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Diagonal Estimation with Probing Methods

Bryan J. Kaperick

(ABSTRACT)

Probing methods for trace estimation of large, sparse matrices has been studied for several

decades. In recent years, there has been some work to extend these techniques to instead

estimate the diagonal entries of these systems directly. We extend some analysis of trace

estimators to their corresponding diagonal estimators, propose a new class of deterministic

diagonal estimators which are well-suited to parallel architectures along with heuristic ar-

guments for the design choices in their construction, and conclude with numerical results

on diagonal estimation and ordering problems, demonstrating the strengths of our newly-

developed methods alongside existing methods.



Diagonal Estimation with Probing Methods

Bryan J. Kaperick

(GENERAL AUDIENCE ABSTRACT)

In the past several decades, as computational resources increase, a recurring problem is that

of estimating certain properties very large linear systems (matrices containing real or complex

entries). One particularly important quantity is the trace of a matrix, defined as the sum of

the entries along its diagonal. In this thesis, we explore a problem that has only recently been

studied, in estimating the diagonal entries of a particular matrix explicitly. For these methods

to be computationally more efficient than existing methods, and with favorable convergence

properties, we require the matrix in question to have a majority of its entries be zero (the

matrix is sparse), with the largest-magnitude entries clustered near and on its diagonal, and

very large in size. In fact, this thesis focuses on a class of methods called probing methods,

which are of particular efficiency when the matrix is not known explicitly, but rather can only

be accessed through matrix vector multiplications with arbitrary vectors. Our contribution

is new analysis of these diagonal probing methods which extends the heavily-studied trace

estimation problem, new applications for which probing methods are a natural choice for

diagonal estimation, and a new class of deterministic probing methods which have favorable

properties for large parallel computing architectures which are becoming ever-more-necessary

as problem sizes continue to increase beyond the scope of single processor architectures.
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0.1 Introduction

The diagonal entries of a matrix reveal useful information regarding the structure and spec-

tral properties of the underlying operator. We have classical results such as Geršgorin’s

Theorem [44], restricting the eigenvalues of a matrix to lie on disks in the complex plane

centered at its diagonal entries. More generally, in the forward problem of a matrix vector

multiplication, the ith diagonal entry corresponds to how much the ith entry of Ax is im-

pacted by the ith entry of x. The trace of a matrix is defined as the sum of its diagonal

entries,

trace (A) =
n∑

i=1

aii.

This quantity is also equal to the sum of the eigenvalues (counting multiplicities), which

unifies the diagonal entries to the spectrum. This makes a connection between the spectrum

of the underlying linear operator and the representation of that operator in a particular basis.

This invariant arises in numerous applications from statistical learning to lattice quantum

chromodynamics [6, 8, 12, 27, 32, 34]. In particular, the estimation of the trace for matrices

which are not explicitly-given — but instead through matrix-vector multiplications — has

fueled much research over the past several decades [3, 11, 18, 28].

In this thesis, we explore the more fundamental problem of estimating the diagonal entries

directly

diag (A) =

[
a11 a22 . . . ann

]⊤
.

We use techniques that have been developed in recent years which have been adapted from

efficient methods for trace estimation. Our contributions include new analysis of these di-

agonal estimators, novel blocked methods adapted to resolve certain problems arising in the

use of Hadamard vectors as probing vectors and which exploit large-scale parallelized com-

putational frameworks, which are more necessary than ever before for solving modern scale
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computational problems. Additionally, we discuss the more general examples of estimating

the diagonals for generalized cross-validation for ill-posed linear inverse problems, of matrix

functions (defined in the spectral sense) and applications where other information about the

diagonal is desired such as the ranking of the diagonal entries.

We make a few comments on notation before proceeding.

• Bold-face letters indicate a vector (with lowercase) or matrix (with uppercase) quan-

tity. Scalars are written in standard math print. An implicit relationship will be as-

sumed when the same letter is used for multiple variables. For example A is a matrix,

ai is its ith column, âi is its ith row (but still interpreted as a column vector) and lastly

aij is its ijth entry.

• {e1, e2, . . . , en} denote the canonical basis vectors in Rn, that is e1 =

[
1 0 . . . 0

]⊤
.

• Structured matrices which are explicitly given will have blank entries to indicate zeros

outside the main entries of the matrix.

0.1.1 Characterizations of the Diagonal Entries

We begin with a brief overview of some different representations of the diagonal entries of a

matrix.

1. Let A = [aij] ∈ Rn×n be arbitrary. Then, we can express its ith diagonal entries as a

bilinear form

aii = e⊤
i Aei. (1)

2. Further, if A is diagonalizable, then A can be expressed as A = VΛV−1 where λi are

the diagonals of Λ as well as eigenvalues of A, ordered in monotone decreasing mag-
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nitude. The columns of V are associated normalized eigenvectors vi. Then, denoting

the columns of V−1 as wi, this diagonalization can be expressed in dyadic form as the

following sum of outer products.

A =
n∑

i=1

λiviw⊤
i .

Now, denoting the ijth entry of V as vij and the ijth entry of V−1 as wij, the ith

diagonal entry of A can be expressed as

aii =
n∑

k=1

λkvikwki = v̂⊤
i Λŵi

where the v̂i denotes the ith row of V as a column vector, and similarly for ŵ.

3. If A is symmetric, and hence real orthogonally diagonalizable, V−1 = V⊤ and this

becomes

aii = v̂⊤
i Λvi.

4. If A is symmetric positive semi-definite with rank r, then Λr – the r × r block of the

first r rows and columns of Λ – is symmetric positive definite, so this can be expressed

as an inner product

aii =
⟨

v̂(r)
i , v̂(r)

i

⟩
Λr

= ∥v̂(r)
i ∥2Λr

where v̂(r)
i is the ith row of Vr, which is comprised of the r leading columns of V.

5. For general A, it can be expressed in it singular value decomposition A = UΣV⊤.

Then, again using the dyadic form

A =
r∑

i=1

σiuiv⊤
i
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we achieve a similar result

aii =
r∑

k=1

σkuikvki = û⊤
i Σv̂i =

⟨
û(r)
i , v̂(r)

i

⟩
Σr

,

where the final equality is an inner product with respect to the reduced Σ ∈ Rr×r and
ˆu(r)

i is the ith row of the reduced left singular matrix Ur ∈ Rn×r, and similar for ˆv(r)
i

with the reduced right singular matrix Vr.



Chapter 1

Probing Methods

Probing methods are a class of algorithms which seek to extract information from a matrix by

multiplying it against a sequence of vectors. This sequence may be stochastic, in which each

vector is an independent, identically-distributed (i.i.d.) realization of some predetermined

probability distribution chosen for favorable properties suited to this problem. Alternatively,

deterministic sequences can be used which have some favorable structure and, as we will show,

some favorable convergence properties. Probing methods are most applicable when the cost

of matrix-vector multiplication is tolerable, but more sophisticated approaches involving

matrix decompositions are infeasible. In general, this is the cusp at which O (n3) algorithms

are largely intractable, while O (sn2) algorithms are likely feasible for s≪ n. An important

factor in designing a probing method is choosing how to generate the sequence of vectors

{vk}. Assuming it is cheap to generate the probing vectors (the primary two choices discussed

here will require O (n) and O (n log n) work, both with a small constant factor) then probing

methods require O (n2) work for each matrix vector multiplication. Using s ≪ n probing

vectors leads to the desired complexity O (sn2).

A general weakness of probing methods using stochastic probing vectors is their slow con-

vergence behavior, which is typically on the order of O
(
s−1/2

)
with s probing vectors. For-

tunately, if some structure about the matrix A can be assumed, the rate of convergence can

be improved. In this thesis, we discuss two stochastic choices of probing vectors, and one

deterministic choice.

5
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• Let v ∼ Rademacher (n) denote a vector whose components are random variables

independently distributed according to the Rademacher distribution. That is, realiza-

tions of v are vectors in Rn with i.i.d. entries taking −1 or 1 each with probability

1/2. This distribution is also referred to as the vectorized version of the symmetric or

signed Bernoulli distribution in the literature.

• Let v ∼ N (µµµ, σ2In) denote a vector whose components are random variables indepen-

dently distributed by vi ∼ N (µ, σ2).

• Let v ∈ Rn be called a Hadamard vector if it is a column of a Hadamard matrix. A

Hadamard matrix is any H ∈ Rn×n taking only entries ±1 such that HH⊤ = nIn.

These will be discussed in detail in Chapter 2.

1.1 Hutchinson’s Trace Estimator

To motivate the discussion of diagonal estimation, we begin with a probing method for the

closely-related problem of trace estimation, which has historically received more attention.

In 1987, D. Girard [18] first introduced the first probing method for estimating the trace,

and in 1990, M.F. Hutchinson [28] provided analysis and introduced the use of Rademacher

variables in Girard’s probing method. Since then, the method is known as Hutchinson’s trace

estimator for estimating the trace of a matrix A ∈ Rn×n and takes the form1

trace(A) ≈ tRs =
1

s

s∑
k=1

v(k)⊤Av(k), v(k) ∼ Rademacher (n). (1.1)

The validity of this estimator is seen by computing the expectation of an arbitrary term
1The superscript will be used throughout the thesis to denote the choice of probing vectors, and may be

omitted where the context has already made this clear.
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f(v) := v⊤Av. Note that Rademacher variables clearly have mean 0 and variance 1, which

will be exploited along with the pairwise independence of components of each vk realization

E [f(v)] = E
[
v⊤Av

]
=

n∑
i=1

n∑
j=1

aij E [vivj] =
n∑

i=1

aii = trace (A) .

Hutchinson’s trace estimator tRs is nothing more than a standard Monte Carlo estimator,

being of the form

trace (A) = lim
s→∞

tRs = lim
s→∞

1

s

s∑
k=1

f(v(k)).

1.2 Convergence Behavior of Trace and Diagonal Esti-

mators

1.2.1 Hutchinson’s Analysis of the Trace Estimator

We now further analyze Hutchinson’s trace estimator for the purpose of translating these

results to the diagonal estimator. We have already seen ts is a Monte Carlo estimator, so it

is sufficient to analyze f(v) = v⊤Av to understand its behavior. Indeed, the expectation of

ts reduces to the expectation of f(vk) by simple application of the linearity of E [·]. Let the

probing vectors be distributed according to V .

