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Abstract

Considerable attention has been paid to the design of low-power, high-
performance SRAMs (Static Random Access Memories) since they are a critica
component in both hand-held devices and high-performance processors. A key in
improving the performance of the system is to use an optimum sized SRAM.

In this thesis, an SRAM compiler has been developed for the automatic layout of
memory elements in the ASIC environment. The compiler generates an SRAM layout
based on a given SRAM size, input by the user, with the option of choosing between fast
vs. low-power SRAM. Array partitioning is used to partition the SRAM into blocks in
order to reduce the total power consumption.

Experimental results show that the low-power SRAM is capable of functioning at
a minimum operating voltage of 2.1 V and dissipates 17.4 mW of average power at 20
MHz. In this report, we discuss the implementation of the SRAM compiler from the
basic component to the top-level SKILL code functions, as well as simulation results and

discussion.
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CHAPTER

1 Introduction

With the increasing use of portable consumer electronics, power consumption has
become an important performance characteristic for a chip due to both limited battery life
in portable systems and aso due to expensive packages and heat sinks required by high
power levels. Consequently, the design of low-power digital systems is becoming
increasingly important. With memories typically accounting for the largest share of
power consumption in a system, an emphasis has been placed on the design of low-power
memories.

More than half of the transistors in today’ s high performance microprocessors are
devoted to cache memories and this ratio is expected to increase in the foreseeable future.
Typicaly, SRAM (Static Random Access Memory) is the choice for embedded memories
as SRAM is robust to the noisy environment in such chips. As a result, considerable
attention has been paid to the design of low-power, high-performance SRAMs since they
are acritical component in both hand-held devices and high-performance processors.

A key in improving the performance of the system is to use an optimum sized
SRAM. By incorporating an SRAM that is the correct size for the system requirements,
the system can avoid using unnecessary memory cells. This leads to improvements in
area, speed, and power. Therefore, depending on the application’s need, an appropriate
SRAM size should be used.

In this thesis, an SRAM compiler has been developed for the automatic layout of
memory elements in the ASIC environment. The compiler will generate an SRAM
layout based on a given SRAM size, input by the user. Also, the compiler allows the user
to choose between fast vs. low-power SRAM. The SRAM memory array is partitioned
into blocks in order to reduce the tota power consumption. The Cadence design
environment is used for this thesis. Cadence SKILL language is used to implement the
compiler and Cadence Virtuoso is used for the layout-editor tool.

The organization of the thesisis as follows. In Chapter 2, the background related
to the thesis and the proposed research is described. Previous work on low-power
techniques for SRAM is aso reviewed in this chapter. In Chapter 3, the design and

1



layout of the leaf-cell components are presented. In Chapter 4, the implementation of the
SRAM compiler that generates an SRAM without array-partitioning is described, along
with the fina SRAM layout. Chapter 5 discusses the array-partitioning technique
implemented for the low-power SRAM, as well as the implementation and the layout for
this SRAM. In Chapter 6, experimental results for the two different types of SRAM are
reported. Finally Chapter 7 concludes this thesis and presents future enhancements for
the SRAM compiler. The SKILL code, along with documentation, is attached in the

Appendix.



CHAPTER

2 Background

Memory elements form critical components in the implementation of CMOS
circuits and are vital for most systems. They are used for a wide variety of applications
with different design criterion. Though all memory elements are used to store and access
data, they can be broken into three types based on how the stored information is
retrieved. These three types are random access memory, serial access memory, and
content access memory. Random access memory is defined as memory that has an
access time independent of the physical location of the data. This can be contrasted with
serial access memory where the datais retrieved sequentially with time, or content access
memory, where data is retrieved based on the type of data stored. Figure 2.1 illustrates

the classifications of memory elements.

Memory Elements

| | |

Serial Random Content
Access Access Access
Memory Melmory Memory

Read/Write Read Only
Memory Memory
(RAM) (ROM)

Figure 2.1 — Classification of Memory Elements

RAM can be classified into Read/Write Memory and Read Only Memory. Read
Only Memory (ROM) is nonvolatile memory, where the stored data is maintained
indefinitely, even without power, and writing to the memory takes considerably more
time (on the order of milliseconds) than reading. Read/write memory (commonly called
RAM) is data that is stored temporarily and the read and write time are approximately
equal to each other.

RAM cdlls can be further divided into static and dynamic memory cells. Static

memory (SRAM) cells use a latch composed of cross-coupled inverters to store data.



This alows the value to be maintained in a cell as long as power is available. Data
storage in dynamic memory cell (DRAM) is based on the dynamic storage of charge on a
capacitor. Therefore, with dynamic memory cells, periodic refreshing is necessary to
maintain the value. Transistor-level schematic of a SRAM and a DRAM cell can be
found in Figure 2.2. Bit-lines form the datapath to/from the cell, while word-lines select
acell to be accessed.

word line
L
bit line -bit line bit line
L
$ word line
DRAM Cell SRAM Cell

Figure 2.2 — Comparison of Static and Dynamic RAM Cells

There are many reasons to use an SRAM or aDRAM in a system design. Design
tradeoffs include density, speed, volatility, cost, and features. Dynamic memory cells are
smaller (since they use just a capacitor), but are slower than static memory cells. In
addition, DRAMs require specia processing in CMOS technology. Generally, DRAMs
are custom designed for the application since there are many trade-offs to be considered
with this type. The primary advantage of an SRAM over a DRAM s its speed and no
need for special CMOS processing, which are compatible with random logic processing.
For this project, since RAMs are to be embedded in a system, SRAMs are implemented.
Also, for simplicity, an asynchronous approach is taken. In the next section, we will ook
at the components of the RAM architecture used for this project.

2.1 RAM Architecture

The basic architecture of a SRAM consists of an array of memory cells with
support circuitry to decode addresses and implement the read and write operations.
SRAM arrays are arranged in rows and columns of memory cells called wordlines and
bitlines, respectively. Typicaly, the wordlines are made from polysilicon while the

bitlines are metal. Each memory cell has a unique location or address defined by the



intersection of a row and a column. Figure 2.3 shows the generic RAM circuit for a

memory chip that has just one row and one column.

Bit Line
Conditioning

Address

® SRAM | o
Cell

Row Decoder l

Sense Amp
Column MUX L write
Column Decoder Write Buffers

U U

write-data read-data

Figure 2.3 — Block Diagram of an Asynchronous SRAM Circuit

The RAM architecture consists of the following structures:

RAM Cell —used to store one data bit

Bit Line Conditioning — precharges bit lines to compensate for voltage drop
across pass transistors

Column Multiplexer — switches between read and write operation

Write Buffers— buffers write-data so that it can write on RAM cells

Sense Amplifier — Generate logic values from the differential input on bit-lines

Row & Column Decoder s — Decodes address to the correct RAM cell

In the next section, we will discuss the structure and design issues regarding these

components.

2.2 RAM Cell Components

The schematic for static RAM Cell isshown in Figure 2.4. Essentially, the datais

latched at the cross-coupled inverters. The bit-lines are complementary and are input to

the 1/0O of the inverters. Thus, the value is latched during a write and maintained as long

as power isavailable.
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Figure 2.4 — Latched Storage for a Static RAM Cell

When the control signal “word” in Figure 2.5 is on, the RAM cell is connected to
the two bit-lines. During a read operation, the two bit-lines are driven by the cell value.
In contrast, the two bit-lines drive or override the cell during the write operation.

Column and row decoders select a specific RAM cell by asserting proper control lines.

Pass Transistors

word

Figure 2.5 — Static RAM Cell with Select Circuit

When the word is asserted during a read operation, the bit values are available to
the latch through n-type transistors. Since n-type transistors only pass a good value of
‘0’, but not *1’, it is appropriate to precharge both the bit lines to a high value and let the
RAM cell pull down one of the bit lines.

Figure 2.6 shows the RAM cdll with the bit-line conditioning circuit that charges
the bit lines using n-type transistors. Both bit lines are charged to VDD-V1,, where V, is
the threshold voltage of the precharging NFET. When the word is asserted, one of the bit
linesis pulled down to a“0’, while the other oneremainsat ‘1'. It isaso possible to use
p-type transistors for the precharge transistors, and this would pull up the bit lines to
VDD instead of to VDD-Vy,. However, it will take longer to pull down the bit lines.
Thus, using n-transistors improves the speed of the RAM. Also from Figure 2.6, it can be
seen that gates of the precharge transistors are tied to VDD, and hence the transistors are
aways turned on. This avoids generating another signal, but it requires the precharge



transistors to be weak so that they do not overcome the value driven onto the bit-lines

|
®\ Charge

Transistors

during aread/write operation.

word

-bit bit
Figure 2.6 — Static pull-up RAM Cell with Bit-Line Conditioning
During the read mode, a sense-amplifier is usually used to amplify the bit-line
voltage difference of the two bit-lines. The cross-coupled sense amplifier shown in
Figure 2.7 was used to amplify the bit-line difference in our research. The sense
amplifier is composed of a cross-coupled pair of PFETs (Mg and Myg). The differential
output is present at nodes sense+ and sense-.

Figure 2.7 — Cross Coupled Sense Amplifier



All of the above components are the basic cells used to form an SRAM chip. The
basic architecture of a SRAM includes an array of memory cells with support circuitry to
decode addresses and to implement the required read and write operations.

Figure 2.8 shows abasic block diagram of an asynchronous SRAM. To perform a
read/write operation, the first step is to specify the address that is being accessed. Next,
the chip enable signal, CEN, and the read/write enable signals (OEN/WEN), must be
enabled. When the REN control signal is enabled (read operation), the value stored at the
specified cell appears at the data output port. When WEN is enabled (write operation),
the value present at the “Data Inputs’ is written into the specified location.

Addresses

- =
% J\ <— CEN
c—i Memory Array <— OEN
g
Q <— WEN

—

Data Outputs

5

Figure 2.8 — Block Diagram of an Asynchronous SRAM

2.3 Review of Low-Power RAMs

Trends show that low power design techniques are becoming more important in the
current industry. Considerable attention has been paid to the design of low-power for
applications such as hand-held devices and wireless communications. There are
numerous ways to reduce the power dissipation at the cost of area and/or speed, both in
the cell and architectural level. In this section, we will previous works that discuss low-

power SRAM techniques on the circuit and architectural level.

2.3.1 Divided and Hierarchical Bit-lines
In an SRAM, apair of bit-linesis connected to a column of RAM cells. For large

circuits, the length of the bit-lines can be considerably long, resulting in large bit-line



capacitances. The charging or discharging of bit-line capacitance causes active power
dissipation, which is a major source of power dissipation. A. Karandikar and K. Parhi
proposed a divided bit-line approach for reducing the active power dissipation by
reducing the bit-line capacitance [1].

Active current is the current that flows when bit-lines are charging or discharging.
The active current is directly proportional to the bit-line capacitance. The proposed
divided bit-line approach intends to reduce bit-line capacitance, which is mainly
composed of the drain capacitance of the pass transistors of the SRAM cell and the metal

capacitance of bit-line.

Bit-Line Bit-Line

Bit-Line Bit-Line Bl
@(/SU*J *—
o Bit Line |
Local 1 o
Word Line” | "'I‘% L Sub Bit-Lines

e ] Global =

=T Word Line ol =1
by =

L

Figure 2.9 — Divided Bit-line Architecture

Figure 2.7 illustrates the concept of divided bit-line method. The bit-lines are
split into sub-bit lines so that only a few bit cells share the local bit line (sub bit-line).
Thus, the global bit-lines are connected to fewer pass transistors and the Chigine IS
significantly reduced. This technique can be extended to divide the bit-lines in a
hierarchy for large circuits. Reducing Chiine NOt Only reduces the active power, but the
access time as well. The main disadvantage with this technique is the increased
complexity in the basic SRAM architecture. This complexity results in asignificant area
overhead, as well the need for additional control signals for the global and local word-
lines. Experimental results show that for a 2-kB SRAM, the power consumption is
reduced by 50-60% and access time is reduced by 20-30%, with a 5% increase in the

number of transistors.

2.3.2 Half-Swing Pulse-Mode
Most of the currently present techniques aim to reduce the power needed to read

datafrom the memory. K. Mai, T. Mori, B. Amrutur, R. Ho, B. Wilburn, M. Horowitz, I.



Fukushi, T. Izawa, and Shin Mitarai aim to reduce power dissipation for write operation
and for decoders using half-swing techniques [24]. In low-power embedded SRAMs
with large access widths, the write-operation power can be significantly larger than the
read-operation power. Since the bit lines are referenced to V4, they are discharged to
GND during a write operation. Thus, decreasing the bit-line swings during writes can
reduce write power.

The main problem with reduced swing signals in the past has been the need for
level-conversion and/or reduced gate overdrive at the recelving gates, which causes aloss
of performance. They am to address the problem by combining positive half-swing
(swinging the bit-lines from the steady state of V44/2 to Vg and back to Vq¢/2) and
negative half-swing (swinging from the steady state of V44/2 to Gnd). Thus, all of the
forward-transition driving transistors see a full gate overdrive. For example, Figure 2.8
represents a half-swing pulse-mode AND gate that uses half-swing inputs to produce a

full-swing output voltage.

Vdd dei
_q _d — Vdd
%_&-_B-ﬂ j
U::; _|_LA I_. —  Gnd
PR &
Vdd/2 —l_ ]_B_'— _{
e

Figure 2.10 — Half-Swing Pulse-Mode AND Gate?*

This technique requires redesign of all support circuitry so that the half-swing bit-
lines can be appropriately interpreted and converted to full-swing outputs. The main
disadvantage with this technique is the reduced noise margin on the bit-lines, which
results in higher susceptibility to noise. Also, it requires an additional supply voltage of
V4¢/2 and the routing of the rail is cumbersome. Experimental results performed on a 2-
K x 16-b SRAM fabricated in a 0.25 pm dua-V; CMOS technology show that the
prototype dissipates 0.9 mW at 100 MHz using an operating voltage of 1V.

10



2.3.3 Sub-Blocked Array Architecture
J. Caravella proposed to reduce power dissipation by reducing both the bit-line

and word-line capacitance [7]. The power dissipation for static CMOS logic circuits is
given by P=CxV2xf , where C is the average switched load and parasitic

capacitances, Vyq is the supply voltage, and f is the operating frequency of the circuit.
Because the power consumption increases quadratically with the supply voltage, most
dramatic reduction in power can be achieved by reducing Vq¢. However, without
redesigning the circuit, reducing the supply voltage may not only slow down the circuit,
but may cause the circuit to fail.

The discharge rate of the bit-lines contributes to the read access time of the

SRAM, which is proportional to atime constant given by the following equation’.

Cbitl ine mv

T =
KI@%@VM _Vt)2

where AV is the discharge voltage amount, Cyiyine iS the total bit line capacitance, K’ isthe

intrinsic transconductance of the word line pass transistor, W/L is the width to length ratio
of the transistor, Vyq is the supply voltage, and V; is the threshold voltage of the transistor.
Therefore, if Vyq is reduced, then the time constant will increase, making the circuit
slower. One way to maintain the time constant is to reduce the capacitance that the bit
cell needs to discharge. This can be achieved by reducing the number of RAM cells
sharing agiven bit line.

This paper proposes to reduce the bit-line capacitance by dividing the memory
array into four isolated subarrays, which would reduce both the total bit line and word
line capacitance by half. The bit line capacitance is the parasitic capacitance (junction
and metal) associated with the RAM cell load on the bit lines, while the word line
capacitance is the parasitic capacitance (gate, fringe, and metal) associated with the RAM

cell on theword lines.
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Figure 2.11 — Sub-Blocked Array Architecture

The structure used by J. Caravella for a 64 kB SRAM is shown in Figure 2.9.
Dividing the array into blocks not only reduces the power dissipation, but the subarray
architecture results in a faster SRAM due to the reduced capacitance. The only
disadvantage with this method is the area penalty due to increased overhead of decoder
logic, control logic, and routing. Experimental results for the 64 kB SRAM showed that
with an area overhead of 15%, the RAM was able to operate at 50 MHz with V=18 V.

Since it is relatively easy to extend a normal SRAM array to include array
partitioning, this method is adopted for our RAM design. Details about the architecture
are explained in section 2.5.

2.4 Introduction to SKILL

The objective of our SRAM compiler studied in this thesisis to generate a SRAM

layout for agiven size. The SRAM compiler must be able to instantiate the leaf cells and
to layout necessary routing & connections for the circuit. The language that will be used
to perform the layout automation is Cadence’s SKILL. SKILL, which stands for Silicon
Compiler Interface Language, has tool specific functions for several of Cadence Suites —
Virtuoso (Layout Editor) and Composer (Schematic Editor), among others. These
functions alow the user to use any tool-specific command, such as drawing arectangle in
alayout. Figure 2.10 gives an example of the dbCreateRect(...) command, used to draw
a rectangle in given cellview. As shown in the figure, the user can specify exact

coordinates of the rectangle as well as the layer.

12



T

(X2,¥2)

dbcreateRect(compilercellview “poly1” list(x1:y; X2:y2))

Figure 2.12 — SKILL Function to Draw Rectangle

SKILL is an interpretive script language, which means that commands are
executed as they are entered. Commands are entered into the Cadence environment via
the CIW (Common Interface Window). For this thesis project, we use the SKILL
language to accomplish all design automation, including aspect ratio calculation, leaf cell
instantiation, and routing. More details about the use of SKILL in the implementation of
the SRAM compiler are discussed in Chapter 4. Table 4.1 lists some commonly used
SKILL functions

Table 2.1 — Common SKILL Functions

procedure(function_name(argument_list) _ ) _ _
1 Defines a function using an argument list.
expr
g 5 The body of the procedureisalist of
expr
g expressions to eval uate.

)

for(loopVariable initial Value final Value
1 Evaluates the sequence exprl, expr2, ... for
expr
P 5 each loopVariable value, beginning with
expr
P intial Value and ending with final Value.

)

if(condition then exprl - .
Evaluates condition and runs expr1 if the
else expr2 o _
condition istrue. Otherwise, runs expr2.

)

_ Creates alist variable called x that
x=(123) or x=list(123) o
containing the three elements.

Note: There should be no space beforea“ (‘.

In addition to the above functions, SKILL also has functions that are specific to
the Layout Editor tool (Virtuoso). These functions are used to perform the actual layout

of the SRAM compiler and are given in Table 2.2.
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Table 2.2 — Tool-Specific Library SKILL Functions

dbOpenCell ViewByType(library cellname viewname viewtype accessmode)
Opens acelview. Returns adb (database) object for the cellview.

dbCreatel nst(dbcellview domaster InstName [point orientation)
Places an instance of dbmaster onto the ceallview dbcellview. The instance will

be placed at |point with the orientation. Returns a db object for the instance.

dbFlatteninst(dblnst x_levels [flatten_pcells] [preservePing|)
Flattens instance dblnst up through x_levels of hierarchy. Returnst/nil.

dbCreateRect(dbcellview layer list_box)
Draws a rectangle onto dbcellview of layer with the coordinates given by
list_box. Returnsadb object for the rectangle.

dbCreateNet(dbcellview t_name)
Create a net for a pin to attach to in dbcellview. The name of the pin should be
t name. Returnsadb object for the net.

dbCreatePin(net fig t_name)
Creates a pin attached to net for the object defined by fig of t name. Returns a
db object for the pin.

dbSave(dbcel lview)
Saves the results of a modified dbcellview that has been opened for write or

append mode.

Note that all the functions are database (db) functions. All Cadence tools use the

Design Framework 11 unified database; a binary database that stores data as "objects.”

There are many types of objects, including rectangles, pins, instances, and cellviews. The
SKILL code structure used to implement the SRAM compiler will be discussed in
Chapter 4.

2.5 Proposed Research

The SRAM compiler studied in this thesis will be used by the VTVT (Virginia

Tech VLSI for Telecommunications) group for their Wireless Video Project. The project

consists of transmitting wireless video using a cellular phone. One of the maor
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components of this project is the development of a turbo decoder, which will require
SRAMSs of varying sizes to store data. The maximum SRAM size that will be used by the
turbo decoder is 1 kB (1024x8), with a maximum operating frequency of 20 MHz. An
SRAM compiler is needed, since the turbo decoder uses various sizes of SRAMs.
Furthermore, the SRAM compiler will be used for other current and future projects.

The input/output ports for a 2 x w SRAM considered in this research is given in
Figure 2.11, where 2° is the number of word locations and w is the word size (depth).
There are three active-low control signals — CEN', WEN', OEN'. CEN' is the control
signal to enable the chip. When CEN' is disabled (high), all of the word-lines (active-
high) are turned off (pulled low), so that no RAM cell is connected to any bit-line. When
CEN' is enabled (low), the word line that is being accessed is turned on (pulled high) so
that al RAM cellsin the row are connected to the bit-lines. The column decode circuitry
chooses the column block that is being accessed. The other two control signals, WEN'
and OEN', are the active low Read/Write signals. Whenever WEN' (Write Enable’) goes
low, the SRAM is being written to. Similarly, whenever OEN' (Output Enable’) goes
low, the SRAM is being read from.

Address K
ﬁ% W
SRAM [ Ppe
WEN >
OEN .
> 2 X w w > Data
CEN Out
—_—

Figure 2.13 — Block Diagram of SRAM

There are k address signals for the 2 word locations. The address signals are
split between the row and column decoders. The number of rows and columns in the
SRAM are chosen to make the aspect ratio close to 1 and are computed by the compiler
program. Since thisis an embedded SRAM (with no constraints on the number of pins),
there are separate data signals for the input and output. Because of this, it is possible to

read from alocation while writing to that location.
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Figure 2.14 — Structural Decoder layout

Structurally, the SRAM is arranged into rows of bits and columns of blocks, as
shown in Figure 2.12. The reason for this type of arrangement is to simplify column
decoding for word size greater than one. Thus, the row decoder decodes for a single
word line, while the column decoder decodes for a block of bit-lines. As an example,
suppose that we are reading a word of 8 bits from location (i, j). Then the row decoder
activates word-ling and the column decoder connects all bit-lines in block; to the sense
amplifiers, where block j consists of 8 columns. Note that the number of columnsis a
multiple of the word-size. The number of rows and the number of columns for our
SRAMs are determined based on the word size and the aspect ratio. An overview of the
development process of the SRAM compiler is asfollows:

1. Design and custom layout all leaf-cells for the SRAM. (Chapter 3)

2. Develop SKILL code to perform design automation of al components

including RAM core, decoders, and 1/O buffers. (Chapter 4)

3. Add array partitioning to improve power dissipation. (Chapter 5)

4. Simulation and Verification. (Chapter 6)

The following chapters discuss implementation of each of the above steps.
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CHAPTER

3  Leaf Cell Layout

The main responsibility of a SRAM generator is to instantiate basic components
in an array, for the given size. The basic components, called leaf cells, are critical in
determining the final performance of the generated SRAM circuit. Therefore, leaf cell
design must be optimized both locally and globaly for area, power, and speed.
Whenever possible, the leaf cell layout must use cell abutting. This technique helps
reduce unnecessary routing by simply placing adjacent cells close to each other.

In this chapter, we will discuss the design and layout of basic components in the
RAM architecture. The basic components (as discussed in Chapter 2) are as follows:

* 6-transistor core of SRAM
* Bit-line conditioning circuit
* Senseamplifier

» Address decoder

Before we discuss each component in detail, we review the overal SRAM
structure. Figure 3.1 shows a block diagram of an SRAM and connections of basic
components. A RAM cell is connected to two bit lines through word-select pass
transistors. Since the pass-transistors used are NFET, they are slow when pulling a line
up to logic ‘1’. Charging the bit-lines to a high value reduces the time it takes the pass-
transistors to pull-up. Though charging the bit-lines causes a speed-up in access time, it
degrades the bit-line signal difference. Therefore, a sense-amplifier is needed to increase
the difference and provide a good data output during a read.

