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(Abstract)

The intent of this dissertation is to obtain estimates of the effects of natural terrain
features on the propagation and scattering of waves. It begins with the rough knife
obstruction case, moves into rough surfaces and finally concludes with several
approaches to a foliage covered rough surface. Each of these problems is encountered in
radar, remote sensing and communication systems.

The first topic in this dissertation is the study of the effect of random edge roughness
on the diffraction of a wave. This has been accomplished by approximating the field
beyond the diffracting half-plane through the use of spectral techniques and the Kirchhoff
approximation. The relationships developed for the mean or average diffracted field and
the incoherent diffracted power are studied for a range of electrophysical parameters that
are representative of the situation encountered in a point-to-point communications link
with blockage by a rough edged half plane. The interpretation of the results is facilitated
by the observation that the total diffracted field is a superposition of the incident field and
the edge-diffracted field. When the roughness on the edge increases, the edge diffracted-
field becomes more incoherent and the phase interference consequently diminishes,
leading to an attenuation of the oscillations in the coherent or mean total field. The model
also addresses the effects of the knife edge in directions off the line-of-sight path as well
as its effects on pulse propagation.

Next, rough surface scattering effects are addressed. Extending the idea of the knife
edge diffraction, this dissertation builds on the topic of a wedge on a plane by adapting
the Method of Multiple Ordered Interactions (MOMI) to the dielectric surface. In this



development, the coupled integral equations governing the scattering by a dielectric
surface are combined into a single equation wherein the lossy dielectric enters the
solution as a perturbation of the result for a perfectly conducting surface. Hence, the
solution is not only exact, but as the loss increases, the convergence is rapid. Next, the
Kirchhoff approximation is expanded to a two-frequency form for use with the later
chapters which deal with pulse scattering by rough surfaces. Example waveform
calculations are given.

Propagation and scattering by a volume of scatterers over a surface is then examined.
Starting from the radiative transfer equations, a model is developed herein for scattering
from vegetated rough terrain. It assumes completely incoherent scattering and includes
contributions from both the vegetation and the surface scattering along with a relatively
simple accounting for their interaction. The model is developed into a form that easily
separates the three primary components of the scattering problem — the radar system, the
geometry, and the environment, and then recombines them through a multiple
convolution.

Extending the basic model to volumes for which multiple scattering is important is
accomplished through the use of effective parameters. These effective parameters are
obtained by comparing the model with pulsed radar data at normal incidence, i.e., looking
directly down through the foliage and onto the ground. Hence, our overall model is a
hybrid approach wherein the basic physics are retained in the simple solution. It is then
extended to a more complicated environment through the use of these effective
parameters. Example waveform calculations are given.

The simple model assumes that multiple interactions are insignificant and that only
narrow-band signals and narrow-beamwidth antenna patterns are used. Consequently, a
more general radiative transfer approach is applied to the propagation of a beam through
the random medium. This effort is a test of the narrow beamwidth and forward-backward
scattering approximations implicit in the convolutional model. Next, the same
convolutional model is developed using wave theory in order to clarify the assumptions
and lend some physical meaning to the free parameters of the convolutional model. First
the single scatter theory, with strictly forward and backward scattering is shown to be

equivalent to the convolutional approach derived with radiative transfer theory. Next,



multiple scattering in a discrete random medium is investigated in the “extended”
Twersky approximation [Tsolakis, 1985]. This development leads to the mean Green’s
function for the medium, a form of the Distorted Wave Born Approximation and to a
two-frequency radiative transfer equation. This transfer equation is then shown to
simplify under the forward-backward assumption, eventually leading to a form which is
compatible with the convolutional result.

Finally, the effects of multiple scattering between the volume and its boundary, the
rough surface, have been investigated. Using a numerical implementation (MOMI) of a
scatterer over a rough surface, the orders of significant multiple interactions between the
rough surface and the volume scattering components have been simulated. It is
demonstrated that foliage components well above the rough surface may be treated as
non-interacting; this includes components other than the trunks, which were not
simulated. However, it is evident that multiple scattering effects may be significant for
large objects near the rough surface.
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Chapter 1 Introduction and Literature Survey

The modeling and prediction of electromagnetic wave interaction with natural terrain
features is the subject of a vast body of literature covering a large array of topics. The
prediction of forward and/or backscattered waveforms is addressed in this thesis in three
arenas: past edges, over the terrain, and through vegetation. Propagation through
vegetation is actually in combination with the surface scattering, particularly in radar
studies.

In Chapter 2 , the propagation in a mountainous region is examined using the physical
optics and the knife edge approximations. The effects of roughness are examined to
varying degrees along the line-of-sight, wide angle, and for pulse propagation. This work
is continued in Chapter 3 with moment method (MOM) simulations of scattering by a
one-dimensional rough surface which is either perfectly conducting or dielectric; this
study is work in progress. In addition, as a precursor to the volume-surface interaction of
the next several sections, this chapter reviews other methods of predicting surface
scattering, including the impulse response method [Brown, 1997] and a two-frequency
Kirchhoff scattering result.

Chapter 4 begins the examination of the interaction with a vegetated terrain. In this
chapter, the problem is examined with a radiative transfer approach and is quickly
reduced to a simple, computationally efficient solution method; henceforth referred to as
the convolutional model. The next chapter examines the possibility of beam spread within
the volume using more generalized transfer theory results. The following two chapters
present a reconciliation of the radiative transfer approach with wave theory. Chapter 6
attacks this problem using single scatter theory. Under limiting assumptions, the single
scatter solution is shown to reduce to the convolutional model. Chapter 7 develops the
multiple scattering equations and then presents a slight variation on existing, two-
frequency radiative transfer equations. Under the assumptions common to the previous
two chapters, this formulation also leads to a form similar to the convolutional model.

Finally, Chapter 8 examines the consequences of the interaction of the surface and



volume components using numerical methods and an analytical method that remains a

work in progress.

1.1 Propagation Over a Rough Knife Edge

Diffraction by a knife edge boundary has long been used as a model to estimate the
effect of path-obstructing ridges, mountains, and other natural obstacles in terrestrial-
based communication links. The use of this approximation is now of interest in assessing
blockage effects involving much shorter paths, e.g., such as in propagation in an urban
environment where buildings and other man-made obstacles cause the path blockage.
Although the knife edge boundary solution has been used extensively to model natural
and man-made diffracting objects, there has always been an uncertainty associated with
estimating the effects of edge roughness on the diffraction pattern.

Previous efforts for modeling the diffraction by a rough edge using aperture
integration have appeared in the literature. Two papers in particular address the
communication problem by modeling the diffraction by edges using the Kirchhoff
approximation and nontransparent absorbing screens [Polishchuk, 1971] and [Polishchuk,
1974]. The paper by Dagurov, et al. [Dagurov, 1994] presents a method in which real
terrain data may be used to predict the propagation over rough edges using the Kirchhoff
approximation. On the other hand, the paper by George and Morris [George, 1989] which
addresses diffraction by serrated apertures in the optical limit, most closely resembles the
approach presented in this study. The application in this case addresses the statistical
properties of a converging lens modeled as a serrated aperture.

The results presented herein are noteworthy relative to these previous works for their
simplicity, their straightforward design implications, and their robustness. In addition,
they give, for the first time, the communication system designer the ability to estimate the
degree of variability possible in the received power levels resulting from a mid-path
diffracting object with rough edges. It is not possible to predict exactly what the received
power levels will be because the edge-diffracted field is a random process resulting from
the randomly rough edge. Once the system is set in place, the received power will

comprise only one realization of this random process. Without some method that either



simulates averaging, e.g. moving the transmitter and/or the receiver or dithering the
carrier frequency, or provides a detailed description of the rough edge profile, this one
realization is what must be worked with. However, the equation for the incoherent power
developed in this paper is appropriate for estimating the degree of variability that should
be expected. If this degree of variability (uncertainty) is too large, adjustments in the
system parameters will have to be undertaken during the link design phase to reduce it.
The important point is that engineers now have the ability to determine exactly what can

be changed to diminish the uncertainty!

1.2 Foliage above a Rough Surface: An Approach Rationale

When studying scattering from the combination of a foliage layer above a rough
surface, one must deal with the scattering from the foliage, the rough surface, and the
interaction between the two. Of these three components to the fundamental scattering
problem, the foliage scattering and the interaction scattering are the most difficult to
analyze.

Foliage by itself presents a challenge to the analyst because of the many-body aspects
of the problem. In addition, modeling foliage scattering from first principles is further
complicated by the fact that the scatterers are irregular at best and generally ill-defined.
From an electromagnetic point of view, leaves do not all look to be identical and twigs,
branches, and limbs conform to no particular shape! Thus, except for very low and very
high frequency limits, it is almost impossible to compute the scattering pattern of the
basic "constituents"” of foliage. Some details are known about the typical volume fraction
of foliage and how this is partitioned between leaves and the woody components, and we
have some idea of the range of complex dielectric constant variation for wood and leaf
materials [Brown, 1982]. Yet another unknown is the variation of foliage density with
depth into a canopy. Finally, even though foliage is quite frequently classified as on the
edge of being a volumetrically sparse medium, this does not mean that there is a lack of
strong electromagnetic interactions between the various scattering components, e.g.,

twigs, branches, leaves, etc. Furthermore, for European forests that have been well



managed and not logged (also called old growth forests), the volume fractional density of
the biomaterial may be as large as 5%.

When dealing with independently scattering objects and scattering from rough
surfaces, it is possible to convert single-frequency models of the individual scattering
cross sections (for the discrete objects) and the scattering cross section per unit area (for
the extended surface scattering) into models for the incoherent time-dependent scattered
waveform produced under pulse illumination. For strongly interacting individual
scatterers, this simplification is not usually possible, the reason being that it is not
sufficient to know that the scatterer is in a volume because its location within the volume
must also be known.

What can be done then to resolve this dilemma? First, an effective “scattering cross
section per unit illuminated volume, o,” may be extracted from airborne radar data, e.g.,

the scattered power P, received by a pulsed radar is given by

G*(6,,@ )N
P. =P —(4(1_[)2([';)4 o

Equation 1.2-1
where the effective scattering cross is given by

o = (cT/2)(R®,, )(ROy)o,
Equation 1.2-2

Solving Equation 1.2-1 and Equation 1.2-2 for o, yields

P, (4m)® R?
Pt Gz(ei’(ﬁ) (CT/Z)(CDaz@eI)

Equation 1.2-3

In the above equations P, is the received or scattered power, P; is the transmitted power,
62(9i , (pl) is the two-way antenna gain in the indicated direction, c is the speed of light, T
is the pulse length, R is the range to the volume, ®,, is the antenna's azimuthal
beamwidth, and ©g is its elevation beamwidth. Of course, some of these factors are a

function of time indicating what portion of the volume scatterers are being illuminated by
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the incident pulse waveform as it passes through the scattering medium. Equation 1.2-3 is
actually an approximation in that one should integrate over the volume bounded by the
antenna gain pattern weighting and the pulse width extent. The important point is that
incoherent power waveform data from a pulsed radar can be converted into an effective
"scattering cross section per unit illuminated volume". It should be noted that, within the
resolution limits imposed by the radar pulse width and antenna beamwidth, the oy
extracted from the data may be a function of the slant path distance (R) into the medium.
The approach rationale followed in developing the model presented in this
dissertation is as follows. First, it is well known that the end users of such models are
extremely skeptical of any model that does not contain some measurements in its
development. That is, they are concerned that the model be designed so that it is capable
of at least reproducing known measurements. Consequently, it is essential to involve
measured data in the model. The second element of this model is based upon the
realization that it is possible to develop a somewhat general model for media that is not
too strongly interacting and this model may be "matched"” to data to determine the actual
parameters that are embedded in the model and, perhaps, to extend it beyond its known
range of validity. In short, the model parameters can be determined by matching actual
measured data to the scattering results predicted by the model. It should be noted that
such an approach avoids long and questionable computations based on one's estimate of
what actually causes the scattering and how it does this. The reason for avoiding such
computations is very simple — there is no way to estimate how applicable they will be
since the accuracy of the overall model is unknown. By matching the model to data, the
model's accuracy is extended through the use of "effective parameters” that are
"calibrated" by the data. In summary then, the approach has been to develop a model that
is accurate but not overly (computationally) detailed, match it to measured foliage
scattering data to generate the model parameters (“effective parameters”), and then
investigate the accuracy of extending the model to other situations using the existing

"effective parameters".



