

Development of a Low-Power SRAM Compiler

by

Meenatchi Jagasivamani

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

Dr. Dong S. Ha, Chairman

Dr. James R. Armstrong

Dr. Joseph G. Tront

September 1, 2000

Blacksburg, Virginia

 i

���������

Considerable attention has been paid to the design of low-power, high-

performance SRAMs (Static Random Access Memories) since they are a critical

component in both hand-held devices and high-performance processors. A key in

improving the performance of the system is to use an optimum sized SRAM.

In this thesis, an SRAM compiler has been developed for the automatic layout of

memory elements in the ASIC environment. The compiler generates an SRAM layout

based on a given SRAM size, input by the user, with the option of choosing between fast

vs. low-power SRAM. Array partitioning is used to partition the SRAM into blocks in

order to reduce the total power consumption.

Experimental results show that the low-power SRAM is capable of functioning at

a minimum operating voltage of 2.1 V and dissipates 17.4 mW of average power at 20

MHz. In this report, we discuss the implementation of the SRAM compiler from the

basic component to the top-level SKILL code functions, as well as simulation results and

discussion.

 ii

��	
��
������
���

I would like to thank my committee chairman and advisor, Dr. Dong S. Ha for

giving me the opportunity to work with him. His guidance and encouragement was

instrumental in getting this work accomplished. I would also like to express my

appreciation to Dr. James R. Armstrong and Dr. Joseph G. Tront for participating in my

examiniation committee and commenting on this work.

I would like to thank all my colleagues at the VTVT (Virginia Tech VLSI for

Telecommunications) lab for their support and guidance during my graduate years: Jos

Sulistyo, Carrie Aust and others. I have been lucky to have had the chance to work with

Jia Fei both academically and personally. Her cheerfulness always made a positive

impact on all of us and her friendship has been invaluable to me during the many long

nights at the lab.

Lastly, I am indebted to my family for providing me with unconditional support

during difficult times at graduate school. Without their love and faith in me, I could not

have found the strength and confidence to undertake this project.

 iii

���
�������
��
���

�������������
���������
 �� ��

������������ ��	����
���!�

2.1 RAM Architecture__ 4

2.2 RAM Cell Components__ 5

2.3 Review of Low-Power RAMs _____________________________________ 8
2.3.1 Divided and Hierarchical Bit-lines________________________________ 8
2.3.2 Half-Swing Pulse-Mode__ 9
2.3.3 Sub-Blocked Array Architecture ________________________________ 11

2.4 Introduction to SKILL __ 12

2.5 Proposed Research ___ 14

��������!���"������

�"�#��� ��������������������������������������� �$�

3.1 SRAM Core ___ 19

3.2 Bit-Line Conditioning ___ 20

3.3 Sense Amplifiers ___ 21

3.4 Leaf Cell Simulation Results _______________________________________ 23

3.5 Address Decoders __ 25
3.5.1 Pull-up Buffers for the Decoder_________________________________ 25

3.6 Summary ___ 28

��������%���&��'����(�
��� �)�

4.1 SRAM Structure and Algorithm for SKILL Code _____________________ 29
4.1.1 Aspect Ratio Calculation ______________________________________ 29
4.1.2 Layout of an SRAM Array_____________________________________ 32
4.1.3 Row Address Decoder __ 33
4.1.4 Read Address Decoder__ 36
4.1.5 Write Address Decoder _______________________________________ 38
4.1.6 I/O Buffers and Packaging _____________________________________ 38

4.2 SRAM Macro Layout ___ 40

��������*�������#���������
�
� ������������������������������������ %��

5.1 Preliminary ___ 42

5.2 Design for Array Partitioning ______________________________________ 43

5.3 SKILL Code for Array Partition____________________________________ 45

 iv

5.4 Final Layout___ 46

��������+���&���
����
�����
�� ������������������������������������ %,�

6.1 Simulation Environment __ 48

6.2 Area Measurement ___ 50

6.3 Time Measurement ___ 51

6.4 Power Measurement __ 54

6.5 Minimum Operating Voltage _______________________________________ 57

6.6 Conclusion __ 58

��������$�����
�
����
�� *)�

�((�
��-��������������-������
 ������������������������������������+��

A.1 Compiler Setup__ 61

A.2 Layout Generation ___ 62

�((�
��-� ���&.�""����� ��� +!�

B.1 array_partition.il __ 64

B.2 cell_layout.il___ 71

B.3 package.il___ 74

B.4 read_decoder.il __ 78

B.5 sram_array.il__ 84

B.6 sram_compiler.il ___ 85

B.7 word_decoder.il__ 86

B.8 write_decoder.il__ 90

�((�
��-����� ��
�����(/#��)*�

 v

"�������0��������
�����
���

Figure 2.1 – Classification of Memory Elements ... 3

Figure 2.2 – Comparison of Static and Dynamic RAM Cells... 4

Figure 2.3 – Block Diagram of an Asynchronous SRAM Circuit 5

Figure 2.4 – Latched Storage for a Static RAM Cell .. 6

Figure 2.5 – Static RAM Cell with Select Circuit .. 6

Figure 2.6 – Static pull-up RAM Cell with Bit-Line Conditioning 7

Figure 2.7 – Cross Coupled Sense Amplifier.. 7

Figure 2.8 – Block Diagram of an Asynchronous SRAM .. 8

Figure 2.9 – Divided Bit-line Architecture ... 9

Figure 2.10 – Half-Swing Pulse-Mode AND Gate24 .. 10

Figure 2.11 – Sub-Blocked Array Architecture .. 12

Figure 2.12 – SKILL Function to Draw Rectangle... 13

Table 2.1 – Common SKILL Functions... 13

Table 2.2 – Tool-Specific Library SKILL Functions... 14

Figure 2.13 – Block Diagram of SRAM ... 15

Figure 2.14 – Structural Decoder layout ... 16

Figure 3.1 – SRAM Macro.. 18

Figure 3.2 – 6-Transistor SRAM Cell... 19

Figure 3.3 – Schematic and Layout of SRAM leaf cell .. 20

Figure 3.4 – Schematic and Layout for the Bit-Line Conditioning Circuit 21

Figure 3.5 – Sense Amplifier Architecture ... 22

 vi

Figure 3.6 – Schematic and Layout of Sense Amplifier ... 22

Figure 3.7 – Simulation Results for SRAM Leaf Cell .. 24

Table 3.1 – Characteristics of a bit SRAM for VDD = 3.3 V ... 24

Figure 3.8 – Tree Decoder Implementation .. 25

Figure 3.9 – Buffered Output for Decoder.. 26

Figure 3.10 – Comparative Buffer Designs .. 26

Figure 3.11 – Simulation Results for Figure 3.10 (a) ... 27

Figure 3.12 – Simulation Results for Figure 3.10 (b) ... 27

Figure 3.13 – Schematic and Layout of Buffer... 28

Figure 4.1 – Program Organization... 29

Figure 4.2 – Aspect Ratio Measurements ... 30

Figure 4.3 – SRAM Core and Word Blocks ... 30

Figure 4.4 – Layout Generated by the cell_layout Function... 33

Figure 4.5 – Implementation of a Tree-Structured Row Decoder 34

Figure 4.6 – Word-Decoder Layout .. 35

Figure 4.7 – Read decoder for Wordsize=2 .. 36

Figure 4.8 – Read Address Decoder Layout ... 37

Figure 4.9 – Write-Decoder for Wordsize of 2 ... 38

Figure 4.10 – I/O Pins of an SRAM.. 39

Figure 4.11 – Placement of I/O Signals .. 40

Figure 4.12 – Layout for a 256x8 SRAM ... 41

Figure 4.13 – Layout for a 1-kB SRAM ... 41

Figure 5.1 – Array partitioned Architecture.. 43

 vii

Figure 5.2 – Schematic of Block Select .. 43

Figure 5.3 – Block Select Layout.. 44

Figure 5.4 – Overall Structure of Sram_Compiler.. 45

Figure 5.5 – Array-Partitioned 1 kB SRAM ... 47

Figure 6.1 – Input Stimuli for Characterization .. 49

Figure 6.2 – Simulation Waveform for 1-kB SRAM.. 49

Table 6.1 – Area Characteristics .. 50

Table 6.2 – Speed of a Single RAM Cell ... 51

Figure 6.3 – Timing Parameters of a Read Cycle ... 52

Figure 6.4 – Timing Parameters for a Write Cycle ... 53

Table 6.3 – Comparison of Address-Access Times (ns) .. 53

Table 6.4 – Timing Parameters for 1-kB SRAM ... 54

Table 6.5 – Power Characteristics.. 55

Figure 6.5 – Aspect Ratio Comparison for Array-Partitioned SRAM.............................. 56

Table 6.6 – Performance at Min Operating Voltage .. 57

Figure 7.1 – Test Circuit for 1 kB Array-Partitioned SRAM.. 60

Table A.1 – Functions in the SRAM Compiler .. 61

Table B.1 – Directory Listing of /project/asic/SRAM_Compiler 63

 1

��������

�� �
���������
�

With the increasing use of portable consumer electronics, power consumption has

become an important performance characteristic for a chip due to both limited battery life

in portable systems and also due to expensive packages and heat sinks required by high

power levels. Consequently, the design of low-power digital systems is becoming

increasingly important. With memories typically accounting for the largest share of

power consumption in a system, an emphasis has been placed on the design of low-power

memories.

More than half of the transistors in today’s high performance microprocessors are

devoted to cache memories and this ratio is expected to increase in the foreseeable future.

Typically, SRAM (Static Random Access Memory) is the choice for embedded memories

as SRAM is robust to the noisy environment in such chips. As a result, considerable

attention has been paid to the design of low-power, high-performance SRAMs since they

are a critical component in both hand-held devices and high-performance processors.

A key in improving the performance of the system is to use an optimum sized

SRAM. By incorporating an SRAM that is the correct size for the system requirements,

the system can avoid using unnecessary memory cells. This leads to improvements in

area, speed, and power. Therefore, depending on the application’s need, an appropriate

SRAM size should be used.

In this thesis, an SRAM compiler has been developed for the automatic layout of

memory elements in the ASIC environment. The compiler will generate an SRAM

layout based on a given SRAM size, input by the user. Also, the compiler allows the user

to choose between fast vs. low-power SRAM. The SRAM memory array is partitioned

into blocks in order to reduce the total power consumption. The Cadence design

environment is used for this thesis. Cadence SKILL language is used to implement the

compiler and Cadence Virtuoso is used for the layout-editor tool.

The organization of the thesis is as follows. In Chapter 2, the background related

to the thesis and the proposed research is described. Previous work on low-power

techniques for SRAM is also reviewed in this chapter. In Chapter 3, the design and

 2

layout of the leaf-cell components are presented. In Chapter 4, the implementation of the

SRAM compiler that generates an SRAM without array-partitioning is described, along

with the final SRAM layout. Chapter 5 discusses the array-partitioning technique

implemented for the low-power SRAM, as well as the implementation and the layout for

this SRAM. In Chapter 6, experimental results for the two different types of SRAM are

reported. Finally Chapter 7 concludes this thesis and presents future enhancements for

the SRAM compiler. The SKILL code, along with documentation, is attached in the

Appendix.

 3

��������

�� ��	����
��

 Memory elements form critical components in the implementation of CMOS

circuits and are vital for most systems. They are used for a wide variety of applications

with different design criterion. Though all memory elements are used to store and access

data, they can be broken into three types based on how the stored information is

retrieved. These three types are random access memory, serial access memory, and

content access memory. Random access memory is defined as memory that has an

access time independent of the physical location of the data. This can be contrasted with

serial access memory where the data is retrieved sequentially with time, or content access

memory, where data is retrieved based on the type of data stored. Figure 2.1 illustrates

the classifications of memory elements.

Figure 2.1 – Classification of Memory Elements

RAM can be classified into Read/Write Memory and Read Only Memory. Read

Only Memory (ROM) is nonvolatile memory, where the stored data is maintained

indefinitely, even without power, and writing to the memory takes considerably more

time (on the order of milliseconds) than reading. Read/write memory (commonly called

RAM) is data that is stored temporarily and the read and write time are approximately

equal to each other.

RAM cells can be further divided into static and dynamic memory cells. Static

memory (SRAM) cells use a latch composed of cross-coupled inverters to store data.

Memory Elements

Serial
Access
Memory

Random
Access
Memory

Content
Access
Memory

Read/Write
Memory
(RAM)

Read Only
Memory
(ROM)

 4

This allows the value to be maintained in a cell as long as power is available. Data

storage in dynamic memory cell (DRAM) is based on the dynamic storage of charge on a

capacitor. Therefore, with dynamic memory cells, periodic refreshing is necessary to

maintain the value. Transistor-level schematic of a SRAM and a DRAM cell can be

found in Figure 2.2. Bit-lines form the datapath to/from the cell, while word-lines select

a cell to be accessed.

Figure 2.2 – Comparison of Static and Dynamic RAM Cells

There are many reasons to use an SRAM or a DRAM in a system design. Design

tradeoffs include density, speed, volatility, cost, and features. Dynamic memory cells are

smaller (since they use just a capacitor), but are slower than static memory cells. In

addition, DRAMs require special processing in CMOS technology. Generally, DRAMs

are custom designed for the application since there are many trade-offs to be considered

with this type. The primary advantage of an SRAM over a DRAM is its speed and no

need for special CMOS processing, which are compatible with random logic processing.

For this project, since RAMs are to be embedded in a system, SRAMs are implemented.

Also, for simplicity, an asynchronous approach is taken. In the next section, we will look

at the components of the RAM architecture used for this project.

2.1 RAM Architecture

 The basic architecture of a SRAM consists of an array of memory cells with

support circuitry to decode addresses and implement the read and write operations.

SRAM arrays are arranged in rows and columns of memory cells called wordlines and

bitlines, respectively. Typically, the wordlines are made from polysilicon while the

bitlines are metal. Each memory cell has a unique location or address defined by the

bit line

word line

-bit line bit line

word line

DRAM Cell SRAM Cell

 5

intersection of a row and a column. Figure 2.3 shows the generic RAM circuit for a

memory chip that has just one row and one column.

Figure 2.3 – Block Diagram of an Asynchronous SRAM Circuit

The RAM architecture consists of the following structures:

• RAM Cell – used to store one data bit

• Bit Line Conditioning – precharges bit lines to compensate for voltage drop

across pass transistors

• Column Multiplexer – switches between read and write operation

• Write Buffers – buffers write-data so that it can write on RAM cells

• Sense Amplifier – Generate logic values from the differential input on bit-lines

• Row & Column Decoders – Decodes address to the correct RAM cell

In the next section, we will discuss the structure and design issues regarding these

components.

2.2 RAM Cell Components

 The schematic for static RAM Cell is shown in Figure 2.4. Essentially, the data is

latched at the cross-coupled inverters. The bit-lines are complementary and are input to

the I/O of the inverters. Thus, the value is latched during a write and maintained as long

as power is available.

SRAM
Cell

Sense Amp
Column MUX
Write Buffers

write

Address

Row Decoder

Column Decoder

Bit Line
Conditioning

write-data read-data

 6

Figure 2.4 – Latched Storage for a Static RAM Cell

 When the control signal “word” in Figure 2.5 is on, the RAM cell is connected to

the two bit-lines. During a read operation, the two bit-lines are driven by the cell value.

In contrast, the two bit-lines drive or override the cell during the write operation.

Column and row decoders select a specific RAM cell by asserting proper control lines.

Figure 2.5 – Static RAM Cell with Select Circuit

 When the word is asserted during a read operation, the bit values are available to

the latch through n-type transistors. Since n-type transistors only pass a good value of

‘0’, but not ‘1’, it is appropriate to precharge both the bit lines to a high value and let the

RAM cell pull down one of the bit lines.

 Figure 2.6 shows the RAM cell with the bit-line conditioning circuit that charges

the bit lines using n-type transistors. Both bit lines are charged to VDD-Vtn, where Vtn is

the threshold voltage of the precharging NFET. When the word is asserted, one of the bit

lines is pulled down to a ‘0’, while the other one remains at ‘1’. It is also possible to use

p-type transistors for the precharge transistors, and this would pull up the bit lines to

VDD instead of to VDD-Vtn. However, it will take longer to pull down the bit lines.

Thus, using n-transistors improves the speed of the RAM. Also from Figure 2.6, it can be

seen that gates of the precharge transistors are tied to VDD, and hence the transistors are

always turned on. This avoids generating another signal, but it requires the precharge

bit -bit -bit bit

bit -bit

word

Pass Transistors

 7

transistors to be weak so that they do not overcome the value driven onto the bit-lines

during a read/write operation.

Figure 2.6 – Static pull-up RAM Cell with Bit-Line Conditioning

 During the read mode, a sense-amplifier is usually used to amplify the bit-line

voltage difference of the two bit-lines. The cross-coupled sense amplifier shown in

Figure 2.7 was used to amplify the bit-line difference in our research. The sense

amplifier is composed of a cross-coupled pair of PFETs (M9 and M10). The differential

output is present at nodes sense+ and sense-.

Figure 2.7 – Cross Coupled Sense Amplifier

Sense+

M13

M11 M12

M9 M10

Sense-
-bit bit

bit -bit

word

Charge
Transistors

 8

 All of the above components are the basic cells used to form an SRAM chip. The

basic architecture of a SRAM includes an array of memory cells with support circuitry to

decode addresses and to implement the required read and write operations.

Figure 2.8 shows a basic block diagram of an asynchronous SRAM. To perform a

read/write operation, the first step is to specify the address that is being accessed. Next,

the chip enable signal, CEN, and the read/write enable signals (OEN/WEN), must be

enabled. When the REN control signal is enabled (read operation), the value stored at the

specified cell appears at the data output port. When WEN is enabled (write operation),

the value present at the “Data Inputs” is written into the specified location.

Figure 2.8 – Block Diagram of an Asynchronous SRAM

2.3 Review of Low-Power RAMs

Trends show that low power design techniques are becoming more important in the

current industry. Considerable attention has been paid to the design of low-power for

applications such as hand-held devices and wireless communications. There are

numerous ways to reduce the power dissipation at the cost of area and/or speed, both in

the cell and architectural level. In this section, we will previous works that discuss low-

power SRAM techniques on the circuit and architectural level.

2.3.1 Divided and Hierarchical Bit-lines

In an SRAM, a pair of bit-lines is connected to a column of RAM cells. For large

circuits, the length of the bit-lines can be considerably long, resulting in large bit-line

Addresses

Memory Array

D
at

a
In

pu
ts

Data Outputs

&(1

2(1

:(1

 9

capacitances. The charging or discharging of bit-line capacitance causes active power

dissipation, which is a major source of power dissipation. A. Karandikar and K. Parhi

proposed a divided bit-line approach for reducing the active power dissipation by

reducing the bit-line capacitance [1].

 Active current is the current that flows when bit-lines are charging or discharging.

The active current is directly proportional to the bit-line capacitance. The proposed

divided bit-line approach intends to reduce bit-line capacitance, which is mainly

composed of the drain capacitance of the pass transistors of the SRAM cell and the metal

capacitance of bit-line.

Figure 2.9 – Divided Bit-line Architecture

 Figure 2.7 illustrates the concept of divided bit-line method. The bit-lines are

split into sub-bit lines so that only a few bit cells share the local bit line (sub bit-line).

Thus, the global bit-lines are connected to fewer pass transistors and the Cbitline is

significantly reduced. This technique can be extended to divide the bit-lines in a

hierarchy for large circuits. Reducing Cbitline not only reduces the active power, but the

access time as well. The main disadvantage with this technique is the increased

complexity in the basic SRAM architecture. This complexity results in a significant area

overhead, as well the need for additional control signals for the global and local word-

lines. Experimental results show that for a 2-kB SRAM, the power consumption is

reduced by 50-60% and access time is reduced by 20-30%, with a 5% increase in the

number of transistors.

2.3.2 Half-Swing Pulse-Mode

Most of the currently present techniques aim to reduce the power needed to read

data from the memory. K. Mai, T. Mori, B. Amrutur, R. Ho, B. Wilburn, M. Horowitz, I.

Bit-Line Bit-Line

Sub Bit-Lines

Global
Word Line

Local
Word Line

Sub
Bit Line

Bit-Line Bit-Line

 10

Fukushi, T. Izawa, and Shin Mitarai aim to reduce power dissipation for write operation

and for decoders using half-swing techniques [24]. In low-power embedded SRAMs

with large access widths, the write-operation power can be significantly larger than the

read-operation power. Since the bit lines are referenced to Vdd, they are discharged to

GND during a write operation. Thus, decreasing the bit-line swings during writes can

reduce write power.

The main problem with reduced swing signals in the past has been the need for

level-conversion and/or reduced gate overdrive at the receiving gates, which causes a loss

of performance. They aim to address the problem by combining positive half-swing

(swinging the bit-lines from the steady state of Vdd/2 to Vdd and back to Vdd/2) and

negative half-swing (swinging from the steady state of Vdd/2 to Gnd). Thus, all of the

forward-transition driving transistors see a full gate overdrive. For example, Figure 2.8

represents a half-swing pulse-mode AND gate that uses half-swing inputs to produce a

full-swing output voltage.

Figure 2.10 – Half-Swing Pulse-Mode AND Gate24

This technique requires redesign of all support circuitry so that the half-swing bit-

lines can be appropriately interpreted and converted to full-swing outputs. The main

disadvantage with this technique is the reduced noise margin on the bit-lines, which

results in higher susceptibility to noise. Also, it requires an additional supply voltage of

Vdd/2 and the routing of the rail is cumbersome. Experimental results performed on a 2-

K x 16-b SRAM fabricated in a 0.25 µm dual-Vt CMOS technology show that the

prototype dissipates 0.9 mW at 100 MHz using an operating voltage of 1V.

 11

2.3.3 Sub-Blocked Array Architecture

J. Caravella proposed to reduce power dissipation by reducing both the bit-line

and word-line capacitance [7]. The power dissipation for static CMOS logic circuits is

given by fVCP dd ××= 2 , where C is the average switched load and parasitic

capacitances, Vdd is the supply voltage, and f is the operating frequency of the circuit.

Because the power consumption increases quadratically with the supply voltage, most

dramatic reduction in power can be achieved by reducing Vdd. However, without

redesigning the circuit, reducing the supply voltage may not only slow down the circuit,

but may cause the circuit to fail.

The discharge rate of the bit-lines contributes to the read access time of the

SRAM, which is proportional to a time constant given by the following equation7.

V
VV

L

W
K

C

tdd

bitline ∆⋅
−





′

≈
2)(

τ

where ∆V is the discharge voltage amount, Cbitline is the total bit line capacitance, K′ is the

intrinsic transconductance of the word line pass transistor, W/L is the width to length ratio

of the transistor, Vdd is the supply voltage, and Vt is the threshold voltage of the transistor.

Therefore, if Vdd is reduced, then the time constant will increase, making the circuit

slower. One way to maintain the time constant is to reduce the capacitance that the bit

cell needs to discharge. This can be achieved by reducing the number of RAM cells

sharing a given bit line.

 This paper proposes to reduce the bit-line capacitance by dividing the memory

array into four isolated subarrays, which would reduce both the total bit line and word

line capacitance by half. The bit line capacitance is the parasitic capacitance (junction

and metal) associated with the RAM cell load on the bit lines, while the word line

capacitance is the parasitic capacitance (gate, fringe, and metal) associated with the RAM

cell on the word lines.

 12

Figure 2.11 – Sub-Blocked Array Architecture

The structure used by J. Caravella for a 64 kB SRAM is shown in Figure 2.9.

Dividing the array into blocks not only reduces the power dissipation, but the subarray

architecture results in a faster SRAM due to the reduced capacitance. The only

disadvantage with this method is the area penalty due to increased overhead of decoder

logic, control logic, and routing. Experimental results for the 64 kB SRAM showed that

with an area overhead of 15%, the RAM was able to operate at 50 MHz with Vdd=1.8 V.

Since it is relatively easy to extend a normal SRAM array to include array

partitioning, this method is adopted for our RAM design. Details about the architecture

are explained in section 2.5.