Three decoders are activated or deactivated by three active-low control signals —
CEN’, WEN’, and OEN’. The CEN’ isused to indicate that the SRAM is currently being
accessed and controls the word-line (row) decoders. Thus when the CEN’ is off (high),
none of the word-lines are on. Likewise, the WEN’ signal, which specifies that the
SRAM is being written to, controls the write-line decoder. Similarly, the OEN’ signal
indicates that the SRAM being read from and controls the read-line decoder.
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Precharge circuits and sense amplifiers are the other two major components, as

shown in Figure 3.1.

D|n.1...D|0: Data In
—— AyAo

WEN — Write line decoder
| I I I I I I I I O O B
Precharge Circuits |

( - CH]
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o B 5 i Q
o 5] i i S le— 8
O 05000 3 [ |&2
= 4 CHoHOHEHOHG ol (g7
3 Seielales A
> sl 2 g
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k [ | | H_H |
OEN— Read line decoder ICEN
— | | | [ ] |
Bn-1Bn-1...BoBo | Sense vee. Sense Sense m,—t
bit lines Ampy,.q Amp, Ampq Ay-l- ..Ag 2% # of rows

address bits | 2V: # of word-size cols
k: # of address bits: x+y
n: word-size

DOy1 DO, DOy

2 |-(|)-| P4 %‘ z %‘
@) (@] @] %
\ pd pd / bz

Y
Don_]_. . DOo: Data Out

Figure 3.1 — SRAM Macro

From Figure 3.1 it can be seen that there exists two sepearte column decoders —
one for read operations and one for write operations. Though a single column address
decoder can be used for both read and write operations, we use two separate decoders for
read and write operations. The reason for using two column decoders is that the use of
two decoders reduces the delay incurred due to the routing from a single decoder. In

addition, the actual area of the decodersis small, while routing areais significant.
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3.1 SRAM Core

The 6-transistor (6T) SRAM core shown in Figure 3.2 stores one bit of data. Itis
composed of alatch and 2 pass transistors. Since the core is replicated by the number of
bits, optimum design and layout of this component is critical. The size of the transistors
used is the primary factor that determines the performance of the SRAM cell. We
determine the optimum transistor sizes through SPICE simulation. Since the most
important design criterion for usis power dissipation, we minimize the sizing as much as

possible without compromising performance significantly.

Figure 3.2 — 6-Transistor SRAM Cell

There are some issues to be considered when sizing the transistors. The latch
inverters (M1, M,, M3, and My) form a positive feedback loop, so that the stored value is
maintained as long as power is available. Since the bit lines are precharged to Vpp-Vin,
the cell NFETs (M, and M3) cannot be smaller than the pass NFETs (Ms and M) to
overcome the current value on the bit line when pulling it to a low value. Note that
though a transmission gate may be used for the pass-transistors, only NFETSs are used so
that the area for a single SRAM cell may be small. It will be shown later that special
circuitry (bit-line conditioning and sense amplifiers) is needed to recover from the
performance losses due to using just NFETS.

In an array of RAM cells, a single word line is connected to an entire row of
RAM cells, forming a long word-line row. Since the word line uses polysilicon (which
has high resistivity), it is necessary to keep the two pass transistors (M5 and M6) small.
This improves signal integrity on the word lines and reduces power dissipation.

Therefore, we keep the size small.
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We set al transistor lengths to the minimum, which is 2A (= 0.35 um) for the
target 0.35 um process. Based on simulation, we set the widths of all transistors to 0.4
um, the minimum width for the target process.

The next step is to lay-out the leaf cell. The schematic diagram corresponding to
the placement of transistors and the layout for an SRAM cell are givenin Figure 3.3. The

placement of the transistorsis intended for cell abutting.

word | |

bit+ bit-
W=0.4 pum, L=0.35pm

Figure 3.3 — Schematic and Layout of SRAM leaf cell

Note that al the 1/0O signals of the cell (word, bit+, bit-, VDD, and GND) use
abutting. The layout allows both horizontal and vertical cell abutting. Vertically, the cell
above this one will be flipped on the x-axis so that the n-well and VDD lines are shared.
Similarly, the cell below will aso be mirrored on the x-axis so that the n-diffusion and bit

lines can be shared. This overlap of layers makes the layout more compact.

3.2 Bit-Line Conditioning

Figure 3.4 shows the schematic and layout of the bit-line conditioning circuit.
The gates of the NFETs are tied to Vg, S0 that the bit-line conditioning circuit is aways
turned on. This avoids the complexity of generating a precharging signal. It also allows
the bit-lines to be equalized when the column is deselected (i.e., between two access

cycles). The bit-lines get equalized to the charge value of V 44-V+, between two accesses,
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when the memory array is deselected. When two RAM cells containing opposite valuein
the same columns are accessed subsequently, the output has to switch first to an
equalized state and then to the opposite logic state. Since the capacitance on the bit lines
is quite large, the time required for switching the differentia from one state to the other
becomes a significant portion of the overall access time. Equalization of the bit-lines
between the accesses can reduce the access time. The size of the charge transistors must
be as small as possible, so that they do not override the value in the latch during read and
write operations. Simulation showed that the charge transistors performed optimally
when W=0.4 um and L=0.35 um. The layout of the leaf cell alows cell abutting of the

bit lines.

— " Substrate
GND I . Contact

o

bit+

Charge
Transistors

W=0.4 pm, L=0.35pum

Figure 3.4 — Schematic and Layout for the Bit-Line Conditioning Circuit

3.3 Sense Amplifiers

During a read operation, the selected latch outputs the stored value onto the two
bit-lines. Since the bit-lines are always precharged, the bit-line differential voltage
degrades. We use sense amplifiers to improve the differential voltage from the bit-lines.
The main advantage in using a differentia bit-lines is common-mode rejection, which
reduces noise effects and signal degradation.

In our SRAM design, a single sense amplifier is shared among multiple columns.
Typicaly, a single amplifier is used for each column of bit-lines as shown in Figure 3.5.
However, in the proposed design, a single amplifier is shared between multiple columns
by inserting the column decoder pass-transistors between the bit-lines and the amplifier.
Thisresultsin area savings and power reduction.
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Typical Configuration
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Proposed Design

Figure 3.5 — Sense Amplifier Architecture

From simulation, it was shown that this configuration performed better than

having a sense amp for each column, since it reduces the drive load of the sense

amplifier. Also, this configuration allows the sense amplifier to be isolated from the bit-

lines at al times except during a read operation. Because the sense amplifiers are not

driven by bit-lines at all times, the switching activity is reduced on the sense outputs.

M, M3 W=0.7 pm, L=0.35pum
My, My, Ms: W=0.4 um, L=0.35pm

Figure 3.6 — Schematic and Layout of Sense Amplifier

Figure 3.6 shows the schematic and layout of a sense amplifier. A cross-coupled

amplifier is used for the sense amp. Once a memory cell is selected for the read

operation, the voltage on one of the complementary bit lines will start to drop dlightly.

Suppose that bit+ is higher than bit-. As a result, one of the NFETS, M3, is turned on,

causing sense to be pulled low. Consequently, one of the PFETS, My, is turned on,
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pulling up sense” output to a high value. The positive feedback of the cross-coupled
PFETSs accelerates the sensing speed by reinforcing M»’'s gate value (sense-) to a high
through M.

The sense amplifier is the key component that limits the speed of read-time.
Since the transistor sizing affects the speed of the sense amplifier, smulation was
performed for different sizes of transistors. The fastest configuration is when the two
NFETs (M1 and M,) are set to W=0.7 um, L=0.4 um and the rest were set to W=0.4 um.
The layout shown in Figure 3.5 is the fastest configuration and also uses cell abutting of
Vpp and GND.

3.4 Leaf Cell Simulation Results

After custom layout of the leaf-cells in Cadence Virtuoso, the design rule checker
(DRC) was used to verify that all leaf-cell layouts met the TSMC 0.35 um design rules.
The leaf-cells were used first to create a layout for a small test circuit to verify operation
and measure preliminary performance results. The test circuit consisted of an SRAM cell
core connected to the bit-line conditioning circuit through the bit-lines with a sense
amplifier to amplify the read output. The sense amplifier is isolated from the bit-lines
when the cell is not being read from. Following DRC verification, parasitic capacitances
were extracted from the layout. From the extracted circuit, a spice netlist was generated
using Analog Artist, and simulations were performed using Avanti HSPICE. The
extracted netlist was simulated for the following test case.

1) WriteO: word = 1, write=1, write_data= 1->0

2) Read O: word = 1, write=0, write_data=0->1->0 (shouldn’t affect contents)

3) Writel: word=1, write=1, write data= 0-> 1

4) Read 1. word= 1, write=0, write_data=1

5) Turn-off RAM Cell: word=0, write=0

Figure 3.7 presents the ssimulation graph for a R/W to a single bit. The cell
represents the value stored in the latch, while the bit represents the value on the bit lines.
The output from the sense amplifier is labeled as sense. From the plot, we can see that

the value in the cell node is driving the bit line. Because of the bit-line conditioning
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circuitry (and aso the bit-line capacitance), the bit line is not pulled to agood ‘0’ during
aread of ‘0’. However, the sense amplifier recovers the original value after some delay.
After 20ns, the RAM cell is turned off, so the bit-line conditioning circuit drives the bit
value, while the sense node floats towards an equalized value. Note that the cell still
maintains the stored * 1’, regardless of CEN being off.
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Figure 3.7 — Simulation Results for SRAM Leaf Cell

Characteristics for this cell are provided in Table 3.1. Power dissipation was
obtained using HSPICE's .measure statement. Static power dissipated was obtained by
taking the average of the two power dissipations, under the sense output at a high and the
sense output at a low. Dynamic power was taken as the average of power dissipated
during a change in the output due to an input change. For this example, the dynamic
power dissipation included the average of dynamic power dissipation from both R/W’
and write_data changes. Nodal capacitances for the cell were obtained from HSPICE by
adding the captab (capacitance table) option to the .option statement.

Table 3.1 — Characteristics of a bit SRAM for Vpp = 3.3V

Static = 0.45 mwW
Dynamic = 0.82 mW
Cell nodes=8.9 fF

Power Dissipation

Nodal Capacitance Word lines= 8.7 fF
Bitline=11.2fF
Area per cell 35.64 |J-m2
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3.5 Address Decoders

Decoders are needed to generate the word and column select signals for the
SRAM. The input to the decoder is the address of the selected cell and the control
signals. All decoders are implemented in a tree structure, as shown in Figure 3.8.

Minimum-width (W=0.4 um, L=0.35 um) sized NFETs are used as pass transistorsin the

decoder.
| ______ 1
Ao— — O Enable —EFI—I—O
A, — Tree | — | ]——I— 1
Decoder —2 :> I yj_Ej I g
_3 I L
I AR, Ao A |

Enable T o em omm omm e e -l

All transistors are NFETs with W=0.4 um and L=0.35 pm
Inverter: W=0.4 um, L=0.35 um

Figure 3.8 — Tree Decoder Implementation

When Enable is active (low), a selected decoded output is pulled down to a good
logic ‘O’ value due to the use of NFETs. All unselected outputs are floating. When
Enable is disabled (high), the selected output is at a poor logic ‘1', and all unselected
outputs are floating. To prevent unselect unselected outputs being floating, pull-up

buffers are necessary at each output. The design of pull-up buffersis explained next.

3.5.1 Pull-up Buffers for the Decoder

In addition to pulling up unselected lines, a buffer is also needed to produce a
good ‘1’ or ‘O’ for the select lines. A buffer is responsible for both pulling-up unselected
lines and buffering the output so that the drive strength isincreased. As shown in Figure
3.8, a buffer, in fact an inverter, is added at every decoded output in our design. Note
that the selected output is at ‘1’ due to the inversion. The result is that all decoder
outputs are zero except for the output that is selected by the input address. It will be
placed at the output of the decoder, as shown in Figure 3.9.

Two types of pull-up transistors as shown in Figure 3.10 are considered for the
buffer design. Both designs require a pull-up transistor for an unselected line. To
compare performance, HSPICE simulation for the two designs was performed.
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Figure 3.9 — Buffered Output for Decoder

The design in Figure 3.10 (&) uses an NFET to act as a pull-up resistor to pull-up
an unselected line. However, in order not to pull-up the selected line, the driving
capability of the pull-up transistor needs to be low. Therefore, the width is set to the

minimum size of W=0.4 um and the length isL=0.75 pm.

address lines —= Long-L FET to
e
1 A i“ unselected line
1 1 1
EnabJ_'_\_ (XX N ] 1
(a) NFET Pull-up I I : Column/
: I Row
L L S I Select
1
Enabl 1 «ee. !
(b) PFET Pull-up N >

Pull-up Transistors: W=0.4 pm, L=0.75 pum

Figure 3.10 — Comparative Buffer Designs

Figure 3.11 shows the simulation results of the buffer on a 1 kB SRAM. In
Figure 3.11, when the decoder is disabled, the decoder outputs, equivalently inverter
outputs, are at 0OV for both selected and unselected lines. However, when the decoder is
enabled, the selected decoder output is at 0.4 V and fails to pull up high. Thisis due to
the fact that the pull-up transistor is too strong to be pulled down to a sufficiently low
value. Therefore, this buffer design function properly without reducing the driving
capability further. It requires increasing the length (since width is aready the lowest), to
result in increased area, so that this configuration is not adopted in our design.
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Figure 3.11 — Simulation Results for Figure 3.10 (a)

Alternatively, the design in Figure 3.9 (b) uses a PFET with W=0.4 pm and

L=0.75 um. In this case, the gate of the PFET samples the value from the line. If an

unselected line is floating to ‘0’, then it will be pulled up by the PFET. Figure 3.12

shows the simulation results for the buffer design in Figure 3.9 (b) on a 1-kB SRAM.
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Figure 3.12 — Simulation Results for Figure 3.10 (b)

Figure 3.12 shows that when the decoder is enabled, the selected decoder (i.e.
inverter) output is pulled up to V4g (=3.3 V). Note that the inverter input of the selected

line is sufficiently low (=0.9 V) to drive the inverter output to Vg4g. Since this design

works well, it is adopted for our final design.

Figure 3.13 shows the schematic and
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layout of the final decoder buffer design, which includes a pull-up PFET with L=0.75
pum, W= 0.4 ym and an inverter with L=0.35 pm, W= 0.4 pm.

Inverter

: Inverter
nput, ., _ . output
i 0.4 uUm i Al
J_MDQW/W' |
select
inverter/ /‘ line prE =
input 0.4 um B R
0.35 im il = -
VDD WSS ||
Figure 3.13 — Schematic and Layout of Buffer
3.6 Summary

Leaf cell layout is critical in to the performance of the SRAM. In this chapter we
examined the leaf cell layout and design. The performance of each cell has been

measured and verified through SPICE simulations.
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CHAPTER

4 SRAM Compiler

In the previous chapter, we described the design of leaf-cells used to layout an
SRAM core and the supporting circuitry. The next step is to develop SKILL code to
perform design automation of all components including the RAM core, decoders, and 1/0
buffers. In this chapter, we discuss the structure of the SKILL code for our SRAM

compiler.

4.1 SRAM Structure and Algorithm for SKILL Code

Our SRAM compiler should generate the layout for the SRAM core and all
supporting circuits based on the input size. The entire program is broken into the

modules based on the functionality. Figure 4.1 shows the organization of the program.

P Aspect Ratio

sram_array

Calculation
v
Layout Row Read Write fle;
SRAM address address address Buffers
array decoder decoder
decoder

Figure 4.1 — Program Organization

The procedure sram _array is the top level function that calls all other modules to
generate the entire circuit. We now discuss the implementation and interaction of all of

the functions.

4.1.1 Aspect Ratio Calculation

The numbers of rows and of columns in an SRAM have a maor impact on the
final aspect ratio of the SRAM. It is undesirable for the shape of the SRAM circuit to be
overly long or thin, as it incurs excessive routing area, signal delay, and capacitance.
Optimally, the SRAM should have a shape close to asquare. Therefore, it isimportant to

derive a procedure to calcul ate the rows and columns with the aspect ratio in mind.
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The first step in this procedure is to determine the aspect ratio for a single bit.
Since adjacent RAM cells are flipped both horizontally and vertically to improve cell
abutting (see Section 3.1), the basic tile for measuring the aspect ratio is a 2x2 cell.
Figure 4.2 gives the measurements for a 2x2 cell and the derived measurement for a

. ) L width 4.8
single cell. The aspect ratio for onecell isgivenby, AR, = —— = — =0.65.
g = d Yo AR height 7.4
! ™~
. |E — E
: N 4.8 um
|e9.6um%|
2x2 cell one cell

Figure 4.2 — Aspect Ratio Measurements
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Figure 4.3 — SRAM Core and Word Blocks

Recall from Section 2.5 that the columns are arranged in word-sized blocks. A
word-sized block is the smallest unit for the SRAM core as shown in Figure 4.3. The

aspect ratio for one block isAR,., = AR, (W, where w is the number of bits in a word.

Therefore, the total aspect ratio for an SRAM can be expressed as,
olumns
ARS?AM = ARoIock d:i = ARbIock E'r% = ARbit ENBI,%

rows
where mis the number of rows and n is the number of word-sized columns. Note
that m and n should be a power of 2 for efficient implementation of the decoders. Let m

=2and n=2", where x and y are integers. In order to make ARsram Closeto 1,
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1= AR = ARy,
m= AR, [0
log,(m) =1log, (AR, ) +109,(n)
log,(2") =109, (AR, ) *+109,(2”)
0 x=10g,(ARyeq) + Y
Assuming that the number of words of an SRAM is a power of 2, let words = 2,
where words is the number of locations in the SRAM and | is an integer. Since
words = mlh, we obtain 2' =2*[2¥. Hence | = x+y. Using this relation, we can
compute the value of x as.

X =10g,(AR, o) + Y =109, (AR, ) +1 =X
2X = logz(ARolock) +|

X = Iogz(ARbIock) +|
2

The procedure for the aspect ratio is as follows:
1. Calculate aspect ratio for one block: AR, = AR, O = 0.650W

2. Findl: | =log, words
3. Findx: x= logZ(AF;b'OCK) + . Round down to make it an integer.
4. Findy to calculate number of rows and columns: y=1-x. Hencem= 2*and

n=2Y

In the above, words (which is the number of locations) should be a power of 2.
For example, for a 256x8 SRAM,
1. ARyock = 0.65*8=5.2
2. | =log, 256=8
3. x=(log;52+8)/2=52->5
4, y=1-x=8-5=3

Hence, the SRAM should have 2* = 2° = 32 rows and 2¥ = 2° = 8 word-sized
columns for an aspect ratio close to 1. The actual aspect ratio of the SRAM core,
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measured from a layout, has an aspect ratio of width/height = 306/240 = 1.275. The
reason for the discrepancy is due to the constraint to impose the smallest unit to a word-
sized block. In addition, the supporting circuitry, which is ignored in the aspect ratio
calculation, aggravates the aspect ratio. However, the impact of the supporting circuitry
decreases with the increase of SRAM size. For the 256x8 SRAM, the total aspect ratio
with the support circuitry improves to width/height = 400/335 = 1.19.

A small block of code in the top-level module sram_array calculates x, y, and

subsequently, mand n and passes them to all other functions at the lower level.

4.1.2 Layout of an SRAM Array
The next step is to layout RAM cells in m rows and n*w bit columns. This is

accomplished by the cell layout function. The function instantiates the leaf-cell
previously created for 6T SRAM and the bit-line conditioning circuitry (Refer to Section
3.1), to create an SRAM core, bit-line conditioning, and write-select transistors (which
activate a pair of selected bit-lines during the write operation). The function also places
necessary |I/O pins. The procedure for this function is as follows.

1. Layout mx n*w SRAM array

2. Place bit-line charging circuit and write-sel ect transistors.

3. RouteVDD & VSSlines

To layout the SRAM array, we use a nested for-loop to instantiate the RAM cells

inan array. The pseudo-code for this function is as follows.
for colum =0 to (n*w)-1,
for row=0to ml,
if (row == odd then
Instantiate(“6T _core” @{x_offset*colum, y_offset*row} flipped)
el se
Instantiate(“6T _core” @{x_offset*colum, y_offset*row} nornmal)

)

end for
end for

Note that “column” in the pseudo-code denotes a column of RAM cells. The cells
on every other row are flipped on the y-axis to take advantage of cell abutting. This also

lets the n-wells be shared between two rows, which results in a compact layout
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After the array has been laid out, the next step is to add the bit-line conditioning
circuitry and write-select transistors. The bit-line conditioning circuit is needed to charge
the bit-lines to reduce the access time. A write-select transistor activates the selected bit-
lines for writing, while isolating al other bit-lines that are not-being written to. During a
write operation, the “write” signal (Refer to Figure 4.4), which is an output of the column
decoder, for the selected bit-linesis ‘1’ to activate the selected bit-lines. All other select
signals should be disabled so that they don’'t get written to. A minimum sized (L=0.35
pum, W = 0.4 um) NFET is used to isolate the bit-lines.

Data Data
|nput+ write |nput-

I \Writeselect_p | L
Bit-line

RAM conditioning _
Jie \ | .
|

bit+ bit-

IIIIIIIIIIIi:ri:_I
=g
|
=g
=R
o =gy
=RR|
—)

Vss
VDD

Figure 4.4 — Layout Generated by the cell _layout Function

The fina step of the cell_layout function is to route the VDD and VSS lines to
power the SRAM. Thisis done by routing two metal-2 lines along the side of the core.
Figure 4.4 shows the complete layout accomplished by the cell layout function for a
256x8 SRAM. Céll-abutting is used to connect the VDD and VSS lines for the 6T-core
(Refer to Section 3.1). Only one connection to the VDD and VSS bus is necessary for

each row.

4.1.3 Row Address Decoder

The row address decoder is responsible for generating the word-signals for each
row. As mentioned in section 3.5, a tree structure is used for the decoder. The SKILL
code that is responsible for implementing the row-address decoder resides in the

word_decoder procedure. The function consists of the following steps.
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1. Layout atree-structured row decoder using NFET.
2. Add substrate contacts.
3. Add pull-up buffersto the decoder output.

From the aspect ratio calculation given in Section 4.1.1, we obtain the number of
row address bits, X, necessary for the decoder. As the decoder needs both non-
complement and complement address lines, 2x address bit lines are necessary. A 3x8 tree

structured row decoder with six address linesis shown in Figure 4.5.
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1 — —
e} 2 1
2 ° Lo _
5 3 — ) CEN
° J—
3 L
4
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5 _—l_ PR 1
. J——
_lz_j "_|_J
7 |_J I —
To word line
buffers
Ao Ao A A A, A,

Address inputs

Figure 4.5 — Implementation of a Tree-Structured Row Decoder

Thefirst step is to layout the tree-structured row decoder. 2x polysilicon lines are
laid out to form the address lines. Next, a nested for-loop is used to layout NFETSs at the

appropriate coordinates. The pseudo-code for the layout of NFETs is as follows.

for addrline = 0 to x-1,
for row=0to ml,
if (row == odd then
i f (NFET shoul d be placed for this row then
/1 Place NFET on unconpl enented address |lines (ex: AQ)
Instantiate(“NFET” @ { @nconpl enented address line})
Connect to previous (lower) address |ine

)

el se



i f (NFET should be placed at this row then
/1 Place NFET on conpl emented address lines (ex: AQ')
Instantiate(“NFET” @ { @onpl enented address |ine})
Connect to previous (lower) address line

)
)

end for
end for

The coordinates of the NFETSs are calculated as a function of the current row and
current address line. The source side of the two NFETs on the MSB address bit linesis
connected to the enable signal, CEN’.