1.3 The Waveform Scattered by a Vegetated Rough Surface

Ideally, in estimating the returned signal from foliage covered terrain, scattering
models should include self and mutual interactions among all of the constituent
components. These would include interactions among the discrete scatterers comprising
the volume, the interactions between each surface element and finally the interactions
between the surface and the volume. In the following sections, a brief introduction to the
literature surrounding these components will be presented.

Beginning with full interaction problem, the incident field, E™, see Figure 1.3-1, is
defined as the field that would exist in free space in the absence of the foliage and the
surface. With introduction of a scatterer, i.e. foliage, the total field is found to be a
superposition of the incident field E™ and the field scattered by the scatterer, E®.

Etotal - Einc + Es
Consequently, our first task will be the construction of the scattered field produced by the

i scatterer, ES, of the N objects which comprise the volume of scatterers.

X E inc

\_/_/—/\//—/
l < 4

pX==2 N V0o g

N E inc

Figure 1.3-1: The Incident Field

Each component of the foliage (leaves, twigs, branches, etc.) will scatter the energy

from the incident field. Isolated, each scatterer’s effect can be assessed using an integral
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equation approach that leads to a Method of Moments (MOM) formulation. However,
considered as one system, a full solution to the interaction of waves with the foliage-
surface combination quickly out-paces present computing capabilities. Consequently,

approximate, analytical methods are employed.

1.3.1 Volume Scattering

Modeling of scattering from a volume of scatterers has been handled in the literature
in one of two ways: phenomenological models (radiative transfer) or physical models
(wave theory). Extensive literature exists for scattering from vegetation and more
generally, random media. Consequently, the reader is referred to other sources for
complete literature reviews [Ishimaru, 1997], [Tsang, 1985]. In this review, only a few

recent works will be briefly discussed.

Radiative transfer approach

The analytical, full wave approach to the multiple scattering problem presents many
mathematical challenges even in tenuous, i.e. sparse, medium; consequently, the simpler
ideas and the more tractable numerics of radiative transfer present an appealing
alternative. However, since phase information is lost, the multiple scattering phenomena
described by transfer theory are not well understood. In addition, transfer theory may
only have a certain range of validity because of the following assumptions:

* interactions are considered incoherent
* interactions are considered to be far field
e extinction, scattering and propagation parameters have no direct physical
interpretation
» frequency dependence is not accurately modeled
e certain multiple scattering processes are neglected, e.g. the so called
“enhanced backscatter”
There exist at least two different levels of modeling the environment in radiative transfer
theory. The first and most abundant in the literature is a level that can become quite

detailed. Typical examples of this are found in references [Ulaby, 1990] and [Karam,



1992, 1997]. Ulaby, et al., solves the vector radiative transfer equations iteratively. Their
model has been taken to the “second order” which is simply the second iterate of the
radiative transfer equations. Their major assumptions, beyond those inherent in the
radiative transfer method itself, include

» flat surface, i.e., specular boundary

» strongly forward scattering medium
Although in some cases, these approximations are valid, this model is not applicable
(because of the medium assumptions) for lower frequencies nor, to a lesser degree at high
frequencies because of the flat surface assumption. The deficiencies of previous models

that this one claims to address are as follows [Ulaby, 1990]
e canopy is not treated as a continuous layer in the horizontal direction
» crown and foliage regions have the same scattering characteristics
» uniform dielectric constant and size, etc. are assumed

This model is created from the vector transfer equations for a two-layer medium. In
the “Michigan” model, the extinction and scattering matrices are based on measured
values of number density, extinction, etc. of leaves, needles, trunks and branches of all
sizes. After great effort, these values are all combined to form an effective extinction

matrix, Elayer, and an effective phase/power scattering matrix, Elayer, for each layer. In
addition, the tree canopies are modeled as spheroidal in shape, rather than planar. They
create transfer equations for the crown, trunk region and finally the underlying surface all
of the following form (for upward and downward propagating intensities, see Figure
1.3-2):
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Figure 1.3-2: Upward and downward propagating power density

Given three sets of the above equations (one set each for the crown, trunk, ground),
Ulaby’s first order approximation to the radiative transfer equations is essentially a single
scatter model. Solution is accomplished through iteration and at this point, up to two
iterations have been reported [Ulaby, 1990], [McDonald, 1993]. Consequently, aside
from the extra work to characterize the contributions to the propagation matrices, the
result is the same as the bulk parameter models such as Schwering’s [1985,1986] and the
one described in this report. The difference is that the bulk parameters are characterized
before the computation in the Michigan model and after-the-fact in the bulk parameter

models.



The second approach to the radiative transfer deals in bulk media and effective
parameters. A typical example of this approach would be the work of Johnson and
Schwering [1985, 1986]. This approach creates a simple, random medium with a single
type of scatterer. For millimeter wave propagation, they have assumed that the
constituents of the random medium will scatter energy primarily in the forward direction.
Hence, they define a scattering pattern that consists of a forward-directed (Gaussian) lobe
superimposed on a greatly reduced isotropic background level for all other directions.
This scattering pattern has subsequently been measured by Ulaby [1990] while in this
dissertation, the scattering pattern (or function) is often assumed or even simplified to
strictly forward-backward scattering. Using this simple model, Johnson and Schwering
solve the classical radiative transfer equation using a Legendre polynomial expansion of
the scattering pattern. Their results are straightforward and the model’s free parameters
allow simple matching to measured data. Whitman and Schwering have extended the
same work to pulse propagation by simple Fourier decomposition of the time domain
waveform [Whitman, 1996]. The response to each frequency component is determined
using the previously developed solution to the radiative transfer equations and finally, the
pulsed solution is synthesized by transforming back into the time domain. This study will
address the scattering by a vegetated rough surface using the bulk parameter idea in
Chapter 4 .

The final topic addressed in the radiative transfer development is the propagation of
beams in the radiative transfer formulation. This topic was chosen since the effects of
beam spread within the random media are neglected in the “convolutional model” of
Chapter 4 , by default, when the scattering is assumed to be exclusively forward-
backward. Simulating the beam spread in a random medium requires the solution of the
full radiative transfer equations since the scattering pattern of the scatterers is arbitrary.
This solution accounts for multiple scattering within the context of the radiative transfer
theory. A few works have been performed in this area, the first was by Chang and
Ishimaru [1987] and the only other relevant example is given by Zardecki [1985]. In each
case, the solution method is similar to the one presented in this dissertation; however, the
boundary conditions are different and the cases presented for comparison are unique to

this dissertation.
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Wave scattering approach

If multiple scattering within the volume is expected to play an important role,
interactions among the discrete scatterers must be considered. Like the radiative transfer
approach, the wave approach encompasses a great deal of literature. Starting with
Maxwell’s equations or the wave equation, a wave approach will include all multiple
scattering, diffraction and interference effects. A full solution, however, quickly becomes
intractable and approximations must be made. Single scatter theory is the simplest
approach to the wave problem in a random medium. In scattering theory, the total field
can be written as a sum of the free-space incident field and the scattered field due to each
scatterer. The scattered field in a tenuous medium is a product of the dyadic scattering
amplitude, f, and the applicable (far-field) Green’s function along with the field incident

to the scatterer.

Equation 1.3-1
When the incident field at the scatterer number s, (under the summation) is simply given
by the free-space incident field evaluated at the position T, Equation 1.3-1 is the single
scatter or Born Approximation (often, the Born approximation is attributed to an
integral equation, not a summation). In other words, the field incident to each scatterer

neglects the fields due to scattering from other scatterers. Often the dyadic scattering

matrix, f in Equation 1.3-1, is written as a product of the Fourier transform of the
scattering operator and the remainder of the far-field form of the free space Green’s
function [Frisch, 1968]

(k. ki) = S(ks, lA<i)e_j(Ri o) %q} je’ & T S(r,, T)e! Rsmsdfadfs

Equation 1.3-2

Other assumptions in this method are that the location, shape or sizes of the individual

scatterers are uncorrelated. Hence, a simple summation of the scattered power waveform
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from each scatterer is possible. Single scattering theory plays a central role in the model
proposed in this report. A great deal of literature exists for the single scatter theory;
however, this literature will not be reviewed here. The single scatter approach, however,
will be reviewed and applied in Chapter 6 .

An exact solution would consider not only the scattering from each individual object,
but the full interaction between them; this alters the field incident on each scatterer. One
method of solution that accounts for full interaction between N objects is the solution of
the associated N-coupled integral equations. Using the equivalence principle, the
scatterers may be replaced by equivalent currents that radiate in free space. In addition to
the requirement for more computing power than is commonly available, the exact
solution for the N-coupled integral equations for propagation through the foliage would
require an abundance of detailed data and a number of realizations to create acceptable
averages. Consequently, some approximations must be made.

There is a multitude of these approximate wave approaches reported in the literature.
In continuous random media, the literature is well represented in the books by Ishimaru
[1997] and Tsang [1985]. Most notable for this dissertation are the papers by
Barabanenkov et al. [1971] and Besieris and Kohler [1981] in which a radiative transfer
equation is developed from the wave approach. Renormalization approaches are well
represented in the work of Frisch [1968] and DeWolf [1971]. For discrete random media,
many researchers have considered the effects of multiple scattering due to random
inhomogeneities. These methods perform a summation of the scattering effects in the
ensemble, then average the result. However, in order to retrieve a closed form result, they
have made basic assumptions about the scattering processes. Twersky has developed
integral equations that describe the higher order moments by neglecting multiple
scattering involving the same particle; various approximate solutions exist for these
equations [Twersky, 1964]. Tsolakis [1985] (among others) has created a transfer
equation from wave theory. This approach will be examined in detail and implemented
for a forward scattering medium in Chapter 7 .

One popular method beyond the single scatter approach is the Distorted Wave Born
Approximation (DWBA) [Lang, 1981]. Beginning with the expression for the total field,

Lang derives a polarization-sensitive operator formulation for scattering from discrete
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random media. After considerable effort in deriving the integral equations for the field,
he invokes the Foldy approximation for the mean field. In this approximation, the

incident field at scatterer, s, (under the summation) is given by the average field

evaluated at the position T,

(B®) = Ei(r) + 3 Tk k)TEC)

Equation 1.3-3
The Foldy formulation is equivalent to the assumption of scatterers with no correlation
and scattering amplitudes that are isotropic [Frisch, 1968]. In summary, the scattered
field is found by iterating the multiple scattering formulation and then assuming that the
effective incident field at each scatterer is the mean field (Foldy). Lang then embeds the
scatterers in the equivalent (mean) medium (DWBA) and scattered power is computed in
the single scatter approximation. The mean medium has an effective, tensor dielectric
constant which in turn, is a function of the scattering amplitudes of the individual
scatterers. This use of an equivalent medium creates an environment where both the
incident and scattered fields attenuate while propagating. The scattered field derived from
the scatterers embedded in the equivalent medium results in solving the multiple
scattering equations in the first-order Born approximation. This solution is valid in a
medium in which the scatterers have a small albedo (ratio of the scattering cross section
to the total cross section) [Lang, 1981].
Whether single scatter theory or multiple scatter theory is used, we will construct a

composite scattered field, E;, due to the volume of scatterers, see Figure 1.3-3. In the

integral equation formulation, the scattered field results from an induced current, Jg,, on

each of the N scatterers; see Figure 1.3-3.
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Figure 1.3-3: The total incident field with respect to the surface

Initially, we present a derivation of the scattered field from the volume using a reduced
form of the radiative transfer approach that results in a form of the first order multiple
scattering result. The limitations of this result are apparent in the context of the first order

multiple scattering results.

1.3.2 Scattering from a Rough Surface

Modeling the multiple scattering that takes place along the surface is also widely
addressed in the literature. Numerical implementations typically use the integral equation
formulation. Given a field incident on a statistically rough terrain, the integral equation
technique, typically implemented with the Method of Moments (MOM), can yield exact
results for a given surface. Average results for a collection of realizations are found using
Monte Carlo methods. The solution method used here is the MOM formulation
accelerated by the Method of Ordered Multiple Interactions (MOMI) [Kapp, 1996]. It
will be explored in Section 3.1 and is used to verify some assumptions in the model
developed in this report. Analytical results, including Kirchhoff and perturbation
approximations, may also be useful in an analytically reduced integral equation
formulation. The Kirchhoff approximation is discussed in Section 3.4.1.

A time dependent analytical approach for the calculation of the incoherent power
waveform scattered by an extended rough surface that is consistent with the single scatter
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approach is the Impulse Response Method. This method is derived under the assumption
that there exist a continuum of scattering facets on the surface that reflect a radar power
waveform [Brown, 1977]. Under certain assumptions, the return power from each
properly oriented surface facet enters a summation. The number of these properly
oriented facets per unit area of the surface defines a cross section per unit area. Section
3.3 presents a brief discussion of the impulse response method for calculating the

scattering from terrain in free space, i.e. no foliage cover.