E [ts] =
1

s

s∑
k=1

E
[
f(v(k))

]
=

1

s
· sE [f(v)] = E [f(v)] , v ∼ V .

Thus, we need to choose the distribution of probing vectors, V , such that if v ∼ V , then

E [f(v)] = trace (A). We have already seen that this holds for V ∼ Rademacher (n), but in

fact this choice is not necessary. We will now demonstrate that unbiasedness can be achieved
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with only mild assumptions on V . Let v ∼ V with each component vi having E [vi] = µ and

Var [vi] = σ2. Then, E [v2i ] = σ2 − µ2.

E
[
v⊤Av

]
=

n∑
i=1

n∑
j=1

aij E [vivj] =
n∑

i=1

aiiE
[
v2i
]
+

n∑
i,j=1
j ̸=i

aijE [vi]E [vj]

= (σ2 − µ2)
n∑

i=1

aii + µ2

n∑
i,j=1
j ̸=i

aij = (σ2 − µ2) trace (A) + µ2

n∑
i,j=1
j ̸=i

aij.

Hence, without any structural assumptions on A, we require σ2 − µ2 = 1 and µ2 = 0. That

is,

µ = E [vi] = 0, σ2 = Var
[
v2i
]
= 1

is a necessary condition for ts to be an unbiased estimator of A in general2.

As a Monte Carlo estimator, choosing V such that the variance of f(vk) is minimized results

in optimal convergence behavior.

E
[
f(v)2

]
= E

[
v⊤Avv⊤Av

]
= E

[(∑
i,j

aijvivj

)(∑
k,ℓ

akℓvkvℓ

)]

=
∑
i,j,k,ℓ

aijakℓE [vivjvkvℓ] =
∑
i

a2iiE
[
v4i
]
+ E

[
v2i
]
E
[
v2j
]∑

i,j
i ̸=j

(
aiiajj + a2ij + aijaji

)
=
∑
i

a2iiE
[
v4i
]
+
∑
i,j
i ̸=j

(
aiiajj + a2ij + aijaji

)
. (1.2)

Expanding E [f(v)]2,

E [f(v)]2 = trace (A)2 =
∑
i,j

aiiajj =
∑
i

a2ii +
∑
i,j
i ̸=j

aiiajj. (1.3)

2One may observe that a rescaling of ts to ts/σ
2 would remove the condition of unit variance. Since this

normalization will not artificially restrict any of our analysis, we keep it for simplicity of discussion.
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Then, Var [f(v)] is found by subtracting (1.3) from (1.2), yielding

Var [f(v)] = E
[
f(v)2

]
− E [f(v)]2 = (E

[
v41
]
− 1)

∑
i

a2ii +
∑
i,j
i ̸=j

(
a2ij + aijaji

)
.

Following Hutchinson’s analysis, we see that in order to minimize this variance, we need to

minimize E [v4i ]− 1 for each component vi. Then,

0 ≤ Var
[
v2i
]
= E

[
(v2i − 1)2

]
= E

[
v4i
]
− 2E

[
v2i
]
+ 1 = E

[
v4i
]
− 1.

That is, E [v4i ] has a lower bound of 1, which occurs precisely when Var [v2i ] = 0, in which case

each component vi of v satisfies v2i = 1 almost surely. In summary, to achieve unbiasedness

and minimal variance, the probing vector entries must satisfy the three conditions

E
[
v2i
]
= 1, E [vi] = 0, Var

[
v2i
]
= 0.

With the additional assumption that vi ∈ R, these conditions uniquely constrain V to equal

the Rademacher distribution. Without the real-valued condition, probing vector entries uni-

formly distributed on the ring of magnitude one in the complex plane would also satisfy

these conditions. This idea is explored by Iitaka and Ebisuzaki [29] and the method achieves

a lower variance (one half that of real-valued Rademacher probing vectors). Due to the com-

putational overhead necessary for complex arithmetic, we only analyze real-valued probing

variables in this paper, as all the matrices we consider are real-valued.
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To conclude, Rademacher probing vectors produce an estimator tRs with variance

Var
[
tRs
]
=

1

s
Var [f(v)] = 1

s

∑
i,j
i ̸=j

(
a2ij + aijaji

)
=

1

s

∑
i,j
i ̸=j

aijaji + ∥A∥2F −
∑
i

a2ii

 .

When A is symmetric, we can write this without the aijaji terms as

Var
[
tRs
]
=

2

s

(
∥A∥2F −

∑
i

a2ii

)
. (1.4)

Hence, the variance is controlled by the squared magnitudes of the off-diagonal entries, as

one would expect, seeing as these are the sources of error in the approximator. For a diagonal

matrix, this variance vanishes completely.

1.2.2 Extensions of Hutchinson’s Analysis to the Diagonal Esti-

mator

The motivation for presenting Hutchinson’s analysis in the above-detail has been to give

insight into how these techniques extend to the diagonal estimation case. Clearly, trace

estimation and diagonal estimation are closely related problems, so one would expect only a

small change to the Hutchinson estimator is necessary to yield a diagonal estimator. Bekas

et al. [9] propose such a modification Hutchinson’s estimator, Equation (1.1) for this purpose

in the natural way.

ds =

(
s∑

k=1

v(k) ⊙Av(k)

)
⊘

(
s∑

k=1

v(k) ⊙ v(k)

)
.

Here, ⊙ denotes element-wise multiplication of vectors and ⊘ denotes element-wise division

of vectors.
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The algorithm to compute the diagonal is presented here. One important observation is the

input : MatVec Routine satisfying MatVec(x) = Ax for any x ∈ Rn

input : Generate Routine which produces an i.i.d. random probing vector or a
deterministic process

input : s Number of probes
t(0) ← 0;
q(0) ← 0;
for k← 1to s do

v(k) ← Generate();
t(k) = t(k−1) + v(k) ⊙ f(v(k));
q(k) = v(k) ⊙ v(k);
d(k) = t(k) ⊘ q(k);

end
output: d(s) The diagonal estimate of A

Algorithm 1: Diagonal Probing

flexibility of this framework for implicitly-defined A. The only information required about

the matrix is a procedure for (approximately) multiplying the desired probing vectors against

it. There has been some work on understanding convergence behavior of the trace estimator

with different assumptions on the uncertainty in the matrix vector multiplications [11], and

we expect that some of this work could be extended in the future to the problem of diagonal

estimation.

The diagonal estimator differs from the trace estimator in that it no longer takes the Monte

Carlo estimator form, due to an additional normalization term. Let dV,is be the estimator for

the ith diagonal entry, aii, using s vectors i.i.d. by V . Let V = [vij] ∈ Rn×s be the matrix

containing these realizations v(k) as its columns. 3

dV,i
s = aii +

∑
j,j ̸=i

aij

∑s
k=1 vikvjk∑s
k=1 v

2
ik

.

3We will also use the notation dV,i
s later on, since the probing vectors may be generated by some deter-

ministic process rather than a distribution V. For now, we discuss only the stochastic case.
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First, we analyze its expectation to understand the necessary conditions on V for dV,i
s to be

unbiased.

E
[
dV,i
s

]
= aii +

∑
j,j ̸=i

aij

s∑
k=1

E
[

vikvjk∑
m v2im

]
= aii + sE [v11]E

[
v1

v211 + · · ·+ v21s

]∑
j,j ̸=i

aij (1.5)

(1.6)

In the last line, we have used symmetry due to the i.i.d. entries to express the expectation

as a single expectation of a function of s realizations of V . Without loss of generality, we

have used entries in the first row of V, v11, . . . , v1s as representatives.

Then, a sufficient condition for unbiasedness, with no consideration of the structure of A is

that E [v] = 0. A similar computation leads to variance of the estimator, assuming E [v] = 0,

Var
[
dV,i
s

]
= sVar

[
v2
]
E
[

v21
(v21 + · · ·+ v2s)

2

]∑
j,j ̸=i

a2ij.

Observe if V is the Rademacher distribution, then each v2i term above is 1 and

Var
[
dV,i
s

]
= s · 1 · 1

s2

∑
j,j ̸=i

a2ij =
1

s

∑
j,j ̸=i

a2ij.

1.2.3 Equivalence of dR,i
s to a Particular Trace Estimator

An additional observation about the Rademacher case is that the normalization term (·)⊘

(
∑s

k=1 vk ⊙ vk) reduces to simply
[
1/s . . . 1/s

]⊤
so dV,is is again a Monte Carlo estimator

as in the trace estimation case. In fact, the diagonal estimator dR,i
s is precisely the Hutchinson

trace estimator applied to Ai, where Ai is the n× n matrix with the ith row of A in its ith
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row, and zero vectors for every other row

Ai =


0

â⊤
i

0

 , trace (Ai) = aii.

Thus, we immediately see that for any x ∈ Rn,

[x⊙Aix]i = x⊤Aix.

dR
s can be interpreted as a stacking of n Hutchinson trace estimators for A1, . . . ,An. More

generally, any sequence of probing vectors for which the normalization term collapses into a

scalar fixed for each iteration reduce equivalently to a trace estimator with that same choice

of probing vectors in this way. In particular, this property holds for Hadamard vectors

discussed in Chapter 2. However, for normally-distributed vectors, this normalization is still

a random variable, so we cannot make this equivalence, and the computation of moments of

the estimator dG,i
s remains more complex than in the trace case.

1.2.4 Derivation of Variance for dG,i
s

While the superscript R in the trace and diagonal estimators reflects the choice of Rademacher

probing vectors, the superscript G reflects the choice of Gaussian probing vectors. We can

resolve the variance of the diagonal estimator dG,i
s be evaluating the expectation term in
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Equation (1.5), where p(·) is the probability density function for N (µ, σ2). We have

E
[

v21
(v21 + · · ·+ v2s)

2

]
=

∫
Rs

x2
1

∥x∥42
p(x1) . . . p(xs) dx1, . . . dxs

=

∫
Rs

x2
1

∥x∥42

s∏
i=1

(
1√
2πσ2

e
−x2i
2σ2

)
dx1, . . . dxs = (2πσ2)−s/2

∫
Rs

x2
1

∥x∥42
e

−∥x∥2

2σ2 dx1, . . . dxs.