After the layout of the decoders, substrate contacts are placed at every 5 um to
meet DRC rules. A substrate contact is placed below and above each NFET for the LSB
address lines, and subsequently every 5 pum for other address lines. All substrate contacts
are connected to aVSS bus. Recall from section 3.5.1 that pull up buffers are necessary
for this decoder. We use the leaf-cell for the pull-up buffers and connect them to the
output of the decoder.

Figure 4.6 shows the partial layout of a 5x32 row decoder generated by the
word_decoder function. Notice that the decoder resembles a tree-like pattern and the

pull-up buffers are connected to al outputs of the decoder.
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Figure 4.6 — Word-Decoder Layout
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4.1.4 Read Address Decoder

The read address decoder of an SRAM activates w consecutive selected bit-line
columns, where w is the wordsize of the SRAM. The layout of the two decoders is
identical to that of the row decoder, and hence we describe only the control circuitry for
read and write operations. The read address decoder is responsible for activating selected

columns and routing the read-data to the “ data out” bus.

Column O Column 1
bit+| |bit- bit+| |bit— : bit+| |bit- bit+| |bit—
RAM RAM ! RAM RAM
Cell Cell : Cell Cell
Lo R =R Ry
DataO+___} : |1_
Datal+ :
DataO- i
Datal- :
" Outputy Output,
a O : READ DECOder XXX EXX)
- —

i

OEN

Figure 4.7 — Read decoder for Wordsize=2

The read decoder, like the row-decoder, outputs an active-high signal on it's
output. This output signal is the column-select signal for a read-operation. Figure 4.1
illustrates the read-decoder and supporting circuitry for an SRAM with a wordsize of 2.
As an example, suppose column O is selected by the read-decoder. Hence, the read
decoder enables (pulls high) the Outputy signal, which is gated to the read-select pass
transistors. Therefore, all bit-lines in column O will be connected to the data bus.
Meanwhile, all other bit-lines from the other columns are disconnected from the data-bus.

Routing the data-out is done in the following way. Each column is connected to a
pass transistor (similar to the write-select transistor discussed in section 4.1.2), which is
gated by the column-select signal output by the read-decoder. If a particular column is
chosen, then the pass transistor will connect the bit-lines for that column to the data bus.

The pseudo-code for this function is as follows.
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(rrrrrrffl 1. Layout Columm Decoder [////11111]

* See pseudo-code for previous section

[11117r11711 2. Connect wordsize blocks together /11111111
for col =0to (n*w-1 /I n*w = nunber of bit-col umms

e« Place wite-select transistors for each col umms
o Two pass transistors for each colum (for bit & bit_neg)
end for

[l 3. Layout Data Bus NN RNy,
for data = 0 to w1 //w = word size

e Draw a horizontal bus for data+ for this bit

e« Draw a horizontal bus for data- for this bit
end for

1111 rirririllil 4. Connect to Decoder [HEHErrrrrrrrrrsi
for block =0 ton-1 // n = nunber of bl ock-col unms

e Make columm sel ect comon for colums in the sane bl ock
e Route out wite-select signal (to be connected to decoder out)

e Connect wite-select signal to decoder (pull-up buffer output)

select

end for
1-block column 1-bit
A column
uI.'.I” Euﬁ HEE]E!'::I“LI:IQS:H :dL? {I_EH I.J:UH“EIJHEQE[.;Q u'--zl E{:I\ﬂ TER FEEER R ﬁu"ﬂ[-e‘u Column
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Figure 4.8 — Read Address Decoder Layout

The code to layout the read-address decoder is contained in the read_decoder
function. The final layout for this function can be seen in Figure 4.8, which is generated
for a 256x8 circuit. Note that the data output from each block is connected together so
that al blocks share the same bus for a single bit. The decoder and buffer
implementation isidentical to the one used for the row-address decoder.
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4.1.5 Write Address Decoder

The write address decoder is actually modeled after the read-address decoder.
The data is routed out the same way as for the read-decoder. The code for the write-
address decoder is in the write_decoder function. While the read address decoder is
placed at the bottom of the SRAM array, the write-address decoder is placed at the top of

the array.
WEN
—..
ao : WRITE Decoder
- Outputy Output;
Data0O+ '
Datal+ :
DataO- 1
1
Datal- ? L 4
L | s
TR T R
RAM RAM | RAM RAM
Cell Cell 1 Cell Cell
bit+| |bit— bit+| |bit— : bit+| |bit— bit+| |bit—
Column O Column 1

Figure 4.9 — Write-Decoder for Wordsize of 2

Figure 4.9 illustrates the write-decoder for a word-size of 2. The architecture is
similar to the read-decoder architecture given in Figure 4.7. The operation of the write-
decoder is also similar to the read-decoder operation. From the address given, a O ...
a x, the write-decoder outputs an active-high for the selected column output. This
connects the selected column block with the data-bus. The relative position of all

components for the SRAM will be discussed in the next section.

4.1.6 1/0O Buffers and Packaging

Thefinal step isto add the I/O buffers for the SRAM circuit. All 1/O signals need
to be routed out to the outside so that they are easily accessible by arouter. We used only
metal1 and metal2 layers for our SRAM, so other metal layers maybe used by an auto-
router, if needed. Finally, each signal lineislabeled for identification. The following 1/0
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signals and their labels are shown in Figure 4.10. In this section we will discuss the final

packaging for each 1/0 signal group.

Address K
SRAM [ Data
'WEN S
% 2k X W w Data
CEN S 7 out
I/O Signals Labels
Address AO0...A k-1
Data-In DI_0... DI_w-1
Data-Out DO 0... DO w-1
Control Signals WEN
(active-low) OEN
CEN

Figure 4.10 — I/O Pins of an SRAM

As mentioned in Section 4.1.3, each decoder generates the complemented address
signals necessary for the decoder. Therefore, routing of complemented address signalsis
unnecessary. The three active-low control signals, WEN’, OEN’, and CEN’, form the
enable signals for the three decoders. Since they are direct input, they are routed out to
the top right corner of the SRAM. Figure 4.11 shows the placement of 1/0 signals and
the major components of an SRAM.

Two data signal groups are Data In (DI) and Data Out (DO). Both signals are
output from their respective column decoders. Recall from the previous section that, a
data busis present for the column decoders. A data bus routes 2w data signal's, the non-
complemented and complemented bit signals for each bit, for the word size, w. A pair of
data-output signals, non-complemented and complemented signals, is fed into a sense
amplifier, which generates alogic value read from the cell. The sense output is buffered
viaan inverter. Theinverter drives the DO outputs through transmission gates only when
OEN is enabled.
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Figure 4.11 — Placement of I/O Signals

The SKILL code for this section is contained in the package function. This
function will layout 1/0 buffers and sense amplifiers, route al 1/0 signas, and create

pins.

4.2 SRAM Macro Layout

Figure 4.12 shows the layout of a 256x8 SRAM generated by our RAM compiler.
This circuit is 390 um wide by 340 um high, with the aspect ratio being 390/340 = 1.2.

This circuit contains 13,019 transistors.

The following page also contains the SRAM circuit generated for a 1-kB SRAM
(Figure 4.13). This SRAM circuit is 700 um wide by 580 pum high, with the aspect ratio
being 700/580 = 1.2. Thiscircuit contains 50,513 transistors.

Note from the figure that the SRAM array occupies most of the area and the
overhead from the support circuitry is very little.  Simulation results for the power

dissipation and delay characteristics are discussed in Chapter 6.
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CHAPTER

5 Array Partitioning

With the increased use of portable consumer electronic products, power
consumption becomes a critical design criterion. This requires engineers to optimize
their design not only for speed and area, but also for power. In order to reduce the power
dissipation, we incorporate the array partitioning technique proposed by J. Caravella, as
mentioned in Chapter 2. The technique is applied to the architecture and modified our
SKILL code to generate a partitioned SRAM. In this chapter, we discuss the structure
and SKILL code for array-partitioned SRAMs.

5.1 Preliminary

The total power dissipated in a circuit is the sum of static and dynamic power
dissipation. The dominant term is the dynamic power dissipation for capacitor charging
and discharging. Thus, power consumption for static CMOS logic can be approximated
as P=axCV?f , where a is the average signa activity, C is the load and parasitic
capacitance, V is the supply voltage, and f is the operating frequency of the circuit. For
the case of the SRAM, a mgor portion of dynamic power dissipation is due to the load
and parasitic capacitances, the bit-lines and the word-lines of the SRAM. These lines
tend to be long and are switch most often.

The array partitioning technique aims to reduce the power dissipation by reducing
the bit-line and word-line capacitances, which are charged/discharged whenever a cell is
accessed. As mentioned in section 2.3.3, the technique partitions the memory array into
blocks so that only one block is activated at any time. The array partition requires extra
circuitry, henceit is slower compared with non-partitioned SRAM array.

For the ease of incorporating this technique into our existing SKILL code, we
adopt array partitioning into our final design. The following sections discuss the details

of the array partitioning regarding the structure and the implementation.
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5.2 Design for Array Partitioning

We partition our array into four blocks, which produces a symmetrical design for
easy implementation. Each of the blocks constitutes a separate SRAM circuit that is one-
fourth the total size. A 2x4 decoder is used to select one block. The outputs of the block-
selector has twelve control signals — the three control signals, OEN, WEN, and CEN, for

each of the four blocks. The structure of the decodersis as follows.

Row Decoder F———— 4 - - = ]
Width: 1 bit l 1 block
:' Block Select
Column Decoder o
Width: word-size
256x8 SRAM 1024x8 SRAM

Figure 5.1 — Array partitioned Architecture

The block-selector is implemented the same way as the decoder implementation
for the rows and the columns. The transistor level schematic for the block-selector is

givenin Figure 5.2.
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Figure 5.2 — Schematic of Block Select

The block-selector decodes the CEN signal based on the two most significant
address bits. Thus, if the chip is being accessed, one of the four CEN signals, CEN;

(wherei is the block being accessed), is enabled. Asis the case for the row and column



decoders (Section 3.5), pull-up buffers are needed at the decoder outputs so that all
unselected lines are disabled.

When the CEN signal is disabled for ablock (which is not selected), it is desirable
to disable OEN and WEN signals of the block to save power. Hence, we use the decoded
CEN; signa to enable/disable the OEN and WEN signals at the output of the block-
selector. Note that, since the CEN is an active-low signal, the output is inverted before
being used to switch pass transistors, in Figure 5.2.

Suppose that we read a data from block 0. The two MSB address bits are both O,
CEN and OEN signals for block O are enabled (pulled low), while WEN is disabled
(pulled high). The 2x4 decoder connects the CEN signal to block 0. Since the CENg is
enabled, the two pass transistors associated with CENp connects OEN and WEN signals
to OENy and WEN, signals. For all the other three blocks, the pull-up buffers pull up the
control signals to be disabled.

cs)ntrol A, control
signals

signals VDD
v

,éi‘%

|

CEN, OEN,
WEN

Figure 5.3 — Block Select Layout
The block-selector circuit is laid out to create a leaf-cell to be used by the SKILL
code. The block-selector layout is shown in Figure 5.3. The three control signals are fed

at the bottom of the block-selector. The two address signals are routed to the top of the
SRAM circuit, so that they are bundled with the other address bits. The block select
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outputs the twelve control signals, which are routed to their respective SRAM blocks.
The dimension of the block-selector is 89 um x 37 um. In order to make the layout
compact, the block select is placed at the bottom of an SRAM. The following section
discusses the skill code implementation.

5.3 SKILL Code for Array Partition

The skill code for the array partition makes use of the sram_array function, which
generates an unpartitioned SRAM array (Refer to Section 4.1). The structure of the
modified SRAM compiler is shown in Figure 5.4

sram_compiler

Type =0 ' l Type =1

array_partition

v

srom_array

Figure 5.4 — Overall Structure of Sram_Compiler

The SRAM compiler allows users to choose between the two types of SRAMs-
single array SRAM or array-partitioned SRAM. As indicated in Figure 5.4, if the user
specifies type O (or type 1), a single-array SRAM (or array-partitioned SRAM) is
generated. The pseudo-code for the top-most function, sram_compiler, is as follows.
The function is responsible for differentiating between the two types.

e Load all necessary functions
/1 Check which type of SRAM the user wants to generate
if (Type == /1 sinple SRAM array
/1l Generate sinple SRAM array
sramarray(library cellview words wordsize)
else if (Type == 1 /'l array-partitioned circuit
/1l Generate circuit for 1 block
sramarray(library tenp_cellview words/4 wordsi ze)
//call function to | ayout routing and bl ocks
array_partition(library cellview words wordsi ze)
dbDel et eCbj (ddGet Obj (library tenp_cellview)) //delete tenp | ayout
)
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Thus, for type 1 SRAM, atemporary cellview for an SRAM generates one-fourth
the size first. Next, the array_partition function is called to place blocks and necessary

routings. The pseudo-code for the array-partition function is given below.

[11PTEEErrrrll Instantiate 4 blocks /1111111111 11T]
Instantiate(“tenmp_cellview @{x offset, y offset})

Instantiate(“tenmp_cellview @{x_offset, -y offset})
Instantiate(“tenmp_cellview @{-x_offset, y offset})
Instantiate(“tenmp_cellview @{-x_offset, -y offset})

{11111l Route Data Lines /111111111

e Connect Data-lIn lines of all blocks together

e Connect Data-CQut lines of all blocks together

e Route out Data signals to the top of the circuit

e Place a Pin for the PI Data-ln and Data-Qut signals

(11117111l Route Control Signals /111 111TTTTTTTT]
Instantiate(“Bl ock-Select” @{bottomof the circuit})

e Route PI control signals (CEN, WEN, OEN) to the block sel ect
e Route control signal fromBlock select to respective bl ocks
e« Place a Pin for the PI control signals

(11117111 Route Address Signals [/ 111TTTTTETTTT
e« Connect Address lines of all blocks together
* Route out Address signals to the top of the circuit

* Route the two-nost-significant address bits fromthe Pl to the
bl ock- sel ect

e« Place a Pin for all Address signals

(1111117177 WNake VDD & GND connections [//[[/[/[]][]]

5.4 Final Layout

Thefinal layout for a partitioned array of 1 kB (1024x8) SRAM isgivenin Figure
5.5. The SRAM is 860 um wide by 730 pum high, with the aspect ratio being 860/730 =
1.2. The RAM contains 52,157 transistors. Though thisis a 35% increase in silicon area
when compared with a single array SRAM (Refer to Section 4.2), there is only a 3.15%

increase in the number of transistors. This discrepancy is due to the overhead of routing
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associated with the block-selector. In the next chapter, we discuss the simulation results
for the power and delay characteristics of the two types of SRAMS.

Address and
Data Signals
f_H

ot bt i

Figure 5.5 — Array-Partitioned 1 kB SRAM
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CHAPTER

6 Simulation Results

So far, we discussed the implementation of our SRAM compiler and the basic
components. The SRAM compiler enables a user to choose between two types of
SRAMs — a fast vs. a low power version. In this chapter, we present the simulation
results on the performance of the two types of SRAMs for three different sizes.

6.1 Simulation Environment

In addition to verifying the correct operation of SRAMs generated by our
compiler, we measured the performance of SRAMs for different sizes, 256x8, 512x8, and
(1024x8) 1 kB SRAM. It should be noted that 1 kB isthe largest SRAM size required for
the project. We measured the performancein:

» Area: Silicon Area, Transistor Count
* Time: Cycle, Access, Setup, Hold
* Power: Static, Dynamic, Average

After the layout was generated, Cadence’'s Analog Artist was used to extract the
spice netlist. Input stimuli were manually added to simulate the circuit for different test
cases and measure parameters. As was done for leaf-cells, Avanti HSPICE was used for
SPICE simulation.

We performed two writes followed by two reads on two locations. Two farthest
cells from the address pins were selected as the propagation delay and the dynamic power
dissipation would be the worst on those cells. The data background (Data) used in the
simulation for the 8-bit word SRAMs is 00110011 (x33), with the complemented data
background (Data’) being 11001100 (xCC). This alows for the most number of data
changes. The timing of the simulation is shown in Figure 6.1. In the figure, locations 000
(hex) and 3FFF (hex) denote the addresses of first and the last cells, respectively.

The simulation was performed for 120 ns which includes 20 ns for two
consequetive write operations, another 40 ns for two read operations, and 20 ns standby
mode at the end of simulation. The period of an operation is set to 20 ns (50 MHz) in the
simulation, which is based on the sowest SRAM, 1 kB partitioned-array RAM. A load
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capacitance, Cioq Of 20fF is attached at each data output for the simulation.

The

following sections present the results obtained and discuss the trends for each of the three

design parameters.
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Figure 6.1 — Input Stimuli for Characterization

The waveform in Figure 6.2 shows the write and read operation for a 1kB

partitioned-array SRAM. The DO in the waveform represents a data-output bit. During

the writes, the voltages on the two bit-lines are affected by the input-data. During a read,

voltages on the two bit-lines are pulled up/down by the data contained in the RAM cell.

Note that, although the voltages on the bit-lines are not at a sufficiently high or low value,

the data output, DO, is pulled to a good value by the sense amplifier. After the two reads,
the CEN signal is disabled. It disables the SRAM and the voltages of the two bit-lines

converge at this point.
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Figure 6.2 — Simulation Waveform for 1-kB SRAM
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6.2 Area Measurement

We measured both the silicon area based on the layout and the total number of
transistors for both type of SRAMSs for the three different sizes. Table 6.1 gives the
results on the area. In the table, the column headings “single” and “partition” denote
single-array RAMs and partitioned-array SRAMSs, respectively. The “Ratio” specified in
the table is the area or transistor count of a partitioned-array SRAM to that of a single-

array SRAM.

Table 6.1 — Area Characteristics

256x8 512x8 1024x8
Single | Partition | Single | Partition | Single | Partition
Area (um?) | 134 259 222 396 406 606
Ratio 1.93 1.78 1.49
Transistor # | 13019 | 14021 | 25469 | 26637 | 50513 | 52157
Ratio 1.08 1.04 1.03
Aspectratio [ 12 1.2 0.7 0.8 1.2 1.2

As the size of the SRAM is doubled from 256 byte to 512 byte and finaly to 1
kB, the area approximately (*1.7) doubles. Likewise, doubling the SRAM size aso
approximately (*1.8) doubles the transistor count. Thisis true for both types of SRAMs.
This result is expected as doubling the SRAM size implies that there will be twice as
much RAM cells. Since RAM cells dominate both the area and the transistor count, the
increase in size is proportional to the RAM cell increase. As the overhead of supporting
circuitry will decrease with increasing size, this trend is expected to continue so that the
increase in both the transistor count and the area will be further closer to two for larger
SRAMs.

The overhead of the additional circuitry for the array partitioned SRAM resultsin
increased area over the single-partition SRAM. Note that, for the 1 kB SRAM, though
the transistor count only increases by 1.03 for the 1 kB SRAM, there is a 1.49 increase

for the overall areafor the layout. The small increase in transistor count resultsin alarge
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increase in layout. The reason for such a difference between layout-area and transistor
count is increased routing to and from the four blocks. This illustrates the impact of
routing in the final design.

Also included in the table is the aspect ratio (width/height) of the layout. Note
that the aspect ratio decreases to 0.7 for the 512x8 SRAM. This change in aspect ratio is
due to the method in which the aspect ratio is calculated. In the aspect ratio calculation,
the number of rows and columns are calculated using the aspect ratio for one block.
Also, the limitation of the number of rows and columns having to be a power of 2 limits
the accuracy of the aspect ratio calculation. This results in less accurate aspect ratio

because of the block size.

6.3 Time Measurement

The speed of SRAM cells and the propagation delay to access a certain cell
attributes the access time for read or write operations. First, we measured the speed of a
6T SRAM cell core, with sense amplifiers and write-select, described in Section 3.4 for
read and write operations. Table 6.2 presents the results for these operations.

Table 6.2 — Speed of a Single RAM Cell

Operation | Speed (ns)
Write 1 2.2
Read 1 0.93
Write O 2.1
Read O 0.7

Observations from the table show that the write-operation takes longer than the
read operation. This is because for a write, the data has to first be inverted to provide
both the complement and uncomplemented value that are fed to the bit-lines. Whereas
for the read, as soon as the bit-lines start to be pulled by the RAM cell, the fast sense amp
amplifies the difference, allowing the output to appear quickly. The same trend can be
found below (see Table 6.4) for the 1 kB SRAMs. Another point to note is that it takes
longer to read or write the logical value ‘1’, rather than ‘0’. The reason for this is

because al pass-transistors use NFETs rather than PFETSs, and since NFETs cannot
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transmit a good ‘1, it takes them longer to pullup a line. Though, the bit-lines are
conditioned to alleviate this problem, thereis still aslight biastowards‘0’.

Let us now analyze detailed timing parameters that are helpful to understand the
speed of SRAMs. The timing diagram of a read operation is given in Figure 6.3. The
parameter read-cycle time, trc, indicates the minimum time that the address has to be
valid in order for a valid data to be output sometime in the future. The address access
time, taa, is the time from the start of a valid address to when valid-data is available at
the output. This time includes both latency (the overhead of preparing to access it) and
transfer time. Note that the read cycle time indicates a minimum, while the address
access time is a maximum. For this reason, tgc is usualy less than taa. The output
enable time, tog, represents the time that it takes for the data to appear on the output after
the OEN signal is enabled.

Read Cycle
< tRC »|
ADDR Valid Address >‘<
— tAA —>
OEN T\ /
<« tOE —»
DOUT Valid Data

Figure 6.3 — Timing Parameters of a Read Cycle

Timing parameters related to write operations is shown in Figure 6.4. The write
cycle time represents the minimal time from the start of an access to the time when the
next access can be started. The write enable access time, twa, is the time it takes the data
to be written to the RAM cell after the address has been setup. Likewise, the data-in
access time, tpa, represents the time it takes to write the data after a change in the input
data. The address setup time, tas, gives the time that a valid write address must be
present before WEN is enabled. The address hold time, tay, represents the time that the
current address should be valid after WEN is disabled. Similarly, the data-in setup time,
tow, Specifies the time that a valid data must be available prior to disabling WEN, while
the data-in hold time, tpy, Specifies the time for which the current datais held even after
WEN is disabled.
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Write Cycle

< tWC >
ADDR A0 Al (Valid Address) A2
* tAS= < tAH;
WEN
[ tDW — P tDH
DIN DO D1 (Data-In Valid)
D(A1) DO >_< g 2‘( D1 (Data Valid)
Ttwa toa

Figure 6.4 — Timing Parameters for a Write Cycle

The most critical timing parameter is the read access time during a read-operation,
which determines the clock speed of an SRAM. Table 6.3 contains the access time for
both types of SRAMs for the different sizes and types. This access time is the time it

takes for the data to be output once the addressis setup.

Table 6.3 — Comparison of Address-Access Times (ns)

256x8 512x8 1024x8
Single | Partition | Single | Partition | Single | Partition
ACCESS | g5 | 147 | 89 | 175 | 150 | 218
time (ns)
Ratio 2.22 1.96 1.45

As expected, the results from the above table indicate that partitioned-array
SRAM is dower than the single-array SRAM. However, the ratio for the different sizes
indicates that as the SRAM size is increased, the speed interval between the two SRAM
types decrease. The reduced speed for the array-partitioned SRAM is due mainly to the
overhead of the supporting circuitry such as the block-selector and routing to & from the
four blocks. For example, during a read, the sense amplifier has to drive a longer data-
bus, with increased line capacitance, causing the data to appear slower on the output.
However, since the overhead of supporting circuitry decreases with increased size, the
ratio decreases as the sizeis increased.