1.3.3 Interaction between the Foliage and the Rough Surface

Regardless of the modeling method used for the terrain and the volume scattering
individually, there will be an additional source of multiple interactions (or multiple
scattering): the interaction between the volume and the surface. This interaction
mechanism is not well explored in the literature. In addition, when it is addressed, only a
single interaction is discussed and in most cases only flat surfaces are considered [Le
Vine, 1992; Karam, 1997; Ulaby, 1990; McDonald, 1993].

S
fs

Once the surface scattered field, Ej,, due to the currents induced on the surface, J,, is

calculated, it can act as an additional field incident upon the foliage on its path back
through the foliage to the radar. See the field E3 in Figure 1.3-4. This single passage

(from foliage to surface, and back to foliage) does not account for the full interaction
between the current induced in the foliage and the current on the surface. This single
passage approximation to the interaction between the foliage and the surface represents a
single interaction: the foliage-scattered field that creates the surface currents is due only
to the field incident from the radar. This approximation is explored in Chapter 8 through
a comparison with the exact results for a single scatterer above a rough surface. A full
interaction formulation requires that the currents on the surface and on each scatterer in
the foliage be coupled. Additional interaction terms would include corrections to the
foliage currents due to the surface scattered field that, in turn, will produce corrections to
the surface currents: an infinite series of these corrections will produce the full interaction
results. Alternatively, a coupled integral equation formulation relating the induced

currents will also produce the full interaction result.
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Figure 1.3-4: Surface to Foliage Interaction

Assuming that the integral equation approach is followed, the solution for the passage

from the surface through the foliage can be formulated using the equivalence principle.

The surface current, J_, is permitted to radiate in free space and the resulting field acts as
an additional incident field with respect to the foliage. Hence, the surface scattered field,

E., will induce a corrective current, J3,, on the n™ scatterer which must be vectorially

sn?
added to the previous current. This current radiates a second field scattered from the

S

foliage, E;, , in addition to the scattered field due only to the foliage, E3. See Figure

1.3-5. This is a first approximation to the foliage-surface-foliage interaction.
A second order correction to the surface current will treat the incident field on the

surface as

Einc on surface — Einc + E? + E?sf

Consequently, a new surface current J_ is found. This current will produce a new value

S

for the surface scattered field, E,, and a new value for the field incident to the foliage

from the surface. Continuing this process of iteration will produce the full interaction

result.
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Alternatively, like the first passage through the vegetation, this second field scattered

S

from the foliage, E;,, can be found using the single scatter approximation. This result

may also be iterated, correcting the surface currents producing scattered fields. However,

this result will suffer the limitations of the single scatter theory.

Figure 1.3-5: the second order approximate scattered field from the foliage and

surface combination

1.4 Goals of this Research

The goals of this research are to produce usable engineering models for the
propagation of waves in natural terrain features. Many numerically efficient codes have
been developed for the propagation past a rough knife edge, dielectric surfaces, and
foliage over a rough surface. The foliage-surface model can incorporate measured data
for calibration and accurately reproduce the general trends of an average returned
waveform from terrain and foliage with similar statistics and constituents as the
calibration data. Numerical efficiency is best served with the impulse response approach,
which casts the returned waveform into a series of convolutions and uses empirically
derived parameters. Through its relation to first order multiple scattering theory, this

model was found to incorporate some limiting assumptions. These assumptions are
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exposed and the model is improved by the wave derivation of the same equations in

single scattering Chapter 6 and multiple scattering Chapter 7 .
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Chapter 2 Rough Knife Edge Diffraction

Diffraction by a knife edge boundary has long been used as a model to estimate the
effect of path-obstructing ridges, mountains, and other natural obstacles in terrestrial-
based communication links. The use of this approximation is now of interest in assessing
blockage effects involving much shorter paths, e.g., such as in propagation in an urban
environment where buildings and other man-made obstacles cause the path blockage.
R.E. Collin developed a particularly simple yet very powerful approximate solution to the
problem of diffraction by a knife edge boundary [Collin, 1985]. The robustness of his
solution is due in part to (a) the careful manner in which he developed the approximation
and (b) the general tolerance of the knife edge diffraction problem to approximation.

Although the knife edge boundary solution has been used extensively to model natural
and man-made diffracting objects, there has always been an uncertainty associated with
estimating the effects of edge roughness on the diffraction pattern. The purpose of this
chapter is to present an approximate solution to this edge-roughness problem when the
roughness is random in nature. The solution will use Collin’s approximate formulation of
the problem so that the fundamental physics of the distance-dependent phase interference
between the direct and diffracted fields is preserved [Collin, 1985].

The roughness on the knife edge boundary is assumed to comprise a non-zero mean,
second order process with jointly Gaussian probability density function and a Gaussian
spectrum. The latter is used for demonstration purposes but the theory is not limited to
this spectral form. Using this approach, an expression is derived for the mean or coherent
field at a receiver on the side of the knife edge opposite to the transmitter; this result is
cast in terms of the error function of a complex argument. As might be expected, the most
important parameters in this result are the separation distances of the transmitter and
receiver from the knife edge, the degree of path blockage present, the edge roughness
parameters, and the antenna pattern of the transmitter. Numerical calculations
demonstrate the interplay of these factors and illustrate the effect of the roughness
relative to a knife edge without roughness. The calculation of the total and the diffuse

received power is reduced to two integrations, but it is shown that these can be
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considerably simplified due to the effective lack of any strong dependence on many of
the problem parameters. Computations illustrate the increase in the diffuse or incoherent
power at the expense of the coherent power and confirm the fact that if phase coherence
is not needed it may still be possible to use the averaged incoherent power to achieve a

transfer of power.

2.1 Review of the Approximations for a Smooth Knife Edge

The power transferred between transmitter and receiver antennas when there is a
knife edge half-plane conductor located in the vicinity of the line connecting the two,
may be derived as follows [Collin, 1985]. Assuming that the total field above the knife
edge is simply the incident field, a scattered plane wave spectrum may be constructed and
this in turn may be used to produce results for the knife edge diffraction. In this
construction, the line-of-sight (LOS) path coincides with the z-axis and the x-axis is
parallel to the edge of the infinite half plane (the knife edge), see Figure 2.1-1.

Receiver

”'Z

Transmitter

—_

Figure 2.1-1: Knife Edge Diffraction Geometry

Within this framework, a Gaussian tapered beam with a beam-waist a is assumed to be

incident on the knife edge from a transmitter placed a distance R, from the knife edge as
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measured along the LOS path. Referring to Figure 2.1-1, the heavy line represents the
LOS path. The height, h, is the perpendicular distance from the LOS to the knife edge

below. The distance z, describes the distance from the knife edge to the receiver as

measured along the LOS path.

Consider that the z = 0 plane is an aperture bounded on only one side by the knife
edge which is a distance h below the LOS (z-axis). Assume that a source, placed a finite
distance from the knife edge, produces a field in the aperture as shown in Figure 2.1-2. It
is assumed that the main beam of the transmitting antenna pattern may be approximated

as a Gaussian beam.
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Figure 2.1-2: Knife Edge Geometry, the “Aperture” Definition
Hence, in order to account for the spherical and Fresnel phase effects in the incident field

over the aperture (z = 0) in combination with a Gaussian taper, this field is constructed as

follows:
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o &4 aJKoR: 2 142 2 .2
EM(x,y,2=0) = FoTNe exp%jkoﬁ(—lx 5 %Xp@ e
Rl a 2R1 E_ a E

Equation 2.1-1

In this expression, the first and second exponential are due to the expansion of the
incident spherical wave’s phase while the third accounts for the tapering of the field.

The transverse plane wave spectrum can be derived starting with the following

Fourier transform relation:

R . R \ e TkoRy
A (K Ky IR HA (i Ky )9 = (B, X+E, 9) R
0 . @/ 0 /00
. p % JkogD%RlEe EDAZ E%+](kxx+kyy) dx dy
aperture B
area

Equation 2.1-2

where p?=4/x%2+y? . Once the plane wave spectrum is found, the diffracted plus the
direct transverse field at a given observation point (z, > 0) can be found via the inverse

Fourier transform relation:

s Ak R A (Ko ky ) e dk, dk,
(2n) all

k —space

E¢(X0.Y0:20) =

where k=k, & +k,§+k,2, ko’ =k,> +k,” +k,%, and T =Xo Kk +yo ¥ +202

Equation 2.1-3
Typically in near-field to far-field transformation, the relationship in Equation 2.1-3 is
evaluated approximately via stationary phase to obtain the fields in the far field.
However, since we may be interested in fields in the Fresnel region, the exact form of

Equation 2.1-3 is used in conjunction with the following simplification: the fields of

interest will be measured near the z-axis. Hence, for an observation point at (xo,yo,zo)

with z% >> (x(zJ + y% ) we expect only a small k, component in the transverse plane at
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the observation point. Under these conditions and using a binomial expansion, the wave

number vector can be written approximately as:

- k, 2 +k,2
k = kx)2+ky§/+\/k6_(kxz+ky2) 2 ~ kxi+ky9+k0§_ X y %
U U

Equation 2.1-4

which leads to the paraxial approximation for the phase function

H .

_ H
exp{— JKo ETO} = eXpﬁ— JE kyXo +KyYo +Kozgd -

k§+k§H§H

2k§ Haﬁ

Equation 2.1-5

Consequently, using the paraxial approximation and substituting the plane wave spectrum
Equation 2.1-2 into the expression for the transverse field Equation 2.1-3, the field in the

half space, z,> 0, along the z-axis (LOS) may be written as;

B \ e-ikoRy - ‘jkOE)%FME _E)%Z EEB

E¢(X0,Y0:20)= [ D(Ex>“<+Eyy) ro® e 00
all [ 4T[R1 aperture HD
k—space [] area [
u Hk 2 1k.2 EH
: ~ikeXo +kyYo —koZo o
—Jkozo . y 2k2
e ) gy gye O J %dkx dk,

ey

Equation 2.1-6
Rearranging the order of integration, removing those terms that are constant, and using

the following identity (to be used extensively in subsequent sections),

Ebz -4ac{
H

_4x 2 ) Tt 4a
_Iioooe (ax +bx+cdx - _eH
a

Equation 2.1-7
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we can perform the integration over k-space with the final result, assuming that the field

measurements are performed on axis (X, =0, yo =0, o >0)

jkoe_jko(zo+R 1)

e o) e o omabiey?)
TRz, (ExX+EyY)I-ooI_he dy dx

E((0,0,z,)=

1 1 1 01 .k
where : a= — + jkg + = —+j°
o Rl 220 a dO

Equation 2.1-8

Note that a new distance d, has been defined as follows

2Rz

d, =
0 R+ 2z

Hence, the diffracted field as measured along the LOS path (x,=0,y, =0,z >0) can be
written [Collin, 1985] as

jkoe_jko(zo+R 1)

~ ~ U _ay?2
E,X+E —[Se ¥ d
mz B SN sy

~Jko(zo*R1)

E((0,0,2,)=

_ Jko
4Rjaz,

[E,%+ E, 9)[erf (— h\/g) + 1]

Equation 2.1-9
where the function erf(z) is the error function used as defined in Abramowitz and Stegun
[1972]. Since the parameter, a, is complex, this will be evaluated using the error function
of a complex argument. The free space power along the LOS direction may be calculated

through the use of the following (in terms of the mean separation, h)

[Pcoherent] he oo — [_E(XO’yO)E(XO’yO)*] he o

2
LT et m)eaf = T
aa aa
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2. ~iKo(Zo+R 1) +jko (2o +R 1) (E +E )
2 = =% e e
where: |K[“=KK" = Eko E(E2 +E =
K g 4n2Rzlzf) 4an2

Equation 2.1-10
If the beamwidth parameter, a, (a distance measure of the beamwidth at the knife

edge) is large with respect to the distance dg, the real part in the expression for a can be

dropped and the field can be evaluated using the Fresnel integral.

. Ko
; -jko(zo+Ry) -j-%y?
_ jkoe o Wy o d
E;(0,0,z,) O E.X+E e o d
1(0,0,2,) 2Rizg ( y) ko [ h y

.TU
de @RI o\ O 2k . 2k
it EX+E,V @%h —OH—JS%h =0
2\/§R120 ( X y ) E T[do T[do

Equation 2.1-11
where the functions C(z) and S(z) are the Fresnel integrals as defined in Abramowitz and
Stegun [1972].

