data (pass control to the sim-

ulator), etc. For example, before a search operation is performed the controller should check to

see that the factor values (i.e., values of decision variables) have been set based on a specified search

direction and step size.

The next two elements in the rule base, listed above the controller in figure 2.3, involve the strategy

variables. Inter-strategy variable rules are primarily concerned with the interplay between the

Chapter 2: Literature Review 36

strategy variables (for example, the relationship between the step size and the size of the design re-

gion or the type of search technique to use in conjunction with certain designs). Considering past

operations is important as well, as illustrated by the example of an inter-strategy rule in figure 2.5.

The example rule fires when the previous two operations had successful searches (resulted in im-

provements in the response) in the same direction. In this case, the firing of the rule causes the step

size to double. It also causes a lower level rule in the hierarchy -- a controller rule -- to fire (as il-

lustrated by the second rule in figure 2.5). This rule calls a procedure that determines the value of

the factors based on the new step size (and prior direction) and a procedure to run the simulation

model at this point and determine the response.

The other element in the rule base specifically related to the strategy variables, called intra-strategy

rules, deals with expertise and guidance for a particular strategy variable. A few example rules in-

clude: if there is little variability in the response, then type of design is not that important; if re-

sponse appears to possess a steep ridge, then a uniform-precision CCD design is preferred; if a

simplex design was constructed, then use Box’s complex search technique; if there is a drop in the

response along a search path, then return to the prior sample point and set up another first-order

design.

Domain-specific or problem-specific rules provide information from previous studies in comparable

environments. For example, a response being measured in a specific type of production process

may have been found in the past to be quite stable and exhibit relatively litle variability; or, a par-

ticular class of inventory problems may have been found in the past to possess a gently sloping,

concave, and symmetric response function.

General principle rules are used to represent broader analysis knowledge, i.e., broader or more

general concepts that apply to an entire class of techniques. For example, if a significant lack of fit

is found in a first-order model, then it should be inferred that there is a need for a second-order

model. Another set of general principle rules may provide guidelines for the removal of a factor

from further consideration (i.e., factor screening).

Chapter 2: Literature Review 37

INTER-STRATEGY VARIABLE RULES

OPERATION(-1) = "SEARCH"
AND RESULT(-1) = "IMPROVE"

AND OPERATION(-2) = "SEARCH"
AND RESULT(-2) = "IMPROVE"

AND SS(-2) = SS(-1)

 CONTROLLER RULES

OPERATION(0) = "SEARCH"

IF

THEN
OPERATION(0) = "SEARCH
AND S$S(0) = 2 *SS(-1)
AND SRCHTECH(0) = SRCHTECH(-1)

THEN

CALL SEARCH(SRCHTECH, SS, X)
CALL SIM (X, Y)

Figure 2.5: Example rules in the knowledge kernel

Chapter 2: Literature Review 38

Methodology base

The methodology-base portion of the knowledge kernel, as shown in figure 2.3, is composed of four

primary elements: analytical procedures, interfaces, queries, and displays. The methodology base

is considered at the same level in the framework as the database or rule base -- it should be just as

easy to add a new statistical procedure or a new report to the methodology base as it is to add a

new rule to the rule base or a new piece of information to the database.

The element referred to as analytical procedures includes all of the statistical tools needed in the

simulation optimization process to compute such things as the regression parameters, analysis of

variance, direction of steepest ascent, location of design points, etc. Implementation of these pro-

cedures is through processing-support software described earlier (programmed either in third-

generation language subroutines or a part of a more general statistics package).

The interface element of the methodology base is a key factor in the design, development, and im-

plementation of a simulation optimizer. Many different types of interfaces are needed to establish

protocols and links between the many support routines and packages. A few example uses of

interfaces follow. Obviously there must be a set of interfaces that allows the system to interact with

a simulation model -- a separate interface is needed for each simulation language that is used by the

satisficer so that a protocol is established for passing the factor values to the simulation program

and receiving the response value(s) once the simulation experiment is complete. Another important

set of interfaces links the expert system and the various computation routines. Well-defined user

interfaces are of paramount importance to facilitate the interaction between the optimizer and users.

Many screen displays are used for routine operations, but an optimizer also must provide

“windows” for the user to directly interact with lower level processing environments, e.g., statistical

analysis, database, graphic, etc. This is essential to support any type of ad hoc investigation and

analysis.

Chapter 2: Literature Review 39

Queries supply the satisficer with standard interrogations to the database or rule base. Database

queries are critical to passing data to and from the statistical procedures. For example, an SQL-type

query could provide access to data from a specified experiment, format it so that it can be read by

a regression routine, receive output from the analysis, and store the results (coefficients, sum of

squares, etc.) back into the appropriate place in the database. One type of rule-base query is a trace

of the rationale for the optimizer recommending a particular operation.

Displays provide templates for the many graphical and report-format exhibits used in the simulation

optimization process. For example, in RSM analyses many types of graphical displays are used.

Contour plots are commonly used, but, given the advances being made in computer graphics there

are many exciting opportunities for application of these concepts to support the RSM and simu-

lation optimization analysis process. Many standard reports are used in the analysis process -- these

range from a history of the search process to date (provides information on the region explored,

improvement in the response, types of operations performed, etc.) to summary statistics resulting

from the application of a regression procedure to a set of data.

Chapter 2: Literature Review 40

Chapter 3: Use of a Classifier to Facilitate

Simulation Optimization

Background

Simulation is a widely-used computer modeling technique that has been applied to a broad scope

of problems, ranging from traffic-flow analysis to job-shop scheduling to military-campaign plan-

ning. Simulation permits study of systems which cannot feasibly be constructed or experimented

upon in the “real world,” and which are too complex to be analytically modeled.

When a given set of input conditions is applied to a simulation model, the simulation model output

(often referred to as the “response surface”) provides an estimate of how the true system would

respond to these inputs. For many systems the modeler wants to know the “best” possible set of

inputs, in the sense that application of those inputs to the simulation model would result in highly

desirable or even a “best” set of outputs. However, although simulation is very useful in predicting

the system output or response, simulation does not in and of itself indicate the input conditions

required to achieve the desired outcome. The process of finding the input conditions that will yield

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 41

the optimal (or near optimal) system response is referred to as simulation optimization, and it can

be a very expensive and time consuming activity.

Many different search strategies have been utilized or considered in simulation optimization, in-

cluding response surface methodology (RSM), random search, single factor search, nonlinear pro-

gramming, and some newer techniques such as simulated annealing and genetic algorithms. A

critical decision that must be made in simulation optimization is which strategy to employ. Some

work has been done to aid this decision, although, as Meketon (1987) concludes, “optimization for

simulation, to date, remains an art, not a science.” Meketon approached the problem of technique

selection by considering the information available (or assumed) about the simulation itself and then

grouping the optimization methods accordingly. Safizadeh (1990) discussed a variety of strategies

and their application. He concluded that, in general, RSM approaches are most effective, although

some of the newer developments look promising. Smith (1973) performed an empirical study of

the effectiveness of several search strategies (random search, two variations of single factor search,

and four variations of RSM) on a variety of surfaces. He found that the relative effectiveness of

each of the strategies varied depending on the characteristics of the response surface (presence of

local optima, random error, number of controllable inputs, etc.).

The current state of the literature suggests that organized guidance is needed to help users choose

appropriate search strategies. Safizadeh explains that “for successful design and analysis of simu-

lation, one should be well versed in several disciplines.” Due to shortcomings along these lines,

users are inhibited from using simulation optimization (and hence, sometimes, simulation). He

concludes that there is, therefore, a need to “develop interactive programs which direct a user to

an appropriate optimization technique.”

In Greenwood, Rees, and Crouch (to appear), we have suggested that part of the reason for the

need for such a program to direct users is that simulation optimization is an intermingled combi-

nation of “art” and “science.” Although there are clearly-defined algorithmic procedures, there are

also rules of thumb, which vary from situation to situation. For example, different approaches in

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 42

setting step size during the search are discussed by Myers (1971) and Biles (1975); deciding when

to stop searching in a specified direction is evaluated by Myers and Khuri (1979); Daughety and

Turnquist (1978 and 1981) present a novel “‘budget-focused” search procedure that considers the

allocation of simulation runs both temporally and spatially. Our solution to the art/science prob-

lem was to suggest separating this art and science in simulation optimization, by storing heuristics

for the different search procedures in a knowledge-based system and the science or algorithmic

portion in a so-called methodology base. The heuristics can then select the most appropriate search

strategy for the occasion and subsequently invoke procedural aspects for that strategy as required.

In this manner, rules of thumb as well as new procedural modules can be added, updated, and de-

leted without destroying a fixed “algorithm.” The “algorithm” is embedded 1n the (knowledge base)

rules, which are easily changed.

In the work referenced above (Greenwood et al.) we also specified a broad-brush architecture for

a knowledge-based simulation optimization system. However, we had not actually built such a

system at that time and hence were not able to specify implementation considerations. Having now

built a system for small problems, we are able at this point to stipulate a precise and improved ar-

chitecture and process flow for this knowledge-based system. This is the contribution of this re-

search. Moreover, a major design decision made in the present research was to put a Classifier

module at the heart of the system. As will be explained, the Classifier categorizes response surfaces

into classes, where each class consists of those surfaces most amenable to a given search technique.

The remainder of this chapter is organized as follows. In the next section, the specific architecture

of the Classifier KBSOS is presented. Following that section, the classifier KBSOS process flow

is explained, with details of the classifier and the knowledge base revealed. Third, the (computer)

solution of an example problem is provided to illustrate the system and to demonstrate advantages

of the classifier KBSOS over single-technique approaches. Finally, conclusions and future work

are discussed.

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 43

The Classifier KBSOS Architecture

The first detailed notion of a knowledge-based simulation optimization system (KBSOS) is pre-

sented in Greenwood, Rees, and Crouch (to appear) and is shown in figure 3.1. As may be seen

from that figure, the major elements of that system are an inference engine, a so-called knowledge

kernel, and processing support. The inference engine, as is standard in all expert-system shells,

provides inference and control capability and operates on knowledge stored in the knowledge base

in the knowledge kernel. The processing support component provides database management,

graphics packages, statistical analysis programs, report generators, etc. As explained in Greenwood

et al., the knowledge kernel is the hub of the system, and itself consists of three major modules:

the Data Base, the Methodology Base, and the Rule Base. The Data Base contains historical in-

formation: records of decisions made in each simulation optimization and the results of those de-

cisions. Moreover, this module stores what is currently being experienced during each round of

simulation optimization; this includes the data generated and decisions made during strategy plan-

ning, simulation results obtained during the ensuing search, regression coefficients, analysis of var-

iance (ANOVA) results for lack-of-fit tests, etc. The Methodology Base includes analytical

procedures for statistical computations, algorithms to conduct the “science” portions of the various

search algorithms available in the KBSOS, and requisite interfaces, queries, and displays. As pro-

posed in Greenwood et al., the statistical components include submodules to do specialized re-

gression, ANOVA, steepest ascent, canonical analysis, experimental design, etc. The final

component of the knowledge kernel is the Rule Base. As shown in figure 3.1, the Rule Base in-

cludes rules for general principles, domain-specific rules, inter-strategy rules, intra-strategy rules, and

a controller. But although Greenwood et al. allowed for strategy selection in the Rule Base, no

prescription was given for how to do it, i.e., determine which search technique should be applied

to a given surface. That research merely specified that rules be used to select a strategy. Moreover,

there was no overall organized scheme elucidated for determining this mapping. It is these major

“gaps” or limitations that are now addressed as we specify our new architecture.

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 44

DATABASE

INFERENCE ENGINE

OWLEDGE KERNEL

METHODOLOGY

BASE

RULE
BASE

OBSERVATIONS

RESULTS

HISTORY

CHARACTERISTICS

Figure 3.1: Greenwood-Rees-Crouch simulation optimization architecture

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization

ANALYTICAL PROCEDURES

INTERFACES

QUERIES

DISPLAYS

PROCESSING SUPPORT

GENERAL PRINCIPLES

DOMAIN-SPECIFIC RULES

INTER-STRATEGY VARIABLE

RULES

INTRA-STRATEGY VARIABLE
RULES

CONTROLLER

e database management
* graphics package
* statistical analysis
programs

* report generators
e

45

In order to develop an architecture that goes beyond Greenwood et al. and specifies in greater detail

how heuristics in the rule base can guide simulation optimization, we observe the following points.