53



Now we look at the timing characteristics for the 1-kB SRAM. Table 6.4 gives

the results obtained for the 1-kB SRAM from the worst-case simulations, mentioned in

section 6.1.
Table 6.4 — Timing Parameters for 1-kB SRAM
tpd (ns)
0,

Symbol Parameter Type=0 | Type=1 % Increase
Read Cycle
tre Read Cycle Time 12.7 18.9 1.49
taa Address Access Time 15.0 21.8 1.45
toe Output Enable Time 9.4 19.7 2.09
Write Cycle
twe Write Cycle Time 8.3 12.5 1.51
twa Write Enable Access Time 4.7 6.3 1.34
toa Data-In Access Time 2.1 4.4 2.09
tas Address Setup Time 2.6 6.2 2.38
tan Address Hold Time 0.3 0.4 1.33
tow Data-In Setup Time 4.3 9.1 2.12
tou Data-In Hold Time 0.1 0.1 1

As can be seen from the table results, the array-partitioned SRAM is about 1.5
times slower than asingle-array SRAM in read time. All timing parameters are measured
as the time it takes for the output to reach 90% of its final value. Though the operating
period is 20 ns, we are able to obtain the value for the address access time of 21.8 ns for
the array-partitioned SRAM because the data-output is held on the data bus for some time
even after the enable signal is turned off, due to the line capacitance. The taa parameter
determines the speed of a SRAM.

If we compare the percentage increase of the setup time over the hold time, it can
be seen that the low-power SRAM takes much more time to setup over the normal
SRAM. This is because the setup time includes the time it takes for both the address
decoder and the block-select to decode the new address. In addition to this, there is aso
the time it takes for the control signals to reach the blocks. Since these lines tend to be

long, the line capacitance can be large, leading to the slower time.

6.4 Power Measurement

Dynamic power dissipation occurs during a R/W access. Static power dissipation

is the power dissipated when there are no read or write operations and all nodes are at the

54



steady state value. The average power dissipation is the power dissipated during the
entire simulation, which includes the standby mode of 20 ns at the end of simulation.

Table 6.5 shows the power dissipation for three different sizes of SRAMSs.

Table 6.5 — Power Characteristics

256x8 512x8 1024x8

Sngle Partition | Single | Partition | Single | Partition

Dynamic (mW) | 3111 25.86 | 61.15 | 30.00 | 79.21 | 4154

Ratio 0.83 0.49 0.52
Static (mW) 065 | 3.46 073 | 362 | 096 | 357
Ratio 5.32 4.95 3.72
Average (mW) | 24.68 | 21.39 | 4808 | 24.16 | 66.59 | 36.83
Ratio 0.87 0.50 0.55

As expected, the circuit with array partitioning reduces both dynamic and average
power dissipated. For the 1 kB SRAM, the array-partitioned SRAM dissipates 45% less
average power dissipation. The dynamic power dissipation reduces due to the reduced
bit-line and word-line capacitances and consequently the average power dissipation is
reduced, sinceit is dominated by the dynamic power dissipated.

Though both dynamic and average power dissipation is reduced, note that the
static power dissipation actually increases with 3.72 times for the 1024x8 SRAM. Thisis
because the static power dissipated is determined by the overhead of the support circuitry,
especialy the ones that contain a resistive load. Though both types of circuits have the
same number of RAM cells, the partitioned SRAM has 4 times the support circuitry for
the four different blocks. For example, for a1 kB circuit, there are eight sense-amplifiers
(one for each data bit) for the type O circuit. On the other hand, for the partitioned
SRAM, since there are four independent SRAM blocks, there are 32 sense amplifiers.
Therefore, the overhead is the cause of the increased static power dissipation. However,
from Table 6.1, it can be seen that there is a decreasing trend with the percentage
increase, so that the effect of the overhead will decrease with increased SRAM size.
Also, note that the average power dissipation is dominated by the dynamic power,

allowing us to ignore the effect of static power.
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Thereis yet another interesting trend to be noted. We may expect that the average
power savings will increase linearly as the SRAM sizeisincreased. However, notice that
there is a non-linearity for the 512x8 SRAM size where there is actually more power
savings at the 512x8 SRAM than the 1 kB SRAM. The reason for this can be seen in the
shape of the SRAM shown in Figure 6.5.

Notice that the blocks of the 512-size circuit are more elongated than the 1 kB
SRAM. This meansthat for the 512x8, there are more rows than columns, whereas in the
1-kB SRAM, there are more columns than rows. This leads to the word-length being
proportionally much longer in the 1 kB when compared to the bit-line length. Since the
word-lines use polysilicon, while the bit-lines use alower-resistive metal 1 layer, this puts
the 512x8 circuit at an advantage, leading to the dightly higher power-savings. It should
be noted that this trend is repeated for every quadrupled-SRAM (0.5 kB, 2 kB, 8 kB,...)
due to the aspect ratio calculation. Therefore, the fault lies in the aspect ratio calculation
where we assumed that an SRAM that has close to equal rows and columns is most
desirable.

1kx8
Figure 6.5 — Aspect Ratio Comparison for Array-Partitioned SRAM

Nevertheless, the static power dissipated is not affected by the SRAM and the
results indicate a linear change. This is because the overhead of the support circuitry is
not affected by the length of the bit or the word-lines. This alows for the linear trend in
percentage savings. Given more time, the optimum bit-line to word-line length ratio
should be determined and the aspect ratio calculation should be improved to take

advantage of this phenomenon.
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6.5 Minimum Operating Voltage

For low-power purposes, it is desirable to operate a circuit at the minimum
possible operating voltage without exceeding system requirements. With the 20 MHz
timing requirement for the SRAM, the minimum operating voltageis 1.9 V for the single-
array SRAM, and 2.1 V for the partitioned-array SRAM. Table 6.6 specifies the
performance of the SRAMSs at the minimum operating voltage.

Table 6.6 — Performance at Min Operating Voltage

. Partition- :
Single-Array Array Ratio
Min. Operating 19V 21V 11
Voltage ' ' '
Address Access, taa 44.3 ns 48.1ns 11
Average Power 22.65 mW 17.39 mW 0.7
Power Savings by
reduced voltage 0.37 0.47 1.27

The reason for the difference in the minimum voltage between the two SRAMs is
due to the restriction of speed. We want the SRAM to be operational for a frequrency of
20 MHz. However, note from the last section that the single-array SRAM is faster than
the partitioned-array. This allows the single-array SRAM to have a reduced V 44 without
reducing speed as much as the partitioned-array SRAM.

The power savings resulting from reducing V4q comes at a cost of reduced speed.
The equation for the delay,

T = Cbitline mv ,
KIQ% dd _\/t)z

shows that reducing the Vq4q Slows down the circuit quadratically. Thereis areduction in

speed by 2.5 times due to reducing the operating voltage. However, the SRAM is
capable of functioning within the 20 MHz required by the project.

By reducing the operating voltage, the speed was compromised by 60%.
However, the power savings was close to 50% for the partition-array SRAM making the
tradeoff reasonable. An important trend to note from the results isthat at 3.3 V, theratio

of average power dissipated between the two types was 0.55. When the operating voltage
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was reduced to minimum Vgq, the ratio increased to 0.7. This means that the difference
in power dissipated between the two types reduces with decreased supply voltage. The
reason for this can be found in the basic equation for power dissipation: P = a xCV*f .
At 3.3V, the main difference between the two types of SRAMs was the reduction in the
capacitance, C. However, when the supply voltage was reduced to 2.1 V, the most
dramatic change in the power dissipated is V, since its an quadratic term. Therefore, the
1.2 V drop in supply voltage dominates the total power dissipated. However, since C is
still less for the array-partitioned SRAM, thereis still a 30% power savings by using the
array-partitioned SRAM.

6.6 Conclusion

The array-partitioned circuit proved to save power over the normal SRAM.
However, this savings comes at the price of speed and area. For the 1-kB SRAM, the
type 1 SRAM is proven to save 48% dynamic power and 45% overall power dissipation.
However, the access time for the low-power circuit reduces to 21.8 ns— 31% slower than
the 15 nstype 0 SRAM. Also thereis an increased area of 33% and an increase of 3% in
transistor count. By reducing the supply voltage to 2.1 V, the partitioned array was able
to lower average power dissipation to 17.39 mW at a cost of reducing the speed to 20
MHz. These results give an account of the design tradeoffs involved with low-power

circuits.
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CHAPTER

7 Conclusion

An embedded SRAM compiler has been successfully developed with low-power
capabilities. The compiler allows the user to choose between two types of SRAMs — one
that is low power and one that is fast. This gives the user the ability to decide on the
most critical design criteriafor the application.

The low-power SRAM uses the array partitioning technique to reduce power
dissipation. By dividing the entire memory array into four blocks, we are able to reduce
the bit-line and word-line capacitance by half. Thus, the partitioned memory arrays
reduce the total capacitance that is switched per access. Reducing these capacitances
reduces the dynamic power dissipated and consequently, the total power that is
dissipated.

Simulation results for the 1kB SRAM show that the low-power SRAM dissipates
45% less power than the normal SRAM, with the low-power SRAM dissipating 36.83
mW of average power. The area overhead due to array partitioning is 33%, with a 3%
increase in the number of transistors. For a size of 1kB, both types of SRAM are shown
to be capable of operating at a frequency of 50 MHz, well within the 20 MHz
requirements for this thesis. At the minimum operating voltage of 2.1 V, the array-
partitioned SRAM dissipated 20 mW of average power, operating at a speed of 20 MHz.

Finally, atest circuit has been prepared which will be fabricated. The layout for
the test circuit isshown in Figure 7.1. The layout shows the 1 kB array-partioned SRAM
(type 1) with 1/0O pads connected. The test circuit will be used to physicaly verify the
operation and get actual measurements of the SRAM. After this verification, the SRAM
will be embedded in the Wireless Video Project mentioned in Section 2.5. For the test
circuit, the SRAM is not embedded and requires a pin for each 1/0 pins. Due to the high
cost of 1/0O pads, the data-input and data-output signals are connected together to reduce
pin number. Because the data-output signal is isolated from the bus by transmission

gates, there is no reason for a bus contention.
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Figure 7.1 — Test Circuit for 1 kB Array-Partitioned SRAM

The area for the test circuit is 2080 pm x 1795 pm = 3.73 mm? which is
approximately six times larger than just the SRAM. As can be seen in the figure, the I/O
pads occupy alarge part of the total area, even after reducing the pins by sharing the data-
in and data-out signals. However, since the SRAM will be embedded in the final circuit,
the effect of the I/O pads on the areawill not be as dramatic.

As a conclusion to this thesis, we describe a possible improvement to the design.
As mentioned in the previous chapter, the aspect ratio of the SRAM plays an important
factor in the fina design. Though the aspect ratio calculation for the compiler was
designed in order to accommodate equal rows and columns, the results indicate that this
may not be the best choice. Because the word-lines, which are polysilicon, are more
resistive than the bit-lines, which are metall, it is preferable to make the word-lines
shorter than the bit-lines. This implies that there should be more rows than columns.
Then, the aspect ratio should be calculated not to have equal rows and columns, but an
optimum row-column ratio. Therefore, the optimum aspect ratio should be determined
through experimental results and the compiler should be modified to generate the layout

for this aspect ratio.
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APPENDIX

A Program Execution

The following tables lists the functions used in our SRAM compiler.

Table A.1 — Functions in the SRAM Compiler

sram_compiler(library cellview Words Wordsize Type)

procedure sram_compiler will generate an embedded SRAM layout

Possible Types.

 Type=0 -- Simple SRAM array without Array Partitioning

 Type=1 -- Array Partitioned SRAM array with the Block Select at bottom

array_partition(library cellview Words Wordsize)

procedure array_partition will partition the memory array into 4 blocks for low-
power

sram_array(library cellview words wordsize)

procedure sram_array is the top-level function to layout an SRAM circuit

cell_layout(library cellview number_of rows number_of cols)

procedure cell_layout layouts an array of sram cells with m rows and n columns

word_decoder (library cellview x y number_of _rows number_of cols wordsize)

read decoder(library cellview x y number_of rows number_of colswordsize)

write_decoder(library cellview x y number_of _rows number_of cols wordsize)

These procedures layouts the decoders for the SRAM

package(library cellview x y number_of rows number_of cols wordsize)
procedure package makes the circuit fit the final package - add all 1/0 pins and

route signals to meet package criteria

A.1 Compiler Setup

Before generating the circuit, the compiler must first be setup in the CADENCE
environment in the following way.
1. After starting CADENCE icfb, follow the procedure to setup the TSMC 0.35 um
process from the following page:

http://wwww.ee.vt.edu/ha/cadtool s/cadence/unix_env.html

2. Inyour working directory, copy al .il filesthat are present in the present directory.
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3. Copy the sramleaf/ directory onto your working directory.
4. Add the sramleaf/ directory as alibrary in your CADENCE design environment using
the procedure from the following page:

http://www.ee.vt.edu/ha/cadtool s/cadence/gate.html

A.2 Layout Generation

Each procedure is contained in a separate file whose filename is the name of the
procedure. The compiler is executed in the following way.

1. Load skill code: load(* sram_compiler.il”)
—> Loads the contents of the file sram_compiler.il
- This file also contains the commands to load all other functions that will be
used by the sram_compiler procedure.

2. Call top-level function: sram_compiler (library cellview wor ds wor dsize type)
- Generates an SRAM layout for the specified size of the specified type.
- Example: sram _compiler(* ram” “sram 1k 8" 1024 8 1) generates a layout
for an 1 kB (1024x8) array-partitioned SRAM.

Note that the above commands should be typed in the CIW. Also, the load
command assumes that the file isin the cadence working directory. If thisis not the case,
the correct path of the file should be entered. All SKILL code files are enclosed in
Appendix B.
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APPENDIX

B sKILL Code

The SRAM compiler consists of 8 SKILL code files, all of which have a il
extension. The files are stored in the VISC workstations at the following location:
/project/asic/SRAM_Compiler. The directory listing for this location is shown in Table
B.1.

Table B.1 — Directory Listing of /project/asic/SRAM_Compiler

Filename Contents
array_partition.il Function array partition
cell _layout.il Function cell layout
package.il Function package
read_decoder.il Function read_decoder

README for SRAM Compiler with instructions

README_compiler for compiler setup and execution

sram_array.il Function sram array
sram_compiler.il Function sram_compiler
word_decoder.il Function word decoder
write_decoder.il Function write_decoder

spice/ Directory of SRAM HSPICE files
sramleaf/ Directory of |eaf-cell layouts

testcircuit 1kx8/ Directory containing 1 kB test-circuit cellview

As can be seen from the directory listing, each function is contained in a separate
file whose filename is the name of the function. The following pages contain the SKILL
code filesin alphabetical order.
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B.1 array_patrtition.il

P R R R R R R R B R R R R R R B R R R R AR B R R R AR R R B R AR SR R R AR B R R R AR B R AR SR B R AR AR B R S AR R R BRI

;; FileName: array_partition.il
;5 Author: Meenatchi Jagasivamani, April 2000

;; procedure array_partition will partition the menory array into 4 blocks for |ow
; power purposes and place the Block Select at the bottom (conpact)

;, Usage In W
- array_partition(library cellview Wrds Wrdsi ze)

7 Ex: array_partition("srant "block_256_8" 256 8)
- -->1to create array of sramcells with 256 words with a wordsize of 8 bits

- array will be partitioned into 4 blocks with the BS at the bottom
o --> Layout will be stored in cellview "block_256_8" under library "srani

S
visaasaassys, Declare leaf cells to be used ;;; ;5 i 5 550000,

PR R R R R R R R R R R R R R BN B R R R AR B R AR SR B R R AR SR B B AR SR B B AR SR BB SR SR SR

library = "sramn eaf"

viacv = dbOpenCel | Vi ewByType(library "ML_M" "layout" "" "r")

bl ksel cv = dbOpenCel | Vi ewByType(library "Bl ockSel ect " "layout" "" "r")

ccv = dbQOpenCel | ViewByType(clib cname "layout" "nmaskLayout" a") ; final circuit
cel lview

t
AR 1bit = 0.5

;7. .5;Calculate row and col for equal aspect ratio

ar = log(w AR _1bit)/1og(2) ;aspect ratio for 1 wordsize bl ock
k = int(log(block)/log(2)) ;nunber of address |ines

y = floor((k-ar)/2) P X+y = k

X = k-y ;X = ar+y

m = int(2**x)

n = (2**y)*W

startx=4.8*n+2. 5*w+19. 25+2. 85 ; address si de
endx=9. 25+2. 9*x+1. 4*y ;data side

;7. . split address lines for symetrical routing
; let right side have | ess address |ines (because of VDD & GND routing)

hal fadr = ceiling(k/2) ; M5B
;Xwi dt h = (DI +DO) +Decoder W dt h+VDD&GND+addr ess
xwi dth = (1.4*w)+1. 4*(k-hal fadr)+10. 75+4. 6

; yhei ght
;. yhei ght
yhei ght =

address+3 control signals on both sides
1. 4*(hal fadr+2)+3.9-1. 8
.4*(k-hal fadr)+4.7

=

;7 Offset required to put the sram bl ocks on the axis
xspaci ng = startx+5.55+0. 85+xwi dt h
yspaci ng 10. 5+14. 8*(m 2) +2. 7*w+2. 9*y+yhei ght

;;; coordinates for one bl ock
top = yspaci ng+30. 55+2. 7*w+2. 9*y-2. 8
bottom = yspaci ng- 10. 9- 14. 8*(m 2) - 2. 7*w 2. 9*y

O T R T R R T I R T R I I R R L T R T R I T R R A I R I R R N B R R N R B R R I



viiaaaaaaiassgenerate circuit for 1 block = words/4 ;5555550000

O R T I T R T T R T T I I R I I L T I R T I T R A A T I R I R L T R T B B B T R T B

create block in a tenporary cellviewcalled : "tenp_" + cnane
bl kcvname = buildString(list("tenmp" pcExprToString(cnanme)) "_")

;open tenporary block cell view
bl ockcv = dbOpenCel | Vi ewByType(clib bl kcvnane "layout” "" "r")

I nst poi nt 1 = xspaci ng: - yspaci ng
bl ockl nst = dbCreatel nst(ccv bl ockcv "bl ockl nst1" Instpointl "MX")
dbFl attenl nst (bl ocklnst 1 t)

;instantiate blocks onto final cellview

I nst poi nt 2 = -xspaci ng: - yspaci ng

bl ockl nst = dbCreatel nst(ccv bl ockcv "bl ocklnst2" |nstpoint2 "R180")
dbFl attenl nst (bl ocklnst 1 t)

I nst poi nt 3 = xspaci ng: yspaci ng
bl ockl nst = dbCreatel nst(ccv bl ockcv "bl ocklnst3" Instpoint3 "R0")
dbFl attenl nst (bl ocklnst 1 t)

I nst poi nt4 = -xspaci ng: yspaci ng
bl ockl nst = dbCreatel nst(ccv bl ockcv "bl ockl nst4" Instpoint4 "M")
dbFl attenl nst (bl ocklnst 1 t)

siiiisaisssiys Route DATA Lines [iiiiiiiiiiiiiiiiiiii,

1111111111111111111111111111111111111111111111111111111

for(bit O w1l
;connect wite-data |ines together

dbCr eat eRect (ccv "metal 1" i st(xspacing-startx+2. 85: yspaci ng+7. 55-2. 8*bi t

xspaci ng+st art x- 2. 85: yspaci ng+8. 35-2. 8*hit))

dbCr eat eRect (ccv "metal 1" i st(xspacing-startx+2. 85: -yspaci ng-7.55+2. 8*bi t

xspaci ng+start x- 2. 85: -yspaci ng- 8. 35+2. 8*hit))

;connect read-data |ines together

dbCreateRect (ccv "metal 1" |ist(xspacing-startx-7.2:yspaci ng+8.55-14. 8*(ni 2) +4. 8*bi t

xspaci ng+start x+7. 2: yspaci ng+9. 35-14. 8*(m 2) +4. 8*hit))

dbCreateRect (ccv "netal 1" |ist(xspacing-startx-7.2:-yspaci ng-8.55+14.8*(m 2)-4.8*%hit

- Xspaci ng+start x+7. 2: -yspaci ng-9. 35+14. 8*(m 2) - 4. 8*bit))

;route wite-data out vertically

;place via for vertical routing at top

vi apt = xspacing-startx-8.2-1.4*bit:yspaci ng+8-2. 8*bit
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")
dbFl attenlnst(vialnst 1 t)

;place via for vertical routing at bottom

viapt = xspacing-startx-8.2-1.4*bit:-yspaci ng-8+2. 8*bi t
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")
dbFl attenlnst(vialnst 1 t)

dbCr eat eRect (ccv "metal 2" list(xspacing-startx-7.8-1.4*bit:-yspaci ng-7.6+2.8%hit

xspaci ng-startx-8.6-1.4*bit:top))

;Place a pin for Wite Data signals

fig = dbCreateRect(ccv "netal 2" |ist(xspacing-startx-8.5-1.4*bit:top-0.1 xspacing-

startx-7.9-1.4*bit:top-0.7))
pinname = buildString(list("D " pcExprToString(bit)) "_")

net = dbCreateNet(ccv pinnane)
trm= dbCreateTern(net pinnane "input")
pin = dbCreatePin(net fig pinnane)

;route read-data in vertically
;place via for vertical routing at top

vi apt = -xspaci ng+startx+8. 2+1. 4*bi t: yspaci ng+8. 95-14. 8*(m 2) +4. 8*hi t

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")
dbFl attenlnst(vialnst 1 t)
;place via for vertical routing at bottom

viapt = -xspaci ng+startx+8.2+1. 4*bi t:-yspaci ng-8. 95+14. 8*(nf 2)-4.8*bi t

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0")
dbFl attenlnst(vialnst 1 t)
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dbCr eat eRect (ccv "metal 2" i st(-xspaci ng+startx+7.8+1. 4*bit:-yspacing-7. 75-
0.8+14.8*(m 2)-4.8*bit -xspacing+startx+8.6+1.4*bit:top))

;Place a pin for Read Data signals

fig = dbCr eat eRect (ccv "metal 2" list(-xspaci ng+startx+8.5+1.4*bit:top-0.1 -
xspaci ng+start x+7. 9+1. 4*bit:top-0.7))

pi nname = buildString(list("DO" pcExprToString(bit)) "_")

net = dbCreateNet(ccv pinnane)

trm = dbCreateTernm(net pinnanme "input")

pin = dbCreatePin(net fig pinnane)

11111111111111111111111111111111111111111111111111111111

; pl ace bl ock sel ect signa

bl ksel pt = 2.1-1.05+2. 25: -top- 25

bl ksel I nst = dbCreatel nst(ccv bl ksel cv "bl ksel I nst" bl ksel pt "R0")
dbFl attenl nst (bl ksel I nst 1 t)

for(sig 0 2

;7 ..5: Route control signals fromPl to the decoder
Oder fromleft to right: CEN, CEN, VEN
;place pin at end
fig = dbCreateRect(ccv "netal 2" list(12.6+1.4*sig:-top-25-16.6+0.1 13.2+1.4*sig:-top-
16. 6- 25+0. 7))

if(sig ==20

t hen pi nname="CEN'

else if(sig==
t hen pi nnane
el se pi nnane

)

net = dbCreateNet(ccv pinnane)
trm = dbCreateTern(net pinnane "input")
pin = dbCreatePin(net fig pinnane)