Given the system parameters listed in Table I (in the example from the final section)

for a typical terrestrial microwave communication link, the argument of the exponential,
in Equation 2.1-11, will affect the resulting coherent power as the beamwidth parameter,
o, becomes smaller, the frequency increases, or the separation distances decrease. For the
system parameters of Table I, there are only slight differences in the coherent power as
given in the approximation Equation 2.1-11 with respect to the more exact solution
Equation 2.1-9. However, as a decreases, a disparity in the oscillations becomes evident.
For example, Figure 2.1-3 demonstrates that if a is reduced to 50 m (which corresponds
to reducing the beamwidth or placing the transmitter closer to the knife edge), the use of
the approximation Equation 2.1-10 may not always yield adequate results. This figure
compares the approximate solution for the power using the Fresnel integral to the

complete solution using the error function of a complex argument.
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Comparison of the Full Integration with the Approximate Fresnel Integral
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Figure 2.1-3: Coherent Field as a Function of the Displacement of the Mean Height,
h, of the knife edge from the LOS.

2.2 Roughness on the Knife Edge

Consider the case when there is roughness along the knife edge, i.e. the knife edge is
rough along the x-direction transverse to the LOS path. The geometry in this case is
depicted in Figure 2.2-1. The height h is now a function of x and relates the displacement
of the knife edge level with respect to the LOS path. In addition, this height is taken to be
a zero-mean stochastic variable. Assuming Gaussian statistics for the height roughness

of the knife edge, we can divide this height into two parts
h =h.+6h,

Equation 2.2-1

Hence, we have split the random height, h, into its mean (h.) and its fluctuating portion

oh, (with zero mean). The fluctuating portion is assumed to have a Gaussian probability

density function defined by p(dh,) and standard deviation o as given below
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Equation 2.2-2
The statistics of the roughness are assumed independent of x, i.e. h is a spatially

stationary process.

Mean Height
Transmitter

Figure 2.2-1: Geometry for the Rough Knife Edge

2.2.1 The Coherent Field

The average total field, also referred to as the coherent total field, is found by forming
the first moment of the transverse field (z > 0). Making a change of variables in order to
bring the fluctuating portion of the integration limit into the integrand, the integral

expression for the coherent field is rewritten as follows
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. —jk(zo+R1)
_ T |
(BO0.20)) = (=5 ——
120

E,X+E, §)
_ 1 a2

-af@u-ond?) Lo 2 gy axdai,

qzﬁ:‘ce 21O

Equation 2.2-3
Note the lower limit for the u integration is now the mean height from the LOS to the
knife edge h.. After interchanging the order of integrations, gathering terms, and
performing the oh. integration, we can then perform the integration in the transverse
coordinate x leading to the following result for the coherent field along the LOS

direction:

_E 2 @2
0:] e 02a+1 du

c

Equation 2.2-4
Note that this expression reduces to that given above in Equation 2.1-10 as the height
variance is reduced to zero. Finally, this integral can be split and written in terms of the
error function of a complex argument or the complementary error function of a complex

argument:

a 2
—%!f f ( 2 )
I°° e 02a+1§‘ dU :i 20°a+1 +erfEhc —a BH
~he 2 a 0 V202a+1DH
fr_[( 2 ) O O
:l goa+l erfccrh, Za 0
2 a 0 V2c?a+l[

Substituting this result for the integral, the final expression for the coherent field is

Equation 2.2-5

written as follows
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Jk e JkO(ZO+Rl) . R |:| |:|
0,0, E E f h
(E(0.0.2)) = TRz, [E,&+E, §)er T °‘/2o weit

Equation 2.2-6

where a5i+jk0 L ! Ei+jk—0
az Rl 220

From this result for the mean or coherent field, the power in the coherent field may be

easily calculated. This power, P,onerent: 1S 9iven by (for simplicity, we assume the

intrinsic impedance of the medium is unity throughout this work)

Peoherent = <E(OO ZO)><E(OO ZO)

B—h rfc f—*H
20%a+1 20°a +1E

—k R i 2 (=2 2
2 .2 2 .2
g 4T[2R120 4n2R1z0

Equation 2.2-7

where: |K =K

It can be easily seen that as the roughness becomes negligible, i.e., o - 0, the

coherent power becomes equivalent to Collin’s result [Collin, 1985], i.e.

(E@o.20)] s 0 = jggerfc(— ha)

while the expression for the coherent power is given by

*

[Pcoherent]c_,o = %E(O'O'ZO)><E(O'O’ZO)> ano

= @aa ﬁ—hcx/a_ﬁerfcﬁ—hcx/a_*ﬁ

Equation 2.2-8
Additionally, as the knife edge itself is withdrawn to infinity, we find a second limit: the

free space power along the LOS direction.
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[Pcoherent] he - o = BE(O’O’ ZO)><E(O’O’ ZO)>*510 oo

K 2

—erfc(- co)erfc(~ ) = |K[? T[z*
4 aa aa

Equation 2.2-9

As expected, in this limit the roughness along the knife edge is inconsequential.

2.2.2 The Total Power

The total mean power on the z-axis (LOS path) at z = z, is given in terms of the two-

point probability function, p(Shy,3h,, ), as shown in the equation below

[ee] [ee] 00 [ee] 00 [ee]

(E00.20) E"00.20)) = K"y | 5 f yp(dh.dnc,)

—00 —00 —00 —00 —00 —00

gmabu? o -oa]? oo b2 +lvz -enca) z)dulduz dx,dx, dah, d3h,,

. 2,7 Ko (2o +R 1) \+jko (2o +R 1) K2(E2 +E2
Where:|K|2:KDK = ® > 2e 5 i E(Ei +E§) = OT([zx—zzy)
E 4 Rlz0 E 4 Rle
Equation 2.2-10
The asterisk (*) denotes a complex conjugate. The joint probability density function (pdf)

for the Gaussian heights is expressed as

1

p(Bhe Shg) = —— e 2]

21moy1-C,,2

2 _ 2 O
%hcl 2Cp3hciBhca +oh2

Equation 2.2-11

where C,(x) is their normalized correlation function. Substituting for the joint pdf, we

find the average total power can be expressed as follows
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<|E(o,o,z0)|2> = (E00,29) (E"(00,29))

1 2 2 0
—_ —_— +
|2 %hcl 2Cpdhe10hco 5hc2

|K ©© 0 0 00 00 () 1 20’2(1—C 2) E
= — - e n
T[O-_‘[” _J;° _J;° _J;° _ac _{c \/1—Cn2

g2l -]y 2o -2n2]?) du,du, dx;dx, ddh, d3h,,

Equation 2.2-12
The normalized correlation function for the knife edge roughness may be expressed in the

form

c :<h(X1)h(Xz)> _ C(ax)

n
O'2 02

Equation 2.2-13
where C(AXx), the correlation function for the knife edge roughness, is a function of the
separation distance Ax along the knife edge. Expanding the integrand in Equation
2.2-12, collecting terms, interchanging the order of the integrations, the &h.; and oh,,

integrations can be accomplished yielding

© ) 0 —ax2 _a*X2 1
[y opet o . *
e -0 —h, ~-hg 4aa (04—C2(Ax)) +202(a+a )+1

<|E(0,0,zo)|2> = K[

@xp% [auf (Zcza* + 1)+ a'u3 (202a + 1)— 4aa*u1u2C(Ax)]§

B 4aa*(o4 _CZ(AX)) +20° (a+a*)+1 adulduz dxy0x

After some simplification and a change of variables: Ax=x, =X, or x; = AX+X,, the X,

integration can be performed, reducing the number of integrations to three. Again a

change of variables is employed in order to bring h, into the integrands: y, = u, +h,
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and y, =u,+h,. Upon performing this change, the y, integration can be evaluated,

resulting in the following double integral

aa a”
- Ax? ‘*)(YZ‘hc)z

<E [E*> _ |K|2 _ n — }oe (a+a*) ofe (202a +1
\/a(a+a )(20°a +1) - 0

1 -alhceota ey, <h) By o
B/(20%" +1)[4aa" (0" —-C?(Ax)) +202(a+a") +1] §

(érfc

Equation 2.2-14

This is the extent of our analytical evaluation. To further reduce Equation 2.2-14, we

must first rearrange the order of integration since the form in Equation 2.2-14 appears to

yield little insight into the important terms in the integrand. Interchanging the order, we
find

o T Ve’
(EE") = K ” [ o kata) (e k)
\/a(a +a")(20%a" +1) © e

| -l @ota )22 C@)Y, ~he) g
B/(20%" +1)[4aa" (0% - C?(Ax)) +202(a+a") +1] §

(erfc

Equation 2.2-15

Examining the integrand, we see the complementary error function is an apparently
complicated function of Ax. However, note that the Ax integration contains an
exponential decay (as the square of the Axvariable), particularly as the value of the

positive real constant

aa* 1 kia?
+

(a+a*) 20 2dj

Equation 2.2-16

becomes large. Obviously, the beamwidth parameter is much larger than zero (a>>0)

since it represents the incident field spread in the aperture plane; hence, the first term in
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Equation 2.2-16 may be neglected. Laplace’s method may then be employed if the
second term may be treated as a large parameter. Consequently, if we assume microwave
frequencies and an illuminated spot of at least a = 100 meters, we can set an upper limit
on dgy, a distance related to the separation between the receiver and transmitter. Figure
2.2-2 shows the required separation between the knife edge and the receiver (in order to
maintain the unity coefficient in the exponential) as a function of frequency and
beamwidth for a fixed distance from the transmitter to knife edge distance (4 km). As
expected, the support for the Ax integration decreases as the frequency and beamwidth

increase or the separation distance parameter d, decreases.

Required Separation between Knife-Edge and Receiver, (R,)

(for a separation between transmitter and knife-edge of 4 km)

i [ 1] /
6 |/ /

Distance (km)

/ _—

// /’
0.5 1 15 2 25 3 35 4
Frequency (GHz)

0

|—alpha = 100 m —alpha = 200 m ——alpha = 300 m |

Figure 2.2-2: The maximum distance from the knife edge to the receiver (R;) which

results in a coefficient in the exponent greater than 1

Note that unity is not a strict limit, only a convenient assignment. Once the Ax integration
is constructed such that Laplace’s Method is applicable, we investigate the behavior of
the complementary error function. If the complementary error function is a slowly

varying function with respect to Ax over the integration interval before the exponential
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drives the integrand to zero, it may be removed from the inner integrand and evaluated at
Ax = 0. Consequently, the Axintegration can be easily performed. This elementary
implementation of Laplace’s method may be justified through the following observations.

Since the correlation function, C(Ax), is directly proportional to square of the

roughness g, it becomes negligible as the roughness becomes approaches zero. Hence, in
this limit the complementary error function in Equation 2.2-15 is slowly varying with
respect to the variable of integration, Ax, and may be removed from under the integral
and evaluated at the peak of the integrand, Ax =0. Conversely, if the roughness is very
large, the correlation function will strongly influence the behavior of the complementary
error function in Equation 2.2-15, which may become a rapidly varying function of the
integration variable. Hence, with all other parameters held constant, we expect that if g is
small, we can remove the complementary error function from the integrand; whereas for
o large, this may not be possible.