First note the obvious fact that different simulation models generate different response surfaces.

Second, observe that different search strategies (e.g., RSM, single factor search, etc.) work with

different degrees of success on different surfaces. In fact, the literature contains many such findings

(see, for example, Meketon (1987), Safizadeh (1990), and Smith (1973)), although these results

frequently are neither published in one central location (say under “simulation optimization”), nor

are they identified per se as rules of thumb to be used in simulation optimization. Next, and most

critically, note that it would be highly desirable to classify any given response surface according to

that search technique which has the highest likelihood of generating the best solution. For example,

a given surface with many local optima might be placed in the “simulated annealing” search strategy

category, whereas a simpler surface with a global optimum might be categorized in the “RSM”

category, because those search strategies are deemed most appropriate and likely to generate success.

Stating the categorization idea more succinctly, we postulate that response surfaces can be cate-

gorized using a Classifier according to those characteristics that make various search techniques

apropos.

Determining those characteristics that partition surfaces into search categories is itself a major re-

search question. Smith, in his 1973 Operations Research article, laid the groundwork and demon-

strated feasibility of this approach. He examined different surfaces on six factors: presence of local

optima, size of random error, distance of the starting point from the true optimum, the number of

controllable factors, the number of available computer runs, and the relative activity of the con-

trollable factors. He found that different search techniques performed with varying success on re-

sponse surfaces at the different levels of his six factors. For the research reported here, we adopt

Smith’s six factors as a starting point and remark that additional characteristics described in the

literature as significant can be added at a later date. We also note that this mapping from response

surface to most appropriate search technique is best incorporated in a knowledge base, as the

mapping is likely to be described as rules of thumb rather than fixed algorithmic procedures.

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 46

Once classification of surfaces by search technique has been determined, then the appropriate search

technique with its heuristic and procedural components can be invoked and simulation runs can

be made. With additional data points from these runs, the classification can be redone, because the

shape of the response surface in the newer search region may suggest a different search technique.

The process repeats until the simulation optimization is completed.

A simple representation of the simulation optimization system described above is shown in figure

3.2. Note that in this figure the optimizer is shown in a feedback path around the simulation model.

With this configuration, the optimizer suggests improved inputs to the simulation model, based on

outputs the optimizer has obtained from the simulation. Moreover, the optimizer itself consists

of two parts: a classifier (to categorize the surface) and a set of heuristics to specify the search

technique. In particular, when a set of inputs is presented to the simulation model, the model

generates points on a corresponding output surface. These, in turn, are used to classify (note the

“C” in figure 3.2) the surface as best as possible as to several general criteria or characteristics, as

mentioned above. Those criteria are then fed as inputs to the heuristic knowledge base (“‘H” in

figure 3.2), which recommends a most-preferred strategy for the given information on the surface.

Implementation of this search strategy results in a new set of inputs that the simulation optimiza-

tion system thinks will lead to a yet more desirable set of outputs. The process repeats for many

iterations until a sufficiently desirable output is obtained. As indicated, with the proposed system

it is possible for the classifier to change search strategies as different portions of the response surface

are categorized and explored. This is a powerful feature of the classifier model.

With the Classifier approach to simulation optimization outlined, it 1s now possible to specify a

new architecture for the optimizer module. In actuality, the new architecture (figure 3.3) is very

sunilar to the Greenwood et al. architecture shown in figure 3.1. The newer architecture contains

the same three major portions, the inference engine, a processing-support module, and a knowledge

kernel. The latter still consists of three modules, a Data Base, a Methodology Base, and a Rule

Base. But now that we have actually built the Rule Base, we have found it makes more sense to

redefine it as follows. There are still five different rule sets in the new Rule Base, but some differ

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 47

Inputs Simulation Outputs |
Model

s
s

ei

LLL ELLE idddisdddccéddéssscit

Optimizer

E
S
S

So

NS

LLL LLL i cccelcae

Figure 3.2: A simulation optimizer with a classifier and heuristics

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization

from the earlier proposal. As before, there is a Controller set of rules, but now the Controller rules

sit hierarchically above the other four rule sets, calling each as appropriate. As shown in figure 3.3,

these four rule sets are User Rules, Classifier Rules, Strategy Selection Rules, and Strategy Detailer

Rules. The first rule set is used to transform user inputs into terms usable by the rest of the rule

sets. (For example, such simple rules as “IF num_inputs < 4 THEN num_factors = small”

translate user-supplied information into a form usable by the strategy selector, as will be explained

later.) The second rule set, the Classifier Rules, contains the heuristics necessary to run the

Classifier and categorize surfaces. The last two rule sets are the same as we earlier suggested in

Greenwood et al., but we have changed the names. What was inter-strategy variables rules is now

Strategy Selector rules. They are equivalent in the sense that it is the rules that ‘‘cut across” strat-

egies that specify which strategy to select. Similarly, the Strategy Detailer rules are a renamed ver-

sion of the intra-strategy variable rules. That is, once a given strategy is chosen by the Strategy

Selector rules, then implementation details for that strategy can be specified by what used to be

called intra-strategy rules, but now are called Strategy Detailer rules. Finally note by comparing

figures 3.1 and 3.3 that we no longer separate out architecturally the “general principles” and

“domain-specific” rules; rather we incorporate each of these as appropriate in the other rule sets.

Having now defined an architecture for a Classifier Simulation Optimization system, we turn our

attention to the flow or process such a system would follow.

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 49

INFERENCE ENGINE

KNOWLEDGE KERNEL

DATABASE METHODOLOGY BASE RULE BASE

 OBSERVATIONS ANALYTICAL PROCEDURES |
e Search procedures Controller Rules

RESULTS ¢ Statistical procedures
* Classification procedures

HISTORY INTERFACES

Classifier Rules

 CHARACTERISTICS QUERIES

DISPLAYS | Strategy-Selector Rules |

Strategy-Detailer Rules

PROCESSING SUPPORT

¢ database management
* graphics package
* statistical analysis programs
* report generators

Figure 3.3: The Classifier knowledge-based simulation optimization
architecture

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 50

The Classifier Process Flow

Overview

In figure 3.2 we defined the basic process flow of our Classifier simulation optimization system.

There we showed that there are three basic steps in optimization: classify the surface (the ‘‘C” in

the optimizer box), use heuristics to recommend a search strategy for that surface (the ““H” in the

same box), and then search with the simulation model. The process interates until optimization is

complete.

Figure 3.4 shows a somewhat more detailed view of the Classifier KBSOS process flow, including

user input and breaking down the heuristic portion into two separate functions. In particular, the

USER module elicits information from the user about the problem, termination conditions, etc.

The CLASSIFIER module processes user information as well as data from any relevant previous

searches and characterizes the simulation response surface as to several key variables. The

STRATEGY SELECTOR operates on input from the Classifier and User modules and selects a

search strategy. Information from the User, Classifier, and Strategy Selector modules is then

processed by the STRATEGY DETAILER, which specifies operational details necessary to per-

form the SEARCH stipulated by the Strategy Selector.

Recall that when we mention the word “module” in connection with any of the five boxes referred

to above, we are not describing a procedural algorithm that is called and executed. Rather, as has

been explained and will be illustrated in the example below, a set of rules is invoked that in turn

makes calls to only those procedures required by the particular rules that fire.

We now explain the the inner workings of the Classifier KBSOS flow in detail, component by

component. Figure 3.5, a yet more detailed version of figure 3.4, is utilized for this purpose.

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 51

 Sy

a CLASSIFIER

NS

oe USER A

S
E
R
R
E

Shotgun
S a TE

Synthesize

Characterize
STRATEGY

SELECTOR

SE

 4

“ip mils

 STRATEGY
DETAILER

 S
e

SS

~ SS

Ye
NZ nnn, SEARCH

N
s

S
A
A

OLS

Figure 3.4: Process flow of the Classifier KBSOS

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization

USER a CLASSIFIER

 Variance

Calculation

Simulation
Shotgun

nN

S
3

ee Surface from SEARCH
21s 5 Synthesis
oh 3
01g SS
S j= 3
be 12
wv}. |a|&

1" 1S |?
Sj 15 |e os
S15 lo |S Surface Characterization

lO ly |S
cl. 14 Is

oO je 1S [5

ole le ls ele |. |s
Z |S le lz BEI IE

© 5 |s Oy [4 Ds la

6D

PIEI< (5
om ne

ElE|s is
|e (2 |S STRATEGY & |P

SELECTOR a
|

Oo
g o ne ec pond

Bo
oy
Bs
o
nN STRATEGY

DETAILER

\

ww | eH

& lz |8 |&
O le 1A TH
Ba 1Oo ll, 12

pfs fo jo
€ | |?

o
S |x
”

y

Figure 3.5: A detailed view of the Classifier KBSOS

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization

53

USER module

The first step in the optimization process is to obtain from the user a description of the problem

to be solved. This includes a specification of the number of inputs and outputs that the simulation

has, a listing of the input factors (e.g., the domain of definition for each variable and whether vari-

ables are continuous or discrete), and an indication of which of these factors are controllable, and

hence are to be adjusted by the optimizer, and which factors are not. Response goals, one for each

simulation output, are also set. For example, it might be stipulated that for output response y;, a

minimum yield of 85% must be reached (i.e., y; > 0.85). Moreover, data as to limits on computer

resources and termination conditions are also recorded. This may be specified in several different

manners, including limits on execution time, number of available computer runs, etc.

User specifications must in some cases be translated from language in which the user expresses

concepts, to those terms needed by the other modules in the KBSOS. This is a second function

of the User module, and it is easily implemented with simple rules.

CLASSIFIER module

As mentioned, Meketon (1987), Safizadeh (1990), and Smith (1973) have all explicitly examined the

search-technique selection problem in the simulation-optimization context. Smith’s work, pub-

lished in Operations Research, is the most complete for our purposes and consists of an empirical

investigation of seven different search strategies. He developed a full-factorial experimental design,

testing the seven search strategies under six different simulation scenarios. The seven strategies are

random search, single factor search, single factor search - accelerated, and four different RSM vari-

ations.

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 54

Each of the simulation scenarios he investigated consisted of one of the 128 possible combinations

of the following six factors at the levels indicated in parentheses:

1. local optima (present or absent)

size of random error (small or large)

distance of the starting point from the true optimum (near or far)

the number of controllable factors (= k = 30 or 120)

the number of available computer runs (0.5k, 1.1k, 1.5k, or 2.0k), and

n
A

FF

&Y
N

the relative activity of the controllable factors (low or high).

The measure of success of a given search strategy under a specific case in Smith’s experiment was

indicated by a number between 0 and 1 inclusive representing the fraction achieved of the total

possible improvement (i.e., the difference between the values of the response surface at the starting

and optimal points).

As mentioned, what Smith discovered in his experimentation is that the choice of best search

technique varies significantly with the factors he explored. That is, an optimal search strategy can

only be determined as the factors local optima present/absent, size of random error, etc., are known.

This suggests, as we have postulated, that different search techniques should be selected based on

the problem at hand.

Since Smith has posited the above six factors as affecting search technique and has found signif-

icance, and since it “makes sense” to us intuitively that these factors would influence choice of

strategy, we adopt his six factors as the discriminating variables in our surface classifier. There is

no claim here that these six factors are the only and ultimate influences upon strategy selection;

our assertion is that the selection of these six items is a reasonable starting point for this research.

It will be noted from figure 3.5 that the classifier has four outputs; these outputs are Smith’s first,

second, third, and sixth factors. These four factors will be estimated in the Classifier and passed

on to the rest of the optimization system. The other two of Smith’s factors (numbers four and five)

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 55

are specified by the user in our model, and hence are shown as emanating from that box in figure

3.5.

The purpose of the Classifier, therefore, is to estimate the four output characteristics shown coming

from that box in figure 3.5. Generally speaking, this is done in three sequential steps:

e “ordering” the simulation to make a prescribed number of simulation runs

e = fitting a surface through these points (i.e., simulation outputs), and

e classifying the fitted surface according to Smith’s four output characteristics.

Four modules are used within the Classifier to do these tasks. The first two modules, the Sismu-

lation Shotgun and the Variance Calculator, specify the number and location of simulation runs.