" CEN'
"\W\EN'

11+

coassy For Block 1 (x, vy)

;route control signal from bl ock sel ect

dbCreat eRect (ccv "netal 2" |ist(2.95+1.4*sig:-top 3.75+1.4*sig:3.9-1.4*sig))
viapt = 3.35+1.4*sig:3.5-1.4*sig

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0")

dbFl attenlnst(vialnst 1 t)

dbCr eat eRect (ccv "metal 1" list(6.55-1.4*sig:0.3+1.4*sig
xspaci ng+endx+1. 4*k+1. 4*si g: 1. 1+1. 4*si g))

;place a via at the ends

vi apt = xspaci ng+endx+0. 4+1. 4*k+1. 4*si g: 0. 7+1. 4*si g

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

dbCr eat eRect (ccv "metal 2" i st(xspaci ng+endx+1. 4*k+1. 4*si g: 1. 1+1. 4*si g
xspaci ng+endx+0. 8+1. 4*k+1. 4*si g: t op- 1. 4*si Q))

;add via at the end and connect to line

vi apt = xspaci ng+endx+0. 4+1. 4*k+1. 4*si g: top-0. 4-1. 4*sig

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

dbCr eat eRect (ccv "metal 1" i st(xspaci ng+endx+1. 4*k+1. 4*si g: top- 1. 4*si g
xspaci ng+endx+3. 9:top-0. 8- 1. 4*sig))

vy asy For Block 2 (x, -y)

;route control signal from bl ock sel ect

dbCreateRect (ccv "netal 2" list(7.15+1.4*sig:-top 7.95+1.4*sig:-0.3-1.4*sig))
viapt = 7.55+1.4*sig:-0.7-1.4*sig

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

dbCr eat eRect (ccv "metal 1" list(7.15+1.4*sig:-0.3-1.4*sig

xspaci ng+endx+1. 4*k+1. 4*sig: -1. 1- 1. 4*si g))
;place a via at the ends
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vi apt = xspaci ng+endx+0. 4+1. 4*k+1. 4*sig:-0.7-1.4*sig

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0")

dbFl attenlnst(vialnst 1 t)

dbCr eat eRect (ccv "met al 2" i st(xspaci ng+endx+1. 4*k+1. 4*sig: - 1. 1-1. 4*sig
xspaci ng+endx+0. 8+1. 4*k+1. 4*si g: -t op+1. 4*si @) )

;add via at the end and connect to line

vi apt = xspaci ng+endx+0. 4+1. 4*k+1. 4*si g: -t op+0. 4+1. 4*si g

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

dbCr eat eRect (ccv "metal 1" i st(xspaci ng+endx+1. 4*k+1. 4*si g: -t op+1. 4*si g
xspaci ng+endx+3. 9: -t op+0. 8+1. 4*si g))

voooys For Block 3 (-x, vy)

;route control signal from bl ock sel ect

dbCreateRect (ccv "netal 2" list(-2.95-1.4*sig:-top -3.75-1.4*sig:3.9-1.4*siq))
viapt = -3.35-1.4*sig:3.5-1.4*sig

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0")

dbFl attenlnst(vialnst 1 t)

dbCr eat eRect (ccv "metal 1" list(-6.55+1.4*sig:0.3+1.4*sig - Xxspaci ng- endx- 1. 4*k-
1.4*sig:1.1+1.4*sig))

;place a via at the ends

vi apt = -xspaci ng- endx- 0. 4-1. 4*k-1. 4*si g: 0. 7+1. 4*si g

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

dbCreateRect (ccv  "netal 2" li st(-xspacing-endx-1.4*k-1.4*sig:1.1+1.4*sig -xspaci ng-
endx-0.8-1.4*k-1.4*sig:top-1.4*sig))

;add via at the end and connect to line

viapt = -xspaci ng-endx-0.4-1.4*k-1.4*sig:top-0.4-1.4*sig

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

dbCreat eRect (ccv  "netal 1" |'i st(-xspacing-endx-1.4*k-1.4*sig:top-1.4*sig -xspacing-
endx- 3. 9:top-0. 8-1.4*sig))

viasss For Block 4 (-x, -y)

;route control signal from bl ock sel ect

dbCreateRect (ccv "netal 2" list(-7.15-1.4*sig:-top -7.95-1.4*sig:-0.3-1.4*siq))
viapt = -7.55-1.4*sig:-0.7-1.4*sig

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0")

dbFl attenlnst(vialnst 1 t)

dbCr eat eRect (ccv "metal 1" list(-7.15-1.4*sig:-0.3-1.4*sig - Xxspaci ng- endx- 1. 4*k-
1.4*sig:-1.1-1.4*siQ))

;place a via at the ends

viapt = -xspaci ng-endx-0.4-1.4*k-1.4*sig:-0.7-1.4*sig

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0")

dbFl attenlnst(vialnst 1 t)

dbCreateRect (ccv "metal 2" |ist(-xspacing-endx-1.4*k-1.4*sig:-1.1-1.4*sig -xspacing-
endx-0. 8-1.4*k-1. 4*si g: -top+1. 4*si g))

;add via at the end and connect to line

vi apt = -xspaci ng-endx- 0. 4- 1. 4*k- 1. 4*si g: -t op+0. 4+1. 4*si g

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0")

dbFl attenlnst(vialnst 1 t)

dbCreateRect (ccv "metal 1" |ist(-xspacing-endx-1.4*k-1.4*sig:-top+l.4*sig -xspacing-
endx- 3. 9: -t op+0. 8+1. 4*si g))

Route Address Lines ;;;;;:iii 5005500,

1111111111111111111111111111111111111111111111111111111

for(addrline 0 y-1

;connect col |ines together

dbCr eat eRect (ccv "met al 2" i st(-xspacing-endx-1.4*addrline: bottom+3. 45+2. 9*(y-1)-
1. 4*addrline -xspaci ng-endx-0. 8-1.4*addrline:-bottom 3. 45-2.9*(y-1)+1. 4*addrline))

dbCr eat eRect (ccv "metal 2" i st (xspaci ng+endx+1. 4*addrli ne: -bottom 3. 45-2. 9*(y-

1) +1. 4*addr | i ne xspaci ng+endx+0. 8+1. 4*addr| i ne: bot t om+3. 45+2. 9*(y-1)-1. 4*addrline))

;place a via at the ends
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viapt = -xspaci ng-endx-0. 4-1. 4*addrl i ne: bott omt3. 85+2. 9*(y-1)- 1. 4*addrl i ne
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0")
dbFl attenlnst(vialnst 1 t)

;place a via at the ends

vi apt = -xspaci ng-endx-0. 4-1. 4*addrl i ne:-bottom 3. 85-2. 9*(y-1)+1. 4*addrl i ne
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 1t);

;place a via at the ends

vi apt = xspaci ng+endx+0. 4+1. 4*addr| i ne: - bottom 3. 85-2. 9*(y- 1) +1. 4*addr | i ne
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

;place a via at the ends
vi apt = xspaci ng+endx+0. 4+1. 4*addr | i ne: bott omt3. 85+2. 9*(y-1)- 1. 4*addrli ne
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0")
dbFl attenlnst(vialnst 1 t)
)

siau ey, connect row address |ines together
for(addrline 0 x-1
;connect row |ines together

dbCreateRect (ccv "metal 2" |ist(-xspacing-endx-1.4*y-1.4*addrline: bottom+4. 9+2. 9* (y-
1) +1. 4*addrl i ne - Xspaci ng- endx- 1. 4*y-0. 8- 1. 4*addr | i ne: -bottom 4. 9-2. 9*(y-1) -

1. 4*addrline))

dbCreateRect (ccv  "netal 2" |ist(xspaci ng+endx+1. 4*y+1. 4*addrline: -bottom 4. 9-2. 9*(y-

1)-1. 4*addrl i ne xspaci ng+endx+1. 4*y+0. 8+1. 4*addr| i ne: bott om+4. 9+2. 9*(y- 1) +1. 4*addr | i ne))

;place a via at the ends

vi apt = -xspaci ng-endx-0. 4-1. 4*addrl i ne-1. 4*y: bott omt5. 3+2. 9*(y- 1) +1. 4*addrl i ne

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")
dbFl attenlnst(vialnst 1 t)

;place a via at the ends

viapt = -xspaci ng-endx-0. 4-1. 4*addrline-1.4*y:-bottom5.3-2.9*(y-1)-1.4*addrline

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")
dbFl attenlnst(vialnst 1 t)

;place a via at the ends

vi apt = xspaci ng+endx+0. 4+1. 4*addr| i ne+l. 4*y: bott omt5. 3+2. 9* (y- 1) +1. 4*addr| i ne

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")
dbFl attenlnst(vialnst 1 t);

;place a via at the ends

vi apt = xspaci ng+endx+0. 4+1. 4*addrl i ne+l. 4*y: -bottom 5. 3-2. 9*(y-1)-1. 4*addrli ne

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0")
dbFl attenlnst(vialnst 1 t)

R R T R N T R N R R N N N R N R N R N RN R R BN ]

for(addrline 0 k-1
if(addrline < hal fadr
t hen

dbCr eat eRect (ccv "metal 1" i st(-xspaci ng-endx-0. 4-1. 4*addrl i ne: -

bott om+1. 4+1. 4*addr| i ne xspaci ng+endx+0. 4+1. 4*addr | i ne: - bott om+0. 6+1. 4*addrl i ne))

;place a via at the ends

vi apt = -xspaci ng- endx-0. 4-1. 4*addrl i ne: -bottom+1+1. 4*addrl i ne
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

;place a via at the ends

vi apt = xspaci ng+endx+0. 4+1. 4*addrl i ne: - bott om+1+1. 4*addrl i ne
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

;route to Pl vertically

viapt = 14.95+1. 4*addrl i ne: - bott omt1+1. 4*addrl i ne
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")
dbFl attenlnst(vialnst 1 t)
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dbCr eat eRect (ccv "met al 2" list(14.55+1. 4*addrline:-bottom+1l+1. 4*addrline
15. 35+1. 4*addrl i ne: top))

;Place a pin for Address signals

fig = dbCr eat eRect (ccv "metal 2" list(14.65+1.4*addrline:top-0.1
15. 25+1. 4*addrl i ne:top-0.7))

pi nname = buildString(list("A" pcExprToString(addrline)) "_")

net = dbCreateNet(ccv pinnane)
trm = dbCreateTernm(net pinnanme "input")
pin = dbCreatePin(net fig pinnane)
el se
dbCr eat eRect (ccv "metal 1" |'i st (-xspaci ng-endx-0. 4-1. 4*addrl i ne: bottom
1.4+1. 4*hal fadr- 1. 4*addrl i ne xspaci ng+endx+0. 4+1. 4*addr | i ne: bott om 0. 6+1. 4*hal f adr -

1. 4*addrline))

;place a via at the ends

viapt = -xspaci ng-endx-0. 4-1. 4*addrl i ne: bottom 1+1. 4*hal fadr-1. 4*addrl i ne
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

;place a via at the ends

vi apt = xspaci ng+endx+0. 4+1. 4*addr| i ne: bott om 1+1. 4*hal f adr- 1. 4*addr| i ne
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

;route to Pl vertically

viapt = -11.75-1.4*(addrline-hal fadr):bottom 1+1. 4*hal fadr-1. 4*addrl i ne

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

dbCr eat eRect (ccv "metal 2" list(-11.35-1.4*(addrline-hal fadr):bottom 1+1. 4*hal f adr-
1.4*addrline -12.15-1. 4*(addrline-hal fadr):top))

;Place a pin for Address signals

fig = dbCreateRect(ccv "netal 2" list(-11.45-1.4*(addrline-halfadr):top-0.1 -12.05-
1.4*(addrline-halfadr):top-0.7))

pi nname = buildString(list("A" pcExprToString(addrline)) "_")

net = dbCreateNet(ccv pinnane)
trm= dbCreateTern(net pinnane "input")
pin = dbCreatePin(net fig pinnane)

11111111111111111111111111111111111111111111111

R R R N R R N R R N N R N N R N N AR N R N AN AR

;; route out address lines from bl ock sel ect
dbCreat eRect (ccv "netal 2" list(1.55:-top 2.35:top))
dbCreateRect (ccv "netal 2" list(-2.35:-top -1.55:top))

;Place a pin for Ak
fig = dbCreateRect(ccv "metal 2" list(1.65:top-0.1 2.25:top-0.7))
pi nname = buildString(list("A" pcExprToString(k)) "_")

net = dbCreateNet(ccv pinnane)
trm= dbCreateTern(net pinnane "input")
pin = dbCreatePin(net fig pinnane)

;Place a pin for Ak+l == MSB address bit

fig = dbCreateRect(ccv "netal 2" list(-1.65:top-0.1 -2.25:top-0.7))
pi nname = buildString(list("A" pcExprToString(k+1)) "_")

net = dbCreateNet(ccv pinnane)

trm= dbCreateTern(net pinnane "input")

pin = dbCreatePin(net fig pinnane)

11111111111111111111111111111111111111111111111111111111
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; VSS

dbCreateRect (ccv "netal 2" |ist(24-12.65:-top 25-12.65:top))

;Create pin

fig = dbCreateRect (ccv "metal 2" |ist(24.2-12.65:top-0.2 24.8-12.65:top-0.8))
pi nname = "VSS!"

net = dbCreateNet(ccv pinnane)

trm = dbCreateTerm(net pinnane "input")

pin = dbCreatePin(net fig pinnane)

; VDD

dbCreat eRect (ccv "netal 2" 1ist(25.6-12.65:-top 26.6-12.65:top))

;create pin

fig = dbCreateRect(ccv "netal 2" |ist(25.8-12.65:top-0.2 26.4-12.65:top-0.8))
pi nname = "VDD! "

net = dbCreateNet(ccv pinnane)
trm = dbCreateTerm(net pinnane "input")
pin = dbCreatePin(net fig pinnane)

;route VDD |ines together for blocks

dbCr eat eRect (ccv "metal 1" list(-xspacing+startx-9.9:-bottom 3. 4-2. 9*y xspaci ng-
startx+9. 9: -bottom 4. 2-2. 9*y))
dbCr eat eRect (ccv "metal 1" i st(-xspacing+startx-9.9:bottom+3. 4+2. 9*y xspaci ng-

startx+9. 9: bott om+4. 2+2. 9*y))
;place via to connect to VDD Pl
viapt = 26.1-12.65:-bottom 3. 8-2. 9*y
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0")
dbFl attenlnst(vialnst 1 t)
;place via to connect to VDD Pl
viapt = 26.1-12. 65: bottomt3. 8+2. 9*y
vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")
dbFl attenlnst(vialnst 1 t)

;route VSS lines together for blocks

dbCreateRect (ccv  "netal 1" list(-xspacing+startx-13.1-2.5*w -bottom2-2.9*y xspaci ng-
startx+13. 1+2. 5*w - bott om 2. 8- 2. 9*y))

;place via to connect to VSS |ine of block

viapt = -xspacing+startx-13.1-2.5*w -bottom 2. 4-2. 9*y

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

;place via to connect to VSS |line of block

vi apt = xspacing-startx+13. 1+2. 5*w. -bottom 2. 4- 2. 9*y

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

dbCr eat eRect (ccv "metal 1" list(-xspacing+startx-13.1-2.5*w bottom+2+2. 9*y xspaci ng-
startx+13. 1+2. 5*w. bot t om+2. 8+2. 9*y))

;place via to connect to VSS |ine of block

viapt = -xspaci ng+startx-13.1-2. 5*w bott om+2. 4+2. 9*y

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

;place via to connect to VSS line of block

vi apt = xspacing-startx+13. 1+2. 5*w bot t om+2. 4+2. 9*y

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")

dbFl attenlnst(vialnst 1 t)

;place via to connect to VSS Pl

viapt = 24.5-12.65:-bottom 2. 4-2. 9*y

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")
dbFl attenlnst(vialnst 1 t)

;place via to connect to VSS Pl

viapt = 24.5-12.65: bottom+2. 4+2. 9*y

vialnst = dbCreatelnst(ccv viacv "vialnst" viapt "R0O")
dbFl attenlnst(vialnst 1 t)
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B.2 cell_layout.il

;; FileName: cell_layout.il
;5 Author: Meenatchi Jagasivamani, April 2000

;; procedure cell _layout will layout an array of sramcells mrows and n col ums

;5 Usage In W
- cell _layout(library cellview nunber_of _rows nunber_of _col s)

i Bx: cell _layout ("srant' "sram 32x64" 32 64)
- -->1to0 create array of sramcells with 32 rows and 64 col ums
o --> Layout will be stored in cellview "sram 32x64" under library "srani

LR R T I T I T T A T I T R R T I I T R I N T R R R R T R R R R T R R R N R N A R N N N R N RN RN S BN I

procedure(cel |l _layout(clib cnane m n)

; Leaf-Cell library
library = "sram eaf"

P I B R R R R R BN R R R R BN B R AR BN R R AR AR B R SR SR B R AR SR BN B SR SRR SR

R R T R N A T I R R R I R I R I R I R N R N R T R N A N B RN R I N R B BN RN

ccv = dbQOpenCel | Vi ewByType(clib cnane "l ayout" "maskLayout" "a")

scv dbQpenCel | Vi ewByType(library "sram6t " "layout" "" "r")

pcv dbQpenCel | Vi ewByType(library "precharge" "layout" "" "r")
buffcv = dbOpenCel | Vi ewByType(library "wite_select"” "layout" "" "r")
viacv = dbQpenCel | Vi ewByType(library "ML_M" "layout" "" "r")

P I I B R R R R R R B B R R A R B R B R AR AR R R AR AR B R SR SR R R AR SR BN B SR SRR SR

R R T R R T I R R R R I R R N R R N A N N R N A N B N RN R R N N NN R B RN N R

startx = -6.25 ;right side

endx = (-4.8*n)-8.1

starty = 12.15 ;top

endy = (-((m2)-1)*16.7)-22-((2-(m2))*1.9)

P R I B R R R R R R B R B R R A R BN B R RN AR R R AR AR B R SR SR B B AR SR BN B SR SRR SR

R R T R N R T R R R I R R R I I R N A N R T R N A N B N RN R I N N NN R B RN A

for(col 0 n-1
col adj ustnent = col *-4.8

;; Place Precharge at the top

Prel nst = col adj ust nent - 16. 5: 3. 05

Pl nst = dbCreatelnst(ccv pcv "Plnst" Prelnst "R0")
dbFl attenlnst(Plnst 1 t)

;; Place Wite Buffers at the top

Buf f I nst = col adj ust nent - 10. 35: 13. 2

Bl nst = dbCreatelnst(ccv buffcv "Bufflinst" Bufflnst "R0")
dbFl attenlnst(Blnst 1 t)

;Place a pin for bit signals

fig = dbCr eat eRect (ccv "metal 2" list(coladjustment-9.4-1.45:starty+1.65-1.3
adj ustment - 8. 8-1.45: starty+2. 25-1. 3))

pinname = buildString(list("Chit" pcExprToString(col)) "_")

co

net = dbCreateNet(ccv pinnane)
trm = dbCreateTern(net pinnane "input Qutput")
pin = dbCreatePin(net fig pinnane)

;Place a pin for bit_neg signals
fig = dbCr eat eRect (ccv "metal 2" list(coladjustnment-9.4+1.45:starty+1.65-1.3
col adj ust nent - 8. 8+1. 45: starty+2. 25-1. 3))
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pi nname = buildString(list("CbhitNeg" pcExprToString(col)) "_")

net
trm

pin
yadj
|

dbCr eat eNet (ccv pi nnane)
dbCr eat eTer m( net pi nname "i nput Qut put™)
dbCreat ePi n(net fig pi nnane)

ustment = 0

ayout one row

for(row 0 m1l
i f(nodul o(row 2) ==
t hen

endx+1.

endx+1.

0.05))

0.2))

1.5))

;instances sramcel | vi ew

I nst poi nt = col adj ust nent : yadj ust nent

Slnst = dbCreatelnst(ccv scv "Slnst" |nstpoint "MX")
dbFl attenlnst(Slnst 1 t)

; connect vdd

via = dbCreatelnst(ccv viacv "via" endx+0.65: yadjustnent-7.1 "R0")

dbFl attenlnst(via 1 t)

dbCr eat eRect (ccv "metal 1" i st(endx+1. 05: yadj ust nent - 6. 75
05+(0. 3*n) : yadj ust nent - 7. 45))

connect vss to precharge
via = dbCreatelnst(ccv viacv "via" endx-0.6:yadjustnent+1.75 "R0")
dbFl attenlnst(via 1 t)
dbCr eat eRect (ccv "nmetal 1" list(endx-0.2:yadjustnment+2.1
05+( 0. 3*n) : yadj ust nent +1. 4))

; connect poly contact for word signal

dbCreat eRect (ccv "polyl" list(startx:yadjustnent-0.8 startx+0.8:yadjustnent))
dbCreateRect (ccv "metal 1" list(startx+0.05:yadjustnent-0.75 startx+2:yadjustment-
dbCreat eRect (ccv "contact" list(startx+0.2:yadjustnment-0.6 startx+0.6:yadjustment-

dbCreat eRect (ccv "polyl" list(startx:yadjustnent-0.6 startx-0.5:yadjustnent-0.25))

dbCreateRect (ccv "metal 1" list(startx-0.9:yadjustnent-1.75 startx-0.4:yadjustnment-
if(col == t hen

;Place a pin for word signals

fig = dbCr eat eRect (ccv "metal 1" list(startx+0.1:yadjustnent-0.7

startx+0. 7: yadj ust nent-0. 1))

el

endx+1.

endx+1.

pinnane = buildString(list("word" pcExprToString(row)) "_")

net = dbCreateNet(ccv pinnane)
trm = dbCreateTerm(net pinnane "input")
pin = dbCreatePin(net fig pinnane)

)

yadj ust nent = yadj ustnent-16.1
se

if(row > 0 then yadj ust nent = yadj ust nent +1. 9)
;instances sramcel | vi ew

I nst poi nt = col adj ust ment : yadj ust ment

Sl nst = dbCreatelnst(ccv scv "Slinst" Instpoint "R0O")
dbFl attenlnst(Slnst 1 t)

connect vdd
via = dbCreatelnst(ccv viacv "via" endx+0.65: yadj ustnent +7. 1 "R0")
dbFlattenlnst(via 1 t)
dbCr eat eRect (ccv "metal 1" i st(endx+1. 05: yadj ust ment +7. 45
05+( 0. 3*n) : yadj ust ment +6. 75))

; connect vss to precharge

via = dbCreatelnst(ccv viacv "via" endx-0.6:yadjustnent-1.75 "R0")

dbFl attenlnst(via 1 t)

dbCr eat eRect (ccv "metal 1" list(endx-0.2:yadjustnment-1.4
05+(0. 3*n): yadj ust ment-2. 1))

connect a poly contact for word signal
dbCreat eRect (ccv "polyl" list(startx:yadjustnent+. 05 startx+0. 8: yadj ust nent +0. 85))
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dbCr eat eRect (ccv "metal 1" list(startx+0.05: yadj ust ment +0. 1
start x+0. 75: yadj ust nent +0. 8))

dbCr eat eRect (ccv "contact" l'ist(startx+0.2: yadj ust nent +0. 25
startx+0. 6: yadj ust ment +0. 65))

dbCreat eRect (ccv "polyl" |ist(startx:yadjustment+0.25 startx-0.5: yadj ustment +0. 6))

dbCr eat eRect (ccv "metal 1" list(startx+0.35: yadj ust nent +0. 1
startx+1. 05: yadj ust ment +1. 2))
dbCr eat eRect (ccv "metal 1" list(startx+0.35: yadj ust ment +1. 2
startx+1. 3: yadj ust nent +1. 9))
if(col == t hen
;Place a pin for word signals
fig = dbCr eat eRect (ccv "metal 1" list(startx+0.1:yadj ustnent+0. 15

startx+0. 7: yadj ust nent +0. 75))
pi nname = bui ldString(list("word" pcExprToString(row)) "_")
net = dbCreateNet(ccv pinnane)
trm = dbCreateTern(net pinnanme "input")
pin dbCreatePin(net fig pinnane)
)

yadj ust ment = yadj ust ment-0. 6

)

);end for colum
);end for row
Siaaaaaaaaaaaaaaaaasasassy VDD Connections i
; VDD route
dbCreat eRect (ccv "netal 2" |ist(endx+0.35:starty endx+0.95: endy+1. 3))

;Place a pin for VDD

fig = dbCreateRect(ccv "netal 2" |ist(endx+0. 35:starty-2.55 endx+0.95: starty-3.15))
net = dbCreateNet(ccv "vdd!")

trm= dbCreateTerm(net "vdd!" "input")

pin = dbCreatePin(net fig "vdd!")