For intermediate values of the roughness o, we must more closely examine the
correlation function’s dependence on Ax. For example, if we choose a Gaussian form,
the correlation function C(Ax) has the following form

AX2
C(Ax) =o’e k
Equation 2.2-17

where |, is the correlation length. Since this function will peak at Ax=0 and decay to

zero at infinity, we can investigate its influence on the argument of the complementary

error function by examining the relevant arguments: h,, o, I, and y,. Through

X
extensive numerical investigation, it has been found that the variation of the
complementary error function with Ax is strongly dependent on the correlation length

I, . Rearranging the argument of the complementary error function as shown below

—2aa*[(02 -C(AX) )hC + C(Ax)yz] - hea
J(20%a"a +a) [4aa” (0% - C2(AX)) +20% (a +a") +1]
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we can see that this expression depends on Axin two ways: first, directly with y,, the
variable of integration in the outer integral, and second, as in the difference
(02 -C(AXx) ) If Ax=0 or if Ax<<I,, these dependencies will be constant (first case)

and roughly zero (second case) and the complementary error function will vary little with
Ax in the region of interest. By construction, we have created the Ax interval over which

there is a significant contribution, dictated by the exponential portion of the integrand

_aa «2 .
°I° . (a+a*) 4 erfc% - 2aa [(02 - C(AX) )hC + C(Ax)yz] - hea %dAx
oo (20°a"a +a)[4aa" (0 - C?(Ax)) +20%(a+a ) +1] g

Hence, if we can construct the correlation function in Equation 2.2-17 such it does not
vary significantly in the Ax interval of interest then the argument of the complementary
error function and consequently the complementary error function itself will remain
constant over the significant Ax interval. In other words, we must compare the

following exponential functions

e (a+a) VS. e X

Equation 2.2-18
with the first required to decay much more rapidly than the second must. Hence, the

following inequality has been constructed which sets limits on the correlation length

* 242
iz« aa _ 1 I, >> 220( df :
;i a+a dy + a7kj
Equation 2.2-19

Figure 2.2-3 graphically portrays this requirement for the correlation length ten times

greater in the inequality above as a function of the distance d, and the beamwidth at a

frequency (3 GHz).
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Minimum Required Correlation Length
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Figure 2.2-3: Correlation length that satisfies the inequality of Equation 2.2-19 by a
conservative factor of 10 for a carrier frequency of 3 GHz

Figure 2.2-4 gives a representative picture of the complementary error function for
the communication system described in Table 1 of a later section. As a reference, the first
exponential function of Equation 2.2-18 is included. Recall that this exponential function
will define the significant range for Ax if Laplace’s Method is to apply. Note how the
complementary error function is relatively constant over the non-zero Ax region defined

by the exponential, particularly as the correlation length increases.
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Influence of the Correlation Length on the Integrand
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Figure 2.2-4: Comparison of the exponential decay with the behavior of the

complementary error function

When the complementary error function is essentially independent of Ax, the Ax
integration is easily performed. Then using the form of the correlation function in

equation Equation 2.2-17, this expression further reduces to (choosing a value of Ax =0

meters and noting that C(Ax) :02)

<E DE*> = K2 T[\/E }oe_(Zc a*+1) (YZ_hc)Z
\/aza*(ZOZa* +1) 0
U
@rfc@ ~a|2a’%y, +h, ]

Equation 2.2-20
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We can see that the exponential portion in the remaining y, integral produces its

most significant result about y,. = h,. However, Laplace’s Method stationary phase and

saddle point techniques will not be applicable in the majority of cases due to the
magnitude of the coefficient in the exponential and its complex nature; it is not a large
parameter. Consequently, Equation 2.2-20 will be considered the final reduced form for
most reasonable physical situations.

We may next investigate the limiting forms of the mean square field. First, as the

edge is removed to infinity (hc - oo), the mean square field will reduce to the square of

the coherent field as given in Equation 2.2-7. This can be seen starting with the exact

form for the mean square field given in Equation 2.2-15 and allowing the condition

(hc - °°)

o _;7*()’24‘0)2
<E[E*>:K2 *n - [e (2°a+1)
\/a(a+a y(20%a”" +1) ©

*

aa
- Ax2

Dof e ") erfc{- oo} dAX dy,

Equation 2.2-21
and since erfc{—od =2, the two integrals may be evaluated exactly yielding the free
space result for the mean square field

K[ P

[< E(o,o,zO)EE*(o,o,zO)>] LT (E(0.0,29))(E(00,25)) = ~

Equation 2.2-22

which is identical to the square of the mean field or the coherent field.
A second limit that requires investigation is that of the smooth edge. As expected, as
the roughness height tends toward zero, i.e. 0 - 0, the resulting mean square field

becomes equal to the magnitude of the square of the coherent power from Equation 2.2-7.
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Again starting with the exact form for the mean square field given in Equation 2.2-15 and
allowing the condition o - 0

*
aa
AX 2

<E[E*> - KZLI -2’ (y2-hc)? _|'e (a+a*) erfc{—\/ghc}dAxdy2

Ja@@+a’) o

Equation 2.2-23
which reduces to the familiar form of Equation 2.2-7 for the square of the absolute value

of the mean field or to within a constant, the coherent power

(E(0,0,20) [E"(00,20)) = (E(0,0,29)(E(00, 2))

—|| erfc h \/_erfc%h \/_ﬁ

Equation 2.2-24
Consequently, as we suspected, the total power reduces to the power in the coherent field
for both the absence of the knife edge and for the smooth knife edge.

Finally, we may express the power in the incoherent field using the expressions:

Prconerent = (E(0.0,20) [E7(0,0,20)) = (E(0,0,20))(E(0.0,2¢))”

a" 2 aa” 2
2 he)? - Ax

K|2 n ° (202a* +1) (a+a*)
| Ja(a+a")(20%" +1) g i LE

H -Ja[h.(20%a" +1)]+2a"C(&x)(y, - h,) % iax dy,

@\/(20 a” +1)[4aa” (0" - C2(AX)) + 202(a+a") +1] §

2 *
| i*erch—hC + rch—hc ;—*H
aa H 20%a+1 H 20%a" +1

Equation 2.2-25

[érfc 3
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under the assumptions mentioned in the previously, this expression may be reduced using

the approximations in Equation 2.2-20.

2.3 Example Results

Consider the communication system described in Table 2.3-1 and whose system

parameters represent a model of a terrestrial microwave link.

Table 2.3-1. Terrestrial Microwave Link-to-Link Example

» Frequency: f =3GHz (A=01m)

» Distance from the transmitter to the knife edge: R;= 4 km

» Distance from the knife edge to the receiver:  z, = 8 km

» Beamwidth parameter: o = 200m (beamwidth [02°)

(refer to Figure 2.1-2)

Figure 2.3-1 compares the total mean power to the knife edge roughness or the standard
deviation of the heights.

Note that as the rms roughness on the knife edge increases, the amplitude oscillations
decreased due to the destruction of the phase interference between the direct and the
scattered fields.

In the next several figures, the results for the mean power are given for knife edge to
receiver separation of 4 km. These values for power are given in dB and have been
normalized by the free-space result; the normalization for the power when the roughness

o isvaried is

K[

aa

Equation 2.3-1

40




0.00

-1.00

-2.00

Normalized total power (dB)

-4.00

-5.00

-6.00

2.00

1.00

0.00

-1.00

-2.00

-3.00

Normalized coherent power (dB)

-4.00

-5.00

Total Power in LOS Direction

Spot size radius = 200 m; Gaussian Height Statistics: Correlation length = 20 m

/A\
/N

A\

N\

VARVAR

I

-3.00 -

Distance from Tx to knife edge: 4 km

Distance from Rx to knife edge: 8 km

-6.00

!
10 20 30 40 50 60
Distance from LOS to mean knife edge level (h), m
Figure 2.3-1: Total mean power (receiver to knife edge: z, = 8 km).
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Figure 2.3-2: Coherent power (receiver to knife edge: z, = 8 km).
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In Figure 2.3-2 we present the coherent power in which we can see a slight variation
from the total power of Figure 2.3-1. The total power is significantly larger than the
coherent power when the knife edge is nearer the LOS and o is large. It remains greater
than or equal to this power throughout the calculations as would be expected. Note that
each of these figures shows that as roughness is increased and as the knife edge is closer
to the LOS, the power in the coherent field is lost to the incoherent field.

Incoherent Power in LOS Direction

Spot size radius = 200 m; Gaussian Height Statistics: Correlation length = 20 m
0.00

-5.00

o
= \ Legend
5 -10.00 N : - Height
g D!stance from Tx to knl_fe edge: 4 km Std Dev (m)
o Distance from Rx to knife edge: 8 km
= \ —sigma =2
[
[} I ——sigma=4

-15.00
‘§ ~N sigma =6
< \ —sigma =8
el
o) — \
N
T .20.00 N
5
z \

-25.00 \

=
-30.00
0 10 20 30 40 50 60

Distance from LOS to mean knife edge level (h), m

Figure 2.3-3: Incoherent power (receiver to knife edge: z, = 8 km).

The incoherent power is given in Figure 2.3-3. In addition, the constructive and
destructive interference in the total power that is usually predicted by conventional knife
edge theory is lost as roughness is introduced. The total diffracted field is a superposition
of the incident field and the edge-diffracted field; thus, the conventional oscillating
behavior of the total field as the point of observation is moved away from the edge is due
to the phase interference between these two fields. When the roughness on the edge
increases, the edge diffracted-field becomes more incoherent and the phase interference
consequently diminishes leading to an attenuation of the oscillations in the coherent or

mean total field.
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Figure 2.3-4: Total mean power (knife edge height standard deviation: ¢ =5 m)

In the next several figures, we present the total mean and the incoherent power as a
function of distance from the knife edge for two different roughness values: ¢ =5 m

(Figure 2.3-4 and Figure 2.3-5) and o = 10 m (Figure 2.3-6 and Figure 2.3-7). The

normalization for distance variation is simply:

Eol”
R?

Equation 2.3-2
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Incoherent Power in LOS Direction

Spot size radius = 200 m; Gaussian Height Statistics: Correlation length = 20 m, Std dev =5 m
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Figure 2.3-5: Incoherent power (knife edge height standard deviation: ¢ =5 m)
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Total Power in LOS Direction

Spot size radius = 200 m; Gaussian Height Statistics: Correlation length = 20 m, Std dev = 10 m
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Figure 2.3-6: Total mean power (knife edge height standard deviation: ¢ =10 m)

Incoherent Power in LOS Direction

Spot size radius = 200 m; Gaussian Height Statistics: Correlation length = 20 m, Std dev = 10 m

0.00
-5.00
z Legend
o Distance
5 -10.00 from LOS
z \ to knife-edge
o
< —1m
g \ \
2 1500 X 5m
3 \\ —10m
C
= 15m
°
g \\\
T 20,00 ——
£ \ \
\\
-25.00
-30.00
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

Knife-Edge to Receiver Distance (z,), km

Figure 2.3-7: Incoherent power (knife edge height standard deviation: ¢ =10 m)
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2.4 Wide Angle Scattering by Randomly Rough Knife Edge

In the previous sections, we saw the results for scattering from a rough knife edge
along the line-of-sight (LOS) coordinate. Nevertheless, there are often multiple
transmitters or receivers and consequently, the power is desired in other directions. In this
section, we consider the field lying on points outside the LOS direction. This will be
accomplished primarily using the paraxial approximation, but will also be checked using
the method of stationary phase. The solution was also sought in terms of the saddle point
method; however, although it is more widely applicable than the stationary phase result,
the solution becomes very cumbersome. The saddle point solution was compared for a
smooth knife edge (two-dimensional problem) with favorable results; however, in three
dimensions, the solution has branch cuts similar to those found in Banos [1966]. This

solution has not been pursued at this point, yet it remains a topic of future exploration.

2.4.1 Paraxial approximation in wide angle scattering

The paraxial approximation is expected to hold only for those directions near the LOS.
However, as we shall see, the spectral content of reasonably sized beams allows the
paraxial approximation to be used in most cases. The paraxial approximation breaks
down, as the beam becomes very narrow, consequently with increasing the spectral
content of the beam.

We begin with the four dimensional, space/spectral integral from the previous
section. This describes the spectral summation of the beam components integrated over

the “aperture” region.

E(—’ ) e_jkoRl 0 0 00 0 @~
)= e
° enfamR, EREREI

L2 L2 .2
e W T gy dydk, dk,

Equation 2.4-1
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As before, we implement the paraxial approximation which is essentially the binomial

expansion of the square root expression of the phase function

[ +_(k§+k§)
N S R R A R
and substituting into Equation 2.4-1, we find a function which can be integrated.

e_jko(zo+R1) _(_)x2+y2 '(k§+k)2/)

. 0 0 0 00 . . a TN 2578
ER)=S [ [ ] Te o ekl bmye)e™ o gy gy dk,

Equation 2.4-2
The spectral integrals are easily accomplished since the spatial components of the
spectrum are no longer coupled. We have two similar integrals in the ky and ky

integrations

f 2
Lo, 2 _Jk(X_XO)
A Pewl SEAE - 21K
J' e 2k e+JkX(X Xo)dkx - - e 2z,
“oo —JZ,

Replacing the x and y spectral integrals by the above results (for x and vy, respectively),
we find the total field after diffraction by the knife edge (in the physical optics

approximation)

- ik +y3) ik xo ) =ik(y-yo)’
2 2
e—a(x +y )e 2z, e 2z, dxdy

Equation 2.4-3
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Next we must integrate the incident field over the aperture region, thus implementing the
physical optics approximation. Making a change of variables, u =y +h_; du=dy, and

evaluating the integral, we find the closed form solution.

ikl 0u2) —K? g K
_ ke JkoR1 Jk(;ZOWO) %7;; —_ —a(u—hc)z—%J%Eu—hc)
E(T,) = ] ———¢ o e e 0 du
8T°R,Z, ap
o cikfeeyz) k)
—jkoRy S S 0 i [l
= j—ke e %o e o erforqJah, - kYo 0
16TR,z,a 0 2:Jaz,

Equation 2.4-4

This is the final result for the smooth edge in terms of the complementary error function
of a complex argument.