The Shotgun, so named because it scatters runs across the input space, uses heuristics and the

user-specified upper limit on simulation runs to determine the number of runs to make. Most

simulation runs are made at regular intervals throughout the input space. This can be visualized

as a “grid” of runs over the domain, as indicated in figure 3.6 by the circle-shaped points. (These

runs are, of course, made at discrete levels for all non-continuous variables.) In case there are var-

iations in the response surface at the same wavelength as the spacing of the grid points, some runs

are also made at randomly-chosen input levels (the square-shaped points in figure 3.6). The Vari-

ance Calculator is used to suggest whether the surface is highly volatile and hence needs extra sim-

ulation runs over the region. It also provides data to the Surface Characterization module as to the

amount of noise present in the surface.

The second step in the Classifier procedure is fitting a surface through the responses gathered from

the simulation runs made in step one. Currently a neural network is used to do this, although any

successful functional synthesis approach may be used. All available simulation runs are used to

train the neural network. The network is then used to estimate the responses for input levels be-

tween those of the actual simulation runs. This saves the time and expense of performing a large

number of simulation runs.

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 56

Domain of Search

© indicates grid points over the domain of search

O indicates random points over the domain of search

Figure 3.6: Simulation runs suggested by the shotgun

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 57

The particular approach we are currently using with respect to the neural network implementation

is a backpropagation network trained on an orthogonal polynomial representation of the input data.

(See Pao (1989) for the benefits and details of this.) That is, we use as inputs to the neural network

the input variables themselves, a cosine and sine term of each input variable, three harmonics of

each of these four terms, and five cross-product terms. For example, for a two-input variable (x,

X2) problem, there would be twenty-three inputs to the neural network, namely:

X}, X2} COS(N7X;), sin(n7x;); cos(n7x2), sin(n7x2);n = 1,2,3,4;

X)X2} X1COS (7X2), X; SiM(7X2), X2 COS(7X)), X2 SiN(7X;).

Although further research is needed to determine the best procedures for implementing functional

synthesis, we have had good success with the implementation described above.

The final step in the Classifier algorithm is determining values for Smith’s four surface character-

istics. This is done with procedural (third-generation) modules and heuristics (rules), all operating

upon the synthesized surface and the variance calculations. For example, one such module deter-

mines whether local or rather global optima are present. To illustrate the workings of this module

consider the simple case of a single input variable to a simulation program (call it x), that in tum

would generate a true single-response surface (call it y) if all values of x could be run through the

model. Since only a few values of x are suggested by the Shotgun to be run through the model (in

order to conserve runs), only those points are known to be on the surface y. Hence an estimate

of the surface y must be made, which is the function of the (neural network) surface synthesizer.

Assume that the curve y shown in figure 3.7 is obtained by the network. Now the local optima

present/absent module may be invoked, which works as follows. By search over the fitted surface,

the highest value(s) of y is (are) found. In the example of figure 3.7, only a single highest point

would be found at this step (call it y..:). Using a predetermined increment size 6 (as indicated in

figure 3.7) a search is made over the fitted surface y to see how many x exist at the value Yop — 6.

By continuing to search over x for values of Yop - kd, where k is a positive integer, it is possible to

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 58

see whether only a single optimum exists, or whether many optima appear to be present. This is

indicated in the figure, where at Yopt - 36, two additional optima are observed.

STRATEGY SELECTOR module

The Strategy Selector consists of rules that take into account information from the User module

and judgments made by the Classifier in order to choose the most appropriate search strategy. This

rule set has been developed from the results of the experiments performed by Smith (1973) de-

scribed above. The 128 data points presented in his tabular results were first converted to 128 rules.

These 128 rules were then processed by a Generalization module in a learner we built (see

Greenwood et al., forthcoming) and were therein reduced to 50 more general rules by that learner.

The rule antecedents (i.e., the IF parts) of the strategy selector rules correspond to the six surface

characteristics Smith used to categorize simulation situations. The rules’ consequent element (i.e.,

the THEN part), search strategy, can take on one of the following values: random search, single

factor, single factor - accelerated, response surface methodology (RSM) I, RSM I - accelerated,

RSM II, or RSM II - accelerated. The strategy chosen is the one which provided (for Smith) the

maximum gain for the given surface characteristic combination (i.e., antecedent). Thus the Strategy

Selector uses the User module’s interpretation of user-supplied parameters and the Classifier’s de-

terminations of surface characteristics to decide which search strategy is expected to get closest to

the optimum. A few of the (VP-Expert) rules in the Strategy Selector are shown in table 3.1.

STRATEGY DETAILER module

In order to implement the chosen search strategy, the values of a number of strategy variables must

be set. This function is performed by the Strategy Detailer, which employs information from the

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 59

<
>

—

Figure 3.7: Determination of global vs. local optima

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 60

Table 3.1: Example strategy selector rules

RULE 11
IF num_factors = small AND

local_optima = present AND
factor_activity = high

THEN search_strategy = random_search;

RULE 19
IF num_factors = small AND

num_sim_runs = small AND
local_optima = present AND
dist_to_opt = near AND
random_error = large AND
factor_activity = low

THEN search_strategy = single_factor;

RULE 21
IF num_sim_runs = medium AND

local_optima = absent AND
random_error = large AND
factor_activity = high

THEN search_strategy = RSM_]I;

RULE 32
IF num_factors = small AND

num_sim_runs = large AND
local_optima = absent AND
dist_to_opt = far AND
random_error = small

THEN search_strategy = RSM_I_accel;

RULE 48
IF num_factors = large AND

num_sim_runs = small AND
local_optima = absent AND
random_error = small AND
factor_activity = high

THEN search_strategy = RSM_II_accel;

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 6!

User, Classifier, and the Strategy Selector. The Strategy Detailer component must decide several

incidentals, including:

e where to begin the search (1.e., starting point)

¢ = what will be the region of fit/search

e = what design will be used, and

e the value of the step size.

Whether all of these are relevant depends on the strategy selected; in a random search, for example,

starting point, design and step size do not come into play.

The Strategy Detailer knowledge base (KB) loads in the search strategy chosen by the Strategy

Selector KB, and then uses this to fire the relevant detailing rule(s). One Strategy Detailer rule (as

written in VP-Expert) is:

RULE rand_srch
IF search_strategy = random_search
THEN starting point = none

CALL REGION,”
step_size = none
design = none;

“REGION” is a procedural program stored in the Methodology Base that uses information gen-

erated during classification to set boundaries for the region in which the search will be performed.

SEARCH module

After decisions have been taken as to search strategy and the strategy variables, the appropriate

procedures in the Methodology Base are called on to carry out the chosen strategy. After this

strategy has been pursued, the newly acquired simulation results are fed back to the Classifier’s

surface synthesizer (neural network). The neural network is retrained to include this new infor-

mation, and the decision process repeats as described above from this point. Thus as more infor-

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 62

mation about the response surface is obtained, the KBSOS reevaluates the most appropriate search

strategy with which to continue.

Example

The purpose of this example is to illustrate the Classifier KBSOS algorithm and to show the ben-

efits of the Classifier approach. To accomplish these objectives, an example is chosen that consists

of a known surface plus random error; with this approach, it is possible to follow easily the progress

of the search toward the optimum. As described in the preceding section, the Classifier KBSOS

algorithm has been implemented using the expert system shell VP-Expert (1989).

The simulation model is described by the following equations (expressed in polar coordinates):

y(r,0) = 0.5 exp(-2.7r7) cos(3zr) + 0.5 + «, r< 0.5

y(r,0) = 0.5 exp(-2.7r7) cos(3zr) cos(40) + 0.5 + «, r>0.5

where epsilon is N(0,0.05*). A three-dimensional plot of the response surface y (exclusive of error

term) is shown in figure 3.8, and a contour plot of the surface is indicated in figure 3.9. Note that

y is contained in the closed interval [0,1]. For ease of exposition, we will assume that the user, who

is unaware of the surface shape or its optimum, thinks of the problem in a Cartesian-coordinate

system. We take the origin of our system to be the (x;, X2) point at which the highest point on the

curve (y= 1) occurs.

Activity begins with the Controller (see figure 3.3), which is rmplemented in VP-Expert with

ACTIONS blocks. Basically, the Controller “chains” (i.e., passes control) from one rule set to the

next, requesting specific information from each, as will be indicated in the sequel.

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 63

ANNO MU WHINY HENNY SS 7? i [) NY)

| Nie
Hed i

i
ATL WW)

Figure 3.8: The true response surface without error

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 64

The Controller first invokes the USER knowledge base (figure 3.5). By way of several rules, the

user is then asked to answer several questions about the model. The user responds that there are

two controllable, continuous inputs x, and x2, both limited to the range [-1, 1], and that the number

of computer simulation runs should be limited to 150. The user also stipulates that an output value

as large as possible, but at least as large as 0.85 is desired (i.e., y > 0.85). The User KB fires several

rules to translate this information into a form needed by other modules, thereby concluding that

the number of inputs is small and that the number of simulation runs is large. Since all four outputs

shown in figure 3.5 have been determined, the User KB saves all facts into the KBSOS Data Base

(see figure 3.3), whether obtained directly from the user or inferred by the user rules.

The Controller then chains to the CLASSIFIER knowledge base. The Simulation Shotgun com-

ponent of the Classifier (see figure 3.5) uses rules and a ssmple FORTRAN program stored in the

Methodology Base to determine the number and positioning of the shotgun simulation runs. In

this case, a set of 97 runs is planned at 77 points on the surface. Of these runs, 64 are to be made

at grid points, 13 are to be run at random (non-grid) points, and 20 repeat runs (i.e., multiple runs

at given points) are suggested so that the variance of the true surface may be estimated. A Shotgun

KB rule then initiates two interface programs that make the recommended simulation runs and

translate results into a form usable by the Surface Synthesis component. A third program performs

variance calculations based on the 20 repeat runs. This program indicates an estimate of surface

variance of 0.003 (which is close to the true variance of e, namely 0.057).

The second task of the Simulation Shotgun KB is to determine the input levels at which the

synthesizer will be used to estimate response values, and then prepare these data for use with the

neural network. As with the shotgun simulation runs, this is done by means of a rule and two

programs. (Both procedures are resident in the Methodology Base.) Finally, the Shotgun KB

places all new facts into the KBSOS Data Base.

As mentioned, we have implemented the Surface Synthesis module with a backpropagation neural

network using an orthogonal polynomial representation of inputs. Since this example has two in-

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 65

Figure 3.9: Contour plot of the true surface

66 Chapter 3: Use of a Classifier to Facilitate Simulation Optimization

put variables and one output, the neural network input layer has 23 input nodes and one output

layer node (to predict the response, y). The example also uses ten middle-layer nodes. The soft-

ware package NeuralWorks Professional II (Klimasauskas, 1989) is used to carry out the training

of the neural network.

For the example at hand, after 10,000 random training presentations of the 97 data points, the es-

timated surface indicated in figure 3.10a is generated by the neural network. First, note the excellent

fit, in spite of the highly irregular surface. Second, observe that the neural network was trained with

noisy data, 1.e., data with random error in it. Finally, note that the center peak is much lower in

the estimated surface than in the true surface. This is due to the relatively few data points, the

complexity of the surface, and the presence of error.

Now the trained network can be used in recall mode to estimate points anywhere on the surface.

This is useful in carrying out the final step in classification, Surface Characterization. As explained

above, this is accomplished by Classifier rules in conjunction with FORTRAN programs stored in

the Methodology Base. The values of the four surface characteristics obtained after firing these

rules and executing the programs are

local optima = present
random error = small
dist to_opt = far
factor_activity = high.

It is interesting to note that in determining whether local optima were present or absent, the

Classifier found nine local optima. As can be seen in figure 3.8, that is precisely the actual number

of significant local maxima.

The Classifier, at this point, records all its findings (including the neural network weights) in the

KBSOS Data Base.

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 67

10 4 y

HANNA
ANY, ve iN iN ai

LN

Gy i

ne oR y yi \ Mi

AX

a

1.0

0 =F
1.0

1 10 -1.0

(a) The neural network fit with 97 points

10 4 y

Lm INE A

aA iN EN Mf
vay Re VR

J iy Z WN) ¥4
05 4 wa WAN my y

My
1.0

07
-1.0 1.0

(b) The neural network fit with an additional 13 points

Figure 3.10: The neural] network estimates of the surface

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 68

The Controller next chains to the STRATEGY SELECTOR knowledge base. The Strategy Se-

lector then accesses working memory to utilize the four parameter values determined by the

Classifier plus the two other values from the User knowledge base in order to select a strategy.

These six parameters are

num_factors = small
num_sim_runs = large
local_optima = present
random_error = small
dist_to_opt = far
factor_activity = high.