First, we transform to s-dimensional spherical coordinates [42] (r, θ1, . . . , θn−1) given by

x1 = r cos θ1

x2 = r sin θ1 cos θ2
...

xs = r sin θ1 . . . sin θs−2 cos θs−1

with 0 ≤ θi ≤ π for i = 1, . . . , s − 2 and 0 ≤ θs−1 ≤ 2π. Transformation of differentials is

scaled by the Jacobian of this transformation by

dx1 dx2 . . . dxs = rs−1 sins−2 θ1 sins−3 θ2 . . . sin θs−2dr dθ1 dθ2 . . . dθs−1.

Proceeding by letting cs = (2πσ2)−s/2,

E
[

v211
(v211 + · · ·+ v21s)

2

]
= cs

∫ 2π

0

· · ·
∫ π

0

∫ ∞

0

r2 cos2 θ1
r4

e
−r2

2σ2 rs−1 sins−2 θ1 . . . sin θs−2dr dθ1 . . . dθs−1

= cs

∫ ∞

0

rs−3e
−r2

2σ2 dr
∫ π

0

cos2 θ1 sins−2 θ1 dθ1
∫ 2π

0

dθs−1

s−2∏
i=2

∫ π

0

sins−i−1 θi dθi.
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For each of these component integrals, there are well-known solutions [37] of the forms

∫ ∞

0

rs−3e
−r2

2σ2 dr = 2s/2−2σs−2Γ(s/2− 1)∫ π

0

cos2 θ1 sins−2 θ1 = 2−1π1/2 Γ
(
s−1
2

)
Γ(s/2 + 1)

s−2∏
i=2

∫ π

0

sins−i−1 θi dθi =
s−2∏
i=2

π1/2 Γ(i/2)

Γ
(
i+1
2

) =
π

s−3
2

Γ
(
s−1
2

) =

∫ 2π

0

dθn−1 = 2π,

where the final steps follow from the telescoping form of this product. Combining all of these

yields

cs
[
2s/2−2σs−2Γ(s/2− 1)

] [
2−1π1/2 Γ

(
s−1
2

)
Γ(s/2 + 1)

][
π

s−3
2

Γ
(
s−1
2

)] [2π] = Γ(s/2− 1)

4σ2Γ(s/2 + 1)
.

Exploiting the well-known recurrence of the Gamma function zΓ(z) = Γ(z + 1) for z ∈ C

such that ℜz > 0, with z = s/2− 1 and then again with z = s/2, we have

Γ(s/2− 1)

4σ2Γ(s/2 + 1)
=

1

4σ2(s/2)(s/2− 1)
=

1

σ2s(s− 2)

and so

E
[

v211
(v211 + · · ·+ v21s)

2

]
=

1

σ2s(s− 2)

Finally, we substitute this into the formula for variance above,

Var
[
dG,i
s

]
=

1

s− 2

∑
j,j ̸=i

a2ij.

We note that both Rademacher and Normally distributed estimators exhibit decay of vari-

ance in O (1/s), yet with the choice of Rademacher we see marginally lower variance for any

finite s. By choosing {vk} as Rademacher realizations, we see that the diagonal estimator
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simplifies to a Monte Carlo estimator like Hutchinson’s trace estimator

dR
s =

(
s∑

k=1

vk ⊙Avk

)
⊘

(
s∑

k=1

vk ⊙ vk

)
=

1

s

s∑
k=1

vk ⊙Avk.

As we have already proved the superiority of the diagonal estimator using Rademacher

vectors compared to the estimator with Gaussian vectors with respect to variance, we can

analyze the diagonal estimator treating it as a Monte Carlo estimator.

1.3 Classical Monte Carlo Convergence Theory

We derive some classical results on Monte Carlo estimators and their rates of convergence

to aid with analyzing the diagonal estimator. Each of these results will be presented not in

their most general form, but with only the scope of generality most useful for understanding

the trace and diagonal estimator. Throughout this section, let {Xk}k=1,... denote a sequence

of i.i.d. random variables with E [Xk] = µ and Var [Xk] = σ2 < ∞. Additionally, the nth

sample mean is given Sn := 1
n
(X1 +X2 + · · ·+Xn). While the strong law of large numbers

is sufficient to conclude that Sn → µ almost surely as n→∞, it gives no insight about the

rate of convergence, which is of important practical interest.

The central limit theorem says that
√
n(Sn−µ) converges in distribution (but not probability

or almost surely) to a Gaussian distribution of mean 0 and variance σ2. The form
√
n(Sn −

µ) = 1√
n
(X1 + · · ·+Xn)−

√
n suggests that for sufficiently large n, Sn acts like a Gaussian

of mean µ and variance σ2/
√
n. From this perspective, with variance of the convergent

distribution decaying like O
(
n−1/2

)
, this can be naturally considered a rate of convergence.

This is made precise with the following well-known result.

Theorem 1.1 Berry-Esséen Theorem [14]. Let {Xk}k=1,... and Sn have the same as-
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sumptions as above. Additionally, assume a finite third moment, E [|Xk|3] = ρ < ∞. Let

FZn be the (cumulative) distribution function of the scaled sum Zn :=
√
n(Sn−µ)/σ and FG

be the distribution function of the standard normal distribution. Then, for all x and n > 0

|FZn(x)− FG(x)| ≤
Cρ

σ3
√
n
,

where C < 0.4748 [41].

Notice we have arrived at a uniform bound, so we scale the classical statement to better suit

our discussion. Let FSn be the density function for Sn and FGn be the density function for

Gn, a random variable normally-distributed with mean µ and variance σ2/n.

FZn(x) = P

(√
n(Sn − µ)

σ
≤ x

)
= P

(
Sn ≤

σ√
nx+ µ

)
= FSn(

σ√
n
x+ µ)

FG(x) = FGn(σx+ µ).

Let x ∈ R be arbitrary, and apply the bound in Theorem 1.1 for point
√
n
σ
(x − µ), and we

have

|FSn(x)− FGn(x)| ≤
Cρ

σ3
√
n
.

More succinctly,

FSn(x) = FGn(x) +O
(
n−1/2

)
(1.7)

and we have now arrived at precisely what is meant in saying the Central Limit Theorem

implies Sn acts like a Gaussian with variance σ2/n as n grows. Theorem 1.1 implies that the

density functions vary by a factor which decays with n−1/2. In the end, we will want quan-

titative statements about P (|Sn − µ| < ε|µ|) for small ε > 0. This particular probability is

useful in the context of estimation, because it is the probability that the relative error of the

estimation Sn of µ is at most ε. For example, setting ε = 10−k provides a probability that
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the estimator will be within roughly k decimal digits of accuracy [22].

A useful framework for the ensuing discussion will be the following definition of an (ε, δ)−estimator.

Definition 1.2. A random variables S is called an (ε, δ)−estimator of µ if it satisfies

P (|S − µ| ≤ |µ|ε) ≥ 1− δ.

Hence, we can restate Theorem 1.1 in this notation by noting that (1.7) implies that for any

ε > 0

P (|Sn − µ| ≤ ε) = P (|Gn − µ| ≤ ε) +O
(
n−1/2

)
(1.8)

For a general Gaussian variable with variance σ2 a simple rescaling yields that the probability

it falls within x of its mean is given by Erf
(
x/
√
2σ2
)

, where the error function, Erf (·), is

defined Erf (x) = P (|X| < x) where X is a normal random variable with mean 0 and variance

1/2. Hence,

P (|Gn − µ| ≤ ε) = Erf
(
ε

√
n

2σ2

)
. (1.9)

Then, combining the constant from Theorem 1.1, (1.8), and (1.9) we see that Sn as de-

fined above, with the additional constraint of finite third moment ρ on the Xk’s is an(
ε, 1− Erf

(
ε|µ|

√
n

2σ2

)
+ 2ρC

σ3
√
n

)
−estimator of µ. With this notation, we discuss Chebychev

and Chernoff equalities. We next make precise our notions of convergence and rates of

convergence.

A classical result is Chebychev’s inequality, a simple consequence of Markov’s inequality [33].

Theorem 1.3 Chebychev’s Inequality. Let S be a random variable with expectation
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µ <∞ and variance 0 < σ2 <∞. For any k > 0,

P (|S − µ| ≥ kσ) ≤ 1

k2
.

Since Sn has variance σ2/n, by choosing k = |µ|ε
√
n

σ
, Theorem 1.3 yields

P (|Sn − µ| ≤ ε|µ|) ≥ 1− σ2

µ2ε2n
= 1−O

(
n−1
)
. (1.10)

Adding some additional regularity by assuming boundedness of each of the Xk’s, we have a

Chernoff-style bound for Sn which is in general much sharper than Chebychev’s inequality.

Theorem 1.4 Hoeffding’s Inequality [26]. Given the assumptions for {Xk} and Sn

defined above, and also assuming that each Xk is supported on a bounded interval [a, b] ⊂ R

P (|Sn − µ| ≤ ε|µ|) ≥ 1− 2 exp
(
−2nε2µ2

(b− a)2

)
.

1.4 Rewriting Classical Bounds as (ε, δ) Statements

We have discussed different bounds for sample means Sn of i.i.d. random variables. For a

fixed ε > 0, we arrive at statements of the form “Sn is an (ε, δn,ε)−estimator of µ”. Here, we

have written δn,ε to enforce the point that δ depends on both n and ε. This is only a useful

statement if δn,ε → 0 by taking either n→∞ or ε→ 0+. To use these results practically, it

is instead useful to think of n as a function of ε and δ. Recalling our above interpretation of

Definition 1.2, we want the following:

Problem 1 (Minimum Samples For (ε, δ)-Estimate). Given a sample mean Sn as
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defined above, a fixed ε > 0, and δ > 0, determine the minimum n such that Sn is an

(ε, δ)−estimator for µ.

Theorem 1.1 does not yield any closed-form statement for Problem 1, but the two ensuing

inequalities conclude

Result n satisfying Problem 1 Conditions on {Xk}

Chebychev’s Inequality σ2µ−2ε−2δ non-zero, finite variance

Hoeffding’s Inequality (b− a)22−1µ−2ε−2 log (2δ−1) Xk ∈ [a, b] for each k

1.5 Application Stochastic Analysis to Trace and Di-

agonal Estimators

We can place this in the context of trace estimation naturally. With Rademacher probing

vectors, we can establish a bound on each term

v⊤Av =
∑
i,j

aijvivj =
∑
i

aii +
∑
i<j

(aij + aji)vivj.