The rough knife edge has a similar development. Again, we start with the Kirchhoff

diffraction integral in the spectral domain, and implementing the paraxial approximation,

. -jk x2+y2 - jk(x=x 2 —jkly-y 2
~ . ke_JkOR1 220 O) ® * —a(x2+ 2) (22 O) (22 O)
E(f,)=j——¢ ° [ e Y'le ° e °  dxdy
8T[2R120 —o0 —(he+3h¢)

Equation 2.4-5

Next we make the change of variables, u =y +dh.;du =dy, and averaging over the

fluctuating portion of the roughness on the knife edge.
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] . ke 2z —ax? 2z
E(T,)))=] e 0 e e °  dx
< ° > 8T°R,z, —J;o
2
© a(u—éhc)z—jk(u_&;cz_y")
Of (e ° du
_hC

1 .k
where a= +j—
2 2R,

This average over the fluctuating portion of the knife edge is evaluated using a Gaussian

Equation 2.4-6

probability density function

1 20
V2mo

Consequently, the integral for the mean field is evaluated to yield the following result for

p(dhe) =

total field due to the diffraction by a rough, knife edge obstruction: in the physical optics

approximation.

_ikpe+y2) 2EyE)

j O

_ ~jkoRy _ .
<E(_I"O)>: jke— 2z, e 4az} erch 2alhczo Jkyo O
161TR,Z,a O 5 O
ot 2z, 220(20 a1+1) 8

Equation 2.4-7

From Equation 2.4-7, we see that the effects of the roughness only enter through the error

function. Of greater interest is the mean power or coherent power; this can be written as

s 0 O O x . 0
ke fazo g 4aizg 0 —2a;h.z, = Ky, 0 —2a3NcZ, — jky, [
= I erfc 5 %rfcD 5

(16rR,z, P asa; P222,(20%,+1) §  B2oy22,l0%] +1) B

Equation 2.4-8
Figure 2.4-1 through Figure 2.4-4 show the results for scattering by a rough knife edge.
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Figure 2.4-1: Average Coherent Power; Varying Heights

Figure 2.4-1 shows the effect that varying the height of the knife edge, relative to the
line-of-sight path, has on the coherent power. From this figure, it can be seen that as the
knife edge is pulled away from the line-of-sight path toward infinity, the effect of this
obsticle diminishes. This is seen since the height of the oscillations is decreasing with
increasing distance. Figure 2.4-2 shows the effects of the roughness of the knife edge.
From this figure, the phase interference effects are damped out as the roughness is
increased. Just as was seen with the power along the line-of-sight path, this effect is due

to the destruction of the phase coherence of the energy scattered by the edge.
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Average Coherent Power
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Figure 2.4-2: Average Coherent Power; Varying Knife Edge Roughness

Figure 2.4-3 is very similar to that of Figure 2.4-2 since it shows the same effect. This
figure, however, was included since it also combines the effect of edge roughness with
the effect of mean edge displacement. Essentially, it demonstrates that the curves are

simply shifted and are slightly smaller in amplitude.
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Average Coherent Power
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Figure 2.4-3: Average coherent power for varying roughness, knife edge displaced

by 10 meters

Finally, Figure 2.4-4 shows the effect of changing the mean height from the line-of-
sight path for a rough edge. This figure is similar to Figure 2.4-1 in that the curves appear
to be truncated at different points. For very rough edge, the effects are more closely
approaching the effect expected in geometrical optics, where the shadowing is distinct
and does not include the phase interference effects in the transition zones demonstrated in

classical diffraction by a smooth edge, see Figure 2.4-1.
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Figure 2.4-4: Average Coherent Power; Varying Mean Displacement from LOS

2.4.2 Stationary Phase Approximation to Wide-angle Scattering

Alternatively, we can formulate the wide-angle scatter using the method of stationary
phase or saddle point integration, as needed. In this approach, we begin by performing
the spatial integral (i.e. the integral over the aperture). From this effort, we find the result

-jkgR o o . _ _
E( 0) & J’ Ie_JkXXO_JkyyoeﬂmZo
(2T[) 1 —00 —00
k2 2 kzaz
B 0 k,a [H
Eij\/_ 4 HELX\/_ 4 erch’ & _ JLlj:dedk
H % ga 2 0

Equation 2.4-9
The error function of a complex argument yields a complex function. Combining terms,

rearranging and substituting for the complementary error function,
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Equation 2.4-10
Where we have substituted the series expansion for the error function of a complex

argument [Abromowitz, 1972]
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Each of these integrals is to be evaluated by the method of stationary phase.
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Stationary phase evaluation of the first integral yields (see Appendix 2.4.3)

e JleGZ 0 00 ( ) kaxo_jkyyo +j k2_k)2(_k§ Z,

— gy \k e dk,dk

821’ R, EREN y
a2 kcos 8, e (Ri+o)

U J 8T[R1I‘o gl(kxs’ kys)

and the second integral yields a similar result with slightly shifted stationary points due to

the extra phase term (see Appendix 2.4.3)

1 7% 7%
a? e KRy

k2 _ k2 _ k2 e _j(p(kXS’kyS)rO
XS ys
8RRy I,

O jgz(kxs' kys)

where @k, ky) = k, sin @, cos @, +ky§in B, sin@, +%Eﬂ/k2 ki —kj cos@,

(0]

Equation 2.4-12
One computational note: the above exponential factor should be distributed into the

hyperbolic sine and cosine within the function g(ky) so that these functions do not “blow
up.” Hence,
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The figures demonstrate the use of the stationary phase result.

Average Coherent Field

Mean Displacement = 10 m; Observation Distance = 5 km; alpha = 200 m

Equation 2.4-13
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Figure 2.4-5: Failure of the stationary phase result.
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Figure 2.4-5 shows a case of poor agreement. If the observation distance is not large, the

stationary phase approximation does not provide a good estimate for the average coherent

field. Figure 2.4-5 shows an example of the failure of the stationary phase result. It was
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predicted that the stationary phase result should provide a good estimate when the

observation distance is large and the beam width factor is small.

Average Coherent Field

Mean Displacement = 1 m; Observation Distance = 50 km; alpha = 50 m
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Figure 2.4-6: Agreement of stationary phase and paraxial approximations, h=1m

Stationary Phase Paraxial ‘

Figure 2.4-6 shows reasonably good agreement for a large observation distance and a
small beamwidth. The stationary phase agrees in magnitude with the paraxial result. The
ripples in the paraxial result may be a matter of further investigation since the stationary
phase result should hold as the angles get larger, whereas the paraxial should break down.
However, the angles explored are small enough so that the paraxial should also be
accurate.
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Average Coherent Field

Mean Displacement = 10 m; Observation Distance = 5 km; alpha = 50 m
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Figure 2.4-7: Degradation of the stationary phase result by observation distance

Figure 2.4-7 has the same parameters as Figure 2.4-6 but the observation distance is
smaller. The degradation of the stationary phase result is obvious from this comparison.
This is seen in the magnitude of the peak and the alignment in the “lit” region. As the
beam width becomes larger, we expect that the saddle point method of integration will
become necessary. Figure 2.4-7 shows another case where agreement is expected. In
general, the magnitudes do agree (although only the real part is shown). This figure is
simply an example showing the effect of increasing the separation from the line-of-sight
to the knife edge. Finally, Figure 2.4-8 shows another case where the failure of the
stationary phase result has been predicted: increased beamwidth. This result should be

compared to the narrower beamwidth result of Figure 2.4-6.
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Average Coherent Field

Mean Displacement = 10 m; Observation Distance = 50 km; alpha = 50 m
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Figure 2.4-8: Agreement of stationary phase and paraxial approximations, h =10 m
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2.4.3 Appendix: Stationary Phase Evaluation of Equation 2.4-10

The evaluation of this integral

(2 +K3 o2
0 0 _ gy —ik +i k2_k2_k22 -
[ oge toreT Yo TNE T Ty Fog 4 gk, dk,

—00 —O00

via stationary phase requires some limiting assumptions; the exponential factors

(k2 ok2)o

e 4

must not force the integrand to zero too quickly with respect to the oscillations.
Otherwise Laplace’s method must be used when the decay is very rapid and saddle point
evaluation becomes necessary in the intermediate case.

Converting the phase of the integrand in the first integral in Equation 2.4-10 to

spherical coordinates and choosing range to the observation point as a large parameter,

KXo +KyYo +1/k? K2 = k2 z,
O roﬁ(x sin @, cos @, +k, sin 6, sin@, +1/k* -k -k coseoﬁ

ky +kj | o?
o o _M —jroﬁg(sineo cos<p0+kysineosin(po+,lk2—k>2<—k§ coseo%
e kydk,

O 5 Je 4

Next we find the stationary point
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yields the well-known stationary points

K =ksin@, cos @,
kys =ksin 6, sin @,

expanding the phase around the stationary point



where the partial derivatives are given in shorthand notation and evaluated at the
stationary point. An approximation to the integration is given below; here the amplitude
terms have been expanded to include only the first term of the Taylor series and the phase

terms include the first two terms.

0 00 =jr %X sinB, cos @, +ky sin 6, sin @y +4/k? —k>2< —kf, cos0, %
,)e Ik,

O a

f 2
jro cosB, N Kis gkx_kxs)z
2,/k2 —k2, k2 ( —Kk2. —k2 )
e y g xs “Kys) O
jro Ccos 60 kaskys

k, -k k., -k
2 kz_k)z‘s_kfls (kz—kﬁs—kfls) e XS)( y YS)

<

jro cos8, §+ ks %k K )2
S
A -kis-kis) 5

[ O [ I Y Y N
&)
D:DDDDDD%_D]HDDDDD
~
=
o
~

Equation 2.4-14
Substituting for the stationary points and simplifying, this approximation to the integral

can be written

O jr & k?sin? 6, cos? @ O]
oL Ky —Kys )
O k% k2 cos? B, E( O
0e 5
a 26020 o 0
irg 2k“sin” By sin@, cos@, _
—jkry ¢ % 5 2 kZ cos? 8, (ky =k )y kyS)E
Dgl kys € [ e dexdky
—00 —00 B &B+ sin? 0, sin? ®o ak _k B
D@ 2k g k? cos? 0, yS 0
J 0
: E
where (k2 ~kZ - kf,s) = k% cos? 0,

Equation 2.4-15
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Note if we let k; =(ky —kys) ky = (ky —Kkys), the phase may be written in the

following matrix form:

[ 2 2 d 2 i 0
‘|’<[1+tan 8, cos (po] Z—T(tan 8, COS @, Sin @, Tk, O

KT K = [ ko2 , | k RV s iy
E?T(tan 0, COS @, Sin @, 2—1’([1+tan 0, sin cpo]% 2

Equation 2.4-16
Hence, if we diagonalize the matrix, @, using the matrix of eigenvectors, P , we find that
we map from the vector K =[k; k,] ,to K = [izl Ez] as follows:
K=TKand KT ®K [ KT[TT$T] K =KTAK
= _0O3 oO : :
where A =[] , 0 (matrix of transformed eigenvalues)
[

A0

Consequently, the integral becomes (after expanding the argument of the exponent from

its matrix form)

0 o ( ) —jroﬁg(sine0 cos<po+kysineosin(po+\/mcoseo%
I faulky)e kydky
—00 —00

To [y272 ,,272
ik, ©© —J*[Mkl +)\2k2]

—00 —00

(i, , k)

dk,dk
ok, di,) |

where the Jacobian transformation matrix is given by

oK, aky
ok dky) [ok, Bk,
~ 0(dky,dk,)  |ok, Oky
ok, 0k,

[aury])

hence, using a result from contour integration,
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00 00—72
; IeJ [)‘k1+7\ ]kldkz 0

R \/*\/*

but since W = ‘TT$THTT‘ FHT ‘ :F‘

®w 0o - —Azk A2k3
[ Je 2 ikt Z]dkldkz 0j 22”2 =i o 2m
e V)\l)‘Z 1’ ‘CD‘ \ (pkx(pyy - (p>2<y
B j2Hchoseo _ j4nk00590
r.0 r.0
where
[l HN 0
DBy ~ By = r‘gzg b M m, M 0 Kk ZE
4k E (k2 - k>2<s - kyz/s) Eg (k2 - k>2<s - kyz/s) E (k2 - k>2<s - kyz/s) H
_ T B1 (k>2<s+k3215) H_ 2 k? il I
4Kk ﬁ (kZ _k>2<s _kis) ﬁ 4k? E(kZ _k>2<s ﬁ 4k? cos? 9,

so that the first integral is evaluated as

0 o —jroﬁg(sineocos%+kysineosin(po+,lk2—k>2(—k)2,coseoa1
I 1 91ky)e kydky

—00 —00

Next we evaluate the second integral (rearranged)