Consequently rule 11 shown in table 3.1 fires, and random search is chosen as the appropriate

search strategy. This fact is placed in working memory as well as the KBSOS Data Base.

Since the “point” of this example is not to demonstrate the particulars of random (or any other)

search method, we present the rest of the example in overview fashion. The controller next calls

the STRATEGY DETAILER, which fires a rule and executes the REGION procedure mentioned

above. Consequently, a search region of -0.76 <x, < 0.95 and -0.85 < x. < 0.85 is specified, as

shown in figure 3.1la. Note that the Strategy Detailer has cut out all of the lower-valued outer

perimeter, while maintaining the region encompassing all nine peaks. A random search is then

conducted within the search region. A procedure in the Methodology Base concludes that an ad-

ditional 13 random points should be simulated.

The Controller next orders the SEARCH to be performed as directed by the Strategy Detailer.

Results from these runs are stored in the Data Base.

It is critical to note that what happens next with the Classifier KBSOS differs from the process for

a conventional simulation optimization system. In the Classifier system advanced in this research,

all (simulation) data points are now fed back through the Classifier, where another neural network

surface is fit, and a new set of characterization variables specified. Therefore, it is possible that a

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 69

new search strategy will be found to be preferred, which in fact is the case, as will be seen, in this

example.

The Controller next passes control to the Surface Synthesis portion of the CLASSIFIER. A neural

network now fits a surface through all 110 (97 + 13) data points in hand so far. The surface shown

in figure 3.10b is obtained. Note that the previously-lower center peak now more accurately re-

presents its true shape. The Surface Characterization rules are subsequently run, and only one

surface characteristic is found to have changed in light of the 13 additional runs: local_optima now

takes the value “absent.” In addition, these rules conclude that the center peak is in fact significantly

higher than the other peaks. This is because the neural network estimates have been combined

with the actual simulation results. Therefore, only one optimum has been found during this second

pass through the Classifier; it is located at (x), x2) = (0.01,-0.06), which 1s very close to the true

optimum of the surface, namely (x;, x2) = (0,0). When the STRATEGY SELECTOR is called,

it now fires rule 32 (see table 3.1), thereby specifying that RSM I - accelerated is the appropriate

search technique.

Note that a different search strategy has been proposed than was used before. This ability to switch

strategies as necessary is a powerful capability of the Classifier KBSOS.

The STRATEGY DETAILER is called. Again our purpose here is not an exposition of RSM (the

interested reader is referred to Box and Wilson (1951), Box and Draper (1987), and Myers (1971)),

sO we proceed in summary fashion. The Strategy Detailer specifies RSM with a full-factorial design

over the region (-0.13 <x, < 0.15; -0.20 <x. < 0.14). (See figure 3.11b for a contour plot of the

reduced region; note the changed scale there). Seven additional runs are made (two for each factor

plus three additional center points). An ANOVA (from the Methodology Base) indicates that the

first-order model attempted does not provide a good fit. Therefore, four axial points and another

center point are added and a second-order model is run. A global optimum is then indicated at

(X1,X2) = (0.005,-0.002), which is very close to the true optimum of (0,0). The actual height at this

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 70

1.0

a »
e
f

ee GC) SB y/
¢ wa == =——\ Ye

A SIRE (OMS / M--
‘ eS . a: eS “ * 7 . af 4 pa Na ef a ay eee + z

Ps 5, gv. ae 4 wes? ier > +f gt
eu 2, LeMay ek es ”
’ ak £ + pew 5 - 4 ’ . Rm eee petnnnppetee, 5 tae td
mF é Jens Oe ts a ‘ a ar

Tye wf. Va “ $ Fal ‘ ee, , ~1 “o
bh ‘, Ws, z * ¥ i i ft ad ”

 -1.0

 (b) Region of search specified after fitting the surface with an additional 13 points

Figure 3.11: Contour plots indicating regions of fit

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization

point (with surface error) is y = 0.948; without surface error it is y = 0.999; the true optimum at

the origin is y = 1.000.

The Controller terminates the search because the program believes it has found the global optimum

and because the user-specified goal y > 0.85 has been achieved.

The key feature of the example just presented is that the global optimum was found, even in the

presence of many local optima, and that this was made possible by the Classifier KBSOS’s ability

to shift strategies intelligently as the search progressed. A single strategy pursued from the start,

such as RSM, would probably have not found the true optimum unless it stumbled serendipitously

onto the proper region.

Conclusions

A classification scheme has been proposed whereby a given simulation problem is characterized by

the response surface it generates, and then a search technique is chosen based on that character-

ization. A knowledge-based system is defined that automates this “classify - search” process.

There are several limitations to the work described here, which in turn suggest many possible ex-

tensions. These include:

¢ complex, discrete surfaces are yet to be examined

e only six surface characteristics are considered to date

e additional search techniques can be studied

e the mapping of surfaces to techniques awaits further development, and

e additional work can be done investigating surface synthesis.

It should be noted that a framework has been developed around which these types of research issues

can be investigated.

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 72

Moreover, a KBSOS has been developed which has been shown to be effective on a sample prob-

lem, and the potential advantages over single-technique methodologies have been illustrated.

Finally, we believe that this framework should now be extended to include a learner scenario, since

this extension will be of such fundamental importance. This is the subject of the next chapter.

Chapter 3: Use of a Classifier to Facilitate Simulation Optimization 73

Chapter 4: Machine Learning in the

Simulation-Optimization Domain

Background

Knowledge-based simulation optimization

A simulation model can be thought of as a “black box,” with controllable inputs feeding into the

box, and the simulation model’s responses leaving the box as outputs. The simulation model

provides an approximation of how the true system it represents would respond to the given inputs.

Each response can be considered to be a function of the inputs with a random error term added.

Figure 4.1 depicts the simulation-model box together with another black box in a feedback loop

around it. This second box represents the simulation optimizer. The optimizer takes outputs of

the simulation model and uses them to suggest new values for the inputs to the simulation model.

Chapter 4: Machine Learning in the Simulation-Optimization Domain 74

The objective of the optimizer is to find inputs that will result in optimal or satisficing responses

from the simulation model.

The need for simulation optimization and the costs involved in it have motivated the development

of different strategies to search for optimal-response-producing input levels. These strategies range

from random and single-factor searches to response surface methodology (RSM) to simulated

annealling and genetic algorithms. Meketon (1987) divides simulation optimization strategies into

three general categories: nonlinear programming techniques, RSM, and stochastic approximation.

An important decision that must be made in simulation optimization is which search strategy to

employ. Some work has been done to aid this decision, although Meketon concludes that “opti-

mization for simulation, to date, remains an art, not a science.” He considers the information

available (or assumed) about the simulation, and groups optimization methods accordingly to help

narrow the choices. Safizadeh (1990) discusses a variety of strategies and their application. He

concludes that generally RSM approaches are most effective, although some new developments

look promising. Smith (1973) performed an empirical study of the effectiveness of several search

strategies (random search, single factor search, and four variations of RSM) on a variety of surfaces.

He found that the relative effectiveness of each of the strategies varied depending on the character-

istics of the response surface (presence of local optima, random error, number of controllable in-

puts, etc.).

Surveys of simulation optimization lead to the conclusion that organized guidance is needed to help

users choose appropriate search strategies. Safizadeh explains that “for successful design and anal-

ysis of simulation, one should be well versed in several disciplines.” Because of this, users are in-

hibited from using simulation optimization (and thereby simulation). He concludes that there is,

therefore, a need to “develop interactive programs which direct a user to an appropriate optimiza-

tion technique.”

Chapter 4: Machine Learning in the Simulation-Optimization Domain 75

Inputs Simulation
Model

Optimizer

ee

2

MISSAL fe

Figure 4.1: The simulation-optimization process

Chapter 4: Machine Learning in the Simulation-Optimization Domain

Outputs
—

76

In a paper regarding selection of appropriate optimization technique, we (Greenwood, Rees, and

Crouch, to appear) pointed out that there is both art and science in simulation optimization. We

further suggested that the art and science should be “separated” in a simulation optimizer, and, in

particular, that procedural (e.g., third generation) languages should be used to model the science

part, whereas knowledge-based approaches should be used to encapsulate the heuristics that make

up the art portion. The particular architecture we suggested consists of an inference engine, a

knowledge kernel, and processing support modules (see figure 4.2). The knowledge kernel de-

scribed, in turn, contains three parts: a database to store results, a methodology base to store

procedures, and a rule base to store heuristics and to provide control. Note that with this archi-

tecture, the fact that optimizer control is resident in the rule base implies that there is no set algo-

rithm for simulation optimization; rather the inference engine (using, for example, backward

chaining) can pursue a goal using whatever rules are in the knowledge base. This implies that if the

rules are or can be changed, then, in essence, the optimization algorithm itself can change.

Exploiting this notion, Greenwood et al. suggested that if results are stored in a database, and if

“the algorithm” can be changed by changing rules, then the potential for “doing better” next time,

i.e., “learning,” exists. This notion of a learner is shown in figure 3. The basic idea is that historical

observations are taken from the database in the knowledge kernel of the optimizer, processed by

the learner, and then rules are either added, deleted, or changed back in the optimizer rule base.

In this manner, not only can heuristics be modified and improved, but so can control of the entire

system.

Learning: definitions and taxonomies

To provide a clearer indication of what we mean by learning in a simulation optimization context,

we look briefly at the machine learning literature. In doing this, we will first look at several defi-

nitions of learning and then at two taxonomies of learning.

Chapter 4: Machine Learning in the Simulation-Optimization Domain 77

INFERENCE ENGINE

OWLEDGE KERNEL

DATABASE METHODOLOGY RULE

BASE BASE

OBSERVATIONS ANALYTICAL PROCEDURES GENERAL PRINCIPLES

RESULTS INTERFACES DOMAIN-SPECIFIC RULES

HISTORY QUERIES INTER-STRATEGY VARIABLE
RULES

CHARACTERISTICS DISPLAYS
INTRA-STRATEGY VARIABLE
RULES

CONTROLLER
PROCESSING SUPPORT

¢ database management

* graphics package
* statistical analysis
programs

* report generators
Figure 4.2: Greenwood-Rees-Crouch simulation optimization architecture

Chapter 4: Machine Learning in the Simulation-Optimization Domain 78

LEARNER CONCEPT BASE INFERRER

* CONCEPT BANK « SPECIALIZER

¢ GENERALIZER
¢ ANALOGIZER

 ¢ RELATIONSHIPS
AMONG CONCEPTS
(RAC) TABLE

LEARNER

KNOWLEDGE KERNEL

To

Rule base

From

Database

PROCESSING SUPPORT

Figure 4.3: Visualization of the Learner and its environs

Chapter 4: Machine Learning in the Simulation-Optimization Domain 79

Various definitions of learning abound, with little apparent agreement among them. For example,

Simon (1983) states: “Learning denotes changes in the system that are adaptive in the sense that

they enable the system to do the same task or tasks drawn from the same population more effec-

tively the next time.” Minsky (1985) in his The Society of Mind requires less precision by only

stating that “learning is making useful changes in our minds.” Michalski (1986) points out that

knowledge acquisition seems to be the essence of most learning acts. He adds that in order to ac-

quire knowledge, one has to represent this knowledge in some form. Consequently, he characterizes

learning as ‘“‘constructing or modifying representations of what is being experienced.”

The Simon and Michalski definitions are closest to what we mean when we say we will let our

optimizer learn. The satisficer/optimizer should be able to adapt its performance so that it improves

its optimization on scenarios it has already seen. In addition, a satisficer with a learning capability

should have the capacity to modify or to construct representations of its knowledge, be it knowledge

of how to reset certain parameters, knowledge that is domain specific, or knowledge that is more

widely applicable as general principles.

Several taxonomies of learning exist, and it is helpful to examine two of these in order to specify

later the architecture of our learner. Both of these classifications were developed by Carbonell,

Michalski, and Mitchell (1983).

The first classification scheme suggested by Carbonell et al. is a taxonomy based on the learning

strategy. They cite five categories, ranging from no inference required on the part of the learner,

to unsupervised learning (i.e., learning without a teacher). The five categories are as follows: rote

learning and direct implanting of new knowledge, learning from instruction (such as from a teacher

or a textbook), learning by analogy, learning from examples, and learning from observation and

discovery. Although each of these types of learning strategy could be included in a simulation op-

timizer to some degree or other, we believe learning by examples has the most immediate promise.