Since vivj is again a Rademacher variable, we see the total range of values is controlled by

the sum of terms of the form ±(aij +aji) and we have that v⊤Av is contained on an interval

of length 2
∑

i<j |aij + aji|.

These results are consistent with the variance of tRs since this interval is length zero if and

only if each of the off-diagonal entries satisfy aij = −aji which is precisely the case for which

the variance vanishes.
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Thus, for Rademacher trace probing, we can translate the results of the previous table

immediately,

Result s for Problem 1 with tRs s for Problem 1 with dR,i
s

Chebychev’s Inequality 1
ε2 trace(A)2

∑
i,j
i ̸=j

a2ij+aijaji

δ
1

ε2a2ii

∑
j ̸=i a

2
ij

δ

Hoeffding’s Inequality
log (2/δ)

∑
i,j
i<j

|aij+aji|

2

2ε2 trace(A)2
log (2/δ)

∑
j ̸=i a

2
ij

2ε2a2ii

There has been work to sharpen these bounds for trace estimation in the case that the

underlying matrix A is symmetric positive semi-definite [4]. We recall that symmetry gives

the variance of tRs as in Equation (1.4) which avoids the somewhat opaque aijaji terms.

Theorem 1.5 Theorem (Hutchinson Trace Estimator Convergence Rate [4]). The

Hutchinson estimator tRs is an (ε, δ)-estimator of trace (A) for s ≥ 6ε−2 log(2 rank (A) /δ).

The proof of Theorem 1.5 relies on the orthogonal diagonalization of A, and relies on

Lemma 5 from [1], which gives an exponentially decaying bound on how far the average

inner product between a fixed orthogonal vector and i.i.d. Rademacher vectors will be

from magnitude 1. Given that Ai is no longer symmetric, Ai is diagonalizable (all rank-1

matrices are diagonalizable), but not orthogonally so. Avron and Toledo provide another

(ε, δ)-estimate result which is weaker, yet applicable to a wider class of probing bases.

Theorem 1.6 Theorem (Weaker Hutchinson Trace Estimator Convergence Rate

[4]). The Hutchinson estimator tRs is an (ε, δ)-estimator of trace (A) for s ≥ 1
2
ε−2n−2 rank (A)2 log(2/δ)κf (A)2,

where κf (A) is the ratio between the largest and smallest nonzero eigenvalue of A.

This argument can be modified for the Rademacher diagonal estimator by noting the equiv-

alencebetween the Rademacher diagonal estimator of A, and the Hutchinson trace estimator

of Ai as described in Section 1.2.3.
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This yields our result.

Theorem 1.7 Theorem (Rademacher Diagonal Estimator Convergence Rate). Let

A be semi symmetric positive definite, with non-zero ith diagonal entry aii. The diagonal

estimator dR,i
s for aii is an (ε, δ)-estimator for

s ≥ 2n2

ε2
rank (A) log(2/δ)

(
trace (A)2

aii

)
.

Proof. Let Ei be the matrix of all zeros except a 1 in its ith diagonal entry. Note Ai = EiA.

Then, since A is symmetric semi-positive definite, it has an orthogonal diagonalization A =
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QDQ⊤. Then,

∣∣v⊤Aiv
∣∣ = ∣∣v⊤EiQDQ⊤v

∣∣
=

∣∣∣∣∣∣v⊤Ei

rank(A)∑
j=1

λjqjq⊤
j v

∣∣∣∣∣∣
=

∣∣∣∣∣∣v⊤
rank(A)∑
j=1

(λjq⊤
j v)Eiqj

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
v⊤


0∑rank(A)

j=1 (λjq⊤
j v)qij

0


∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣vi
rank(A)∑
j=1

(λjq⊤
j v)qij

∣∣∣∣∣∣
=

∣∣∣∣∣∣
rank(A)∑
j=1

(λjq⊤
j v)qij

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
rank(A)∑
j=1

λj∥qj∥22∥v∥2qij

∣∣∣∣∣∣
= n

∣∣∣∣∣∣
rank(A)∑
j=1

λjqij

∣∣∣∣∣∣
≤ n∥Dq̂i∥1 ≤ n

√
rank (A) trace (A) .

Then, v⊤Aiv is supported on the interval centered at zero of length 2n
√

rank (A) trace (A).

Applying Hoeffding’s inequality (1.4), we have for any ε > 0,

P
(
|dR,i

s − aii| ≥ ε|aii|
)
≤ 2 exp

(
−sεaii

2n2 rank (A) trace (A)2

)
.

Bounding the right-hand side by a fixed δ > 0 and rearranging yields the lower bound for
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s.

We make some comments about this result. Firstly, it is an incredibly weak statement, given

the scaling with rank (A)n2, so that if A is SPD, this bound scales with n3, which quickly

becomes well beyond a reasonable value for s. Additionally, the bound improves if |aii| is

large relative to the other diagonal entries. So we expect the largest diagonals to converge

most quickly.

It is expected that this result could be drastically improved to be closer to a bound resembling

Theorem 1.5.

1.6 A Unified Framework for Analyzing ds

Thus far, only stochastic choices of probing vectors have been discussed. We have discussed

issues of variance and bias in an estimator comprised of i.i.d. samples from a random

distribution. We will now discuss the estimator within a unified perspective. For example,

with the choice of Hadamard vectors, the probing vectors are successive columns of a fixed

Hadamard matrix, and so they are not independent of each other. Since all stochastic choices

have an assumption of inependence between probing vectors, this demonstrates the need for

a new framework. It is of interest to analyze what properties this sequence of probing vectors

must satisfy in order to guarantee accurate results.

Recall ds is the generic diagonal estimator, and dis is the ith entry. First, we rearrange the
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form of the unnormalized estimator, d′
s

d′
s :=

s∑
k=1

vk ⊙Avk =
s∑

k=1


v1k

. . .

vnk

Avk.

di
′

s =
s∑

k=1

vik

n∑
j=1

aijvjk =
s∑

k=1

n∑
j=1

aijvikvjk =
n∑

j=1

aij

s∑
k=1

vikvjk

Now, including the normalization term,

dis =

n∑
j=1

aij
s∑

k=1

vikvjk

s∑
k=1

v2ik

= aii


s∑

k=1

v2ik

s∑
k=1

v2ik

+
n∑

j=1,j ̸=i

aij


s∑

k=1

vikvjk

s∑
k=1

v2ik



= aii +
n∑

j ̸=i

aij


s∑

k=1

vikvjk

s∑
k=1

v2ik



To enforce the desired result, dis = aii, the following constraint is imposed.

s∑
k=1

vikvjk = 0, when i ̸= j.

By building the sequence {vk} into a matrix V ∈ Rn×s whose columns are v1, . . . , vs, this

constraint can be viewed as an orthogonality condition on the rows of V.

Proposition 1.8 (Exactness condition, [9]). For V = [v1|v2| . . . |vs], if the ith row of

V is orthogonal to all those rows j of V for which aij ̸= 0, then the diagonal estimator will

yield an exact result for aii, the ith diagonal entry of A.

If VV⊤ is diagonal, then this proposition implies the diagonal estimator is equal to the
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diagonal of A if s = n. However, the utility of probing methods is realized when s ≪ n.

That is, V will have more rows than columns, and since it is impossible to find more than s

mutually orthogonal vectors in an s dimensional vector space, VV⊤ cannot be diagonal.

To emphasize the importance that s ≪ n, we observe that the standard basis vectors as

probing vectors as in Equation (1) would set V = In which produces an exact estimator.

Obviously, using fewer than n standard basis vectors will result in an estimator that is exact

for a subset of diagonal entries, but will produce no information about the n− s remaining

entries. This approach has been used for trace estimation [4], however for diagonal estimation

this approach will not be sufficient, as the applications of interest in this paper prioritize

the learning of incomplete information about the entire diagonal as opposed to complete

information about any subset. Moreover, Proposition 1.8 suggests a deterministic choice of

probing vectors may be a viable alternative to stochastic choices. There is no guarantee that

an exact estimate will ever be reached within n steps for the stochastic estimators previously

discussed. Meanwhile, it is certainly possible with a deterministic selection of V to produce

an exact estimator with no more than n probing vectors. The natural question is whether

there is a better deterministic choice of probing vectors than the standard basis vectors. An

important question is of how to quantify the performance of a particular choice of probing

vectors.

1.7 Off-Diagonal Interaction and The Welch Bound

It has been established that the estimator cannot be exact with fewer than n probing vectors

if no structural information about the system. We present some well-known general bounds

on how accurate the estimator can be expected to perform for a given (n, s) pair.

These bounds are framed in the minimization of two error functions motivated by Propo-
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sition 1.8. Specifically, these two functions indicate how far VV⊤ differs from a diagonal

matrix. Let v̂⊤
i is the ith row vector of V. First, the off-diagonal interactions can be quan-

tified in a least square sense,

Erms =

√√√√ 1

n(n− 1)

n∑
i=1

n∑
j ̸=i

|v̂⊤
i v̂j|2

as well as in a maximal magnitude sense.

Emax = max
1≤i<j<n

|v̂⊤
i v̂j|.

Erms quantifies error as the average magnitude of off-diagonal entries of VV⊤, while Emax is

the largest magnitude off-diagonal entry. Clearly, Emax ≥ Erms. Bounds for these quantities

are given in the theory of binary codewords. Minimizing Erms is equivalent to minimizing the

maximum cross-correlation amplitude between code words (rows of V) [40]. The so-called

Welch Bounds for these values are determined to be

Emax ≥ Erms ≥
√

n− s

(n− 1)s
.

Hence, the sequence of probing vectors which are optimal in an Erms sense will satisfy the

Welch bound with equality. We discuss one such class of matrices in the following section.
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Hadamard Matrices

Definition 2.1. A matrix H ∈ {±1}n×n is a Hadamard matrix if HH⊤ = nI. We denote

the set of Hadamard matrices of order n as Had (n).

By definition, HH⊤ is a diagonal matrix, so n columns of a Hadamard matrix as probing vec-

tors form an exact diagonal estimator by Proposition 1.8. Even better, Hadamard matrices

are a class of matrices with entries ±1 which satisfy the Welch bounds. This suggests that

the average magnitude of off-diagonal interactions in HH⊤ is minimized for any 1 ≤ s < n,

and that error is 0 when s = n.

