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Considerable attention has been paid to the design of low-power, high-

performance SRAMs (Static Random Access Memories) since they are a critical 

component in both hand-held devices and high-performance processors.  A key in 

improving the performance of the system is to use an optimum sized SRAM.   

In this thesis, an SRAM compiler has been developed for the automatic layout of 

memory elements in the ASIC environment.  The compiler generates an SRAM layout 

based on a given SRAM size, input by the user, with the option of choosing between fast 

vs. low-power SRAM.  Array partitioning is used to partition the SRAM into blocks in 

order to reduce the total power consumption.   

Experimental results show that the low-power SRAM is capable of functioning at 

a minimum operating voltage of 2.1 V and dissipates 17.4 mW of average power at 20 

MHz.  In this report, we discuss the implementation of the SRAM compiler from the 

basic component to the top-level SKILL code functions, as well as simulation results and 

discussion.   
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With the increasing use of portable consumer electronics, power consumption has 

become an important performance characteristic for a chip due to both limited battery life 

in portable systems and also due to expensive packages and heat sinks required by high 

power levels.  Consequently, the design of low-power digital systems is becoming 

increasingly important.  With memories typically accounting for the largest share of 

power consumption in a system, an emphasis has been placed on the design of low-power 

memories.   

More than half of the transistors in today’s high performance microprocessors are 

devoted to cache memories and this ratio is expected to increase in the foreseeable future.  

Typically, SRAM (Static Random Access Memory) is the choice for embedded memories 

as SRAM is robust to the noisy environment in such chips.  As a result, considerable 

attention has been paid to the design of low-power, high-performance SRAMs since they 

are a critical component in both hand-held devices and high-performance processors.   

A key in improving the performance of the system is to use an optimum sized 

SRAM.  By incorporating an SRAM that is the correct size for the system requirements, 

the system can avoid using unnecessary memory cells.  This leads to improvements in 

area, speed, and power.  Therefore, depending on the application’s need, an appropriate 

SRAM size should be used. 

In this thesis, an SRAM compiler has been developed for the automatic layout of 

memory elements in the ASIC environment.  The compiler will generate an SRAM 

layout based on a given SRAM size, input by the user.  Also, the compiler allows the user 

to choose between fast vs. low-power SRAM.  The SRAM memory array is partitioned 

into blocks in order to reduce the total power consumption.  The Cadence design 

environment is used for this thesis.  Cadence SKILL language is used to implement the 

compiler and Cadence Virtuoso is used for the layout-editor tool. 

The organization of the thesis is as follows.  In Chapter 2, the background related 

to the thesis and the proposed research is described.  Previous work on low-power 

techniques for SRAM is also reviewed in this chapter.  In Chapter 3, the design and 
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layout of the leaf-cell components are presented.  In Chapter 4, the implementation of the  

SRAM compiler that generates an SRAM without array-partitioning is described, along 

with the final SRAM layout.  Chapter 5 discusses the array-partitioning technique 

implemented for the low-power SRAM, as well as the implementation and the layout for 

this SRAM.  In Chapter 6, experimental results for the two different types of SRAM are 

reported.  Finally Chapter 7 concludes this thesis and presents future enhancements for 

the SRAM compiler.  The SKILL code, along with documentation, is attached in the 

Appendix. 
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 Memory elements form critical components in the implementation of CMOS 

circuits and are vital for most systems.  They are used for a wide variety of applications 

with different design criterion.  Though all memory elements are used to store and access 

data, they can be broken into three types based on how the stored information is 

retrieved.  These three types are random access memory, serial access memory, and 

content access memory.  Random access memory is defined as memory that has an 

access time independent of the physical location of the data.  This can be contrasted with 

serial access memory where the data is retrieved sequentially with time, or content access 

memory, where data is retrieved based on the type of data stored.    Figure 2.1 illustrates 

the classifications of memory elements. 

 

 

 

 

 

 

 

Figure 2.1 – Classification of Memory Elements 

RAM can be classified into Read/Write Memory and Read Only Memory.  Read 

Only Memory (ROM) is nonvolatile memory, where the stored data is maintained 

indefinitely, even without power, and writing to the memory takes considerably more 

time (on the order of milliseconds) than reading.  Read/write memory (commonly called 

RAM) is data that is stored temporarily and the read and write time are approximately 

equal to each other.   

RAM cells can be further divided into static and dynamic memory cells.  Static 

memory (SRAM) cells use a latch composed of cross-coupled inverters to store data.  
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This allows the value to be maintained in a cell as long as power is available.  Data 

storage in dynamic memory cell (DRAM) is based on the dynamic storage of charge on a 

capacitor.  Therefore, with dynamic memory cells, periodic refreshing is necessary to 

maintain the value.  Transistor-level schematic of a SRAM and a DRAM cell can be 

found in Figure 2.2.  Bit-lines form the datapath to/from the cell, while word-lines select 

a cell to be accessed. 

 

 

 

 

 

 

Figure 2.2 – Comparison of Static and Dynamic RAM Cells 

There are many reasons to use an SRAM or a DRAM in a system design.  Design 

tradeoffs include density, speed, volatility, cost, and features.  Dynamic memory cells are 

smaller (since they use just a capacitor), but are slower than static memory cells.  In 

addition, DRAMs require special processing in CMOS technology.  Generally, DRAMs 

are custom designed for the application since there are many trade-offs to be considered 

with this type.  The primary advantage of an SRAM over a DRAM is its speed and no 

need for special CMOS processing, which are compatible with random logic processing.  

For this project, since RAMs are to be embedded in a system, SRAMs are implemented. 

Also, for simplicity, an asynchronous approach is taken.  In the next section, we will look 

at the components of the RAM architecture used for this project.   

2.1  RAM Architecture 

 The basic architecture of a SRAM consists of an array of memory cells with 

support circuitry to decode addresses and implement the read and write operations.  

SRAM arrays are arranged in rows and columns of memory cells called wordlines and 

bitlines, respectively.  Typically, the wordlines are made from polysilicon while the 

bitlines are metal.  Each memory cell has a unique location or address defined by the 

bit line 
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intersection of a row and a column.  Figure 2.3 shows the generic RAM circuit for a 

memory chip that has just one row and one column.   

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – Block Diagram of an Asynchronous SRAM Circuit 

The RAM architecture consists of the following structures: 

• RAM Cell – used to store one data bit 

• Bit Line Conditioning – precharges bit lines to compensate for voltage drop 

across pass transistors 

• Column Multiplexer – switches between read and write operation  

• Write Buffers – buffers write-data so that it can write on RAM cells 

• Sense Amplifier – Generate logic values from the differential input on bit-lines 

• Row & Column Decoders – Decodes address to the correct RAM cell 

In the next section, we will discuss the structure and design issues regarding these 

components.  

2.2  RAM Cell Components 

 The schematic for static RAM Cell is shown in Figure 2.4.  Essentially, the data is 

latched at the cross-coupled inverters.  The bit-lines are complementary and are input to 

the I/O of the inverters.  Thus, the value is latched during a write and maintained as long 

as power is available.   
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Figure 2.4 – Latched Storage for a Static RAM Cell 

 When the control signal “word” in Figure 2.5 is on, the RAM cell is connected to 

the two bit-lines.  During a read operation, the two bit-lines are driven by the cell value.  

In contrast, the two bit-lines drive or override the cell during the write operation.  

Column and row decoders select a specific RAM cell by asserting proper control lines. 

 

 

 

 

 

Figure 2.5 – Static RAM Cell with Select Circuit 

 When the word is asserted during a read operation, the bit values are available to 

the latch through n-type transistors.  Since n-type transistors only pass a good value of 

‘0’, but not ‘1’, it is appropriate to precharge both the bit lines to a high value and let the 

RAM cell pull down one of the bit lines.  

 Figure 2.6 shows the RAM cell with the bit-line conditioning circuit that charges 

the bit lines using n-type transistors.   Both bit lines are charged to VDD-Vtn, where Vtn is 

the threshold voltage of the precharging NFET. When the word is asserted, one of the bit 

lines is pulled down to a ‘0’, while the other one remains at ‘1’.  It is also possible to use 

p-type transistors for the precharge transistors, and this would pull up the bit lines to 

VDD instead of to VDD-Vtn.  However, it will take longer to pull down the bit lines.  

Thus, using n-transistors improves the speed of the RAM.  Also from Figure 2.6, it can be 

seen that gates of the precharge transistors are tied to VDD, and hence the transistors are 

always turned on.  This avoids generating another signal, but it requires the precharge 

bit -bit -bit bit 

bit -bit 
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transistors to be weak so that they do not overcome the value driven onto the bit-lines 

during a read/write operation. 

 

 

 

 

 

 

 

Figure 2.6 – Static pull-up RAM Cell with Bit-Line Conditioning 

 During the read mode, a sense-amplifier is usually used to amplify the bit-line 

voltage difference of the two bit-lines.  The cross-coupled sense amplifier shown in 

Figure 2.7 was used to amplify the bit-line difference in our research.  The sense 

amplifier is composed of a cross-coupled pair of PFETs (M9 and M10).  The differential 

output is present at nodes sense+ and sense-.  

 

 

 

 

 

 

 

 
 

Figure 2.7 – Cross Coupled Sense Amplifier 
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 All of the above components are the basic cells used to form an SRAM chip.  The 

basic architecture of a SRAM includes an array of memory cells with support circuitry to 

decode addresses and to implement the required read and write operations.   

Figure 2.8 shows a basic block diagram of an asynchronous SRAM.  To perform a 

read/write operation, the first step is to specify the address that is being accessed.  Next, 

the chip enable signal, CEN, and the read/write enable signals (OEN/WEN), must be 

enabled.  When the REN control signal is enabled (read operation), the value stored at the 

specified cell appears at the data output port.  When WEN is enabled (write operation), 

the value present at the “Data Inputs” is written into the specified location. 

 

 

 

 

 

 

 

 

 

Figure 2.8 – Block Diagram of an Asynchronous SRAM 

2.3  Review of Low-Power RAMs 

Trends show that low power design techniques are becoming more important in the 

current industry.  Considerable attention has been paid to the design of low-power for 

applications such as hand-held devices and wireless communications.  There are 

numerous ways to reduce the power dissipation at the cost of area and/or speed, both in 

the cell and architectural level.  In this section, we will previous works that discuss low-

power SRAM techniques on the circuit and architectural level. 

2.3.1 Divided and Hierarchical Bit-lines 

In an SRAM, a pair of bit-lines is connected to a column of RAM cells.  For large 

circuits, the length of the bit-lines can be considerably long, resulting in large bit-line 
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capacitances.  The charging or discharging of bit-line capacitance causes active power 

dissipation, which is a major source of power dissipation.  A. Karandikar and K. Parhi 

proposed a divided bit-line approach for reducing the active power dissipation by 

reducing the bit-line capacitance [1].   

 Active current is the current that flows when bit-lines are charging or discharging.  

The active current is directly proportional to the bit-line capacitance.  The proposed 

divided bit-line approach intends to reduce bit-line capacitance, which is mainly 

composed of the drain capacitance of the pass transistors of the SRAM cell and the metal 

capacitance of bit-line.   

 

 

 

 

 

 

Figure 2.9 – Divided Bit-line Architecture 

 Figure 2.7 illustrates the concept of divided bit-line method.  The bit-lines are 

split into sub-bit lines so that only a few bit cells share the local bit line (sub bit-line).  

Thus, the global bit-lines are connected to fewer pass transistors and the Cbitline is 

significantly reduced.  This technique can be extended to divide the bit-lines in a 

hierarchy for large circuits.  Reducing Cbitline not only reduces the active power, but the 

access time as well.  The main disadvantage with this technique is the increased 

complexity in the basic SRAM architecture.  This complexity results in a significant area 

overhead, as well the need for additional control signals for the global and local word-

lines.  Experimental results show that for a 2-kB SRAM, the power consumption is 

reduced by 50-60% and access time is reduced by 20-30%, with a 5% increase in the 

number of transistors.   

2.3.2 Half-Swing Pulse-Mode 

Most of the currently present techniques aim to reduce the power needed to read 

data from the memory.  K. Mai, T. Mori, B. Amrutur, R. Ho, B. Wilburn, M. Horowitz, I. 
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Fukushi, T. Izawa, and Shin Mitarai aim to reduce power dissipation for write operation 

and for decoders using half-swing techniques [24].  In low-power embedded SRAMs 

with large access widths, the write-operation power can be significantly larger than the 

read-operation power.  Since the bit lines are referenced to Vdd, they are discharged to 

GND during a write operation.  Thus, decreasing the bit-line swings during writes can 

reduce write power. 

The main problem with reduced swing signals in the past has been the need for 

level-conversion and/or reduced gate overdrive at the receiving gates, which causes a loss 

of performance.  They aim to address the problem by combining positive half-swing 

(swinging the bit-lines from the steady state of Vdd/2 to Vdd and back to Vdd/2) and 

negative half-swing (swinging from the steady state of Vdd/2 to Gnd).  Thus, all of the 

forward-transition driving transistors see a full gate overdrive.  For example, Figure 2.8 

represents a half-swing pulse-mode AND gate that uses half-swing inputs to produce a 

full-swing output voltage.   

 

Figure 2.10 – Half-Swing Pulse-Mode AND Gate24 

This technique requires redesign of all support circuitry so that the half-swing bit-

lines can be appropriately interpreted and converted to full-swing outputs.  The main 

disadvantage with this technique is the reduced noise margin on the bit-lines, which 

results in higher susceptibility to noise.  Also, it requires an additional supply voltage of 

Vdd/2 and the routing of the rail is cumbersome.  Experimental results performed on a 2-

K x 16-b SRAM fabricated in a 0.25 µm dual-Vt CMOS technology show that the 

prototype dissipates 0.9 mW at 100 MHz using an operating voltage of 1V.   
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2.3.3 Sub-Blocked Array Architecture 

J. Caravella proposed to reduce power dissipation by reducing both the bit-line 

and word-line capacitance [7].  The power dissipation for static CMOS logic circuits is 

given by fVCP dd ××= 2 , where C is the average switched load and parasitic 

capacitances, Vdd is the supply voltage, and f is the operating frequency of the circuit.  

Because the power consumption increases quadratically with the supply voltage, most 

dramatic reduction in power can be achieved by reducing Vdd.  However, without 

redesigning the circuit, reducing the supply voltage may not only slow down the circuit, 

but may cause the circuit to fail.   

The discharge rate of the bit-lines contributes to the read access time of the 

SRAM, which is proportional to a time constant given by the following equation7. 

V
VV

L

W
K

C

tdd

bitline ∆⋅
−





′

≈
2)(

τ  

where ∆V is the discharge voltage amount, Cbitline is the total bit line capacitance, K′ is the 

intrinsic transconductance of the word line pass transistor, W/L is the width to length ratio 

of the transistor, Vdd is the supply voltage, and Vt is the threshold voltage of the transistor.  

Therefore, if Vdd is reduced, then the time constant will increase, making the circuit 

slower.  One way to maintain the time constant is to reduce the capacitance that the bit 

cell needs to discharge.  This can be achieved by reducing the number of RAM cells 

sharing a given bit line. 

 This paper proposes to reduce the bit-line capacitance by dividing the memory 

array into four isolated subarrays, which would reduce both the total bit line and word 

line capacitance by half.  The bit line capacitance is the parasitic capacitance (junction 

and metal) associated with the RAM cell load on the bit lines, while the word line 

capacitance is the parasitic capacitance (gate, fringe, and metal) associated with the RAM 

cell on the word lines.   
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Figure 2.11 – Sub-Blocked Array Architecture 

The structure used by J. Caravella for a 64 kB SRAM is shown in Figure 2.9.  

Dividing the array into blocks not only reduces the power dissipation, but the subarray 

architecture results in a faster SRAM due to the reduced capacitance.  The only 

disadvantage with this method is the area penalty due to increased overhead of decoder 

logic, control logic, and routing.  Experimental results for the 64 kB SRAM showed that 

with an area overhead of 15%, the RAM was able to operate at 50 MHz with Vdd=1.8 V. 

Since it is relatively easy to extend a normal SRAM array to include array 

partitioning, this method is adopted for our RAM design.  Details about the architecture 

are explained in section 2.5. 

2.4 Introduction to SKILL 

 The objective of our SRAM compiler studied in this thesis is to generate a SRAM 

layout for a given size.  The SRAM compiler must be able to instantiate the leaf cells and 

to layout necessary routing & connections for the circuit.  The language that will be used 

to perform the layout automation is Cadence’s SKILL.  SKILL, which stands for Silicon 

Compiler Interface Language, has tool specific functions for several of Cadence Suites – 

Virtuoso (Layout Editor) and Composer (Schematic Editor), among others.  These 

functions allow the user to use any tool-specific command, such as drawing a rectangle in 

a layout.  Figure 2.10 gives an example of the dbCreateRect(…) command, used to draw 

a rectangle in given cellview.  As shown in the figure, the user can specify exact 

coordinates of the rectangle as well as the layer. 



 13 

 

 

 
 

Figure 2.12 – SKILL Function to Draw Rectangle 

 SKILL is an interpretive script language, which means that commands are 

executed as they are entered.  Commands are entered into the Cadence environment via 

the CIW (Common Interface Window).  For this thesis project, we use the SKILL 

language to accomplish all design automation, including aspect ratio calculation, leaf cell 

instantiation, and routing.  More details about the use of SKILL in the implementation of 

the SRAM compiler are discussed in Chapter 4.  Table 4.1 lists some commonly used 

SKILL functions 

Table 2.1 – Common SKILL Functions  
procedure(function_name(argument_list) 

 expr1 

 expr2 

            …                 ) 

Defines a function using an argument list.  

The body of the procedure is a list of 

expressions to evaluate. 

for(loopVariable initialValue finalValue 

 expr1 

 expr2 

 …                 ) 

Evaluates the sequence expr1, expr2, … for 

each loopVariable value, beginning with 

intialValue and ending with finalValue. 

if(condition then   expr1 

    else  expr2 

 …                 ) 

Evaluates condition and runs expr1 if the 

condition is true.  Otherwise, runs expr2. 

x = ‘(1 2 3)    or    x = list(1 2 3) 
Creates a list variable called x that 

containing the three elements. 

Note:  There should be no space before a ‘(‘. 

 In addition to the above functions, SKILL also has functions that are specific to 

the Layout Editor tool (Virtuoso).  These functions are used to perform the actual layout 

of the SRAM compiler and are given in Table 2.2.   

(x2,y2) 

(x1,y1) 

dbcreateRect(compilercellview “poly1” list(x1:y1 x2:y2)) 
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Table 2.2 – Tool-Specific Library SKILL Functions  
dbOpenCellViewByType(library cellname viewname viewtype accessmode) 

Opens a cellview.  Returns a db (database) object for the cellview. 

dbCreateInst(dbcellview dbmaster InstName lpoint orientation) 

Places an instance of dbmaster onto the cellview dbcellview.  The instance will 

be placed at lpoint with the orientation.  Returns a db object for the instance. 

dbFlattenInst(dbInst x_levels [flatten_pcells] [preservePins]) 

Flattens instance dbInst up through x_levels of hierarchy.  Returns t/nil.  

dbCreateRect(dbcellview layer list_box) 

Draws a rectangle onto dbcellview of layer with the coordinates given by 

list_box.  Returns a db object for the rectangle. 

dbCreateNet(dbcellview t_name) 

Create a net for a pin to attach to in dbcellview.  The name of the pin should be 

t_name.  Returns a db object for the net. 

dbCreatePin(net fig t_name)  

Creates a pin attached to net for the object defined by fig of t_name.  Returns a 

db object for the pin. 

dbSave(dbcellview)  

Saves the results of a modified dbcellview that has been opened for write or 

append mode. 

Note that all the functions are database (db) functions.  All Cadence tools use the 

Design Framework II unified database; a binary database that stores data as "objects."  

There are many types of objects, including rectangles, pins, instances, and cellviews.  The 

SKILL code structure used to implement the SRAM compiler will be discussed in 

Chapter 4. 

2.5 Proposed Research 

 The SRAM compiler studied in this thesis will be used by the VTVT (Virginia 

Tech VLSI for Telecommunications) group for their Wireless Video Project.  The project 

consists of transmitting wireless video using a cellular phone.  One of the major 
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components of this project is the development of a turbo decoder, which will require 

SRAMs of varying sizes to store data.  The maximum SRAM size that will be used by the 

turbo decoder is 1 kB (1024x8), with a maximum operating frequency of 20 MHz.  An 

SRAM compiler is needed, since the turbo decoder uses various sizes of SRAMs.   

Furthermore, the SRAM compiler will be used for other current and future projects.   

The input/output ports for a 2k x w SRAM considered in this research is given in 

Figure 2.11, where 2k is the number of word locations and w is the word size (depth).  

There are three active-low control signals – CEN', WEN', OEN'.  CEN' is the control 

signal to enable the chip.  When CEN' is disabled (high), all of the word-lines (active-

high) are turned off (pulled low), so that no RAM cell is connected to any bit-line.  When 

CEN' is enabled (low), the word line that is being accessed is turned on (pulled high) so 

that all RAM cells in the row are connected to the bit-lines.  The column decode circuitry 

chooses the column block that is being accessed.  The other two control signals, WEN' 

and OEN', are the active low Read/Write signals.  Whenever WEN' (Write Enable’) goes 

low, the SRAM is being written to.  Similarly, whenever OEN' (Output Enable’) goes 

low, the SRAM is being read from.   

 

 

 

 

 

 

Figure 2.13 – Block Diagram of SRAM 

  There are k address signals for the 2k word locations.  The address signals are 

split between the row and column decoders.  The number of rows and columns in the 

SRAM are chosen to make the aspect ratio close to 1 and are computed by the compiler 

program.  Since this is an embedded SRAM (with no constraints on the number of pins), 

there are separate data signals for the input and output.  Because of this, it is possible to 

read from a location while writing to that location. 
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Figure 2.14 – Structural Decoder layout 

 Structurally, the SRAM is arranged into rows of bits and columns of blocks, as 

shown in Figure 2.12.  The reason for this type of arrangement is to simplify column 

decoding for word size greater than one.  Thus, the row decoder decodes for a single 

word line, while the column decoder decodes for a block of bit-lines.  As an example, 

suppose that we are reading a word of 8 bits from location (i, j).  Then the row decoder 

activates word-linei and the column decoder connects all bit-lines in blockj to the sense 

amplifiers, where block j consists of 8 columns.  Note that the number of columns is a 

multiple of the word-size.  The number of rows and the number of columns for our 

SRAMs are determined based on the word size and the aspect ratio.  An overview of the 

development process of the SRAM compiler is as follows: 

1. Design and custom layout all leaf-cells for the SRAM.  (Chapter 3) 

2. Develop SKILL code to perform design automation of all components 

including RAM core, decoders, and I/O buffers.  (Chapter 4) 

3. Add array partitioning to improve power dissipation.  (Chapter 5) 

4. Simulation and Verification.  (Chapter 6) 

The following chapters discuss implementation of each of the above steps.   