In such a case, the learning source or set of examples to learn from would be the history of previous

runs and results stored in the database. These runs and results could be classified and analyzed for

Chapter 4: Machine Learning in the Simulation-Optimization Domain 80

patterns, significant factors, those parameters which seemingly are insignificant in a region, etc., as

will be explained later. Simulation optimization by its very nature generates instance after instance

of examples -- some “positive” examples (demonstrating the concept to be acquired) and others

“negative” examples (which are useful in preventing overgeneralization).

The second scheme we use from Carbonell et al. is a classification based on the type of knowledge

acquired. The concepts we use from this taxonomy include rule modification or creation, special-

ization, parameter modification, and generalization. According to Carbonell, specialization means

adding conditions to the “if part of a rule (the antecedent) so the rule applies to a narrower set

of circumstances, and generalization means dropping restrictive conditions in the antecedent to

make the rule apply in a wider variety of contexts. Rule and parameter modification are described

below.

Using the Simon and Michalski definitions and the two Carbonell et al. taxonomies, we may now

state what we mean when we say that a knowledge-based simulation optimizer will “learn.”

Learning as used here is the adaptation or modification of representations of knowledge stored in

an optimizer’s knowledge base in order to improve future simulation optimizations on examples

or scenarios close to those already seen. This adaptation or modification will occur through spe-

cialization, generalization, parameter modification, and rule modification.

A search of the literature indicates a total void to date in the application of machine learning con-

cepts to improve simulation optimization. This research begins to fill that void. The contribution

of our research is two-fold. First, a general learner architecture for simulation optimization is de-

veloped. This architecture is specific enough to show what there is to be learned in a knowledge-

based simulation system and to illustrate how it can be done. Second, some answers to what we

believe are key implementation considerations are provided and discussed by way of example.

The remainder of this chapter is organized as follows. First, the general learner architecture is

presented. This is done by way of a generic learning flow diagram. Then what there is to learn in

Chapter 4: Machine Learning in the Simulation-Optimization Domain 81

a knowledge-based simulation optimization system (K BSOS) is pointed out. Next, implementation

considerations are examined. Finally, an example to illustrate both the architecture and imple-

mentation issues is presented.

General Learner Architecture

Overview

The learner architecture developed here includes four types of learning: specialization, rule mod-

ification, parameter modification, and generalization. Specialization and generalization have been

described previously as the addition to and deletion from rule antecedents. By parameter modifi-

cation is meant the changing of a numerical value in a rule; for example, the antecedent “IF number

of runs > 12” could be changed to “IF number of runs > 10.” Rule modification results in

changing the consequent of a rule. For instance, a current rule may conclude that RSM is the

preferred search strategy (“... THEN strategy = RSM”); however, learning may suggest that sim-

ulated annealling is preferred. Thus, the modified rule would have the consequent ‘“THEN strategy

= simulated annealling.” Additional types of learning can be added to the Learner later if desired

as plug-in modules; however, at this point, it is our judgment that these four types of learning

should suffice.

Each of the four learning types to be included in the learner requires both procedural and heuristic

computation. That is, each learning type consists of both procedural decisions such as hypothesis

testing that can best be performed by algorithmic means, as well as heuristic processing best done

in, for example, knowledge-based systems. A major design decision, therefore, is to separate the

“art” and ‘‘science” in the learner, just as we did in the KBSOS. This is indicated in figure 4.4.

Chapter 4: Machine Learning in the Simulation-Optimization Domain 82

LEARNER
DATA BASE

* concept bank
* RAC table
* strategy mapping
° "old" sim models

LEARNER
METHODOLOGY

BASE

* specify experimental design
* conduct hypothesis tests
* find common features

LEARNER |

 LEARNER
RULE BASE

* Controller rules
* specl/ param mod rules
* generalization rules
rule modification rules

INFERENCE ENGINE

KNOWLEDGE KERNEL

To
Rule base

From

Database

Methodology
Base

PROCESSING SUPPORT

Figure 4.4: The Learner architecture

Chapter 4: Machine Learning in the Simulation-Optimization Domain 83

Figure 4.4 shows the learner sitting above the KBSOS and deriving input from the KBSOS data-

base; changes are passed back to the KBSOS rule base, as in figure 4.3. But figure 4.4 shows ex-

plicitly the implementation of the separation of art and science in the learner in terms of its three

modules, the Learner Data Base, the Learner Methodology Base, and the Learner Rule Base. In

addition, figure 4.4 shows some of the functions to be carried out by each of the three modules.

A knowledge-based simulation optimization system contains many concepts that may be stored in

a variety of formats, including tables, rules, and neural networks. In order to be able to manipulate

this information in a learner, the Learner Data Base must keep a registry of concepts and their

interrelationships. We first postulated a mechanism for doing this in Greenwood et al., where we

suggested a concept bank and a Relationships Among Concepts (RAC) table. We repeat an ex-

panded portion of this in figure 4.5, where a concept bank is shown that maintains a list of concepts

used in rules, etc., together with the levels at which those concepts appear. The RAC table stores

which concepts are used in which rules. As indicated in figure 4.4, both the concept bank and RAC

table are (important) components of the Learner Data Base, as is the strategy mapping, which will

be described later in the chapter. An additional item included in the Learner Data Base 1s a col-

lection of “old” simulation programs. That is, whenever a simulation program 1s run and its results

are stored in the database, it would be advantageous if the program (1.e., the code) itself were left

in a library in the Learner Data Base, in case the Learner decided later to do further exploration

with the program. Obviously, this may not be practical in all cases. But the more the Learner has

access to in the way of history, the more likely it is to be successful. Finally note that the Learner

Data Base may share or coincide or differ from the knowledge kernel data base, and that what has

been described above is not necessarily a physical representation.

The Learner Methodology Base consists of whatever procedural aspects are necessary to implement

the four types of learning. For example, if the Learner were investigating the advantages of

changing a troublesome parameter, it might decide to conduct an experiment to test the proposed

change. In such a case, the Learner would call the experimental design submodule, which would

specify where computer runs should be made to carry out (say) a fractional factorial design. Then

Chapter 4: Machine Learning in the Simulation-Optimization Domain 84

oa Ws y,

i a , ,

Fearne
foe ee ;

,
ua oer is LEI Lees

ree uetee - TL TESS LEE
ee Lee

CONCEPT BANK

no. controllable factors
(small, large)

no. available computer runs

(petite, small, medium, large)

distance from optimum
(near, far)

amount of error
(small, large)

level of factor activity
(low, high)

presence of local optima
(absent, present)

search strategy

(rndm, singl factr, singl factr-accel,

RSM-1,RSM-2,RSM-1 accel, RSM-2 accel)

net

oo
EEE:

RELATIONSHIPS AMONG CONCEPTS
(RAC) TABLE

*
neta

oa oe

A fee

hho

Be
es

S
E
N
S

ene

ea
ti

n
os
 St
e

=

ver
eve

rer
e’

SS

ee

.

Independent variable concepts

S
R
 S
Ne

 ST
s

aS

CF; CR | DOJ|ER |FA |LO |SE

rta
te'

ete
!

Se
s
e
r
i
a

e
e
e

a
SS

S
R
S

a
n
e
t
t
e

e
n
s

S
a
p
o

ares

De
pe

nd
en

t
va

ri
ab

le

co
nc
ep
ts

ee ate
Mp

Figure 4.5: The learner in the context of the Smith-data example.

Chapter 4: Machine Learning in the Simulation-Optimization Domain

85

a second submodule in the methodology base, a hypotheses testing procedure, would evaluate the

results of these experiments to determine statistically the worth of the change. Although it is re-

cognized that these submodules are complex, they can be implemented using ideas well established

in the literature, so we do not provide additional elaboration here. A third submodule in the learner

methodology base will be explained later and deals with searching for common features or concepts

for a given set of rules.

The Learner Rule Base contains all the rules or heuristics needed to do specialization, rule modifi-

cation, parameter modification, and generalization. Moreover, it also possesses a set of controller

rules, which decide when to invoke each of the four learning types. All of these rules, under the

direction of an inference engine, drive the Learner in its search for an improved simulation opti-

mization process, and call the Learner Data Base and Methodology Base when needed. These

different rule sets will be discussed further shortly.

Having specified a general architecture for a learner, we now discuss the process to be followed in

learning. This is done in terms of a flow diagram in the next section. A detailed example illustrating

the concepts developed here and in the rest of the research is included at the end of the chapter.

General learning flow diagram

In order to develop the process of learning in a KBSOS, we borrow with minor modifications a

learning paradigm from the realm of case-based reasoning (CBR) developed by Slade (1991). As

our research at this point is not proposing any adaptation of any CBR concepts per se at all, we

will not discuss Slade’s CBR context. Rather, we will only present the outline of his learning

paradigm in the context that we will use it.

Figure 4.6 indicates the learning process we have adapted from Slade. The shaded boxes indicate

the major operations in the process needed for all four learning types. (The only exception is that

Chapter 4: Machine Learning in the Simulation-Optimization Domain 86

we do not need Repair in Generalization learning.) The learning process for any of the types begins

with Retrieve, where learner rules are used to extract relevant data from either the learner or

knowledge kernel databases. Upon retrieval, learner modification rules are invoked to suggest

changes in some aspect of knowledge kernel rules. This occurs in the Modify block. For example,

(as will be explained later) in parameter-modification learning, a particular parameter is suggested

for change; whereas in specialization learning, retrieved data cases are first segmented by perform-

ance, and concepts in the antecedents are then sought that can explain the performance differences.

Once a modification is proposed that hopefully improves KBSOS performance, the Test block is

called. Basically, the Test block determines whether the proposed modification results in an im-

proved solution (i.e., a new set of rules), or rather in no improvement or possibly failure. In the

first case, control passes to the Assign and Store blocks, where the proposed modifications are ac-

tually made and put back in the KBSOS rule base. In the case of failure or no improvement, the

Explain and Repair blocks are called, where either abandonment of learning for this case occurs due

to unsuccessful explanation and repair, or further modification leads to a successful solution. This

latter case leads back to assignment and storage, as figure 4.6 indicates.

As mentioned, the general learning process for all four kinds of learning is the same and follows the

flow shown in figure 4.6. The particular process used to “determine learning type,” the top box in

that figure, will be discussed after additional concepts have been developed. In addition, a detailed

example illustrating specialization and rule modification will be presented later.

Referring to figure 4.3 again, we have now presented in a general way an architecture and a process

flow for the Learner, the top box in that figure. We now turn our attention to a lower box in figure

4.3, the knowledge kernel, to develop further the context of how and where learning should occur

ina KBSOS. After that, we will return to the learner for additional details.

Chapter 4: Machine Learning in the Simulation-Optimization Domain 87

Determine

Learning

Type

JY

Retrieval

Rules

fn Solution

Store

' Proposed Solution

Assign

New Solution“ , Failure or

No Change

New Solution] Repair Adjust |
Parameter;

Rules —_——_ Modify
Strategy

Exit Exit

Figure 4.6: The learning process

Chapter 4: Machine Learning in the Simulation-Optimization Domain

What There is to Learn ina KBSOS

As mentioned, the idea of a knowledge-based simulation optimization procedure was first advanced

in Greenwood et al. In chapter 3, we fleshed out these ideas and built a prototype KBSOS using

a popular knowledge-based shell (VP-Expert (1989)), a neural network package (NeuralWorks

Professional II (Klimasauskas, 1989)), and various third-generation routines. We called this a

“Classifier KBSOS,” because its simulation output surfaces are classified according to the search

strategy most likely to render success. We present now a quick overview of the Classifier KBSOS

process in order that we might show where in that process learning is to occur and to demonstrate

how this is to be done.

In the Classifier KBSOS, input sufficient to define the problem is obtained from the User (see figure

4.7). This input is then fed to the Classifier, where three steps occur. First, the “shotgun” suggests

simulation runs to be made at various input combinations across the surface. The results from

these computer runs are then input to the “synthesizer,” which attempts to develop a fitted or

synthesized surface through those points. (A neural network can be and was successfully used for

this.) Then the synthesized surface is analyzed by several procedural programs and heuristics in the

“characterize” module in order to classify or characterize the response surface. The idea of classi-

fying a surface is based on a study reported by Smith in Operations Research in 1973, which found

that optimal search technique varies by type of surface. We have used the same explanatory vari-

ables he used in his study to classify our surfaces with the Classifier.