It is widely conjectured that there exists a Hadamard matrix of order n if and only if

n = 1, n = 2 or n = 4 mod 4. It is a straightforward combinatorial proof to show that

this is a necessary condition for existence. As to whether it is also sufficient remains an

open question [38]. Unfortunately, this is not a problem which can be ignored for practical

applications. In fact, as of 2005 [31], the smallest n divisible by four which has no known

Hadamard matrix is 668, which is well within the scale of problems of interest for probing

methods. Moreover, the problem of existence is paired with the problem of construction.

Even in cases for which existence can be proved, we will need to even further refine the set

of Hadamard matrices to those which can be constructed efficiently.

As is clear from Algorithm 1, the cost of a specific probing method is controlled by the

number of probing vectors, the cost of evaluating a matrix-vector multiplication with A,

28
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and the generation of each probing vector vk. Stochastic methods generally have a cheap

cost associated with constructing probing vectors, and because of independence of entries,

can be done entirely independently of each other. Rademacher variables in particular require

only n random bits to generate a length n vector. Gaussian random vectors in floating point

arithmetic also require O (n) random bits and time, although with a larger constant. With

this in mind, we seek to understand the complexity of constructing Hadamard columns, and

design choices that should be considered in constructing them. We observe immediately from

the definition that if H is a Hadamard matrix, then so too is any transformation of H through

row and column reordering. In the context of probing, we need only a small subset of columns

of H, so naturally we want to understand whether there is different convergence behavior of

dH
s by choosing different columns of H, or different matrices from Had (n) altogether.

In order to adaquetely adress these the two concerns of construction and existence, we divide

the discussion into two sections. For construction, we apply known theory of Hadamard ma-

trices to the context of probing in order to motivate the design decisions in the construction

of Hadamard columns with arguments grounded in convergence behavior and computational

efficiency. As for the question of existence, we address the limitations of current methods,

and propose a new block matrix construction which can serve to ameliorate some of these

concerns, particularly in the case of diagonal estimation moreso than trace estimation.

2.1 The Problem of Construction

We proceed by making the following observation which suggests the construction can be

quite efficient. If H1 and H2 are Hadamard matrices of sizes n and m, then H1 ⊗H2, the

Kronecker product, is a Hadamard matrix of size nm.
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For example, let H be an arbitrary Hadamard matrix. Then

1 1

1 −1

⊗H =

 H H

H −H


is also a Hadamard matrix. This fact will allow feasibly the construction of a single column

of large Hadamard matrice. 1 Using this Kronecker product trick, we define an important

class of Hadamard matrices called the Walsh (Hadamard) matrices. By applying this rule

multiple times, we have a definition for the Walsh matrices.

Definition 2.2 Walsh Matrices. The Walsh matrices consist of the Hadamard matrices

of order Nk which can be constructed by the Kronecker product of k order N Hadamard

matrices for some N, k ∈ N. That is,

Walsh(N, k) = {H(1) ⊗ . . .⊗H(k) |H(i) ∈ Had (N) , i = 1, . . . , k}.

Definition 2.3 Bandwidth of a matrix. Let A ∈ Rn×n. Let aij denote the ijth entry of

A for 1 ≤ i, j ≤ n. Let b ∈ N value such that |i− j| > b implies aij = 0. Then we say A has

bandwidth b.

We can say the following about Walsh(N, k).

Theorem 2.4. Let N, k ∈ N and H ∈ Walsh(N, k). Suppose A of size N1N2 . . . Nk ×

N1N2 . . . Nk has bandwidth strictly less than N ℓ for some ℓ ∈ {0, . . . , k − 1}. If the diagonal

of A is estimated with the first jN ℓ columns of H for some j ∈ {1, . . . , Nk−ℓ}, the estimate

will be exact.
1For a very rough estimate of the efficiency of constructing one Hadamard column compared to the full

matrix, for n = 225 in MatLab 2016a, the built-in hadamard command takes over a minute to complete,
while accessing all of the columns independently exploiting an efficient Kronecker product construction takes
approximately 0.5 seconds.
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We give the proof of this statement in the appendix.

In practice, the bandwidth of A is not known a priori. If the sparsity pattern of A is already

given, then the choice of optimal probing vectors can be made by solving an optimization

problem [43] which is outside of the scope of the assumptions made in this thesis. However,

if instead we make a more reasonable assumption that the entries of A decay away from the

diagonal, then Theorem 2.4 can be instead interpreted as a claim that the diagonal estimate

incurs no error from the nonzero entries within the primary N ℓ − 1 off-diagonal bands.

We can generalize this result further by introducing a more general set of Hadamard matrices.

Definition 2.5 Generalized Walsh Matrices. The Generalized Walsh matrices consist

of the Hadamard matrices of order N1N2 . . . Nk which can be constructed by the Kronecker

product of k Hadamard matrices of order N1, . . . , Nk, respecively. That is,

G(N1, . . . , Nk) = {H(1) ⊗ · · · ⊗H(k) |H(i) ∈ Had (Ni) , i = 1, . . . , k}.

Observe G(N1, . . . , Nk) ⊆ Had (N1N2 · · ·Nk) and if N1 = · · · = Nk then G(N1, . . . , Nk) =

Walsh(N, k).

Then, the more general form of Theorem 2.4 is the following.

Theorem 2.6. Let k,N1, . . . , Nk ∈ N and H ∈ G(N1, . . . , Nk). Suppose A of size N1N2 . . . Nk×

N1N2 . . . Nk has bandwidth strictly less than NℓNℓ+1 · · ·Nk for some ℓ ∈ {1, . . . , k}. If

the diagonal of A is estimated with the first j · NℓNℓ+1 · · ·Nk columns of H for some

j ∈ {1, . . . , N1N2 · · ·Nℓ−1}, the estimate will be exact.
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2.1.1 Computational Discusion

In diagonal probing applications using block Hadamard matrices, we are given a fixed N and

need to construct a small subset of the columns of some element of Had (N) efficiently. The

Generalized Walsh matrices are exactly the set of Hadamard matrices which can be efficiently

generated column-wise for large N . However, as N grows even moderately large, the set of

Generalized Walsh matrices grows very large. This raises the question of whether the choice

of Hadamard matrix is important. Theorem 2.6 suggests that the choice of matrix can

significantly affect the amount of probing vectors needed for certain convergence guarantees.

For example, suppose we have A ∈ R288×288 with bandwidth 7. Consider H ∈ G(36, 2, 2, 2)

and K ∈ G(2, 2, 2, 36). By Proposition 2.6, the diagonal of A is recovered exactly by probing

with 8 columns of H. However, we have no guarantees about probing with any fewer than

36 columns of K.

In general, Proposition 2.6 tells us that if we are given a fixed N and seek an H ∈

G(N1, . . . , Nk) for some N1, . . . , Nk such that N1N2 · · ·Nk = N , then we should order the

N1, . . . , Nk such that N1 ≥ N2 ≥ · · · ≥ Nk in order to have the most flexibility in choosing

the number of probing vectors to take from H while maintaining theoretical convergence

guarantees.

2.1.2 The Fast Walsh-Hadamard Transform

We use a variation on the Fast Walsh-Hadamard Transform (FWHT) [5] in order to efficiently

compute columns of Hadamard matrices of a desired order. For a fixed n = 2m for some m ∈

N, this algorithm allows for the construction of an element of Had (n) with computational

complexity O (n log n) (as opposed to the O (n2) complexity of a naive algorithm). We

have modified this approach to compute, for fixed n = 2mx for some m ∈ N and x ∈
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2N − 1, a single specified column of an element of Had (n) with complexity O ((log n)).
input : N the order of the system, j the index of probing vector requested

Find m,k such that N = 2mk;

if m < 2 then
output: Failure – N is not a Hadamard dimension

end

if m = 2 then

if H ∈ Had (N) in memory then
output: Retrieve jth column of H

end

end

else
output: Failure – No stored Hadamard matrix of order N

end

else

for ℓ = m,m− 1, . . . , 2 do

if H ∈ Had
(
2ℓk
)

in memory then

Retrieve h, the ⌈j/2ℓ⌉th column of H;

output: h⊗ FWHT(2m−ℓ, ej)

end

end

end

output: Failure – Insufficient stored Hadamard matrices
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2.2 The Problem of Existence

One of the most limiting aspects of using Hadamard matrices for probing is the restriction

on the problem sizes for which there corresponds a Hadamard matrix. At the onset of

Chapter 2, we stated the conjecture that Hadamard matrices exist at each size which is a

multiple of 4. Restricting ourselves further to easily computable Hadamard matrices, i.e.

Generalized Walsh matrices (Definition 2.5), reveals an even more pessimistic situation.

Consider an H ∈ G(N1, . . . , Nk). Assume that each Nk > 2. It is comprised of kronecker

products between k Hadamard matrices, each of which have order divisible by 4 (recall this

direction of implication is proven true– only the converse remains to be proven). Thus, H

is divisible by 4k. This suggests the Generalized Walsh matrices are much more sparsely

available than at every multiple of 4. Given an arbitrary dimension for A, our options from

Generalized Walsh are indeed quite limited. Our only hope is to precompute higher orders

of seed matrices (which can eventually met by limitations of existence discussed earlier, such

as n = 668) or by constructing these

One possible remedy is to probe with the smallest valid Hadamard size at least as large as

n, truncating rows to equal n. However, this new matrix is certainly not guaranteed to be a

Hadamard matrix, and hence loses its properties of exactness when s = n, and no longer is

guaranteed to match the Welch error bound.

2.2.1 Block Hadamard Matrices

We propose a modification to Hadamard probing methods which can resolve some funda-

mental constraints of these methods resulting from the problem of existence.

We define a new class of matrices which is intrinsically related to Hadamard matrices.
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Definition 2.7. A matrix H ∈ Rn×n is a block Hadamard Matrix if it is of the form

H =


H1

. . .

Hp


where H1, . . . , Hp are Hadamard matrices and all off-diagonal blocks are 0.

We consider the block Hadamard matrix

H =


H1

. . .

Hp

 .