Column Decoder 

Selected 
Word 

Selected 
Column 

Selected Row 
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 The main responsibility of a SRAM generator is to instantiate basic components 

in an array, for the given size.  The basic components, called leaf cells, are critical in 

determining the final performance of the generated SRAM circuit.  Therefore, leaf cell 

design must be optimized both locally and globally for area, power, and speed.  

Whenever possible, the leaf cell layout must use cell abutting.  This technique helps 

reduce unnecessary routing by simply placing adjacent cells close to each other.   

In this chapter, we will discuss the design and layout of basic components in the 

RAM architecture.  The basic components (as discussed in Chapter 2) are as follows: 

• 6-transistor core of SRAM 

• Bit-line conditioning circuit 

• Sense amplifier 

• Address decoder 

Before we discuss each component in detail, we review the overall SRAM 

structure.  Figure 3.1 shows a block diagram of an SRAM and connections of basic 

components.  A RAM cell is connected to two bit lines through word-select pass 

transistors.  Since the pass-transistors used are NFET, they are slow when pulling a line 

up to logic ‘1’.  Charging the bit-lines to a high value reduces the time it takes the pass-

transistors to pull-up.  Though charging the bit-lines causes a speed-up in access time, it 

degrades the bit-line signal difference.  Therefore, a sense-amplifier is needed to increase 

the difference and provide a good data output during a read.   

Three decoders are activated or deactivated by three active-low control signals – 

CEN’, WEN’, and OEN’.  The CEN’ is used to indicate that the SRAM is currently being 

accessed and controls the word-line (row) decoders.  Thus when the CEN’ is off (high), 

none of the word-lines are on.  Likewise, the WEN’ signal, which specifies that the 

SRAM is being written to, controls the write-line decoder.  Similarly, the OEN’ signal 

indicates that the SRAM being read from and controls the read-line decoder.   



 18 

Precharge circuits and sense amplifiers are the other two major components, as 

shown in Figure 3.1. 
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Figure 3.1 – SRAM Macro 

 From Figure 3.1 it can be seen that there exists two sepearte column decoders – 

one for read operations and one for write operations.  Though a single column address 

decoder can be used for both read and write operations, we use two separate decoders for 

read and write operations.  The reason for using two column decoders is that the use of 

two decoders reduces the delay incurred due to the routing from a single decoder.  In 

addition, the actual area of the decoders is small, while routing area is significant. 
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3.1  SRAM Core 

The 6-transistor (6T) SRAM core shown in Figure 3.2 stores one bit of data.  It is 

composed of a latch and 2 pass transistors.  Since the core is replicated by the number of 

bits, optimum design and layout of this component is critical.  The size of the transistors 

used is the primary factor that determines the performance of the SRAM cell.  We 

determine the optimum transistor sizes through SPICE simulation.  Since the most 

important design criterion for us is power dissipation, we minimize the sizing as much as 

possible without compromising performance significantly.   

 

 

 

 

 

 
Figure 3.2 – 6-Transistor SRAM Cell 

There are some issues to be considered when sizing the transistors.  The latch 

inverters (M1, M2, M3, and M4) form a positive feedback loop, so that the stored value is 

maintained as long as power is available.  Since the bit lines are precharged to VDD-Vtn, 

the cell NFETs (M1 and M3) cannot be smaller than the pass NFETs (M5 and M6) to 

overcome the current value on the bit line when pulling it to a low value.  Note that 

though a transmission gate may be used for the pass-transistors, only NFETs are used so 

that the area for a single SRAM cell may be small.  It will be shown later that special 

circuitry (bit-line conditioning and sense amplifiers) is needed to recover from the 

performance losses due to using just NFETs.   

In an array of RAM cells, a single word line is connected to an entire row of 

RAM cells, forming a long word-line row.  Since the word line uses polysilicon (which 

has high resistivity), it is necessary to keep the two pass transistors (M5 and M6) small.  

This improves signal integrity on the word lines and reduces power dissipation.  

Therefore, we keep the size small.  

bit -bit 
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 We set all transistor lengths to the minimum, which is 2λ (= 0.35 µm) for the 

target 0.35 µm process.  Based on simulation, we set the widths of all transistors to 0.4 

µm, the minimum width for the target process.   

 The next step is to lay-out the leaf cell.  The schematic diagram corresponding to 

the placement of transistors and the layout for an SRAM cell are given in Figure 3.3.  The 

placement of the transistors is intended for cell abutting. 

 

Figure 3.3 – Schematic and Layout of SRAM leaf cell 

Note that all the I/O signals of the cell (word, bit+, bit-, VDD, and GND) use 

abutting.  The layout allows both horizontal and vertical cell abutting.  Vertically, the cell 

above this one will be flipped on the x-axis so that the n-well and VDD lines are shared.  

Similarly, the cell below will also be mirrored on the x-axis so that the n-diffusion and bit 

lines can be shared.  This overlap of layers makes the layout more compact.   

3.2 Bit-Line Conditioning 

 Figure 3.4 shows the schematic and layout of the bit-line conditioning circuit.  

The gates of the NFETs are tied to Vdd, so that the bit-line conditioning circuit is always 

turned on.  This avoids the complexity of generating a precharging signal.  It also allows 

the bit-lines to be equalized when the column is deselected (i.e., between two access 

cycles).  The bit-lines get equalized to the charge value of Vdd-Vtn between two accesses, 
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when the memory array is deselected.  When two RAM cells containing opposite value in 

the same columns are accessed subsequently, the output has to switch first to an 

equalized state and then to the opposite logic state.  Since the capacitance on the bit lines 

is quite large, the time required for switching the differential from one state to the other 

becomes a significant portion of the overall access time.  Equalization of the bit-lines 

between the accesses can reduce the access time.  The size of the charge transistors must 

be as small as possible, so that they do not override the value in the latch during read and 

write operations.  Simulation showed that the charge transistors performed optimally 

when W=0.4 µm and L=0.35 µm.  The layout of the leaf cell allows cell abutting of the 

bit lines. 

 

Figure 3.4 – Schematic and Layout for the Bit-Line Conditioning Circuit 

3.3 Sense Amplifiers 

During a read operation, the selected latch outputs the stored value onto the two 

bit-lines.  Since the bit-lines are always precharged, the bit-line differential voltage 

degrades.  We use sense amplifiers to improve the differential voltage from the bit-lines.  

The main advantage in using a differential bit-lines is common-mode rejection, which 

reduces noise effects and signal degradation.   

In our SRAM design, a single sense amplifier is shared among multiple columns.  

Typically, a single amplifier is used for each column of bit-lines as shown in Figure 3.5.  

However, in the proposed design, a single amplifier is shared between multiple columns 

by inserting the column decoder pass-transistors between the bit-lines and the amplifier.  

This results in area savings and power reduction.   
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Figure 3.5 – Sense Amplifier Architecture 

From simulation, it was shown that this configuration performed better than 

having a sense amp for each column, since it reduces the drive load of the sense 

amplifier.  Also, this configuration allows the sense amplifier to be isolated from the bit-

lines at all times except during a read operation.  Because the sense amplifiers are not 

driven by bit-lines at all times, the switching activity is reduced on the sense outputs.   

 

Figure 3.6 – Schematic and Layout of Sense Amplifier 

Figure 3.6 shows the schematic and layout of a sense amplifier.  A cross-coupled 

amplifier is used for the sense amp.  Once a memory cell is selected for the read 

operation, the voltage on one of the complementary bit lines will start to drop slightly.  

Suppose that bit+ is higher than bit-.  As a result, one of the NFETs, M3, is turned on, 

causing sense- to be pulled low.  Consequently, one of the PFETs, M2, is turned on, 
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pulling up sense+ output to a high value.  The positive feedback of the cross-coupled 

PFETs accelerates the sensing speed by reinforcing M2’s gate value (sense-) to a high 

through M3.   

The sense amplifier is the key component that limits the speed of read-time.  

Since the transistor sizing affects the speed of the sense amplifier, simulation was 

performed for different sizes of transistors.  The fastest configuration is when the two 

NFETs (M1 and M4) are set to W=0.7 µm, L=0.4 µm and the rest were set to W=0.4 µm.  

The layout shown in Figure 3.5 is the fastest configuration and also uses cell abutting of 

VDD and GND.   

3.4 Leaf Cell Simulation Results 

 After custom layout of the leaf-cells in Cadence Virtuoso, the design rule checker 

(DRC) was used to verify that all leaf-cell layouts met the TSMC 0.35 µm design rules.  

The leaf-cells were used first to create a layout for a small test circuit to verify operation 

and measure preliminary performance results.  The test circuit consisted of an SRAM cell 

core connected to the bit-line conditioning circuit through the bit-lines with a sense 

amplifier to amplify the read output.  The sense amplifier is isolated from the bit-lines 

when the cell is not being read from.  Following DRC verification, parasitic capacitances 

were extracted from the layout.  From the extracted circuit, a spice netlist was generated 

using Analog Artist, and simulations were performed using Avanti HSPICE.  The 

extracted netlist was simulated for the following test case.   

1) Write 0:  word = 1, write=1, write_data = 1->0 

2) Read 0:  word = 1, write=0, write_data=0->1->0  (shouldn’t affect contents) 

3) Write 1:  word=1, write=1, write_data = 0-> 1 

4) Read 1:  word = 1, write=0, write_data=1 

5) Turn-off RAM Cell:  word=0, write=0 

Figure 3.7 presents the simulation graph for a R/W to a single bit.  The cell 

represents the value stored in the latch, while the bit represents the value on the bit lines.  

The output from the sense amplifier is labeled as sense.  From the plot, we can see that 

the value in the cell node is driving the bit line.  Because of the bit-line conditioning 
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circuitry (and also the bit-line capacitance), the bit line is not pulled to a good ‘0’ during 

a read of ‘0’.  However, the sense amplifier recovers the original value after some delay.  

After 20ns, the RAM cell is turned off, so the bit-line conditioning circuit drives the bit 

value, while the sense node floats towards an equalized value.  Note that the cell still 

maintains the stored ‘1’, regardless of CEN being off. 

 

Figure 3.7 – Simulation Results for SRAM Leaf Cell 

Characteristics for this cell are provided in Table 3.1.  Power dissipation was 

obtained using HSPICE’s .measure statement.  Static power dissipated was obtained by 

taking the average of the two power dissipations, under the sense output at a high and the 

sense output at a low.  Dynamic power was taken as the average of power dissipated 

during a change in the output due to an input change.  For this example, the dynamic 

power dissipation included the average of dynamic power dissipation from both R/W’ 

and write_data changes.  Nodal capacitances for the cell were obtained from HSPICE by 

adding the captab (capacitance table) option to the .option statement. 

Table 3.1 – Characteristics of a bit SRAM for VDD = 3.3 V 
 

 

 

 

 

Power Dissipation Static = 0.45 mW 
Dynamic = 0.82 mW 

Nodal Capacitance 
Cell nodes = 8.9 fF 
Word lines = 8.7 fF 
Bit line = 11.2 fF 

Area per cell 35.64 µm2 
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3.5 Address Decoders 

Decoders are needed to generate the word and column select signals for the 

SRAM.  The input to the decoder is the address of the selected cell and the control 

signals.  All decoders are implemented in a tree structure, as shown in Figure 3.8.  

Minimum-width (W=0.4 µm, L=0.35 µm) sized NFETs are used as pass transistors in the 

decoder. 

 

�

 

�
 

 

Figure 3.8 – Tree Decoder Implementation 

When Enable is active (low), a selected decoded output is pulled down to a good 

logic ‘0’ value due to the use of NFETs.  All unselected outputs are floating.  When 

Enable is disabled (high), the selected output is at a poor logic ‘1’, and all unselected 

outputs are floating.  To prevent unselect unselected outputs being floating, pull-up 

buffers are necessary at each output.  The design of pull-up buffers is explained next. 

3.5.1 Pull-up Buffers for the Decoder 

 In addition to pulling up unselected lines, a buffer is also needed to produce a 

good ‘1’ or ‘0’ for the select lines.  A buffer is responsible for both pulling-up unselected 

lines and buffering the output so that the drive strength is increased.  As shown in Figure 

3.8, a buffer, in fact an inverter, is added at every decoded output in our design.  Note 

that the selected output is at ‘1’ due to the inversion.  The result is that all decoder 

outputs are zero except for the output that is selected by the input address.  It will be 

placed at the output of the decoder, as shown in Figure 3.9.  

 Two types of pull-up transistors as shown in Figure 3.10 are considered for the 

buffer design.  Both designs require a pull-up transistor for an unselected line.  To 

compare performance, HSPICE simulation for the two designs was performed.   
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Figure 3.9 – Buffered Output for Decoder 

The design in Figure 3.10 (a) uses an NFET to act as a pull-up resistor to pull-up 

an unselected line.  However, in order not to pull-up the selected line, the driving 

capability of the pull-up transistor needs to be low.  Therefore, the width is set to the 

minimum size of W=0.4 µm and the length is L= 0.75 µm.   

 

 

 

 
 

 

Figure 3.10 – Comparative Buffer Designs 

Figure 3.11 shows the simulation results of the buffer on a 1 kB SRAM.  In 

Figure 3.11, when the decoder is disabled, the decoder outputs, equivalently inverter 

outputs, are at 0V for both selected and unselected lines.  However, when the decoder is 

enabled, the selected decoder output is at 0.4 V and fails to pull up high.  This is due to 

the fact that the pull-up transistor is too strong to be pulled down to a sufficiently low 

value.  Therefore, this buffer design function properly without reducing the driving 

capability further.  It requires increasing the length (since width is already the lowest), to 

result in increased area, so that this configuration is not adopted in our design.  
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Figure 3.11 – Simulation Results for Figure 3.10 (a) 

Alternatively, the design in Figure 3.9 (b) uses a PFET with W=0.4 µm and 

L=0.75 µm.  In this case, the gate of the PFET samples the value from the line.  If an 

unselected line is floating to ‘0’, then it will be pulled up by the PFET.  Figure 3.12 

shows the simulation results for the buffer design in Figure 3.9 (b) on a 1-kB SRAM.   

 

Figure 3.12 – Simulation Results for Figure 3.10 (b) 

Figure 3.12 shows that when the decoder is enabled, the selected decoder (i.e. 

inverter) output is pulled up to Vdd (=3.3 V).  Note that the inverter input of the selected 

line is sufficiently low (=0.9 V) to drive the inverter output to Vdd.  Since this design 

works well, it is adopted for our final design.  Figure 3.13 shows the schematic and 
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layout of the final decoder buffer design, which includes a pull-up PFET with L=0.75 

µm, W= 0.4 µm and an inverter with L=0.35 µm, W= 0.4 µm.   

 

Figure 3.13 – Schematic and Layout of Buffer 

3.6 Summary 

Leaf cell layout is critical in to the performance of the SRAM.  In this chapter we 

examined the leaf cell layout and design.  The performance of each cell has been 

measured and verified through SPICE simulations.  
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 In the previous chapter, we described the design of leaf-cells used to layout an 

SRAM core and the supporting circuitry.  The next step is to develop SKILL code to 

perform design automation of all components including the RAM core, decoders, and I/O 

buffers.  In this chapter, we discuss the structure of the SKILL code for our SRAM 

compiler.   

4.1 SRAM Structure and Algorithm for SKILL Code 

Our SRAM compiler should generate the layout for the SRAM core and all 

supporting circuits based on the input size.  The entire program is broken into the 

modules based on the functionality.  Figure 4.1 shows the organization of the program.  

 

 

 

 

Figure 4.1 – Program Organization 

 The procedure sram_array is the top level function that calls all other modules to 

generate the entire circuit.  We now discuss the implementation and interaction of all of 

the functions. 

4.1.1 Aspect Ratio Calculation 

The numbers of rows and of columns in an SRAM have a major impact on the 

final aspect ratio of the SRAM.  It is undesirable for the shape of the SRAM circuit to be 

overly long or thin, as it incurs excessive routing area, signal delay, and capacitance.  

Optimally, the SRAM should have a shape close to a square.  Therefore, it is important to 

derive a procedure to calculate the rows and columns with the aspect ratio in mind.   
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The first step in this procedure is to determine the aspect ratio for a single bit.  

Since adjacent RAM cells are flipped both horizontally and vertically to improve cell 

abutting (see Section 3.1), the basic tile for measuring the aspect ratio is a 2x2 cell.  

Figure 4.2 gives the measurements for a 2x2 cell and the derived measurement for a 

single cell.  The aspect ratio for one cell is given by, 65.0
4.7

8.4 ===
height

width
ARbit . 

 

 

    

 

 

 

Figure 4.2 – Aspect Ratio Measurements 
 

 

 

 

 

 

Figure 4.3 – SRAM Core and Word Blocks 

Recall from Section 2.5 that the columns are arranged in word-sized blocks.  A 

word-sized block is the smallest unit for the SRAM core as shown in Figure 4.3.  The 

aspect ratio for one block is wARAR bitblock ⋅= , where w is the number of bits in a word.  

Therefore, the total aspect ratio for an SRAM can be expressed as,  
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 where m is the number of rows and n is the number of word-sized columns.  Note 

that m and n should be a power of 2 for efficient implementation of the decoders.  Let m 

= 2x and n = 2y, where x and y are integers.  In order to make ARSRAM close to 1,   
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 Assuming that the number of words of an SRAM is a power of 2, let words = 2l, 

where words is the number of locations in the SRAM and l is an integer.  Since 

nmwords ⋅= , we obtain yxl 222 ⋅= .  Hence yxl += .  Using this relation, we can 

compute the value of x as:  
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The procedure for the aspect ratio is as follows: 

1. Calculate aspect ratio for one block: wwARAR bitblock ⋅=⋅= 65.0  

2. Find l: wordsl 2log=  

3. Find x: 
2

)(log2 lAR
x block += .  Round down to make it an integer. 

4. Find y to calculate number of rows and columns:  y = l – x.  Hence m = 2x and 

n = 2y  

In the above, words (which is the number of locations) should be a power of 2.  

For example, for a 256×8 SRAM,  

1. ARblock = 0.65*8 = 5.2 

2. l = log2 256 = 8 

3. x = (log2 5.2 + 8)/2 = 5.2 � 5 

4. y = l – x = 8 – 5 = 3 

  Hence, the SRAM should have 2x = 25 = 32 rows and 2y = 23 = 8 word-sized 

columns for an aspect ratio close to 1.  The actual aspect ratio of the SRAM core, 

2
)(log2 lAR

x block +=
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measured from a layout, has an aspect ratio of width/height = 306/240 = 1.275.  The 

reason for the discrepancy is due to the constraint to impose the smallest unit to a word-

sized block.  In addition, the supporting circuitry, which is ignored in the aspect ratio 

calculation, aggravates the aspect ratio.  However, the impact of the supporting circuitry 

decreases with the increase of SRAM size.  For the 256×8 SRAM, the total aspect ratio 

with the support circuitry improves to width/height = 400/335 = 1.19.   

A small block of code in the top-level module sram_array calculates x, y, and 

subsequently, m and n and passes them to all other functions at the lower level.   

4.1.2 Layout of an SRAM Array 

The next step is to layout RAM cells in m rows and n*w bit columns.  This is 

accomplished by the cell_layout function.  The function instantiates the leaf-cell 

previously created for 6T SRAM and the bit-line conditioning circuitry (Refer to Section 

3.1), to create an SRAM core, bit-line conditioning, and write-select transistors (which 

activate a pair of selected bit-lines during the write operation).  The function also places 

necessary I/O pins.  The procedure for this function is as follows. 

1. Layout m × n*w SRAM array 

2. Place bit-line charging circuit and write-select transistors. 

3. Route VDD & VSS lines 

To layout the SRAM array, we use a nested for-loop to instantiate the RAM cells 

in an array.  The pseudo-code for this function is as follows. 

  for column = 0 to (n*w)-1, 

    for row = 0 to m-1, 

if (row == odd then 

     Instantiate(“6T_core” @ {x_offset*column, y_offset*row} flipped)        

else 

  Instantiate(“6T_core” @ {x_offset*column, y_offset*row} normal) 

      ) 

    end for 

  end for 

 Note that “column” in the pseudo-code denotes a column of RAM cells. The cells 

on every other row are flipped on the y-axis to take advantage of cell abutting.  This also 

lets the n-wells be shared between two rows, which results in a compact layout  
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 After the array has been laid out, the next step is to add the bit-line conditioning 

circuitry and write-select transistors.  The bit-line conditioning circuit is needed to charge 

the bit-lines to reduce the access time.  A write-select transistor activates the selected bit-

lines for writing, while isolating all other bit-lines that are not-being written to.  During a 

write operation, the “write” signal (Refer to Figure 4.4), which is an output of the column 

decoder, for the selected bit-lines is ‘1’ to activate the selected bit-lines.  All other select 

signals should be disabled so that they don’t get written to.  A minimum sized (L=0.35 

µm, W = 0.4 µm) NFET is used to isolate the bit-lines.   

 

 

 

 

 

 

 

 

 

Figure 4.4 – Layout Generated by the cell_layout Function 

 The final step of the cell_layout function is to route the VDD and VSS lines to 

power the SRAM.  This is done by routing two metal-2 lines along the side of the core.  

Figure 4.4 shows the complete layout accomplished by the cell_layout function for a 

256×8 SRAM.  Cell-abutting is used to connect the VDD and VSS lines for the 6T-core 

(Refer to Section 3.1).  Only one connection to the VDD and VSS bus is necessary for 

each row.   

4.1.3 Row Address Decoder 

The row address decoder is responsible for generating the word-signals for each 

row.  As mentioned in section 3.5, a tree structure is used for the decoder.  The SKILL 

code that is responsible for implementing the row-address decoder resides in the 

word_decoder procedure.  The function consists of the following steps. 
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1. Layout a tree-structured row decoder using NFET. 

2. Add substrate contacts. 

3. Add pull-up buffers to the decoder output. 

From the aspect ratio calculation given in Section 4.1.1, we obtain the number of 

row address bits, x, necessary for the decoder.  As the decoder needs both non-

complement and complement address lines, 2x address bit lines are necessary.  A 3x8 tree 

structured row decoder with six address lines is shown in Figure 4.5.   