(k2+k2)u2
@ o - —jkyXo =Ky Yo —ikyhe +iy k2 k& —k z

fre 4 glky)e oo kveikyheg 9% gk,
—00 —00

Equation 2.4-17

Next we find the stationary point
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OH(X sin®, cos @, +ky§in 8, sin @, +TCE+ k? =K% =k cosOOH
[o]

ok,
k, cos6,
JKE -k K2
k2, cos® 6,
k? —kZs — ki

=0

O sinB,cosq, =

squaring O sin® 8, cos® @, =

Equation 2.4-18

Hg( sin 6, cos @, +ky§ineosin(p0 +|:CE+ k® —kg —kj coseoﬁ
[¢]

=0

mogogo

O
6ky .
akXSvkyS)
k,.cos®8
O sin®,sing, AL ZVS : 0 ;
I k _kxs_kys
ina O sin? 6. sin? +2hC . +|:pcg kf,scoszeO
squaring sin sin“ @ —£sin @, sin @ =
o} 0 r, 0 0 Hro k2 k>2<s_k32/s

Equation 2.4-19
adding the squares from Equation 2.4-18 and Equation 2.4-19

] [ 2
sin” @, + 2D in 0, sin(po+EL°§D: cos” B, (k)z(S +k§s)
i D S

h 0y O
0 k*=sin? 60+2r—°sin905in(po+% = (k)z(S +k§s)§+2—csineosin(po+E:—c O
0 0

0 0 fo H
. e . o H

k2§|n29 +2-Csin@, sin +%‘:
° o >IN o g D

0 (k2 +kE)= 8 - s
+2h°sineosin(po+EL°§D
r‘O r0 E

using this relationship, we may now solve for the stationary points

|

(I N
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_sin?0, cos® @, [

s cos? @, [* - (k>2<3 + kxzzs]
B EPI k2 _ k2 k2
kf,s: Eineosin(p0+:hCED[ ();S+ yS]
i H cos’ 0,

Since the observation distance is growing large, we expect the third term to become
negligible (with the exception of h, — oo, free space). The remainder of the development
is essentially the same as the previous since the partial derivatives are the same. Restating
the approximation to the integration where the amplitude terms have been expanded to

include only the first term of the Taylor series and the phase terms include the first two

terms.
0 . O 2 a U
jro cosf, Ks _ 2

Eez k2_kis_kis §+ (kz_k)Z(s_kis) ékx kxs) S

W W

O jro cosB, 2Kyskys 0

k>2<s kzs 2 . Ky _kxs ky =k S

°I° }° e_(+4y)u_J(p(kxs'kys)ro %Eez,/kz—kis—kﬁs (kz—k)z(s—kf,s) ( Mo )Qdk dk
XEy

o B jro Coseo §+ k)zls ﬁk K )2 B

y " Rys

B@z 2% -k% B [k2-k&-k2) § S

il il

= =

Consequently, the integral becomes (after expanding the argument of the exponent from

its matrix form)

[C B o]

i1 k)

—00 —00

. . . : 2 2 2
e_kaXo_JkyYO_Jkyhce+J k®-kx —ky z, dkxdky



/2
O j41T92 (kys)(k2 - k)z(s - k?/s)L e —j(p(kxs,kys)r0

where cp(kx,ky) = k, sin 8, cos ¢, +ky%in B, sin @, +?—OCE+ k? - k2 - kf, cos 6,

2.5 Pulse Propagation Across a Randomly Rough Knife Edge

In this section, the frequency correlation of a pulsed waveform transmitted across a
knife edge obstacle is examined. In turn, the frequency correlation will yield information
about the average power in the transmitted pulse waveform. This will be accomplished
using the two-frequency mutual coherence function as described in Ishimaru [1997].

In order to construct the response of the medium to a scattered pulse, the correlation

of the output-scattered fields must be derived. Writing the input signal as

e;(t)=Re{ E;(t) 10! |

where E;(t) is the complex amplitude of the signal. If we write the incident pulse as an

inverse Fourier transform, the complex amplitude, E(t), can be written
Et) = & [dwk, (w)el®
i om0 i
and the input spectrum becomes (for real signals)

[E: (- wp) +E; (0+ o) ]

N |-

e wma) +Eio-w)] -
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Then the transmitted pulse can be written as the time-domain, incident pulse convolved
with the time and frequency dependent impulse response of the knife edge obstacle, or

equivalently, in the frequency domain, the output signal becomes [Ishimaru, 1997],
1@ ~ o
E(t) = - - [do H(wy + W)E; (w)e
LSS

Here the Fourier transform of the complex amplitude, E, is written as E.A general
expression for the correlation of the transmitted field, or the total power, is then found in

the following time correlated signal,

C(ty,tp) = <e(t1)e* (t, )>

1 j(wity —wpty)

(an del dezE (01)E] (wp)Te

Equation 2.5-1
where Ei (w) is the complex envelope of the incident wave form at the time harmonic

frequency w and I is the two-frequency mutual coherence function.

The two-frequency mutual coherence function is the correlation of the time-varying,
frequency domain transfer function, H(w,t), at two different frequencies and two different
times [Ishimaru, 1997]

M= (o + o, @ + ity ) = (H(y + @y, t)H (g + w3, 1))

Equation 2.5-2
Once the two-frequency mutual coherence is constructed, the scattered power density is

found whent; =t, =t

P(t) =™ doo [, doo, B (00) By ()T (o, 0, )€1 742"

Equation 2.5-3
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2.5.1 Two-Frequency Coherence Function for a smooth knife edge

Since the expression for the rough knife edge is so complicated, the result for the
smooth knife edge is a valuable check. Starting with the expression for the transmitted

monochromatic field by a smooth knife edge,

P(t) =(E()E" (1)

}"dm doo, K K" Ej (@) (wy) e 117!

[ du; [ du,

‘hc ‘hc

* ® —a;x?  —agy? —arx2 —ayy?
Op dx; [ dx,e “le "“le "“"2e "°72

— 00 — 00

where the frequency dependent parameter, a, was previously defined as

al—B_'l'J %ﬂ— a,= B— j ZH:%—J&E
0 Cod

for wy; = oy + 0y, Wy = Wy + Wy

Since all quantities are deterministic, no averaging is required and the spatial integrals are
simply a product of separable integrations. Performing these spatial integrations

P(t) =(E(E" ()

W
| :(R1+Zo)

_ 7 ° = =* Wy1Wypp € - jogt
= rd dw, E; E.
1 don f den B (E[ () =2 e
Di*erfc(— hm/al)erfc% h.yas ﬁ

4aja,

for wy = wyy —wy, =0y —w,

Equation 2.5-4

Substituting for the frequency-dependent parameters
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),
_Ji(Rl+ZO) ejwdt

P(t) = I dwlf deoy E; () B () L01202°

o2
2nc° Ry z, %4_1% E
Derch—hC %ﬂﬂ erch—hC %—jﬂ

H cod H cod

For a narrow bandwidth signal or a large observation distance, the complementary error
function can be approximated by their values evaluated at the carrier frequency, leading
to

—J&(Rlﬂo)

P(t) O ; dey ; da, E; (o) E} (o) 21002
(2m?8ch Ry 2, B» @102 , »; 0001 Woz H

EP‘4 od2 a ‘300I H
H_ El EL E
Derch he 2+J d erfc he j oy d

Changing the frequency integration to sum/difference coordinates

o iwyt

1
. 001”’002) wd=(001‘002)

l\J

ddd

0.5
_05 ‘dwsdwd = — dwdwy

d(&)ld(k)z = ‘ ‘1

wOl_w0+ws+2wd'w02:wO+ws_

the average power is approximately written for relatively small bandwidths, wy <<y,

with the narrow band approximation

1 L
Wy Wyp = g»% + 2000 + 0 —Zwﬁgﬂ[w% +2wows]
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o]

1 . 1 . ©
P(t) DerfCE— h /%ﬂ%%erfcg—hc %— %%&d@_{od%
(A)
2 (Ry+2,)
1 +2 ej(*)dt c
e Ty wd)E (ws——wd) ot + 20
(2m“°8cy Ry zZ, 1 +000+2°00(*)s +2] 0y
4 ¢ d? a’cyd

Equation 2.5-5
If the incident pulse is assumed Gaussian (infinite in time), then the input signal and its

spectrum are written

2

Ei()=E, e 2, E.(w)=Eov2mbe 2

where b is the "pulse width"

Equation 2.5-6
Substituting and rearranging

01 21,242
P(t) D—erfcH +J— erch—h Egb”d
W Ry 24

2
I wd 2 ejwdt e C (R1+Zo ° (‘05 [Q)O +2%(DS.|
(2 )2 -°° 000 Co d2 (*)dCO
G4 (JOOG

Equation 2.5-7
The sum-frequency integration is easily accomplished using Laplace’s Method (for the

narrow band assumption)

21242 p
P(t) O- erch / erfc }ﬂlz Egbd
"\ C0 W R1 24

(2T[) —00 E&+ Co d2 +jwdCOdH b
H2  2wpa® " wya®

Equation 2.5-8

71



This approximation has been checked for the values used in the examples for the LOS
power calculations in Section 2.3 for pulse widths down to 10 nanoseconds for a 1 GHz
carrier (or a 10% bandwidth in all cases 10MHz — 10GHz). Rearranging the difference-

frequency integral,

P(t) DerfCH—hc %+J& erch_ hC le _J W EO(")O bda T[\/_
H Co d - a2 “cod HH8cy R, 2, (2102

L o
00 e 7 d eJ(“)dt e J C (Rl+20)
DI d(k)d > 2 d
R P L L
HZCO d 2q2 H

Equation 2.5-9
If the convolutional operator is denoted, [, then the integral is the inverse transform of a
product (with a delay factor), which is a convolution of the corresponding time domain

functions

2 2
P(t) DerfCH hC + J— erch_ h EO (A)Ozb da T[\/?[
] Cod Co 8(2m“ cq Ry Z,

(t- t0)2 0
2 U

Eﬁe n u(t)] O %e E

Equation 2.5-10

It is evident that as the factor, n, decreases, the pulse will distort for a smooth knife edge

since the transmitted pulse is a convolution of the original with this decaying exponential.
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Consequently, as the decay time of the exponential increases, the transmitted pulse width
increases due to the convolution — pulse spread. Since n is very large, the exponential
function is nearly a delta-function; this indicates that the pole due to the difference
frequency could have been neglected. The constant delay term, to, is simply the time of

passage, due to the finite speed of light, from the knife edge to the observation point.

2.5.2 Two-Frequency Coherence Function for a Rough Knife Edge

After a change of variables to bring the fluctuating portion of the knife edge
roughness into the integral as was done in Section 2.2, the frequency correlation of the

pulse transmitted across a rough knife edge is given by

P(t) =(E()E"(1)
= OIO d(*)l}o doy, K K Ej(@)E (o) e 17! OIO du, °I° du,

‘hc ‘hc

D}o dx, }o dx, <e‘al(x12+[“1‘5hc1]Z)e-aZ(X22+[U2-5hcz]2)>

Equation 2.5-11
Through a comparison with Equation 2.5-3, the two-frequency mutual coherence function
for the pulse propagation across the knife edge is seen to be

M(1,0) = (H(01Xo,Y0,20) TH (6023 %0, Y0, 20))

.y
g Rurze) e , ,
— (*)01(*)02e _I J' _I J' _I e_al(xl +[U1_5hcl] )
41c’R, 2, S0 “w “w o <hg —hg

@—az*(mz +[uz-nco] 2)p(éhl, 3h,, Jdu,du, dx,dx, ddh, dsh,,

given the joint pdf for the knife edge heights, p(6h1,6hcz). Again, assuming Gaussian

statistics, and changing the x-integration into difference and sum coordinates,
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1
Xs=E(X1 +X2), X4 =(X1 ‘Xz)

o(xy,%,) ‘1 0.5

dx,dx, =
Xtz (x5, xq) -0.5

dx dxy = dxdxy = —dxgdxy

_ 1 _ 1
X1 =Xs +§Xd' Xy =Xg _Exd

the indicated average may be accomplished in closed form, yielding the following
unwieldy result, which includes the correlation function C(xg).