2.4 Introduction to SKILL

 The objective of our SRAM compiler studied in this thesis is to generate a SRAM

layout for a given size. The SRAM compiler must be able to instantiate the leaf cells and

to layout necessary routing & connections for the circuit. The language that will be used

to perform the layout automation is Cadence’s SKILL. SKILL, which stands for Silicon

Compiler Interface Language, has tool specific functions for several of Cadence Suites –

Virtuoso (Layout Editor) and Composer (Schematic Editor), among others. These

functions allow the user to use any tool-specific command, such as drawing a rectangle in

a layout. Figure 2.10 gives an example of the dbCreateRect(…) command, used to draw

a rectangle in given cellview. As shown in the figure, the user can specify exact

coordinates of the rectangle as well as the layer.

 13

Figure 2.12 – SKILL Function to Draw Rectangle

 SKILL is an interpretive script language, which means that commands are

executed as they are entered. Commands are entered into the Cadence environment via

the CIW (Common Interface Window). For this thesis project, we use the SKILL

language to accomplish all design automation, including aspect ratio calculation, leaf cell

instantiation, and routing. More details about the use of SKILL in the implementation of

the SRAM compiler are discussed in Chapter 4. Table 4.1 lists some commonly used

SKILL functions

Table 2.1 – Common SKILL Functions
procedure(function_name(argument_list)

 expr1

 expr2

 …)

Defines a function using an argument list.

The body of the procedure is a list of

expressions to evaluate.

for(loopVariable initialValue finalValue

 expr1

 expr2

 …)

Evaluates the sequence expr1, expr2, … for

each loopVariable value, beginning with

intialValue and ending with finalValue.

if(condition then expr1

 else expr2

 …)

Evaluates condition and runs expr1 if the

condition is true. Otherwise, runs expr2.

x = ‘(1 2 3) or x = list(1 2 3)
Creates a list variable called x that

containing the three elements.

Note: There should be no space before a ‘(‘.

 In addition to the above functions, SKILL also has functions that are specific to

the Layout Editor tool (Virtuoso). These functions are used to perform the actual layout

of the SRAM compiler and are given in Table 2.2.

(x2,y2)

(x1,y1)

dbcreateRect(compilercellview “poly1” list(x1:y1 x2:y2))

 14

Table 2.2 – Tool-Specific Library SKILL Functions
dbOpenCellViewByType(library cellname viewname viewtype accessmode)

Opens a cellview. Returns a db (database) object for the cellview.

dbCreateInst(dbcellview dbmaster InstName lpoint orientation)

Places an instance of dbmaster onto the cellview dbcellview. The instance will

be placed at lpoint with the orientation. Returns a db object for the instance.

dbFlattenInst(dbInst x_levels [flatten_pcells] [preservePins])

Flattens instance dbInst up through x_levels of hierarchy. Returns t/nil.

dbCreateRect(dbcellview layer list_box)

Draws a rectangle onto dbcellview of layer with the coordinates given by

list_box. Returns a db object for the rectangle.

dbCreateNet(dbcellview t_name)

Create a net for a pin to attach to in dbcellview. The name of the pin should be

t_name. Returns a db object for the net.

dbCreatePin(net fig t_name)

Creates a pin attached to net for the object defined by fig of t_name. Returns a

db object for the pin.

dbSave(dbcellview)

Saves the results of a modified dbcellview that has been opened for write or

append mode.

Note that all the functions are database (db) functions. All Cadence tools use the

Design Framework II unified database; a binary database that stores data as "objects."

There are many types of objects, including rectangles, pins, instances, and cellviews. The

SKILL code structure used to implement the SRAM compiler will be discussed in

Chapter 4.

2.5 Proposed Research

 The SRAM compiler studied in this thesis will be used by the VTVT (Virginia

Tech VLSI for Telecommunications) group for their Wireless Video Project. The project

consists of transmitting wireless video using a cellular phone. One of the major

 15

components of this project is the development of a turbo decoder, which will require

SRAMs of varying sizes to store data. The maximum SRAM size that will be used by the

turbo decoder is 1 kB (1024x8), with a maximum operating frequency of 20 MHz. An

SRAM compiler is needed, since the turbo decoder uses various sizes of SRAMs.

Furthermore, the SRAM compiler will be used for other current and future projects.

The input/output ports for a 2k x w SRAM considered in this research is given in

Figure 2.11, where 2k is the number of word locations and w is the word size (depth).

There are three active-low control signals – CEN', WEN', OEN'. CEN' is the control

signal to enable the chip. When CEN' is disabled (high), all of the word-lines (active-

high) are turned off (pulled low), so that no RAM cell is connected to any bit-line. When

CEN' is enabled (low), the word line that is being accessed is turned on (pulled high) so

that all RAM cells in the row are connected to the bit-lines. The column decode circuitry

chooses the column block that is being accessed. The other two control signals, WEN'

and OEN', are the active low Read/Write signals. Whenever WEN' (Write Enable’) goes

low, the SRAM is being written to. Similarly, whenever OEN' (Output Enable’) goes

low, the SRAM is being read from.

Figure 2.13 – Block Diagram of SRAM

 There are k address signals for the 2k word locations. The address signals are

split between the row and column decoders. The number of rows and columns in the

SRAM are chosen to make the aspect ratio close to 1 and are computed by the compiler

program. Since this is an embedded SRAM (with no constraints on the number of pins),

there are separate data signals for the input and output. Because of this, it is possible to

read from a location while writing to that location.

&(1

$GGUHVV k

:(1

2(1

SRAM

2k × w 'DWD

2XW

w

'DWD

,Q

w

 16

Figure 2.14 – Structural Decoder layout

 Structurally, the SRAM is arranged into rows of bits and columns of blocks, as

shown in Figure 2.12. The reason for this type of arrangement is to simplify column

decoding for word size greater than one. Thus, the row decoder decodes for a single

word line, while the column decoder decodes for a block of bit-lines. As an example,

suppose that we are reading a word of 8 bits from location (i, j). Then the row decoder

activates word-linei and the column decoder connects all bit-lines in blockj to the sense

amplifiers, where block j consists of 8 columns. Note that the number of columns is a

multiple of the word-size. The number of rows and the number of columns for our

SRAMs are determined based on the word size and the aspect ratio. An overview of the

development process of the SRAM compiler is as follows:

1. Design and custom layout all leaf-cells for the SRAM. (Chapter 3)

2. Develop SKILL code to perform design automation of all components

including RAM core, decoders, and I/O buffers. (Chapter 4)

3. Add array partitioning to improve power dissipation. (Chapter 5)

4. Simulation and Verification. (Chapter 6)

The following chapters discuss implementation of each of the above steps.

Column Decoder

Selected
Word

Selected
Column

Selected Row

�
�
�
�1
�
��
�
�
��

 17

��������

!� "������

�"�#����

 The main responsibility of a SRAM generator is to instantiate basic components

in an array, for the given size. The basic components, called leaf cells, are critical in

determining the final performance of the generated SRAM circuit. Therefore, leaf cell

design must be optimized both locally and globally for area, power, and speed.

Whenever possible, the leaf cell layout must use cell abutting. This technique helps

reduce unnecessary routing by simply placing adjacent cells close to each other.

In this chapter, we will discuss the design and layout of basic components in the

RAM architecture. The basic components (as discussed in Chapter 2) are as follows:

• 6-transistor core of SRAM

• Bit-line conditioning circuit

• Sense amplifier

• Address decoder

Before we discuss each component in detail, we review the overall SRAM

structure. Figure 3.1 shows a block diagram of an SRAM and connections of basic

components. A RAM cell is connected to two bit lines through word-select pass

transistors. Since the pass-transistors used are NFET, they are slow when pulling a line

up to logic ‘1’. Charging the bit-lines to a high value reduces the time it takes the pass-

transistors to pull-up. Though charging the bit-lines causes a speed-up in access time, it

degrades the bit-line signal difference. Therefore, a sense-amplifier is needed to increase

the difference and provide a good data output during a read.

Three decoders are activated or deactivated by three active-low control signals –

CEN’, WEN’, and OEN’. The CEN’ is used to indicate that the SRAM is currently being

accessed and controls the word-line (row) decoders. Thus when the CEN’ is off (high),

none of the word-lines are on. Likewise, the WEN’ signal, which specifies that the

SRAM is being written to, controls the write-line decoder. Similarly, the OEN’ signal

indicates that the SRAM being read from and controls the read-line decoder.

 18

Precharge circuits and sense amplifiers are the other two major components, as

shown in Figure 3.1.

�

Figure 3.1 – SRAM Macro

 From Figure 3.1 it can be seen that there exists two sepearte column decoders –

one for read operations and one for write operations. Though a single column address

decoder can be used for both read and write operations, we use two separate decoders for

read and write operations. The reason for using two column decoders is that the use of

two decoders reduces the delay incurred due to the routing from a single decoder. In

addition, the actual area of the decoders is small, while routing area is significant.

A
k …

A
y

D
G
G
U
H
V
V
E
LW
V

W
ord line decoder

Precharge Circuits

CEN

DIn-1…DI0 : 'DWD ,Q

Ay-1…A0

DGGUHVV ELWV

WEN

OEN Read line decoder

Write line decoder

 ___ __
Bn-1Bn-1…B0B0

ELW OLQHV

6HQVH

$PS0

DO0

6HQVH

$PS1

DO1

6HQVH

$PSn-1

DOn-1

Ay-1…A0

DGGUHVV ELWV

6
5
$
0
&
R
UH

2x: # of rows
2y: # of word-size cols
k: # of address bits: x+y
n: word-size

DOn-1…DO0: 'DWD 2XW

O
E

N
 O

N O
E

N
 O

N O
E

N
 O

N

 19

3.1 SRAM Core

The 6-transistor (6T) SRAM core shown in Figure 3.2 stores one bit of data. It is

composed of a latch and 2 pass transistors. Since the core is replicated by the number of

bits, optimum design and layout of this component is critical. The size of the transistors

used is the primary factor that determines the performance of the SRAM cell. We

determine the optimum transistor sizes through SPICE simulation. Since the most

important design criterion for us is power dissipation, we minimize the sizing as much as

possible without compromising performance significantly.

Figure 3.2 – 6-Transistor SRAM Cell

There are some issues to be considered when sizing the transistors. The latch

inverters (M1, M2, M3, and M4) form a positive feedback loop, so that the stored value is

maintained as long as power is available. Since the bit lines are precharged to VDD-Vtn,

the cell NFETs (M1 and M3) cannot be smaller than the pass NFETs (M5 and M6) to

overcome the current value on the bit line when pulling it to a low value. Note that

though a transmission gate may be used for the pass-transistors, only NFETs are used so

that the area for a single SRAM cell may be small. It will be shown later that special

circuitry (bit-line conditioning and sense amplifiers) is needed to recover from the

performance losses due to using just NFETs.

In an array of RAM cells, a single word line is connected to an entire row of

RAM cells, forming a long word-line row. Since the word line uses polysilicon (which

has high resistivity), it is necessary to keep the two pass transistors (M5 and M6) small.

This improves signal integrity on the word lines and reduces power dissipation.

Therefore, we keep the size small.

bit -bit

word

cell cell-

M1

M2
M6

M3

M4

M5

 20

 We set all transistor lengths to the minimum, which is 2λ (= 0.35 µm) for the

target 0.35 µm process. Based on simulation, we set the widths of all transistors to 0.4

µm, the minimum width for the target process.

 The next step is to lay-out the leaf cell. The schematic diagram corresponding to

the placement of transistors and the layout for an SRAM cell are given in Figure 3.3. The

placement of the transistors is intended for cell abutting.

Figure 3.3 – Schematic and Layout of SRAM leaf cell

Note that all the I/O signals of the cell (word, bit+, bit-, VDD, and GND) use

abutting. The layout allows both horizontal and vertical cell abutting. Vertically, the cell

above this one will be flipped on the x-axis so that the n-well and VDD lines are shared.

Similarly, the cell below will also be mirrored on the x-axis so that the n-diffusion and bit

lines can be shared. This overlap of layers makes the layout more compact.

3.2 Bit-Line Conditioning

 Figure 3.4 shows the schematic and layout of the bit-line conditioning circuit.

The gates of the NFETs are tied to Vdd, so that the bit-line conditioning circuit is always

turned on. This avoids the complexity of generating a precharging signal. It also allows

the bit-lines to be equalized when the column is deselected (i.e., between two access

cycles). The bit-lines get equalized to the charge value of Vdd-Vtn between two accesses,

ZRUG

ELW� ELW�

L

W

W=0.4 µm, L=0.35 µm

 21

when the memory array is deselected. When two RAM cells containing opposite value in

the same columns are accessed subsequently, the output has to switch first to an

equalized state and then to the opposite logic state. Since the capacitance on the bit lines

is quite large, the time required for switching the differential from one state to the other

becomes a significant portion of the overall access time. Equalization of the bit-lines

between the accesses can reduce the access time. The size of the charge transistors must

be as small as possible, so that they do not override the value in the latch during read and

write operations. Simulation showed that the charge transistors performed optimally

when W=0.4 µm and L=0.35 µm. The layout of the leaf cell allows cell abutting of the

bit lines.

Figure 3.4 – Schematic and Layout for the Bit-Line Conditioning Circuit

3.3 Sense Amplifiers

During a read operation, the selected latch outputs the stored value onto the two

bit-lines. Since the bit-lines are always precharged, the bit-line differential voltage

degrades. We use sense amplifiers to improve the differential voltage from the bit-lines.

The main advantage in using a differential bit-lines is common-mode rejection, which

reduces noise effects and signal degradation.

In our SRAM design, a single sense amplifier is shared among multiple columns.

Typically, a single amplifier is used for each column of bit-lines as shown in Figure 3.5.

However, in the proposed design, a single amplifier is shared between multiple columns

by inserting the column decoder pass-transistors between the bit-lines and the amplifier.

This results in area savings and power reduction.

&KDUJH
7UDQVLVWRUV

ELW� ELW�

W=0.4 µm, L=0.35 µm

 22

�

Figure 3.5 – Sense Amplifier Architecture

From simulation, it was shown that this configuration performed better than

having a sense amp for each column, since it reduces the drive load of the sense

amplifier. Also, this configuration allows the sense amplifier to be isolated from the bit-

lines at all times except during a read operation. Because the sense amplifiers are not

driven by bit-lines at all times, the switching activity is reduced on the sense outputs.

Figure 3.6 – Schematic and Layout of Sense Amplifier

Figure 3.6 shows the schematic and layout of a sense amplifier. A cross-coupled

amplifier is used for the sense amp. Once a memory cell is selected for the read

operation, the voltage on one of the complementary bit lines will start to drop slightly.

Suppose that bit+ is higher than bit-. As a result, one of the NFETs, M3, is turned on,

causing sense- to be pulled low. Consequently, one of the PFETs, M2, is turned on,

VHQVH� VHQVH�

ELW� ELW�

M1, M3: W=0.7 µm, L=0.35 µm
M2, M4, M5: W=0.4 µm, L=0.35 µm

M1

M2

M3

M4

M5

SA SA SA

SA

7\SLFDO &RQILJXUDWLRQ 3URSRVHG 'HVLJQ

 23

pulling up sense+ output to a high value. The positive feedback of the cross-coupled

PFETs accelerates the sensing speed by reinforcing M2’s gate value (sense-) to a high

through M3.

The sense amplifier is the key component that limits the speed of read-time.

Since the transistor sizing affects the speed of the sense amplifier, simulation was

performed for different sizes of transistors. The fastest configuration is when the two

NFETs (M1 and M4) are set to W=0.7 µm, L=0.4 µm and the rest were set to W=0.4 µm.

The layout shown in Figure 3.5 is the fastest configuration and also uses cell abutting of

VDD and GND.

3.4 Leaf Cell Simulation Results

 After custom layout of the leaf-cells in Cadence Virtuoso, the design rule checker

(DRC) was used to verify that all leaf-cell layouts met the TSMC 0.35 µm design rules.

The leaf-cells were used first to create a layout for a small test circuit to verify operation

and measure preliminary performance results. The test circuit consisted of an SRAM cell

core connected to the bit-line conditioning circuit through the bit-lines with a sense

amplifier to amplify the read output. The sense amplifier is isolated from the bit-lines

when the cell is not being read from. Following DRC verification, parasitic capacitances

were extracted from the layout. From the extracted circuit, a spice netlist was generated

using Analog Artist, and simulations were performed using Avanti HSPICE. The

extracted netlist was simulated for the following test case.

1) Write 0: word = 1, write=1, write_data = 1->0

2) Read 0: word = 1, write=0, write_data=0->1->0 (shouldn’t affect contents)

3) Write 1: word=1, write=1, write_data = 0-> 1

4) Read 1: word = 1, write=0, write_data=1

5) Turn-off RAM Cell: word=0, write=0

Figure 3.7 presents the simulation graph for a R/W to a single bit. The cell

represents the value stored in the latch, while the bit represents the value on the bit lines.

The output from the sense amplifier is labeled as sense. From the plot, we can see that

the value in the cell node is driving the bit line. Because of the bit-line conditioning

 24

circuitry (and also the bit-line capacitance), the bit line is not pulled to a good ‘0’ during

a read of ‘0’. However, the sense amplifier recovers the original value after some delay.

After 20ns, the RAM cell is turned off, so the bit-line conditioning circuit drives the bit

value, while the sense node floats towards an equalized value. Note that the cell still

maintains the stored ‘1’, regardless of CEN being off.

Figure 3.7 – Simulation Results for SRAM Leaf Cell

Characteristics for this cell are provided in Table 3.1. Power dissipation was

obtained using HSPICE’s .measure statement. Static power dissipated was obtained by

taking the average of the two power dissipations, under the sense output at a high and the

sense output at a low. Dynamic power was taken as the average of power dissipated

during a change in the output due to an input change. For this example, the dynamic

power dissipation included the average of dynamic power dissipation from both R/W’

and write_data changes. Nodal capacitances for the cell were obtained from HSPICE by

adding the captab (capacitance table) option to the .option statement.

Table 3.1 – Characteristics of a bit SRAM for VDD = 3.3 V

Power Dissipation Static = 0.45 mW
Dynamic = 0.82 mW

Nodal Capacitance
Cell nodes = 8.9 fF
Word lines = 8.7 fF
Bit line = 11.2 fF

Area per cell 35.64 µm2

 25

3.5 Address Decoders

Decoders are needed to generate the word and column select signals for the

SRAM. The input to the decoder is the address of the selected cell and the control

signals. All decoders are implemented in a tree structure, as shown in Figure 3.8.

Minimum-width (W=0.4 µm, L=0.35 µm) sized NFETs are used as pass transistors in the

decoder.

�

�

Figure 3.8 – Tree Decoder Implementation

When Enable is active (low), a selected decoded output is pulled down to a good

logic ‘0’ value due to the use of NFETs. All unselected outputs are floating. When

Enable is disabled (high), the selected output is at a poor logic ‘1’, and all unselected

outputs are floating. To prevent unselect unselected outputs being floating, pull-up

buffers are necessary at each output. The design of pull-up buffers is explained next.

3.5.1 Pull-up Buffers for the Decoder

 In addition to pulling up unselected lines, a buffer is also needed to produce a

good ‘1’ or ‘0’ for the select lines. A buffer is responsible for both pulling-up unselected

lines and buffering the output so that the drive strength is increased. As shown in Figure

3.8, a buffer, in fact an inverter, is added at every decoded output in our design. Note

that the selected output is at ‘1’ due to the inversion. The result is that all decoder

outputs are zero except for the output that is selected by the input address. It will be

placed at the output of the decoder, as shown in Figure 3.9.

 Two types of pull-up transistors as shown in Figure 3.10 are considered for the

buffer design. Both designs require a pull-up transistor for an unselected line. To

compare performance, HSPICE simulation for the two designs was performed.

7UHH

'HFRGHU

A0

A1

�

�

�

�

(QDEOH
A0 A0 A1 A1

�
�
�

�

(QDEOH

All transistors are NFETs with W=0.4 µm and L=0.35 µm
Inverter: W=0.4 µm, L=0.35 µm

 26

Figure 3.9 – Buffered Output for Decoder

The design in Figure 3.10 (a) uses an NFET to act as a pull-up resistor to pull-up

an unselected line. However, in order not to pull-up the selected line, the driving

capability of the pull-up transistor needs to be low. Therefore, the width is set to the

minimum size of W=0.4 µm and the length is L= 0.75 µm.

Figure 3.10 – Comparative Buffer Designs

Figure 3.11 shows the simulation results of the buffer on a 1 kB SRAM. In

Figure 3.11, when the decoder is disabled, the decoder outputs, equivalently inverter

outputs, are at 0V for both selected and unselected lines. However, when the decoder is

enabled, the selected decoder output is at 0.4 V and fails to pull up high. This is due to

the fact that the pull-up transistor is too strong to be pulled down to a sufficiently low

value. Therefore, this buffer design function properly without reducing the driving

capability further. It requires increasing the length (since width is already the lowest), to

result in increased area, so that this configuration is not adopted in our design.

&ROXPQ�
5RZ
6HOHFW

/RQJ�/)(7 WR
3XOO�XS

XQVHOHFWHG OLQH

DGGUHVV OLQHV

Enabl

Enabl

(a) NFET Pull-up

(b) PFET Pull-up

Pull-up Transistors: W=0.4 µm, L=0.75 µm

A0 A0 A1 A1 EXIIHUV

�
�
�

�

(QDEOH

 27

Figure 3.11 – Simulation Results for Figure 3.10 (a)

Alternatively, the design in Figure 3.9 (b) uses a PFET with W=0.4 µm and

L=0.75 µm. In this case, the gate of the PFET samples the value from the line. If an

unselected line is floating to ‘0’, then it will be pulled up by the PFET. Figure 3.12

shows the simulation results for the buffer design in Figure 3.9 (b) on a 1-kB SRAM.

Figure 3.12 – Simulation Results for Figure 3.10 (b)

Figure 3.12 shows that when the decoder is enabled, the selected decoder (i.e.

inverter) output is pulled up to Vdd (=3.3 V). Note that the inverter input of the selected

line is sufficiently low (=0.9 V) to drive the inverter output to Vdd. Since this design

works well, it is adopted for our final design. Figure 3.13 shows the schematic and

 28

layout of the final decoder buffer design, which includes a pull-up PFET with L=0.75

µm, W= 0.4 µm and an inverter with L=0.35 µm, W= 0.4 µm.

Figure 3.13 – Schematic and Layout of Buffer

3.6 Summary

Leaf cell layout is critical in to the performance of the SRAM. In this chapter we

examined the leaf cell layout and design. The performance of each cell has been

measured and verified through SPICE simulations.

LQYHUWHU
LQSXW

URZ�FRO
VHOHFW
OLQH

��� µP
���� µP

��� µP
���� µP

 29

��������

%� &��'����(�
���

 In the previous chapter, we described the design of leaf-cells used to layout an

SRAM core and the supporting circuitry. The next step is to develop SKILL code to

perform design automation of all components including the RAM core, decoders, and I/O

buffers. In this chapter, we discuss the structure of the SKILL code for our SRAM

compiler.

4.1 SRAM Structure and Algorithm for SKILL Code

Our SRAM compiler should generate the layout for the SRAM core and all

supporting circuits based on the input size. The entire program is broken into the

modules based on the functionality. Figure 4.1 shows the organization of the program.

Figure 4.1 – Program Organization

 The procedure sram_array is the top level function that calls all other modules to

generate the entire circuit. We now discuss the implementation and interaction of all of

the functions.

4.1.1 Aspect Ratio Calculation

The numbers of rows and of columns in an SRAM have a major impact on the

final aspect ratio of the SRAM. It is undesirable for the shape of the SRAM circuit to be

overly long or thin, as it incurs excessive routing area, signal delay, and capacitance.

Optimally, the SRAM should have a shape close to a square. Therefore, it is important to

derive a procedure to calculate the rows and columns with the aspect ratio in mind.