 

 

 

 

 

 

 

 

Figure 4.5 – Implementation of a Tree-Structured Row Decoder 

The first step is to layout the tree-structured row decoder.  2x polysilicon lines are 

laid out to form the address lines.  Next, a nested for-loop is used to layout NFETs at the 

appropriate coordinates.  The pseudo-code for the layout of NFETs is as follows. 

  for addrline = 0 to x-1, 

    for row = 0 to m-1, 

if (row == odd then 

  if(NFET should be placed for this row then 

    // Place NFET on uncomplemented address lines (ex: A0) 

       Instantiate(“NFET” @ {@uncomplemented address line}) 

Connect to previous (lower) address line 

     ) 

   else 
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    if(NFET should be placed at this row then 

      // Place NFET on complemented address lines (ex: A0’) 

   Instantiate(“NFET” @ {@complemented address line}) 

         Connect to previous (lower) address line 

    ) 

     ) 

   end for 

 end for 

 The coordinates of the NFETs are calculated as a function of the current row and 

current address line.  The source side of the two NFETs on the MSB address bit lines is 

connected to the enable signal, CEN’.   

 After the layout of the decoders, substrate contacts are placed at every 5 µm to 

meet DRC rules.  A substrate contact is placed below and above each NFET for the LSB 

address lines, and subsequently every 5 µm for other address lines.  All substrate contacts 

are connected to a VSS bus.  Recall from section 3.5.1 that pull up buffers are necessary 

for this decoder.  We use the leaf-cell for the pull-up buffers and connect them to the 

output of the decoder.   

Figure 4.6 shows the partial layout of a 5x32 row decoder generated by the 

word_decoder function.  Notice that the decoder resembles a tree-like pattern and the 

pull-up buffers are connected to all outputs of the decoder.   

 

 

Figure 4.6 – Word-Decoder Layout 
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4.1.4 Read Address Decoder 

The read address decoder of an SRAM activates w consecutive selected bit-line 

columns, where w is the wordsize of the SRAM.  The layout of the two decoders is 

identical to that of the row decoder, and hence we describe only the control circuitry for 

read and write operations.  The read address decoder is responsible for activating selected 

columns and routing the read-data to the “data out” bus.   

 

 

 

 

 

 

 

 
 

 

 

 

Figure 4.7 – Read decoder for Wordsize=2 

The read decoder, like the row-decoder, outputs an active-high signal on it’s 

output.   This output signal is the column-select signal for a read-operation.  Figure 4.1 

illustrates the read-decoder and supporting circuitry for an SRAM with a wordsize of 2.  

As an example, suppose column 0 is selected by the read-decoder.  Hence, the read 

decoder enables (pulls high) the Output0 signal, which is gated to the read-select pass 

transistors.  Therefore, all bit-lines in column 0 will be connected to the data bus.  

Meanwhile, all other bit-lines from the other columns are disconnected from the data-bus. 

Routing the data-out is done in the following way.  Each column is connected to a 

pass transistor (similar to the write-select transistor discussed in section 4.1.2), which is 

gated by the column-select signal output by the read-decoder.  If a particular column is 

chosen, then the pass transistor will connect the bit-lines for that column to the data bus.  

The pseudo-code for this function is as follows. 
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  //////////  1.  Layout Column Decoder  ///////// 

• See pseudo-code for previous section 

 

  //////////  2.  Connect wordsize blocks together  ///////// 

  for col = 0 to (n*w)-1     //n*w = number of bit-columns 

• Place write-select transistors for each columns 

o Two pass transistors for each column (for bit & bit_neg) 

  end for 

 

  ////////////////  3.  Layout Data Bus   ///////////////////    

  for data = 0 to w-1   //w = word size 

• Draw a horizontal bus for data+ for this bit 

• Draw a horizontal bus for data- for this bit 

  end for 

 

  //////////////  4.  Connect to Decoder   //////////////////    

  for block = 0 to n-1  // n = number of block-columns 

• Make column select common for columns in the same block 

• Route out write-select signal (to be connected to decoder out) 

• Connect write-select signal to decoder (pull-up buffer output) 

  end for 

 

 

Figure 4.8 – Read Address Decoder Layout 

 The code to layout the read-address decoder is contained in the read_decoder 

function.  The final layout for this function can be seen in Figure 4.8, which is generated 

for a 256×8 circuit.  Note that the data output from each block is connected together so 

that all blocks share the same bus for a single bit.  The decoder and buffer 

implementation is identical to the one used for the row-address decoder.   
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4.1.5 Write Address Decoder 

The write address decoder is actually modeled after the read-address decoder.  

The data is routed out the same way as for the read-decoder.  The code for the write-

address decoder is in the write_decoder function.  While the read address decoder is 

placed at the bottom of the SRAM array, the write-address decoder is placed at the top of 

the array.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 – Write-Decoder for Wordsize of 2 

Figure 4.9 illustrates the write-decoder for a word-size of 2.  The architecture is 

similar to the read-decoder architecture given in Figure 4.7.  The operation of the write-

decoder is also similar to the read-decoder operation.  From the address given, a_0 … 

a_x, the write-decoder outputs an active-high for the selected column output.  This 

connects the selected column block with the data-bus.  The relative position of all 

components for the SRAM will be discussed in the next section. 

4.1.6 I/O Buffers and Packaging 

The final step is to add the I/O buffers for the SRAM circuit.  All I/O signals need 

to be routed out to the outside so that they are easily accessible by a router.  We used only 

metal1 and metal2 layers for our SRAM, so other metal layers maybe used by an auto-

router, if needed.  Finally, each signal line is labeled for identification.  The following I/O 
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signals and their labels are shown in Figure 4.10.  In this section we will discuss the final 

packaging for each I/O signal group. 

 

 

 

 

 

 

I/O Signals Labels 
Address A_0 … A_k-1 

Data-In DI_0 … DI_w-1 

Data-Out DO_0 … DO_w-1 

Control Signals 

(active-low) 

WEN 

OEN 
CEN 

Figure 4.10 – I/O Pins of an SRAM 

As mentioned in Section 4.1.3, each decoder generates the complemented address 

signals necessary for the decoder.  Therefore, routing of complemented address signals is 

unnecessary.  The three active-low control signals, WEN’, OEN’, and CEN’, form the 

enable signals for the three decoders.  Since they are direct input, they are routed out to 

the top right corner of the SRAM.  Figure 4.11 shows the placement of I/O signals and 

the major components of an SRAM. 

Two data signal groups are Data In (DI) and Data Out (DO).  Both signals are 

output from their respective column decoders.  Recall from the previous section that, a 

data bus is present for the column decoders.  A data bus routes 2⋅w data signals, the non-

complemented and complemented bit signals for each bit, for the word size, w.  A pair of 

data-output signals, non-complemented and complemented signals, is fed into a sense 

amplifier, which generates a logic value read from the cell.  The sense output is buffered 

via an inverter.  The inverter drives the DO outputs through transmission gates only when 

OEN is enabled.   
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Figure 4.11 – Placement of I/O Signals 

The SKILL code for this section is contained in the package function.  This 

function will layout I/O buffers and sense amplifiers, route all I/O signals, and create 

pins. 

4.2 SRAM Macro Layout 

Figure 4.12 shows the layout of a 256x8 SRAM generated by our RAM compiler.  

This circuit is 390 µm wide by 340 µm high, with the aspect ratio being 390/340 = 1.2.  

This circuit contains 13,019 transistors.   

The following page also contains the SRAM circuit generated for a 1-kB SRAM 

(Figure 4.13).  This SRAM circuit is 700 µm wide by 580 µm high, with the aspect ratio 

being 700/580 = 1.2.  This circuit contains 50,513 transistors.   

Note from the figure that the SRAM array occupies most of the area and the 

overhead from the support circuitry is very little.  Simulation results for the power 

dissipation and delay characteristics are discussed in Chapter 6. 
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Figure 4.12 – Layout for a 256x8 SRAM  

 

 

Figure 4.13 – Layout for a 1-kB SRAM  

RAM Core 

Write Decoder 

R
ow

 D
ecoder 

 

Write Decoder 



 42 

 

��������

*� ����#���������
�
��

 With the increased use of portable consumer electronic products, power 

consumption becomes a critical design criterion.  This requires engineers to optimize 

their design not only for speed and area, but also for power.  In order to reduce the power 

dissipation, we incorporate the array partitioning technique proposed by J. Caravella, as 

mentioned in Chapter 2.  The technique is applied to the architecture and modified our 

SKILL code to generate a partitioned SRAM.  In this chapter, we discuss the structure 

and SKILL code for array-partitioned SRAMs.   

5.1 Preliminary 

The total power dissipated in a circuit is the sum of static and dynamic power 

dissipation.  The dominant term is the dynamic power dissipation for capacitor charging 

and discharging.  Thus, power consumption for static CMOS logic can be approximated 

as fCVP 2×= α , where α is the average signal activity, C is the load and parasitic 

capacitance, V is the supply voltage, and f is the operating frequency of the circuit.  For 

the case of the SRAM, a major portion of dynamic power dissipation is due to the load 

and parasitic capacitances, the bit-lines and the word-lines of the SRAM.  These lines 

tend to be long and are switch most often.   

The array partitioning technique aims to reduce the power dissipation by reducing 

the bit-line and word-line capacitances, which are charged/discharged whenever a cell is 

accessed.  As mentioned in section 2.3.3, the technique partitions the memory array into 

blocks so that only one block is activated at any time.  The array partition requires extra 

circuitry, hence it is slower compared with non-partitioned SRAM array. 

For the ease of incorporating this technique into our existing SKILL code, we 

adopt array partitioning into our final design.  The following sections discuss the details 

of the array partitioning regarding the structure and the implementation. 
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5.2 Design for Array Partitioning 

 We partition our array into four blocks, which produces a symmetrical design for 

easy implementation.  Each of the blocks constitutes a separate SRAM circuit that is one-

fourth the total size.  A 2x4 decoder is used to select one block.  The outputs of the block-

selector has twelve control signals – the three control signals, OEN, WEN, and CEN, for 

each of the four blocks.  The structure of the decoders is as follows. 

 

 

 

 
 

Figure 5.1 – Array partitioned Architecture 

The block-selector is implemented the same way as the decoder implementation 

for the rows and the columns.  The transistor level schematic for the block-selector is 

given in Figure 5.2. 

 

 

 

 

 

 

 

Figure 5.2 – Schematic of Block Select  

 The block-selector decodes the CEN signal based on the two most significant 

address bits.  Thus, if the chip is being accessed, one of the four CEN signals, CENi 

(where i is the block being accessed), is enabled.  As is the case for the row and column 
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decoders (Section 3.5), pull-up buffers are needed at the decoder outputs so that all 

unselected lines are disabled.   

When the CEN signal is disabled for a block (which is not selected), it is desirable 

to disable OEN and WEN signals of the block to save power.  Hence, we use the decoded 

CENi signal  to enable/disable the OEN and WEN signals at the output of the block-

selector.  Note that, since the CEN is an active-low signal, the output is inverted before 

being used to switch pass transistors, in Figure 5.2.  

Suppose that we read a data from block 0.  The two MSB address bits are both 0, 

CEN and OEN signals for block 0 are enabled (pulled low), while WEN is disabled 

(pulled high).  The 2x4 decoder connects the CEN signal to block 0.  Since the CEN0 is 

enabled, the two pass transistors associated with CEN0 connects OEN and WEN signals 

to OEN0 and WEN0 signals.  For all the other three blocks, the pull-up buffers pull up the 

control signals to be disabled. 

   

 

 
Figure 5.3 – Block Select Layout 

 The block-selector circuit is laid out to create a leaf-cell to be used by the SKILL 

code.  The block-selector layout is shown in Figure 5.3.  The three control signals are fed 

at the bottom of the block-selector.  The two address signals are routed to the top of the 

SRAM circuit, so that they are bundled with the other address bits.  The block select 

FRQWURO

VLJQDOV

FRQWURO

VLJQDOV 9''

966

$N�

$N��

&(1� 2(1�

:(1



 45 

outputs the twelve control signals, which are routed to their respective SRAM blocks.  

The dimension of the block-selector is 89 µm x 37 µm.  In order to make the layout 

compact, the block select is placed at the bottom of an SRAM.  The following section 

discusses the skill code implementation. 

5.3 SKILL Code for Array Partition 

The skill code for the array partition makes use of the sram_array function, which 

generates an unpartitioned SRAM array (Refer to Section 4.1).  The structure of the 

modified SRAM compiler is shown in Figure 5.4   

 

 

 

 

 

 

Figure 5.4 – Overall Structure of Sram_Compiler 

 The SRAM compiler allows users to choose between the two types of SRAMs– 

single array SRAM or array-partitioned SRAM.  As indicated in Figure 5.4, if the user 

specifies type 0 (or type 1), a single-array SRAM (or array-partitioned SRAM) is 

generated.  The pseudo-code for the top-most function, sram_compiler, is as follows.  

The function is responsible for differentiating between the two types. 

• Load all necessary functions 

// Check which type of SRAM the user wants to generate 

 if (Type == 0  // simple SRAM array 

   // Generate simple SRAM array 

   sram_array(library cellview words wordsize) 

      else if (Type == 1   // array-partitioned circuit 

       // Generate circuit for 1 block 

  sram_array(library temp_cellview words/4 wordsize) 

  //call function to layout routing and blocks 

  array_partition(library cellview words wordsize) 

       dbDeleteObj(ddGetObj(library temp_cellview)) //delete temp layout 

 ) 

VUDPBDUUD\

VUDPBFRPSLOHU

DUUD\BSDUWLWLRQ

7\SH  � 7\SH  �



 46 

 Thus, for type 1 SRAM, a temporary cellview for an SRAM generates one-fourth 

the size first.  Next, the array_partition function is called to place blocks and necessary 

routings.  The pseudo-code for the array-partition function is given below. 

   ////////////// Instantiate 4 blocks  /////////////// 

 Instantiate(“temp_cellview” @ {x_offset, y_offset}) 

 Instantiate(“temp_cellview” @ {x_offset, -y_offset}) 

 Instantiate(“temp_cellview” @ {-x_offset, y_offset}) 

 Instantiate(“temp_cellview” @ {-x_offset, -y_offset}) 

 

   /////////////// Route Data Lines  ////////////////// 

• Connect Data-In lines of all blocks together  

• Connect Data-Out lines of all blocks together  

• Route out Data signals to the top of the circuit 

• Place a Pin for the PI Data-In and Data-Out signals 

    

////////////// Route Control Signals /////////////// 

Instantiate(“Block-Select” @ {bottom of the circuit}) 

• Route PI control signals (CEN’, WEN’, OEN’) to the block select 

• Route control signal from Block select to respective blocks 

• Place a Pin for the PI control signals 

 

////////////// Route Address Signals /////////////// 

• Connect Address lines of all blocks together  

• Route out Address signals to the top of the circuit 

• Route the two-most-significant address bits from the PI to the 

block-select  

• Place a Pin for all Address signals 

 

///////////  Make VDD & GND connections  /////////// 

 

5.4 Final Layout  

 The final layout for a partitioned array of 1 kB (1024x8) SRAM is given in Figure 

5.5.  The SRAM is 860 µm wide by 730 µm high, with the aspect ratio being 860/730 = 

1.2.  The RAM contains 52,157 transistors.  Though this is a 35% increase in silicon area 

when compared with a single array SRAM (Refer to Section 4.2), there is only a 3.15% 

increase in the number of transistors.  This discrepancy is due to the overhead of routing 
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associated with the block-selector.  In the next chapter, we discuss the simulation results 

for the power and delay characteristics of the two types of SRAMs.   

 

 

Figure 5.5 – Array-Partitioned 1 kB SRAM 
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So far, we discussed the implementation of our SRAM compiler and the basic 

components.  The SRAM compiler enables a user to choose between two types of 

SRAMs – a fast vs. a low power version.  In this chapter, we present the simulation 

results on the performance of the two types of SRAMs for three different sizes. 

6.1 Simulation Environment 

In addition to verifying the correct operation of SRAMs generated by our 

compiler, we measured the performance of SRAMs for different sizes, 256x8, 512x8, and 

(1024x8) 1 kB SRAM.  It should be noted that 1 kB is the largest SRAM size required for 

the project.  We measured the performance in: 

• Area: Silicon Area, Transistor Count 
• Time: Cycle, Access, Setup, Hold  
• Power: Static, Dynamic, Average 

After the layout was generated, Cadence’s Analog Artist was used to extract the 

spice netlist.  Input stimuli were manually added to simulate the circuit for different test 

cases and measure parameters.  As was done for leaf-cells, Avanti HSPICE was used for 

SPICE simulation.   

We performed two writes followed by two reads on two locations.  Two farthest 

cells from the address pins were selected as the propagation delay and the dynamic power 

dissipation would be the worst on those cells.  The data background (Data) used in the 

simulation for the 8-bit word SRAMs is 00110011 (x33), with the complemented data 

background (Data’) being 11001100 (xCC).  This allows for the most number of data 

changes. The timing of the simulation is shown in Figure 6.1.  In the figure, locations 000 

(hex) and 3FFF (hex) denote the addresses of first and the last cells, respectively.  

The simulation was performed for 120 ns which includes 20 ns for two 

consequetive write operations, another 40 ns for two read operations, and 20 ns standby 

mode at the end of simulation.  The period of an operation is set to 20 ns (50 MHz) in the 

simulation, which is based on the slowest SRAM, 1 kB partitioned-array RAM.  A load 
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capacitance, Cload of 20fF is attached at each data output for the simulation.  The 

following sections present the results obtained and discuss the trends for each of the three 

design parameters. 

 

 

 

 

Figure 6.1 – Input Stimuli for Characterization  

The waveform in Figure 6.2 shows the write and read operation for a 1kB 

partitioned-array SRAM.  The DO in the waveform represents a data-output bit.  During 

the writes, the voltages on the two bit-lines are affected by the input-data.  During a read, 

voltages on the two bit-lines are pulled up/down by the data contained in the RAM cell.  

Note that, although the voltages on the bit-lines are not at a sufficiently high or low value, 

the data output, DO, is pulled to a good value by the sense amplifier.  After the two reads, 

the CEN signal is disabled.  It disables the SRAM and the voltages of the two bit-lines 

converge at this point.  

 

Figure 6.2 – Simulation Waveform for 1-kB SRAM 
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6.2 Area Measurement 

We measured both the silicon area based on the layout and the total number of 

transistors for both type of SRAMs for the three different sizes.  Table 6.1 gives the 

results on the area.  In the table, the column headings “single” and “partition” denote 

single-array RAMs and partitioned-array SRAMs, respectively.  The “Ratio” specified in 

the table is the area or transistor count of a partitioned-array SRAM to that of a single-

array SRAM.   

 Table 6.1 – Area Characteristics  

256x8 512x8 1024x8  
Single Partition Single Partition Single Partition 

134  259  222  396  406  606  Area (µm2) 

Ratio 1.93 1.78 1.49 

13019 14021 25469 26637 50513 52157 Transistor # 
 

Ratio 1.08 1.04 1.03 

1.2 1.2 0.7 0.8 1.2 1.2 Aspect ratio 
 

Ratio 1 1.1 1 

 As the size of the SRAM is doubled from 256 byte to 512 byte and finally to 1 

kB, the area approximately (*1.7) doubles.  Likewise, doubling the SRAM size also 

approximately (*1.8) doubles the transistor count.  This is true for both types of SRAMs.  

This result is expected as doubling the SRAM size implies that there will be twice as 

much RAM cells.  Since RAM cells dominate both the area and the transistor count, the 

increase in size is proportional to the RAM cell increase.  As the overhead of supporting 

circuitry will decrease with increasing size, this trend is expected to continue so that the 

increase in both the transistor count and the area will be further closer to two for larger 

SRAMs. 

 The overhead of the additional circuitry for the array partitioned SRAM results in 

increased area over the single-partition SRAM.  Note that, for the 1 kB SRAM, though 

the transistor count only increases by 1.03 for the 1 kB SRAM, there is a 1.49 increase 

for the overall area for the layout.  The small increase in transistor count results in a large 
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increase in layout.  The reason for such a difference between layout-area and transistor 

count is increased routing to and from the four blocks.  This illustrates the impact of 

routing in the final design. 

 Also included in the table is the aspect ratio (width/height) of the layout.  Note 

that the aspect ratio decreases to 0.7 for the 512x8 SRAM.  This change in aspect ratio is 

due to the method in which the aspect ratio is calculated.  In the aspect ratio calculation, 

the number of rows and columns are calculated using the aspect ratio for one block.  

Also, the limitation of the number of rows and columns having to be a power of 2 limits 

the accuracy of the aspect ratio calculation.  This results in less accurate aspect ratio 

because of the block size.   

6.3 Time Measurement 

The speed of SRAM cells and the propagation delay to access a certain cell 

attributes the access time for read or write operations.  First, we measured the speed of a 

6T SRAM cell core, with sense amplifiers and write-select, described in Section 3.4 for 

read and write operations.  Table 6.2 presents the results for these operations.   

Table 6.2 – Speed of a Single RAM Cell 

Operation Speed (ns) 

Write 1 2.2 
Read 1 0.93 
Write 0 2.1 
Read 0 0.7 

Observations from the table show that the write-operation takes longer than the 

read operation.  This is because for a write, the data has to first be inverted to provide 

both the complement and uncomplemented value that are fed to the bit-lines.  Whereas 

for the read, as soon as the bit-lines start to be pulled by the RAM cell, the fast sense amp 

amplifies the difference, allowing the output to appear quickly.  The same trend can be 

found below (see Table 6.4) for the 1 kB SRAMs.  Another point to note is that it takes 

longer to read or write the logical value ‘1’, rather than ‘0’.  The reason for this is 

because all pass-transistors use NFETs rather than PFETs, and since NFETs cannot 
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transmit a good ‘1’, it takes them longer to pullup a line.  Though, the bit-lines are 

conditioned to alleviate this problem, there is still a slight bias towards ‘0’. 

Let us now analyze detailed timing parameters that are helpful to understand the 

speed of SRAMs.  The timing diagram of a read operation is given in Figure 6.3.  The 

parameter read-cycle time, tRC, indicates the minimum time that the address has to be 

valid in order for a valid data to be output sometime in the future.  The address access 

time, tAA, is the time from the start of a valid address to when valid-data is available at 

the output.  This time includes both latency (the overhead of preparing to access it) and 

transfer time.  Note that the read cycle time indicates a minimum, while the address 

access time is a maximum.  For this reason, tRC is usually less than tAA.  The output 

enable time, tOE, represents the time that it takes for the data to appear on the output after 

the OEN signal is enabled. 