Cra s sy VSS Connections i
; VSS route

dbCreateRect (ccv "netal 2" list(endx-0.9:starty endx-0. 3: endy+1. 3))

;Place a pin for VSS
fig = dbCreateRect (ccv "metal 2" |ist(endx-0.9:starty-0.9 endx-0.3:starty-0.3))

net = dbCreateNet(ccv "vss!")
trm= dbCreateTerm(net "vss!" "input")
pin = dbCreatePin(net fig "vss!")

; connect vss to precharge

via = dbCreatelnst(ccv viacv "via" endx-0.6:starty-0.6 "R0O")

dbFlattenlnst(via 1 t)

dbCreat eRect (ccv "netal 1" |ist(endx-0.2:starty-0.25 endx+1. 05+(0. 3*n):starty-0.95))

);end procedure cell _| ayout
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B.3 package.ll

;;'ﬁilehbne: package. i

;5 Author: Meenatchi Jagasivamani, April 2000
;; procedure package makes the circuit fit the final
;; Usage In W

; package(library cellview

; row_addr ess
wor dsi ze)

col _address

package

nunber _of _r ows

nunber _of _col s

i Bx: package("library" "sram32_4" 5 3 32 64 8)
- -->1to add all /O pins and route signals to nmeet package criteria
- --> Layout will be stored in cellview "sram 32_4" under library "srant

LR R R T T R T T A T R I T R I T I A B T R R I I T R T R I T T B

procedur e( package(clib cname x y mn w)

;Leaf-Cel |l library
library = "sram eaf"

I I B R B R R A R B B R B R AR B R R R AR A R N R AR B R B AR SR B RN R SR SO RN AR

ccv =
viacv =

dbQpenCel | Vi ewByType(clib cnane "l ayout"
dbQpenCel | Vi ewByType(library "ML_M" "l ayout"

sensecv =

"maskLayout "

py
pol yxcv = dbOpenCel | Vi ewByType(library "poly_M" "layout" "" "r")

a")

invev =
oeni nvev =

dbQpenCel | Vi ewByType(library "read_buffer" "layout™ "" "r")
dbQpenCel | Vi ewByType(library "wdata_i nverter" "layout" "" "r")
dbQpenCel | Vi ewByType(library "oen_inverter" "layout"” "" "r")

P I B R R R R R B R B R R A R B R B R R R BN R R AR AR B R SR SR B R AR SR BN R SR SRR SR

R R T R N R T I R R R I R R I R I R N A N R T R N A N B RN R I N RN R B R RN

startx = -6.25

endx = (-4.8*n)-8.1
starty = 12.15 ;top

endy = (-((m2)-1)*16.7)-((2-(m2))*1.9)-13.35

;right side

Changey = starty+endy+0. 4+3. 35

del tax=1. 25
del tay=1. 35

for(bit 0 w1l

PR R R R R R R R R R R R R R SR B R AR AR B R R AR BN B R AR AR B R AR AR B B AR SR B R SR SR SR

; keep another variable to nake cal cul ations easier
reversebit = w 1-bit

;place a sense anp for each bit

sensept = endx-2.5*w 4. 4: endy+4. 8*bi t +13. 35
sense = dbCreatelnst(ccv sensecv "sense" sensept
dbFl attenl nst (sense 1 t)

; pl ace sensepos and senseneg pins
fig = dbCreateRect(ccv "netal 2"

12. 05: endy+4. 8*bi t +8. 15) )
pi nnanme =

net = dbCreateNet(ccv pinnane)
trm= dbCreateTern(net pinnane "input")
pin = dbCreatePin(net fig pinnane)

"R90")

bui l dString(list("senseneg" pcExprToString(bit))

")

list(endx-2.5*w 11. 65: endy+4. 8*bhi t+7. 75 endx-2. 5*w
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;place pin for read-data

fig = dbCreateRect(ccv "nmetall" [|ist(endx-2.5*w 14.8:endy+4.8*bit+7.7 endx-2.5*w
15. 3: endy+4. 8*bi t +8. 2) )

pi nname = buildString(list("DO'" pcExprToString(bit)) "_")

net = dbCreateNet(ccv pinnane)
trm= dbCreateTerm(net pinnane "input")
pin = dbCreatePin(net fig pinnane)

sy s asas s isroute negative read data line
dbCreateRect (ccv "metal 1" |ist(endx-1.5: endy-deltay*bit endx-1.55-deltax*bit:endy+0. 6-
del tay*bit))
dbCr eat eRect (ccv "metal 1" list(endx-1.55-deltax*bit:endy-deltay*hit endx- 2. 15-

del tax*bit: endy-del tay*bit+1. 35*bi t +7. 55+4. 8*bi t))

;place a via anp for each bit

viapt = endx- 1. 85-del tax*bit:endy-del tay*bit+1. 35*bi t +7. 95+4. 8*bi t
via = dbCreatelnst(ccv viacv "via" viapt "R0O")

dbFl attenlnst(via 1 t)

;connect to senseanp
dbCr eat eRect (ccv "metal 2" l'ist(endx-2.25-del tax*bit:endy-

del tay*bi t +8. 35+1. 35*bi t +4. 8*bit endx- 2. 5*w 2. 75: endy- del t ay*bi t +1. 35*bi t +7. 55+4. 8*bi t))

dbCr eat eRect (ccv "metal 1" l'ist(endx-1.5: endy-1. 35*wdel tay*bit endx- 1. 25*w 1. 55-
del tax*bit: endy- 1. 35*w+0. 6-del tay*hit))
dbCr eat eRect (ccv "metal 1" list(endx-1.25*w 1. 55-del tax*bit:endy-1. 35*wdel tay*bit

endx- 1. 25*w 2. 15-del t ax*bi t: endy- del t ay*bi t +1. 35*bi t +10. 45+4. 8*hi t))

;place a via anp for each bit

viapt = endx-1.25*w 1. 85-del tax*bi t: endy-del tay*bit+1. 35*bit+7. 95+2. 9+4. 8*bi t
via = dbCreatelnst(ccv viacv "via" viapt "R0O")

dbFl attenlnst(via 1 t)

;connect to senseanp

dbCr eat eRect (ccv "nmetal 2" list(endx-1.25*w 2. 25-del tax*bit: endy-
del tay*bit+1. 35*bi t +8. 35+2. 9+4. 8*hi t endx- 2. 5*w 2. 75: endy-
del tay*bit+1. 35*bi t +7. 55+2. 9+4. 8*hi t))

dbCr eat eRect (ccv "metal 1" i st(endx-1.5: Changey- (endy-del tay*bit) endx- 1. 55-
del t ax*bi t : Changey- (endy+0. 6-del tay*bit)))
dbCreateRect (ccv "netal 1" |ist(endx-1.55-del tax*bit: Changey- (endy-deltay*bit) endx-

2.15-del t ax*bi t: Changey- (endy+7. 55+(4. 15-del tay) *bhit)))

;place a via anp for each bit

vi apt = endx-1.85-del tax*bit: Changey- (endy+(4. 15-del tay)*bit+7.95)
via = dbCreatelnst(ccv viacv "via" viapt "R0O")

dbFlattenlnst(via 1 t)

;connect to senseanp
dbCr eat eRect (ccv "metal 2" i st(endx-2.25-del tax*bit: Changey- (endy+(4. 15-
del tay) *bi t +8. 35) endx-2. 5*w 2. 75: Changey- (endy+( 4. 15-del tay) *bi t +7. 55)))

dbCreateRect (ccv "netal 1" 1ist(endx-1.5: Changey-(endy-1.35*wdel tay*bit) endx-1.25*w
1. 55-del t ax*bi t: Changey- (endy- 1. 35*w+0. 6-del tay*bit)))
dbCr eat eRect (ccv "metal 1" list(endx-1.25*w 1. 55-del tax*bit: Changey- (endy- 1. 35*w

del tay*bit) endx-1.25*w 2. 15-del t ax*bi t: Changey+1. 5- (endy+(4. 15-del tay) *bi t +10. 45)))
;place a via anp for each bit
viapt = endx-1.25*w 1. 85-del t ax*bi t: Changey+1. 5- (endy+( 4. 15-del tay) *bi t +10. 85)
via = dbCreatelnst(ccv viacv "via" viapt "R0")
dbFlattenlnst(via 1 t)
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;connect to senseanp
dbCr eat eRect (ccv "met al 2" l'ist(endx-1.25*w 2. 25-del t ax*bi t: Changey+1. 5- (endy+(4. 15-
del tay) *bi t +11. 25) endx- 2. 5*w 2. 75: Changey+1. 5- (endy+( 4. 15- del t ay) *bi t +10. 45)))

;invert wite-data input to provide both positive and negative data |ines
;place inverter for each bit

invpt = endx-2.5*w 2. 75+5. 8: Changey+1. 5+5. 25- (endy+( 4. 15-del t ay) *bi t +10. 45)
inv = dbCreatelnst(ccv invev "inv' invpt "MYRI0")

dbFlattenlnst(inv 1 t)

;place pin for wite-data

fig = dbCr eat eRect (ccv "metal 2" list(endx-2.5*w 11. 05: Changey- (endy+( 4. 15-
del tay) *bi t +8. 25) endx- 2. 5*w 10. 45: Changey- (endy+( 4. 15-del tay) *bi t +7. 65)))

pinname = buildString(list("D " pcExprToString(bit)) "_")

net = dbCreateNet(ccv pinnane)

trm = dbCreateTernm(net pinnanme "input")

pin dbCreatePin(net fig pinnane)

ciaaas oy, connect TG of Read-buffers to OCEN & CEN-neg

oeni nvpt = endx-2.5*w 13. 7: endy+5. 95

oeninv = dbCreatelnst(ccv oeninvcv "oeninv' oeninvpt "MXRI0")
dbFl attenlnst(oeninv 1 t)

; make power and ground connections for senseanp
; VSS connecti on:

;place a via anp for each bit

viapt = endx-2.5*w 1. 85: endy+4. 8*w+7. 5

via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFlattenlnst(via 1 t)

dbCreateRect (ccv "netal 2" 1ist(endx-2.5*w 1. 45: endy+4. 8*w+7. 2 endx- 0. 9: endy+4. 8*w+7. 8))

;vss connection for senseanp inverter:
dbCr eat eRect (ccv "metal 1" list( endx- 2. 5*w- 1. 45: endy+4. 8*w+7. 2 endx- 2. 5*w
17. 05: endy+4. 8*w+7. 8))

;vss connection for witedata inverter

viapt = endx-2.5*w 3. 4: Changey- endy- 4. 35

via = dbCreatelnst(ccv viacv "via" viapt "R0")

dbFlattenlnst(via 1 t)

dbCreat eRect (ccv  "netal 2" |'i st (endx-2.5*w 3: Changey- endy-3. 95 endx-0. 9: Changey- endy-
4.75))

;vdd connection

; for gate:

pol yxpt = endx-2.5*w 3. 85: endy+6. 65

pol yx = dbCreatelnst(ccv pol yxcv "pol yx" pol yxpt "R0")

dbFl attenlnst(polyx 1 t)

;connect gate and subx together

dbCreat eRect (ccv "netal 1" |ist(endx-2.5*w 10. 95: endy+6. 35 endx- 2. 5*w 3. 5: endy+6. 95) )
;route to vdd line

dbCreateRect (ccv  "netal 1" |ist(endx-2.5*w 4. 1: endy+6. 35 endx- 2. 5*w 3. 5: endy- 2. 7*w
6.95))

dbCr eat eRect (ccv "metal 1" l'ist(endx-2.5*w 3.5: endy-2. 7*w 6. 95 endx+0. 35: endy- 2. 7*w
6.35))

;for substrate contact

vi apt = endx+0. 65: endy-2. 7*w- 6. 65

via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFlattenlnst(via 1 t)

;vdd connection for witedata inverter

dbCreateRect (ccv "netal 1" 1ist(endx-2.5*w 9. 15: Changey- 3. 9-endy endx-2. 5*w 9. 85: Changey-
4.15-(endy-3.3-1.35*2*w 7)))

dbCr eat eRect (ccv "metal 1" i st(endx-2.5*w 9. 85: Changey- 4. 15- (endy- 3. 3- 1. 35*2*w 7)
endx+1: Changey- 4. 15+0. 8- (endy- 3. 3-1. 35*2*w 7)) )

vi apt = endx+1: Changey- 3. 75- (endy- 3. 3- 1. 35*2*w- 7)
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via = dbCreatelnst(ccv viacv "via" viapt "R0")
dbFlattenlnst(via 1 t)
v aaaasaaasaasssss  Address Routing T
addresshits = x+y
for(addrline O addresshits-1
if(addrline <y then
;add address pins to row (fromword) address |ines
fig = dbCr eat eRect (ccv "metal 1" list(14.05+(2.9*x)+1.4*(y-1):endy-9.8-(2.7*w) -
(1.4*addrline) 14.55+(2.9*x)+1.4*(y-1):endy-9.3-(2.7*w)-(1.4*addrline)))
pi nname = buildString(list("A" pcExprToString(addrline)) "_")

net = dbCreateNet(ccv pinnane)
trm = dbCreateTernm(net pinnanme "input")
pin = dbCreatePin(net fig pinnane)
el se
;add address pins to colum (fromread) address |lines
fig = dbCr eat eRect (ccv "metal 1" list(14.05+(2.9*x)+1.4*(y-1): endy-9. 8-
(2. 7*w) +(1. 4*(addrline-y+1)) 14.55+(2.9*x) +1. 4*(y- 1) : endy-9. 3- (2. 7*w) +( 1. 4*(addr | i ne-
y+1))))

pi nname = buildString(list("A" pcExprToString(addrline)) "_")
net = dbCreateNet(ccv pinnane)

trm = dbCreateTern(net pinnanme "input")

pin = dbCreatePin(net fig pinnane)

R R R I R R R R I R R R R R R N N R N R N R N R N AN BN RN NS B NN

Route Control Signals ;;;

;place via at the end of cen

viapt = 14.15+(2. 9*x) +1. 4*(y- 1) : Changey+9. 25- (endy- 2. 2- (2. 7*w) - (2. 9*y))
via = dbCreatelnst(ccv viacv "via" viapt "R0O")

dbFl attenlnst(via 1 t)

viiaaaaaaass, route wen signa
dbCreateRect (ccv  "metal 1" |ist(endx+4.8*(n/2): Changey+8. 25- (endy- 1. 4- (2. 7*w) - (2. 9*y))
14.55+(2. 9*x) +1. 4*(y- 1) : Changey+8. 25- (endy- 2. 2- (2. 7*wW) - (2. 9*y))))

siiiiiaaissss route oen signa

dbCr eat eRect (ccv "metal 2" list(endx-2.5%w 13. 15: endy- 8. 25-1. 4- (2. 7*w) - (2. 9*y)
8. 65+(2. 9*x) +1. 4*y: endy- 8. 25-2. 2- (2. 7*w) - (2. 9*y)))

dbCr eat eRect (ccv "metal 2" list(8.65+(2.9*x)+1.4*y: endy-8.25-2.2-(2.7*w)-(2.9*y)
7.85+(2.9*x) +1. 4*y: Changey+6. 85- (endy-2. 2- (2. 7*w) - (2. 9*y))))

dbCr eat eRect (ccv "metal 2" list(7.85+(2.9*x)+1. 4*y: Changey+6. 85- (endy-2. 2- (2. 7*w) -
(2.9*y)) 14.55+(2.9*x)+1.4*(y-1): Changey+6. 05- (endy-2.2- (2. 7*wW) - (2. 9*y))))

;connect oen to TG
dbCreat eRect (ccv  "netal 2" i st(endx-2.5*w 13. 15: endy- 8. 25-2. 2- (2. 7*w) - (2. 9*y) endx-
2.5*w 13. 95: endy+2. 85) )

;place via at the end of oen

viapt = 14.15+(2. 9*x) +1. 4*(y- 1) : Changey+6. 45- (endy- 2. 2- (2. 7*w) - (2. 9*y))
via = dbCreatelnst(ccv viacv "via" viapt "R0O")

dbFl attenlnst(via 1 t)
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B.4 read_decoder.il

_rows

nunber

_of _cols

;; FileNanme: read_decoder.il

;5 Author: Meenatchi Jagasivamani, April 2000

;; procedure read_decoder will |ayout the colum decoder for sense output

;, Usage In W

;; read_decoder(library cellview row address col_address nunber_of

wor dsi ze)

vy Bxe read_decoder ("srani’ "sram32_4" 5 3 32 64 8)

;7 -->to create decoder for sramcells with 32 rows and 64 colums & wordsize of 8
;7 --> Layout will stored in cellview "sram32_4" under library "srant

procedure(read_decoder(clib cname x y mn w)

;Leaf-Cel |l library
ibrary = "sranl eaf"

E R R R R R R B R R R R N R A R B R N R AR B R R A R AR B R R R AR SR SR BN

E R R R R R B R R R B N R A R B R R R AR B R N R AR B R RN AR SRR SR SR

P I

ccv = dbOpenCel | Vi ewByType(clib cnane "I ayout " maskLayout "rat)
nfetcv = dbOpenCel | Vi ewByType(library "nfet" "layout" "" "r")

subcv = dbOpenCel | Vi ewByType(library "substrate_contact" "l ayout"
viacv = dbQpenCel | Vi ewByType(library "ML_M2" "layout"™ "" "r")
pol yxcv = dbOpenCel | Vi ewByType(library "poly_M" "layout" "" "r")

buf fcv = dbOpenCel | Vi ewByType(library "buffer" "I ayout™ "" "r")
invev = dbOpenCel | Vi ewByType(library "Col Adr_i nverter" "layout" "" "r")

P I R R R R R R BN R R R A R SR R R R AR SR B R AR BN B R AR SR BN R AR SR BRI

startx = -6.25 ;right side

endx = (-4.8*n)-8.1

starty = 12.15 ;top

endy = (-((m2)-1)*16.7)-22-((2-(m2))*1.9)

I R R B B A B R AR R AR ]

read operations) ;;

R R R T R I T R R R R R R N R R R N R N N N RN R R RN RN RN I

initialize colum variabl es
2**y = # of blocks -> y=#of address lines ->

IR R R A R A R N N RN AR N I

# of colums = n = 2**total

deltay = 1.35*w ; to adjust for sense data line routing

ciaaaaa ey, Connect wordsize bl ocks together ;;

for(col 0 n-1

;place a ML_M2 via at every sense_neg port
viapt = endx+2.35+(4.8*col):endy+1. 35+13. 35
via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFlattenlnst(via 1 t)

;place a ML_M2 via at output of sense_neg switch
viapt = endx+2.35+(4.8*col):endy-1. 7+13. 35

via = dbCreatelnst(ccv viacv "via" viapt "R0")
dbFlattenlnst(via 1 t)

;place a ML_M2 via at every wite_neg port
viapt = endx+3.8+(4.8*col): endy+1. 35+13. 35

[ R R A B R RN RN A

ey

_cols
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via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFlattenlnst(via 1 t)

;place a ML_M2 via at every sense port

viapt = endx+5. 25+(4. 8*col ): endy+1. 35+13. 35
via = dbCreatelnst(ccv viacv "via" viapt "R0")
dbFlattenlnst(via 1 t)

;place a ML_M2 via at output of sense switch
viapt = endx+5. 25+(4. 8*col ): endy-1. 7+13. 35

via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFl attenlnst(via 1 t)

;connect sense_neg vias together
dbCr eat eRect (ccv "metal 1" i st(endx+2+4. 8*col : endy+13. 35-0. 05
endx+2. 7+4. 8*col : 13. 35+endy+0. 9))

;connect wite_neg vias together
dbCr eat eRect (ccv "metal 1" i st(endx+3. 45+4. 8*col : 13. 35+endy- 0. 05
endx+4. 15+4. 8*col : 13. 35+endy+0. 9))

;connect sense vias together
dbCr eat eRect (ccv "metal 1" i st(endx+5. 6+4. 8*col : 13. 35+endy- 0. 05
endx+4. 9+4. 8*col : 13. 35+endy+0. 9))

;place a poly contact to connect to switches

pol yxpt = endx+3. 8+(4. 8*col ): 13. 35+endy- 0. 4

pol yx = dbCreatelnst(ccv pol yxcv "pol yx" pol yxpt "R0")
dbFl attenlnst (polyx 1 t)

;;; add switches for sense outputs

;place a switch at every sense+ port

nfetlnst = endx+2. 4+4. 8*col : 13. 35+endy-1. 7

nflnst = dbCreatelnst(ccv nfetcv "nfetlnst” nfetlnst "RO0")
dbFl attenlnst(nflnst 1 t)

;place a switch at every sense+ port

nfetlnst = endx+5. 3+4. 8*col : 13. 35+endy-1. 7

nflnst = dbCreatelnst(ccv nfetcv "nfetlnst” nfetlnst "RO0")
dbFl attenlnst(nflnst 1 t)

;;; layout access grid for sense data lines
;;;define sense grid variabl es

pl acex endx+2. 35+col *4. 8

pl acey endy- 1. 35- 3. 05- 1. 35*nodul o(col w) +13. 35

;;; layout connections for sense- nodes
;connect current sense- to appropriate address |ine
dbCreat eRect (ccv "netal 2" |ist(placex-0. 4: 13. 35+endy-2. 1 pl acex+0. 4: pl acey+0. 4))

;place a ML_M2 via at intersection

vi apt = pl acex: pl acey

via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFl attenlnst(via 1 t)

;;; layout connections for sense- nodes

;redefine grid variables for sense-

pl acex = endx+5. 25+col *4. 8

pl acey endy- 3. 05- 1. 35*nodul o(col w)-deltay-1.35+13. 35

;connect current sense+ to appropriate address |ine
dbCreat eRect (ccv "netal 2" |ist(placex-0. 4: 13. 35+endy-2. 1 pl acex+0. 4: pl acey+0. 4))

;place a ML_M2 via at intersection

vi apt = pl acex: pl acey

via = dbCreatelnst(ccv viacv "via" viapt "R0")
dbFlattenlnst(via 1 t)