In which each block Hi is of size si × si. It is observed that H satisfies

HH⊤ =


H1H1

⊤

. . .

HpHp
⊤

 =


s1Is1

. . .

spIsp


which is diagonal. We are motivated to use these columns as probing vectors in diagonal

estimation. There are two reasons for using this Block Hadamard scheme.

Firstly, this scheme lends itself to parallelization. Each set of si probing vectors reveals

information only about a subset of si diagonal entries of A. Thus, by assigning a set of

probing vectors corresponding to one block, Hi of H, to one processor which can work

independently of the others, p processors can collect information about disjoint sets of entries

of the diagonal and reconstruct the solution at the end of the process.

Secondly, the block method can be exact for any problem size n, since any natural number
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can be decomposed into valid Hadamard sizes which sum up to it. (This is clearly true since

1 is a valid Hadamard size). There arises the question of how to distribute probing vectors

within the blocks. We can return to Theorem 2.4 for guidance. Block Hi is size si×si, which

must be a Hadamard dimension. Specifically, in our implementation Hi ∈ G(N1, . . . , Nk)

such that si = N1N2 . . . Nk. Using Algorithm 2, the final Nℓ, . . . , Nk will all equal 2, and so

probing each block with small powers of 2 will yield the best convergence properties under

the above assumptions. There are certainly further optimizations to be done in construction

and block size allocation. Our numerical experiments demonstrate that the measures taken

thus far reliably outperform a blocking scheme with no optimizations. Namely, with no

optimizations, we split H into p blocks, where p is the number of processors available, and

the blocks are of the largest valid Hadamard dimension n0 such that n0p ≥ n and the final

block is truncated down to n. The number of probing vectors are split evenly across the p

blocks. We denote this naive strategy as “Hadamard (I)” and the strategy using Generalized

Walsh heuristics to choose better sizes si and allocations of probing vectors in accordance

with Theorem 2.6 as “Hadamard (II)”.

2.3 Numerical Results for Diagonal Probing

Consider an example A ∈ R104×104 with ones on diagonal, and off diagonal are i.i.d. normal

variables distributed by N (0, .01) 5% are nonzero.
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Figure 2.1: Performance comparison of the three Hadamard variations as well as Rademacher
probing displaying expected convergence behavior on a 12 processor system.

We make a few comments here. In comparing the Hadamard and Rademacher probing, we

see the Rademacher performing better in the first thousand probing vectors, before being

overtaken by the Hadamard approach. In particular, we see rapid decay in error of the

Hadamard probing near the complete probing.

As expected, we see some additional computational overhead in computing the Block Hadamard

(II) estimator compared to Block Hadamard (I), but in exchange this effort results in better

convergence properties. We expect that for future research there is the potential for more

refinement that can be done to both reduce the overheard in Block Hadamard (II) as well

as making convergence even faster.
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Applications and Numerical

Experiments

3.1 Generalized Cross-Validation

A diagonal estimation problem arises naturally in the problem of Tikhonov parameter se-

lection Consider the linear inverse problem of the form y = Ax + εεε, where εεε ∼ N (0,Σ),

Σ ∈ Rm×m is symmetric positive definite, A ∈ Rm×n, and b ∈ Rm. From this, the goal is to

reconstruct x. Specifically, we discuss the ill-posed problem for which A is highly sensitive

to error, and so with εεε present, we need to employ regularization to recover x. By imposing

smoothness on the solution, the Tikhonov regularized solution, xλ, takes the form

xλ = argminx∈Rn ∥Ax− b∥2 + λ∥x∥2 (3.1)

38
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Suppose also that A has rank r. Defining monotonically decreasing filter factors 1 ≥

ϕ1, . . . , ϕr ≥ 0, then define the filterd A as

Aλ = UΦΣV⊤, Φ =



ϕ1

. . .

ϕr

0

. . .

0


.

Then, one can derive the regularized solution xλ as a linear operation of the regularization

matrix Aλ applied to the observed data b.

xλ = Aλb, where Aλ = VΦλΣ
†U⊤b. (3.2)

The natural question arises as to how to choose λ ≥ 0 to yield the best regularized solution,

xλ. One idea is through leave one out cross-validation (LOOCV). The general idea of cross

validation is that the optimal statistical model is one which, when derived in absence of

certain data, can accurately recreate that missing data. LOOCV specifically derives the

model for a set of data based on m− 1 observations. Then, λ ≥ 0 is chosen to minimize an

average of a least-squares loss function related to the model derived from m−1 observations.

That is, we examine instead the Tikhonov regularization problem

min
∑
k ̸=i

((Ax)k − bk)
2 + λ2∥x∥22. (3.3)

To reduce confusion, we briefly comment on the overloaded use of the subscript [i] in the

following discussion. Attached to b or A, the subscript [i] is used to denote the quantity
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with its ith row removed. However, A[i]
λ is the regularization matrix corresponding to A[i]

by way of Equation (3.2) using the filtered A[i] instead of the filtered A. From this, we

define x[i]
λ := A[i]

λ b[i]. In the case of xλ, however, we set xλ := A[i]
λ b[i]. Define the generalized

cross-validation (GCV) function G(λ) as the average least squares error for each of the m

LOOCV models for the given λ [19]. That is,

G(λ) =
1

m

m∑
i=1

∥∥∥b[i] −A[i]x[i]
λ

∥∥∥2
2
. (3.4)

The regularization parameter is chosen to minimize this loss function.

λ = argminλ≥0G(λ).

3.1.1 Deriving Generalized Cross-Validation from LOOCV

Equation (3.4) for G(λ) is problematic since it requires m system solves to produce the

m A[i]x[i]
λ terms. In order to reduce this complexity, we seek to express G(λ) in a more

convenient form, following the derivation presented in ??. First, we fix and i and define b̃

entrywise as follows:

b̃k =


[Ax[i]

λ ]k if k = i

bi if k ̸= i.

Then, x[i]
λ is also a solution of the LOOCV Tikhonov Problem 3.3 with b replaced by b̃,

since the two vectors differ only in the ith entry, which is not present in the summation in

Equation (3.3).

Since ([Ax]i − b̃i)
2 vanishes when x = x[i]

λ by the construction of b̃, we add this term to
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Equation (3.3) and note x[i]
λ is then a solution to the modified minimization,

min
x

(
[Ax]i − b̃i

)2
+
∑
k ̸=i

(
[Ax]k − b̃i

)2
+ λ2∥x∥22.

By grouping the first two terms together, this is equivalent to

min
x
∥Ax− b̃∥22 + λ2∥x∥22.

This is a Tikhonov minimization problem for the linear model Ax = b̃ satisfied by x[k]
λ , so

by Equation (3.2) the following relationship holds:

x[k]
λ = Aλb̃.

Then, noticing

Ax[i]
λ −Axλ = A(Aλb̃)−A(Aλb) = AAλ(b̃− b)

and considering the ith row of this value,

[
Ax[i]

λ −Axλ

]
i
= [AAλ]i (b̃− b)

and since b̃− b is nonzero only in the ith entry,

(
Ax[i]

λ −Axλ

)
i
= [AAλ]ii (b̃i − bi).
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Next, we subtract both sides of the equation from b̃i − bi producing

b̃i − bi −
[
Ax[i]

λ −Axλ

]
i
= b̃i − bi − [AAλ]ii (b̃i − bi)

b̃i − bi −
[
Ax[i]

λ

]
i
+ [Axλ]i = b̃i − bi − [AAλ]ii (b̃i − bi)

Substituting b̃i = Ax[i]
λ ,[

Ax[i]
λ

]
i
−
[
Ax[i]

λ

]
i
+ [Axλ]i − bi = [Ax[i]

λ ]i − bi − [AAλ]ii

([
Ax[i]

λ

]
i
− bi

)
(Axλ)i − bi =

(
[Ax[i]

λ ]i − bi

)
(1− [AAλ]ii)

(Axλ)i − bi
1− [AAλ]ii

= [Ax[i]
λ ]i − bi.

Then, substituting this into the formula for G(λ) yields

G(λ) =
1

m

m∑
i=1

([
A[i]x[i]

λ

]
i
− bi

)2
=

1

m

m∑
i=1

(
[Axλ]i − bi
1− [AAλ]ii

)2

G(λ) =
1

m
∥(Axλ − b)⊘ (1− diag (AAλ))∥2

Lastly, since xλ is entirely dependent on A, λ and b by xλ = Aλb, we can write G(λ) instead

as

G(λ) =
1

m
∥((I−AAλ)b)⊘ diag (I−AAλ)∥2 .

In general, one assumes it is not feasible to approximate the diagonal entries [AAλ]ii. The

standard generalized cross-validation approach to this problem is to make the approximation

[AAλ]ii ≈
1

m
trace (AAλ) .
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That is, substituting the ith diagonal entry with the average diagonal entry of AAλ. Then,

G(λ) =
1

m
∥((I−AAλ)b)⊘ diag (I−AAλ)∥2

=
1

m

m∑
i=1

(
[Ax]i − b
1− [AAλ]ii

)2

≈ 1

m

m∑
i=1

(
[Ax]i − b

1− trace (AAλ) /m

)2

=
1

m

1

(1− trace (AAλ) /m)2

m∑
i=1

([Ax]i − b)2

=
1

m

1

(1− trace (AAλ) /m)2
∥Ax− b∥22

=
1

m

1

1/m2 (m− trace (AAλ))
2 ∥Ax− b∥22

=
1

m

1

1/m2 [trace (I−AAλ)]
2 ∥Ax− b∥22

=
m ∥Ax− b∥22

[trace (I−AAλ)]
2

=: H(λ).

In fact, the approximation of trace (AAλ) for approximating the GCV function of a particular

linear model was Hutchinson’s original motivation for developing tRs [28]. Now equipped with

the diagonal estimator, we are instead interested in approximating the diagonal entries of

AAλ in order to estimate G(λ) exactly, rather than its approximation, which we denote by

H(λ).

G(λ) =
1

m
∥((I−AAλ)b)⊘ diag (I−AAλ)∥2

H(λ) = m ∥((I−AAλ)b) / trace (I−AAλ)∥2



44 Chapter 3. Applications and Numerical Experiments

Equivalently, these can be expressed as G(λ) = ∥T rλ∥22 and H(λ) = ∥D rλ∥22 using

rλ = Axλ−b, T =

√
m

m− trace (AAλ)
Im, D =

1√
m


(1− [AAλ]11)

−1

. . .