 

 

 

 

 

 

 

Figure 6.3 – Timing Parameters of a Read Cycle  

Timing parameters related to write operations is shown in Figure 6.4.  The write 

cycle time represents the minimal time from the start of an access to the time when the 

next access can be started.  The write enable access time, tWA, is the time it takes the data 

to be written to the RAM cell after the address has been setup.  Likewise, the data-in 

access time, tDA, represents the time it takes to write the data after a change in the input 

data.  The address setup time, tAS, gives the time that a valid write address must be 

present before WEN is enabled.  The address hold time, tAH, represents the time that the 

current address should be valid after WEN is disabled.  Similarly, the data-in setup time, 

tDW, specifies the time that a valid data must be available prior to disabling WEN, while 

the data-in hold time, tDH, specifies the time for which the current data is held even after 

WEN is disabled.   
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Figure 6.4 – Timing Parameters for a Write Cycle 

The most critical timing parameter is the read access time during a read-operation, 

which determines the clock speed of an SRAM.  Table 6.3 contains the access time for 

both types of SRAMs for the different sizes and types.  This access time is the time it 

takes for the data to be output once the address is setup. 

Table 6.3 – Comparison of Address-Access Times (ns) 

256x8 512x8 1024x8 
 

Single Partition Single Partition Single Partition 

Access 
time (ns) 

6.6 14.7 8.9 17.5 15.0 21.8 

Ratio 2.22 1.96 1.45 

As expected, the results from the above table indicate that partitioned-array 

SRAM is slower than the single-array SRAM.  However, the ratio for the different sizes 

indicates that as the SRAM size is increased, the speed interval between the two SRAM 

types decrease.  The reduced speed for the array-partitioned SRAM is due mainly to the 

overhead of the supporting circuitry such as the block-selector and routing to & from the 

four blocks.  For example, during a read, the sense amplifier has to drive a longer data-

bus, with increased line capacitance, causing the data to appear slower on the output.  

However, since the overhead of supporting circuitry decreases with increased size, the 

ratio decreases as the size is increased. 
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Now we look at the timing characteristics for the 1-kB SRAM.  Table 6.4 gives 

the results obtained for the 1-kB SRAM from the worst-case simulations, mentioned in 

section 6.1.   

Table 6.4 – Timing Parameters for 1-kB SRAM 

tpd (ns) 
Symbol Parameter Type = 0 Type = 1 

% Increase 

Read Cycle 
tRC Read Cycle Time 12.7 18.9 1.49 
tAA Address Access Time 15.0 21.8 1.45 
tOE Output Enable Time 9.4 19.7 2.09 
Write Cycle 
tWC Write Cycle Time 8.3 12.5 1.51 
tWA Write Enable Access Time 4.7 6.3 1.34 
tDA Data-In Access Time 2.1 4.4 2.09 
tAS Address Setup Time 2.6 6.2 2.38 
tAH Address Hold Time 0.3 0.4 1.33 
tDW Data-In Setup Time 4.3 9.1 2.12 
tDH Data-In Hold Time 0.1 0.1 1 

As can be seen from the table results, the array-partitioned SRAM is about 1.5 

times slower than a single-array SRAM in read time.  All timing parameters are measured 

as the time it takes for the output to reach 90% of its final value.  Though the operating 

period is 20 ns, we are able to obtain the value for the address access time of 21.8 ns for 

the array-partitioned SRAM because the data-output is held on the data bus for some time 

even after the enable signal is turned off, due to the line capacitance.  The tAA parameter 

determines the speed of a SRAM. 

If we compare the percentage increase of the setup time over the hold time, it can 

be seen that the low-power SRAM takes much more time to setup over the normal 

SRAM.  This is because the setup time includes the time it takes for both the address 

decoder and the block-select to decode the new address.  In addition to this, there is also 

the time it takes for the control signals to reach the blocks.  Since these lines tend to be 

long, the line capacitance can be large, leading to the slower time. 

6.4 Power Measurement 

Dynamic power dissipation occurs during a R/W access.  Static power dissipation 

is the power dissipated when there are no read or write operations and all nodes are at the 
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steady state value.  The average power dissipation is the power dissipated during the 

entire simulation, which includes the standby mode of 20 ns at the end of simulation.  

Table 6.5 shows the power dissipation for three different sizes of SRAMs. 

Table 6.5 – Power Characteristics 

256x8 512x8 1024x8 

 
Single Partition Single Partition Single Partition 

31.11 25.86 61.15 30.00 79.21 41.54 Dynamic (mW) 

Ratio 0.83 0.49 0.52 

0.65 3.46 0.73 3.62 0.96 3.57 Static (mW) 

Ratio 5.32 4.95 3.72 

24.68 21.39 48.08 24.16 66.59 36.83 Average (mW) 

Ratio 0.87 0.50 0.55 

As expected, the circuit with array partitioning reduces both dynamic and average 

power dissipated.  For the 1 kB SRAM, the array-partitioned SRAM dissipates 45% less 

average power dissipation.  The dynamic power dissipation reduces due to the reduced 

bit-line and word-line capacitances and consequently the average power dissipation is 

reduced, since it is dominated by the dynamic power dissipated.   

Though both dynamic and average power dissipation is reduced, note that the 

static power dissipation actually increases with 3.72 times for the 1024x8 SRAM.  This is 

because the static power dissipated is determined by the overhead of the support circuitry, 

especially the ones that contain a resistive load.  Though both types of circuits have the 

same number of RAM cells, the partitioned SRAM has 4 times the support circuitry for 

the four different blocks.  For example, for a 1 kB circuit, there are eight sense-amplifiers 

(one for each data bit) for the type 0 circuit.  On the other hand, for the partitioned 

SRAM, since there are four independent SRAM blocks, there are 32 sense amplifiers.  

Therefore, the overhead is the cause of the increased static power dissipation.  However, 

from Table 6.1, it can be seen that there is a decreasing trend with the percentage 

increase, so that the effect of the overhead will decrease with increased SRAM size.  

Also, note that the average power dissipation is dominated by the dynamic power, 

allowing us to ignore the effect of static power. 
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There is yet another interesting trend to be noted.  We may expect that the average 

power savings will increase linearly as the SRAM size is increased.  However, notice that 

there is a non-linearity for the 512x8 SRAM size where there is actually more power 

savings at the 512x8 SRAM than the 1 kB SRAM.  The reason for this can be seen in the 

shape of the SRAM shown in Figure 6.5.  

 Notice that the blocks of the 512-size circuit are more elongated than the 1 kB 

SRAM.  This means that for the 512x8, there are more rows than columns, whereas in the 

1-kB SRAM, there are more columns than rows.  This leads to the word-length being 

proportionally much longer in the 1 kB when compared to the bit-line length.  Since the 

word-lines use polysilicon, while the bit-lines use a lower-resistive metal1 layer, this puts 

the 512x8 circuit at an advantage, leading to the slightly higher power-savings.  It should 

be noted that this trend is repeated for every quadrupled-SRAM (0.5 kB, 2 kB, 8 kB,…) 

due to the aspect ratio calculation.  Therefore, the fault lies in the aspect ratio calculation 

where we assumed that an SRAM that has close to equal rows and columns is most 

desirable.   

 

Figure 6.5 – Aspect Ratio Comparison for Array-Partitioned SRAM 

Nevertheless, the static power dissipated is not affected by the SRAM and the 

results indicate a linear change.  This is because the overhead of the support circuitry is 

not affected by the length of the bit or the word-lines.  This allows for the linear trend in 

percentage savings.  Given more time, the optimum bit-line to word-line length ratio 

should be determined and the aspect ratio calculation should be improved to take 

advantage of this phenomenon. 
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6.5 Minimum Operating Voltage 

 For low-power purposes, it is desirable to operate a circuit at the minimum 

possible operating voltage without exceeding system requirements.  With the 20 MHz 

timing requirement for the SRAM, the minimum operating voltage is 1.9 V for the single-

array SRAM, and 2.1 V for the partitioned-array SRAM.  Table 6.6 specifies the 

performance of the SRAMs at the minimum operating voltage. 

Table 6.6 – Performance at Min Operating Voltage 

 Single-Array Partition-
Array Ratio 

Min. Operating 
Voltage 

1.9 V 2.1 V 1.1 

Address Access, tAA  44.3 ns 48.1 ns 1.1 
Average Power  22.65 mW 17.39 mW 0.7 

Power Savings by 
reduced voltage 

0.37 0.47 1.27 

 The reason for the difference in the minimum voltage between the two SRAMs is 

due to the restriction of speed.  We want the SRAM to be operational for a frequrency of 

20 MHz.  However, note from the last section that the single-array SRAM is faster than 

the partitioned-array.  This allows the single-array SRAM to have a reduced Vdd without 

reducing speed as much as the partitioned-array SRAM. 

 The power savings resulting from reducing Vdd comes at a cost of reduced speed.  

The equation for the delay,  
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shows that reducing the Vdd slows down the circuit quadratically.  There is a reduction in 

speed by 2.5 times due to reducing the operating voltage.  However, the SRAM is 

capable of functioning within the 20 MHz required by the project. 

 By reducing the operating voltage, the speed was compromised by 60%.  

However, the power savings was close to 50% for the partition-array SRAM making the 

tradeoff reasonable.  An important trend to note from the results is that at 3.3 V, the ratio 

of average power dissipated between the two types was 0.55.  When the operating voltage 
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was reduced to minimum Vdd, the ratio increased to 0.7.  This means that the difference 

in power dissipated between the two types reduces with decreased supply voltage.  The 

reason for this can be found in the basic equation for power dissipation: fCVP 2×= α .  

At 3.3 V, the main difference between the two types of SRAMs was the reduction in the 

capacitance, C.  However, when the supply voltage was reduced to 2.1 V, the most 

dramatic change in the power dissipated is V, since its an quadratic term.  Therefore, the 

1.2 V drop in supply voltage dominates the total power dissipated.  However, since C is 

still less for the array-partitioned SRAM, there is still a 30% power savings by using the 

array-partitioned SRAM. 

6.6 Conclusion 

 The array-partitioned circuit proved to save power over the normal SRAM.  

However, this savings comes at the price of speed and area.  For the 1-kB SRAM, the 

type 1 SRAM is proven to save 48% dynamic power and 45% overall power dissipation.  

However, the access time for the low-power circuit reduces to 21.8 ns – 31% slower than 

the 15 ns type 0 SRAM.  Also there is an increased area of 33% and an increase of 3% in 

transistor count.  By reducing the supply voltage to 2.1 V, the partitioned array was able 

to lower average power dissipation to 17.39 mW at a cost of reducing the speed to 20 

MHz.  These results give an account of the design tradeoffs involved with low-power 

circuits.  
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An embedded SRAM compiler has been successfully developed with low-power 

capabilities.  The compiler allows the user to choose between two types of SRAMs – one 

that is low power and one that is fast.  This gives the user the ability to decide on the 

most critical design criteria for the application.   

The low-power SRAM uses the array partitioning technique to reduce power 

dissipation.  By dividing the entire memory array into four blocks, we are able to reduce 

the bit-line and word-line capacitance by half.  Thus, the partitioned memory arrays 

reduce the total capacitance that is switched per access.  Reducing these capacitances 

reduces the dynamic power dissipated and consequently, the total power that is 

dissipated.   

Simulation results for the 1kB SRAM show that the low-power SRAM dissipates 

45% less power than the normal SRAM, with the low-power SRAM dissipating 36.83 

mW of average power.  The area overhead due to array partitioning is 33%, with a 3% 

increase in the number of transistors.  For a size of 1kB, both types of SRAM are shown 

to be capable of operating at a frequency of 50 MHz, well within the 20 MHz 

requirements for this thesis.  At the minimum operating voltage of 2.1 V, the array-

partitioned SRAM dissipated 20 mW of average power, operating at a speed of 20 MHz. 

Finally, a test circuit has been prepared which will be fabricated.  The layout for 

the test circuit is shown in Figure 7.1.  The layout shows the 1 kB array-partioned SRAM 

(type 1) with I/O pads connected.  The test circuit will be used to physically verify the 

operation and get actual measurements of the SRAM.  After this verification, the SRAM 

will be embedded in the Wireless Video Project mentioned in Section 2.5.  For the test 

circuit, the SRAM is not embedded and requires a pin for each I/O pins.  Due to the high 

cost of  I/O pads, the data-input and data-output signals are connected together to reduce 

pin number.  Because the data-output signal is isolated from the bus by transmission 

gates, there is no reason for a bus contention.  
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Figure 7.1 – Test Circuit for 1 kB Array-Partitioned SRAM 

 The area for the test circuit is 2080 µm x 1795 µm = 3.73 mm2, which is 

approximately six times larger than just the SRAM.  As can be seen in the figure, the I/O 

pads occupy a large part of the total area, even after reducing the pins by sharing the data-

in and data-out signals.  However, since the SRAM will be embedded in the final circuit, 

the effect of the I/O pads on the area will not be as dramatic. 

As a conclusion to this thesis, we describe a possible improvement to the design.  

As mentioned in the previous chapter, the aspect ratio of the SRAM plays an important 

factor in the final design.  Though the aspect ratio calculation for the compiler was 

designed in order to accommodate equal rows and columns, the results indicate that this 

may not be the best choice.  Because the word-lines, which are polysilicon, are more 

resistive than the bit-lines, which are metal1, it is preferable to make the word-lines 

shorter than the bit-lines.  This implies that there should be more rows than columns.  

Then, the aspect ratio should be calculated not to have equal rows and columns, but an 

optimum row-column ratio.  Therefore, the optimum aspect ratio should be determined 

through experimental results and the compiler should be modified to generate the layout 

for this aspect ratio. 
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The following tables lists the functions used in our SRAM compiler. 

Table A.1 – Functions in the SRAM Compiler  
sram_compiler(library cellview Words Wordsize Type) 

procedure sram_compiler will generate an embedded SRAM layout  
Possible Types: 
• Type = 0  -- Simple SRAM array without Array Partitioning 
• Type = 1  -- Array Partitioned SRAM array with the Block Select at bottom 

array_partition(library cellview Words Wordsize) 

procedure array_partition will partition the memory array into 4 blocks for low-
power 

sram_array(library cellview words wordsize) 

procedure sram_array is the top-level function to layout an SRAM circuit 

cell_layout(library cellview number_of_rows number_of_cols) 

procedure cell_layout layouts an array of sram cells with m rows and n columns  

word_decoder(library cellview x y number_of_rows number_of_cols wordsize)  

read_decoder(library cellview x y number_of_rows number_of_cols wordsize)  

write_decoder(library cellview x y number_of_rows number_of_cols wordsize)  

These procedures layouts the decoders for the SRAM 

package(library cellview x y number_of_rows number_of_cols wordsize) 

procedure package makes the circuit fit the final package � add all I/O pins and 

route signals to meet package criteria 

A.1 Compiler Setup 

Before generating the circuit, the compiler must first be setup in the CADENCE 

environment in the following way. 

1.  After starting CADENCE icfb, follow the procedure to setup the TSMC 0.35 um 

process from the following page: 

           http://www.ee.vt.edu/ha/cadtools/cadence/unix_env.html 

2.  In your working directory, copy all .il files that are present in the present directory. 
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3.   Copy the sramleaf/ directory onto your working directory. 

4.  Add the sramleaf/ directory as a library in your CADENCE design environment using 

the procedure from the following page:    

           http://www.ee.vt.edu/ha/cadtools/cadence/gate.html 

A.2 Layout Generation 

Each procedure is contained in a separate file whose filename is the name of the 

procedure.  The compiler is executed in the following way. 

1. Load skill code: load(“sram_compiler.il”)  

� Loads the contents of the file sram_compiler.il  

�  This file also contains the commands to load all other functions that will be 

used by the sram_compiler procedure. 

2. Call top-level function:  sram_compiler(library cellview words wordsize type) 

� Generates an SRAM layout for the specified size of the specified type.   

� Example:  sram_compiler(“ram” “sram_1k_8” 1024 8 1) generates a layout 

for an 1 kB (1024×8) array-partitioned SRAM.  

Note that the above commands should be typed in the CIW.  Also, the load 

command assumes that the file is in the cadence working directory.  If this is not the case, 

the correct path of the file should be entered.  All SKILL code files are enclosed in 

Appendix B.   
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The SRAM compiler consists of 8 SKILL code files, all of which have a il 

extension.  The files are stored in the VISC workstations at the following location: 

/project/asic/SRAM_Compiler.  The directory listing for this location is shown in Table 

B.1. 

Table B.1 – Directory Listing of /project/asic/SRAM_Compiler  
Filename Contents 

array_partition.il Function array_partition 
cell_layout.il Function cell_layout 
package.il Function package 
read_decoder.il Function read_decoder 

README_compiler 
README for SRAM Compiler with instructions 
for compiler setup and execution 

sram_array.il Function sram_array 
sram_compiler.il Function sram_compiler 
word_decoder.il Function word_decoder 
write_decoder.il Function write_decoder 
spice/ Directory of SRAM HSPICE files 
sramleaf/ Directory of leaf-cell layouts 
testcircuit_1kx8/ Directory containing 1 kB test-circuit cellview 

As can be seen from the directory listing, each function is contained in a separate 

file whose filename is the name of the function.  The following pages contain the SKILL 

code files in alphabetical order. 
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B.1 array_partition.il 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  
;; FileName: array_partition.il 
;; Author:  Meenatchi Jagasivamani, April 2000 
;; 
;; procedure array_partition will partition the memory array into 4 blocks for low 
;;         power purposes and place the Block Select at the bottom (compact) 
;; 
;; Usage In CIW: 
;;        array_partition(library cellview Words Wordsize) 
;; 
;; Ex:  array_partition("sram" "block_256_8" 256 8) 
;;   --> to create array of sram cells with 256 words with a wordsize of 8 bits 
;;       array will be partitioned into 4 blocks with the BS at the bottom 
;;   --> Layout will be stored in cellview "block_256_8" under library "sram" 
;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  
 
procedure(array_partition(clib cname words w) 
 
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  ;;;;;;;;;;;;; Declare leaf cells to be used ;;;;;;;;;;;;;;;;;;;; 
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  library = "sramleaf" 
  viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r") 
  blkselcv = dbOpenCellViewByType(library "BlockSelect " "layout" "" "r") 
  ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a") ; final circuit 
cellview 
  
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  ;;;;;;;;;;;;;;  Define Routing Variables ;;;;;;;;;;;;;; 
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  block = int(words/4)    ; block size  
  AR_1bit = 0.5  
 
  ;;;;;;Calculate row and col for equal aspect ratio 
  ar = log(w* AR_1bit)/log(2)   ;aspect ratio for 1 wordsize block 
  k = int(log(block)/log(2))  ;number of address lines 
  y = floor((k-ar)/2)   ;x+y = k 
  x = k-y    ;x = ar+y 
   
  m = int(2**x) 
  n = (2**y)*w 
 
  startx=4.8*n+2.5*w+19.25+2.85 ;address side 
  endx=9.25+2.9*x+1.4*y ;data side 
 
  ;;;; split address lines for symmetrical routing 
  ; let right side have less address lines (because of VDD & GND routing) 
  halfadr = ceiling(k/2)    ;MSB 
 
  ;xwidth = (DI+DO)+Decoder Width+VDD&GND+address 
   xwidth = (1.4*w)+1.4*(k-halfadr)+10.75+4.6 
 
  ;yheight = address+3 control signals on both sides 
 ; yheight = 1.4*(halfadr+2)+3.9-1.8 
 yheight = 1.4*(k-halfadr)+4.7 
 
  ;;;; Offset required to put the sram blocks on the axis 
  xspacing = startx+5.55+0.85+xwidth 
  yspacing = 10.5+14.8*(m/2)+2.7*w+2.9*y+yheight 
 
  ;;; coordinates for one block 
  top = yspacing+30.55+2.7*w+2.9*y-2.8 
  bottom = yspacing-10.9-14.8*(m/2)-2.7*w-2.9*y 
 
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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  ;;;;;;;;;;;;;generate circuit for 1 block = words/4 ;;;;;;;;;;;; 
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  ; create block in a temporary cellview called : "temp_" + cname 
  blkcvname = buildString(list("temp" pcExprToString(cname)) "_")  
   
  ;open temporary block cell view 
  blockcv = dbOpenCellViewByType(clib blkcvname "layout" "" "r") 
 
  Instpoint1 = xspacing:-yspacing 
  blockInst = dbCreateInst(ccv blockcv "blockInst1" Instpoint1 "MX") 
  dbFlattenInst(blockInst 1 t)  
 
  ;instantiate blocks onto final cellview 
  Instpoint2 = -xspacing:-yspacing 
  blockInst = dbCreateInst(ccv blockcv "blockInst2" Instpoint2 "R180") 
  dbFlattenInst(blockInst 1 t)  
 
  Instpoint3 = xspacing:yspacing 
  blockInst = dbCreateInst(ccv blockcv "blockInst3" Instpoint3 "R0") 
  dbFlattenInst(blockInst 1 t)  
 
  Instpoint4 = -xspacing:yspacing 
  blockInst = dbCreateInst(ccv blockcv "blockInst4" Instpoint4 "MY") 
  dbFlattenInst(blockInst 1 t)  
 
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  ;;;;;;;;;;;;;;  Route DATA Lines ;;;;;;;;;;;;;;;;;;;;;; 
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  for(bit 0 w-1 
    ;connect write-data lines together 
    dbCreateRect(ccv "metal1" list(xspacing-startx+2.85:yspacing+7.55-2.8*bit -
xspacing+startx-2.85:yspacing+8.35-2.8*bit)) 
    dbCreateRect(ccv "metal1" list(xspacing-startx+2.85:-yspacing-7.55+2.8*bit -
xspacing+startx-2.85:-yspacing-8.35+2.8*bit)) 
 
    ;connect read-data lines together 
    dbCreateRect(ccv "metal1" list(xspacing-startx-7.2:yspacing+8.55-14.8*(m/2)+4.8*bit -
xspacing+startx+7.2:yspacing+9.35-14.8*(m/2)+4.8*bit)) 
    dbCreateRect(ccv "metal1" list(xspacing-startx-7.2:-yspacing-8.55+14.8*(m/2)-4.8*bit 
-xspacing+startx+7.2:-yspacing-9.35+14.8*(m/2)-4.8*bit)) 
 
    ;route write-data out vertically 
    ;place via for vertical routing at top 
    viapt = xspacing-startx-8.2-1.4*bit:yspacing+8-2.8*bit 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
    ;place via for vertical routing at bottom 
    viapt = xspacing-startx-8.2-1.4*bit:-yspacing-8+2.8*bit 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
    dbCreateRect(ccv "metal2" list(xspacing-startx-7.8-1.4*bit:-yspacing-7.6+2.8*bit 
xspacing-startx-8.6-1.4*bit:top)) 
 