VUDPBDUUD\
$VSHFW 5DWLR

&DOFXODWLRQ

/D\RXW

65$0

DUUD\

5RZ

DGGUHVV

GHFRGHU

:ULWH

DGGUHVV

GHFRGHU

5HDG
DGGUHVV
GHFRGHU

,�2

%XIIHUV

 30

The first step in this procedure is to determine the aspect ratio for a single bit.

Since adjacent RAM cells are flipped both horizontally and vertically to improve cell

abutting (see Section 3.1), the basic tile for measuring the aspect ratio is a 2x2 cell.

Figure 4.2 gives the measurements for a 2x2 cell and the derived measurement for a

single cell. The aspect ratio for one cell is given by, 65.0
4.7

8.4 ===
height

width
ARbit .

Figure 4.2 – Aspect Ratio Measurements

Figure 4.3 – SRAM Core and Word Blocks

Recall from Section 2.5 that the columns are arranged in word-sized blocks. A

word-sized block is the smallest unit for the SRAM core as shown in Figure 4.3. The

aspect ratio for one block is wARAR bitblock ⋅= , where w is the number of bits in a word.

Therefore, the total aspect ratio for an SRAM can be expressed as,

m

n
wAR

m

n
AR

rows

columns
ARAR bitblockblockSRAM ⋅⋅=⋅=⋅=

 where m is the number of rows and n is the number of word-sized columns. Note

that m and n should be a power of 2 for efficient implementation of the decoders. Let m

= 2x and n = 2y, where x and y are integers. In order to make ARSRAM close to 1,

w bits

:RUGVL]H EORFN

n block columns

m
 b

it
 r

ow
s

9.6 µm
14

.8
 µ

m

4.8 µm

7.
4

µ m

RQH FHOO�[� FHOO

 31

yARx

AR

nARm

nARm
m

n
ARAR

block

y
block

x

block

block

blockSRAM

+=∴
+=

+=
⋅=

⋅==

)(log

)2(log)(log)2(log

)(log)(log)(log

1

2

222

222

 Assuming that the number of words of an SRAM is a power of 2, let words = 2l,

where words is the number of locations in the SRAM and l is an integer. Since

nmwords ⋅= , we obtain yxl 222 ⋅= . Hence yxl += . Using this relation, we can

compute the value of x as:

lARx

xlARyARx

block

blockblock

+=
−+=+=

)(log2

)(log)(log

2

22

The procedure for the aspect ratio is as follows:

1. Calculate aspect ratio for one block: wwARAR bitblock ⋅=⋅= 65.0

2. Find l: wordsl 2log=

3. Find x:
2

)(log2 lAR
x block += . Round down to make it an integer.

4. Find y to calculate number of rows and columns: y = l – x. Hence m = 2x and

n = 2y

In the above, words (which is the number of locations) should be a power of 2.

For example, for a 256×8 SRAM,

1. ARblock = 0.65*8 = 5.2

2. l = log2 256 = 8

3. x = (log2 5.2 + 8)/2 = 5.2 � 5

4. y = l – x = 8 – 5 = 3

 Hence, the SRAM should have 2x = 25 = 32 rows and 2y = 23 = 8 word-sized

columns for an aspect ratio close to 1. The actual aspect ratio of the SRAM core,

2
)(log2 lAR

x block +=

 32

measured from a layout, has an aspect ratio of width/height = 306/240 = 1.275. The

reason for the discrepancy is due to the constraint to impose the smallest unit to a word-

sized block. In addition, the supporting circuitry, which is ignored in the aspect ratio

calculation, aggravates the aspect ratio. However, the impact of the supporting circuitry

decreases with the increase of SRAM size. For the 256×8 SRAM, the total aspect ratio

with the support circuitry improves to width/height = 400/335 = 1.19.

A small block of code in the top-level module sram_array calculates x, y, and

subsequently, m and n and passes them to all other functions at the lower level.

4.1.2 Layout of an SRAM Array

The next step is to layout RAM cells in m rows and n*w bit columns. This is

accomplished by the cell_layout function. The function instantiates the leaf-cell

previously created for 6T SRAM and the bit-line conditioning circuitry (Refer to Section

3.1), to create an SRAM core, bit-line conditioning, and write-select transistors (which

activate a pair of selected bit-lines during the write operation). The function also places

necessary I/O pins. The procedure for this function is as follows.

1. Layout m × n*w SRAM array

2. Place bit-line charging circuit and write-select transistors.

3. Route VDD & VSS lines

To layout the SRAM array, we use a nested for-loop to instantiate the RAM cells

in an array. The pseudo-code for this function is as follows.

 for column = 0 to (n*w)-1,

 for row = 0 to m-1,

if (row == odd then

 Instantiate(“6T_core” @ {x_offset*column, y_offset*row} flipped)

else

 Instantiate(“6T_core” @ {x_offset*column, y_offset*row} normal)

)

 end for

 end for

 Note that “column” in the pseudo-code denotes a column of RAM cells. The cells

on every other row are flipped on the y-axis to take advantage of cell abutting. This also

lets the n-wells be shared between two rows, which results in a compact layout

 33

 After the array has been laid out, the next step is to add the bit-line conditioning

circuitry and write-select transistors. The bit-line conditioning circuit is needed to charge

the bit-lines to reduce the access time. A write-select transistor activates the selected bit-

lines for writing, while isolating all other bit-lines that are not-being written to. During a

write operation, the “write” signal (Refer to Figure 4.4), which is an output of the column

decoder, for the selected bit-lines is ‘1’ to activate the selected bit-lines. All other select

signals should be disabled so that they don’t get written to. A minimum sized (L=0.35

µm, W = 0.4 µm) NFET is used to isolate the bit-lines.

Figure 4.4 – Layout Generated by the cell_layout Function

 The final step of the cell_layout function is to route the VDD and VSS lines to

power the SRAM. This is done by routing two metal-2 lines along the side of the core.

Figure 4.4 shows the complete layout accomplished by the cell_layout function for a

256×8 SRAM. Cell-abutting is used to connect the VDD and VSS lines for the 6T-core

(Refer to Section 3.1). Only one connection to the VDD and VSS bus is necessary for

each row.

4.1.3 Row Address Decoder

The row address decoder is responsible for generating the word-signals for each

row. As mentioned in section 3.5, a tree structure is used for the decoder. The SKILL

code that is responsible for implementing the row-address decoder resides in the

word_decoder procedure. The function consists of the following steps.

Write-select

Bit-line
conditioning

SRAM
Core

9
'
'

9
6
6

ELW� ELW�

'DWD

,QSXW�

'DWD

,QSXW�ZULWH

 34

1. Layout a tree-structured row decoder using NFET.

2. Add substrate contacts.

3. Add pull-up buffers to the decoder output.

From the aspect ratio calculation given in Section 4.1.1, we obtain the number of

row address bits, x, necessary for the decoder. As the decoder needs both non-

complement and complement address lines, 2x address bit lines are necessary. A 3x8 tree

structured row decoder with six address lines is shown in Figure 4.5.

Figure 4.5 – Implementation of a Tree-Structured Row Decoder

The first step is to layout the tree-structured row decoder. 2x polysilicon lines are

laid out to form the address lines. Next, a nested for-loop is used to layout NFETs at the

appropriate coordinates. The pseudo-code for the layout of NFETs is as follows.

 for addrline = 0 to x-1,

 for row = 0 to m-1,

if (row == odd then

 if(NFET should be placed for this row then

 // Place NFET on uncomplemented address lines (ex: A0)

 Instantiate(“NFET” @ {@uncomplemented address line})

Connect to previous (lower) address line

)

 else

&(1

$� $� $�$� $� $�

�

�

�

�

�

�

�

�

7R ZRUG OLQH

EXIIHUV

'
H
FR
G
H
U
R
X
WS
X
WV

$GGUHVV LQSXWV

 35

 if(NFET should be placed at this row then

 // Place NFET on complemented address lines (ex: A0’)

 Instantiate(“NFET” @ {@complemented address line})

 Connect to previous (lower) address line

)

)

 end for

 end for

 The coordinates of the NFETs are calculated as a function of the current row and

current address line. The source side of the two NFETs on the MSB address bit lines is

connected to the enable signal, CEN’.

 After the layout of the decoders, substrate contacts are placed at every 5 µm to

meet DRC rules. A substrate contact is placed below and above each NFET for the LSB

address lines, and subsequently every 5 µm for other address lines. All substrate contacts

are connected to a VSS bus. Recall from section 3.5.1 that pull up buffers are necessary

for this decoder. We use the leaf-cell for the pull-up buffers and connect them to the

output of the decoder.

Figure 4.6 shows the partial layout of a 5x32 row decoder generated by the

word_decoder function. Notice that the decoder resembles a tree-like pattern and the

pull-up buffers are connected to all outputs of the decoder.

Figure 4.6 – Word-Decoder Layout

3XOO�XS

%XIIHUV

7UHH

GHFRGHU

6XEVWUDWH

&RQWDFWV

&(1

 36

4.1.4 Read Address Decoder

The read address decoder of an SRAM activates w consecutive selected bit-line

columns, where w is the wordsize of the SRAM. The layout of the two decoders is

identical to that of the row decoder, and hence we describe only the control circuitry for

read and write operations. The read address decoder is responsible for activating selected

columns and routing the read-data to the “data out” bus.

Figure 4.7 – Read decoder for Wordsize=2

The read decoder, like the row-decoder, outputs an active-high signal on it’s

output. This output signal is the column-select signal for a read-operation. Figure 4.1

illustrates the read-decoder and supporting circuitry for an SRAM with a wordsize of 2.

As an example, suppose column 0 is selected by the read-decoder. Hence, the read

decoder enables (pulls high) the Output0 signal, which is gated to the read-select pass

transistors. Therefore, all bit-lines in column 0 will be connected to the data bus.

Meanwhile, all other bit-lines from the other columns are disconnected from the data-bus.

Routing the data-out is done in the following way. Each column is connected to a

pass transistor (similar to the write-select transistor discussed in section 4.1.2), which is

gated by the column-select signal output by the read-decoder. If a particular column is

chosen, then the pass transistor will connect the bit-lines for that column to the data bus.

The pseudo-code for this function is as follows.

Data0+

Data1+

Data0-

Data1-

5$0

&HOO

bit- bit+

5$0

&HOO

bit- bit+

OEN

a_0

Column 0

5$0

&HOO

bit- bit+

5$0

&HOO

bit- bit+

Column 1

READ Decoder
Output0 Output1

 37

 ////////// 1. Layout Column Decoder /////////

• See pseudo-code for previous section

 ////////// 2. Connect wordsize blocks together /////////

 for col = 0 to (n*w)-1 //n*w = number of bit-columns

• Place write-select transistors for each columns

o Two pass transistors for each column (for bit & bit_neg)

 end for

 //////////////// 3. Layout Data Bus ///////////////////

 for data = 0 to w-1 //w = word size

• Draw a horizontal bus for data+ for this bit

• Draw a horizontal bus for data- for this bit

 end for

 ////////////// 4. Connect to Decoder //////////////////

 for block = 0 to n-1 // n = number of block-columns

• Make column select common for columns in the same block

• Route out write-select signal (to be connected to decoder out)

• Connect write-select signal to decoder (pull-up buffer output)

 end for

Figure 4.8 – Read Address Decoder Layout

 The code to layout the read-address decoder is contained in the read_decoder

function. The final layout for this function can be seen in Figure 4.8, which is generated

for a 256×8 circuit. Note that the data output from each block is connected together so

that all blocks share the same bus for a single bit. The decoder and buffer

implementation is identical to the one used for the row-address decoder.

��ELW

FROXPQ
��EORFN FROXPQ

&ROXPQ

VHOHFW

'DWD

EXV

5HDG

'HFRGHU

 38

4.1.5 Write Address Decoder

The write address decoder is actually modeled after the read-address decoder.

The data is routed out the same way as for the read-decoder. The code for the write-

address decoder is in the write_decoder function. While the read address decoder is

placed at the bottom of the SRAM array, the write-address decoder is placed at the top of

the array.

Figure 4.9 – Write-Decoder for Wordsize of 2

Figure 4.9 illustrates the write-decoder for a word-size of 2. The architecture is

similar to the read-decoder architecture given in Figure 4.7. The operation of the write-

decoder is also similar to the read-decoder operation. From the address given, a_0 …

a_x, the write-decoder outputs an active-high for the selected column output. This

connects the selected column block with the data-bus. The relative position of all

components for the SRAM will be discussed in the next section.

4.1.6 I/O Buffers and Packaging

The final step is to add the I/O buffers for the SRAM circuit. All I/O signals need

to be routed out to the outside so that they are easily accessible by a router. We used only

metal1 and metal2 layers for our SRAM, so other metal layers maybe used by an auto-

router, if needed. Finally, each signal line is labeled for identification. The following I/O

WEN

5$0

&HOO

5$0

&HOO

Data0+

Data1+

Data0-

Data1-

bit- bit+ bit- bit+

a_0

Column 0 Column 1

 WRITE Decoder
Output0 Output1

5$0

&HOO

5$0

&HOO

bit- bit+ bit- bit+

 39

signals and their labels are shown in Figure 4.10. In this section we will discuss the final

packaging for each I/O signal group.

I/O Signals Labels
Address A_0 … A_k-1

Data-In DI_0 … DI_w-1

Data-Out DO_0 … DO_w-1

Control Signals

(active-low)

WEN

OEN
CEN

Figure 4.10 – I/O Pins of an SRAM

As mentioned in Section 4.1.3, each decoder generates the complemented address

signals necessary for the decoder. Therefore, routing of complemented address signals is

unnecessary. The three active-low control signals, WEN’, OEN’, and CEN’, form the

enable signals for the three decoders. Since they are direct input, they are routed out to

the top right corner of the SRAM. Figure 4.11 shows the placement of I/O signals and

the major components of an SRAM.

Two data signal groups are Data In (DI) and Data Out (DO). Both signals are

output from their respective column decoders. Recall from the previous section that, a

data bus is present for the column decoders. A data bus routes 2⋅w data signals, the non-

complemented and complemented bit signals for each bit, for the word size, w. A pair of

data-output signals, non-complemented and complemented signals, is fed into a sense

amplifier, which generates a logic value read from the cell. The sense output is buffered

via an inverter. The inverter drives the DO outputs through transmission gates only when

OEN is enabled.

&(1

$GGUHVV k

:(1

2(1

SRAM

2k × w
'DWD

2XW

w

'DWD

,Q

w

 40

Figure 4.11 – Placement of I/O Signals

The SKILL code for this section is contained in the package function. This

function will layout I/O buffers and sense amplifiers, route all I/O signals, and create

pins.

4.2 SRAM Macro Layout

Figure 4.12 shows the layout of a 256x8 SRAM generated by our RAM compiler.

This circuit is 390 µm wide by 340 µm high, with the aspect ratio being 390/340 = 1.2.

This circuit contains 13,019 transistors.

The following page also contains the SRAM circuit generated for a 1-kB SRAM

(Figure 4.13). This SRAM circuit is 700 µm wide by 580 µm high, with the aspect ratio

being 700/580 = 1.2. This circuit contains 50,513 transistors.

Note from the figure that the SRAM array occupies most of the area and the

overhead from the support circuitry is very little. Simulation results for the power

dissipation and delay characteristics are discussed in Chapter 6.

0HPRU\

&RUH

:ULWH 'HFRGHU

5HDG 'HFRGHU
:
R
UG

'
H
F
R
G
H
U

$GGUHVV

Ak… A0

&RQWURO 6LJQDOV�

:(1·� &(1·� 2(1·

'DWD 2XWSXW

DOw-1… DO0

'DWD ,QSXW

DIw-1… DI0

&�

&�

 41

Figure 4.12 – Layout for a 256x8 SRAM

Figure 4.13 – Layout for a 1-kB SRAM

RAM Core

Write Decoder

R
ow

 D
ecoder

Write Decoder

 42

��������

*� ����#���������
�
��

 With the increased use of portable consumer electronic products, power

consumption becomes a critical design criterion. This requires engineers to optimize

their design not only for speed and area, but also for power. In order to reduce the power

dissipation, we incorporate the array partitioning technique proposed by J. Caravella, as

mentioned in Chapter 2. The technique is applied to the architecture and modified our

SKILL code to generate a partitioned SRAM. In this chapter, we discuss the structure

and SKILL code for array-partitioned SRAMs.

5.1 Preliminary

The total power dissipated in a circuit is the sum of static and dynamic power

dissipation. The dominant term is the dynamic power dissipation for capacitor charging

and discharging. Thus, power consumption for static CMOS logic can be approximated

as fCVP 2×= α , where α is the average signal activity, C is the load and parasitic

capacitance, V is the supply voltage, and f is the operating frequency of the circuit. For

the case of the SRAM, a major portion of dynamic power dissipation is due to the load

and parasitic capacitances, the bit-lines and the word-lines of the SRAM. These lines

tend to be long and are switch most often.

The array partitioning technique aims to reduce the power dissipation by reducing

the bit-line and word-line capacitances, which are charged/discharged whenever a cell is

accessed. As mentioned in section 2.3.3, the technique partitions the memory array into

blocks so that only one block is activated at any time. The array partition requires extra

circuitry, hence it is slower compared with non-partitioned SRAM array.

For the ease of incorporating this technique into our existing SKILL code, we

adopt array partitioning into our final design. The following sections discuss the details

of the array partitioning regarding the structure and the implementation.

 43

5.2 Design for Array Partitioning

 We partition our array into four blocks, which produces a symmetrical design for

easy implementation. Each of the blocks constitutes a separate SRAM circuit that is one-

fourth the total size. A 2x4 decoder is used to select one block. The outputs of the block-

selector has twelve control signals – the three control signals, OEN, WEN, and CEN, for

each of the four blocks. The structure of the decoders is as follows.

Figure 5.1 – Array partitioned Architecture

The block-selector is implemented the same way as the decoder implementation

for the rows and the columns. The transistor level schematic for the block-selector is

given in Figure 5.2.

Figure 5.2 – Schematic of Block Select

 The block-selector decodes the CEN signal based on the two most significant

address bits. Thus, if the chip is being accessed, one of the four CEN signals, CENi

(where i is the block being accessed), is enabled. As is the case for the row and column

Block Select
1 block

5RZ 'HFRGHU
:LGWK� � ELW

&ROXPQ 'HFRGHU
:LGWK� ZRUG�VL]H

�*+-,�&��'� �2�%-,�&��'�

2(1�

&(1�

:(1�

&(1�

2(1�

:(1�

2(1�

&(1�

:(1�

&(1�

2(1�

:(1�

&
(
1Ak-2 Ak-1

:
(
1

2
(
1

 44

decoders (Section 3.5), pull-up buffers are needed at the decoder outputs so that all

unselected lines are disabled.

When the CEN signal is disabled for a block (which is not selected), it is desirable

to disable OEN and WEN signals of the block to save power. Hence, we use the decoded

CENi signal to enable/disable the OEN and WEN signals at the output of the block-

selector. Note that, since the CEN is an active-low signal, the output is inverted before

being used to switch pass transistors, in Figure 5.2.

Suppose that we read a data from block 0. The two MSB address bits are both 0,

CEN and OEN signals for block 0 are enabled (pulled low), while WEN is disabled

(pulled high). The 2x4 decoder connects the CEN signal to block 0. Since the CEN0 is

enabled, the two pass transistors associated with CEN0 connects OEN and WEN signals

to OEN0 and WEN0 signals. For all the other three blocks, the pull-up buffers pull up the

control signals to be disabled.

Figure 5.3 – Block Select Layout

 The block-selector circuit is laid out to create a leaf-cell to be used by the SKILL

code. The block-selector layout is shown in Figure 5.3. The three control signals are fed

at the bottom of the block-selector. The two address signals are routed to the top of the

SRAM circuit, so that they are bundled with the other address bits. The block select

FRQWURO

VLJQDOV

FRQWURO

VLJQDOV 9''

966

$N�

$N��

&(1� 2(1�

:(1

 45

outputs the twelve control signals, which are routed to their respective SRAM blocks.

The dimension of the block-selector is 89 µm x 37 µm. In order to make the layout

compact, the block select is placed at the bottom of an SRAM. The following section

discusses the skill code implementation.

5.3 SKILL Code for Array Partition

The skill code for the array partition makes use of the sram_array function, which

generates an unpartitioned SRAM array (Refer to Section 4.1). The structure of the

modified SRAM compiler is shown in Figure 5.4

Figure 5.4 – Overall Structure of Sram_Compiler

 The SRAM compiler allows users to choose between the two types of SRAMs–

single array SRAM or array-partitioned SRAM. As indicated in Figure 5.4, if the user

specifies type 0 (or type 1), a single-array SRAM (or array-partitioned SRAM) is

generated. The pseudo-code for the top-most function, sram_compiler, is as follows.

The function is responsible for differentiating between the two types.

• Load all necessary functions

// Check which type of SRAM the user wants to generate

 if (Type == 0 // simple SRAM array

 // Generate simple SRAM array

 sram_array(library cellview words wordsize)

 else if (Type == 1 // array-partitioned circuit

 // Generate circuit for 1 block

 sram_array(library temp_cellview words/4 wordsize)

 //call function to layout routing and blocks

 array_partition(library cellview words wordsize)

 dbDeleteObj(ddGetObj(library temp_cellview)) //delete temp layout

)

VUDPBDUUD\

VUDPBFRPSLOHU

DUUD\BSDUWLWLRQ

7\SH � 7\SH �

 46

 Thus, for type 1 SRAM, a temporary cellview for an SRAM generates one-fourth

the size first. Next, the array_partition function is called to place blocks and necessary

routings. The pseudo-code for the array-partition function is given below.

 ////////////// Instantiate 4 blocks ///////////////

 Instantiate(“temp_cellview” @ {x_offset, y_offset})

 Instantiate(“temp_cellview” @ {x_offset, -y_offset})

 Instantiate(“temp_cellview” @ {-x_offset, y_offset})

 Instantiate(“temp_cellview” @ {-x_offset, -y_offset})

 /////////////// Route Data Lines //////////////////

• Connect Data-In lines of all blocks together

• Connect Data-Out lines of all blocks together

• Route out Data signals to the top of the circuit

• Place a Pin for the PI Data-In and Data-Out signals

////////////// Route Control Signals ///////////////

Instantiate(“Block-Select” @ {bottom of the circuit})

• Route PI control signals (CEN’, WEN’, OEN’) to the block select

• Route control signal from Block select to respective blocks

• Place a Pin for the PI control signals

////////////// Route Address Signals ///////////////

• Connect Address lines of all blocks together

• Route out Address signals to the top of the circuit

• Route the two-most-significant address bits from the PI to the

block-select

• Place a Pin for all Address signals

/////////// Make VDD & GND connections ///////////

5.4 Final Layout

 The final layout for a partitioned array of 1 kB (1024x8) SRAM is given in Figure

5.5. The SRAM is 860 µm wide by 730 µm high, with the aspect ratio being 860/730 =

1.2. The RAM contains 52,157 transistors. Though this is a 35% increase in silicon area

when compared with a single array SRAM (Refer to Section 4.2), there is only a 3.15%

increase in the number of transistors. This discrepancy is due to the overhead of routing

 47

associated with the block-selector. In the next chapter, we discuss the simulation results

for the power and delay characteristics of the two types of SRAMs.

Figure 5.5 – Array-Partitioned 1 kB SRAM

EORFN�VHOHFWRU

���[�

65$0

$GGUHVV DQG

'DWD 6LJQDOV

 48

��������

+� &���
����
�����
����

So far, we discussed the implementation of our SRAM compiler and the basic

components. The SRAM compiler enables a user to choose between two types of

SRAMs – a fast vs. a low power version. In this chapter, we present the simulation

results on the performance of the two types of SRAMs for three different sizes.