;instantiate a sub contact bel ow sense output swtches

subl nst = endx+3. 9+(4. 8*col ): 13. 35+endy- 2. 15
sclnst = dbCreatel nst(ccv subcv "sublnst" sublnst "R0O")
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dbFl attenlnst(sclnst 1 t)

connect sub contact to VSS |line
dbCr eat eRect (ccv "metal 1" i st(endx+3.9-0.45+(4.8*col ): 13. 35+endy- 2. 3 endx+3. 9-
0. 45+0. 7+(4. 8*col ) : 13. 35+endy- 0. 45-2. 3))
)

for(databit 0 w1
caddr _st art x=endx+4. 2+( dat abi t *4. 8*w)

;; layout the horizontal line for the current sense- bit lines

dbCr eat eRect (ccv "metal 1" l'ist(endx+2. 8-4.35:13. 35+endy- 3. 35- 1. 35-databi t*1. 35
endx+4. 9+4. 8*(n-1):13. 35+endy- 1. 35-dat abi t*1. 35-2. 75))

;Place a pin for sense- signals

fig = dbCr eat eRect (ccv "metal 1" i st(endx+2.8:13. 35+endy- 1. 35- 3. 35-dat abit*1. 35
endx+3. 4: 13. 35+endy- 2. 75- 1. 35-dat abi t *1. 35))

pi nname = buildString(list("BlkSnse" pcExprToString(databit)) "_")

net = dbCreateNet(ccv pinnane)

trm = dbCreateTerm(net pinnane "output")

pin = dbCreatePin(net fig pinnane)

;; layout the horizontal line for the current sense+ bit |ines

dbCreateRect (ccv "metal 1" |ist(endx+2. 8-4. 35:13. 35+endy- 1. 35- 3. 35-del tay-databit*1. 35

endx+4. 9+4. 8*(n-1): 13. 35+endy- 1. 35-del t ay-dat abi t *1. 35- 2. 75))
;Place a pin for sense+ signals
fig = dbCreateRect(ccv "netal 1" |ist(endx+2.8:13. 35+endy- 1. 35- 3. 35-del tay-databit*1. 35
endx+3. 4: 13. 35+endy- 1. 35-del t ay- 2. 75-dat abi t *1. 35))
pi nname = buil dString(list ("Bl kSnseNeg" pcExprToString(databit)) "_")
net = dbCreateNet(ccv pinnane)
trm = dbCreat eTerm(net pinnane "output")
pin dbCreat ePi n(net fig pinnane)
)

for(block 0 (2**y)-1
caddr _st art x=endx+4. 2+( bl ock*4. 8*w)
;join word-size bl ocks together for wite_neg signal
dbCr eat eRect (ccv "pol y1" |ist(caddr_startx-1.15:13. 35+endy-1. 15 caddr _start x-
1.15+1. 5+4. 8*(w 1) : 13. 35+endy- 0. 8) )

;route wite_neg signal out of read-data access |lines

pl acex = endx+3. 8+bl ock*w*4. 8

pl acey = 13. 35+endy- 3. 3-1. 35-1. 35*2*w

dbCreateRect (ccv "netal 2" 1ist(placex-0. 4: 13. 35+endy+0. 95 pl acex+0. 4: pl acey))

;Place a pin for wite_neg signals
fig = dbCreateRect(ccv "netal 2" 1ist(placex-0.3: placey+0.7 pl acex+0. 3: pl acey+0. 1))
pi nnanme = buildString(list("Bl kRead" pcExprToString((2**y)-1-block)) "_")

net = dbCreateNet(ccv pinnane)
trm = dbCreateTerm(net pinnane "input")
pin = dbCreatePin(net fig pinnane)

;place a ML_M2 via at the end

viapt = placex: pl acey+0. 4

via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFlattenlnst(via 1 t)

;add buffer at end

buf f pt = pl acex+1. 35: pl acey- 5. 25

buff = dbCreatelnst(ccv buffcv "buff" buffpt "M™)
dbFl attenlnst (buff 1 t)

;connect n2 to buffer
dbCreateRect (ccv "netal 1" 1ist(placex-0.35: pl acey pl acex+0. 35: pl acey-0. 6))

;connect buffer to decoder
i f(nodul o(block 2) == 1
t hen

dbCreateRect (ccv "netal 1" 1ist(placex-0. 35: pl acey-6.8 pl acex+0. 35: pl acey-9. 25))
el se

dbCreat eRect (ccv "netal 1" |ist(placex-0.35: pl acey-6.8 pl acex+0. 35: pl acey- 8. 45))
)
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Connect buffer to VDD & VSS
; connect vdd to vdd bus
dbCreat eRect (ccv "netal 2" |ist(endx+0. 95: pl acey- 6. 3 pl acex+2. 35: pl acey-7))

;connect vss together
dbCreat eRect (ccv "netal 2" 1ist(endx+2.95: pl acey-0. 55 pl acex+2. 35: pl acey- 1. 25))

; add via

vi apt = endx+2.55: pl acey-0.9

via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFl attenlnst(via 1 t)

; connect vss to vss bus
dbCreat eRect (ccv "netal 1" |ist(endx+2. 1: pl acey- 0. 55 endx-0. 15: pl acey- 1. 25))

; add via

viapt = endx-0.6: placey-0.9

via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFlattenlnst(via 1 t)

visaasaaasasss, Layout columm decoder for read signal ;i i i
for(addrline 0 y-1

pl acex = endx+3. 85

pl acey = endy-1.35-4.35-(2.7*w)-(2.9%addrline)-9.2+13. 35

for(col 0 (2**y)-1

iiiiisi,check if a nfet should be place at this col
i f(nodul o((col-(2**addrline)) (2**(addrline+l))) ==
t hen ;;  layout negative address |ines
; Pl ace nfet decoders for this col
nfetlnst = placex+(4.8*w)*col : pl acey-1. 45
nflnst = dbCreatelnst(ccv nfetcv "nfetlnst" nfetlnst "RO0")
dbFl attenlnst(nflnst 1 t)
if(addrline == 0

t hen
dbCr eat eRect (ccv "metal 1" list(placex-0.4+(4.8*w) *col : pl acey+0. 35
pl acex+0. 3+( 4. 8*w) *col : pl acey+0. 35+0. 65))
el se
dbCr eat eRect (ccv "metal 1" I'ist(placex-0.4+(4.8*w) *col : pl acey+0. 35

pl acex+0. 3+(4. 8*w) *col : pl acey+0. 35+2. 2))

vy s s sy, put substrate contact at every other address |ines

;instantiate a sub contact next to nfet

subl nst = pl acex+(4.8*w)*col +1. 5: pl acey- 1. 45-0. 2

sclnst = dbCreatel nst(ccv subcv "sublnst" sublnst "R0O")

dbFl attenlnst(sclnst 1 t)

draw nl to connect to next ** address line **

dbCr eat eRect (ccv "metal 1" Iist(placex-0.4+(4.8*w) *col:placey-1.8 pl acex-

0. 4+(4.8*w) *col - (4. 8*w(2**addrline)): placey-1.2))

;;;connect decoder's sub contact to VSS |ine

;connect to M2

viapt = placex+(4.8*w)*col +1.5-0. 1: pl acey-1. 45

via = dbCreatelnst(ccv viacv "via" viapt "R0O")

dbFl attenlnst(via 1 t)

dbCreat eRect (ccv "nmetal 2" 1ist(placex+(4.8*w)*col +1: pl acey- 1. 45-0. 3 endx+3. 9-0. 45-
0. 65- 3. 1: pl acey- 1. 45-0. 2+0. 5))

el se if(modul o(col (2**(addrline+l))) == 0
t hen ;; layout positive address |ines
; place instance
nfetlnst = placex+(4.8*w) *col : pl acey
nflnst = dbCreatelnst(ccv nfetcv "nfetlnst” nfetlnst "R90")
dbFl attenlnst(nflnst 1 t)
;connect to next nfet for this col
dbCr eat eRect (ccv "metal 1" list(placex-0.4+(4.8*w) *col : placey+1.7-2.9
pl acex+0. 3+( 4. 8*w) *col : pl acey+1. 8+0. 75- 2. 9))
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;instantiate a sub contact next to nfet

subl nst = pl acex+(4.8*w) *col +1. 5: pl acey-0. 2

sclnst = dbCreatel nst(ccv subcv "sublnst" sublnst "RO")

dbFl attenlnst(sclnst 1 t)

;;;connect decoder's substrate contact to VSS |ine

;let sub contact connect to M

viapt = placex+(4.8*w)*col +1. 4: pl acey

via = dbCreatelnst(ccv viacv "via" viapt "R0O")

dbFlattenlnst(via 1 t)

dbCreateRect (ccv "metal 2" 1ist(placex+(4.8*w)*col +1: pl acey-0.3 endx+3. 9-0. 45- 0. 65-
3. 1: pl acey-0.2+0.5))

);; if positive address line
);end for col

;route poly for positive and negative address |ines

dbCr eat eRect (ccv "pol y1" list(startx-0.95:placey+0.9 endx+2. 8: pl acey+0. 55))
;positive

dbCreateRect (ccv "pol y1" 1ist(startx-0.95:placey-1.45+0.9 endx+2.8:pl acey- 1. 45+0. 55))
;negative

;place inverters to get both negative and positive address

invpt = startx-7.85:placey+4. 95

inv = dbCreatelnst(ccv invecv "inv' invpt "R270") ; connect vdd
dbFlattenlnst(inv 1 t)

;connect sub contact to ground

dbCreat eRect (ccv "netal 2" |ist(startx-1.8: placey-0.35 endx-0. 3: pl acey+0. 35))

;route wite-address lines to read-address |ines

dbCr eat eRect (ccv "metal 1" list(startx+5.65:placey+1. 05
7.85+(2.9*x) +1. 4*addr | i ne: 0. 35+pl acey))

;place via

viapt = 8.25+(2.9*x)+1.4*addr!li ne: 0. 7+pl acey

via = dbCreatelnst(ccv viacv "via" viapt "R270") ; connect vdd

dbFlattenlnst(via 1 t)

dbCr eat eRect (ccv "metal 2" list(7.85+(2.9*x)+1.4*addrline: pl acey+0. 35
8. 65+(2.9*x) +1. 4*addrline:-7.4*m)

dbCr eat eRect (ccv "metal 1" list(7.85+(2.9*x)+1.4*addrline: pl acey+1. 05
8. 65+( 2. 9*x) +1. 4*addr | i ne: endy-0. 45- (2. 7*w) - (1. 4*addrline)))

dbCr eat eRect (ccv "metal 1" list(8.65+(2.9*x)+1.4*addrline: endy-0.45-(2.7*w) -

(1.4%addrline) 14.65+1. 4*(x+y)+(2. 9*x)+1. 4*(y-1): endy- 1. 25- (2. 7*w) - (1. 4*addr | i ne)))

)

;extend VSS route

dbCr eat eRect (ccv "met al 2" i st(endx-0.9:13. 35+endy+1. 3 endx- 0. 3: 13. 35+endy- 13. 75-
(2.7*wW-(2.9%y)))

;extend VDD route

dbCr eat eRect (ccv "metal 2" l'i st(endx+0. 35: 13. 35+endy+1. 3 endx+0. 95: 13. 35+endy- 11. 65-
(2.7*w)))

;connect VSS to first line (connected to subx)

dbCreateRect (ccv "netal 1" |ist(endx+0. 6-0.45-0. 65: 13. 35+endy-0. 45-2.3 endx+4. 9+4. 8*(n-

1) : 13. 35+endy- 0. 45- 2. 3-0. 6))

;place a ML_M2 via at VSS |ine

viapt = endx+3.9-0.45-0.65-3.1-0.3:13. 35+endy- 0. 45- 2. 3-0. 6+0. 3
via = dbCreatelnst(ccv viacv "via" viapt "R0")

dbFl attenlnst(via 1 t)

;connect well contact of inverter to vdd
dbCr eat eRect (ccv "metal 1" list(startx+5.05: endy+2. 45- (2. 7*w) startx+0. 05- 4. 8* (w
1):endy+1. 7- (2. 7*w)))

;place pin for CEN (read enabl e) signal

dbCr eat eRect (ccv "metal 1" list(endx+4.8*(n/2):endy-0.45-(2. 7*w)- (2. 9*%y)
endx+0. 8+4. 8*(n/ 2) : endy-0. 95- (2. 7*wW) - (2. 9*y)))

;place a ML_M2 via at VSS |ine

vi apt = endx+0. 4+4. 8*(n/ 2): 13. 35+endy- 14. 75- (2. 7*w) - (2. 9*y)
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via = dbCreatelnst(ccv viacv "via" viapt "R0")
dbFlattenlnst(via 1 t)

fig = dbCreateRect(ccv "nmetal 2" i st(endx+0. 15+4. 8*(n/ 2): 13. 35+endy- 14. 75- (2. 7*w) -

(2.9*y) endx+0. 65+4. 8*(n/2):13. 35+endy- 14. 35- (2. 7*w) - (2. 9*y)))
pi nname = "CEN'

net = dbCreateNet(ccv pinnane)

trm = dbCreateTerm(net pinnane "input")
pin = dbCreatePin(net fig pinnane)
) ;; end procedure read_decoder.il
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B.5 sram_array.il

;; FileName: sram array.i
;; procedure sramarray will layout an array of sramcells

;v Usage In QW
;; procedure sramarray is the top-level function to | ayout an SRAM circuit

;7 Ex: load("sramarray.il") sramarray("srant "sram32_4" 256 8)
h -->1to0 create array of sramcells with 256 words with a wordsize of 8 bits

LR R R R N R R R A R R N N A R AR N N A R RN N R R A}

;7. Load all other necessary files ;;;;

P R R R R R R R R B R R R R N R AR B R R R SR B R AR S BN R ]

l oad("cell _layout.il")

| oad("word_decoder.il")
| oad("read_decoder.il")
| oad("write_decoder.il")
| oad(" package.il")

visisss procedure sramarray ;i

LR R R N R R R R R R N N A R A R N RN R NN N R R A}

procedure(sramarray(clib cname words wordsi ze)

;approxi mate aspect ratio for 1 bit = 27-2
AR 1bit = 0.65

;7555 Calculate row and col for equal aspect ratio

ar = floor(log(wordsize* AR 1bit)/10g(2)) ;aspect ratio for 1 wordsize bl ock
k = int(log(words)/log(2)) ;nunmber of address |ines

y = floor((k-ar)/2) i X+y = K

X = k-y ;X = ar+y

total _rows
total cols

int(2**x)
(2**y)*wordsi ze

;; layout sramcells
cell _layout(clib cnanme total _rows total _cols)

;7 layout row & columm address decoder

wor d_decoder(clib cname x y total _rows total _cols wordsize)
read_decoder(clib cname x y total _rows total _cols wordsize)
write_decoder(clib cname x y total _rows total _cols wordsize)
package(clib cnane x y total _rows total _cols wordsize)



B.6 sram_compiler.il

;; FileName: sramconpiler.il
;5 Author: Meenatchi Jagasivamani, April 2000

;7 procedure sramconpiler will generate an enbedded SRAM | ayout

;5 Usage In W
- sram conpiler(library cellview Wrds Wrdsi ze Type)

- --> Possi bl e Types:

- Type = 0 -- Sinple SRAM array w thout Array Partitioning

- Type =1 -- Array Partitioned SRAMarray with the Bl ock Sel ect at bottom

7 Ex: sram.conpiler("srant’ "bl ock_1024_8" 256 8 1)

e --> Create a 1024x8 size SRAMthat is partitioned into 4 blocks for |ow power
- --> Layout will be stored in cellview "block_1024_8" under library "sran{

R R I B R R B R B R R A R AR RN R AR B BN R SR B R R SR SR

;... Load all other necessary files ;;;;

load("sramarray.il")
| oad("BS_center.il")
| oad("BS_bottomil™")

R R R R B R B R R R A R B R R R AR B B R R SR B R SR AR

procedure(sram conpiler(clib cname words w type)

if(type == 0 then
viis generate a sinple SRAM array
sramarray(clib cname words w)

el se

;i ... generate circuit for 1 block = words/ 4

; create block in a tenporary cellviewcalled : "tenp_" + cnane
bl ock = int(words/4) ; block size

bl kcvname = buildString(list("tenmp" pcExprToString(cnanme)) "_")
sramarray(clib bl kcvname bl ock w)

;call array-partitioning function
array_partition(clib cname words w)

;del ete tenporary bl ock cellview
ddDel et eCbj (ddGet Ooj (cli b bl kcvnane))

P R R R R R R R B R R R R A R AR B R AR SR B R AR SRR R ]

ccv = dbQOpenCel | Vi ewByType(clib cnane "l ayout" "maskLayout" "a")
dbSave(ccv) ; save cel lview
dbd ose(ccv) ;close cellview
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B.7 word_decoder.il

I I BRI

;; FileNanme: word_decoder.il
;5 Author: Meenatchi Jagasivamani, April 2000

;7 procedure word_decoder will layout the row decoder for word sramcells

; Usage In CIW

7 word_decoder (library cellview row address col_address nunber_of _rows nunber_of _cols
wor dsi ze)

i Bx: wor d_decoder ("sram' "sram 32_4" 5 3 32 64 8)
;7 -->1to create decoder for sramcells with 32 rows and 64 colums & wordsize of 8
7, --> Layout will stored in cellview "sram32_4" under library "srant

procedur e(word_decoder(clib cname x y mn w)

;Leaf-Cel |l library
library = "sram eaf"

P I B R R R R R B B R R R R BN B R AR AR R R AR AR B R SR SR B R AR SR BN B SR SR R SR

ccv = dbQOpenCel | Vi ewByType(clib cname "l ayout" "maskLayout" "
nfetcv = dbOpenCel | Vi ewByType(library "nfet" "layout" "" "r")
subcv = dbOpenCel | Vi ewByType(library "substrate_contact"” "layout" "" "r")
viacv = dbQpenCel | Vi ewByType(library "ML_M2" "layout"™ "" "r")

pol yxcv = dbOpenCel | Vi ewByType(library "poly_M" "layout" "" "r")

buffcv = dbOpenCel | Vi ewByType(library "buffer” "layout" "" "r")

invcv = dbOpenCel | Vi ewByType(library "RowAdr i nverter" "layout" "" "r")

a")

startx = -6.25 ;right side

endx = (-4.8*n)-8.1

starty = 12.15 ;top

endy = (-((m2)-1)*16.7)-22-((2-(m2))*1.9)

deltax = 8.85

P I R R R R R R B R R R R R BN R R RN B R R R AR BN R R AR B R B R AR B R B R SR BN R AR SR SR R AR R R

R R R R T I R R T I T R I R R R T R B T I I N T R R R B N I R N R N B R T R N R N I T B B

for(row0 m1l
i f(nodul o(row 2) ==
then ;; odd row nunbers
;instantiate a buff contact bel ow nfet
bufflnst = startx+6:-3.05-7.4*(row 1)
sclnst = dbCreatel nst(ccv buffcv "bufflnst” bufflnst "R90")
dbFl attenlnst(sclnst 1 t)

;connect buffer to decoder output

dbCreateRect (ccv "metal 1" list(startx+6.85:-1.35-7.4*(row 1) startx+10.65:-0.65-
7.4*(row1)))

el se

;instantiate a buf contact bel ow nfet

bufflnst = startx+6:-4.5-7.4*(row 1)

sclnst = dbCreatel nst(ccv buffcv "bufflnst" bufflnst "MYRI0")

dbFl attenlnst(sclnst 1 t)
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;connect buffer to decoder output
dbCreateRect (ccv  "netal 1" list(startx+7.55:-6.35-7.4*(row 1) startx+9. 2: -5. 65-
7.4*(row1)))
)

viasy for VSS

dbCreateRect (ccv "netal 2" list(startx+1.25:starty-0.25 startx+2.05: endy+19. 85))
viapt = startx+1l.65:starty-0.6

via = dbCreatelnst(ccv viacv "via" viapt "R0O") ; connect vdd

dbFl attenlnst(via 1 t)

755y for VDD

dbCreateRect (ccv "metal 2" list(startx+7:starty-4.7 startx+7.8: endy+19. 85))
viapt = startx+7.4:starty-5.05

via = dbCreatelnst(ccv viacv "via" viapt "R0") ; connect vdd
dbFlattenlnst(via 1 t)

L R T T R B T I I I T R R T R B T R I R R R R B I T R N R N B R T B N R N R T B B

;7 Layout decoders for row address decoder (for word signal) ;;;;;;
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for(raddress 0 x-1
;initialize row counters
neg_row = 0
pos_row = 0

for(row0 m1
i f(nodul o(row 2) ==
then ;; odd row nunbers

;determine if a nfet should be placed for the current row

i f(nodul o((row (2**raddress)) (2**(raddress+1))) ==

t hen
;;  layout negative address lines for LSB -- AO_neg only
;7 Place nfet decoders for this row
nfetlnst = -4. 1+deltax:-1.05-7.4*(row 1)
nflnst = dbCreatelnst(ccv nfetcv "nfetlnst” nfetlnst "R0O")
dbFl attenlnst(nflnst 1 t)

; connect to next address line
dbCreateRect (ccv "netal 1" |ist(-3+deltax: 8.45-7.4*row - 2. 3+del tax: 6. 75-7. 4*row) )

viaa ey, connect last address line to VDD for odd rows ;i

if(raddress == x-1 ;; the last address line --> neans raddress = x-1 = 0 & row =
1
t hen
currentx -4.1+(2.9*r addr ess)

currenty = 1.35

; Make connection for VDD -- to power the address decoder

dbCr eat eRect (ccv "metal 1" list(currentx+1. 8+del tax:currenty-0.3 -
3. 75+(2. 9*x) +del t ax: currenty+0. 4))

viapt = 0.45-3. 75+(2. 9*x) +del t ax: current y+0. 05

via = dbCreatelnst(ccv viacv "via" viapt "R0") ; connect vdd

dbFl attenlnst(via 1 t)

viisasss Substrate Contacts ;i i 5 i s

;put substrate contact every other row and at every other address |ines
;instantiate a sub contact bel ow nf et

sublnst = -1.1+(5.8*fl oor(raddress/2))+del tax:-2.65-7.4*(row 1)

sclnst = dbCreatel nst(ccv subcv "sublnst" sublnst "R0O")

dbFl attenlnst(sclnst 1 t)

;instantiate a sub contact above nfet

sublnst = -1.1+(5.8*fl oor (raddress/2))+del tax: 2. 65-7. 4*(row 1)
sclnst = dbCreatel nst(ccv subcv "sublnst" sublnst "R0O")

dbFl attenlnst(sclnst 1 t)
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;instantiate a via contact bel ow nfet

viapoint = -1.2+(5.8*fl oor(raddress/?2))+deltax:-3.15+0.7-7.4*(row 1)
vialnst = dbCreatelnst(ccv viacv "vialnst" viapoint "R0")

dbFl attenlnst(vialnst 1 t)

;instantiate a via contact above nfet

viapoint = -1.2+(5.8*fl oor(raddress/2))+deltax:2.85-7.4*(row 1)
vialnst = dbCreatel nst(ccv viacv "vialnst" viapoint "R0O")

dbFl attenlnst(vialnst 1 t)

connect substrates to VSS line

dbCreateRect (ccv "netal 2" |ist(-1.05+0.25+(5.8*fl oor(raddress/2))+del tax: 2. 65+0. 55-
7.4*(row 1) -3.65+(2.9*x)+del tax:1.95+0.55-7.4*(row1)))
dbCreateRect (ccv "metal 2" 1ist(-1.05+0.25+(5. 8*fl oor (raddress/ 2)) +del t ax: - 2. 65+0. 55-
7.4*(row 1) -3.65+(2.9*x)+del tax: -3.35+0.55-7.4*(row1)))
else ;; even row nunbers (first one)
;determine if a nfet should be placed for the current row
i f (nodul o(row (2**(raddress+1))) == 0 | (rmodul o( (row (2**r addr ess))
(2**(raddress+1))) == 0)
t hen
| ayout even rows -- both pos & neg address lines
if(raddress ==
t hen