    ;Place a pin for Write Data signals 
    fig = dbCreateRect(ccv "metal2" list(xspacing-startx-8.5-1.4*bit:top-0.1 xspacing-
startx-7.9-1.4*bit:top-0.7)) 
    pinname = buildString(list("DI" pcExprToString(bit)) "_") 
    net = dbCreateNet(ccv pinname) 
    trm = dbCreateTerm(net pinname "input") 
    pin = dbCreatePin(net fig pinname) 
  
    ;route read-data in vertically 
    ;place via for vertical routing at top 
    viapt = -xspacing+startx+8.2+1.4*bit:yspacing+8.95-14.8*(m/2)+4.8*bit 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
    ;place via for vertical routing at bottom 
    viapt = -xspacing+startx+8.2+1.4*bit:-yspacing-8.95+14.8*(m/2)-4.8*bit 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
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    dbCreateRect(ccv "metal2" list(-xspacing+startx+7.8+1.4*bit:-yspacing-7.75-
0.8+14.8*(m/2)-4.8*bit -xspacing+startx+8.6+1.4*bit:top)) 
 
    ;Place a pin for Read Data signals 
    fig = dbCreateRect(ccv "metal2" list(-xspacing+startx+8.5+1.4*bit:top-0.1 -
xspacing+startx+7.9+1.4*bit:top-0.7)) 
    pinname = buildString(list("DO" pcExprToString(bit)) "_") 
    net = dbCreateNet(ccv pinname) 
    trm = dbCreateTerm(net pinname "input") 
    pin = dbCreatePin(net fig pinname) 
   ) 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;  Route Control Signals ;;;;;;;;;;;;;;;;;;;   
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;place block select signal 
 blkselpt = 2.1-1.05+2.25:-top-25 
 blkselInst = dbCreateInst(ccv blkselcv "blkselInst" blkselpt "R0") 
 dbFlattenInst(blkselInst 1 t) 
 
 for(sig 0 2  
 
   ;;;;;; Route control signals from PI to the decoder 
   ;;; Order from left to right: CEN, OEN, WEN 
   ;place pin at end 
   fig = dbCreateRect(ccv "metal2" list(12.6+1.4*sig:-top-25-16.6+0.1 13.2+1.4*sig:-top-
16.6-25+0.7)) 
   if(sig == 0 
    then pinname="CEN" 
   else if(sig== 1 
    then pinname = "OEN" 
    else pinname = "WEN" 
    )    
   ) 
   net = dbCreateNet(ccv pinname) 
   trm = dbCreateTerm(net pinname "input") 
   pin = dbCreatePin(net fig pinname) 
    
   ;;;;;; For Block 1 (x, y) 
   ;route control signal from block select 
   dbCreateRect(ccv "metal2" list(2.95+1.4*sig:-top 3.75+1.4*sig:3.9-1.4*sig)) 
   viapt = 3.35+1.4*sig:3.5-1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
    
   dbCreateRect(ccv "metal1" list(6.55-1.4*sig:0.3+1.4*sig 
xspacing+endx+1.4*k+1.4*sig:1.1+1.4*sig)) 
   ;place a via at the ends 
   viapt = xspacing+endx+0.4+1.4*k+1.4*sig:0.7+1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
   dbCreateRect(ccv "metal2" list(xspacing+endx+1.4*k+1.4*sig:1.1+1.4*sig 
xspacing+endx+0.8+1.4*k+1.4*sig:top-1.4*sig)) 
   ;add via at the end and connect to line 
   viapt = xspacing+endx+0.4+1.4*k+1.4*sig:top-0.4-1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
   dbCreateRect(ccv "metal1" list(xspacing+endx+1.4*k+1.4*sig:top-1.4*sig 
xspacing+endx+3.9:top-0.8-1.4*sig)) 
   
  
   ;;;;;; For Block 2 (x, -y) 
   ;route control signal from block select 
   dbCreateRect(ccv "metal2" list(7.15+1.4*sig:-top 7.95+1.4*sig:-0.3-1.4*sig)) 
   viapt = 7.55+1.4*sig:-0.7-1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
    
    dbCreateRect(ccv "metal1" list(7.15+1.4*sig:-0.3-1.4*sig 
xspacing+endx+1.4*k+1.4*sig:-1.1-1.4*sig)) 
   ;place a via at the ends 



 67 

   viapt = xspacing+endx+0.4+1.4*k+1.4*sig:-0.7-1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
   dbCreateRect(ccv "metal2" list(xspacing+endx+1.4*k+1.4*sig:-1.1-1.4*sig 
xspacing+endx+0.8+1.4*k+1.4*sig:-top+1.4*sig)) 
   ;add via at the end and connect to line 
   viapt = xspacing+endx+0.4+1.4*k+1.4*sig:-top+0.4+1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
   dbCreateRect(ccv "metal1" list(xspacing+endx+1.4*k+1.4*sig:-top+1.4*sig 
xspacing+endx+3.9:-top+0.8+1.4*sig)) 
 
   ;;;;;; For Block 3 (-x, y) 
   ;route control signal from block select 
   dbCreateRect(ccv "metal2" list(-2.95-1.4*sig:-top -3.75-1.4*sig:3.9-1.4*sig)) 
   viapt = -3.35-1.4*sig:3.5-1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
    
   dbCreateRect(ccv "metal1" list(-6.55+1.4*sig:0.3+1.4*sig -xspacing-endx-1.4*k-
1.4*sig:1.1+1.4*sig)) 
   ;place a via at the ends 
   viapt = -xspacing-endx-0.4-1.4*k-1.4*sig:0.7+1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
   dbCreateRect(ccv "metal2" list(-xspacing-endx-1.4*k-1.4*sig:1.1+1.4*sig -xspacing-
endx-0.8-1.4*k-1.4*sig:top-1.4*sig)) 
   ;add via at the end and connect to line 
   viapt = -xspacing-endx-0.4-1.4*k-1.4*sig:top-0.4-1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
   dbCreateRect(ccv "metal1" list(-xspacing-endx-1.4*k-1.4*sig:top-1.4*sig -xspacing-
endx-3.9:top-0.8-1.4*sig)) 
  
   ;;;;;; For Block 4 (-x, -y) 
   ;route control signal from block select 
   dbCreateRect(ccv "metal2" list(-7.15-1.4*sig:-top -7.95-1.4*sig:-0.3-1.4*sig)) 
   viapt = -7.55-1.4*sig:-0.7-1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
    
    dbCreateRect(ccv "metal1" list(-7.15-1.4*sig:-0.3-1.4*sig -xspacing-endx-1.4*k-
1.4*sig:-1.1-1.4*sig)) 
   ;place a via at the ends 
   viapt = -xspacing-endx-0.4-1.4*k-1.4*sig:-0.7-1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
   dbCreateRect(ccv "metal2" list(-xspacing-endx-1.4*k-1.4*sig:-1.1-1.4*sig -xspacing-
endx-0.8-1.4*k-1.4*sig:-top+1.4*sig)) 
   ;add via at the end and connect to line 
   viapt = -xspacing-endx-0.4-1.4*k-1.4*sig:-top+0.4+1.4*sig 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
   dbCreateRect(ccv "metal1" list(-xspacing-endx-1.4*k-1.4*sig:-top+1.4*sig -xspacing-
endx-3.9:-top+0.8+1.4*sig)) 
 
 ) 
 
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  ;;;;;;;;;;;;;;  Route Address Lines ;;;;;;;;;;;;;;;;;;; 
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
   
  ;;;;;;;;;;;;connect col-address lines together 
  for(addrline 0 y-1 
    ;connect col lines together 
    dbCreateRect(ccv "metal2" list(-xspacing-endx-1.4*addrline:bottom+3.45+2.9*(y-1)-
1.4*addrline -xspacing-endx-0.8-1.4*addrline:-bottom-3.45-2.9*(y-1)+1.4*addrline)) 
    dbCreateRect(ccv "metal2" list(xspacing+endx+1.4*addrline:-bottom-3.45-2.9*(y-
1)+1.4*addrline xspacing+endx+0.8+1.4*addrline:bottom+3.45+2.9*(y-1)-1.4*addrline)) 
     
    ;place a via at the ends 
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    viapt = -xspacing-endx-0.4-1.4*addrline:bottom+3.85+2.9*(y-1)-1.4*addrline 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
 
    ;place a via at the ends 
    viapt = -xspacing-endx-0.4-1.4*addrline:-bottom-3.85-2.9*(y-1)+1.4*addrline 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t); 
 
    ;place a via at the ends 
    viapt = xspacing+endx+0.4+1.4*addrline:-bottom-3.85-2.9*(y-1)+1.4*addrline 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
  
    ;place a via at the ends 
    viapt = xspacing+endx+0.4+1.4*addrline:bottom+3.85+2.9*(y-1)-1.4*addrline 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
  ) 
 
  ;;;;;;;;;;;;connect row-address lines together 
  for(addrline 0 x-1 
    ;connect row lines together 
    dbCreateRect(ccv "metal2" list(-xspacing-endx-1.4*y-1.4*addrline:bottom+4.9+2.9*(y-
1)+1.4*addrline -xspacing-endx-1.4*y-0.8-1.4*addrline:-bottom-4.9-2.9*(y-1)-
1.4*addrline)) 
    dbCreateRect(ccv "metal2" list(xspacing+endx+1.4*y+1.4*addrline:-bottom-4.9-2.9*(y-
1)-1.4*addrline xspacing+endx+1.4*y+0.8+1.4*addrline:bottom+4.9+2.9*(y-1)+1.4*addrline)) 
     
    ;place a via at the ends 
    viapt = -xspacing-endx-0.4-1.4*addrline-1.4*y:bottom+5.3+2.9*(y-1)+1.4*addrline 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
 
   ;place a via at the ends 
   viapt = -xspacing-endx-0.4-1.4*addrline-1.4*y:-bottom-5.3-2.9*(y-1)-1.4*addrline 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
 
   ;place a via at the ends 
   viapt = xspacing+endx+0.4+1.4*addrline+1.4*y:bottom+5.3+2.9*(y-1)+1.4*addrline 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t); 
 
   ;place a via at the ends 
   viapt = xspacing+endx+0.4+1.4*addrline+1.4*y:-bottom-5.3-2.9*(y-1)-1.4*addrline 
   viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
   dbFlattenInst(viaInst 1 t) 
 ) 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 for(addrline 0 k-1 
   if(addrline < halfadr 
   then 
     dbCreateRect(ccv "metal1" list(-xspacing-endx-0.4-1.4*addrline:-
bottom+1.4+1.4*addrline xspacing+endx+0.4+1.4*addrline:-bottom+0.6+1.4*addrline)) 
 
    ;place a via at the ends 
    viapt = -xspacing-endx-0.4-1.4*addrline:-bottom+1+1.4*addrline 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
 
    ;place a via at the ends 
    viapt = xspacing+endx+0.4+1.4*addrline:-bottom+1+1.4*addrline 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
 
    ;route to PI vertically 
    viapt = 14.95+1.4*addrline:-bottom+1+1.4*addrline 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
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    dbCreateRect(ccv "metal2" list(14.55+1.4*addrline:-bottom+1+1.4*addrline 
15.35+1.4*addrline:top)) 
 
    ;Place a pin for Address signals 
    fig = dbCreateRect(ccv "metal2" list(14.65+1.4*addrline:top-0.1 
15.25+1.4*addrline:top-0.7)) 
    pinname = buildString(list("A" pcExprToString(addrline)) "_") 
    net = dbCreateNet(ccv pinname) 
    trm = dbCreateTerm(net pinname "input") 
    pin = dbCreatePin(net fig pinname) 
 
   else 
     dbCreateRect(ccv "metal1" list(-xspacing-endx-0.4-1.4*addrline:bottom-
1.4+1.4*halfadr-1.4*addrline xspacing+endx+0.4+1.4*addrline:bottom-0.6+1.4*halfadr-
1.4*addrline)) 
 
    ;place a via at the ends 
    viapt = -xspacing-endx-0.4-1.4*addrline:bottom-1+1.4*halfadr-1.4*addrline 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
 
    ;place a via at the ends 
    viapt = xspacing+endx+0.4+1.4*addrline:bottom-1+1.4*halfadr-1.4*addrline 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
 
    ;route to PI vertically 
    viapt = -11.75-1.4*(addrline-halfadr):bottom-1+1.4*halfadr-1.4*addrline 
    viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
    dbFlattenInst(viaInst 1 t) 
    dbCreateRect(ccv "metal2" list(-11.35-1.4*(addrline-halfadr):bottom-1+1.4*halfadr-
1.4*addrline -12.15-1.4*(addrline-halfadr):top)) 
 
    ;Place a pin for Address signals 
    fig = dbCreateRect(ccv "metal2" list(-11.45-1.4*(addrline-halfadr):top-0.1 -12.05-
1.4*(addrline-halfadr):top-0.7)) 
    pinname = buildString(list("A" pcExprToString(addrline)) "_") 
    net = dbCreateNet(ccv pinname) 
    trm = dbCreateTerm(net pinname "input") 
    pin = dbCreatePin(net fig pinname) 
   ) 
 ) 
 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;  Place pin for MSB 2 address bits ;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;; route out  address lines from block select 
 dbCreateRect(ccv "metal2" list(1.55:-top 2.35:top)) 
 dbCreateRect(ccv "metal2" list(-2.35:-top -1.55:top)) 
 
 ;Place a pin for Ak 
 fig = dbCreateRect(ccv "metal2" list(1.65:top-0.1 2.25:top-0.7)) 
 pinname = buildString(list("A" pcExprToString(k)) "_") 
 net = dbCreateNet(ccv pinname) 
 trm = dbCreateTerm(net pinname "input") 
 pin = dbCreatePin(net fig pinname) 
  
 ;Place a pin for Ak+1 == MSB address bit 
 fig = dbCreateRect(ccv "metal2" list(-1.65:top-0.1 -2.25:top-0.7)) 
 pinname = buildString(list("A" pcExprToString(k+1)) "_") 
 net = dbCreateNet(ccv pinname) 
 trm = dbCreateTerm(net pinname "input") 
 pin = dbCreatePin(net fig pinname) 
  
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;  Route VDD & GND Signals ;;;;;;;;;;;;;;;;;   
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
 ;;;;;;;Route VDD & GND from PI 
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 ; VSS 
 dbCreateRect(ccv "metal2" list(24-12.65:-top 25-12.65:top)) 
 ;create pin 
 fig = dbCreateRect(ccv "metal2" list(24.2-12.65:top-0.2 24.8-12.65:top-0.8)) 
 pinname = "VSS!" 
 net = dbCreateNet(ccv pinname) 
 trm = dbCreateTerm(net pinname "input") 
 pin = dbCreatePin(net fig pinname) 
 
 ; VDD 
 dbCreateRect(ccv "metal2" list(25.6-12.65:-top 26.6-12.65:top)) 
 ;create pin  
 fig = dbCreateRect(ccv "metal2" list(25.8-12.65:top-0.2 26.4-12.65:top-0.8)) 
 pinname = "VDD!" 
 net = dbCreateNet(ccv pinname) 
 trm = dbCreateTerm(net pinname "input") 
 pin = dbCreatePin(net fig pinname) 
 
 
 ;route VDD lines together for blocks 
 dbCreateRect(ccv "metal1" list(-xspacing+startx-9.9:-bottom-3.4-2.9*y xspacing-
startx+9.9:-bottom-4.2-2.9*y)) 
 dbCreateRect(ccv "metal1" list(-xspacing+startx-9.9:bottom+3.4+2.9*y xspacing-
startx+9.9:bottom+4.2+2.9*y)) 
 ;place via to connect to VDD PI 
 viapt = 26.1-12.65:-bottom-3.8-2.9*y 
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
 dbFlattenInst(viaInst 1 t) 
 ;place via to connect to VDD PI 
 viapt = 26.1-12.65:bottom+3.8+2.9*y 
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
 dbFlattenInst(viaInst 1 t) 
  
 ;route VSS lines together for blocks 
 dbCreateRect(ccv "metal1" list(-xspacing+startx-13.1-2.5*w:-bottom-2-2.9*y xspacing-
startx+13.1+2.5*w:-bottom-2.8-2.9*y)) 
 ;place via to connect to VSS line of block 
 viapt = -xspacing+startx-13.1-2.5*w:-bottom-2.4-2.9*y 
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
 dbFlattenInst(viaInst 1 t) 
 ;place via to connect to VSS line of block 
 viapt = xspacing-startx+13.1+2.5*w:-bottom-2.4-2.9*y 
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
 dbFlattenInst(viaInst 1 t) 
 
 dbCreateRect(ccv "metal1" list(-xspacing+startx-13.1-2.5*w:bottom+2+2.9*y xspacing-
startx+13.1+2.5*w:bottom+2.8+2.9*y)) 
 ;place via to connect to VSS line of block 
 viapt = -xspacing+startx-13.1-2.5*w:bottom+2.4+2.9*y 
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
 dbFlattenInst(viaInst 1 t) 
 ;place via to connect to VSS line of block 
 viapt = xspacing-startx+13.1+2.5*w:bottom+2.4+2.9*y 
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
 dbFlattenInst(viaInst 1 t) 
 
 ;place via to connect to VSS PI 
 viapt = 24.5-12.65:-bottom-2.4-2.9*y 
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
 dbFlattenInst(viaInst 1 t) 
 ;place via to connect to VSS PI 
 viapt = 24.5-12.65:bottom+2.4+2.9*y 
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0") 
 dbFlattenInst(viaInst 1 t) 
 
) 
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B.2 cell_layout.il 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;; FileName: cell_layout.il 
;; Author: Meenatchi Jagasivamani, April 2000 
;; 
;; procedure cell_layout will layout an array of sram cells m rows and n columns 
;; 
;; Usage In CIW: 
;;      cell_layout(library cellview number_of_rows number_of_cols) 
;; 
;; 
;;  Ex:    cell_layout("sram" "sram_32x64" 32 64)       
;;           --> to create array of sram cells with 32 rows and 64 columns 
;;           --> Layout will be stored in cellview "sram_32x64" under library "sram" 
;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
procedure(cell_layout(clib cname m n) 
 
 ; Leaf-Cell library 
 library = "sramleaf" 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;; Open necessary leaf-cells ;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a") 
 scv = dbOpenCellViewByType(library "sram_6t " "layout" "" "r") 
 pcv = dbOpenCellViewByType(library "precharge" "layout" "" "r") 
 buffcv = dbOpenCellViewByType(library "write_select" "layout" "" "r") 
 viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r") 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;; Routing variables ;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 startx = -6.25  ;right side 
 endx = (-4.8*n)-8.1  
 starty = 12.15  ;top  
 endy = (-((m/2)-1)*16.7)-22-((2-(m/2))*1.9) 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;  Create an array of mxn sram cells ;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 for(col 0 n-1 
 
   coladjustment = col*-4.8 
 
   ;;  Place Precharge at the top  
   PreInst = coladjustment-16.5:3.05 
   PInst = dbCreateInst(ccv pcv "PInst" PreInst "R0") 
   dbFlattenInst(PInst 1 t)  
 
   ;;  Place Write Buffers at the top  
   BuffInst = coladjustment-10.35:13.2 
   BInst = dbCreateInst(ccv buffcv "BuffInst" BuffInst "R0") 
   dbFlattenInst(BInst 1 t)  
 
   ;Place a pin for bit signals 
   fig = dbCreateRect(ccv "metal2" list(coladjustment-9.4-1.45:starty+1.65-1.3 
coladjustment-8.8-1.45:starty+2.25-1.3)) 
   pinname = buildString(list("Cbit" pcExprToString(col)) "_") 
   net = dbCreateNet(ccv pinname) 
   trm = dbCreateTerm(net pinname "inputOutput") 
   pin = dbCreatePin(net fig pinname) 
 
   ;Place a pin for bit_neg signals 
   fig = dbCreateRect(ccv "metal2" list(coladjustment-9.4+1.45:starty+1.65-1.3 
coladjustment-8.8+1.45:starty+2.25-1.3)) 
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   pinname = buildString(list("CbitNeg" pcExprToString(col)) "_") 
   net = dbCreateNet(ccv pinname) 
   trm = dbCreateTerm(net pinname "inputOutput") 
   pin = dbCreatePin(net fig pinname) 
 
   yadjustment = 0 
 
   ;; layout one row 
   for(row 0 m-1 
    if(modulo(row 2) == 1 
     then 
       ;instances sram_cellview 
       Instpoint = coladjustment:yadjustment 
       SInst = dbCreateInst(ccv scv "SInst" Instpoint "MX") 
       dbFlattenInst(SInst 1 t)  
 
       ; connect vdd 
       via = dbCreateInst(ccv  viacv "via" endx+0.65:yadjustment-7.1 "R0") 
       dbFlattenInst(via 1 t) 
       dbCreateRect(ccv "metal1" list(endx+1.05:yadjustment-6.75 
endx+1.05+(0.3*n):yadjustment-7.45)) 
 
       ; connect vss to precharge 
       via = dbCreateInst(ccv  viacv "via" endx-0.6:yadjustment+1.75 "R0") 
       dbFlattenInst(via 1 t) 
       dbCreateRect(ccv "metal1" list(endx-0.2:yadjustment+2.1 
endx+1.05+(0.3*n):yadjustment+1.4)) 
 
       ; connect poly contact for word signal 
       dbCreateRect(ccv "poly1" list(startx:yadjustment-0.8 startx+0.8:yadjustment)) 
       dbCreateRect(ccv "metal1" list(startx+0.05:yadjustment-0.75 startx+2:yadjustment-
0.05)) 
       dbCreateRect(ccv "contact" list(startx+0.2:yadjustment-0.6 startx+0.6:yadjustment-
0.2)) 
       dbCreateRect(ccv "poly1" list(startx:yadjustment-0.6 startx-0.5:yadjustment-0.25)) 
       dbCreateRect(ccv "metal1" list(startx-0.9:yadjustment-1.75 startx-0.4:yadjustment-
1.5)) 
  
       if(col == 0  then 
         ;Place a pin for word signals 
         fig = dbCreateRect(ccv "metal1" list(startx+0.1:yadjustment-0.7 
startx+0.7:yadjustment-0.1)) 
         pinname = buildString(list("word" pcExprToString(row)) "_") 
         net = dbCreateNet(ccv pinname) 
         trm = dbCreateTerm(net pinname "input") 
         pin = dbCreatePin(net fig pinname) 
       ) 
       yadjustment = yadjustment-16.1 
 
     else 
 
       if(row > 0 then  yadjustment = yadjustment+1.9) 
       ;instances sram_cellview 
       Instpoint = coladjustment:yadjustment 
       SInst = dbCreateInst(ccv scv "SInst" Instpoint "R0") 
       dbFlattenInst(SInst 1 t)  
 
       ; connect vdd 
       via = dbCreateInst(ccv  viacv "via" endx+0.65:yadjustment+7.1 "R0") 
       dbFlattenInst(via 1 t) 
       dbCreateRect(ccv "metal1" list(endx+1.05:yadjustment+7.45 
endx+1.05+(0.3*n):yadjustment+6.75)) 
 
       ; connect vss to precharge 
       via = dbCreateInst(ccv  viacv "via" endx-0.6:yadjustment-1.75 "R0") 
       dbFlattenInst(via 1 t) 
       dbCreateRect(ccv "metal1" list(endx-0.2:yadjustment-1.4 
endx+1.05+(0.3*n):yadjustment-2.1)) 
 
       ; connect a poly contact for word signal 
       dbCreateRect(ccv "poly1" list(startx:yadjustment+.05 startx+0.8:yadjustment+0.85)) 
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       dbCreateRect(ccv "metal1" list(startx+0.05:yadjustment+0.1 
startx+0.75:yadjustment+0.8)) 
       dbCreateRect(ccv "contact" list(startx+0.2:yadjustment+0.25 
startx+0.6:yadjustment+0.65)) 
       dbCreateRect(ccv "poly1" list(startx:yadjustment+0.25 startx-0.5:yadjustment+0.6)) 
       dbCreateRect(ccv "metal1" list(startx+0.35:yadjustment+0.1 
startx+1.05:yadjustment+1.2)) 
       dbCreateRect(ccv "metal1" list(startx+0.35:yadjustment+1.2 
startx+1.3:yadjustment+1.9)) 
 
       if(col == 0  then 
         ;Place a pin for word signals 
         fig = dbCreateRect(ccv "metal1" list(startx+0.1:yadjustment+0.15 
startx+0.7:yadjustment+0.75)) 
         pinname = buildString(list("word" pcExprToString(row)) "_") 
         net = dbCreateNet(ccv pinname) 
         trm = dbCreateTerm(net pinname "input") 
         pin = dbCreatePin(net fig pinname) 
       ) 
       yadjustment = yadjustment-0.6 
    ) 
 
   );end for column 
 );end for row 
 
;;;;;;;;;;;;;;;;;;;;;;;;;  VDD  Connections  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;VDD route  
 dbCreateRect(ccv "metal2" list(endx+0.35:starty endx+0.95:endy+1.3)) 
 
 ;Place a pin for VDD 
 fig = dbCreateRect(ccv "metal2" list(endx+0.35:starty-2.55 endx+0.95:starty-3.15)) 
 net = dbCreateNet(ccv "vdd!") 
 trm = dbCreateTerm(net "vdd!" "input") 
 pin = dbCreatePin(net fig "vdd!") 
 