(1− [AAλ]mm)
−1

 .

We note that while A is of size m×n and the matrix whose diagonal must be approximated,

AAλ, is of size m × m. The probing of AAλ requires the ability to produce AAλv for

arbitrary v ∈ Rm. In real-sized Tikhonov regularization problems, it is assumed to be

infeasible to compute the SVD of A, and so we are left with solving

x̂ = argminx∈Rn

∥∥∥∥∥∥∥
 A

λIn

x−

 v

0n


∥∥∥∥∥∥∥
2

using, for example, a conjugate-gradient scheme such as Conjugate Gradient Least Squares [36].

This yields x̂ = Aλv and then obtaining the desired result through a final matrix vector

multiplication by A, Ax̂ = AAλv.

The fundamental assumption made in using H as an approximation of G is that argminH(λ) ≈

argminG(λ), since this minimizer is the quantity of importance in following the induced

Tikhonov regularized system. However, in studying examples from the Regularization

Tools [21] toolbox, we see that this is not the case even on some small, simple systems.

Test problems for which AAλ has high variance along its diagonal should yield large differ-

ences between G(λ) and H(λ).

One particularly extreme example is that of a Hilbert Matrix, described by its ijth entries
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hij =
1

i+j−1
. That is, reciprocals of the integers on the antidiagonals.

H3 =


1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5

 .

David Hilbert first introduced matrices of this form [25] to answer the question of making∫ 1

0
P (x)2 dx smaller than any fixed ε > 0 for a polynomial P of degree n with integral

coefficients. The result is the determinant of the Hilbert matrix of order n.

Hn is the Gram matrix for the monomial basis of polynomials {1, x, . . . , xn−1} on L2([0, 1])

and thus is extremely ill-conditioned, with growth of its condition number according to

O

(
(1 +

√
2)4n√
n

)
.

For example, H3 above already has κ(H3) ≈ 524 and κ(H4) ≈ 15514.

We observe that G(λ) and H(λ) behave remarkably differently for Hilbert matrices. Consider

the case H400, as follows.
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Figure 3.1: Comparing the cross-validation function and the generalized cross validation for
the Hilbert matrix of size n = 400.

3.1.2 GCV Experiments

Our claim is that G(λ) can give more information about the true Tikhonov regularization

parameter than H(λ). H(λ) is a function which was born out of necessity, at a time when

diagonal approximation was not considered. With a diagonal estimator which requires the

same computational effort as the trace estimator, there is no reason to use H(λ) over G(λ).
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Minimizing G(λ) should be closer to the optimal value, within the LOOCV philosophy. We

seek to uncover examples for which G(λ) and H(λ) have significantly different minimizers.

G(λ) is the true GCV function, which exactly is equal to the LOOCV least squares error.

H(λ) approximates G(λ) by replacing the diagonal entries of AAλ with their average value,

trace (AAλ) /m.

On a standard image deblurring problem, we generate random right-hand sides b of the form

Ax + εεε where εεε ∼ N (0, σ2I), testing with the noise level σ2 at various intensities.

We run N = 1000 trials at each noise level. First, we construct the right hand side, and then

do a brute-force optimization to determine the λ which minimizes least-square reconstruction

error in the Tikhonov regularized problem. Then, we compare the relative error between the

parameter found by minimizing G and H, respectively.
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We observe that G performs slightly yet consistently better than H in selecting a λ parameter

closer to optimal. This aligns with our expectations, and justifies the use of G(λ) and the

induced diagonal estimation problem rather than H(λ) and its associated trace estimation
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problem.

3.2 Diagonal Ordering Experiments

Up until now, we have only considered the problem of using the diagonal estimator to

approximate the diagonal of A in the 2-norm sense. That is, we have sought to minimize

errorrel(ds) =
∥ds − diag (A) ∥2
∥ diag (A) ∥2

.

However, there exist other applications in which only an estimate on information about the

ordering of the diagonals of A is required. One may expect this should be an easier problem,

as the difficulty of achieving high precision estimates has already been discussed as one of

the primary weaknesses of stochastic probing vectors. There are many choices for an error

function which compares the rankings of two arrays [17]. Ultimately, for the scope of this

thesis, there is not a significant difference between these choices, as we do not present any

detailed convergence analysis which would depend on these details. For our comparison

tests, we choose the Kendall tau distance, which counts the number of “disagreements” in

pair orderings between two arrays. For two arrays of length n, each of the n(n− 1)/2 pairs

of each array are identified as in agreement, or in disagreement between the two orderings.

The sum of the number of disagreements, normalized by n(n − 1)/2 results in the Kendall

tau distance. Hence, it lies on [0, 1], equal to zero if and only if the two arrays are reverse

orderings of each other, and equal to 1 if and only if the two orderings are the same. In

additional defense of its suitability, it is a metric if we assume no repeated entries in the

arrays, but this condition is not necessary for our purposes.

Consider A ∈ R103×103 with off-diagonal entries having the form aij = exp (−0.1|i− j|) with
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90% of them chosen at random and set to 0.

We conduct three experiments to compare the efficacy of each of the probing methods for

identifying the proper ranking of the diagonal entries, as well as the easier problem of iden-

tifying only the minimum diagonal entry.
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Figure 3.2: Visual representation of the diagonal entries of the three test matrices.

0 200 400 600 800 1000
Number of probing vectors

0

0.05

0.1

0.15

Ke
nd

al
l t

au
 d

is
ta

nc
e

Hadamard
Block Hadamard (I)
Block Hadamard (II)
Rademacher
Block Rademacher

(a) Linear spacing

0 200 400 600 800 1000
Number of probing vectors

0

0.1

0.2

0.3

0.4

0.5

Ke
nd

al
l t

au
 d

is
ta

nc
e

Hadamard
Block Hadamard (I)
Block Hadamard (II)
Rademacher
Block Rademacher

(b) Linear spacing, smaller
step

0 200 400 600 800 1000
Number of probing vectors

0

0.1

0.2

0.3

0.4

0.5

Ke
nd

al
l t

au
 d

is
ta

nc
e

Hadamard
Block Hadamard (I)
Block Hadamard (II)
Rademacher
Block Rademacher

(c) Linear spacing, separated
cluster

Figure 3.3: Visual representation of the diagonal entries of the three test matrices.

From these experiments, we see that the Hadamard probing strategies all outperform the

Rademacher strategies. In particular the Block Hadamard estimators using a smarter block-

ing and probing vector distribution consistently outperforms the Block Hadamard estimator

using a naive strategy.
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Figure 3.4: Colored cells flag which estimators were able to accurately identify the smallest-
magnitude diagonal entry in the linear spacing test matrix.
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Figure 3.5: Colored cells flag which estimators were able to accurately identify the smallest-
magnitude diagonal entry in the small increment linear spacing test matrix.
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Figure 3.6: Colored cells flag which estimators were able to accurately identify the smallest-
magnitude diagonal entry in the test matrix with a separated cluster of 3 diagonal entries
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We see a slightly different result when examining only the convergence of the minimum

diagonal entry to the correct value. We see the smart block procedure performs even better

than the full Hadamard estimator. The two Rademacher estimators perform extremely

poorly, with only occasional hits on the correct minimum, before losing it again. More

analysis could be fruitful in shedding further light on the performance of the Block Hadamard

estimator for these kinds of estimation problems.

3.3 Future Work

3.3.1 Matrix Function Approximation

Matrix functions are an active area of research for many problems in statistical inference,

differential equations, and approximation theory [13, 20, 23, 39]. We present some basic

context for this problem, and mention some specific application areas in which trace and

diagonal estimation arise. First we provide some explicit representations for f(A). For a

function f analytic on Σ containing the spectrum of A, we can defined the matrix function

f(A) uniquely using Hermite interpolation.

Definition 3.1. (Matrix function via Hermite interpolation, [24]) Let f be defined on the

spectrum of A ∈ Cn×n and let ϕ be the minimal polynomial of A. Then, f(A) := p(A)

where p is the polynomial of degree less than

s∑
i=1

ni = degϕ

(where ni is the index of λi, the size of the largest Jordan block containing λi) that satisfies
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the interpolation conditions

p(j)(λi) = f (j)(λi), j = 0, . . . , ni − 1, i = 1, . . . , s.

There is a unique p and it is known as the Hermite interpolating polynomial.

If A has an eigendecomposition PDP−1, then f(A) is simply expressed

f(A) = P


f(λ1)

. . .

f(λn)

P−1.

We note that the function acts on the eigenvalues of A, but not its eigenvectors. Another

representation which proves useful particularly in error analysis is the Cauchy integral form

of f(A)b for b ∈ Rn.

Definition 3.2. (matrix function via Cauchy integral, [24]). For A ∈ Cn×n,

f(A) :=
1

2πi

∫
Γ

f(z)(zI−A)−1 dz,

where f is analytic on and inside a closed contour Γ that encloses the spectrum of A.

These different representations suggest a rich variety of strategies for approximating f(A)

and f(A)b. The Hermite interpolation form suggests Krylov subspace methods can prove

helpful. The Cauchy integral form motivates quadrature-based methods.

For large n, the eigendecomposition is too expensive to compute. For diagonal and trace

estimation of f(A), we need only compute s≪ n matrix-vector multiplications rather than

the full matrix f(A). That is, we need only estimate f(A) accurately in one specified
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direction. In the context of diagonal probing, this is precisely what is desired, in which b is

a specified probing vector.

3.3.2 Log-determinant Computation

One example where trace estimation has played a crucial role is in the computation of the log-

determinant of a covariance matrix [35]. Given a data vector y ∈ Rn and Gaussian process

regression requires the training of a Gaussian process characterized by the covariance matrix

C ∈ Rn×n depending on parameters θ. One way to train the Gaussian process is through

maximum likelihood estimation, which involves minimizing the negative log-likelihood func-

tion

L(θ) = 1

2
log det C +

1

2
y⊤C−1y.

Being a covariance matrix, C is symmetric positive-definite and so its eigenvalues are all

positive. Then, we can write the log det(A) as follows.

log det(A) = log(det(A)) = log(
n∏

i=1

λi) =
n∑

i=1

log(λi) = trace (log A) .