;5 Place nfet decoders for this row

nfetlnst = -5 55+del tax: 1. 35-7. 4*row

nflnst = dbCreatelnst(ccv nfetcv "nfetlnst” nfetlnst "RO")
dbFl attenlnst(nflnst 1 t)

; draw ml to connect to next address |ine
dbCr eat eRect (ccv "metal 1" list(-3.75+del tax: 1. 75-7.4*row - 2. 3+del tax: 1. 05-
7.4%row))

else ;; not the first address line
currentx = -5.55+(2. 9*raddr ess)
currenty = 3.85-(7.4*((2*row) +(2**raddress)-1)/2)
if(raddress ==
t hen

currenty = 1.35-7.4*row

)

i f(nodul o( (row (2**raddress)) (2**(raddress+l))) == 0
then ;; for negative addresslines

currentx = -4.1+(2. 9*raddress)

neg_row = neg_rowtl

draw nl to connect to next address line
dbCr eat eRect (ccv "metal 1" list(-
3+(2. 9*raddr ess) +del t ax: current y+0. 4+(14. 8*(2**(raddress-1))) -
2. 3+(2. 9*raddr ess) +del t ax: currenty+0. 4))

negative address lines need to connect to previous line
dbCreateRect (ccv  "netal 1" list(currentx-0.35+del tax: currenty+0.4 currentx-
1. 8+del tax: currenty-0. 3))

if(raddress == x-1
t hen
; Make connection for CEN -- to power the address decoder
dbCr eat eRect (ccv "metal 1" list(currentx+1. 8+del tax:currenty-0.3

current x+3. 3+del t ax+1. 25: current y+0. 4))
vi apt = currentx+5+del t ax: current y+0. 05
via = dbCreatelnst(ccv viacv "via" viapt "R0O") ; connect vdd
dbFl attenlnst(via 1 t)

;place a pin for CEN (chip enable) signal

fig = dbCreateRect(ccv "netal 2" i st(currentx+4. 8+del tax: currenty-0.15
current x+5. 2+del t ax: currenty+0. 25))

pi nname = " CEN'

net = dbCreateNet(ccv pinnane)
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trm = dbCreateTern(net pinnanme "input")

pin = dbCreatePin(net fig pinnane)

;route out CEN

dbCr eat eRect (ccv "metal 2" |l'ist(currentx+4. 6+del t ax: currenty+0. 05
current x+5. 4+del t ax: starty+15. 6+(2. 7*w) +( 2. 9*y)))

dbCr eat eRect (ccv "met al 2"
list(currentx+5. 4+del tax: starty+14. 8+(2. 7*w) +( 2. 9*y) 14.55+( 2. 9*x) +1. 4*(y-

1) starty+15. 6+(2. 7%w) +( 2. 9*y)))
)

el se
posS_row = pos_rowtl
; draw ml to connect to next address |ine
dbCr eat eRect (ccv "metal 1" list(-3.75+(2.9*raddress)+del tax: currenty-0.3 -
3+( 2. 9*raddr ess) +del t ax: currenty+0. 7- 0. 3))
)

pl ace instance
nfetlnst = currentx+del tax: currenty
nflnst = dbCreatelnst(ccv nfetcv "nfetlnst” nfetlnst "R0O")
dbFl attenlnst(nflnst 1 t)
)
)

);end for row

;;,connect nfet together for this address line

;connect negative address |ines together

dbCr eat eRect (ccv "pol y1" list(-5+(2.9*raddress)+deltax: 0.7 -
5. 55+(2. 9*r addr ess) +0. 9+del tax: -7.4*(m 1)))

;connect positive address |ines together

dbCr eat eRect (ccv "pol y1" l'ist(-3.55+(2.9*raddress) +del tax: 0.7 -
4. 1+(2.9*raddress) +0. 9+del tax: -7.4*(m1)))

;place inverters to get both negative and positive address

invpt = -0.05+(2.9*raddress)+0. 9+del tax: 11.4-7.4*(m 1)

inv = dbCreatelnst(ccv invecv "inv' invpt "R180") ; connect vdd
dbFlattenlnst(inv 1 t)

; +.ii.place pin for positive address line -- 0.6x0.6 dx = 1.45

; fig = dbCreateRect(ccv "netall" list(-3.7+(2.9*raddress)+deltax:-0.7+5.5-7.4*m -
3. 1+(2. 9*raddr ess) +del tax: - 0. 1+5.5-7.4*m) )

; pinname = buildString(list("wordAdr" pcExprToString(raddress)) "_")

; net = dbCreateNet(ccv pinnane)
; trm = dbCreateTern(net pinnanme "input")
; pin = dbCreatePin(net fig pinnane)
route word address lines

dbCr eat eRect (ccv "metal 1" list(-3.1+(2.9*raddress)+del tax:5.4-7.4*m -
3. 8+( 2. 9*r addr ess) +del t ax: endy+0. 2+( 1. 4*raddress)- (2. 7*w)))

dbCr eat eRect (ccv "metal 1" list(-3.8+(2.9*raddress) +del t ax: endy+0. 2+( 1. 4*r addr ess) -
(2.7*w) 14.65+(2.9*x) +1. 4*(x+y) +1. 4*(y-1): endy+1+( 1. 4*raddress)- (2. 7*w)))
) siiiiissssssend for raddress

; Make connection for VSS -- for the substrate contacts

dbCreat eRect (ccv "netal 1" list(-6.65:11.2 -3.75+(2.9*x) +del tax: 11.9))

viapt = -3.3+(2.9*x) +del tax: 11. 55

via = dbCreatelnst(ccv viacv "via" viapt "R0O") ; connect vdd

dbFl attenlnst(via 1 t)

dbCreateRect (ccv "netal 2" list(-3.7+(2.9*x)+del tax: 11.2 -2.9+(2. 9*x) +del tax: -7.4*m)

; Make connection for VDD -- to power the row address decoder
dbCreateRect (ccv "netal 1" list(-6.65:6.75 startx+7:7.45))

;connect inverter to VDD
dbCreateRect (ccv  "netal 1" list(startx+7.05:11.4-12.2-7.4*(m1) startx+7.05+0. 7: 15. 7-
12.25-7.4*(m1)))

)
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B.8 write_decoder.il

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111

;; FileName: write_decoder.il
;; procedure wite_decoder will |ayout the colum decoder for wite data
;7 given: nunber of rows, nunber of cols, wordsize

Usage In CW

- write_decoder (row_address col _address nunber_of _rows nunber_of _cols wordsi ze)

vy Bxe write_decoder(5 3 32 64 8)

;; -->1to create decoder for sramcells with 32 rows and 64 colums & wordsize of 8
| oad("write_decoder.il") write_decoder(2 3 4 8 1)

for 32x4: load("wite_decoder.il") wite_decoder("srant "sram32_4" 3 2 8 16 4)

PR R R N R N R N N RN N N R R

;; for 64x8: load("wite_decoder.il") wite_decoder("sran "sram32_4" 4 2 16 32 8)
for 32x8: load("wite_decoder.il") wite_decoder(3 2 8 32 8)

111111111111111

procedure(wite_decoder(clib cname x y mn w)
library = "sram eaf"

;create db variable for conpiler
ccv = dbOpenCel | Vi ewByType(clib cnanme "l ayout" "maskLayout" "a")

nfetcv = dbOpenCel | ViewByType(library "nfet" "layout" "" "r")

subcv = dbOpenCel | Vi ewByType(library "substrate_contact" "layout" "" "r")
viacv = dbQpenCel | Vi ewByType(library "ML_M2" "layout"™ "" "r")

pol yxcv = dbOpenCel | Vi ewByType(library "poly_M" "layout" "" "r")

buffcv = dbOpenCel | Vi ewByType(library "buffer” "layout" "" "r")

invcv = dbOpenCel | Vi ewByType(library "Col Adr _i nverter" "layout" "" "r")

Instpoint = 0:0

; Routing variables

startx = -6.25 ;right side
endx = (-4.8*n)-8.1
starty = 12.15 ;top

endy = (-((m2)-1)*16.7)-22-((2-(m 2))*1.9)

Changey = starty+endy+0. 4

R R R T R R R T R I R R R I R N R R T I R N B R I R A R A N I R R N N N N R A R A R N R NN N R

; Layout col umm decoders (for wite -- during wite operations)

11111111111111111111111111111111111111111111111111111111111111111111

;5 initialize colum variabl es

;; total _cols =y + int(log(w/log(2))

7y 2**y = # of blocks -> y=#of address lines -> # of colums = n = 2**total _cols
deltay = 1.35*w ; to adjust for wite_data data line routing

sy sissiisssss Connect wordsize blocks together 5555055550505,
for(col 0 n-1
| ayout access grid for wite_data data |ines
;;.;define wite_data grid variabl es
pl acex = endx+2. 35+col *4. 8
pl acey endy- 3. 05- 1. 35*modul o(col w)

| ayout connections for wite_data- nodes
;connect current wite_data- to appropriate address |ine
dbCr eat eRect (ccv "metal 2" i st (pl acex-0. 4: Changey- (endy-2. 1) pl acex+0. 4: Changey-
acey+0.4)))

(p
;place a ML_M2 via at intersection
vi apt = pl acex: Changey- pl acey
via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFlattenlnst(via 1 t)

;; layout connections for wite_data- nodes
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;redefine grid variables for wite_data-
pl acex = endx+5. 25+col *4. 8
pl acey = endy- 3. 05-1. 35*npdul o(col w)-deltay

;connect current wite_data+ to appropriate address |ine
dbCr eat eRect (ccv "metal 2" i st (pl acex-0. 4: Changey- (endy- 2. 1) pl acex+0. 4: Changey-
acey+0.4)))

(p

;place a ML_M2 via at intersection
vi apt = pl acex: Changey- pl acey
via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFl attenlnst(via 1 t)
)

for(databit 0 w1
caddr _st art x=endx+4. 2+( dat abi t *4. 8*w)
;; layout the horizontal line for the current wite_data- bit lines
dbCr eat eRect (ccv "metal 1" i st(endx+2. 8- 4. 35: Changey- (endy- 3. 35-dat abi t *1. 35)
endx+4. 9+4. 8*(n- 1) : Changey- (endy-dat abi t *1. 35-2. 75)))
;Place a pin for wite_data- signals
; fig = dbCreateRect(ccv "nmetal 1" 1ist(endx+2.8: Changey- (endy- 3. 35-databit*1. 35)
endx+3. 4: Changey- (endy- 2. 75-databit*1. 35)))
pi nname = buil dString(list ("Bl kWbata" pcExprToString(databit)) "_")

net = dbCreateNet(ccv pinnane)
trm = dbCreateTerm(net pinnane "output")
; pin = dbCreatePin(net fig pinnane)
;; layout the horizontal line for the current wite_data+ bit |ines
dbCreateRect (ccv  "metal 1" |ist(endx+2. 8-4. 35: Changey- (endy- 3. 35-del t ay- dat abi t *1. 35)

endx+4. 9+4. 8*(n- 1) : Changey- (endy- del t ay- dat abi t *1. 35-2. 75)))

;Place a pin for wite_data+ signals

fig = dbCreateRect(ccv "nmetal 1" |ist(endx+2.8: Changey- (endy-3. 35-del tay-databit*1. 35)
endx+3. 4: Changey- (endy- del tay- 2. 75-databit*1. 35)))

pi nnane = buil dString(list ("Bl kWbat aNg" pcExprToString(databit)) "_")

net = dbCreateNet(ccv pinnane)
trm = dbCreateTerm(net pinnane "output")
pin = dbCreatePin(net fig pinnane)

)

for(block 0 (2**y)-1
caddr _st art x=endx+4. 2+( bl ock*4. 8*w)

;join word-size bl ocks together for wite signal
dbCr eat eRect (ccv "pol y1" |ist(caddr_startx-1.15: Changey- (endy- 1. 15) caddr _startx-
1. 15+1. 5+4. 8*(w 1) : Changey- (endy-0.8)))

;route wite signal out of read-data access |ines
pl acex = endx+3. 8+bl ock*w*4. 8
pl acey = endy- 3. 3-1.35*2*w

dbCreat eRect (ccv "netal 2" 1ist(placex-0.4: Changey- (endy+0. 95)+2. 1 pl acex+0. 4: Changey-
pl acey))

;Place a pin for wite signals

fig = dbCr eat eRect (ccv "metal 2" i st(pl acex-0. 3: Changey- (pl acey+0. 7)

pl acex+0. 3: Changey- (pl acey+0. 1)))
pinname = buildString(list("BlkWite" pcExprToString((2**y)-1-block)) "_")

net = dbCreateNet(ccv pinnane)
trm = dbCreateTerm(net pinnane "input")
pin = dbCreatePin(net fig pinnane)

;place a ML_M2 via at start of the wite signal **
vi apt = pl acex: Changey- (pl acey+0.4)-2. 7*(w1)-4. 05
via = dbCreatelnst(ccv viacv "via" viapt "R0")
dbFlattenlnst(via 1 t)

;place a ML_M2 via at the end

vi apt = pl acex: Changey- (pl acey+0. 4)

via = dbCreatelnst(ccv viacv "via" viapt "R0")
dbFl attenlnst(via 1 t)

;add buffer at end
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buf f pt = pl acex+1. 35: Changey- ( pl acey- 5. 25)
buff = dbCreatelnst(ccv buffcv "buff" buffpt "R180")
dbFl attenlnst (buff 1 t)

;connect n2 to buffer
dbCreateRect (ccv "netal 1" 1ist(placex-0.35: Changey- pl acey pl acex+0. 35: Changey- ( pl acey-
0.6)))

;connect buffer to decoder
i f (nodul o(bl ock 2) ==

t hen
dbCreateRect (ccv "netal 1" 1ist(placex-0.35: Changey- (pl acey-6.8) pl acex+0. 35: Changey-
(pl acey-9. 25)))
el se
dbCreateRect (ccv "netal 1" 1ist(placex-0.35: Changey- (pl acey-6.8) pl acex+0. 35: Changey-

(pl acey-8.45)))
)

)
;; Connect buffer to VDD & VSS

; connect vdd to vdd bus

dbCr eat eRect (ccv "metal 2" I'i st (endx+0. 95: Changey- ( pl acey- 6. 3) pl acex+2. 35: Changey-
(placey-7)))

;connect vss together

dbCr eat eRect (ccv "metal 2" i st (endx+2. 95: Changey- ( pl acey-0. 55) pl acex+2. 35: Changey-
(pl acey-1.25)))

; add via

vi apt = endx+2.55: Changey- (pl acey-0. 9)

via = dbCreatelnst(ccv viacv "via" viapt "R0O")

dbFlattenlnst(via 1 t)

; connect vss to vss bus

dbCreat eRect (ccv "netal 1" 1ist(endx+2. 1: Changey- ( pl acey- 0. 55) endx- 0. 15: Changey- ( pl acey-
1.25)))

; add via

vi apt = endx-0. 6: Changey- (pl acey-0. 9)

via = dbCreatelnst(ccv viacv "via" viapt "R0O")

dbFlattenlnst(via 1 t)

; connect vss to vss bus

visisaaassssss  Layout column decoder for read signal ;5555550 000000,
for(addrline 0 y-1
pl acex = endx+3. 85
pl acey = endy-4.35-(2.7*w)-(2.9*addrline)+1.45-9.2
for(col 0 (2**y)-1
;check if a nfet should be place at this co
i f(nodul o((col-(2**addrline)) (2**(addrline+l))) ==
t hen ; layout negative address |ines
Pl ace nfet decoders for this co
nfetlnst = placex+(4.8*w)*col : Changey- (pl acey- 1. 45)
nflnst = dbCreatelnst(ccv nfetcv "nfetlnst" nfetlnst "RO0")
dbFl attenlnst(nflnst 1 t)
connect to next nfet in this colum
if(addrline == 0

t hen
dbCreateRect (ccv "netal 1" |ist(placex-0.4+(4.8*w) *col : Changey- (pl acey+0. 35- 1. 45)
pl acex+0. 3+( 4. 8*w) *col : Changey- ( pl acey+0. 35+0. 65- 1. 45)))
el se
dbCreateRect (ccv "netal 1" |ist(placex-0.4+(4.8*w) *col : Changey- (pl acey+0. 35- 1. 45)

pl acex+0. 3+( 4. 8*w) *col : Changey- (pl acey+0. 35+2. 2- 1. 45)))
)

vy s s sy, put substrate contact at every other address |ines

;instantiate a sub contact next to nfet

subl nst = pl acex+(4.8*w)*col +1. 5: Changey- (pl acey- 1. 45-0. 2) +1. 05

sclnst = dbCreatel nst(ccv subcv "sublnst" sublnst "R0O")

dbFl attenlnst(sclnst 1 t)

; draw nml to connect to next ** address |line **

dbCr eat eRect (ccv "metal 1" i st(placex-0.4+(4.8*w) *col : Changey- (pl acey- 1. 8- 1. 45)
pl acex- 0. 4+(4. 8*w) *col - (4. 8*w(2**addrline)): Changey- (pl acey- 1. 2-1.45)))

;;;connect decoder's sub contact to VSS |ine
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;connect to M2

viapt = placex+(4.8*w)*col +1. 5-0. 1: Changey- (pl acey-0. 1) +2. 8

via = dbCreatelnst(ccv viacv "via" viapt "R0O")

dbFl attenlnst(via 1 t)

dbCr eat eRect (ccv "metal 2" i st(placex+(4.8*w)*col +1: Changey- ( pl acey-0. 4) +2. 8
endx+3. 9- 0. 45- 0. 65- 3. 1: Changey+2. 8- (pl acey-0. 3+0.5)))

el se if(modul o(col (2**(addrline+l))) ==
t hen ; layout positive address |ines
; place instance
nfetlnst = placex+(4.8*w)*col : Changey- pl acey
nflnst = dbCreatelnst(ccv nfetcv "nfetlnst” nfetlnst "RO0")
dbFl attenlnst(nflnst 1 t)
;connect to next nfet for this col
dbCr eat eRect (ccv "metal 1" i st(placex-0.4+(4.8*w) *col : Changey- (pl acey+1. 7- 2. 9-
1. 45) pl acex+0. 3+(4. 8*w) *col : Changey- ( pl acey+1. 8+0. 75- 2. 9- 1. 45)))

;instantiate a sub contact next to nfet
subl nst = pl acex+(4.8*w)*col +1. 5: Changey- ( pl acey-0. 2) +1. 05
sclnst = dbCreatel nst(ccv subcv "sublnst" sublnst "R0")
dbFl attenlnst(sclnst 1 t)
;;connect decoder's substrate contact to VSS |ine
;let sub contact connect to M2
viapt = placex+(4.8*w)*col +1. 4: Changey- pl acey+1. 45
via = dbCreatelnst(ccv viacv "via" viapt "R0O")
dbFlattenlnst(via 1 t)
dbCr eat eRect (ccv "met al 2" I'ist(placex+(4.8*w)*col +1: Changey- ( pl acey- 1. 45-0. 3)
endx+3. 9- 0. 45- 0. 65- 3. 1: Changey- (pl acey- 1. 45-0. 2+0.5)))
); if positive address |ine

);end for col

; for each address line route poly and place pins
pl acey = pl acey-1.45

;route poly for positive and negative address |ines

dbCr eat eRect (ccv "pol y1l" list(startx-0.95: Changey- (pl acey+0. 9) endx+2. 8: Changey-
(pl acey+0.55))) ;positive
dbCr eat eRect (ccv "pol y1" list(startx-0.95: Changey- (pl acey- 0. 55) endx+2. 8: Changey-

(pl acey-1.45+0.55))) ;negative

;place inverters to get both negative and positive address

invpt = startx-7.85: Changey- (pl acey+4. 95)

inv = dbCreatelnst(ccv invecv "inv' invpt "MXRO0") ; connect vdd

dbFlattenlnst(inv 1 t)

;connect sub contact to ground

dbCr eat eRect (ccv "metal 2" list(startx-1.8: Changey- (pl acey-0. 35) endx- 0. 3: Changey-
(pl acey+0. 35)))

; ;place pin for address signal
fig = dbCr eat eRect (ccv "metal 1" list(startx+5.65: Changey- (pl acey+0. 5)
st art x+6. 05: Changey- (pl acey+0.9)))
; pinname = buildString(list("WiteAdr" pcExprToString(addrline)) "_")
; net

= dbOr eat eNet (ccv pi nnane)

; trm= dbCreateTern(net pinnane "input")
; pin = dbCreatePin(net fig pinnane)

;route wite-address lines to read-address |ines

dbCr eat eRect (ccv "metal 1" list(startx+6.2: Changey- 1. 4- (pl acey- 0. 35)
7.85+(2.9*x) +1. 4*addr| i ne: Changey- 0. 7- (pl acey-0.35)))

; place via

viapt = 8.25+(2.9*x)+1. 4*addr| i ne: Changey- 1. 05- (pl acey- 0. 35)

via = dbCreatelnst(ccv viacv "via" viapt "MXR90") ; connect vdd

dbFlattenlnst(via 1 t)

dbCr eat eRect (ccv "metal 2" list(7.85+(2.9*x)+1. 4*addrline: Changey-0. 7- (pl acey-0. 35)

8. 65+(2. 9*x) +1. 4*addr| i ne: - 7. 4*m))

viaa s Route VSS line for wite decoder Sub x
;extend VSS route
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dbCreateRect (ccv "netal 2" list(endx-0.9:starty endx-0.3: Changey+9. 2-(endy-3.2-(2.7*w) -
(2.9%y))))

;extend VDD route

dbCr eat eRect (ccv "met al 2" i st (endx+0. 35: Changey- (endy+1. 3) endx+0. 95: Changey- 1. 35-
(endy-11.65-(2.7*w))))

;connect well contact of inverter to vdd
dbCreateRect (ccv "nmetal 1" |ist(startx+5.05: Changey+12- (endy+2. 45- (2. 7*w)) startx+0. 05-
4, 8*(w 1) : Changey+12- (endy+1. 7- (2. 7*w))))

;place pin for VEN (read enabl e) signal

dbCr eat eRect (ccv "metal 1" i st(endx+4.8*(n/2): Changey+12- (endy-0. 45- (2. 7*w) - (2. 9*y))
endx+0. 8+4. 8*(n/ 2) : Changey+12- (endy- 1- (2. 7*wW) - (2. 9*y))))

;place a ML_M2 via at VSS |ine

vi apt = endx+0. 4+4. 8*(n/ 2): Changey+12- (13. 35+endy- 14. 75- (2. 7*w) - (2. 9*y))

via = dbCreatelnst(ccv viacv "via" viapt "R0O")

dbFlattenlnst(via 1 t)

fig = dbCreateRect(ccv "netal 1" |Iist(endx+0.15+4.8*(n/2): Changey+12-(13. 35+endy- 14. 75-
(2.7*wW) - (2.9*y)) endx+0. 65+4. 8*(n/ 2): Changey+12- (13. 35+endy- 14. 35- (2. 7*w) - (2. 9*y))))

pi nname = "WEN'

net = dbCreateNet(ccv pinnane)

trm = dbCreateTernm(net pinnanme "input")
pin = dbCreatePin(net fig pinnane)

) ;; end procedure
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