;;;;;;;;;;;;;;;;;;;;;;;;;  VSS  Connections  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;VSS route  
 dbCreateRect(ccv "metal2" list(endx-0.9:starty endx-0.3:endy+1.3)) 
 
 ;Place a pin for VSS 
 fig = dbCreateRect(ccv "metal2" list(endx-0.9:starty-0.9 endx-0.3:starty-0.3)) 
 net = dbCreateNet(ccv "vss!") 
 trm = dbCreateTerm(net "vss!" "input") 
 pin = dbCreatePin(net fig "vss!") 
 
 ; connect vss to precharge 
 via = dbCreateInst(ccv  viacv "via" endx-0.6:starty-0.6 "R0") 
 dbFlattenInst(via 1 t) 
 dbCreateRect(ccv "metal1" list(endx-0.2:starty-0.25 endx+1.05+(0.3*n):starty-0.95)) 
 
);end procedure cell_layout 
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B.3 package.il 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; 
;; FileName: package.il 
;; Author: Meenatchi Jagasivamani, April 2000 
;; 
;; procedure package makes the circuit fit the final package 
;; 
;; Usage In CIW: 
;; package(library cellview row_address col_address number_of_rows number_of_cols 
wordsize) 
;; 
;;  Ex:    package("library" "sram_32_4" 5 3 32 64 8)   
;;      --> to add all I/O pins and route signals to meet package criteria 
;;      --> Layout will be stored in cellview "sram_32_4" under library "sram" 
;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; 
 
procedure(package(clib cname x y m n w) 
 
 ;Leaf-Cell library 
 library = "sramleaf" 
  
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;; Open necessary leaf-cells ;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a") 
 viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r") 
 polyxcv = dbOpenCellViewByType(library "poly_M1" "layout" "" "r") 
 sensecv = dbOpenCellViewByType(library "read_buffer" "layout" "" "r") 
 invcv = dbOpenCellViewByType(library "wdata_inverter" "layout" "" "r") 
 oeninvcv = dbOpenCellViewByType(library "oen_inverter" "layout" "" "r") 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;; Routing variables ;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 startx = -6.25  ;right side 
 endx = (-4.8*n)-8.1  
 starty = 12.15  ;top  
 endy = (-((m/2)-1)*16.7)-((2-(m/2))*1.9)-13.35 
 
 Changey = starty+endy+0.4+3.35 
 
 deltax=1.25 
 deltay=1.35 
 
 for(bit 0 w-1 
 
   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
   ;;;;;;;;;;;;;;;;;;  READ DATA ROUTING ;;;;;;;;;;;;;;;;;;;;;;;;;; 
   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
   ;keep another variable to make calculations easier 
   reversebit = w-1-bit 
 
   ;place a sense amp for each bit 
   sensept = endx-2.5*w-4.4:endy+4.8*bit+13.35 
   sense = dbCreateInst(ccv  sensecv "sense" sensept "R90")   
   dbFlattenInst(sense 1 t) 
 
   ;place sensepos and senseneg pins 
    fig = dbCreateRect(ccv "metal2" list(endx-2.5*w-11.65:endy+4.8*bit+7.75 endx-2.5*w-
12.05:endy+4.8*bit+8.15)) 
    pinname = buildString(list("senseneg" pcExprToString(bit)) "_") 
    net = dbCreateNet(ccv pinname) 
    trm = dbCreateTerm(net pinname "input") 
    pin = dbCreatePin(net fig pinname) 
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   ;place pin for read-data 
   fig = dbCreateRect(ccv "metal1" list(endx-2.5*w-14.8:endy+4.8*bit+7.7 endx-2.5*w-
15.3:endy+4.8*bit+8.2)) 
   pinname = buildString(list("DO" pcExprToString(bit)) "_") 
   net = dbCreateNet(ccv pinname) 
   trm = dbCreateTerm(net pinname "input") 
   pin = dbCreatePin(net fig pinname) 
      
 
   ;;;;;;;;;;;;;;;;;;route negative read data line 
   dbCreateRect(ccv "metal1" list(endx-1.5:endy-deltay*bit endx-1.55-deltax*bit:endy+0.6-
deltay*bit)) 
   dbCreateRect(ccv "metal1" list(endx-1.55-deltax*bit:endy-deltay*bit  endx-2.15-
deltax*bit:endy-deltay*bit+1.35*bit+7.55+4.8*bit)) 
 
   ;place a via amp for each bit 
   viapt = endx-1.85-deltax*bit:endy-deltay*bit+1.35*bit+7.95+4.8*bit 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
   ;connect to senseamp 
   dbCreateRect(ccv "metal2" list(endx-2.25-deltax*bit:endy-
deltay*bit+8.35+1.35*bit+4.8*bit endx-2.5*w-2.75:endy-deltay*bit+1.35*bit+7.55+4.8*bit)) 
 
 
   ;;;;;;;;;;;;;;;route positive read data line 
   dbCreateRect(ccv "metal1" list(endx-1.5:endy-1.35*w-deltay*bit endx-1.25*w-1.55-
deltax*bit:endy-1.35*w+0.6-deltay*bit)) 
   dbCreateRect(ccv "metal1" list(endx-1.25*w-1.55-deltax*bit:endy-1.35*w-deltay*bit 
endx-1.25*w-2.15-deltax*bit:endy-deltay*bit+1.35*bit+10.45+4.8*bit)) 
 
   ;place a via amp for each bit 
   viapt = endx-1.25*w-1.85-deltax*bit:endy-deltay*bit+1.35*bit+7.95+2.9+4.8*bit 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
   
   ;connect to senseamp 
   dbCreateRect(ccv "metal2" list(endx-1.25*w-2.25-deltax*bit:endy-
deltay*bit+1.35*bit+8.35+2.9+4.8*bit endx-2.5*w-2.75:endy-
deltay*bit+1.35*bit+7.55+2.9+4.8*bit)) 
 
   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
   ;;;;;;;;;;;;;;;;;; WRITE DATA ROUTING ;;;;;;;;;;;;;;;;;;;;;;;;;; 
   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
   ;;;;;;;;;;;;;;;;;;route positive read data line 
   dbCreateRect(ccv "metal1" list(endx-1.5:Changey-(endy-deltay*bit) endx-1.55-
deltax*bit:Changey-(endy+0.6-deltay*bit))) 
   dbCreateRect(ccv "metal1" list(endx-1.55-deltax*bit:Changey-(endy-deltay*bit)  endx-
2.15-deltax*bit:Changey-(endy+7.55+(4.15-deltay)*bit))) 
 
   ;place a via amp for each bit 
   viapt = endx-1.85-deltax*bit:Changey-(endy+(4.15-deltay)*bit+7.95) 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
   ;connect to senseamp 
   dbCreateRect(ccv "metal2" list(endx-2.25-deltax*bit:Changey-(endy+(4.15-
deltay)*bit+8.35) endx-2.5*w-2.75:Changey-(endy+(4.15-deltay)*bit+7.55))) 
 
 
   ;;;;;;;;;;;;;;;route negative read data line 
   dbCreateRect(ccv "metal1" list(endx-1.5:Changey-(endy-1.35*w-deltay*bit) endx-1.25*w-
1.55-deltax*bit:Changey-(endy-1.35*w+0.6-deltay*bit))) 
   dbCreateRect(ccv "metal1" list(endx-1.25*w-1.55-deltax*bit:Changey-(endy-1.35*w-
deltay*bit) endx-1.25*w-2.15-deltax*bit:Changey+1.5-(endy+(4.15-deltay)*bit+10.45))) 
   ;place a via amp for each bit 
   viapt = endx-1.25*w-1.85-deltax*bit:Changey+1.5-(endy+(4.15-deltay)*bit+10.85) 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
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   ;connect to senseamp 
   dbCreateRect(ccv "metal2" list(endx-1.25*w-2.25-deltax*bit:Changey+1.5-(endy+(4.15-
deltay)*bit+11.25) endx-2.5*w-2.75:Changey+1.5-(endy+(4.15-deltay)*bit+10.45))) 
 
   ;invert write-data input to provide both positive and negative data lines  
   ;place inverter for each bit 
   invpt = endx-2.5*w-2.75+5.8:Changey+1.5+5.25-(endy+(4.15-deltay)*bit+10.45) 
   inv = dbCreateInst(ccv  invcv "inv" invpt "MYR90")   
   dbFlattenInst(inv 1 t) 
    
   ;place pin for write-data 
   fig = dbCreateRect(ccv "metal2" list(endx-2.5*w-11.05:Changey-(endy+(4.15-
deltay)*bit+8.25) endx-2.5*w-10.45:Changey-(endy+(4.15-deltay)*bit+7.65))) 
   pinname = buildString(list("DI" pcExprToString(bit)) "_") 
   net = dbCreateNet(ccv pinname) 
   trm = dbCreateTerm(net pinname "input") 
   pin = dbCreatePin(net fig pinname)     
 
 ) 
 
 ;;;;;;;;;; connect TG of Read-buffers to OEN & OEN-neg 
 oeninvpt = endx-2.5*w-13.7:endy+5.95 
 oeninv = dbCreateInst(ccv  oeninvcv "oeninv" oeninvpt "MXR90")   
 dbFlattenInst(oeninv 1 t) 
  
 
 ;make power and ground connections for senseamp 
 ;vss connection: 
 ;place a via amp for each bit 
 viapt = endx-2.5*w-1.85:endy+4.8*w+7.5 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")   
 dbFlattenInst(via 1 t) 
 
 dbCreateRect(ccv "metal2" list(endx-2.5*w-1.45:endy+4.8*w+7.2 endx-0.9:endy+4.8*w+7.8)) 
 
 ;vss connection for senseamp inverter: 
 dbCreateRect(ccv "metal1" list( endx-2.5*w-1.45:endy+4.8*w+7.2  endx-2.5*w-
17.05:endy+4.8*w+7.8)) 
 
 ;vss connection for writedata  inverter 
 viapt =  endx-2.5*w-3.4:Changey-endy-4.35 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")   
 dbFlattenInst(via 1 t) 
 dbCreateRect(ccv "metal2" list(endx-2.5*w-3:Changey-endy-3.95 endx-0.9:Changey-endy-
4.75)) 
 
 ;vdd connection 
 ;for gate: 
 polyxpt = endx-2.5*w-3.85:endy+6.65 
 polyx = dbCreateInst(ccv  polyxcv "polyx" polyxpt "R0")   
 dbFlattenInst(polyx 1 t) 
 ;connect gate and subx together 
 dbCreateRect(ccv "metal1" list(endx-2.5*w-10.95:endy+6.35  endx-2.5*w-3.5:endy+6.95)) 
 ;route to vdd line 
 dbCreateRect(ccv "metal1" list(endx-2.5*w-4.1:endy+6.35  endx-2.5*w-3.5:endy-2.7*w-
6.95)) 
 dbCreateRect(ccv "metal1" list(endx-2.5*w-3.5:endy-2.7*w-6.95 endx+0.35:endy-2.7*w-
6.35)) 
 
 ;for substrate contact 
 viapt = endx+0.65:endy-2.7*w-6.65 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")   
 dbFlattenInst(via 1 t) 
  
 ;vdd connection for writedata  inverter 
 dbCreateRect(ccv "metal1" list(endx-2.5*w-9.15:Changey-3.9-endy endx-2.5*w-9.85:Changey-
4.15-(endy-3.3-1.35*2*w-7))) 
 dbCreateRect(ccv "metal1" list(endx-2.5*w-9.85:Changey-4.15-(endy-3.3-1.35*2*w-7) 
endx+1:Changey-4.15+0.8-(endy-3.3-1.35*2*w-7))) 
 viapt = endx+1:Changey-3.75-(endy-3.3-1.35*2*w-7) 
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 via = dbCreateInst(ccv  viacv "via" viapt "R0")   
 dbFlattenInst(via 1 t) 
  
 ;;;;;;;;;;;;;;;;;;  Address Routing   ;;;;;;;;;;;;;;;;;;;;;; 
 addressbits = x+y 
 for(addrline 0 addressbits-1 
   if(addrline < y then 
    ;add address pins to row (from word) address lines 
    fig = dbCreateRect(ccv "metal1" list(14.05+(2.9*x)+1.4*(y-1):endy-9.8-(2.7*w)-
(1.4*addrline) 14.55+(2.9*x)+1.4*(y-1):endy-9.3-(2.7*w)-(1.4*addrline))) 
    pinname = buildString(list("A" pcExprToString(addrline)) "_") 
    net = dbCreateNet(ccv pinname) 
    trm = dbCreateTerm(net pinname "input") 
    pin = dbCreatePin(net fig pinname) 
   else 
    ;add address pins to  column (from read) address lines 
    fig = dbCreateRect(ccv "metal1" list(14.05+(2.9*x)+1.4*(y-1):endy-9.8-
(2.7*w)+(1.4*(addrline-y+1)) 14.55+(2.9*x)+1.4*(y-1):endy-9.3-(2.7*w)+(1.4*(addrline-
y+1)))) 
    pinname = buildString(list("A" pcExprToString(addrline)) "_") 
    net = dbCreateNet(ccv pinname) 
    trm = dbCreateTerm(net pinname "input") 
    pin = dbCreatePin(net fig pinname) 
   )  
 ) 
 
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  ;;;;;;;;;;  Route Control Signals ;;;;;;;;;;;;;;;;;;; 
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  ;place via at the end of cen 
  viapt = 14.15+(2.9*x)+1.4*(y-1):Changey+9.25-(endy-2.2-(2.7*w)-(2.9*y)) 
  via = dbCreateInst(ccv  viacv "via" viapt "R0")   
  dbFlattenInst(via 1 t) 
 
  ;;;;;;;;;;;;; route wen signal 
  dbCreateRect(ccv "metal1" list(endx+4.8*(n/2):Changey+8.25-(endy-1.4-(2.7*w)-(2.9*y)) 
14.55+(2.9*x)+1.4*(y-1):Changey+8.25-(endy-2.2-(2.7*w)-(2.9*y)))) 
 
  ;;;;;;;;;;;;; route oen signal 
  dbCreateRect(ccv "metal2" list(endx-2.5*w-13.15:endy-8.25-1.4-(2.7*w)-(2.9*y) 
8.65+(2.9*x)+1.4*y:endy-8.25-2.2-(2.7*w)-(2.9*y))) 
  dbCreateRect(ccv "metal2" list(8.65+(2.9*x)+1.4*y:endy-8.25-2.2-(2.7*w)-(2.9*y) 
7.85+(2.9*x)+1.4*y:Changey+6.85-(endy-2.2-(2.7*w)-(2.9*y)))) 
  dbCreateRect(ccv "metal2" list(7.85+(2.9*x)+1.4*y:Changey+6.85-(endy-2.2-(2.7*w)-
(2.9*y)) 14.55+(2.9*x)+1.4*(y-1):Changey+6.05-(endy-2.2-(2.7*w)-(2.9*y))))   
 
  ;connect oen to TG 
  dbCreateRect(ccv "metal2" list(endx-2.5*w-13.15:endy-8.25-2.2-(2.7*w)-(2.9*y) endx-
2.5*w-13.95:endy+2.85)) 
 
  ;place via at the end of oen  
  viapt = 14.15+(2.9*x)+1.4*(y-1):Changey+6.45-(endy-2.2-(2.7*w)-(2.9*y)) 
  via = dbCreateInst(ccv  viacv "via" viapt "R0")   
  dbFlattenInst(via 1 t) 
 
) 
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B.4 read_decoder.il 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;; 
;; FileName: read_decoder.il 
;; Author: Meenatchi Jagasivamani, April 2000 
;; 
;; procedure read_decoder will layout the column decoder for sense output 
;; 
;; Usage In CIW: 
;; read_decoder(library cellview row_address col_address number_of_rows number_of_cols 
wordsize) 
;; 
;; 
;;  Ex:    read_decoder("sram" "sram_32_4" 5 3 32 64 8)   
;;  --> to create decoder for sram cells with 32 rows and 64 columns & wordsize of 8 
;;  --> Layout will stored in cellview "sram_32_4" under library "sram" 
;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;; 
 
procedure(read_decoder(clib cname x y m n w) 
 
 ;Leaf-Cell library 
 library = "sramleaf" 
  
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;; Open necessary leaf-cells ;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a") 
 nfetcv = dbOpenCellViewByType(library "nfet" "layout" "" "r") 
 subcv = dbOpenCellViewByType(library "substrate_contact" "layout" "" "r") 
 viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r") 
 polyxcv = dbOpenCellViewByType(library "poly_M1" "layout" "" "r") 
 buffcv = dbOpenCellViewByType(library "buffer" "layout" "" "r") 
 invcv = dbOpenCellViewByType(library "ColAdr_inverter" "layout" "" "r") 
 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;; Routing variables ;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 startx = -6.25  ;right side 
 endx = (-4.8*n)-8.1  
 starty = 12.15  ;top  
 endy = (-((m/2)-1)*16.7)-22-((2-(m/2))*1.9)                                  
 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;; Layout column decoders (for write_neg -- during read operations) ;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;; initialize column variables 
 ;;  2**y = # of blocks -> y=#of address lines  ->  # of columns = n = 2**total_cols   
 deltay = 1.35*w   ; to adjust for sense data line routing 
 
 ;;;;;;;;;;;;;;  Connect wordsize blocks together ;;;;;;;;;;;;;;; 
 for(col 0 n-1 
   ;place a M1_M2 via at every sense_neg port 
   viapt = endx+2.35+(4.8*col):endy+1.35+13.35 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
   ;place a M1_M2 via at output of sense_neg switch 
   viapt = endx+2.35+(4.8*col):endy-1.7+13.35 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
   ;place a M1_M2 via at every write_neg port 
   viapt = endx+3.8+(4.8*col):endy+1.35+13.35 
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   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
   ;place a M1_M2 via at every sense port 
   viapt = endx+5.25+(4.8*col):endy+1.35+13.35 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
   ;place a M1_M2 via at output of sense switch 
   viapt = endx+5.25+(4.8*col):endy-1.7+13.35 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
   ;connect sense_neg vias together 
   dbCreateRect(ccv "metal1" list(endx+2+4.8*col:endy+13.35-0.05 
endx+2.7+4.8*col:13.35+endy+0.9))     
 
   ;connect write_neg vias together 
   dbCreateRect(ccv "metal1" list(endx+3.45+4.8*col:13.35+endy-0.05 
endx+4.15+4.8*col:13.35+endy+0.9))     
 
   ;connect sense vias together 
   dbCreateRect(ccv "metal1" list(endx+5.6+4.8*col:13.35+endy-0.05 
endx+4.9+4.8*col:13.35+endy+0.9))     
 
   ;place a poly contact to connect to switches 
   polyxpt = endx+3.8+(4.8*col):13.35+endy-0.4 
   polyx = dbCreateInst(ccv  polyxcv "polyx" polyxpt "R0")   
   dbFlattenInst(polyx 1 t) 
 
   ;;; add switches for sense outputs 
   ;place a switch at every sense+ port 
   nfetInst = endx+2.4+4.8*col:13.35+endy-1.7 
   nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90") 
   dbFlattenInst(nfInst 1 t)              
 
   ;place a switch at every sense+ port 
   nfetInst = endx+5.3+4.8*col:13.35+endy-1.7 
   nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90") 
   dbFlattenInst(nfInst 1 t)              
  
   ;;; layout access grid for sense data lines 
   ;;;define sense grid variables 
   placex = endx+2.35+col*4.8 
   placey = endy-1.35-3.05-1.35*modulo(col w)+13.35 
 
   ;;; layout connections for sense- nodes  
   ;connect current sense- to appropriate address line 
   dbCreateRect(ccv "metal2" list(placex-0.4:13.35+endy-2.1 placex+0.4:placey+0.4)) 
 