6.1 Simulation Environment

In addition to verifying the correct operation of SRAMs generated by our

compiler, we measured the performance of SRAMs for different sizes, 256x8, 512x8, and

(1024x8) 1 kB SRAM. It should be noted that 1 kB is the largest SRAM size required for

the project. We measured the performance in:

• Area: Silicon Area, Transistor Count
• Time: Cycle, Access, Setup, Hold
• Power: Static, Dynamic, Average

After the layout was generated, Cadence’s Analog Artist was used to extract the

spice netlist. Input stimuli were manually added to simulate the circuit for different test

cases and measure parameters. As was done for leaf-cells, Avanti HSPICE was used for

SPICE simulation.

We performed two writes followed by two reads on two locations. Two farthest

cells from the address pins were selected as the propagation delay and the dynamic power

dissipation would be the worst on those cells. The data background (Data) used in the

simulation for the 8-bit word SRAMs is 00110011 (x33), with the complemented data

background (Data’) being 11001100 (xCC). This allows for the most number of data

changes. The timing of the simulation is shown in Figure 6.1. In the figure, locations 000

(hex) and 3FFF (hex) denote the addresses of first and the last cells, respectively.

The simulation was performed for 120 ns which includes 20 ns for two

consequetive write operations, another 40 ns for two read operations, and 20 ns standby

mode at the end of simulation. The period of an operation is set to 20 ns (50 MHz) in the

simulation, which is based on the slowest SRAM, 1 kB partitioned-array RAM. A load

 49

capacitance, Cload of 20fF is attached at each data output for the simulation. The

following sections present the results obtained and discuss the trends for each of the three

design parameters.

Figure 6.1 – Input Stimuli for Characterization

The waveform in Figure 6.2 shows the write and read operation for a 1kB

partitioned-array SRAM. The DO in the waveform represents a data-output bit. During

the writes, the voltages on the two bit-lines are affected by the input-data. During a read,

voltages on the two bit-lines are pulled up/down by the data contained in the RAM cell.

Note that, although the voltages on the bit-lines are not at a sufficiently high or low value,

the data output, DO, is pulled to a good value by the sense amplifier. After the two reads,

the CEN signal is disabled. It disables the SRAM and the voltages of the two bit-lines

converge at this point.

Figure 6.2 – Simulation Waveform for 1-kB SRAM

20 40 50 70 90 100 120

ns

WRITE READ

'DWD WR

/RFDWLRQ
x0000

'DWD WR

/RFDWLRQ

xFFFF

'DWD

IURP

/RFDWLRQ
x0000

'DWD

IURP

/RFDWLRQ
xFFFF

6WDQGE\

0RGH

�&(1

GLVDEOHG�

CEN

 50

6.2 Area Measurement

We measured both the silicon area based on the layout and the total number of

transistors for both type of SRAMs for the three different sizes. Table 6.1 gives the

results on the area. In the table, the column headings “single” and “partition” denote

single-array RAMs and partitioned-array SRAMs, respectively. The “Ratio” specified in

the table is the area or transistor count of a partitioned-array SRAM to that of a single-

array SRAM.

 Table 6.1 – Area Characteristics

256x8 512x8 1024x8
Single Partition Single Partition Single Partition

134 259 222 396 406 606 Area (µm2)

Ratio 1.93 1.78 1.49

13019 14021 25469 26637 50513 52157 Transistor #

Ratio 1.08 1.04 1.03

1.2 1.2 0.7 0.8 1.2 1.2 Aspect ratio

Ratio 1 1.1 1

 As the size of the SRAM is doubled from 256 byte to 512 byte and finally to 1

kB, the area approximately (*1.7) doubles. Likewise, doubling the SRAM size also

approximately (*1.8) doubles the transistor count. This is true for both types of SRAMs.

This result is expected as doubling the SRAM size implies that there will be twice as

much RAM cells. Since RAM cells dominate both the area and the transistor count, the

increase in size is proportional to the RAM cell increase. As the overhead of supporting

circuitry will decrease with increasing size, this trend is expected to continue so that the

increase in both the transistor count and the area will be further closer to two for larger

SRAMs.

 The overhead of the additional circuitry for the array partitioned SRAM results in

increased area over the single-partition SRAM. Note that, for the 1 kB SRAM, though

the transistor count only increases by 1.03 for the 1 kB SRAM, there is a 1.49 increase

for the overall area for the layout. The small increase in transistor count results in a large

 51

increase in layout. The reason for such a difference between layout-area and transistor

count is increased routing to and from the four blocks. This illustrates the impact of

routing in the final design.

 Also included in the table is the aspect ratio (width/height) of the layout. Note

that the aspect ratio decreases to 0.7 for the 512x8 SRAM. This change in aspect ratio is

due to the method in which the aspect ratio is calculated. In the aspect ratio calculation,

the number of rows and columns are calculated using the aspect ratio for one block.

Also, the limitation of the number of rows and columns having to be a power of 2 limits

the accuracy of the aspect ratio calculation. This results in less accurate aspect ratio

because of the block size.

6.3 Time Measurement

The speed of SRAM cells and the propagation delay to access a certain cell

attributes the access time for read or write operations. First, we measured the speed of a

6T SRAM cell core, with sense amplifiers and write-select, described in Section 3.4 for

read and write operations. Table 6.2 presents the results for these operations.

Table 6.2 – Speed of a Single RAM Cell

Operation Speed (ns)

Write 1 2.2
Read 1 0.93
Write 0 2.1
Read 0 0.7

Observations from the table show that the write-operation takes longer than the

read operation. This is because for a write, the data has to first be inverted to provide

both the complement and uncomplemented value that are fed to the bit-lines. Whereas

for the read, as soon as the bit-lines start to be pulled by the RAM cell, the fast sense amp

amplifies the difference, allowing the output to appear quickly. The same trend can be

found below (see Table 6.4) for the 1 kB SRAMs. Another point to note is that it takes

longer to read or write the logical value ‘1’, rather than ‘0’. The reason for this is

because all pass-transistors use NFETs rather than PFETs, and since NFETs cannot

 52

transmit a good ‘1’, it takes them longer to pullup a line. Though, the bit-lines are

conditioned to alleviate this problem, there is still a slight bias towards ‘0’.

Let us now analyze detailed timing parameters that are helpful to understand the

speed of SRAMs. The timing diagram of a read operation is given in Figure 6.3. The

parameter read-cycle time, tRC, indicates the minimum time that the address has to be

valid in order for a valid data to be output sometime in the future. The address access

time, tAA, is the time from the start of a valid address to when valid-data is available at

the output. This time includes both latency (the overhead of preparing to access it) and

transfer time. Note that the read cycle time indicates a minimum, while the address

access time is a maximum. For this reason, tRC is usually less than tAA. The output

enable time, tOE, represents the time that it takes for the data to appear on the output after

the OEN signal is enabled.

Figure 6.3 – Timing Parameters of a Read Cycle

Timing parameters related to write operations is shown in Figure 6.4. The write

cycle time represents the minimal time from the start of an access to the time when the

next access can be started. The write enable access time, tWA, is the time it takes the data

to be written to the RAM cell after the address has been setup. Likewise, the data-in

access time, tDA, represents the time it takes to write the data after a change in the input

data. The address setup time, tAS, gives the time that a valid write address must be

present before WEN is enabled. The address hold time, tAH, represents the time that the

current address should be valid after WEN is disabled. Similarly, the data-in setup time,

tDW, specifies the time that a valid data must be available prior to disabling WEN, while

the data-in hold time, tDH, specifies the time for which the current data is held even after

WEN is disabled.

Valid Data

ADDR

OEN

DOUT

tAA

tRC

Valid Address

tOE

Read Cycle

 53

Figure 6.4 – Timing Parameters for a Write Cycle

The most critical timing parameter is the read access time during a read-operation,

which determines the clock speed of an SRAM. Table 6.3 contains the access time for

both types of SRAMs for the different sizes and types. This access time is the time it

takes for the data to be output once the address is setup.

Table 6.3 – Comparison of Address-Access Times (ns)

256x8 512x8 1024x8

Single Partition Single Partition Single Partition

Access
time (ns)

6.6 14.7 8.9 17.5 15.0 21.8

Ratio 2.22 1.96 1.45

As expected, the results from the above table indicate that partitioned-array

SRAM is slower than the single-array SRAM. However, the ratio for the different sizes

indicates that as the SRAM size is increased, the speed interval between the two SRAM

types decrease. The reduced speed for the array-partitioned SRAM is due mainly to the

overhead of the supporting circuitry such as the block-selector and routing to & from the

four blocks. For example, during a read, the sense amplifier has to drive a longer data-

bus, with increased line capacitance, causing the data to appear slower on the output.

However, since the overhead of supporting circuitry decreases with increased size, the

ratio decreases as the size is increased.

D1 (Data-In Valid)

ADDR

WEN

DIN

tAS

tWC

A1 (Valid Address) A0 A2

D(A1)

tAH

D0

tDW tDH

D0 D1 (Data Valid)

tWA tDA

Write Cycle

 54

Now we look at the timing characteristics for the 1-kB SRAM. Table 6.4 gives

the results obtained for the 1-kB SRAM from the worst-case simulations, mentioned in

section 6.1.

Table 6.4 – Timing Parameters for 1-kB SRAM

tpd (ns)
Symbol Parameter Type = 0 Type = 1

% Increase

Read Cycle
tRC Read Cycle Time 12.7 18.9 1.49
tAA Address Access Time 15.0 21.8 1.45
tOE Output Enable Time 9.4 19.7 2.09
Write Cycle
tWC Write Cycle Time 8.3 12.5 1.51
tWA Write Enable Access Time 4.7 6.3 1.34
tDA Data-In Access Time 2.1 4.4 2.09
tAS Address Setup Time 2.6 6.2 2.38
tAH Address Hold Time 0.3 0.4 1.33
tDW Data-In Setup Time 4.3 9.1 2.12
tDH Data-In Hold Time 0.1 0.1 1

As can be seen from the table results, the array-partitioned SRAM is about 1.5

times slower than a single-array SRAM in read time. All timing parameters are measured

as the time it takes for the output to reach 90% of its final value. Though the operating

period is 20 ns, we are able to obtain the value for the address access time of 21.8 ns for

the array-partitioned SRAM because the data-output is held on the data bus for some time

even after the enable signal is turned off, due to the line capacitance. The tAA parameter

determines the speed of a SRAM.

If we compare the percentage increase of the setup time over the hold time, it can

be seen that the low-power SRAM takes much more time to setup over the normal

SRAM. This is because the setup time includes the time it takes for both the address

decoder and the block-select to decode the new address. In addition to this, there is also

the time it takes for the control signals to reach the blocks. Since these lines tend to be

long, the line capacitance can be large, leading to the slower time.

6.4 Power Measurement

Dynamic power dissipation occurs during a R/W access. Static power dissipation

is the power dissipated when there are no read or write operations and all nodes are at the

 55

steady state value. The average power dissipation is the power dissipated during the

entire simulation, which includes the standby mode of 20 ns at the end of simulation.

Table 6.5 shows the power dissipation for three different sizes of SRAMs.

Table 6.5 – Power Characteristics

256x8 512x8 1024x8

Single Partition Single Partition Single Partition

31.11 25.86 61.15 30.00 79.21 41.54 Dynamic (mW)

Ratio 0.83 0.49 0.52

0.65 3.46 0.73 3.62 0.96 3.57 Static (mW)

Ratio 5.32 4.95 3.72

24.68 21.39 48.08 24.16 66.59 36.83 Average (mW)

Ratio 0.87 0.50 0.55

As expected, the circuit with array partitioning reduces both dynamic and average

power dissipated. For the 1 kB SRAM, the array-partitioned SRAM dissipates 45% less

average power dissipation. The dynamic power dissipation reduces due to the reduced

bit-line and word-line capacitances and consequently the average power dissipation is

reduced, since it is dominated by the dynamic power dissipated.

Though both dynamic and average power dissipation is reduced, note that the

static power dissipation actually increases with 3.72 times for the 1024x8 SRAM. This is

because the static power dissipated is determined by the overhead of the support circuitry,

especially the ones that contain a resistive load. Though both types of circuits have the

same number of RAM cells, the partitioned SRAM has 4 times the support circuitry for

the four different blocks. For example, for a 1 kB circuit, there are eight sense-amplifiers

(one for each data bit) for the type 0 circuit. On the other hand, for the partitioned

SRAM, since there are four independent SRAM blocks, there are 32 sense amplifiers.

Therefore, the overhead is the cause of the increased static power dissipation. However,

from Table 6.1, it can be seen that there is a decreasing trend with the percentage

increase, so that the effect of the overhead will decrease with increased SRAM size.

Also, note that the average power dissipation is dominated by the dynamic power,

allowing us to ignore the effect of static power.

 56

There is yet another interesting trend to be noted. We may expect that the average

power savings will increase linearly as the SRAM size is increased. However, notice that

there is a non-linearity for the 512x8 SRAM size where there is actually more power

savings at the 512x8 SRAM than the 1 kB SRAM. The reason for this can be seen in the

shape of the SRAM shown in Figure 6.5.

 Notice that the blocks of the 512-size circuit are more elongated than the 1 kB

SRAM. This means that for the 512x8, there are more rows than columns, whereas in the

1-kB SRAM, there are more columns than rows. This leads to the word-length being

proportionally much longer in the 1 kB when compared to the bit-line length. Since the

word-lines use polysilicon, while the bit-lines use a lower-resistive metal1 layer, this puts

the 512x8 circuit at an advantage, leading to the slightly higher power-savings. It should

be noted that this trend is repeated for every quadrupled-SRAM (0.5 kB, 2 kB, 8 kB,…)

due to the aspect ratio calculation. Therefore, the fault lies in the aspect ratio calculation

where we assumed that an SRAM that has close to equal rows and columns is most

desirable.

Figure 6.5 – Aspect Ratio Comparison for Array-Partitioned SRAM

Nevertheless, the static power dissipated is not affected by the SRAM and the

results indicate a linear change. This is because the overhead of the support circuitry is

not affected by the length of the bit or the word-lines. This allows for the linear trend in

percentage savings. Given more time, the optimum bit-line to word-line length ratio

should be determined and the aspect ratio calculation should be improved to take

advantage of this phenomenon.

 57

6.5 Minimum Operating Voltage

 For low-power purposes, it is desirable to operate a circuit at the minimum

possible operating voltage without exceeding system requirements. With the 20 MHz

timing requirement for the SRAM, the minimum operating voltage is 1.9 V for the single-

array SRAM, and 2.1 V for the partitioned-array SRAM. Table 6.6 specifies the

performance of the SRAMs at the minimum operating voltage.

Table 6.6 – Performance at Min Operating Voltage

 Single-Array Partition-
Array Ratio

Min. Operating
Voltage

1.9 V 2.1 V 1.1

Address Access, tAA 44.3 ns 48.1 ns 1.1
Average Power 22.65 mW 17.39 mW 0.7

Power Savings by
reduced voltage

0.37 0.47 1.27

 The reason for the difference in the minimum voltage between the two SRAMs is

due to the restriction of speed. We want the SRAM to be operational for a frequrency of

20 MHz. However, note from the last section that the single-array SRAM is faster than

the partitioned-array. This allows the single-array SRAM to have a reduced Vdd without

reducing speed as much as the partitioned-array SRAM.

 The power savings resulting from reducing Vdd comes at a cost of reduced speed.

The equation for the delay,

V
VV

L

W
K

C

tdd

bitline ∆⋅
−





′

≈
2)(

τ ,

shows that reducing the Vdd slows down the circuit quadratically. There is a reduction in

speed by 2.5 times due to reducing the operating voltage. However, the SRAM is

capable of functioning within the 20 MHz required by the project.

 By reducing the operating voltage, the speed was compromised by 60%.

However, the power savings was close to 50% for the partition-array SRAM making the

tradeoff reasonable. An important trend to note from the results is that at 3.3 V, the ratio

of average power dissipated between the two types was 0.55. When the operating voltage

 58

was reduced to minimum Vdd, the ratio increased to 0.7. This means that the difference

in power dissipated between the two types reduces with decreased supply voltage. The

reason for this can be found in the basic equation for power dissipation: fCVP 2×= α .

At 3.3 V, the main difference between the two types of SRAMs was the reduction in the

capacitance, C. However, when the supply voltage was reduced to 2.1 V, the most

dramatic change in the power dissipated is V, since its an quadratic term. Therefore, the

1.2 V drop in supply voltage dominates the total power dissipated. However, since C is

still less for the array-partitioned SRAM, there is still a 30% power savings by using the

array-partitioned SRAM.

6.6 Conclusion

 The array-partitioned circuit proved to save power over the normal SRAM.

However, this savings comes at the price of speed and area. For the 1-kB SRAM, the

type 1 SRAM is proven to save 48% dynamic power and 45% overall power dissipation.

However, the access time for the low-power circuit reduces to 21.8 ns – 31% slower than

the 15 ns type 0 SRAM. Also there is an increased area of 33% and an increase of 3% in

transistor count. By reducing the supply voltage to 2.1 V, the partitioned array was able

to lower average power dissipation to 17.39 mW at a cost of reducing the speed to 20

MHz. These results give an account of the design tradeoffs involved with low-power

circuits.

 59

��������

$� ��
�
����
�

An embedded SRAM compiler has been successfully developed with low-power

capabilities. The compiler allows the user to choose between two types of SRAMs – one

that is low power and one that is fast. This gives the user the ability to decide on the

most critical design criteria for the application.

The low-power SRAM uses the array partitioning technique to reduce power

dissipation. By dividing the entire memory array into four blocks, we are able to reduce

the bit-line and word-line capacitance by half. Thus, the partitioned memory arrays

reduce the total capacitance that is switched per access. Reducing these capacitances

reduces the dynamic power dissipated and consequently, the total power that is

dissipated.

Simulation results for the 1kB SRAM show that the low-power SRAM dissipates

45% less power than the normal SRAM, with the low-power SRAM dissipating 36.83

mW of average power. The area overhead due to array partitioning is 33%, with a 3%

increase in the number of transistors. For a size of 1kB, both types of SRAM are shown

to be capable of operating at a frequency of 50 MHz, well within the 20 MHz

requirements for this thesis. At the minimum operating voltage of 2.1 V, the array-

partitioned SRAM dissipated 20 mW of average power, operating at a speed of 20 MHz.

Finally, a test circuit has been prepared which will be fabricated. The layout for

the test circuit is shown in Figure 7.1. The layout shows the 1 kB array-partioned SRAM

(type 1) with I/O pads connected. The test circuit will be used to physically verify the

operation and get actual measurements of the SRAM. After this verification, the SRAM

will be embedded in the Wireless Video Project mentioned in Section 2.5. For the test

circuit, the SRAM is not embedded and requires a pin for each I/O pins. Due to the high

cost of I/O pads, the data-input and data-output signals are connected together to reduce

pin number. Because the data-output signal is isolated from the bus by transmission

gates, there is no reason for a bus contention.

 60

Figure 7.1 – Test Circuit for 1 kB Array-Partitioned SRAM

 The area for the test circuit is 2080 µm x 1795 µm = 3.73 mm2, which is

approximately six times larger than just the SRAM. As can be seen in the figure, the I/O

pads occupy a large part of the total area, even after reducing the pins by sharing the data-

in and data-out signals. However, since the SRAM will be embedded in the final circuit,

the effect of the I/O pads on the area will not be as dramatic.

As a conclusion to this thesis, we describe a possible improvement to the design.

As mentioned in the previous chapter, the aspect ratio of the SRAM plays an important

factor in the final design. Though the aspect ratio calculation for the compiler was

designed in order to accommodate equal rows and columns, the results indicate that this

may not be the best choice. Because the word-lines, which are polysilicon, are more

resistive than the bit-lines, which are metal1, it is preferable to make the word-lines

shorter than the bit-lines. This implies that there should be more rows than columns.

Then, the aspect ratio should be calculated not to have equal rows and columns, but an

optimum row-column ratio. Therefore, the optimum aspect ratio should be determined

through experimental results and the compiler should be modified to generate the layout

for this aspect ratio.

 61

����31�4�

�� ���������-������
�

The following tables lists the functions used in our SRAM compiler.

Table A.1 – Functions in the SRAM Compiler
sram_compiler(library cellview Words Wordsize Type)

procedure sram_compiler will generate an embedded SRAM layout
Possible Types:
• Type = 0 -- Simple SRAM array without Array Partitioning
• Type = 1 -- Array Partitioned SRAM array with the Block Select at bottom

array_partition(library cellview Words Wordsize)

procedure array_partition will partition the memory array into 4 blocks for low-
power

sram_array(library cellview words wordsize)

procedure sram_array is the top-level function to layout an SRAM circuit

cell_layout(library cellview number_of_rows number_of_cols)

procedure cell_layout layouts an array of sram cells with m rows and n columns

word_decoder(library cellview x y number_of_rows number_of_cols wordsize)

read_decoder(library cellview x y number_of_rows number_of_cols wordsize)

write_decoder(library cellview x y number_of_rows number_of_cols wordsize)

These procedures layouts the decoders for the SRAM

package(library cellview x y number_of_rows number_of_cols wordsize)

procedure package makes the circuit fit the final package � add all I/O pins and

route signals to meet package criteria

A.1 Compiler Setup

Before generating the circuit, the compiler must first be setup in the CADENCE

environment in the following way.

1. After starting CADENCE icfb, follow the procedure to setup the TSMC 0.35 um

process from the following page:

 http://www.ee.vt.edu/ha/cadtools/cadence/unix_env.html

2. In your working directory, copy all .il files that are present in the present directory.

 62

3. Copy the sramleaf/ directory onto your working directory.

4. Add the sramleaf/ directory as a library in your CADENCE design environment using

the procedure from the following page:

 http://www.ee.vt.edu/ha/cadtools/cadence/gate.html

A.2 Layout Generation

Each procedure is contained in a separate file whose filename is the name of the

procedure. The compiler is executed in the following way.

1. Load skill code: load(“sram_compiler.il”)

� Loads the contents of the file sram_compiler.il

� This file also contains the commands to load all other functions that will be

used by the sram_compiler procedure.

2. Call top-level function: sram_compiler(library cellview words wordsize type)

� Generates an SRAM layout for the specified size of the specified type.

� Example: sram_compiler(“ram” “sram_1k_8” 1024 8 1) generates a layout

for an 1 kB (1024×8) array-partitioned SRAM.

Note that the above commands should be typed in the CIW. Also, the load

command assumes that the file is in the cadence working directory. If this is not the case,

the correct path of the file should be entered. All SKILL code files are enclosed in

Appendix B.

 63

����31�4�

 � &.�""������

The SRAM compiler consists of 8 SKILL code files, all of which have a il

extension. The files are stored in the VISC workstations at the following location:

/project/asic/SRAM_Compiler. The directory listing for this location is shown in Table

B.1.

Table B.1 – Directory Listing of /project/asic/SRAM_Compiler
Filename Contents

array_partition.il Function array_partition
cell_layout.il Function cell_layout
package.il Function package
read_decoder.il Function read_decoder

README_compiler
README for SRAM Compiler with instructions
for compiler setup and execution

sram_array.il Function sram_array
sram_compiler.il Function sram_compiler
word_decoder.il Function word_decoder
write_decoder.il Function write_decoder
spice/ Directory of SRAM HSPICE files
sramleaf/ Directory of leaf-cell layouts
testcircuit_1kx8/ Directory containing 1 kB test-circuit cellview

As can be seen from the directory listing, each function is contained in a separate

file whose filename is the name of the function. The following pages contain the SKILL

code files in alphabetical order.