Note, the final log is a matrix function. The problem then of estimating log det(A) can be

reduced a trace estimation. log(A) has a convergent series representation, provided ∥A∥2 < 1

given by

log(I−A) = −
∞∑
k=1

1

k
Ak.

Then, for general symmetric positive-definite matrices A, one can estimate an upper bound

α on the spectrum of A and then one has

log det(A) = n log(α)−
∞∑
k=1

1

k
trace

(
(I−A/α)k

)
,
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requiring only the estimation of the trace of Ak for k up to some predefined number of terms

proportional to the accuracy of the approximation [10].

3.3.3 Subset Selection Inequality

Corollary 3.3 [30]. Let A ∈ Rn×n be symmetric positive definite with eigenvalues contained

within the interval [a, b]. Define ϱ = 4ab
(a+b)2

. If K ∈ Rn×m, m < n is an isometry, K⊤K = Ik,

then:

trace
(
K⊤ log AK

)
≤ log det(K⊤AK).

When K is a selection operator, so that K⊤ log AK is just a principal submatrix of log A,

then estimating information about the subset of diagonals selected by a particular K gives

estimation information about the trace of K⊤ log AK.

In this context, ranking the diagonal entries as was done in Section 3.2 can be useful in

selecting a particular submatrix of A in the context of Bayesian experimental design.

3.3.4 Matrix Updating and Network Analysis

Another important problem in matrix function theory is that of approximating information

about a matrix function update [7]. That is, given f and A as before, and a (typically

low-rank) matrix B ∈ Rn×n, we seek to approximate information about

f(A + B)− f(A). (3.5)

Additionally, for this to be well-defined, we need f to be analytic not just on the spectrum

of A, but also on the spectrum of A + B as well.
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One application which requires the diagonal entries of (3.5) is in subgraph centrality mea-

surement [15, 16]. Let G = (V,E) with V = {1, . . . , n} and E ⊆ V × V be an undirected

graph, and A its adjacency matrix. That is, aij = 1 if (i, j) ∈ E and 0 otherwise. Subgraph

centrality of the ith node is given

fi(A) =
[exp (A)]ii

trace (exp (A))
.

In particular, in studying the problem of total communication in the network, one studies

these subgraph centralities under an updating or downdating of the network [2]. That is,

as an edge is added/removed between the ith and jth nodes, corresponding to a rank two

update to A.



Chapter 4

Conclusion

We have addressed the problem of diagonal estimation with probing methods by analyzing

convergence behavior with both stochastic and deterministic choices of probing vectors. We

have extended analysis for the trace estimator to the corresponding results for the diagonal

estimator for Rademacher and Gaussian probing vectors. We have analyzed thoroughly

Hadamard matrices and design decisions that must be considered when using their columns

as a probing basis. We provide context for classical combinatorial results for Hadamard

matrices, and present some of these results for the first time as results on error accumulation

in diagonal estimators. As a response to some of the inherent difficulties of Hadamard

matrix columns as probing vectors, we have proposed a new class of probing methods using

a blocked structure, and analyzed the convergence behavior of these methods. In particular,

we provide heuristic as well as combinatorial arguments for the best way to construct these

vectors. We proceed by discussing different contexts where diagonal information about large,

implicitly-defined matrices is required, and these methods can be applied.

To accompany this analysis, we provide numerical examples to support the claims with nu-

merical results on real-world diagonal estimation problems, and demonstrate circumstances

where our analysis and new methods can be of use. Our results show that the Block

Hadamard estimators come close to the performance of the standard Hadamard estima-

tor, with the potential for further improvement. Somewhat surprisingly, on our tests thus

far, we observe the Block Hadamard estimator outperforming all other methods in the task

56
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of identifying extremal diagonal entries, which suggests further analysis may support this

finding.
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.1 Proofs for Section 2.1 (The Problem of Construc-

tion)

Proof (Theorem 2.4). Let N, k ∈ N and H ∈ Walsh(N, k). By definition of Walsh(N, k),

there exist H(1), . . . ,H(k) all elements of Had (N) such that

H = H(1) ⊗H(2) ⊗ · · · ⊗H(k).

Fix ℓ ∈ {0, . . . , k − 1}. Set

W0 = H(1) ⊗H(2) ⊗ · · · ⊗H(k−ℓ)

W1 = H(k−ℓ+1) ⊗H(k−ℓ+2) ⊗ · · · ⊗H(k).

Observe H = W0⊗W1 with W0 ∈Walsh(N, k−ℓ) and W1 ∈Walsh(N, ℓ), so both W0 and

W1 are Hadamard matrices. Denote the columns of W0 as W0 =

[
h1, h2, · · · , hNk−ℓ

]
.

Then,

H = W0 ⊗W1 =

[
h1 ⊗W1, h2 ⊗W1, · · · , hNk−ℓ ⊗W1

]
.

Each of these blocks hi ⊗W1 is of dimension Nk ×N ℓ. Let j ∈ {1, . . . , Nk−ℓ} be arbitrary

and denote H̃ to be the first jN ℓ columns of H. H̃ consists precisely of the first j blocks of
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the form hi ⊗W1. Consider H̃H̃⊤.

H̃H̃⊤ =

[
h1 ⊗W1, h2 ⊗W1, · · · , hj ⊗W1

] [
h1 ⊗W1, h2 ⊗W1, · · · , hj ⊗W1

]⊤

=

[
h1 ⊗W1, h2 ⊗W1, · · · , hj ⊗W1

]


(h1 ⊗W1)
⊤

(h2 ⊗W1)
⊤

...

(hj ⊗W1)
⊤


=

j∑
i=1

(hi ⊗W1)(hi ⊗W1)
⊤

=

j∑
i=1

(hi ⊗W1)(h⊤
i ⊗W⊤

1 )

=

j∑
i=1

(hih⊤
i )⊗ (W1W⊤

1 )

=

j∑
i=1

(hih⊤
i )⊗ (N ℓINℓ).

Since N ℓINℓ is diagonal, each term in this summation is the Kronecker product of a matrix

with a diagonal matrix of size N ℓ ×N ℓ which implies they will have all zero entries on sub

and super diagonals 1, . . . , N ℓ − 1. This structure is preserved under summation, so H̃H̃⊤

too will have all zero entries on its first through N ℓ − 1th sub and super diagonals. The

ijth entry of H̃H̃⊤ is 0 if and only if the ith and jth rows of H̃ are orthogonal. Then, using

Proposition 1.8, we conclude the diagonal estimation of a matrix A ∈ RNk×Nk performed

with the columns of H̃ will be degraded only by the nonzero entries of A outside the N ℓ− 1

band around the diagonal of A. Thus, if A has bandwidth at most N ℓ − 1 (i.e., strictly less

than N ℓ), the estimate will be exact, as desired.
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The proof for Theorem 2.6 follows closely to that of Theorem 2.4.

Proof (Theorem 2.6). Let k,N1, . . . , Nk ∈ N and H ∈ G(N1, . . . , Nk). By definition of

G(N1, . . . , Nk), there exist H(1) ∈ Had (N1) , . . . ,H(k) ∈ Had (Nk) such that

H = H(1) ⊗H(2) ⊗ · · · ⊗H(k).

Fix ℓ ∈ {1, . . . , k}. Set

W0 = H(1) ⊗H(2) ⊗ · · · ⊗H(ℓ−1)

W1 = H(ℓ) ⊗H(ℓ+1) ⊗ · · · ⊗H(k).

Observe H = W0 ⊗W1 with W0 ∈ G(N1, . . . , Nℓ−1) and W1 ∈ G(Nℓ, . . . , Nk), so both W0

and W1 are Hadamard matrices. Denote the columns of W0 as W0 =

[
h1, h2, · · · , hNℓ−1

]
.

Then,

H = W0 ⊗W1 =

[
h1 ⊗W1, h2 ⊗W1, · · · , hNℓ−1 ⊗W1

]
.

Each of these blocks hi ⊗ W1 is of dimension N1N2 · · ·Nk × NℓNℓ+1 · · ·Nk. Let j ∈

{1, . . . , N1N2 · · ·Nℓ−1} be arbitrary and denote H̃ to be the first jN1N2 · · ·Nℓ−1 columns

of H. H̃ consists precisely of the first j blocks of the form hi ⊗W1.
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Consider H̃H̃⊤.

H̃H̃⊤ =

[
h1 ⊗W1, h2 ⊗W1, · · · , hj ⊗W1

] [
h1 ⊗W1, h2 ⊗W1, · · · , hj ⊗W1

]⊤

=

[
h1 ⊗W1, h2 ⊗W1, · · · , hj ⊗W1

]


(h1 ⊗W1)
⊤

(h2 ⊗W1)
⊤

...

(hj ⊗W1)
⊤


=

j∑
i=1

(hi ⊗W1)(hi ⊗W1)
⊤

=

j∑
i=1

(hi ⊗W1)(h⊤
i ⊗W⊤

1 )

=

j∑
i=1

(hih⊤
i )⊗ (W1W⊤

1 )

=

j∑
i=1

(hih⊤
i )⊗ (NℓNℓ+1 · · ·NkINℓNℓ+1···Nk

).

Since NℓNℓ+1 · · ·NkINℓNℓ+1···Nk
is diagonal, each term in this summation is the Kronecker

product of a matrix with a diagonal matrix of size NℓNℓ+1 · · ·Nk × NℓNℓ+1 · · ·Nk which

implies they will have all zero entries on sub and super diagonals 1, . . . , NℓNℓ+1 · · ·Nk − 1.

This structure is preserved under summation, so H̃H̃⊤ too will have all zero entries on its

first through NℓNℓ+1 · · ·Nk− 1th sub and super diagonals. The ijth entry of H̃H̃⊤ is 0 if and

only if the ith and jth rows of H̃ are orthogonal. Then, using Proposition 1.8, we conclude

the diagonal estimation of a matrix A ∈ RN1N2···Nk×N1N2···Nk performed with the columns of

H̃ will be degraded only by the nonzero entries of A outside the NℓNℓ+1 · · ·Nk − 1 band

around the diagonal of A. Thus, if A has bandwidth at most NℓNℓ+1 · · ·Nk−1 (i.e., strictly
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less than NℓNℓ+1 · · ·Nk), the estimate will be exact, as desired.
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