   ;place a M1_M2 via at intersection 
   viapt = placex:placey 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
   ;;; layout connections for sense- nodes  
   ;redefine grid variables for sense- 
   placex = endx+5.25+col*4.8 
   placey = endy-3.05-1.35*modulo(col w)-deltay-1.35+13.35 
  
   ;connect current sense+ to appropriate address line 
   dbCreateRect(ccv "metal2" list(placex-0.4:13.35+endy-2.1 placex+0.4:placey+0.4)) 
 
   ;place a M1_M2 via at intersection 
   viapt = placex:placey 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
   ;instantiate a sub contact below sense output switches 
   subInst = endx+3.9+(4.8*col):13.35+endy-2.15 
   scInst = dbCreateInst(ccv subcv "subInst" subInst "R0") 
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   dbFlattenInst(scInst 1 t)              
 
   ; connect sub contact to VSS line 
   dbCreateRect(ccv "metal1" list(endx+3.9-0.45+(4.8*col):13.35+endy-2.3 endx+3.9-
0.45+0.7+(4.8*col):13.35+endy-0.45-2.3)) 
 ) 
 
 for(databit 0 w-1 
   caddr_startx=endx+4.2+(databit*4.8*w) 
 
   ;; layout the horizontal line for the current sense- bit lines  
   dbCreateRect(ccv "metal1" list(endx+2.8-4.35:13.35+endy-3.35-1.35-databit*1.35 
endx+4.9+4.8*(n-1):13.35+endy-1.35-databit*1.35-2.75)) 
   ;Place a pin for sense- signals 
   fig = dbCreateRect(ccv "metal1" list(endx+2.8:13.35+endy-1.35-3.35-databit*1.35 
endx+3.4:13.35+endy-2.75-1.35-databit*1.35)) 
   pinname = buildString(list("BlkSnse" pcExprToString(databit)) "_") 
   net = dbCreateNet(ccv pinname) 
   trm = dbCreateTerm(net pinname "output") 
   pin = dbCreatePin(net fig pinname) 
 
   ;; layout the horizontal line for the current sense+ bit lines  
   dbCreateRect(ccv "metal1" list(endx+2.8-4.35:13.35+endy-1.35-3.35-deltay-databit*1.35 
endx+4.9+4.8*(n-1):13.35+endy-1.35-deltay-databit*1.35-2.75)) 
   ;Place a pin for sense+ signals 
   fig = dbCreateRect(ccv "metal1" list(endx+2.8:13.35+endy-1.35-3.35-deltay-databit*1.35 
endx+3.4:13.35+endy-1.35-deltay-2.75-databit*1.35)) 
   pinname = buildString(list("BlkSnseNeg" pcExprToString(databit)) "_") 
   net = dbCreateNet(ccv pinname) 
   trm = dbCreateTerm(net pinname "output") 
   pin = dbCreatePin(net fig pinname) 
 ) 
 
 for(block 0 (2**y)-1 
    caddr_startx=endx+4.2+(block*4.8*w) 
   ;join word-size blocks together for write_neg signal 
   dbCreateRect(ccv "poly1" list(caddr_startx-1.15:13.35+endy-1.15 caddr_startx-
1.15+1.5+4.8*(w-1):13.35+endy-0.8))  
 
   ;route write_neg signal out of read-data access lines 
   placex = endx+3.8+block*w*4.8 
   placey = 13.35+endy-3.3-1.35-1.35*2*w 
   dbCreateRect(ccv "metal2" list(placex-0.4:13.35+endy+0.95 placex+0.4:placey)) 
 
   ;Place a pin for write_neg signals 
   fig = dbCreateRect(ccv "metal2" list(placex-0.3:placey+0.7 placex+0.3:placey+0.1)) 
   pinname = buildString(list("BlkRead" pcExprToString((2**y)-1-block)) "_") 
   net = dbCreateNet(ccv pinname) 
   trm = dbCreateTerm(net pinname "input") 
   pin = dbCreatePin(net fig pinname) 
 
   ;place a M1_M2 via at the end 
   viapt = placex:placey+0.4 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
  ;add buffer at end 
  buffpt = placex+1.35:placey-5.25 
  buff = dbCreateInst(ccv  buffcv "buff" buffpt "MY")   
  dbFlattenInst(buff 1 t) 
   
  ;connect m2 to buffer 
  dbCreateRect(ccv "metal1" list(placex-0.35:placey placex+0.35:placey-0.6))   
   
  ;connect buffer to decoder 
  if(modulo(block 2) == 1  
  then   
    dbCreateRect(ccv "metal1" list(placex-0.35:placey-6.8 placex+0.35:placey-9.25))   
  else 
    dbCreateRect(ccv "metal1" list(placex-0.35:placey-6.8 placex+0.35:placey-8.45))   
  ) 
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 ) 
 
 ;; Connect buffer to VDD & VSS 
 ; connect vdd to vdd bus 
 dbCreateRect(ccv "metal2" list(endx+0.95:placey-6.3 placex+2.35:placey-7))   
 
 ;connect vss together 
 dbCreateRect(ccv "metal2" list(endx+2.95:placey-0.55 placex+2.35:placey-1.25))   
  
 ; add via 
 viapt = endx+2.55:placey-0.9 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")   
 dbFlattenInst(via 1 t) 
  
 ; connect vss to vss bus 
 dbCreateRect(ccv "metal1" list(endx+2.1:placey-0.55 endx-0.15:placey-1.25))   
  
 ; add via 
 viapt = endx-0.6:placey-0.9 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")   
 dbFlattenInst(via 1 t) 
 
 ;;;;;;;;;;;;;;;  Layout column decoder for read signal ;;;;;;;;;;;;;;;;;;;;; 
 for(addrline 0 y-1 
   placex = endx+3.85 
   placey = endy-1.35-4.35-(2.7*w)-(2.9*addrline)-9.2+13.35 
   for(col 0 (2**y)-1 
 
     ;;;;;;;;check if a nfet should be place at this col 
     if(modulo((col-(2**addrline)) (2**(addrline+1))) == 0  
     then       ;;  layout negative address lines 
       ;;  Place nfet decoders for this col  
       nfetInst = placex+(4.8*w)*col:placey-1.45 
       nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90") 
       dbFlattenInst(nfInst 1 t)         
       if(addrline == 0  
       then 
  dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:placey+0.35 
placex+0.3+(4.8*w)*col:placey+0.35+0.65)) 
       else 
  dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:placey+0.35 
placex+0.3+(4.8*w)*col:placey+0.35+2.2)) 
       ) 
       ;;;;;;;;put substrate contact at every other address lines 
       ;instantiate a sub contact next to nfet 
       subInst = placex+(4.8*w)*col+1.5:placey-1.45-0.2 
       scInst = dbCreateInst(ccv subcv "subInst" subInst "R0") 
       dbFlattenInst(scInst 1 t)              
       ; draw m1 to connect to next ** address line ** 
       dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:placey-1.8 placex-
0.4+(4.8*w)*col-(4.8*w*(2**addrline)):placey-1.2)) 
 
       ;;;connect decoder's sub contact to VSS line 
       ;connect to M2 
       viapt =  placex+(4.8*w)*col+1.5-0.1:placey-1.45 
       via = dbCreateInst(ccv  viacv "via" viapt "R0")   
       dbFlattenInst(via 1 t) 
       dbCreateRect(ccv "metal2" list(placex+(4.8*w)*col+1:placey-1.45-0.3 endx+3.9-0.45-
0.65-3.1:placey-1.45-0.2+0.5)) 
 
     else if(modulo(col (2**(addrline+1))) == 0  
     then   ;; layout positive address lines 
       ; place instance      
       nfetInst = placex+(4.8*w)*col:placey 
       nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90") 
       dbFlattenInst(nfInst 1 t)   
       ;connect to next nfet for this col 
       dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:placey+1.7-2.9 
placex+0.3+(4.8*w)*col:placey+1.8+0.75-2.9))   
   
       ;;;;;;;;put substrate contact at every other address lines 
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       ;instantiate a sub contact next to nfet 
       subInst = placex+(4.8*w)*col+1.5:placey-0.2 
       scInst = dbCreateInst(ccv subcv "subInst" subInst "R0") 
       dbFlattenInst(scInst 1 t)              
       ;;;connect decoder's substrate contact to VSS line 
       ;let sub contact connect to M2 
       viapt =  placex+(4.8*w)*col+1.4:placey 
       via = dbCreateInst(ccv  viacv "via" viapt "R0")   
       dbFlattenInst(via 1 t) 
       dbCreateRect(ccv "metal2" list(placex+(4.8*w)*col+1:placey-0.3 endx+3.9-0.45-0.65-
3.1:placey-0.2+0.5)) 
 
  
    );; if positive address line   
     ) 
   );end for col 
 
   ;route poly for positive and negative address lines 
   dbCreateRect(ccv "poly1" list(startx-0.95:placey+0.9 endx+2.8:placey+0.55))           
;positive 
   dbCreateRect(ccv "poly1" list(startx-0.95:placey-1.45+0.9 endx+2.8:placey-1.45+0.55)) 
;negative 
 
   ;place inverters to get both negative and positive address  
   invpt =  startx-7.85:placey+4.95 
   inv = dbCreateInst(ccv  invcv "inv" invpt "R270")  ; connect vdd 
   dbFlattenInst(inv 1 t) 
   ;connect sub contact to ground 
   dbCreateRect(ccv "metal2" list(startx-1.8:placey-0.35 endx-0.3:placey+0.35)) 
 
   ;route write-address lines to read-address lines 
   dbCreateRect(ccv "metal1" list(startx+5.65:placey+1.05 
7.85+(2.9*x)+1.4*addrline:0.35+placey)) 
   ;place via 
   viapt =  8.25+(2.9*x)+1.4*addrline:0.7+placey 
   via = dbCreateInst(ccv  viacv "via" viapt "R270")  ; connect vdd 
   dbFlattenInst(via 1 t) 
   dbCreateRect(ccv "metal2" list(7.85+(2.9*x)+1.4*addrline:placey+0.35 
8.65+(2.9*x)+1.4*addrline:-7.4*m)) 
   dbCreateRect(ccv "metal1" list(7.85+(2.9*x)+1.4*addrline:placey+1.05 
8.65+(2.9*x)+1.4*addrline:endy-0.45-(2.7*w)-(1.4*addrline))) 
   dbCreateRect(ccv "metal1" list(8.65+(2.9*x)+1.4*addrline:endy-0.45-(2.7*w)-
(1.4*addrline) 14.65+1.4*(x+y)+(2.9*x)+1.4*(y-1):endy-1.25-(2.7*w)-(1.4*addrline))) 
 
 ) 
 
 ;;;;;;;;Route VSS line for read decoder Sub x 
 ;extend VSS route 
 dbCreateRect(ccv "metal2" list(endx-0.9:13.35+endy+1.3 endx-0.3:13.35+endy-13.75-
(2.7*w)-(2.9*y))) 
 ;extend VDD route 
 dbCreateRect(ccv "metal2" list(endx+0.35:13.35+endy+1.3 endx+0.95:13.35+endy-11.65-
(2.7*w))) 
 
 ;connect VSS to first line (connected to subx) 
 dbCreateRect(ccv "metal1" list(endx+0.6-0.45-0.65:13.35+endy-0.45-2.3 endx+4.9+4.8*(n-
1):13.35+endy-0.45-2.3-0.6)) 
 ;place a M1_M2 via at VSS line 
 viapt = endx+3.9-0.45-0.65-3.1-0.3:13.35+endy-0.45-2.3-0.6+0.3 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")   
 dbFlattenInst(via 1 t) 
 
 ;connect well contact of inverter to vdd 
 dbCreateRect(ccv "metal1" list(startx+5.05:endy+2.45-(2.7*w) startx+0.05-4.8*(w-
1):endy+1.7-(2.7*w))) 
 
 ;place pin for OEN (read enable) signal  
 dbCreateRect(ccv "metal1" list(endx+4.8*(n/2):endy-0.45-(2.7*w)-(2.9*y) 
endx+0.8+4.8*(n/2):endy-0.95-(2.7*w)-(2.9*y))) 
 ;place a M1_M2 via at VSS line 
 viapt = endx+0.4+4.8*(n/2):13.35+endy-14.75-(2.7*w)-(2.9*y) 
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 via = dbCreateInst(ccv  viacv "via" viapt "R0")   
 dbFlattenInst(via 1 t) 
 fig = dbCreateRect(ccv "metal2" list(endx+0.15+4.8*(n/2):13.35+endy-14.75-(2.7*w)-
(2.9*y) endx+0.65+4.8*(n/2):13.35+endy-14.35-(2.7*w)-(2.9*y))) 
 pinname = "OEN" 
 net = dbCreateNet(ccv pinname) 
 trm = dbCreateTerm(net pinname "input") 
 pin = dbCreatePin(net fig pinname) 
 
) ;; end procedure read_decoder.il 
 



 84 

B.5 sram_array.il 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;; FileName: sram_array.il 
;; procedure sram_array will layout an array of sram cells  
;; 
;; Usage In CIW: 
;; procedure sram_array is the top-level function to layout an SRAM circuit 
;; 
;; Ex:  load("sram_array.il")  sram_array("sram" "sram_32_4" 256 8) 
;;   --> to create array of sram cells with 256 words with a wordsize of 8 bits 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;;;  Load all other necessary files ;;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
load("cell_layout.il") 
load("word_decoder.il") 
load("read_decoder.il") 
load("write_decoder.il") 
load("package.il") 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;;;;;;  procedure sram_array  ;;;;;;;;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
procedure(sram_array(clib cname words wordsize) 
  
  ;approximate aspect ratio for 1 bit = 2^-2 
  AR_1bit = 0.65  
 
  ;;;;;;Calculate row and col for equal aspect ratio 
  ar = floor(log(wordsize* AR_1bit)/log(2))   ;aspect ratio for 1 wordsize block 
  k = int(log(words)/log(2))  ;number of address lines 
  y = floor((k-ar)/2)   ;x+y = k 
  x = k-y    ;x = ar+y 
   
  total_rows = int(2**x) 
  total_cols = (2**y)*wordsize 
 
  ;; layout sram cells  
  cell_layout(clib cname total_rows total_cols)  
 
  ;; layout row & column address decoder 
  word_decoder(clib cname x y total_rows total_cols wordsize) 
  read_decoder(clib cname x y total_rows total_cols wordsize) 
  write_decoder(clib cname x y total_rows total_cols wordsize) 
  package(clib cname x y total_rows total_cols wordsize) 
 
) 
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B.6 sram_compiler.il 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;; FileName: sram_compiler.il 
;; Author:  Meenatchi Jagasivamani, April 2000 
;; 
;; procedure sram_compiler will generate an embedded SRAM layout  
;; 
;; Usage In CIW: 
;;   sram_compiler(library cellview Words Wordsize Type) 
;; 
;;   --> Possible Types: 
;;        Type = 0  -- Simple SRAM array without Array Partitioning 
;;        Type = 1  -- Array Partitioned SRAM array with the Block Select at bottom 
;; 
;; Ex:  sram_compiler("sram" "block_1024_8" 256 8 1) 
;;        --> Create a 1024x8 size SRAM that is partitioned into 4 blocks for low-power 
;;        --> Layout will be stored in cellview "block_1024_8" under library "sram" 
;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;;;  Load all other necessary files ;;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
load("sram_array.il") 
load("BS_center.il") 
load("BS_bottom.il") 
 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;;;;;; procedure to layout SRAM ;;;;;;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
procedure(sram_compiler(clib cname words w type) 
   
  if(type == 0 then 
    ;;;;; generate a simple SRAM array 
    sram_array(clib cname words w) 
  else     
     
    ;;;;; generate circuit for 1 block = words/4 
 
    ; create block in a temporary cellview called : "temp_" + cname 
    block = int(words/4)    ; block size  
    blkcvname = buildString(list("temp" pcExprToString(cname)) "_")  
    sram_array(clib blkcvname block w) 
 
    ;call array-partitioning function 
    array_partition(clib cname words w) 
 
    ;delete temporary  block cellview 
    ddDeleteObj(ddGetObj(clib blkcvname)) 
  ) 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;; Save Cellview before quitting ;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a") 
 dbSave(ccv)    ;save cellview 
 dbClose(ccv)   ;close cellview 
) 
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B.7 word_decoder.il 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;; 
;; FileName: word_decoder.il 
;; Author:  Meenatchi Jagasivamani, April 2000 
;; 
;; procedure word_decoder will layout the row decoder for word sram cells 
;; 
;; Usage In CIW: 
;; word_decoder(library cellview row_address col_address number_of_rows number_of_cols 
wordsize) 
;; 
;;  Ex:   word_decoder("sram" "sram_32_4" 5 3 32 64 8)   
;;  --> to create decoder for sram cells with 32 rows and 64 columns & wordsize of 8 
;;  --> Layout will stored in cellview "sram_32_4" under library "sram" 
;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;; 
 
procedure(word_decoder(clib cname x y m n w) 
 
 ;Leaf-Cell library 
 library = "sramleaf" 
  
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;; Open necessary leaf-cells ;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a") 
 nfetcv = dbOpenCellViewByType(library "nfet" "layout" "" "r") 
 subcv = dbOpenCellViewByType(library "substrate_contact" "layout" "" "r") 
 viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r") 
 polyxcv = dbOpenCellViewByType(library "poly_M1" "layout" "" "r") 
 buffcv = dbOpenCellViewByType(library "buffer" "layout" "" "r") 
 invcv = dbOpenCellViewByType(library "RowAdr_inverter" "layout" "" "r") 
 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;; Routing variables ;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 startx = -6.25  ;right side 
 endx = (-4.8*n)-8.1  
 starty = 12.15  ;top  
 endy = (-((m/2)-1)*16.7)-22-((2-(m/2))*1.9) 
                      
 deltax = 8.85             
 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;;; Layout buffers for row address decoder (for word signal) ;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 for(row 0 m-1 
   if(modulo(row 2) == 1 
     then  ;; odd row numbers 
       ;instantiate a buff contact below nfet 
       buffInst = startx+6:-3.05-7.4*(row-1) 
       scInst = dbCreateInst(ccv buffcv "buffInst" buffInst "R90") 
       dbFlattenInst(scInst 1 t)              
  
       ;connect buffer to decoder output 
       dbCreateRect(ccv "metal1" list(startx+6.85:-1.35-7.4*(row-1) startx+10.65:-0.65-
7.4*(row-1))) 
     else 
       ;instantiate a buf contact below nfet 
       buffInst = startx+6:-4.5-7.4*(row-1) 
       scInst = dbCreateInst(ccv buffcv "buffInst" buffInst "MYR90") 
       dbFlattenInst(scInst 1 t)              
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       ;connect buffer to decoder output 
       dbCreateRect(ccv "metal1" list(startx+7.55:-6.35-7.4*(row-1) startx+9.2:-5.65-
7.4*(row-1))) 
   )    
 ) 
 
 ;;;;;;;;  Make VDD & VSS Connections for buffer 
 ;;;;; for VSS 
 dbCreateRect(ccv "metal2" list(startx+1.25:starty-0.25 startx+2.05:endy+19.85)) 
 viapt = startx+1.65:starty-0.6 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")  ; connect vdd 
 dbFlattenInst(via 1 t) 
 
 ;;;;; for VDD 
 dbCreateRect(ccv "metal2" list(startx+7:starty-4.7 startx+7.8:endy+19.85)) 
 viapt = startx+7.4:starty-5.05 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")  ; connect vdd 
 dbFlattenInst(via 1 t) 
  
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;;;; Layout decoders for row address decoder (for word signal) ;;;;;; 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 for(raddress 0 x-1 
  ;initialize row counters 
  neg_row = 0 
  pos_row = 0 
 
  for(row 0 m-1 
   if(modulo(row 2) == 1 
   then  ;; odd row numbers 
 
     ;determine if a nfet should be placed for the current row 
     if(modulo((row-(2**raddress)) (2**(raddress+1))) == 0  
     then  
       ;;  layout negative address lines for LSB  -- A0_neg  only 
       ;;  Place nfet decoders for this row  
       nfetInst = -4.1+deltax:-1.05-7.4*(row-1) 
       nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R0") 
       dbFlattenInst(nfInst 1 t)              
 
       ; connect to next address line  
       dbCreateRect(ccv "metal1" list(-3+deltax:8.45-7.4*row -2.3+deltax:6.75-7.4*row))   
 
       ;;;;;;;;;;;  connect last address line to VDD for odd rows  ;;;;;;;;;;;;;; 
       if(raddress == x-1  ;; the last address line --> means raddress = x-1 = 0 & row = 
1 
         then 
           currentx = -4.1+(2.9*raddress) 
    currenty = 1.35 
  
      ;Make connection for VDD -- to power the address decoder 
     dbCreateRect(ccv "metal1" list(currentx+1.8+deltax:currenty-0.3  -
3.75+(2.9*x)+deltax:currenty+0.4)) 
     viapt = 0.45-3.75+(2.9*x)+deltax:currenty+0.05 
     via = dbCreateInst(ccv  viacv "via" viapt "R0")  ; connect vdd 
     dbFlattenInst(via 1 t) 
       ) 
     ) 
 
     ;;;;;;;;  Substrate Contacts ;;;;;;;;;;;;;;;;;;;;;; 
     ;put substrate contact every other row and at every other address lines 
     ;instantiate a sub contact below nfet 
     subInst = -1.1+(5.8*floor(raddress/2))+deltax:-2.65-7.4*(row-1) 
     scInst = dbCreateInst(ccv subcv "subInst" subInst "R0") 
     dbFlattenInst(scInst 1 t)              
 
     ;instantiate a sub contact above nfet 
     subInst = -1.1+(5.8*floor(raddress/2))+deltax:2.65-7.4*(row-1) 
     scInst = dbCreateInst(ccv subcv "subInst" subInst "R0") 
     dbFlattenInst(scInst 1 t)              
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     ;instantiate a via contact below nfet 
     viapoint = -1.2+(5.8*floor(raddress/2))+deltax:-3.15+0.7-7.4*(row-1) 
     viaInst = dbCreateInst(ccv viacv "viaInst" viapoint "R0") 
     dbFlattenInst(viaInst 1 t)              
 
     ;instantiate a via contact above nfet 
     viapoint = -1.2+(5.8*floor(raddress/2))+deltax:2.85-7.4*(row-1) 
     viaInst = dbCreateInst(ccv viacv "viaInst" viapoint "R0") 
     dbFlattenInst(viaInst 1 t)              
 