 64

B.1 array_partition.il
;;
;; FileName: array_partition.il
;; Author: Meenatchi Jagasivamani, April 2000
;;
;; procedure array_partition will partition the memory array into 4 blocks for low
;; power purposes and place the Block Select at the bottom (compact)
;;
;; Usage In CIW:
;; array_partition(library cellview Words Wordsize)
;;
;; Ex: array_partition("sram" "block_256_8" 256 8)
;; --> to create array of sram cells with 256 words with a wordsize of 8 bits
;; array will be partitioned into 4 blocks with the BS at the bottom
;; --> Layout will be stored in cellview "block_256_8" under library "sram"
;;
;;

procedure(array_partition(clib cname words w)

 ;;
 ;;;;;;;;;;;;; Declare leaf cells to be used ;;;;;;;;;;;;;;;;;;;;
 ;;
 library = "sramleaf"
 viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r")
 blkselcv = dbOpenCellViewByType(library "BlockSelect " "layout" "" "r")
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a") ; final circuit
cellview

 ;;;
 ;;;;;;;;;;;;;; Define Routing Variables ;;;;;;;;;;;;;;
 ;;;
 block = int(words/4) ; block size
 AR_1bit = 0.5

 ;;;;;;Calculate row and col for equal aspect ratio
 ar = log(w* AR_1bit)/log(2) ;aspect ratio for 1 wordsize block
 k = int(log(block)/log(2)) ;number of address lines
 y = floor((k-ar)/2) ;x+y = k
 x = k-y ;x = ar+y

 m = int(2**x)
 n = (2**y)*w

 startx=4.8*n+2.5*w+19.25+2.85 ;address side
 endx=9.25+2.9*x+1.4*y ;data side

 ;;;; split address lines for symmetrical routing
 ; let right side have less address lines (because of VDD & GND routing)
 halfadr = ceiling(k/2) ;MSB

 ;xwidth = (DI+DO)+Decoder Width+VDD&GND+address
 xwidth = (1.4*w)+1.4*(k-halfadr)+10.75+4.6

 ;yheight = address+3 control signals on both sides
 ; yheight = 1.4*(halfadr+2)+3.9-1.8
 yheight = 1.4*(k-halfadr)+4.7

 ;;;; Offset required to put the sram blocks on the axis
 xspacing = startx+5.55+0.85+xwidth
 yspacing = 10.5+14.8*(m/2)+2.7*w+2.9*y+yheight

 ;;; coordinates for one block
 top = yspacing+30.55+2.7*w+2.9*y-2.8
 bottom = yspacing-10.9-14.8*(m/2)-2.7*w-2.9*y

 ;;

 65

 ;;;;;;;;;;;;;generate circuit for 1 block = words/4 ;;;;;;;;;;;;
 ;;
 ; create block in a temporary cellview called : "temp_" + cname
 blkcvname = buildString(list("temp" pcExprToString(cname)) "_")

 ;open temporary block cell view
 blockcv = dbOpenCellViewByType(clib blkcvname "layout" "" "r")

 Instpoint1 = xspacing:-yspacing
 blockInst = dbCreateInst(ccv blockcv "blockInst1" Instpoint1 "MX")
 dbFlattenInst(blockInst 1 t)

 ;instantiate blocks onto final cellview
 Instpoint2 = -xspacing:-yspacing
 blockInst = dbCreateInst(ccv blockcv "blockInst2" Instpoint2 "R180")
 dbFlattenInst(blockInst 1 t)

 Instpoint3 = xspacing:yspacing
 blockInst = dbCreateInst(ccv blockcv "blockInst3" Instpoint3 "R0")
 dbFlattenInst(blockInst 1 t)

 Instpoint4 = -xspacing:yspacing
 blockInst = dbCreateInst(ccv blockcv "blockInst4" Instpoint4 "MY")
 dbFlattenInst(blockInst 1 t)

 ;;;
 ;;;;;;;;;;;;;; Route DATA Lines ;;;;;;;;;;;;;;;;;;;;;;
 ;;;
 for(bit 0 w-1
 ;connect write-data lines together
 dbCreateRect(ccv "metal1" list(xspacing-startx+2.85:yspacing+7.55-2.8*bit -
xspacing+startx-2.85:yspacing+8.35-2.8*bit))
 dbCreateRect(ccv "metal1" list(xspacing-startx+2.85:-yspacing-7.55+2.8*bit -
xspacing+startx-2.85:-yspacing-8.35+2.8*bit))

 ;connect read-data lines together
 dbCreateRect(ccv "metal1" list(xspacing-startx-7.2:yspacing+8.55-14.8*(m/2)+4.8*bit -
xspacing+startx+7.2:yspacing+9.35-14.8*(m/2)+4.8*bit))
 dbCreateRect(ccv "metal1" list(xspacing-startx-7.2:-yspacing-8.55+14.8*(m/2)-4.8*bit
-xspacing+startx+7.2:-yspacing-9.35+14.8*(m/2)-4.8*bit))

 ;route write-data out vertically
 ;place via for vertical routing at top
 viapt = xspacing-startx-8.2-1.4*bit:yspacing+8-2.8*bit
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 ;place via for vertical routing at bottom
 viapt = xspacing-startx-8.2-1.4*bit:-yspacing-8+2.8*bit
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 dbCreateRect(ccv "metal2" list(xspacing-startx-7.8-1.4*bit:-yspacing-7.6+2.8*bit
xspacing-startx-8.6-1.4*bit:top))

 ;Place a pin for Write Data signals
 fig = dbCreateRect(ccv "metal2" list(xspacing-startx-8.5-1.4*bit:top-0.1 xspacing-
startx-7.9-1.4*bit:top-0.7))
 pinname = buildString(list("DI" pcExprToString(bit)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 ;route read-data in vertically
 ;place via for vertical routing at top
 viapt = -xspacing+startx+8.2+1.4*bit:yspacing+8.95-14.8*(m/2)+4.8*bit
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 ;place via for vertical routing at bottom
 viapt = -xspacing+startx+8.2+1.4*bit:-yspacing-8.95+14.8*(m/2)-4.8*bit
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 66

 dbCreateRect(ccv "metal2" list(-xspacing+startx+7.8+1.4*bit:-yspacing-7.75-
0.8+14.8*(m/2)-4.8*bit -xspacing+startx+8.6+1.4*bit:top))

 ;Place a pin for Read Data signals
 fig = dbCreateRect(ccv "metal2" list(-xspacing+startx+8.5+1.4*bit:top-0.1 -
xspacing+startx+7.9+1.4*bit:top-0.7))
 pinname = buildString(list("DO" pcExprToString(bit)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)
)

 ;;
 ;;;;;;;;;;;;; Route Control Signals ;;;;;;;;;;;;;;;;;;;
 ;;
 ;place block select signal
 blkselpt = 2.1-1.05+2.25:-top-25
 blkselInst = dbCreateInst(ccv blkselcv "blkselInst" blkselpt "R0")
 dbFlattenInst(blkselInst 1 t)

 for(sig 0 2

 ;;;;;; Route control signals from PI to the decoder
 ;;; Order from left to right: CEN, OEN, WEN
 ;place pin at end
 fig = dbCreateRect(ccv "metal2" list(12.6+1.4*sig:-top-25-16.6+0.1 13.2+1.4*sig:-top-
16.6-25+0.7))
 if(sig == 0
 then pinname="CEN"
 else if(sig== 1
 then pinname = "OEN"
 else pinname = "WEN"
)
)
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 ;;;;;; For Block 1 (x, y)
 ;route control signal from block select
 dbCreateRect(ccv "metal2" list(2.95+1.4*sig:-top 3.75+1.4*sig:3.9-1.4*sig))
 viapt = 3.35+1.4*sig:3.5-1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 dbCreateRect(ccv "metal1" list(6.55-1.4*sig:0.3+1.4*sig
xspacing+endx+1.4*k+1.4*sig:1.1+1.4*sig))
 ;place a via at the ends
 viapt = xspacing+endx+0.4+1.4*k+1.4*sig:0.7+1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 dbCreateRect(ccv "metal2" list(xspacing+endx+1.4*k+1.4*sig:1.1+1.4*sig
xspacing+endx+0.8+1.4*k+1.4*sig:top-1.4*sig))
 ;add via at the end and connect to line
 viapt = xspacing+endx+0.4+1.4*k+1.4*sig:top-0.4-1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 dbCreateRect(ccv "metal1" list(xspacing+endx+1.4*k+1.4*sig:top-1.4*sig
xspacing+endx+3.9:top-0.8-1.4*sig))

 ;;;;;; For Block 2 (x, -y)
 ;route control signal from block select
 dbCreateRect(ccv "metal2" list(7.15+1.4*sig:-top 7.95+1.4*sig:-0.3-1.4*sig))
 viapt = 7.55+1.4*sig:-0.7-1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 dbCreateRect(ccv "metal1" list(7.15+1.4*sig:-0.3-1.4*sig
xspacing+endx+1.4*k+1.4*sig:-1.1-1.4*sig))
 ;place a via at the ends

 67

 viapt = xspacing+endx+0.4+1.4*k+1.4*sig:-0.7-1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 dbCreateRect(ccv "metal2" list(xspacing+endx+1.4*k+1.4*sig:-1.1-1.4*sig
xspacing+endx+0.8+1.4*k+1.4*sig:-top+1.4*sig))
 ;add via at the end and connect to line
 viapt = xspacing+endx+0.4+1.4*k+1.4*sig:-top+0.4+1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 dbCreateRect(ccv "metal1" list(xspacing+endx+1.4*k+1.4*sig:-top+1.4*sig
xspacing+endx+3.9:-top+0.8+1.4*sig))

 ;;;;;; For Block 3 (-x, y)
 ;route control signal from block select
 dbCreateRect(ccv "metal2" list(-2.95-1.4*sig:-top -3.75-1.4*sig:3.9-1.4*sig))
 viapt = -3.35-1.4*sig:3.5-1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 dbCreateRect(ccv "metal1" list(-6.55+1.4*sig:0.3+1.4*sig -xspacing-endx-1.4*k-
1.4*sig:1.1+1.4*sig))
 ;place a via at the ends
 viapt = -xspacing-endx-0.4-1.4*k-1.4*sig:0.7+1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 dbCreateRect(ccv "metal2" list(-xspacing-endx-1.4*k-1.4*sig:1.1+1.4*sig -xspacing-
endx-0.8-1.4*k-1.4*sig:top-1.4*sig))
 ;add via at the end and connect to line
 viapt = -xspacing-endx-0.4-1.4*k-1.4*sig:top-0.4-1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 dbCreateRect(ccv "metal1" list(-xspacing-endx-1.4*k-1.4*sig:top-1.4*sig -xspacing-
endx-3.9:top-0.8-1.4*sig))

 ;;;;;; For Block 4 (-x, -y)
 ;route control signal from block select
 dbCreateRect(ccv "metal2" list(-7.15-1.4*sig:-top -7.95-1.4*sig:-0.3-1.4*sig))
 viapt = -7.55-1.4*sig:-0.7-1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 dbCreateRect(ccv "metal1" list(-7.15-1.4*sig:-0.3-1.4*sig -xspacing-endx-1.4*k-
1.4*sig:-1.1-1.4*sig))
 ;place a via at the ends
 viapt = -xspacing-endx-0.4-1.4*k-1.4*sig:-0.7-1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 dbCreateRect(ccv "metal2" list(-xspacing-endx-1.4*k-1.4*sig:-1.1-1.4*sig -xspacing-
endx-0.8-1.4*k-1.4*sig:-top+1.4*sig))
 ;add via at the end and connect to line
 viapt = -xspacing-endx-0.4-1.4*k-1.4*sig:-top+0.4+1.4*sig
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 dbCreateRect(ccv "metal1" list(-xspacing-endx-1.4*k-1.4*sig:-top+1.4*sig -xspacing-
endx-3.9:-top+0.8+1.4*sig))

)

 ;;;
 ;;;;;;;;;;;;;; Route Address Lines ;;;;;;;;;;;;;;;;;;;
 ;;;

 ;;;;;;;;;;;;connect col-address lines together
 for(addrline 0 y-1
 ;connect col lines together
 dbCreateRect(ccv "metal2" list(-xspacing-endx-1.4*addrline:bottom+3.45+2.9*(y-1)-
1.4*addrline -xspacing-endx-0.8-1.4*addrline:-bottom-3.45-2.9*(y-1)+1.4*addrline))
 dbCreateRect(ccv "metal2" list(xspacing+endx+1.4*addrline:-bottom-3.45-2.9*(y-
1)+1.4*addrline xspacing+endx+0.8+1.4*addrline:bottom+3.45+2.9*(y-1)-1.4*addrline))

 ;place a via at the ends

 68

 viapt = -xspacing-endx-0.4-1.4*addrline:bottom+3.85+2.9*(y-1)-1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 ;place a via at the ends
 viapt = -xspacing-endx-0.4-1.4*addrline:-bottom-3.85-2.9*(y-1)+1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t);

 ;place a via at the ends
 viapt = xspacing+endx+0.4+1.4*addrline:-bottom-3.85-2.9*(y-1)+1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 ;place a via at the ends
 viapt = xspacing+endx+0.4+1.4*addrline:bottom+3.85+2.9*(y-1)-1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
)

 ;;;;;;;;;;;;connect row-address lines together
 for(addrline 0 x-1
 ;connect row lines together
 dbCreateRect(ccv "metal2" list(-xspacing-endx-1.4*y-1.4*addrline:bottom+4.9+2.9*(y-
1)+1.4*addrline -xspacing-endx-1.4*y-0.8-1.4*addrline:-bottom-4.9-2.9*(y-1)-
1.4*addrline))
 dbCreateRect(ccv "metal2" list(xspacing+endx+1.4*y+1.4*addrline:-bottom-4.9-2.9*(y-
1)-1.4*addrline xspacing+endx+1.4*y+0.8+1.4*addrline:bottom+4.9+2.9*(y-1)+1.4*addrline))

 ;place a via at the ends
 viapt = -xspacing-endx-0.4-1.4*addrline-1.4*y:bottom+5.3+2.9*(y-1)+1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 ;place a via at the ends
 viapt = -xspacing-endx-0.4-1.4*addrline-1.4*y:-bottom-5.3-2.9*(y-1)-1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 ;place a via at the ends
 viapt = xspacing+endx+0.4+1.4*addrline+1.4*y:bottom+5.3+2.9*(y-1)+1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t);

 ;place a via at the ends
 viapt = xspacing+endx+0.4+1.4*addrline+1.4*y:-bottom-5.3-2.9*(y-1)-1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
)

 ;;;
 for(addrline 0 k-1
 if(addrline < halfadr
 then
 dbCreateRect(ccv "metal1" list(-xspacing-endx-0.4-1.4*addrline:-
bottom+1.4+1.4*addrline xspacing+endx+0.4+1.4*addrline:-bottom+0.6+1.4*addrline))

 ;place a via at the ends
 viapt = -xspacing-endx-0.4-1.4*addrline:-bottom+1+1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 ;place a via at the ends
 viapt = xspacing+endx+0.4+1.4*addrline:-bottom+1+1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 ;route to PI vertically
 viapt = 14.95+1.4*addrline:-bottom+1+1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 69

 dbCreateRect(ccv "metal2" list(14.55+1.4*addrline:-bottom+1+1.4*addrline
15.35+1.4*addrline:top))

 ;Place a pin for Address signals
 fig = dbCreateRect(ccv "metal2" list(14.65+1.4*addrline:top-0.1
15.25+1.4*addrline:top-0.7))
 pinname = buildString(list("A" pcExprToString(addrline)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 else
 dbCreateRect(ccv "metal1" list(-xspacing-endx-0.4-1.4*addrline:bottom-
1.4+1.4*halfadr-1.4*addrline xspacing+endx+0.4+1.4*addrline:bottom-0.6+1.4*halfadr-
1.4*addrline))

 ;place a via at the ends
 viapt = -xspacing-endx-0.4-1.4*addrline:bottom-1+1.4*halfadr-1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 ;place a via at the ends
 viapt = xspacing+endx+0.4+1.4*addrline:bottom-1+1.4*halfadr-1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 ;route to PI vertically
 viapt = -11.75-1.4*(addrline-halfadr):bottom-1+1.4*halfadr-1.4*addrline
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 dbCreateRect(ccv "metal2" list(-11.35-1.4*(addrline-halfadr):bottom-1+1.4*halfadr-
1.4*addrline -12.15-1.4*(addrline-halfadr):top))

 ;Place a pin for Address signals
 fig = dbCreateRect(ccv "metal2" list(-11.45-1.4*(addrline-halfadr):top-0.1 -12.05-
1.4*(addrline-halfadr):top-0.7))
 pinname = buildString(list("A" pcExprToString(addrline)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)
)
)

 ;;;
 ;;;;;; Place pin for MSB 2 address bits ;;;;;;
 ;;;
 ;; route out address lines from block select
 dbCreateRect(ccv "metal2" list(1.55:-top 2.35:top))
 dbCreateRect(ccv "metal2" list(-2.35:-top -1.55:top))

 ;Place a pin for Ak
 fig = dbCreateRect(ccv "metal2" list(1.65:top-0.1 2.25:top-0.7))
 pinname = buildString(list("A" pcExprToString(k)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 ;Place a pin for Ak+1 == MSB address bit
 fig = dbCreateRect(ccv "metal2" list(-1.65:top-0.1 -2.25:top-0.7))
 pinname = buildString(list("A" pcExprToString(k+1)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 ;;
 ;;;;;;;;;;;;; Route VDD & GND Signals ;;;;;;;;;;;;;;;;;
 ;;

 ;;;;;;;Route VDD & GND from PI

 70

 ; VSS
 dbCreateRect(ccv "metal2" list(24-12.65:-top 25-12.65:top))
 ;create pin
 fig = dbCreateRect(ccv "metal2" list(24.2-12.65:top-0.2 24.8-12.65:top-0.8))
 pinname = "VSS!"
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 ; VDD
 dbCreateRect(ccv "metal2" list(25.6-12.65:-top 26.6-12.65:top))
 ;create pin
 fig = dbCreateRect(ccv "metal2" list(25.8-12.65:top-0.2 26.4-12.65:top-0.8))
 pinname = "VDD!"
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 ;route VDD lines together for blocks
 dbCreateRect(ccv "metal1" list(-xspacing+startx-9.9:-bottom-3.4-2.9*y xspacing-
startx+9.9:-bottom-4.2-2.9*y))
 dbCreateRect(ccv "metal1" list(-xspacing+startx-9.9:bottom+3.4+2.9*y xspacing-
startx+9.9:bottom+4.2+2.9*y))
 ;place via to connect to VDD PI
 viapt = 26.1-12.65:-bottom-3.8-2.9*y
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 ;place via to connect to VDD PI
 viapt = 26.1-12.65:bottom+3.8+2.9*y
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 ;route VSS lines together for blocks
 dbCreateRect(ccv "metal1" list(-xspacing+startx-13.1-2.5*w:-bottom-2-2.9*y xspacing-
startx+13.1+2.5*w:-bottom-2.8-2.9*y))
 ;place via to connect to VSS line of block
 viapt = -xspacing+startx-13.1-2.5*w:-bottom-2.4-2.9*y
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 ;place via to connect to VSS line of block
 viapt = xspacing-startx+13.1+2.5*w:-bottom-2.4-2.9*y
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 dbCreateRect(ccv "metal1" list(-xspacing+startx-13.1-2.5*w:bottom+2+2.9*y xspacing-
startx+13.1+2.5*w:bottom+2.8+2.9*y))
 ;place via to connect to VSS line of block
 viapt = -xspacing+startx-13.1-2.5*w:bottom+2.4+2.9*y
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 ;place via to connect to VSS line of block
 viapt = xspacing-startx+13.1+2.5*w:bottom+2.4+2.9*y
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

 ;place via to connect to VSS PI
 viapt = 24.5-12.65:-bottom-2.4-2.9*y
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)
 ;place via to connect to VSS PI
 viapt = 24.5-12.65:bottom+2.4+2.9*y
 viaInst = dbCreateInst(ccv viacv "viaInst" viapt "R0")
 dbFlattenInst(viaInst 1 t)

)

 71

B.2 cell_layout.il
;;
;; FileName: cell_layout.il
;; Author: Meenatchi Jagasivamani, April 2000
;;
;; procedure cell_layout will layout an array of sram cells m rows and n columns
;;
;; Usage In CIW:
;; cell_layout(library cellview number_of_rows number_of_cols)
;;
;;
;; Ex: cell_layout("sram" "sram_32x64" 32 64)
;; --> to create array of sram cells with 32 rows and 64 columns
;; --> Layout will be stored in cellview "sram_32x64" under library "sram"
;;
;;

procedure(cell_layout(clib cname m n)

 ; Leaf-Cell library
 library = "sramleaf"

 ;;;
 ;;;;;;;;;;;;;;; Open necessary leaf-cells ;;;;;;;;;;;;;;;;;;;
 ;;;
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a")
 scv = dbOpenCellViewByType(library "sram_6t " "layout" "" "r")
 pcv = dbOpenCellViewByType(library "precharge" "layout" "" "r")
 buffcv = dbOpenCellViewByType(library "write_select" "layout" "" "r")
 viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r")

 ;;;
 ;;;;;;;;;;;;;;;;;;; Routing variables ;;;;;;;;;;;;;;;;;;;;;;;
 ;;;
 startx = -6.25 ;right side
 endx = (-4.8*n)-8.1
 starty = 12.15 ;top
 endy = (-((m/2)-1)*16.7)-22-((2-(m/2))*1.9)

 ;;;
 ;;;;;;;;;;; Create an array of mxn sram cells ;;;;;;;;;;;;;;
 ;;;
 for(col 0 n-1

 coladjustment = col*-4.8

 ;; Place Precharge at the top
 PreInst = coladjustment-16.5:3.05
 PInst = dbCreateInst(ccv pcv "PInst" PreInst "R0")
 dbFlattenInst(PInst 1 t)

 ;; Place Write Buffers at the top
 BuffInst = coladjustment-10.35:13.2
 BInst = dbCreateInst(ccv buffcv "BuffInst" BuffInst "R0")
 dbFlattenInst(BInst 1 t)

 ;Place a pin for bit signals
 fig = dbCreateRect(ccv "metal2" list(coladjustment-9.4-1.45:starty+1.65-1.3
coladjustment-8.8-1.45:starty+2.25-1.3))
 pinname = buildString(list("Cbit" pcExprToString(col)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "inputOutput")
 pin = dbCreatePin(net fig pinname)

 ;Place a pin for bit_neg signals
 fig = dbCreateRect(ccv "metal2" list(coladjustment-9.4+1.45:starty+1.65-1.3
coladjustment-8.8+1.45:starty+2.25-1.3))

 72

 pinname = buildString(list("CbitNeg" pcExprToString(col)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "inputOutput")
 pin = dbCreatePin(net fig pinname)

 yadjustment = 0

 ;; layout one row
 for(row 0 m-1
 if(modulo(row 2) == 1
 then
 ;instances sram_cellview
 Instpoint = coladjustment:yadjustment
 SInst = dbCreateInst(ccv scv "SInst" Instpoint "MX")
 dbFlattenInst(SInst 1 t)

 ; connect vdd
 via = dbCreateInst(ccv viacv "via" endx+0.65:yadjustment-7.1 "R0")
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal1" list(endx+1.05:yadjustment-6.75
endx+1.05+(0.3*n):yadjustment-7.45))

 ; connect vss to precharge
 via = dbCreateInst(ccv viacv "via" endx-0.6:yadjustment+1.75 "R0")
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal1" list(endx-0.2:yadjustment+2.1
endx+1.05+(0.3*n):yadjustment+1.4))

 ; connect poly contact for word signal
 dbCreateRect(ccv "poly1" list(startx:yadjustment-0.8 startx+0.8:yadjustment))
 dbCreateRect(ccv "metal1" list(startx+0.05:yadjustment-0.75 startx+2:yadjustment-
0.05))
 dbCreateRect(ccv "contact" list(startx+0.2:yadjustment-0.6 startx+0.6:yadjustment-
0.2))
 dbCreateRect(ccv "poly1" list(startx:yadjustment-0.6 startx-0.5:yadjustment-0.25))
 dbCreateRect(ccv "metal1" list(startx-0.9:yadjustment-1.75 startx-0.4:yadjustment-
1.5))

 if(col == 0 then
 ;Place a pin for word signals
 fig = dbCreateRect(ccv "metal1" list(startx+0.1:yadjustment-0.7
startx+0.7:yadjustment-0.1))
 pinname = buildString(list("word" pcExprToString(row)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)
)
 yadjustment = yadjustment-16.1

 else

 if(row > 0 then yadjustment = yadjustment+1.9)
 ;instances sram_cellview
 Instpoint = coladjustment:yadjustment
 SInst = dbCreateInst(ccv scv "SInst" Instpoint "R0")
 dbFlattenInst(SInst 1 t)

 ; connect vdd
 via = dbCreateInst(ccv viacv "via" endx+0.65:yadjustment+7.1 "R0")
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal1" list(endx+1.05:yadjustment+7.45
endx+1.05+(0.3*n):yadjustment+6.75))

 ; connect vss to precharge
 via = dbCreateInst(ccv viacv "via" endx-0.6:yadjustment-1.75 "R0")
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal1" list(endx-0.2:yadjustment-1.4
endx+1.05+(0.3*n):yadjustment-2.1))

 ; connect a poly contact for word signal
 dbCreateRect(ccv "poly1" list(startx:yadjustment+.05 startx+0.8:yadjustment+0.85))

 73

 dbCreateRect(ccv "metal1" list(startx+0.05:yadjustment+0.1
startx+0.75:yadjustment+0.8))
 dbCreateRect(ccv "contact" list(startx+0.2:yadjustment+0.25
startx+0.6:yadjustment+0.65))
 dbCreateRect(ccv "poly1" list(startx:yadjustment+0.25 startx-0.5:yadjustment+0.6))
 dbCreateRect(ccv "metal1" list(startx+0.35:yadjustment+0.1
startx+1.05:yadjustment+1.2))
 dbCreateRect(ccv "metal1" list(startx+0.35:yadjustment+1.2
startx+1.3:yadjustment+1.9))

 if(col == 0 then
 ;Place a pin for word signals
 fig = dbCreateRect(ccv "metal1" list(startx+0.1:yadjustment+0.15
startx+0.7:yadjustment+0.75))
 pinname = buildString(list("word" pcExprToString(row)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)
)
 yadjustment = yadjustment-0.6
)

);end for column
);end for row

;;;;;;;;;;;;;;;;;;;;;;;;; VDD Connections ;;;
 ;VDD route
 dbCreateRect(ccv "metal2" list(endx+0.35:starty endx+0.95:endy+1.3))

 ;Place a pin for VDD
 fig = dbCreateRect(ccv "metal2" list(endx+0.35:starty-2.55 endx+0.95:starty-3.15))
 net = dbCreateNet(ccv "vdd!")
 trm = dbCreateTerm(net "vdd!" "input")
 pin = dbCreatePin(net fig "vdd!")