Once a surface has been classified, rules in the KBSOS knowledge kernel invoke the Strategy Se-

lector. This module is a collection of rules that choose a search strategy (e.g., RSM, random search)

depending on the surface characteristics identified by the Classifier. Note that as the whole

classify-and-select-strategy process is iterative, additional search may result in reclassification of the

surface and hence specification of a different strategy as the optimization proceeds. After a search

Chapter 4: Machine Learning in the Simulation-Optimization Domain 89

4 CLASSIFIER

 Shotgun

Characterize

 S

Z OO,

STRATEGY
SELECTOR

i

W
s

R
R
S

eee
P| STRATEGY

DETAILER S
o
S

N
y

a
Mo

CEL

~

a

a

e
e

a
a
k
e

5

‘a

ete Mie

Figure 4.7: An overview of the Classifier KBSOS

Chapter 4: Machine Learning in the Simulation-Optimization Domain

strategy has been chosen, the Strategy Detailer (another set of rules) is fired, and implementation

particulars are set whereby the Search may be conducted.

It should be clearly stated what is not meant when one suggests that a KBSOS will learn. The

learner is not expected automatically to deduce or infer a new search technique whenever a previ-

ously unanalyzed surface is encountered. Rather, the learner is expected to perform such tasks as

to modify parameters in the shotgun, to suggest that a new antecedent be included in a set of rules

in the Strategy Selector, or to respecify the number of runs to be made at the center point of a given

search being implemented. Learning is to be incremental as opposed to far reaching, and it will

only be successful as its databases of surfaces and experiments grow large.

In order to indicate how learning will take place in a KBSOS, some examples of each of the four

kinds of learning are briefly listed:

parameter modification - in the Classifier: re-specifying the number of runs to be made ran-
domly and at regular grid points in the shotgun module; re-setting a variance threshold, above
which additional replications of data points used to fit the synthesized surface will be collected;
re-stipulating the vertical distance 6 from the true optimum, within which non-adjacent
portions of the response surface indicate multiple, optimal solutions. And in the Strategy
Detailer, re-adjusting the step size for a given search technique.

specialization - adding new concepts as antecedents to the rules in the Strategy Selector (e.g.,
adding “IF variance is not high” to a current rule specifying RSM as the search procedure);
adding a similar clause again to the IF part of an existing rule in the Strategy Detailer (e.g.,
adding “IF lack of fit is significant” to a rule specifying a shift from a first- to a second-order
RSM design).

rule modification. - in the Strategy Selector, if some cases concluding in “THEN Strategy =
S,” achieve differsnt levels of success than others, then separate these cases and re-specify
“THEN Strategy : S2,” a new strategy whereby there is some evidence that S2 will work better
on the poorer cases than S, did.

generalization - deleting existing concepts from the antecedents of rules when there is evidence
that such concepts are irrelevant to the Strategy Selection being made (e.g., removing “IF dis-
tance to optimum = far” from a rule concluding in “THEN Search = random search.”)
Generalization is also helpful in a housecleaning sense in that rules can at times be combined,
thereby reducing the number of rules in the rule base.

It is easily noted from the above lists that there are a plethora of details to be learned; this is be-

cause, fundamentally, so much of simulation optimization is heuristic, or “art.” The approach that

Chapter 4: Machine Learning in the Simulation-Optimization Domain 91

we have taken personally is to prioritize what we want to learn with our KBSOS. We have placed

the Strategy Selector as our top learning objective, with its specialization, rule modification, and

generalization. At second priority is the Classifier, which calls primarily for parameter modification

learning.

Implementation Considerations

We now return to the top box of figures 4.3 and 4.4, the Learner, to provide more insight into the

learning process. In particular, we discuss timing, i.e., how often should learning occur, and con-

sider what cases on which to learn. Finally, we give an overview of a learning session. This includes

specification of the Controller, that portion of the learner rule base (see figure 4.4) that selects the

type of learning to attempt.

Timing

The approach to simulation optimization learning advocated here does not permit the changing of

any rules during a simulation study. Stated differently, learning is only permitted between simu-

lation studies. This is indicated in figure 4.8, where the horizontal axis is time. In that figure each

small arrow indicates a complete simulation study with its myriad of computer runs and searches

for optimum or satisficing conditions. Learning sessions are indicated in the figure by long arrows.

Note that these sessions occur rather infrequently and do not coincide with any simulation studies.

Note also in figure 4.8 the letters “G,” “B,” and ‘“U.” These letters relate to the issue of which cases

to learn on. In general, one may choose to learn from all historical cases, only the most recent cases

(e.g., since the last learning session), or only from “interesting” historical cases, etc. After the da-

Chapter 4: Machine Learning in the Simulation-Optimization Domain 92

Learn Learn Learn

fH HNN WEEN
Time

Figure 4.8: Marking simulation optimization cases for learning

Chapter 4: Machine Learning in the Simulation-Optimization Domain 93

tabase of previous studies has grown, it may become prohibitive to examine all historical cases, so

we examine here one way of defining and using “interesting” history. We define “interesting” in

terms of both efficiency and effectiveness in finding the optimal (or near-optimal) response for each

given simulation study. Our chosen measure of efficiency is the total number of simulation runs

used to find the optimal response. Hence a case that used relatively few simulation runs would be

marked Good (or “G’’), whereas a case that used relatively many runs would be marked Bad (or

“B”). This is not to say that every case that uses many runs is bad; a very convoluted surface may

legitimately require a lot of runs. The purpose in marking cases as “interesting” is to identify cases

on average which have the potential of leading the Learner to information that has the most

promise for improving future simulation optimizations. Our chosen measure of effectiveness is the

degree of confidence we have that the solution we found is the “best.” In this case, we label as

‘Gnteresting” those cases in which we have less confidence in our answer; we determine our confi-

dence by observing the variance of the surface and whether multiple optima are present. If there

is high variance or if multiple optima exist, we label this case Ugly (or “U”).

The learning session

The final major item to be specified in the Learner architecture and flow is how to determine which

type of learning to attempt when. Stated differently, it remains to define the control of the learning

system. In the context of figure 4.4, the controller rules must be explained; this is the same function

as the top box in figure 4.6, “Determine Learning Type.” We will define the Controller for exam-

ining only “interesting” cases as outlined above; other possibilities such as examining all cases or

reviewing only recent history are easier to specify, and are omitted here.

The Controller flowchart for examining interesting history is shown in figure 4.9. Three basic

questions are asked sequentially in that figure: of the marked (as interesting) historical cases, is

there a most frequently occurring search strategy; of all the parameters set in the knowledge kernel,

Chapter 4: Machine Learning in the Simulation-Optimization Domain 94

is there an unacceptably low confidence in any one; and, is there a need to consolidate rules, or to

‘“houseclean,” as it is stated in figure 4.9.

The precise implementation of the Controller depends on the definition of “interesting” history.

In this discussion, we will use our translation of “interesting” as either Good, Bad, or Ugly, but the

basic Controller flow remains essentially the same regardless of the particulars of the choice. In

essence, the Learner needs to know if there is an especially successful or a particularly unsuccessful

set of cases tied to a particular search strategy.

The first question asked by the Controller is whether there is a most frequently occurring search

strategy within each subgrouping of interesting history. If so, and the interesting cases are marked

Bad, or Ugly, then this search strategy is a candidate for rule modification. If conversely, the in-

teresting cases have been marked Good, then the question becomes, why didn’t all cases work well

with this strategy. I.e., the question is, why did just the interesting cases work well with this strat-

egy, and not the uninteresting (or unmarked) cases. Is there some as yet unidentified concept that

distinguishes the domain of interesting cases from that of the uninteresting history? But answering

this question and finding the antecedent concept that distinguishes the interesting and uninteresting

histories is just specialization. Thus, the Controller asks its first question about most frequently

occurring search strategy, and if one exists for any or all of the Good, Bad, or Ugly cases, the Spe-

cialization and Rule Modification module is called.

Figure 4.10 is the flow process for Specialization and Rule Modification, and is similar in structure

to figure 4.6, the flow diagram for the general learning process. Because of the similarity to figure

4.6, which has already been explained, discussion of figure 4.10 will be delayed until the next sec-

tion, in which a detailed example is presented.

The second question asked by the Controller in figure 4.9 is whether there is a parameter in the

knowledge kernel that should be examined. The answer to this question may be based upon a

ranking of parameters by the developer, for example, from most uncertain to most certain; or, it

Chapter 4: Machine Learning in the Simulation-Optimization Domain 95

 (san)
For i=G, B, U

Yes: examine

that strategy

No

Next i No more i

For j=l toN

Yes: examine
that parameter

No

Next j O more j

No

C Repeat or End ‘+

Figure 4.9: Controller flowchart

Chapter 4: Machine Learning in the Simulation-Optimization Domain

Specialization

and Rule
Modification

Parameter

Modification

Generalization

96

Input: Specialization with
consequent concept = "x"

< Retrieve:

all cases Retrieval

where x was Rules

oo: Store — ! ——
see Modify

changed rules Divide cases

by
performance

t Strong performers;
= Assign Poor performers

Add new feature $$ __
to antecedent(s) oS Testis os
or change for new common
consequent(s) features within

performance

Strong: commonl&ZCUPs Strong: no new

feature(s) found common features;
Poor

oe Repair oe
Better strategy found Try new al Poor: Repair

search .

Repair strategy Strong: Exit
Rules

Y Exit Exit

Figure 4.10: The specialization and rule modification process

Chapter 4: Machine Learning in the Simulation-Optimization Domain 97

may be based on a simple list of parameters about which the developer is unsure. Regardless of

implementation, if any parameter is judged as worrisome, then the ‘Parameter Modification”

module is called. This module is specified in figure 4.11. As that figure shows, the rule with that

parameter is retrieved and then temporarily modified. Relevant known surfaces are also retrieved.

The learner then tests the old and new values by carrying out simulations as needed. The learner

methodology base’s experimental-design submodule and hypothesis-testing submodule would be

called if required. If results show improvement, the parameter is changed to its new value and

stored back in the knowledge kernel. If not, repair is attempted. If unsuccessful, the parameter

modification process is exited.

The final question asked by the Controller of figure 4.9 is whether there is a need to consolidate

rules. Our approach for answering this question is to reply yes whenever 25 or so rules have been

modified by the learner. In this case, potential for generalization of rules exists, and the “Gener-

alization’’ module is called. This module basically determines if any antecedents of existing rules

may be dropped or if rules may be combined to be simplified. The generalization process is indi-

cated in figure 4.12, but is not discussed here as we have already explained this in Greenwood, et

al. (to appear).

With the Learner Controller now specified, :t remains to demonstrate how the Learner works as a

whole. We now show this by means of a detailed example.

Example

In this example we illustrate how the Learner we have described above can be used to change rules

in the knowledge kernel of the KBSOS. In particular, we are going to demonstrate two of the four

learning types in our Learner: specialization and rule modification. We will also demonstrate how

Chapter 4: Machine Learning in the Simulation-Optimization Domain 98

‘Store

changed rule

Change
parameter to

new value

A

Improved result

Input: Parameter Modification
with parameter = "fi"

. ‘Retrieve.

rule with

parameter &;
known surface

Retrieval

Rules

Change the
parameter's
value

oo “Test on:

Compare sim.
opt. results

using old and

new values

Repair

Rules

No improvement

 Improved result+—
Try new
parameter
value

Exit

"No change’ or

"Worse result’?

Figure 4.11: The parameter modification process

Chapter 4: Machine Learning in the Simulation-Optimization Domain 99

Input: Generalization

oRetrieve.

all rules with Retrieval

identical Rules

consequent

Modify.»
For every rule

pair: drop ant.

changed rule

set
concept if it is

| only difference

Note new set eo oFest oc.

of rules whether genrl.
possible.

A for and remove

Generalization LGuplicate rules. [Generalization
possible not possible

No change:
Exit

Exit

Figure 4.12: The generalization process

Chapter 4: Machine Learning in the Simulation-Optimization Domain 100

these steps can be implemented in an expert-system shell. (We will illustrate with VP-Expert

(1989), a widely used shell.)

With reference to the Learner architecture of figure 4.4, we will begin our example with the Con-

troller rules in the Learner Rule Base. The Controller will invoke the Specialization/Rule Modifi-

cation rules in that rule base, which in turn will retrieve data from the data base in the KBSOS

knowledge kernel, process it, and then change rules in the knowledge kernel rule base.