     ;; connect substrates to VSS line 
     dbCreateRect(ccv "metal2" list(-1.05+0.25+(5.8*floor(raddress/2))+deltax:2.65+0.55-
7.4*(row-1) -3.65+(2.9*x)+deltax:1.95+0.55-7.4*(row-1))) 
     dbCreateRect(ccv "metal2" list(-1.05+0.25+(5.8*floor(raddress/2))+deltax:-2.65+0.55-
7.4*(row-1) -3.65+(2.9*x)+deltax:-3.35+0.55-7.4*(row-1))) 
 
   else  ;; even row numbers (first one) 
     ;determine if a nfet should be placed for the current row 
     if(modulo(row (2**(raddress+1))) == 0 || (modulo((row-(2**raddress)) 
(2**(raddress+1))) == 0) 
     then  
       ;;  layout even rows -- both pos & neg  address lines  
       if(raddress == 0  
       then 
         ;;  Place nfet decoders for this row  
         nfetInst = -5.55+deltax:1.35-7.4*row 
         nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R0") 
         dbFlattenInst(nfInst 1 t)  
 
  ; draw m1 to connect to next address line 
         dbCreateRect(ccv "metal1" list(-3.75+deltax:1.75-7.4*row -2.3+deltax:1.05-
7.4*row))   
 
       else ;; not the first address line 
  currentx = -5.55+(2.9*raddress) 
  currenty = 3.85-(7.4*((2*row)+(2**raddress)-1)/2) 
 
  if(raddress == 1 
    then 
    currenty = 1.35-7.4*row 
  ) 
 
  if(modulo((row-(2**raddress)) (2**(raddress+1))) == 0  
  then  ;; for negative addresslines 
    currentx = -4.1+(2.9*raddress) 
    neg_row = neg_row+1 
 
      ; draw m1 to connect to next address line 
           dbCreateRect(ccv "metal1" list(-
3+(2.9*raddress)+deltax:currenty+0.4+(14.8*(2**(raddress-1))) -
2.3+(2.9*raddress)+deltax:currenty+0.4)) 
 
    ; negative address lines need to connect to previous line 
    dbCreateRect(ccv "metal1" list(currentx-0.35+deltax:currenty+0.4 currentx-
1.8+deltax:currenty-0.3))          
 
    if(raddress == x-1 
    then 
      ;Make connection for CEN -- to power the address decoder 
       dbCreateRect(ccv "metal1" list(currentx+1.8+deltax:currenty-0.3 
currentx+3.3+deltax+1.25:currenty+0.4)) 
       viapt = currentx+5+deltax:currenty+0.05 
       via = dbCreateInst(ccv  viacv "via" viapt "R0")  ; connect vdd 
       dbFlattenInst(via 1 t) 
  
             ;place a pin for CEN (chip enable) signal 
       fig = dbCreateRect(ccv "metal2" list(currentx+4.8+deltax:currenty-0.15 
currentx+5.2+deltax:currenty+0.25)) 
             pinname = "CEN" 
      net = dbCreateNet(ccv pinname) 
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       trm = dbCreateTerm(net pinname "input") 
       pin = dbCreatePin(net fig pinname) 
   
        ;route out CEN 
      dbCreateRect(ccv "metal2" list(currentx+4.6+deltax:currenty+0.05 
currentx+5.4+deltax:starty+15.6+(2.7*w)+(2.9*y))) 
      dbCreateRect(ccv "metal2" 
list(currentx+5.4+deltax:starty+14.8+(2.7*w)+(2.9*y) 14.55+(2.9*x)+1.4*(y-
1):starty+15.6+(2.7*w)+(2.9*y)))       
    ) 
 
      else 
    pos_row = pos_row+1 
      ; draw m1 to connect to next address line 
           dbCreateRect(ccv "metal1" list(-3.75+(2.9*raddress)+deltax:currenty-0.3 -
3+(2.9*raddress)+deltax:currenty+0.7-0.3))  
  ) 
 
  ; place instance 
         nfetInst = currentx+deltax:currenty 
         nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R0") 
         dbFlattenInst(nfInst 1 t)    
       ) 
     ) 
   ) 
 );end for row 
 
 ;;;connect nfet together for this address line 
 ;connect negative address lines together 
 dbCreateRect(ccv "poly1" list(-5+(2.9*raddress)+deltax:0.7 -
5.55+(2.9*raddress)+0.9+deltax:-7.4*(m-1))) 
 ;connect positive address lines together 
 dbCreateRect(ccv "poly1" list(-3.55+(2.9*raddress)+deltax:0.7 -
4.1+(2.9*raddress)+0.9+deltax:-7.4*(m-1))) 
 
 ;place inverters to get both negative and positive address  
 invpt =  -0.05+(2.9*raddress)+0.9+deltax:11.4-7.4*(m-1) 
 inv = dbCreateInst(ccv  invcv "inv" invpt "R180")  ; connect vdd 
 dbFlattenInst(inv 1 t) 
 
; ;;;;place pin for positive address line -- 0.6x0.6  dx = 1.45 
; fig = dbCreateRect(ccv "metal1" list(-3.7+(2.9*raddress)+deltax:-0.7+5.5-7.4*m -
3.1+(2.9*raddress)+deltax:-0.1+5.5-7.4*m)) 
; pinname = buildString(list("wordAdr" pcExprToString(raddress)) "_") 
; net = dbCreateNet(ccv pinname) 
; trm = dbCreateTerm(net pinname "input") 
; pin = dbCreatePin(net fig pinname) 
 
 ;; route word address lines 
 dbCreateRect(ccv "metal1" list(-3.1+(2.9*raddress)+deltax:5.4-7.4*m -
3.8+(2.9*raddress)+deltax:endy+0.2+(1.4*raddress)-(2.7*w))) 
 dbCreateRect(ccv "metal1" list(-3.8+(2.9*raddress)+deltax:endy+0.2+(1.4*raddress)-
(2.7*w) 14.65+(2.9*x)+1.4*(x+y)+1.4*(y-1):endy+1+(1.4*raddress)-(2.7*w))) 
 
) ;;;;;;;;;;;;end for raddress 
 
 ;Make connection for VSS -- for the substrate contacts 
 dbCreateRect(ccv "metal1" list(-6.65:11.2 -3.75+(2.9*x)+deltax:11.9)) 
 viapt = -3.3+(2.9*x)+deltax:11.55 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")  ; connect vdd 
 dbFlattenInst(via 1 t) 
 dbCreateRect(ccv "metal2" list(-3.7+(2.9*x)+deltax:11.2 -2.9+(2.9*x)+deltax:-7.4*m)) 
 
 ;Make connection for VDD -- to power the row address decoder 
 dbCreateRect(ccv "metal1" list(-6.65:6.75 startx+7:7.45)) 
 
 ;connect inverter to VDD 
 dbCreateRect(ccv "metal1" list(startx+7.05:11.4-12.2-7.4*(m-1) startx+7.05+0.7:15.7-
12.25-7.4*(m-1))) 
 
) 
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B.8 write_decoder.il 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;; FileName: write_decoder.il 
;; procedure write_decoder will layout the column decoder for write data 
;; given:  number of rows, number of cols, wordsize 
;; 
;; Usage In CIW: 
;;      write_decoder(row_address col_address number_of_rows number_of_cols wordsize) 
;; 
;; 
;;  Ex:    write_decoder(5 3 32 64 8)   
;;  --> to create decoder for sram cells with 32 rows and 64 columns & wordsize of 8 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;  load("write_decoder.il")    write_decoder(2 3 4 8 1) 
;; for 32x4: load("write_decoder.il")  write_decoder("sram" "sram_32_4" 3 2 8 16 4) 
;;;;;;;;;;;;;;;;;;;;;;;;;; 
;; for 64x8: load("write_decoder.il")  write_decoder("sram" "sram_32_4" 4 2 16 32 8) 
;; for 32x8: load("write_decoder.il")  write_decoder(3 2 8 32 8) 
;;;;;;;;;;;;;;; 
procedure(write_decoder(clib cname x y m n w) 
 library = "sramleaf" 
  
 ;create db variable for compiler 
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a") 
 nfetcv = dbOpenCellViewByType(library "nfet" "layout" "" "r") 
 subcv = dbOpenCellViewByType(library "substrate_contact" "layout" "" "r") 
 viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r") 
 polyxcv = dbOpenCellViewByType(library "poly_M1" "layout" "" "r") 
 buffcv = dbOpenCellViewByType(library "buffer" "layout" "" "r") 
 invcv = dbOpenCellViewByType(library "ColAdr_inverter" "layout" "" "r") 
 
 Instpoint = 0:0 
 
 ; Routing variables 
 startx = -6.25  ;right side 
 endx = (-4.8*n)-8.1  
 starty = 12.15  ;top  
 endy = (-((m/2)-1)*16.7)-22-((2-(m/2))*1.9) 
                                  
 Changey = starty+endy+0.4 
 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;Layout column decoders (for write -- during write operations) 
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 ;; initialize column variables 
 ;; total_cols = y + int(log(w)/log(2))   
 ;;  2**y = # of blocks -> y=#of address lines  ->  # of columns = n = 2**total_cols   
 deltay = 1.35*w   ; to adjust for write_data data line routing 
 
 ;;;;;;;;;;;;;;  Connect wordsize blocks together ;;;;;;;;;;;;;;; 
 for(col 0 n-1 
   ;;; layout access grid for write_data data lines 
   ;;;define write_data grid variables 
   placex = endx+2.35+col*4.8 
   placey = endy-3.05-1.35*modulo(col w) 
 
   ;;; layout connections for write_data- nodes  
   ;connect current write_data- to appropriate address line 
   dbCreateRect(ccv "metal2" list(placex-0.4:Changey-(endy-2.1) placex+0.4:Changey-
(placey+0.4))) 
 
   ;place a M1_M2 via at intersection 
   viapt = placex:Changey-placey 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
   ;; layout connections for write_data- nodes  
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   ;redefine grid variables for write_data- 
   placex = endx+5.25+col*4.8 
   placey = endy-3.05-1.35*modulo(col w)-deltay 
  
   ;connect current write_data+ to appropriate address line 
   dbCreateRect(ccv "metal2" list(placex-0.4:Changey-(endy-2.1) placex+0.4:Changey-
(placey+0.4))) 
 
   ;place a M1_M2 via at intersection 
   viapt = placex:Changey-placey 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 ) 
 
 for(databit 0 w-1 
   caddr_startx=endx+4.2+(databit*4.8*w) 
   ;; layout the horizontal line for the current write_data- bit lines  
   dbCreateRect(ccv "metal1" list(endx+2.8-4.35:Changey-(endy-3.35-databit*1.35) 
endx+4.9+4.8*(n-1):Changey-(endy-databit*1.35-2.75))) 
;   ;Place a pin for write_data- signals 
;   fig = dbCreateRect(ccv "metal1" list(endx+2.8:Changey-(endy-3.35-databit*1.35) 
endx+3.4:Changey-(endy-2.75-databit*1.35))) 
;   pinname = buildString(list("BlkWData" pcExprToString(databit)) "_") 
;   net = dbCreateNet(ccv pinname) 
;   trm = dbCreateTerm(net pinname "output") 
;   pin = dbCreatePin(net fig pinname) 
 
   ;; layout the horizontal line for the current write_data+ bit lines  
   dbCreateRect(ccv "metal1" list(endx+2.8-4.35:Changey-(endy-3.35-deltay-databit*1.35) 
endx+4.9+4.8*(n-1):Changey-(endy-deltay-databit*1.35-2.75))) 
   ;Place a pin for write_data+ signals 
   fig = dbCreateRect(ccv "metal1" list(endx+2.8:Changey-(endy-3.35-deltay-databit*1.35) 
endx+3.4:Changey-(endy-deltay-2.75-databit*1.35))) 
   pinname = buildString(list("BlkWDataNg" pcExprToString(databit)) "_") 
   net = dbCreateNet(ccv pinname) 
   trm = dbCreateTerm(net pinname "output") 
   pin = dbCreatePin(net fig pinname) 
 ) 
 
 for(block 0 (2**y)-1 
   caddr_startx=endx+4.2+(block*4.8*w) 
 
   ;join word-size blocks together for write signal 
   dbCreateRect(ccv "poly1" list(caddr_startx-1.15:Changey-(endy-1.15) caddr_startx-
1.15+1.5+4.8*(w-1):Changey-(endy-0.8)))  
 
   ;route write signal out of read-data access lines 
   placex = endx+3.8+block*w*4.8 
   placey = endy-3.3-1.35*2*w 
   dbCreateRect(ccv "metal2" list(placex-0.4:Changey-(endy+0.95)+2.1 placex+0.4:Changey-
placey)) 
   ;Place a pin for write signals 
   fig = dbCreateRect(ccv "metal2" list(placex-0.3:Changey-(placey+0.7) 
placex+0.3:Changey-(placey+0.1))) 
   pinname = buildString(list("BlkWrite" pcExprToString((2**y)-1-block)) "_") 
   net = dbCreateNet(ccv pinname) 
   trm = dbCreateTerm(net pinname "input") 
   pin = dbCreatePin(net fig pinname) 
 
 
   ;place a M1_M2 via at start of the write signal ** 
   viapt = placex:Changey-(placey+0.4)-2.7*(w-1)-4.05 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
   ;place a M1_M2 via at the end 
   viapt = placex:Changey-(placey+0.4) 
   via = dbCreateInst(ccv  viacv "via" viapt "R0")   
   dbFlattenInst(via 1 t) 
 
  ;add buffer at end 
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  buffpt = placex+1.35:Changey-(placey-5.25) 
  buff = dbCreateInst(ccv  buffcv "buff" buffpt "R180")   
  dbFlattenInst(buff 1 t) 
   
  ;connect m2 to buffer 
  dbCreateRect(ccv "metal1" list(placex-0.35:Changey-placey placex+0.35:Changey-(placey-
0.6)))   
   
  ;connect buffer to decoder 
  if(modulo(block 2) == 1  
  then   
    dbCreateRect(ccv "metal1" list(placex-0.35:Changey-(placey-6.8) placex+0.35:Changey-
(placey-9.25)))  
  else 
    dbCreateRect(ccv "metal1" list(placex-0.35:Changey-(placey-6.8) placex+0.35:Changey-
(placey-8.45))) 
  )  
 ) 
 ;; Connect buffer to VDD & VSS 
 ; connect vdd to vdd bus 
 dbCreateRect(ccv "metal2" list(endx+0.95:Changey-(placey-6.3) placex+2.35:Changey-
(placey-7)))   
 
 ;connect vss together 
 dbCreateRect(ccv "metal2" list(endx+2.95:Changey-(placey-0.55) placex+2.35:Changey-
(placey-1.25)))   
 ; add via 
 viapt = endx+2.55:Changey-(placey-0.9) 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")   
 dbFlattenInst(via 1 t) 
 ; connect vss to vss bus 
 dbCreateRect(ccv "metal1" list(endx+2.1:Changey-(placey-0.55) endx-0.15:Changey-(placey-
1.25))) 
 ; add via 
 viapt = endx-0.6:Changey-(placey-0.9) 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")   
 dbFlattenInst(via 1 t) 
 ; connect vss to vss bus  
 
 
 ;;;;;;;;;;;;;;  Layout column decoder for read signal ;;;;;;;;;;;;;;;;;;;;; 
 for(addrline 0 y-1 
   placex = endx+3.85 
   placey = endy-4.35-(2.7*w)-(2.9*addrline)+1.45-9.2 
   for(col 0 (2**y)-1 
     ;check if a nfet should be place at this col 
     if(modulo((col-(2**addrline)) (2**(addrline+1))) == 0  
     then       ;  layout negative address lines 
       ;  Place nfet decoders for this col  
       nfetInst = placex+(4.8*w)*col:Changey-(placey-1.45) 
       nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90") 
       dbFlattenInst(nfInst 1 t)         
       ; connect to next nfet in this column 
       if(addrline == 0  
       then 
  dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:Changey-(placey+0.35-1.45) 
placex+0.3+(4.8*w)*col:Changey-(placey+0.35+0.65-1.45))) 
       else 
  dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:Changey-(placey+0.35-1.45) 
placex+0.3+(4.8*w)*col:Changey-(placey+0.35+2.2-1.45))) 
       ) 
       ;;;;;;;;put substrate contact at every other address lines 
       ;instantiate a sub contact next to nfet 
       subInst = placex+(4.8*w)*col+1.5:Changey-(placey-1.45-0.2)+1.05 
       scInst = dbCreateInst(ccv subcv "subInst" subInst "R0") 
       dbFlattenInst(scInst 1 t)              
       ; draw m1 to connect to next ** address line ** 
       dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:Changey-(placey-1.8-1.45) 
placex-0.4+(4.8*w)*col-(4.8*w*(2**addrline)):Changey-(placey-1.2-1.45))) 
 
       ;;;connect decoder's sub contact to VSS line 
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       ;connect to M2 
       viapt =  placex+(4.8*w)*col+1.5-0.1:Changey-(placey-0.1)+2.8 
       via = dbCreateInst(ccv  viacv "via" viapt "R0")   
       dbFlattenInst(via 1 t) 
       dbCreateRect(ccv "metal2" list(placex+(4.8*w)*col+1:Changey-(placey-0.4)+2.8 
endx+3.9-0.45-0.65-3.1:Changey+2.8-(placey-0.3+0.5))) 
 
 
     else if(modulo(col (2**(addrline+1))) == 0  
     then   ; layout positive address lines 
       ; place instance      
       nfetInst = placex+(4.8*w)*col:Changey-placey 
       nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90") 
       dbFlattenInst(nfInst 1 t)   
       ;connect to next nfet for this col 
       dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:Changey-(placey+1.7-2.9-
1.45) placex+0.3+(4.8*w)*col:Changey-(placey+1.8+0.75-2.9-1.45)))   
       ;;;;;;;;put substrate contact at every other address lines 
         ;instantiate a sub contact next to nfet 
         subInst = placex+(4.8*w)*col+1.5:Changey-(placey-0.2)+1.05 
         scInst = dbCreateInst(ccv subcv "subInst" subInst "R0") 
         dbFlattenInst(scInst 1 t)              
         ;;;connect decoder's substrate contact to VSS line 
         ;let sub contact connect to M2 
         viapt =  placex+(4.8*w)*col+1.4:Changey-placey+1.45 
         via = dbCreateInst(ccv  viacv "via" viapt "R0")  
         dbFlattenInst(via 1 t) 
         dbCreateRect(ccv "metal2" list(placex+(4.8*w)*col+1:Changey-(placey-1.45-0.3) 
endx+3.9-0.45-0.65-3.1:Changey-(placey-1.45-0.2+0.5))) 
       ); if positive address line   
     ) 
   );end for col 
 
   ; for each address line route poly and place pins 
   placey = placey-1.45 
 
   ;route poly for positive and negative address lines 
   dbCreateRect(ccv "poly1" list(startx-0.95:Changey-(placey+0.9) endx+2.8:Changey-
(placey+0.55))) ;positive 
   dbCreateRect(ccv "poly1" list(startx-0.95:Changey-(placey-0.55) endx+2.8:Changey-
(placey-1.45+0.55))) ;negative 
 
   ;place inverters to get both negative and positive address  
   invpt =  startx-7.85:Changey-(placey+4.95) 
   inv = dbCreateInst(ccv  invcv "inv" invpt "MXR90")  ; connect vdd 
   dbFlattenInst(inv 1 t) 
   ;connect sub contact to ground 
   dbCreateRect(ccv "metal2" list(startx-1.8:Changey-(placey-0.35) endx-0.3:Changey-
(placey+0.35))) 
 
;   ;place pin for address signal 
;   fig = dbCreateRect(ccv "metal1" list(startx+5.65:Changey-(placey+0.5) 
startx+6.05:Changey-(placey+0.9))) 
;   pinname = buildString(list("WriteAdr" pcExprToString(addrline)) "_") 
;   net = dbCreateNet(ccv pinname) 
;   trm = dbCreateTerm(net pinname "input") 
;   pin = dbCreatePin(net fig pinname) 
 
   ;route write-address lines to read-address lines 
   dbCreateRect(ccv "metal1" list(startx+6.2:Changey-1.4-(placey-0.35) 
7.85+(2.9*x)+1.4*addrline:Changey-0.7-(placey-0.35))) 
   ;place via 
   viapt =  8.25+(2.9*x)+1.4*addrline:Changey-1.05-(placey-0.35) 
   via = dbCreateInst(ccv  viacv "via" viapt "MXR90")  ; connect vdd 
   dbFlattenInst(via 1 t) 
   dbCreateRect(ccv "metal2" list(7.85+(2.9*x)+1.4*addrline:Changey-0.7-(placey-0.35) 
8.65+(2.9*x)+1.4*addrline:-7.4*m)) 
  
) 
 ;;;;;;;;Route VSS line for write decoder Sub x 
 ;extend VSS route 
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 dbCreateRect(ccv "metal2" list(endx-0.9:starty endx-0.3:Changey+9.2-(endy-3.2-(2.7*w)-
(2.9*y)))) 
 ;extend VDD route 
 dbCreateRect(ccv "metal2" list(endx+0.35:Changey-(endy+1.3) endx+0.95:Changey-1.35-
(endy-11.65-(2.7*w)))) 
 
 ;connect well contact of inverter to vdd 
 dbCreateRect(ccv "metal1" list(startx+5.05:Changey+12-(endy+2.45-(2.7*w)) startx+0.05-
4.8*(w-1):Changey+12-(endy+1.7-(2.7*w)))) 
 
 ;place pin for WEN (read enable) signal  
 dbCreateRect(ccv "metal1" list(endx+4.8*(n/2):Changey+12-(endy-0.45-(2.7*w)-(2.9*y)) 
endx+0.8+4.8*(n/2):Changey+12-(endy-1-(2.7*w)-(2.9*y)))) 
 ;place a M1_M2 via at VSS line 
 viapt = endx+0.4+4.8*(n/2):Changey+12-(13.35+endy-14.75-(2.7*w)-(2.9*y)) 
 via = dbCreateInst(ccv  viacv "via" viapt "R0")   
 dbFlattenInst(via 1 t) 
 fig = dbCreateRect(ccv "metal1" list(endx+0.15+4.8*(n/2):Changey+12-(13.35+endy-14.75-
(2.7*w)-(2.9*y)) endx+0.65+4.8*(n/2):Changey+12-(13.35+endy-14.35-(2.7*w)-(2.9*y)))) 
 pinname = "WEN" 
 net = dbCreateNet(ccv pinname) 
 trm = dbCreateTerm(net pinname "input") 
 pin = dbCreatePin(net fig pinname) 
 
) ;; end procedure 
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