;;;;;;;;;;;;;;;;;;;;;;;;; VSS Connections ;;;
 ;VSS route
 dbCreateRect(ccv "metal2" list(endx-0.9:starty endx-0.3:endy+1.3))

 ;Place a pin for VSS
 fig = dbCreateRect(ccv "metal2" list(endx-0.9:starty-0.9 endx-0.3:starty-0.3))
 net = dbCreateNet(ccv "vss!")
 trm = dbCreateTerm(net "vss!" "input")
 pin = dbCreatePin(net fig "vss!")

 ; connect vss to precharge
 via = dbCreateInst(ccv viacv "via" endx-0.6:starty-0.6 "R0")
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal1" list(endx-0.2:starty-0.25 endx+1.05+(0.3*n):starty-0.95))

);end procedure cell_layout

 74

B.3 package.il
;;;
;;;;
;; FileName: package.il
;; Author: Meenatchi Jagasivamani, April 2000
;;
;; procedure package makes the circuit fit the final package
;;
;; Usage In CIW:
;; package(library cellview row_address col_address number_of_rows number_of_cols
wordsize)
;;
;; Ex: package("library" "sram_32_4" 5 3 32 64 8)
;; --> to add all I/O pins and route signals to meet package criteria
;; --> Layout will be stored in cellview "sram_32_4" under library "sram"
;;
;;;
;;;;

procedure(package(clib cname x y m n w)

 ;Leaf-Cell library
 library = "sramleaf"

 ;;;
 ;;;;;;;;;;;;;;; Open necessary leaf-cells ;;;;;;;;;;;;;;;;;;;
 ;;;
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a")
 viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r")
 polyxcv = dbOpenCellViewByType(library "poly_M1" "layout" "" "r")
 sensecv = dbOpenCellViewByType(library "read_buffer" "layout" "" "r")
 invcv = dbOpenCellViewByType(library "wdata_inverter" "layout" "" "r")
 oeninvcv = dbOpenCellViewByType(library "oen_inverter" "layout" "" "r")

 ;;;
 ;;;;;;;;;;;;;;;;;;; Routing variables ;;;;;;;;;;;;;;;;;;;;;;;
 ;;;
 startx = -6.25 ;right side
 endx = (-4.8*n)-8.1
 starty = 12.15 ;top
 endy = (-((m/2)-1)*16.7)-((2-(m/2))*1.9)-13.35

 Changey = starty+endy+0.4+3.35

 deltax=1.25
 deltay=1.35

 for(bit 0 w-1

 ;;
 ;;;;;;;;;;;;;;;;;; READ DATA ROUTING ;;;;;;;;;;;;;;;;;;;;;;;;;;
 ;;
 ;keep another variable to make calculations easier
 reversebit = w-1-bit

 ;place a sense amp for each bit
 sensept = endx-2.5*w-4.4:endy+4.8*bit+13.35
 sense = dbCreateInst(ccv sensecv "sense" sensept "R90")
 dbFlattenInst(sense 1 t)

 ;place sensepos and senseneg pins
 fig = dbCreateRect(ccv "metal2" list(endx-2.5*w-11.65:endy+4.8*bit+7.75 endx-2.5*w-
12.05:endy+4.8*bit+8.15))
 pinname = buildString(list("senseneg" pcExprToString(bit)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 75

 ;place pin for read-data
 fig = dbCreateRect(ccv "metal1" list(endx-2.5*w-14.8:endy+4.8*bit+7.7 endx-2.5*w-
15.3:endy+4.8*bit+8.2))
 pinname = buildString(list("DO" pcExprToString(bit)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 ;;;;;;;;;;;;;;;;;;route negative read data line
 dbCreateRect(ccv "metal1" list(endx-1.5:endy-deltay*bit endx-1.55-deltax*bit:endy+0.6-
deltay*bit))
 dbCreateRect(ccv "metal1" list(endx-1.55-deltax*bit:endy-deltay*bit endx-2.15-
deltax*bit:endy-deltay*bit+1.35*bit+7.55+4.8*bit))

 ;place a via amp for each bit
 viapt = endx-1.85-deltax*bit:endy-deltay*bit+1.35*bit+7.95+4.8*bit
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;connect to senseamp
 dbCreateRect(ccv "metal2" list(endx-2.25-deltax*bit:endy-
deltay*bit+8.35+1.35*bit+4.8*bit endx-2.5*w-2.75:endy-deltay*bit+1.35*bit+7.55+4.8*bit))

 ;;;;;;;;;;;;;;;route positive read data line
 dbCreateRect(ccv "metal1" list(endx-1.5:endy-1.35*w-deltay*bit endx-1.25*w-1.55-
deltax*bit:endy-1.35*w+0.6-deltay*bit))
 dbCreateRect(ccv "metal1" list(endx-1.25*w-1.55-deltax*bit:endy-1.35*w-deltay*bit
endx-1.25*w-2.15-deltax*bit:endy-deltay*bit+1.35*bit+10.45+4.8*bit))

 ;place a via amp for each bit
 viapt = endx-1.25*w-1.85-deltax*bit:endy-deltay*bit+1.35*bit+7.95+2.9+4.8*bit
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;connect to senseamp
 dbCreateRect(ccv "metal2" list(endx-1.25*w-2.25-deltax*bit:endy-
deltay*bit+1.35*bit+8.35+2.9+4.8*bit endx-2.5*w-2.75:endy-
deltay*bit+1.35*bit+7.55+2.9+4.8*bit))

 ;;
 ;;;;;;;;;;;;;;;;;; WRITE DATA ROUTING ;;;;;;;;;;;;;;;;;;;;;;;;;;
 ;;

 ;;;;;;;;;;;;;;;;;;route positive read data line
 dbCreateRect(ccv "metal1" list(endx-1.5:Changey-(endy-deltay*bit) endx-1.55-
deltax*bit:Changey-(endy+0.6-deltay*bit)))
 dbCreateRect(ccv "metal1" list(endx-1.55-deltax*bit:Changey-(endy-deltay*bit) endx-
2.15-deltax*bit:Changey-(endy+7.55+(4.15-deltay)*bit)))

 ;place a via amp for each bit
 viapt = endx-1.85-deltax*bit:Changey-(endy+(4.15-deltay)*bit+7.95)
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;connect to senseamp
 dbCreateRect(ccv "metal2" list(endx-2.25-deltax*bit:Changey-(endy+(4.15-
deltay)*bit+8.35) endx-2.5*w-2.75:Changey-(endy+(4.15-deltay)*bit+7.55)))

 ;;;;;;;;;;;;;;;route negative read data line
 dbCreateRect(ccv "metal1" list(endx-1.5:Changey-(endy-1.35*w-deltay*bit) endx-1.25*w-
1.55-deltax*bit:Changey-(endy-1.35*w+0.6-deltay*bit)))
 dbCreateRect(ccv "metal1" list(endx-1.25*w-1.55-deltax*bit:Changey-(endy-1.35*w-
deltay*bit) endx-1.25*w-2.15-deltax*bit:Changey+1.5-(endy+(4.15-deltay)*bit+10.45)))
 ;place a via amp for each bit
 viapt = endx-1.25*w-1.85-deltax*bit:Changey+1.5-(endy+(4.15-deltay)*bit+10.85)
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 76

 ;connect to senseamp
 dbCreateRect(ccv "metal2" list(endx-1.25*w-2.25-deltax*bit:Changey+1.5-(endy+(4.15-
deltay)*bit+11.25) endx-2.5*w-2.75:Changey+1.5-(endy+(4.15-deltay)*bit+10.45)))

 ;invert write-data input to provide both positive and negative data lines
 ;place inverter for each bit
 invpt = endx-2.5*w-2.75+5.8:Changey+1.5+5.25-(endy+(4.15-deltay)*bit+10.45)
 inv = dbCreateInst(ccv invcv "inv" invpt "MYR90")
 dbFlattenInst(inv 1 t)

 ;place pin for write-data
 fig = dbCreateRect(ccv "metal2" list(endx-2.5*w-11.05:Changey-(endy+(4.15-
deltay)*bit+8.25) endx-2.5*w-10.45:Changey-(endy+(4.15-deltay)*bit+7.65)))
 pinname = buildString(list("DI" pcExprToString(bit)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

)

 ;;;;;;;;;; connect TG of Read-buffers to OEN & OEN-neg
 oeninvpt = endx-2.5*w-13.7:endy+5.95
 oeninv = dbCreateInst(ccv oeninvcv "oeninv" oeninvpt "MXR90")
 dbFlattenInst(oeninv 1 t)

 ;make power and ground connections for senseamp
 ;vss connection:
 ;place a via amp for each bit
 viapt = endx-2.5*w-1.85:endy+4.8*w+7.5
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 dbCreateRect(ccv "metal2" list(endx-2.5*w-1.45:endy+4.8*w+7.2 endx-0.9:endy+4.8*w+7.8))

 ;vss connection for senseamp inverter:
 dbCreateRect(ccv "metal1" list(endx-2.5*w-1.45:endy+4.8*w+7.2 endx-2.5*w-
17.05:endy+4.8*w+7.8))

 ;vss connection for writedata inverter
 viapt = endx-2.5*w-3.4:Changey-endy-4.35
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal2" list(endx-2.5*w-3:Changey-endy-3.95 endx-0.9:Changey-endy-
4.75))

 ;vdd connection
 ;for gate:
 polyxpt = endx-2.5*w-3.85:endy+6.65
 polyx = dbCreateInst(ccv polyxcv "polyx" polyxpt "R0")
 dbFlattenInst(polyx 1 t)
 ;connect gate and subx together
 dbCreateRect(ccv "metal1" list(endx-2.5*w-10.95:endy+6.35 endx-2.5*w-3.5:endy+6.95))
 ;route to vdd line
 dbCreateRect(ccv "metal1" list(endx-2.5*w-4.1:endy+6.35 endx-2.5*w-3.5:endy-2.7*w-
6.95))
 dbCreateRect(ccv "metal1" list(endx-2.5*w-3.5:endy-2.7*w-6.95 endx+0.35:endy-2.7*w-
6.35))

 ;for substrate contact
 viapt = endx+0.65:endy-2.7*w-6.65
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;vdd connection for writedata inverter
 dbCreateRect(ccv "metal1" list(endx-2.5*w-9.15:Changey-3.9-endy endx-2.5*w-9.85:Changey-
4.15-(endy-3.3-1.35*2*w-7)))
 dbCreateRect(ccv "metal1" list(endx-2.5*w-9.85:Changey-4.15-(endy-3.3-1.35*2*w-7)
endx+1:Changey-4.15+0.8-(endy-3.3-1.35*2*w-7)))
 viapt = endx+1:Changey-3.75-(endy-3.3-1.35*2*w-7)

 77

 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;;;;;;;;;;;;;;;;;; Address Routing ;;;;;;;;;;;;;;;;;;;;;;
 addressbits = x+y
 for(addrline 0 addressbits-1
 if(addrline < y then
 ;add address pins to row (from word) address lines
 fig = dbCreateRect(ccv "metal1" list(14.05+(2.9*x)+1.4*(y-1):endy-9.8-(2.7*w)-
(1.4*addrline) 14.55+(2.9*x)+1.4*(y-1):endy-9.3-(2.7*w)-(1.4*addrline)))
 pinname = buildString(list("A" pcExprToString(addrline)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)
 else
 ;add address pins to column (from read) address lines
 fig = dbCreateRect(ccv "metal1" list(14.05+(2.9*x)+1.4*(y-1):endy-9.8-
(2.7*w)+(1.4*(addrline-y+1)) 14.55+(2.9*x)+1.4*(y-1):endy-9.3-(2.7*w)+(1.4*(addrline-
y+1))))
 pinname = buildString(list("A" pcExprToString(addrline)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)
)
)

 ;;;
 ;;;;;;;;;; Route Control Signals ;;;;;;;;;;;;;;;;;;;
 ;;;
 ;place via at the end of cen
 viapt = 14.15+(2.9*x)+1.4*(y-1):Changey+9.25-(endy-2.2-(2.7*w)-(2.9*y))
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;;;;;;;;;;;;; route wen signal
 dbCreateRect(ccv "metal1" list(endx+4.8*(n/2):Changey+8.25-(endy-1.4-(2.7*w)-(2.9*y))
14.55+(2.9*x)+1.4*(y-1):Changey+8.25-(endy-2.2-(2.7*w)-(2.9*y))))

 ;;;;;;;;;;;;; route oen signal
 dbCreateRect(ccv "metal2" list(endx-2.5*w-13.15:endy-8.25-1.4-(2.7*w)-(2.9*y)
8.65+(2.9*x)+1.4*y:endy-8.25-2.2-(2.7*w)-(2.9*y)))
 dbCreateRect(ccv "metal2" list(8.65+(2.9*x)+1.4*y:endy-8.25-2.2-(2.7*w)-(2.9*y)
7.85+(2.9*x)+1.4*y:Changey+6.85-(endy-2.2-(2.7*w)-(2.9*y))))
 dbCreateRect(ccv "metal2" list(7.85+(2.9*x)+1.4*y:Changey+6.85-(endy-2.2-(2.7*w)-
(2.9*y)) 14.55+(2.9*x)+1.4*(y-1):Changey+6.05-(endy-2.2-(2.7*w)-(2.9*y))))

 ;connect oen to TG
 dbCreateRect(ccv "metal2" list(endx-2.5*w-13.15:endy-8.25-2.2-(2.7*w)-(2.9*y) endx-
2.5*w-13.95:endy+2.85))

 ;place via at the end of oen
 viapt = 14.15+(2.9*x)+1.4*(y-1):Changey+6.45-(endy-2.2-(2.7*w)-(2.9*y))
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

)

 78

B.4 read_decoder.il
;;;
;;;;;;;;
;; FileName: read_decoder.il
;; Author: Meenatchi Jagasivamani, April 2000
;;
;; procedure read_decoder will layout the column decoder for sense output
;;
;; Usage In CIW:
;; read_decoder(library cellview row_address col_address number_of_rows number_of_cols
wordsize)
;;
;;
;; Ex: read_decoder("sram" "sram_32_4" 5 3 32 64 8)
;; --> to create decoder for sram cells with 32 rows and 64 columns & wordsize of 8
;; --> Layout will stored in cellview "sram_32_4" under library "sram"
;;
;;;
;;;;;;;;

procedure(read_decoder(clib cname x y m n w)

 ;Leaf-Cell library
 library = "sramleaf"

 ;;;
 ;;;;;;;;;;;;;;; Open necessary leaf-cells ;;;;;;;;;;;;;;;;;;;
 ;;;
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a")
 nfetcv = dbOpenCellViewByType(library "nfet" "layout" "" "r")
 subcv = dbOpenCellViewByType(library "substrate_contact" "layout" "" "r")
 viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r")
 polyxcv = dbOpenCellViewByType(library "poly_M1" "layout" "" "r")
 buffcv = dbOpenCellViewByType(library "buffer" "layout" "" "r")
 invcv = dbOpenCellViewByType(library "ColAdr_inverter" "layout" "" "r")

 ;;;
 ;;;;;;;;;;;;;;;;;;; Routing variables ;;;;;;;;;;;;;;;;;;;;;;;
 ;;;
 startx = -6.25 ;right side
 endx = (-4.8*n)-8.1
 starty = 12.15 ;top
 endy = (-((m/2)-1)*16.7)-22-((2-(m/2))*1.9)

 ;;
 ;; Layout column decoders (for write_neg -- during read operations) ;;
 ;;
 ;; initialize column variables
 ;; 2**y = # of blocks -> y=#of address lines -> # of columns = n = 2**total_cols
 deltay = 1.35*w ; to adjust for sense data line routing

 ;;;;;;;;;;;;;; Connect wordsize blocks together ;;;;;;;;;;;;;;;
 for(col 0 n-1
 ;place a M1_M2 via at every sense_neg port
 viapt = endx+2.35+(4.8*col):endy+1.35+13.35
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;place a M1_M2 via at output of sense_neg switch
 viapt = endx+2.35+(4.8*col):endy-1.7+13.35
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;place a M1_M2 via at every write_neg port
 viapt = endx+3.8+(4.8*col):endy+1.35+13.35

 79

 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;place a M1_M2 via at every sense port
 viapt = endx+5.25+(4.8*col):endy+1.35+13.35
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;place a M1_M2 via at output of sense switch
 viapt = endx+5.25+(4.8*col):endy-1.7+13.35
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;connect sense_neg vias together
 dbCreateRect(ccv "metal1" list(endx+2+4.8*col:endy+13.35-0.05
endx+2.7+4.8*col:13.35+endy+0.9))

 ;connect write_neg vias together
 dbCreateRect(ccv "metal1" list(endx+3.45+4.8*col:13.35+endy-0.05
endx+4.15+4.8*col:13.35+endy+0.9))

 ;connect sense vias together
 dbCreateRect(ccv "metal1" list(endx+5.6+4.8*col:13.35+endy-0.05
endx+4.9+4.8*col:13.35+endy+0.9))

 ;place a poly contact to connect to switches
 polyxpt = endx+3.8+(4.8*col):13.35+endy-0.4
 polyx = dbCreateInst(ccv polyxcv "polyx" polyxpt "R0")
 dbFlattenInst(polyx 1 t)

 ;;; add switches for sense outputs
 ;place a switch at every sense+ port
 nfetInst = endx+2.4+4.8*col:13.35+endy-1.7
 nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90")
 dbFlattenInst(nfInst 1 t)

 ;place a switch at every sense+ port
 nfetInst = endx+5.3+4.8*col:13.35+endy-1.7
 nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90")
 dbFlattenInst(nfInst 1 t)

 ;;; layout access grid for sense data lines
 ;;;define sense grid variables
 placex = endx+2.35+col*4.8
 placey = endy-1.35-3.05-1.35*modulo(col w)+13.35

 ;;; layout connections for sense- nodes
 ;connect current sense- to appropriate address line
 dbCreateRect(ccv "metal2" list(placex-0.4:13.35+endy-2.1 placex+0.4:placey+0.4))

 ;place a M1_M2 via at intersection
 viapt = placex:placey
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;;; layout connections for sense- nodes
 ;redefine grid variables for sense-
 placex = endx+5.25+col*4.8
 placey = endy-3.05-1.35*modulo(col w)-deltay-1.35+13.35

 ;connect current sense+ to appropriate address line
 dbCreateRect(ccv "metal2" list(placex-0.4:13.35+endy-2.1 placex+0.4:placey+0.4))

 ;place a M1_M2 via at intersection
 viapt = placex:placey
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;instantiate a sub contact below sense output switches
 subInst = endx+3.9+(4.8*col):13.35+endy-2.15
 scInst = dbCreateInst(ccv subcv "subInst" subInst "R0")

 80

 dbFlattenInst(scInst 1 t)

 ; connect sub contact to VSS line
 dbCreateRect(ccv "metal1" list(endx+3.9-0.45+(4.8*col):13.35+endy-2.3 endx+3.9-
0.45+0.7+(4.8*col):13.35+endy-0.45-2.3))
)

 for(databit 0 w-1
 caddr_startx=endx+4.2+(databit*4.8*w)

 ;; layout the horizontal line for the current sense- bit lines
 dbCreateRect(ccv "metal1" list(endx+2.8-4.35:13.35+endy-3.35-1.35-databit*1.35
endx+4.9+4.8*(n-1):13.35+endy-1.35-databit*1.35-2.75))
 ;Place a pin for sense- signals
 fig = dbCreateRect(ccv "metal1" list(endx+2.8:13.35+endy-1.35-3.35-databit*1.35
endx+3.4:13.35+endy-2.75-1.35-databit*1.35))
 pinname = buildString(list("BlkSnse" pcExprToString(databit)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "output")
 pin = dbCreatePin(net fig pinname)

 ;; layout the horizontal line for the current sense+ bit lines
 dbCreateRect(ccv "metal1" list(endx+2.8-4.35:13.35+endy-1.35-3.35-deltay-databit*1.35
endx+4.9+4.8*(n-1):13.35+endy-1.35-deltay-databit*1.35-2.75))
 ;Place a pin for sense+ signals
 fig = dbCreateRect(ccv "metal1" list(endx+2.8:13.35+endy-1.35-3.35-deltay-databit*1.35
endx+3.4:13.35+endy-1.35-deltay-2.75-databit*1.35))
 pinname = buildString(list("BlkSnseNeg" pcExprToString(databit)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "output")
 pin = dbCreatePin(net fig pinname)
)

 for(block 0 (2**y)-1
 caddr_startx=endx+4.2+(block*4.8*w)
 ;join word-size blocks together for write_neg signal
 dbCreateRect(ccv "poly1" list(caddr_startx-1.15:13.35+endy-1.15 caddr_startx-
1.15+1.5+4.8*(w-1):13.35+endy-0.8))

 ;route write_neg signal out of read-data access lines
 placex = endx+3.8+block*w*4.8
 placey = 13.35+endy-3.3-1.35-1.35*2*w
 dbCreateRect(ccv "metal2" list(placex-0.4:13.35+endy+0.95 placex+0.4:placey))

 ;Place a pin for write_neg signals
 fig = dbCreateRect(ccv "metal2" list(placex-0.3:placey+0.7 placex+0.3:placey+0.1))
 pinname = buildString(list("BlkRead" pcExprToString((2**y)-1-block)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 ;place a M1_M2 via at the end
 viapt = placex:placey+0.4
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;add buffer at end
 buffpt = placex+1.35:placey-5.25
 buff = dbCreateInst(ccv buffcv "buff" buffpt "MY")
 dbFlattenInst(buff 1 t)