An overview of the process flow to be followed in the example is as follows: first, the Controller

of figure 4.9 will be invoked. This will then lead to the Specialization and Rule Modification

module in that figure being called, which is shown in detail in figure 4.10. The first step, as shown

in figure 4.10, is to Retrieve data from the knowledge kernel; the next steps are to Modify and Test

cases, and finally to Store changed rules back in the knowledge kernel.

Controller: Most Frequently Occurring Strategy

In the Controller of figure 4.9, we begin at the Start block. Activity then passes to the first Con-

troller question, is there a most frequently-occurring search strategy specified in the interesting cases

marked Good. We assume for the purposes of this example that 1000 interesting cases have been

marked since the last learning session, and that 200 of these cases were marked Good. These in-

teresting, Good cases are shown in figure 13a. They may be extracted from the 1000 total cases in

VP-Expert by simply using the database “GET” command. Now among the 200 Good cases of

figure 4.13a, the question is asked whether there is a predominant (search) strategy among these 200

that led to this good performance. Assume that the strategy “RSM-1” is most frequently occurring,

and that 100 such records were found. Recall that the purpose of this step is to see whether there

are any candidates for learning improvement, and that no learning or testing has been conducted

thus far. Only the search strategy RSM-1 has been identified as a candidate for learning.

Chapter 4: Machine Learning in the Simulation-Optimization Domain 101

BS Se Sy Ehuget
t : : .
Now 25 ec TC e. ,

200 968

Random

RSM-1

(a) All cases marked "Good"

“No. “Record No. © Mark Strategy”

1 1 G

32 -

53 U

300 987

RSM- 1

RSM-1

RSM-1

RSM-1

(b) All cases with "x = RSM-1"

1 1

2 71

3 126

20 968 G RSM-1

S L2 Ll L2 Li Ll
(c) Antecedent concepts of "Strong Performers"

Figure 4.13: Specialization Example

Chapter 4: Machine Learning in the Simulation-Optimization Domain

Specialization: Input

The strategy RSM-1 having been identified, control now passes to the “Specialization and Rule

Modification” box of figure 4.9, which is just figure 4.10. The “Input” to this figure 1s specialization

with consequent concept = RSM-1.

Specialization: Retrieve

The Retrieve box in figure 4.10 then retrieves all cases in the database where x = RSM-1 was used,

not just those marked as interesting and Good. In VP-Expert, this again is accomplished with an-

other “GET” statement (e.g.. GET RSM-1 = strategy, filename, ALL). Assume that as a result

of the GET, a total of 300 cases is found: the 100 found above (marked Good), plus 200 more.

These 300 cases are shown in figure 4.13b. Note in that figure that of the 300 cases, some have no

mark at all, whereas others do. The one element in common is that all 300 cases used the RSM-1

strategy.

Specialization: Modify

The Modify box of figure 4.10 is incurred next. This box uses modification rules to divide the 300

cases into strong and poor performers by calculating performance. Note that the issue of assessing

performance is complex, in general. We believe this to be a profitable topic for future research and

note that learning in general cannot occur when performance is not evaluated. For now, we use

two simple modification rules to evaluate performance:

RULE Modiification_1
IF marked = G AND

marked < > U
THEN performance = strong;

Chapter 4: Machine Learning in the Simulation-Optimization Domain 103

RULE Modification_2
IF marked = B
THEN performance = poor;

We assume the results of applying these two rules to the 300 cases of figure 4.13b leads to 20 strong

performers being identified as well as 40 poor ones. Once these two different performance categories

are determined, then VP-Expert’s GET statement may be used again to group all the strong per-

formers, for example, together, as shown in the left portion of figure 4.13c.

Specialization: Testing for new common features

Recall from the earlier discussion that the Learner’s Concept Bank keeps track of all antecedent

concepts used in the Strategy Selector rulebase. Moreover, it also records all levels used for each

concept (see figure 4.5). In our Strategy Selector, we have used just six antecedent concepts fol-

lowing the lead of Smith (1973). For purposes of illustration, we therefore assume there are only

six concepts listed in the concept bank together with their levels. This obviously may be easily

modified.

Now extracting data from the concept bank for the strong performers identified in the Modify step

above enables the full table of figure 4.13c to be generated. The table now contains all the infor-

mation necessary to conduct the test. For example, from the third item in that table, it is seen that

record no. 126 in the database was marked Good, used the RSM-1 strategy, is considered a strong

performer, and has concepts 3 and 6 at level 1 and all others at level 2.

Recall that figure 4.13c is a table of historical cases taken from the knowledge kernel database; it

is not a listing of rules. The test listed for specialization in figure 4.10 is to see whether new com-

mon features can be found within performance groups. Stated differently, the test mentioned in

figure 4.10 is to see whether all strong performers, for example, have a concept at the same level.

If so, then perhaps that concept at that level should be added to the rule base as an antecedent,

Chapter 4: Machine Learning in the Simulation-Optimization Domain 104

because the presence of that concept at that level may well explain why all these cases performed

strongly with the RSM-1 search strategy. In the example, this is easily implemented. The program

must determine if any concept is only present in the cases at a single level; i1.e., the learner must see

if any concept column has only one level. In figure 4.13c, concept C5 is at level L2 across all strong

performers; therefore, the program finds the common feature, namely concept C5 at level L2. Note

that the code to find common features may be easily implemented in a procedural language and

stored in the Learner Methodology Base for use as needed.

Concept C5 having been chosen as a common feature, it remains to see if this common feature is

a new common feature. That is, it remains to see if there are any rules that can be altered to include

this concept as an antecedent, or if all applicable rules already include this concept. This is imple-

mented in a three-step procedure, which also is stored in the Methodology Base. First, all rules in

the Strategy Selector with consequent “strategy = RSM-1” are extracted. Then, for each rule, it

is seen if any case specified in figure 4.13c would have fired that rule. If this rule could have been

fired by any of the cases in the figure, then we say that the rule is “chosen.” Finally, once all rules

are tested to see which are chosen, then chosen rules are checked to see if any lacks the antecedent

“C5 = L2.” If so, then the Test passes and control is passed to the next (Assign) step. If no such

rules are found, then no new common features have been found, and the specialization module is

exited for the strong performers’ case.

Specialization: Assign

As mentioned, “chosen” rules have been identified for which specialization is appropriate by adding

the new antecedent “C5 = L2.” In this Assign step, the antecedent is added to all chosen rules.

It is also necessary in this step to add a new rule with the new antecedent “C5 < >L2,” but with

the same consequent (search strategy = RSM-1). This prohibits cases from “falling through the

Chapter 4: Machine Learning in the Simulation-Optimization Domain 105

cracks” and ensures that the rules cover all the cases they covered before specialization. In short,

in the specialization step we have replaced one more general rule with two specialized rules. The

first set of specialized rules covers cases such as the strong performers, thereby isolating the good

performers under one rule set; the second keeps the other set of rules intact as they were before.

This second set can be examined later, if found interesting.

Two points should be observed. First note that this operation of specialization on the strong per-

formers leads to no improvement in performance at this point because the same consequent is used

in the rule. Nonetheless, the rule has been honed to more accurately invoke the cases it should,

and other cases have been segregated for later analysis. Second note that the Test for new common

features is also conducted on the poor performers. The procedure is the same as for the strong ones,

so it will not be repeated here. However, control is passed to the Explain block whether or not

new common features have been found for poor performers, as indicated in figure 4.10, and as will

be described momentarily.

Specialization: Store and Memory

In figure 4.10 the steps Store and Memory return the new rules to the Strategy Selector Rule Base

in the KBSOS. Notice that the order the rules are stored in that rule base does not matter.

Specialization: Explain

Figure 4.10 indicates that the Explain module is entered under two different scenarios. The first is

if no new common feature has been found for the strong performers. As explained above, the

specialization module is exited for this scenario. The other situation in which the Explain module

is called is for the case of poor performers. As indicated in figure 4.10, control passes to the Explain

Chapter 4: Machine Learning in the Simulation-Optimization Domain 106

block whether or not a new common feature was found in the Test block for the poor performers.

If a common feature was found, then the new feature (i.e., concept) is added as an antecedent to

the appropriate rules, as in the case of the strong performers. If no common feature is found, no

action is taken in this block. In either case, control passes to the Repair block because these are

poor performers, and a new search strategy should be considered.

Specialization: Repair

In this block, a new search strategy is recommended. The Learner then carries out an experiment

with the changed rule(s) (1.e., with a new search strategy for a consequent). If results indicate no

better performance, then the specialization module is exited. If better performance is suggested,

then control passes to the Assign block as before; the rule has been repaired and modified. We call

this Rule Modification.

The decision of which search strategy to suggest as an alternative for a poorly performing case is a

topic for future research. We are presently looking at the problem as a mapping of search strategy

in classification space. That is, we believe a fruitful way to address the problem is to map the ef-

fectiveness of all possible search strategies as a function of the output parameters set by the KBSOS

Classifier (figure 4.7). In this way one would be able to say that, for example, search strategies 3

and 7 are “adjacent” in classification space to the current search strategy, and therefore, that either

of these two strategies might be attempted, given the failure of the present strategy. This mapping,

which we call a strategy mapping, would reside physically in the Learner Data Base, as indicated

in figure 4.4, and could itself be a candidate for further learning.

With specialization and rule modification completed in figure 4.10, direct activity now returns to

the Controller of figure 4.9.

Chapter 4: Machine Learning in the Simulation-Optimization Domain 107

In summary of the example, we note that specialization is the vehicle by which new concepts can

be added, and rule modification is the means by which new strategies can be added.

Summary

In some of our earlier research (Greenwood et al.), we suggested that machine learning could be

applied usefully to the simulation optimization problem. In this chapter, we have suggested an

architecture and a detailed design for how this can be done. This is the major contribution of this

research.

In particular, we have defined what “learning” means in a simulation optimization setting, have

shown what it is that can be learned, and have suggested that four types of learning discussed in the

literature be included in a Learner. We recommend that the Learner be a knowledge-based system,

and that it include a data base, a methodology base, and a rule base. We stipulate that these

Learner components be directed to perform the four types of learning referred to above, namely,

specialization, rule modification, parameter modification, and generalization. In addition, we have

described a Controller that looks at interesting KBSOS history to specify which of the four learning

types to invoke. And we have also provided detailed process diagrams to indicate how each of these

learning types is carried out, when called by the Controller. Finally, we have given a detailed ex-

ample illustrating the Learner architecture and flow. This example showed many implementation

details as well.

Although much work remains to be done, this research initiates the discussion of learning in sim-

ulation optimization and provides a framework around which the discussion may center. In the

long run, we believe that the ability to improve its performance will eventually lead to wider ap-

plication of simulation optimization and thus of simulation itself.

Chapter 4: Machine Learning in the Simulation-Optimization Domain 108

Chapter 5: Contributions and Future Work

Contributions

Knowledge-based simulation optimization system

This dissertation further develops the idea first presented in Greenwood, Rees and Crouch (to ap-

pear) that simulation optimization can and should be subdivided into heuristic (“art”) and proce-

dural (‘‘science”) components. Each component is implemented using the most appropriate

scheme: a knowledge-based system for the former, and a procedural language for the latter. The

process and architecture for combining these two components into a simulation optimization sys-

tem is presented. The knowledge-based system, built in VP-Expert, guides the simulation opti-

mization process, and calls the appropriate FORTRAN programs as needed to carry out procedural

aspects.

The key feature of this knowledge-based simulation optimization system (KBSOS) is that it uses a

classifier and heuristics to guide the optimization. It first classifies the response surface according

Chapter S: Contributions and Future Work 109

to several characteristics by applying procedures and heuristics to a sampling of responses from a

given simulation model. Heuristics then use this characterization to select an appropriate search

strategy. The search for the optimal response is carried out accordingly. As new information is

obtained about the surface from runs of the simulation model, the response surface is reclassified.

The search strategy remains the same or is changed according to the most recent classification, and

the search continues.

The advantages of this approach to simulation optimization are twofold. First, instead of being

limited to using only one search strategy (whether or not it is the most productive for a given re-

sponse surface), several are offered and guidance 1s given for deciding between them. Secondly, the

search strategy can be changed midstream if the new information obtained about the surface during

the search indicates that a different strategy would be more productive.

Learner

By their very nature, heuristics cry out for refinement and improvement; this is what learning is

about. The knowledge-based simulation optimization system discussed above is a perfect candidate

for machine learning. This dissertation presents four types of learning that are appropriate to the

heuristics used for classification and search-strategy selection. They are: specialization of rule

antecedents, modification of rule consequents, parameter modification, and generalization of rule

antecedents. The process and architecture for performing these types of learning are presented.

Chapter 5: Contributions and Future Work 110

Future Work

There are many aspects of using a knowledge-based system for simulation optimization with

learning that need further study and development. Below are some of our plans in this regard.

Near-term plans

The first work to be done is to generate response surfaces implicitly with a simulation model rather

than utilizing an analytical expression to which error is added. Initially, this should be a simple

simulation model, perhaps again with two inputs and one output. The contribution would be in

developing the interface between the simulation model and the knowledge base and in “proving”

that the method works on a real simulation model.

The next area of study is an extension of the first, using a more complicated simulation model with

more interesting and “real world” features. This could include, for example, discrete-valued inputs

(the current KBSOS assumes continuous-valued inputs), as well as a greater number of inputs

(perhaps three or four instead of two). In order to process discrete-valued inputs, the shotgun and

synthesis sections of the classifier -- both heuristics and procedures -- would have to be revamped.

Moreover, not all search strategies can accommodate discrete inputs; strategy-selection rules will

have to be modified, and perhaps additional strategies added.

With a greater number of inputs, an additional issue of import is how to allocate shotgun runs so

as to avoid an exponential increase in the required number of simulation runs. Also, the synthesis

portion of the classifier will have to be automated in some way. Specifically, it is desirable that

neural networks be generated that have the number of inputs and outputs appropriate to the sim-

ulation models whose responses they are emulating.

Chapter 5: Contributions and Future Work Il

A third area of work is the development of data structures to store all the information generated

during simulation optimizations. This step is critical -- the Learner must have access to all history

(i.e., data from each simulation optimization that has been performed by the KBSOS) in order to

function.

The final near-term step is to build the complete Learner (write rules and code) and test it on the

KBSOS resulting from the first two studies above. Perhaps the two simulation models above can

be used to generate several sets of simulation-optimization data (by varying parameters, for exam-

ple) which can then be used to test and demonstrate the Learner.

Long-term plans

There are a number of ways to develop the KBSOS with Learning further, and also ways to use it

to study questions of interest. The following are a few of these ideas.

e The KBSOS can be used to study specific types of simulation models. One problem of interest

is that of singularities that can occur in the output of queueing models, and how to seek opti-

mal solutions in these cases.

¢ Rather than prescribing which one search strategy should be pursued at any particular time,

another approach to guiding simulation optimization is to indicate which search strategies not

to pursue. With this approach, the KBSOS would select from those strategies not disallowed,

using some yet-to-be-determined criteria, such as minimum projected time to completion.

Alternatively, the user could make the choice based on personal preference, familiarity, etc.

e Rule modification in the Learner involves finding more productive search strategies for specific

types of response surfaces. The question then is which strategies to test when seeking a better

one. One way of course is just to try all the available ones. The plan here is to develop a

Chapter 5: Contributions and Future Work 112

more reasoned manner for choosing a strategy to test -- what might be called a “nearest

neighbor” approach. All the strategies available to the KBSOS -- including those which its

rules do not yet recommend -- would be ranked according to productivity and applicability for

each characteristic by which surfaces are classified. Then when a new strategy needs to be

suggested, the characteristics for the given surface would be mapped to the rankings, and the

strategy with the highest ranking overall would be tested.

Chapter 5: Contributions and Future Work 113

Bibliography

Bengu, G. and J. Haddock (1986) “A generative simulation-optimization system,” Computers and
Industrial Engineering, 10(4), 301-313.

Berger, J. (1989) “ROENTGEN: A case-based approach to radiation therapy planning,” Pro-
ceedings of a workshop on case-based reasoning, San Mateo, CA: Morgan Kaufmann, 218-223.

Biles, W. E. (1975) “A response surface method for experimental optimization of multi-response
processes,” Industrial and Engineering Chemistry: Process Design and Development, 14(2),
152-158.

Biles, W. E. and J. J. Swain (1977) Proceedings: Winter Simulation Conference, Gaithersburg, MD,
135-142.

Biles, W. E. and J. J. Swain (1979) “Mathematical programming and the optimization of computer
simulations,” Mathematical Programming Study, 11, 189-207.

Box, G. E. P. and N. R. Draper (1987) Empirical Model-Building and Response Surfaces, New
York: John Wiley and Sons.

Box, G. E. P. and K. B. Wilson (1951) “On the experimental attainment of optimum
conditions,” Journal of the Royal Statistical Society, Ser. B, 13(1), 1-45.

Brightman, H. J. (1978) “Optimizing through experimentation: applying response surface
methodology,” Decision Sciences, 9(3), 481-495.

Carbonell, J. G., R. S. Michalski, and T. M. Mitchell (1983) “An overview of machine learning,”
Machine Learning: An Artificial Intelligence Approach, Michalski, Carbonell and Mitchell, ed.,
Palo Alto, CA: Tioga Publishing Comptany.

Daughety, A. F. and M. A. Turnquist (1978) Proceedings: Winter Simulation Conference, 183-193.

Daughety, A. F. and M. A. Turnquist (1981) “Budget constrained optimization of simulation
models via estimation of their response surfaces,’ Operations Research, 29(May/June),
485-500.

Bibliography 114

Forsyth, R. and R. Rada, (1986) Machine learning: applications in expert systems and information
retrieval, New York: Halsted.

Gale, W. A. and D. Pregibon (1985) “Artificial intelligence research in statistics,” The Al
Magazine, (Winter), 72-75.

Greenwood, A. G., L. P. Rees, and I. W. M. Crouch, “Separating the art and science of simulation
optimization: a knowledge-based architecture providing for machine learning,” IIE Trans-
actions, to appear.

Hahn, G. J. (1985) “More intelligent statistical software and statistical expert systems: future
directions,” American Statistician, 39(1)(February), 1-8.

Hammond, K. (1989) Case-based planning: viewing planning as a memory task, New York: Aca-
demic.

Hammond, K. (1986) “Case-based planning: an integrated theory of planning, learning, and
memory,” PA.D. diss., Yale University.

Hammond, K. (1984) “Indexing and Causality: the organization of plans and strategies in
memory,” Technical report 35/, Dept. of Computer Science, Yale University.

Harmon, P. and D. King (1985) Expert Systems: Artificial Intelligence in Business, New York: John
Wiley and Sons.

Khun, A. I. and J. A. Cornell (1987) Response Surfaces, New York: Marcel-Dekker.

Klimasauskas, C., J. Guiver, and G. Pelton (1989) NeuralWorks Professional II and NeuralWorks
Explorer, Pittsburg, PA: NeuralWare, Inc.

Kolodner, J. (1988) ‘Retrieving events from a case memory: a parallel inplementation,” Pro-
ceedings of the DARPA workshop on case-based reasoning, San Mateo, CA: Morgan
Kaufmann, 233-249.

Koton, P. (1989) “SMARTPLAN: A case-based resource allocation and scheduling system,” Pro-
ceedings of a workshop on case-based reasoning, San Mateo, CA: Morgan Kaufmann, 285-289.

Mead, R. and D. J. Pike (1975) “A review of response surface methodology from a biometric
viewpoint,” Biometrics, 31(December), 803-851.

Meketon, M. S. (1987) “Optimization in simulation: A survey of recent results,” Proceedings:
Winter Simulation Conference, 58-67.

Michalski, R. S. (1986) “Understanding the nature of learning: issues and research directions,”
Machine Learning: An Artificial Intelligence Approach, Michalski, Carbonell and Mitchell, ed.,
Los Altos, CA: Morgan Kaufman Publishers, Inc.

Minsky, M. (1985) The Society of Mind. Cambridge, MA: MIT Press.

Montgomery, D. C. and V. M. Bettencourt Jr. (1977) “Multiple response surface methods in
computer simulation,” Simulation, 29(4), 113-121.

Montgomery, D. C. and D. M. Evans Jr. (1975) “Second-order response surface designs in com-
puter simulation,” Simulation, 26(6), 169-178.

Myers, R. H. (1971) Response Surface Methodology, Boston: Allyn and Bacon.

Bibliography 115

Myers, R. H. and A. I Khuri (1979) “A new procedure for steepest ascent,” Communications in
Statistics, Part A -- Theory and Methods, A8(14), 1359-1376.

Myers, R. H., A. I. Khuri and W. H. Carter (1989) “Response surface methodology: 1966 -
1988,” Technometrics, 31(2), 137-157.

Nachtsheim, C. J. (1987) “Tools for computer-aided design of experiments,” Journal of Quality
Technology, 19(3)(July), 132-160.

Navinchandra, D. (1988) “Case-based reasoning in CYCLOPS, a design problem solver,” Pro-
ceedings of the DARPA workshop on case-based reasoning, San Mateo, CA: Morgan
Kaufmann, 260-270.

O’Keefe, R. (1986) “Simulation and expert systems -- a taxonomy and some examples,”
Simulation, 46(1)(January), 10-16.

Pao, Yoh-Han (1989) Adaptive Pattern Recognition and Neural Networks Reading, MA: Addison-
Wesley Publishing Co., Inc.

Pegden, C. D. and M. P. Gately (1980) “A decision-optimization module for SLAM,”
Simulation, 34(1), 18-25.

Reddy, Y. V. R., M. S. Fox and N. Husain (1986) “The knowledge-based simulation system,”
IEEE Software, 3(2)(March), 26-37.

Rees, L. P., E. R. Clayton and B. W. Taylor, II (1985) “Solving multiple response simulation
models using modified response surface methodology within a lexicographic goal programming
framework,” [JE Transactions, 17(1)(March), 47-57.

Remus, W. E. and J. E. Kottemann (1986) “Toward intelligent decision support systems: an arti-
ficially intelligent statistician,’ M/S Quarterly, 10(4), 403-418.

Rolston, D. W. (1988) Principles of Artificial Intelligence and Expert System Development, New
York: McGraw-Hill Book Company.

Safizadeh, M. H. (1990) “Optimization in simulation: Current issues and the future outlook,” Naval
Research Logistics, 37, 807-825.

Shannon, R. E., R. Mayer and H. H. Adelsberger (1985) “Expert systems and simulation,” Simu-
lation, 44(6), 275-284.

Simon, H. A. (1983) “Why should machines learn?” Machine Learning: An Artificial Intelligence
Approach, Michalski, Carbonell and Mitchell, ed., Palo Alto, CA: Tioga Publishing
Comptany.

Slade, S. (1991) “Case-based reasoning: a research paradigm,” Al Magazine, 12(1): 42-55.

Smith, D. E. (1973a) ‘An empirical investigation of optimum-seeking in the computer simulation
situation,” Operation Research, 21(2): 475-497.

Smith, D. E. (1973b) “Requirements of an optimizer for computer simulations,” Naval Research
Logistics Quarterly, 20(1), 161-179.

Smith, D. E. (1974) “A general-purpose computer program for obtaining improved simulation
solutions,” Computers and Operations Research, 1(3,4), 467-478.

Bibliography 116

Smith, D. E. (1975) Automated RSM in digital computer simulation Volume | -- Program de-
scription and user's guide, AO-A016 286, Office of Naval Research, (September).

Smith, D. E. (1976) “Automated optimum-seeking program for digital simulation,” Simulation,
27(1), 27-31.

Velleman, P. F. and A. Y. Velleman (1988) Data Desk Professional 2.0, Northbrook, IL: Odesta
Corporation.

VP-Expert: Rule-based expert systems development tool (1989) Orinda, CA: WorkTech Systems,
Inc.

Bibliography 117

Vita

Ingrid Wessberg Moksvold Crouch was born on 31 March 1964 in Poughkeepsie, New York. She

graduated from Roy C. Ketcham High School in 1981. In 1985 she graduated with a Bachelor of

Science in Electrical Engineering from Virginia Polytechnic Institute and State University and was

certified as an Engineer-in-Training by the Commonwealth of Virginia. She completed a Master

of Science in Management Science at the same university in 1988.

Mrs. Crouch was employed by the department of Management Science as an Instructor of

Quantitative Methods for one year and as a Graduate Assistant for three years. She also assisted

Dr. Loren P. Rees and Dr. Terry R. Rakes with a consulting project on the effect of road traffic

flows on the port of Hampton Roads, VA for the Virginia Center for World Trade.

Mrs. Crouch is a member of the Decision Sciences Institute and The Institute of Management

Sciences.

Ju xgriel WS wf . (Adve LL

Vita 118