 ;connect m2 to buffer
 dbCreateRect(ccv "metal1" list(placex-0.35:placey placex+0.35:placey-0.6))

 ;connect buffer to decoder
 if(modulo(block 2) == 1
 then
 dbCreateRect(ccv "metal1" list(placex-0.35:placey-6.8 placex+0.35:placey-9.25))
 else
 dbCreateRect(ccv "metal1" list(placex-0.35:placey-6.8 placex+0.35:placey-8.45))
)

 81

)

 ;; Connect buffer to VDD & VSS
 ; connect vdd to vdd bus
 dbCreateRect(ccv "metal2" list(endx+0.95:placey-6.3 placex+2.35:placey-7))

 ;connect vss together
 dbCreateRect(ccv "metal2" list(endx+2.95:placey-0.55 placex+2.35:placey-1.25))

 ; add via
 viapt = endx+2.55:placey-0.9
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ; connect vss to vss bus
 dbCreateRect(ccv "metal1" list(endx+2.1:placey-0.55 endx-0.15:placey-1.25))

 ; add via
 viapt = endx-0.6:placey-0.9
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;;;;;;;;;;;;;;; Layout column decoder for read signal ;;;;;;;;;;;;;;;;;;;;;
 for(addrline 0 y-1
 placex = endx+3.85
 placey = endy-1.35-4.35-(2.7*w)-(2.9*addrline)-9.2+13.35
 for(col 0 (2**y)-1

 ;;;;;;;;check if a nfet should be place at this col
 if(modulo((col-(2**addrline)) (2**(addrline+1))) == 0
 then ;; layout negative address lines
 ;; Place nfet decoders for this col
 nfetInst = placex+(4.8*w)*col:placey-1.45
 nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90")
 dbFlattenInst(nfInst 1 t)
 if(addrline == 0
 then
 dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:placey+0.35
placex+0.3+(4.8*w)*col:placey+0.35+0.65))
 else
 dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:placey+0.35
placex+0.3+(4.8*w)*col:placey+0.35+2.2))
)
 ;;;;;;;;put substrate contact at every other address lines
 ;instantiate a sub contact next to nfet
 subInst = placex+(4.8*w)*col+1.5:placey-1.45-0.2
 scInst = dbCreateInst(ccv subcv "subInst" subInst "R0")
 dbFlattenInst(scInst 1 t)
 ; draw m1 to connect to next ** address line **
 dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:placey-1.8 placex-
0.4+(4.8*w)*col-(4.8*w*(2**addrline)):placey-1.2))

 ;;;connect decoder's sub contact to VSS line
 ;connect to M2
 viapt = placex+(4.8*w)*col+1.5-0.1:placey-1.45
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal2" list(placex+(4.8*w)*col+1:placey-1.45-0.3 endx+3.9-0.45-
0.65-3.1:placey-1.45-0.2+0.5))

 else if(modulo(col (2**(addrline+1))) == 0
 then ;; layout positive address lines
 ; place instance
 nfetInst = placex+(4.8*w)*col:placey
 nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90")
 dbFlattenInst(nfInst 1 t)
 ;connect to next nfet for this col
 dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:placey+1.7-2.9
placex+0.3+(4.8*w)*col:placey+1.8+0.75-2.9))

 ;;;;;;;;put substrate contact at every other address lines

 82

 ;instantiate a sub contact next to nfet
 subInst = placex+(4.8*w)*col+1.5:placey-0.2
 scInst = dbCreateInst(ccv subcv "subInst" subInst "R0")
 dbFlattenInst(scInst 1 t)
 ;;;connect decoder's substrate contact to VSS line
 ;let sub contact connect to M2
 viapt = placex+(4.8*w)*col+1.4:placey
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal2" list(placex+(4.8*w)*col+1:placey-0.3 endx+3.9-0.45-0.65-
3.1:placey-0.2+0.5))

);; if positive address line
)
);end for col

 ;route poly for positive and negative address lines
 dbCreateRect(ccv "poly1" list(startx-0.95:placey+0.9 endx+2.8:placey+0.55))
;positive
 dbCreateRect(ccv "poly1" list(startx-0.95:placey-1.45+0.9 endx+2.8:placey-1.45+0.55))
;negative

 ;place inverters to get both negative and positive address
 invpt = startx-7.85:placey+4.95
 inv = dbCreateInst(ccv invcv "inv" invpt "R270") ; connect vdd
 dbFlattenInst(inv 1 t)
 ;connect sub contact to ground
 dbCreateRect(ccv "metal2" list(startx-1.8:placey-0.35 endx-0.3:placey+0.35))

 ;route write-address lines to read-address lines
 dbCreateRect(ccv "metal1" list(startx+5.65:placey+1.05
7.85+(2.9*x)+1.4*addrline:0.35+placey))
 ;place via
 viapt = 8.25+(2.9*x)+1.4*addrline:0.7+placey
 via = dbCreateInst(ccv viacv "via" viapt "R270") ; connect vdd
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal2" list(7.85+(2.9*x)+1.4*addrline:placey+0.35
8.65+(2.9*x)+1.4*addrline:-7.4*m))
 dbCreateRect(ccv "metal1" list(7.85+(2.9*x)+1.4*addrline:placey+1.05
8.65+(2.9*x)+1.4*addrline:endy-0.45-(2.7*w)-(1.4*addrline)))
 dbCreateRect(ccv "metal1" list(8.65+(2.9*x)+1.4*addrline:endy-0.45-(2.7*w)-
(1.4*addrline) 14.65+1.4*(x+y)+(2.9*x)+1.4*(y-1):endy-1.25-(2.7*w)-(1.4*addrline)))

)

 ;;;;;;;;Route VSS line for read decoder Sub x
 ;extend VSS route
 dbCreateRect(ccv "metal2" list(endx-0.9:13.35+endy+1.3 endx-0.3:13.35+endy-13.75-
(2.7*w)-(2.9*y)))
 ;extend VDD route
 dbCreateRect(ccv "metal2" list(endx+0.35:13.35+endy+1.3 endx+0.95:13.35+endy-11.65-
(2.7*w)))

 ;connect VSS to first line (connected to subx)
 dbCreateRect(ccv "metal1" list(endx+0.6-0.45-0.65:13.35+endy-0.45-2.3 endx+4.9+4.8*(n-
1):13.35+endy-0.45-2.3-0.6))
 ;place a M1_M2 via at VSS line
 viapt = endx+3.9-0.45-0.65-3.1-0.3:13.35+endy-0.45-2.3-0.6+0.3
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;connect well contact of inverter to vdd
 dbCreateRect(ccv "metal1" list(startx+5.05:endy+2.45-(2.7*w) startx+0.05-4.8*(w-
1):endy+1.7-(2.7*w)))

 ;place pin for OEN (read enable) signal
 dbCreateRect(ccv "metal1" list(endx+4.8*(n/2):endy-0.45-(2.7*w)-(2.9*y)
endx+0.8+4.8*(n/2):endy-0.95-(2.7*w)-(2.9*y)))
 ;place a M1_M2 via at VSS line
 viapt = endx+0.4+4.8*(n/2):13.35+endy-14.75-(2.7*w)-(2.9*y)

 83

 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)
 fig = dbCreateRect(ccv "metal2" list(endx+0.15+4.8*(n/2):13.35+endy-14.75-(2.7*w)-
(2.9*y) endx+0.65+4.8*(n/2):13.35+endy-14.35-(2.7*w)-(2.9*y)))
 pinname = "OEN"
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

) ;; end procedure read_decoder.il

 84

B.5 sram_array.il
;;
;; FileName: sram_array.il
;; procedure sram_array will layout an array of sram cells
;;
;; Usage In CIW:
;; procedure sram_array is the top-level function to layout an SRAM circuit
;;
;; Ex: load("sram_array.il") sram_array("sram" "sram_32_4" 256 8)
;; --> to create array of sram cells with 256 words with a wordsize of 8 bits
;;

;;;
;;;; Load all other necessary files ;;;;
;;;
load("cell_layout.il")
load("word_decoder.il")
load("read_decoder.il")
load("write_decoder.il")
load("package.il")

;;;
;;;;;;; procedure sram_array ;;;;;;;;;;
;;;
procedure(sram_array(clib cname words wordsize)

 ;approximate aspect ratio for 1 bit = 2^-2
 AR_1bit = 0.65

 ;;;;;;Calculate row and col for equal aspect ratio
 ar = floor(log(wordsize* AR_1bit)/log(2)) ;aspect ratio for 1 wordsize block
 k = int(log(words)/log(2)) ;number of address lines
 y = floor((k-ar)/2) ;x+y = k
 x = k-y ;x = ar+y

 total_rows = int(2**x)
 total_cols = (2**y)*wordsize

 ;; layout sram cells
 cell_layout(clib cname total_rows total_cols)

 ;; layout row & column address decoder
 word_decoder(clib cname x y total_rows total_cols wordsize)
 read_decoder(clib cname x y total_rows total_cols wordsize)
 write_decoder(clib cname x y total_rows total_cols wordsize)
 package(clib cname x y total_rows total_cols wordsize)

)

 85

B.6 sram_compiler.il
;;
;; FileName: sram_compiler.il
;; Author: Meenatchi Jagasivamani, April 2000
;;
;; procedure sram_compiler will generate an embedded SRAM layout
;;
;; Usage In CIW:
;; sram_compiler(library cellview Words Wordsize Type)
;;
;; --> Possible Types:
;; Type = 0 -- Simple SRAM array without Array Partitioning
;; Type = 1 -- Array Partitioned SRAM array with the Block Select at bottom
;;
;; Ex: sram_compiler("sram" "block_1024_8" 256 8 1)
;; --> Create a 1024x8 size SRAM that is partitioned into 4 blocks for low-power
;; --> Layout will be stored in cellview "block_1024_8" under library "sram"
;;
;;

;;;
;;;; Load all other necessary files ;;;;
;;;
load("sram_array.il")
load("BS_center.il")
load("BS_bottom.il")

;;;
;;;;;;; procedure to layout SRAM ;;;;;;;;
;;;
procedure(sram_compiler(clib cname words w type)

 if(type == 0 then
 ;;;;; generate a simple SRAM array
 sram_array(clib cname words w)
 else

 ;;;;; generate circuit for 1 block = words/4

 ; create block in a temporary cellview called : "temp_" + cname
 block = int(words/4) ; block size
 blkcvname = buildString(list("temp" pcExprToString(cname)) "_")
 sram_array(clib blkcvname block w)

 ;call array-partitioning function
 array_partition(clib cname words w)

 ;delete temporary block cellview
 ddDeleteObj(ddGetObj(clib blkcvname))
)

 ;;
 ;;;; Save Cellview before quitting ;;;;;
 ;;
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a")
 dbSave(ccv) ;save cellview
 dbClose(ccv) ;close cellview
)

 86

B.7 word_decoder.il
;;;
;;;;;;;;;
;; FileName: word_decoder.il
;; Author: Meenatchi Jagasivamani, April 2000
;;
;; procedure word_decoder will layout the row decoder for word sram cells
;;
;; Usage In CIW:
;; word_decoder(library cellview row_address col_address number_of_rows number_of_cols
wordsize)
;;
;; Ex: word_decoder("sram" "sram_32_4" 5 3 32 64 8)
;; --> to create decoder for sram cells with 32 rows and 64 columns & wordsize of 8
;; --> Layout will stored in cellview "sram_32_4" under library "sram"
;;
;;;
;;;;;;;;;;;

procedure(word_decoder(clib cname x y m n w)

 ;Leaf-Cell library
 library = "sramleaf"

 ;;;
 ;;;;;;;;;;;;;;; Open necessary leaf-cells ;;;;;;;;;;;;;;;;;;;
 ;;;
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a")
 nfetcv = dbOpenCellViewByType(library "nfet" "layout" "" "r")
 subcv = dbOpenCellViewByType(library "substrate_contact" "layout" "" "r")
 viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r")
 polyxcv = dbOpenCellViewByType(library "poly_M1" "layout" "" "r")
 buffcv = dbOpenCellViewByType(library "buffer" "layout" "" "r")
 invcv = dbOpenCellViewByType(library "RowAdr_inverter" "layout" "" "r")

 ;;;
 ;;;;;;;;;;;;;;;;;;; Routing variables ;;;;;;;;;;;;;;;;;;;;;;;
 ;;;
 startx = -6.25 ;right side
 endx = (-4.8*n)-8.1
 starty = 12.15 ;top
 endy = (-((m/2)-1)*16.7)-22-((2-(m/2))*1.9)

 deltax = 8.85

 ;;;
 ;;;;; Layout buffers for row address decoder (for word signal) ;;;;;;
 ;;;
 for(row 0 m-1
 if(modulo(row 2) == 1
 then ;; odd row numbers
 ;instantiate a buff contact below nfet
 buffInst = startx+6:-3.05-7.4*(row-1)
 scInst = dbCreateInst(ccv buffcv "buffInst" buffInst "R90")
 dbFlattenInst(scInst 1 t)

 ;connect buffer to decoder output
 dbCreateRect(ccv "metal1" list(startx+6.85:-1.35-7.4*(row-1) startx+10.65:-0.65-
7.4*(row-1)))
 else
 ;instantiate a buf contact below nfet
 buffInst = startx+6:-4.5-7.4*(row-1)
 scInst = dbCreateInst(ccv buffcv "buffInst" buffInst "MYR90")
 dbFlattenInst(scInst 1 t)

 87

 ;connect buffer to decoder output
 dbCreateRect(ccv "metal1" list(startx+7.55:-6.35-7.4*(row-1) startx+9.2:-5.65-
7.4*(row-1)))
)
)

 ;;;;;;;; Make VDD & VSS Connections for buffer
 ;;;;; for VSS
 dbCreateRect(ccv "metal2" list(startx+1.25:starty-0.25 startx+2.05:endy+19.85))
 viapt = startx+1.65:starty-0.6
 via = dbCreateInst(ccv viacv "via" viapt "R0") ; connect vdd
 dbFlattenInst(via 1 t)

 ;;;;; for VDD
 dbCreateRect(ccv "metal2" list(startx+7:starty-4.7 startx+7.8:endy+19.85))
 viapt = startx+7.4:starty-5.05
 via = dbCreateInst(ccv viacv "via" viapt "R0") ; connect vdd
 dbFlattenInst(via 1 t)

 ;;;
 ;;;; Layout decoders for row address decoder (for word signal) ;;;;;;
 ;;;
 for(raddress 0 x-1
 ;initialize row counters
 neg_row = 0
 pos_row = 0

 for(row 0 m-1
 if(modulo(row 2) == 1
 then ;; odd row numbers

 ;determine if a nfet should be placed for the current row
 if(modulo((row-(2**raddress)) (2**(raddress+1))) == 0
 then
 ;; layout negative address lines for LSB -- A0_neg only
 ;; Place nfet decoders for this row
 nfetInst = -4.1+deltax:-1.05-7.4*(row-1)
 nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R0")
 dbFlattenInst(nfInst 1 t)

 ; connect to next address line
 dbCreateRect(ccv "metal1" list(-3+deltax:8.45-7.4*row -2.3+deltax:6.75-7.4*row))

 ;;;;;;;;;;; connect last address line to VDD for odd rows ;;;;;;;;;;;;;;
 if(raddress == x-1 ;; the last address line --> means raddress = x-1 = 0 & row =
1
 then
 currentx = -4.1+(2.9*raddress)
 currenty = 1.35

 ;Make connection for VDD -- to power the address decoder
 dbCreateRect(ccv "metal1" list(currentx+1.8+deltax:currenty-0.3 -
3.75+(2.9*x)+deltax:currenty+0.4))
 viapt = 0.45-3.75+(2.9*x)+deltax:currenty+0.05
 via = dbCreateInst(ccv viacv "via" viapt "R0") ; connect vdd
 dbFlattenInst(via 1 t)
)
)

 ;;;;;;;; Substrate Contacts ;;;;;;;;;;;;;;;;;;;;;;
 ;put substrate contact every other row and at every other address lines
 ;instantiate a sub contact below nfet
 subInst = -1.1+(5.8*floor(raddress/2))+deltax:-2.65-7.4*(row-1)
 scInst = dbCreateInst(ccv subcv "subInst" subInst "R0")
 dbFlattenInst(scInst 1 t)

 ;instantiate a sub contact above nfet
 subInst = -1.1+(5.8*floor(raddress/2))+deltax:2.65-7.4*(row-1)
 scInst = dbCreateInst(ccv subcv "subInst" subInst "R0")
 dbFlattenInst(scInst 1 t)

 88

 ;instantiate a via contact below nfet
 viapoint = -1.2+(5.8*floor(raddress/2))+deltax:-3.15+0.7-7.4*(row-1)
 viaInst = dbCreateInst(ccv viacv "viaInst" viapoint "R0")
 dbFlattenInst(viaInst 1 t)

 ;instantiate a via contact above nfet
 viapoint = -1.2+(5.8*floor(raddress/2))+deltax:2.85-7.4*(row-1)
 viaInst = dbCreateInst(ccv viacv "viaInst" viapoint "R0")
 dbFlattenInst(viaInst 1 t)

 ;; connect substrates to VSS line
 dbCreateRect(ccv "metal2" list(-1.05+0.25+(5.8*floor(raddress/2))+deltax:2.65+0.55-
7.4*(row-1) -3.65+(2.9*x)+deltax:1.95+0.55-7.4*(row-1)))
 dbCreateRect(ccv "metal2" list(-1.05+0.25+(5.8*floor(raddress/2))+deltax:-2.65+0.55-
7.4*(row-1) -3.65+(2.9*x)+deltax:-3.35+0.55-7.4*(row-1)))

 else ;; even row numbers (first one)
 ;determine if a nfet should be placed for the current row
 if(modulo(row (2**(raddress+1))) == 0 || (modulo((row-(2**raddress))
(2**(raddress+1))) == 0)
 then
 ;; layout even rows -- both pos & neg address lines
 if(raddress == 0
 then
 ;; Place nfet decoders for this row
 nfetInst = -5.55+deltax:1.35-7.4*row
 nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R0")
 dbFlattenInst(nfInst 1 t)

 ; draw m1 to connect to next address line
 dbCreateRect(ccv "metal1" list(-3.75+deltax:1.75-7.4*row -2.3+deltax:1.05-
7.4*row))

 else ;; not the first address line
 currentx = -5.55+(2.9*raddress)
 currenty = 3.85-(7.4*((2*row)+(2**raddress)-1)/2)

 if(raddress == 1
 then
 currenty = 1.35-7.4*row
)

 if(modulo((row-(2**raddress)) (2**(raddress+1))) == 0
 then ;; for negative addresslines
 currentx = -4.1+(2.9*raddress)
 neg_row = neg_row+1

 ; draw m1 to connect to next address line
 dbCreateRect(ccv "metal1" list(-
3+(2.9*raddress)+deltax:currenty+0.4+(14.8*(2**(raddress-1))) -
2.3+(2.9*raddress)+deltax:currenty+0.4))

 ; negative address lines need to connect to previous line
 dbCreateRect(ccv "metal1" list(currentx-0.35+deltax:currenty+0.4 currentx-
1.8+deltax:currenty-0.3))

 if(raddress == x-1
 then
 ;Make connection for CEN -- to power the address decoder
 dbCreateRect(ccv "metal1" list(currentx+1.8+deltax:currenty-0.3
currentx+3.3+deltax+1.25:currenty+0.4))
 viapt = currentx+5+deltax:currenty+0.05
 via = dbCreateInst(ccv viacv "via" viapt "R0") ; connect vdd
 dbFlattenInst(via 1 t)

 ;place a pin for CEN (chip enable) signal
 fig = dbCreateRect(ccv "metal2" list(currentx+4.8+deltax:currenty-0.15
currentx+5.2+deltax:currenty+0.25))
 pinname = "CEN"
 net = dbCreateNet(ccv pinname)

 89

 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 ;route out CEN
 dbCreateRect(ccv "metal2" list(currentx+4.6+deltax:currenty+0.05
currentx+5.4+deltax:starty+15.6+(2.7*w)+(2.9*y)))
 dbCreateRect(ccv "metal2"
list(currentx+5.4+deltax:starty+14.8+(2.7*w)+(2.9*y) 14.55+(2.9*x)+1.4*(y-
1):starty+15.6+(2.7*w)+(2.9*y)))
)

 else
 pos_row = pos_row+1
 ; draw m1 to connect to next address line
 dbCreateRect(ccv "metal1" list(-3.75+(2.9*raddress)+deltax:currenty-0.3 -
3+(2.9*raddress)+deltax:currenty+0.7-0.3))
)

 ; place instance
 nfetInst = currentx+deltax:currenty
 nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R0")
 dbFlattenInst(nfInst 1 t)
)
)
)
);end for row

 ;;;connect nfet together for this address line
 ;connect negative address lines together
 dbCreateRect(ccv "poly1" list(-5+(2.9*raddress)+deltax:0.7 -
5.55+(2.9*raddress)+0.9+deltax:-7.4*(m-1)))
 ;connect positive address lines together
 dbCreateRect(ccv "poly1" list(-3.55+(2.9*raddress)+deltax:0.7 -
4.1+(2.9*raddress)+0.9+deltax:-7.4*(m-1)))

 ;place inverters to get both negative and positive address
 invpt = -0.05+(2.9*raddress)+0.9+deltax:11.4-7.4*(m-1)
 inv = dbCreateInst(ccv invcv "inv" invpt "R180") ; connect vdd
 dbFlattenInst(inv 1 t)

; ;;;;place pin for positive address line -- 0.6x0.6 dx = 1.45
; fig = dbCreateRect(ccv "metal1" list(-3.7+(2.9*raddress)+deltax:-0.7+5.5-7.4*m -
3.1+(2.9*raddress)+deltax:-0.1+5.5-7.4*m))
; pinname = buildString(list("wordAdr" pcExprToString(raddress)) "_")
; net = dbCreateNet(ccv pinname)
; trm = dbCreateTerm(net pinname "input")
; pin = dbCreatePin(net fig pinname)

 ;; route word address lines
 dbCreateRect(ccv "metal1" list(-3.1+(2.9*raddress)+deltax:5.4-7.4*m -
3.8+(2.9*raddress)+deltax:endy+0.2+(1.4*raddress)-(2.7*w)))
 dbCreateRect(ccv "metal1" list(-3.8+(2.9*raddress)+deltax:endy+0.2+(1.4*raddress)-
(2.7*w) 14.65+(2.9*x)+1.4*(x+y)+1.4*(y-1):endy+1+(1.4*raddress)-(2.7*w)))

) ;;;;;;;;;;;;end for raddress

 ;Make connection for VSS -- for the substrate contacts
 dbCreateRect(ccv "metal1" list(-6.65:11.2 -3.75+(2.9*x)+deltax:11.9))
 viapt = -3.3+(2.9*x)+deltax:11.55
 via = dbCreateInst(ccv viacv "via" viapt "R0") ; connect vdd
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal2" list(-3.7+(2.9*x)+deltax:11.2 -2.9+(2.9*x)+deltax:-7.4*m))

 ;Make connection for VDD -- to power the row address decoder
 dbCreateRect(ccv "metal1" list(-6.65:6.75 startx+7:7.45))

 ;connect inverter to VDD
 dbCreateRect(ccv "metal1" list(startx+7.05:11.4-12.2-7.4*(m-1) startx+7.05+0.7:15.7-
12.25-7.4*(m-1)))

)

 90

B.8 write_decoder.il
;;
;; FileName: write_decoder.il
;; procedure write_decoder will layout the column decoder for write data
;; given: number of rows, number of cols, wordsize
;;
;; Usage In CIW:
;; write_decoder(row_address col_address number_of_rows number_of_cols wordsize)
;;
;;
;; Ex: write_decoder(5 3 32 64 8)
;; --> to create decoder for sram cells with 32 rows and 64 columns & wordsize of 8
;;
;; load("write_decoder.il") write_decoder(2 3 4 8 1)
;; for 32x4: load("write_decoder.il") write_decoder("sram" "sram_32_4" 3 2 8 16 4)
;;;;;;;;;;;;;;;;;;;;;;;;;;
;; for 64x8: load("write_decoder.il") write_decoder("sram" "sram_32_4" 4 2 16 32 8)
;; for 32x8: load("write_decoder.il") write_decoder(3 2 8 32 8)
;;;;;;;;;;;;;;;
procedure(write_decoder(clib cname x y m n w)
 library = "sramleaf"

 ;create db variable for compiler
 ccv = dbOpenCellViewByType(clib cname "layout" "maskLayout" "a")
 nfetcv = dbOpenCellViewByType(library "nfet" "layout" "" "r")
 subcv = dbOpenCellViewByType(library "substrate_contact" "layout" "" "r")
 viacv = dbOpenCellViewByType(library "M1_M2" "layout" "" "r")
 polyxcv = dbOpenCellViewByType(library "poly_M1" "layout" "" "r")
 buffcv = dbOpenCellViewByType(library "buffer" "layout" "" "r")
 invcv = dbOpenCellViewByType(library "ColAdr_inverter" "layout" "" "r")

 Instpoint = 0:0

 ; Routing variables
 startx = -6.25 ;right side
 endx = (-4.8*n)-8.1
 starty = 12.15 ;top
 endy = (-((m/2)-1)*16.7)-22-((2-(m/2))*1.9)

 Changey = starty+endy+0.4

 ;;
 ;Layout column decoders (for write -- during write operations)
 ;;
 ;; initialize column variables
 ;; total_cols = y + int(log(w)/log(2))
 ;; 2**y = # of blocks -> y=#of address lines -> # of columns = n = 2**total_cols
 deltay = 1.35*w ; to adjust for write_data data line routing

 ;;;;;;;;;;;;;; Connect wordsize blocks together ;;;;;;;;;;;;;;;
 for(col 0 n-1
 ;;; layout access grid for write_data data lines
 ;;;define write_data grid variables
 placex = endx+2.35+col*4.8
 placey = endy-3.05-1.35*modulo(col w)

 ;;; layout connections for write_data- nodes
 ;connect current write_data- to appropriate address line
 dbCreateRect(ccv "metal2" list(placex-0.4:Changey-(endy-2.1) placex+0.4:Changey-
(placey+0.4)))

 ;place a M1_M2 via at intersection
 viapt = placex:Changey-placey
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;; layout connections for write_data- nodes

 91

 ;redefine grid variables for write_data-
 placex = endx+5.25+col*4.8
 placey = endy-3.05-1.35*modulo(col w)-deltay

 ;connect current write_data+ to appropriate address line
 dbCreateRect(ccv "metal2" list(placex-0.4:Changey-(endy-2.1) placex+0.4:Changey-
(placey+0.4)))

 ;place a M1_M2 via at intersection
 viapt = placex:Changey-placey
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)
)

 for(databit 0 w-1
 caddr_startx=endx+4.2+(databit*4.8*w)
 ;; layout the horizontal line for the current write_data- bit lines
 dbCreateRect(ccv "metal1" list(endx+2.8-4.35:Changey-(endy-3.35-databit*1.35)
endx+4.9+4.8*(n-1):Changey-(endy-databit*1.35-2.75)))
; ;Place a pin for write_data- signals
; fig = dbCreateRect(ccv "metal1" list(endx+2.8:Changey-(endy-3.35-databit*1.35)
endx+3.4:Changey-(endy-2.75-databit*1.35)))
; pinname = buildString(list("BlkWData" pcExprToString(databit)) "_")
; net = dbCreateNet(ccv pinname)
; trm = dbCreateTerm(net pinname "output")
; pin = dbCreatePin(net fig pinname)

 ;; layout the horizontal line for the current write_data+ bit lines
 dbCreateRect(ccv "metal1" list(endx+2.8-4.35:Changey-(endy-3.35-deltay-databit*1.35)
endx+4.9+4.8*(n-1):Changey-(endy-deltay-databit*1.35-2.75)))
 ;Place a pin for write_data+ signals
 fig = dbCreateRect(ccv "metal1" list(endx+2.8:Changey-(endy-3.35-deltay-databit*1.35)
endx+3.4:Changey-(endy-deltay-2.75-databit*1.35)))
 pinname = buildString(list("BlkWDataNg" pcExprToString(databit)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "output")
 pin = dbCreatePin(net fig pinname)
)

 for(block 0 (2**y)-1
 caddr_startx=endx+4.2+(block*4.8*w)

 ;join word-size blocks together for write signal
 dbCreateRect(ccv "poly1" list(caddr_startx-1.15:Changey-(endy-1.15) caddr_startx-
1.15+1.5+4.8*(w-1):Changey-(endy-0.8)))

 ;route write signal out of read-data access lines
 placex = endx+3.8+block*w*4.8
 placey = endy-3.3-1.35*2*w
 dbCreateRect(ccv "metal2" list(placex-0.4:Changey-(endy+0.95)+2.1 placex+0.4:Changey-
placey))
 ;Place a pin for write signals
 fig = dbCreateRect(ccv "metal2" list(placex-0.3:Changey-(placey+0.7)
placex+0.3:Changey-(placey+0.1)))
 pinname = buildString(list("BlkWrite" pcExprToString((2**y)-1-block)) "_")
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

 ;place a M1_M2 via at start of the write signal **
 viapt = placex:Changey-(placey+0.4)-2.7*(w-1)-4.05
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;place a M1_M2 via at the end
 viapt = placex:Changey-(placey+0.4)
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)

 ;add buffer at end

 92

 buffpt = placex+1.35:Changey-(placey-5.25)
 buff = dbCreateInst(ccv buffcv "buff" buffpt "R180")
 dbFlattenInst(buff 1 t)

 ;connect m2 to buffer
 dbCreateRect(ccv "metal1" list(placex-0.35:Changey-placey placex+0.35:Changey-(placey-
0.6)))

 ;connect buffer to decoder
 if(modulo(block 2) == 1
 then
 dbCreateRect(ccv "metal1" list(placex-0.35:Changey-(placey-6.8) placex+0.35:Changey-
(placey-9.25)))
 else
 dbCreateRect(ccv "metal1" list(placex-0.35:Changey-(placey-6.8) placex+0.35:Changey-
(placey-8.45)))
)
)
 ;; Connect buffer to VDD & VSS
 ; connect vdd to vdd bus
 dbCreateRect(ccv "metal2" list(endx+0.95:Changey-(placey-6.3) placex+2.35:Changey-
(placey-7)))

 ;connect vss together
 dbCreateRect(ccv "metal2" list(endx+2.95:Changey-(placey-0.55) placex+2.35:Changey-
(placey-1.25)))
 ; add via
 viapt = endx+2.55:Changey-(placey-0.9)
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)
 ; connect vss to vss bus
 dbCreateRect(ccv "metal1" list(endx+2.1:Changey-(placey-0.55) endx-0.15:Changey-(placey-
1.25)))
 ; add via
 viapt = endx-0.6:Changey-(placey-0.9)
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)
 ; connect vss to vss bus

 ;;;;;;;;;;;;;; Layout column decoder for read signal ;;;;;;;;;;;;;;;;;;;;;
 for(addrline 0 y-1
 placex = endx+3.85
 placey = endy-4.35-(2.7*w)-(2.9*addrline)+1.45-9.2
 for(col 0 (2**y)-1
 ;check if a nfet should be place at this col
 if(modulo((col-(2**addrline)) (2**(addrline+1))) == 0
 then ; layout negative address lines
 ; Place nfet decoders for this col
 nfetInst = placex+(4.8*w)*col:Changey-(placey-1.45)
 nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90")
 dbFlattenInst(nfInst 1 t)
 ; connect to next nfet in this column
 if(addrline == 0
 then
 dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:Changey-(placey+0.35-1.45)
placex+0.3+(4.8*w)*col:Changey-(placey+0.35+0.65-1.45)))
 else
 dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:Changey-(placey+0.35-1.45)
placex+0.3+(4.8*w)*col:Changey-(placey+0.35+2.2-1.45)))
)
 ;;;;;;;;put substrate contact at every other address lines
 ;instantiate a sub contact next to nfet
 subInst = placex+(4.8*w)*col+1.5:Changey-(placey-1.45-0.2)+1.05
 scInst = dbCreateInst(ccv subcv "subInst" subInst "R0")
 dbFlattenInst(scInst 1 t)
 ; draw m1 to connect to next ** address line **
 dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:Changey-(placey-1.8-1.45)
placex-0.4+(4.8*w)*col-(4.8*w*(2**addrline)):Changey-(placey-1.2-1.45)))

 ;;;connect decoder's sub contact to VSS line

 93

 ;connect to M2
 viapt = placex+(4.8*w)*col+1.5-0.1:Changey-(placey-0.1)+2.8
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal2" list(placex+(4.8*w)*col+1:Changey-(placey-0.4)+2.8
endx+3.9-0.45-0.65-3.1:Changey+2.8-(placey-0.3+0.5)))

 else if(modulo(col (2**(addrline+1))) == 0
 then ; layout positive address lines
 ; place instance
 nfetInst = placex+(4.8*w)*col:Changey-placey
 nfInst = dbCreateInst(ccv nfetcv "nfetInst" nfetInst "R90")
 dbFlattenInst(nfInst 1 t)
 ;connect to next nfet for this col
 dbCreateRect(ccv "metal1" list(placex-0.4+(4.8*w)*col:Changey-(placey+1.7-2.9-
1.45) placex+0.3+(4.8*w)*col:Changey-(placey+1.8+0.75-2.9-1.45)))
 ;;;;;;;;put substrate contact at every other address lines
 ;instantiate a sub contact next to nfet
 subInst = placex+(4.8*w)*col+1.5:Changey-(placey-0.2)+1.05
 scInst = dbCreateInst(ccv subcv "subInst" subInst "R0")
 dbFlattenInst(scInst 1 t)
 ;;;connect decoder's substrate contact to VSS line
 ;let sub contact connect to M2
 viapt = placex+(4.8*w)*col+1.4:Changey-placey+1.45
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal2" list(placex+(4.8*w)*col+1:Changey-(placey-1.45-0.3)
endx+3.9-0.45-0.65-3.1:Changey-(placey-1.45-0.2+0.5)))
); if positive address line
)
);end for col

 ; for each address line route poly and place pins
 placey = placey-1.45

 ;route poly for positive and negative address lines
 dbCreateRect(ccv "poly1" list(startx-0.95:Changey-(placey+0.9) endx+2.8:Changey-
(placey+0.55))) ;positive
 dbCreateRect(ccv "poly1" list(startx-0.95:Changey-(placey-0.55) endx+2.8:Changey-
(placey-1.45+0.55))) ;negative

 ;place inverters to get both negative and positive address
 invpt = startx-7.85:Changey-(placey+4.95)
 inv = dbCreateInst(ccv invcv "inv" invpt "MXR90") ; connect vdd
 dbFlattenInst(inv 1 t)
 ;connect sub contact to ground
 dbCreateRect(ccv "metal2" list(startx-1.8:Changey-(placey-0.35) endx-0.3:Changey-
(placey+0.35)))

; ;place pin for address signal
; fig = dbCreateRect(ccv "metal1" list(startx+5.65:Changey-(placey+0.5)
startx+6.05:Changey-(placey+0.9)))
; pinname = buildString(list("WriteAdr" pcExprToString(addrline)) "_")
; net = dbCreateNet(ccv pinname)
; trm = dbCreateTerm(net pinname "input")
; pin = dbCreatePin(net fig pinname)

 ;route write-address lines to read-address lines
 dbCreateRect(ccv "metal1" list(startx+6.2:Changey-1.4-(placey-0.35)
7.85+(2.9*x)+1.4*addrline:Changey-0.7-(placey-0.35)))
 ;place via
 viapt = 8.25+(2.9*x)+1.4*addrline:Changey-1.05-(placey-0.35)
 via = dbCreateInst(ccv viacv "via" viapt "MXR90") ; connect vdd
 dbFlattenInst(via 1 t)
 dbCreateRect(ccv "metal2" list(7.85+(2.9*x)+1.4*addrline:Changey-0.7-(placey-0.35)
8.65+(2.9*x)+1.4*addrline:-7.4*m))

)
 ;;;;;;;;Route VSS line for write decoder Sub x
 ;extend VSS route

 94

 dbCreateRect(ccv "metal2" list(endx-0.9:starty endx-0.3:Changey+9.2-(endy-3.2-(2.7*w)-
(2.9*y))))
 ;extend VDD route
 dbCreateRect(ccv "metal2" list(endx+0.35:Changey-(endy+1.3) endx+0.95:Changey-1.35-
(endy-11.65-(2.7*w))))

 ;connect well contact of inverter to vdd
 dbCreateRect(ccv "metal1" list(startx+5.05:Changey+12-(endy+2.45-(2.7*w)) startx+0.05-
4.8*(w-1):Changey+12-(endy+1.7-(2.7*w))))

 ;place pin for WEN (read enable) signal
 dbCreateRect(ccv "metal1" list(endx+4.8*(n/2):Changey+12-(endy-0.45-(2.7*w)-(2.9*y))
endx+0.8+4.8*(n/2):Changey+12-(endy-1-(2.7*w)-(2.9*y))))
 ;place a M1_M2 via at VSS line
 viapt = endx+0.4+4.8*(n/2):Changey+12-(13.35+endy-14.75-(2.7*w)-(2.9*y))
 via = dbCreateInst(ccv viacv "via" viapt "R0")
 dbFlattenInst(via 1 t)
 fig = dbCreateRect(ccv "metal1" list(endx+0.15+4.8*(n/2):Changey+12-(13.35+endy-14.75-
(2.7*w)-(2.9*y)) endx+0.65+4.8*(n/2):Changey+12-(13.35+endy-14.35-(2.7*w)-(2.9*y))))
 pinname = "WEN"
 net = dbCreateNet(ccv pinname)
 trm = dbCreateTerm(net pinname "input")
 pin = dbCreatePin(net fig pinname)

) ;; end procedure

 95

����31�4�

�� ��
�����(/#�

1. A. Karandikar and K. Parhi, “Low Power SRAM Design using Hierarchial Divided
Bit-Line Approach,” Proceedings of the International Conference on Computer
Design, pp. 82-88, Oct. 1998.

2. B. Bhaumik, P. Pradhan, G. Visweswaran, R. Varambally, and A. Hardi, “A Low
Power 256 KB SRAM Design,” Proceedings of the IEEE International Conference
on VLSI Design, pp. 67-70, 1999.

3. F. Vargas and M. Nicolaidis, “SEU-Tolerant SRAM Design Based on Current
Monitoring,” International Symposium on Fault Tolerant Computing, pp.106-115,
1994.

4. H. Nambu, K. Kanetani, Y. Idei, T. Masuda, K. Higeta, M. Ohayashi, M. Usami, K.
Yamaguchi, T. Kikuchi, T. Ikeda, K. Ohhata, T. Kusunoki, and N. Homma, “A 0.65-
ns, 72-kb ECL-CMOS RAM Macro for a 1-Mb SRAM,” IEEE Journal of Solid-
State Circuits, Vol. 30, No. 4, Apr. 1995.

5. H. Tran, “Demonstration of 5T SRAM and 6T Dual-Port RAM Cell Arrays,” 1996
Symposium on VLSI Circuits, pp 68-69, June 1996.

6. J. Caravella, “A 0.9V, 4K SRAM For Embedded Applications,” IEEE 1996 Custom
Integrated Circuits Conference, pp. 119-122, 1996.

7. J. Caravella, “A Low Voltage SRAM For Embedded Applications,” IEEE Journal of
Solid-State Circuits, Vol. 32, No. 3, pp. 428-432, Mar. 1997.

8. J. Tsaur, C. Jih, H. Tsaur, and J. Kuo, “Scaling Consideration of BiCMOS SRAMs,”
1991 IEEE International Symposium on Circuits and Systems, 1991, Vol. 4, pp.
2116-2119, 1991.

9. J. Wang and H. Lee, “A New Current-Mode Sense Amplifier for Low-Voltage Low-
Power SRAM Design,” Proceedings of the Annual IEEE ASIC Conference and
Exhibit, pp. 163-167, 1998.

10. J. Wang, P. Yang, and W. Tseng, “Low-Power Embedded SRAM Macros with
Current-Mode Read/Write Operations,” Proceedings of the International Symposium
on Low Power Electronics and Design, Digest of Technical Papers, pp. 282-287,
1998.

 96

11. K. Itoh, A. Fridi, A. Bellaouar, M. Elmasry, “A Deep Sub-V, Single Power-Supply
SRAM Cell with Multi-VT, Boosted Storage Node and Dynamic Load,” 1996
Symposium on VLSI Circuits, pp. 132-133, 1996.

12. K. Koyama, O. Ikenaga, T. Takigawa, Y. Kobayashi, S. Sakamoto, and S. Watanabe,
“Shape Data Operations for VSB EB Data Conversion Using CAD Tools,” Japanese
Journal of Applied Physics, Part 1, Vol. 28, No. 11, pp. 2329-2332, 1989.

13. K. Kumagai, T. Yamada, H. Iwaki, H. Nakamura, H. Onishi, Y. Matsubara, K. Imai,
and S. Kurosawa, “A New SRAM Cell Design Using 0.35 µm CMOS/SIMOX
Technology,” Proceedings 1997 IEEE International SOI Conference, pp. 174-175,
Oct. 1997.

14. K. Nii, H. Makino, Y. Tujihashi, C. Morishima, Y. Hayakawa, H. Nunogami, T.
Arakawa, and H. Hamano, “A Low Power SRAM using Auto-Backgate-Controlled
MT-CMOS,” Proceedings of the International Symposium on Low Power
Electronics and Design, Digest of Technical Papers, pp. 293-298, 1998.

15. K. Toh, C. Chuang, S. Wiedmann, and K. Chin, “A 1.9ns/6.3W/256Kb Bipolar
SRAM Design” IEEE 1990 Bipolar Circuits and Technology Meeting, pp.71-74,
1990.

16. L. Jacunski, S. Doyle, D. Jallice, N. Haddad, and T. Scott, “SEU Immunity: The
Effects of Scaling on the Peripheral Circuits of SRAMs,” IEEE Transactions on
Nuclear Science, Vol. 41, No. 6, pp. 2272-2276, Dec. 1994.

17. P. Fung, H. Tran, and D. Scott, “Impact of BiCMOS Technology on SRAM Circuit
Design,” 1989 BiCMOS Technology on SRAM Circuit Design, pp. 310-313, 1989.

18. P. Gee and J. Tou, “A Diffused CMOS SRAM Compiler for Gate-Arrays,”
Proceedings of the 34th Midwest Symposium on Circuits and Systems, Vol. 2, pp.
807-810, 1992.

19. S. Flannagan, P. Pelley, N. Herr, B. Engles, T. Feng, S. Nogle, J. Eagan, R.
Dunnigan, L. Day, and R. Kung, “8-ns CMOS 64K X 4 and 256K X 1 SRAM’s,”
IEEE Journal of Solid-State Circuits, Vol. 25, No. 5, Oct. 1990.

20. T. Sakural, “High-Speed Circuit Design with Scaled-Down MOSFET’s and Low
Supply Voltage,” 1993 IEEE International Symposium on Circuits and Systems,
Vol. 3, pp. 1487-1490, May 1993.

21. W. Herndon, “Trends in BIPOLAR Static Random Access Memory (SRAM)
Design,” Proceedings of the 1989 Bipolar Circuits and Technology Meeting, pp.
203-208, 1989.

22. H. Nambu, K. Kanetani, K. Yamasaki, K. Higeta, M. Usami, Y. Fujimura, K. Ando,
T. Kusunoki, K. Yamaguchi, and N. Homma, “A 1.8-ns Access, 550-MHz, 4.5-Mb

 97

CMOS SRAM,” IEEE Journal of Solid-State Circuits, pp. 1650-1656, Vol. 33, No.
11, November 1998.

23. H. Lee, “Design of Ultra Low Power Pseudo-Asynchronous SRAM,” ASIC
Conference, September 1999.

24. K. Mai, T. Mori, B. Amrutur, R. Ho, B. Wilburn, M. Horowitz, I. Fukushi, T. Izawa,
and Shin Mitarai, “Low-Power SRAM Design Using Half-Swing Pulse-Mode
Techniques,” IEEE Journal of Solid-State Circuits, pp. 1659-1669, Vol. 33, No. 11,
November 1998.

25. H. Morimura, S. Shigematsu, and S. Konaka, “A Shared-Bitline SRAM Cell
Architecture for 1-V Ultra Low-Power Word-Bit Configurable Macrocells,”
International Symposium on Low-Power Design & Electronics, pp. 12-17, 1999.

26. H. Yamaguchi, T. Iwata, H. Akamatsu, and A. Matsuzawa, “A 0.5V/100MHz Over-
Vcc Grounded Data Storage (OVGS) SRAM Cell Architecture with Boosted Bit-line
and Offset Source Over-Driving Schemes,” International Symposium on Low-Power
Design & Electronics, pp. 49-54, 1996.

27. N. Tzartzanis and W. Athas, “Energy Recovery for the Design of High-Speed, Low-
Power Static RAMs,” International Symposium on Low-Power Design &
Electronics, pp. 55-60, 1996.

28. H. Morimura and N. Shibata, “A 1-V 1-Mb SRAM for Portable Equipment,”
International Symposium on Low-Power Design & Electronics, pp. 61-66, 1996.

29. J. Alowersson and P. Andersson, “SRAM Cells for Low-Power Write in Buffer
Memories,” Procedings of the 1995 Symposium on Low Power Electronics, San
Jose, CA, October 9-11, 1995.

30. M. Izumikawa, H. Igura, K. Furuta, H. Ito, H. Wakabayashi, K. Nakajima, T.
Mogami, T. Horiuchi, and M. Yamashina, “A 0.25 µm CMOS 0.9 V 100-MHz DSP
Core,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 52-61, Jan. 1997.

31. H. Nambu, K. Kanetani, K. Yamasaki, K. Higeta, M. Usami, Y. Fujimura, K. Ando,
T. Kusunoki, K. Yamaguchi, and N. Homma, “A 1.8-ns Access, 550-MHz, 4.5-Mb
CMOS SRAM,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 1650-1656, no.
11, November 1998.

32. T. Chappell, B. Chappell, S. Schuster, J. Allan, S. Klepner, R. Joshi, and R. Franch,
“A 2-ns cycle, 3.8-ns access 512 kb CMOS ECL SRAM with a fully pipelined
architecture,” IEEE Journal of Solid-State Circuits, vol. 26, pp. 1577-1584, Nov.
1991.

33. T. Mori, B. Amrutur, K. Mai, M. Horowitz, I. Fukushi, T. Izawa, and S. Mitarai, “A
1 V 0.9 mW at 100 MHz 2Kx16b SRAM utilizing a half-swing pulsed-decoder and

 98

write-bus architecture in 0.25 mm dual-Vt CMOS,” IEEE Journal of Solid-State
Circuits, pp. 354-355, Feb. 1998.

34. S. Kang, Y. Leblebici, CMOS Digital Integrated Circuits, New York, McGraw-Hill,
1999.

35. J. Rabaey, Digital Integrated Circuits, New York, Prentice Hall, 1996.

36. R. Baker, H. Li, and D. Boyce, CMOS: Circuit Design, Layout, and Simulation, New
York, IEEE Press, 1999.

37. J. Kuo and J. Lou, Low-Voltage CMOS VLSI Circuits, New York, 1999.

38. N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems
Perspective, New York, Addison-Wesley, 1993.

39. D. Johns and K. Martin, Analog Integrated Circuit Design, New York, Wiley, 1997.

 99

5����

 Meenatchi Jagasivamani was born on July 31, 1979 in Madras, India. In May

1998, she earned the degrees of Bachelor of Science in Computer Engineering and

Bachelor of Science in Electrical Engineering from Virginia Polytechnic Institute and

State University. She joined the Electrical and Computer Engineering at Virginia

Polytechnic Institute and State University in August 1998. After graduation, she began

employment with Intel at Chandler, Arizona as a technology engineer.