(o, 00) = <H((U_L;X01y0120) EH*((*)Z;Xo’yovZO)>

. Wy
-]J—(Rq+z 1 . 1
_ W12 € K Rar2o) m ° e —a1§‘s+2Xd§ —azg S_Zng
- 42 o )jdxd [dxse e
T R4z, Xd ) <eo o

O duy dul expD—
—%C —{C D(xq)

(alu% (20232 + 1)+ a uf (20231 + 1)‘ 453, C(Xq)usUy )@
where D(x )54(04 ~C?(xy) )alaz +20? (a1 + a§)+ 1

Equation 2.5-12

performing the X, integration,

L0
—de(Rlﬂo)

Moy o) = 200028 : T f dxg eXp§££Xd2§
4T[C RlZO (al +a;) D(Xd —® E 2 (al +az) a
Dj du, jdu1 expD— L [aluf(ZGZaZ +1)+ aZuf(ZoZal +1) 4a,a, C(X4)UqU, ]E
“he  -he D(xq) O

Equation 2.5-13

Another change of variables in order to change the limits, y; , =u; , +h; yields
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‘jﬁ(Rl"'Zo)

— WpiGnpp €
Moy, =
(, 02) ATE?R,Z,
°° T H1 aa; 22625 +1)0H
W - 4192 -
1tap d 1+ap

o [l 1 *
ydy, expg- —[az(YZ ~h. (20231 +1) 4a;a5 h,C(xq)(y2 —h )]D
0 0 D(xq)

o O 1 * * O
Egdh eXpS’ Dlx,) [31Yf (20232 + 1)+ Y1 (231 he (20231 + 1)+ 4aga; C(xq)(y, - hc)] E

Equation 2.5-14

The y; integration may be evaluated to yield

‘JT(Rl"'Zo) o *
Mo, 03) = 0301030292 [ dxg w exp§1—££Xf12 %
8mc°R,z, ~w (al +a2) (Zozaz +1) = 2 (al +a§) =
. D
EoIodyz exli)%-—a*2 (v2-h )ZE rch-\/_ e (20 a, +1)+ 225 C(xg)(yz ~h )DD
o5 looa; +1) 508 femeok) 9]

Equation 2.5-15

Assuming a Gaussian correlation function,

_Ax2

c(ax)=c?e %

The approximation that the erfc(*) is relatively constant over the integration range
remains true for large correlation lengths. Hence, the correlation function can be

evaluated at x4 = 0 and the x4 integration can be performed, yielding
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)
‘J*d(Rl"'Zo)

c 2 o H ; H
Moy o) = 201022 L fdy,expir 2 (y, —~h, PO
8C°R1Z02y a2(202a2 +1) 0 & (202a2 +1)

D O 00
@rfcm—\/_ ohe (20 a, +1)+ 2a, C(0)(y, —h )S%
H D (20 az +1) (20 (al +32)+1) B

Equation 2.5-16
Since the y;, integration may not be evaluated at this point, we introduce the expression
for the power density as a function of time (in sum and difference coordinates), and the

pulse spectrum (Equation 2.5-6). Simplifying, using a narrow band approximation

P(t) =(E()E" (1)

2 2 b2 [ '| —J— R1+Z )
-b2w? —ood wp + 2(*)0005 ejwdt
8c? Riz,a9

\/ 2 ° H ag (v, —h,f %

= | doy | doy 2m2e

- - [dy, expi- -

a0(202aO +1) 0 g (202a0 +1) B
O . 20%agy, +h D%
@rfcm—\/gm O agyp + N DD

S\/(ZGZaE +1) (202 (a1 + a;)+ 1)55

1
0= B Iogit

1
where Wy S W~y = Gy — g O EE((Dl”wz)

Equation 2.5-17

1 [l
W10z = g»% + 20000 + 0 —Zwﬁgﬂ[u% +2wows]

under the narrow band assumption, the sum-frequency integral is performed,
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P(t) =(E()E" (1)

_ T[b(l)(z) 21 Idwd ety b22 wge‘ijd(Rl"'Zo)
4c’RyZ48 a0(20 ag +1) %
2 2, OO
Ej’dyz exp@r o 02 ~he) %erfcm—\/_ - 20 20Y2 * Ne B%
B (20230 +1) B H @\/(ZGZaS +1) (202 (a1 + a;)+ l)gH

Equation 2.5-18
Due to the limiting, narrow bandwidth approximation, the pulse response is the product
of two independent integrals: one in the difference frequency and the other in the y;
variable. The difference frequency integration yields a replica of pulsed waveform that is
simply time-shifted. The y, integration has been derived previously in Section 2.2.2,

when the continuous wave power was calculated.

P(t) =(E()E" (1))

D

_ T 1 - a?
4¢’RyZqa a8(202a3+1)

* 0d
202a0y2 +h, nd

O
O
S\/(ZGZaS +1) (202 (a1 + a;)+ 1)5@

Equation 2.5-19

0
00 * _ 2
ey, expéw el o
0 = (20 a0+1) H E

+7
where tg = 12
Co

Hence, the transmitted pulse, in the narrow-band approximation, is simply the time-
delayed replica of the incident pulse weighted by the amplitude and phase effects of the
rough knife edge. As an example, Figure 2.5-1 shows the received pulse shape for a
transmitted Gaussian pulse incident on a rough edge (1 meter roughness) for different
mean displacements of the knife edge from the LOS. The received pulse is simply an

amplitude weighted replica of the incident pulse due to all the approximations
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(narrowband, etc.). The weights are identical to the curves found for the power received

in Section 2.3.

Average Total Power

10 microsecond pulse; 3 GHz Carrier; Gaussian Roughness Statistics: 1 m std dev, 20 m correlation length
2.50

2.00

Knife Edge
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from LOS (he)
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—h=1m
—h=5m
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1.00 —at edge

0.50 \A
0.00 -
0.00E+00 2.00E-05 4.00E-05 6.00E-05 8.00E-05 1.00E-04

Time (seconds)

Normalized Power

Figure 2.5-1: Received pulse shape for 1 meter roughness

Figure 2.5-2 shows a similar result as the previous figure, however, in this figure, the
roughness is greater and therefore, the amplitudes are lower. Again, the weights of the
curves are determined to be those found simply for the received power in Section 2.3.
When the pulse shape is considered to be the superposition of the direct and the
scattered wave, one may expect that a significant dispersion effect will be present since
the direct path can be much less than the path from the transmitter to knife edge to
receiver. However, due to the narrow bandwidth assumption, dispersion will only become
significant when the electrical path length is significant with respect to the pulse width.
For a 20-meter separation from the LOS path to the edge, the dispersion effect will only
become significant for pulse lengths on the order of nanoseconds, which have been
discounted by the narrow band assumption. We may try to observe the dispersion effect

as we move the edge farther from the LOS path. However, as the edge is removed away
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from the LOS path, the scattered wave becomes less significant, due to the beam taper;

consequently, the dispersion effect will not be appreciable.

Average Total Power

10 microsecond pulse; 3 GHz Carrier; Gaussian Roughness Statistics: 10 m std dev, 20 m correlation length
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Figure 2.5-2: Received pulse shape for 10 meter roughness

2.6 Conclusions

We have presented a method for predicting the total field beyond a rough knife edge.
Using a spectral approach in combination with the paraxial approximation and the
Kirchhoff approximation, we can predict the field, total power and its coherent and
incoherent components in the line-of-sight direction beyond the obstruction. In this
chapter we have presented the particular case for a Gaussian roughness on the knife edge.
The coherent field was given in terms of the complementary error function and the total
power is given by an approximate expression; note that this expression was seen to be
valid only for large, but practical, correlation lengths. The knife edge obstruction creates

a total field that is a superposition of an incident field, E;, and the edge-diffracted field,

E, . We note that the incident field is the field in the absence of the knife edge and the

diffracted field can be separated into two components: a mean and a fluctuating portion,
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Eq = (Eq) + 84
The mean diffraction field is a result of an effectively smooth knife edge; hence, this term
IS present even in the absence of roughness on the edge. The fluctuating portion results
from the roughness on the knife edge. Hence, for small relative roughness, the diffracted
field is equivalent to the mean diffracted field.
Eq = <Ed> and OE4 =0 for %«1
We have seen this result for the Gaussian roughness; the smooth knife edge results in the
conventional oscillatory behavior of the total field which is simply a manifestation of the
interference between the incident and the diffracted fields. On the other hand, when the
roughness on the edge increases, the edge diffracted-field becomes more incoherent and
the phase interference consequently diminishes, leading to an attenuation of the
oscillations in the coherent or mean total field.
Eq = OEq and (E4)=0 for%>>1

Hence, as the roughness increases, we see in the figures that the interference pattern in
the total field and total power decreases since the diffracted field becomes more
incoherent. The model also predicts that the incoherent power is strongest near to the
rough knife and is not generally appreciable when the point of observation of the
diffracted field is far away from the edge. This, of course, is in complete agreement with
our understanding that shadows, and hence the details of the shadow-causing boundary
(knife edge), exist only a finite distance behind the boundary.

The wide angle scattering from a rough knife edge may be interpreted in a similar
manner. The paraxial approach and the stationary phase result agree in magnitude under
narrow (but reasonable) beamwidths and for large observation distances. This was a
result of the assuming that the phase portion of the spectral integration dominates the
result. However, under other circumstances, these large distance and smaller beamwidths
may not be desirable. Hence, although an attempt at saddle point integration of the
spectral integration has been performed, this task was interrupted by the difficulties

encountered with the branch cuts emerging due to the spectral kernel and the branch cut
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from a Hankel function which enters the solution after reducing the problem by one
dimension. This task can be completed using a transformation found in Banos [1966].

Finally a preliminary result has been presented for the propagation of a pulse past the
rough knife edge. In reducing the problem to a usable form, it was found that a
narrowband approximation was necessary. The received pulse, in both the smooth and
rough edge result was found to be an amplitude-weighted replica of the transmitted pulse.
The knife edge height and the roughness play the same role as previously recorded for
LOS, continuous wave results: they change the amplitude of the pulse. Even with this
approximation, the possibility of pulse spread was encountered under some extreme
circumstances. In addition, due to the narrow band assumption, several integrals were
dismissed as insignificant; however, as the bandwidth grows, these integrals will assume
a greater role and consequently pulse distortion and dispersion may become an issue. As
a future effort, the results presented in this dissertation should be generalized for larger
bandwidths.
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Chapter 3 Rough Surface Scattering

Rough surface scattering has become a well-established field. There have been many
different approaches to the problem, ranging from the purely analytical to the purely
numerical. However, in problems such as the foliage problem, few approaches go beyond
the flat surface or the Kirchhoff models [Ulaby, 1990; Lang, 1993]. In this thesis
scattering by the surface bounding a random medium will also be handled using the
known techiques of impulse response [Brown, 1977] in section 3.3 and the Kirchhoff
approximation in section 3.4.1. The Kirchhoff approximation is also rederived for a two-
frequency which is applied to pulse scattering by a rough surface [Ishimaru, 1993] in
section 3.4.2. Typically, in the numerical approaches, the integral equation plays a key
role. The numerical solution is also examined in this thesis, first, by briefly reviewing a
fast iterative method, the method of ordered multiple interactions (MOMI) in section 3.1
[Kapp, 1996]. This idea is then applied to a reformulation of scattering by dielectric
surfaces in Section 3.2. In addition, the numerical (MOMI) approach is employed in

Chapter 8 in order to examine the interaction of an object above a rough surface.

3.1 Integral Equation Formulation of Rough Surface Scattering

and the Method of Ordered Multiple Interactions

The integral equation governing both the TE and TM polarizations in the 2-D scalar
problem has been derived in many sources including [Ishimaru, 1994], by many different
techniques, such as equivalence and the use of Green’s Identities. Green’s second identity
is given by

fM=rm-+[,, 50

Equation 3.1-1
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In Equation 3.1-1, V represents a certain volume in space surrounded by the closed

surface S and S., as shown in Figure 3.1-1.

\\}“ £ (F) .

n

Figure 3.1-1: Problem Geometry for the Derivation of Boundary Integral Equations

Referring to Ishimaru [1994], an intermediate result derived by these methods is our

starting point; we start with the following integral equation relating the total scalar field,

f(T), at the observation point, T, to the incident field, f'(¥) using Green’s theorem:
oG(T1,T1) of (1')

-G(7,1") o

f(M =26+ H () Hr, roc

< L
where the contour integration is taken over a boundary enclosing the source and
observation points consists of a hemisphere at infinity and a contour along the rough

surface; see Figure 3.1-1.

The Green’s function, G(T¥,T"), and its normal derivative are chosen such that their
contribution is zero at infinity; hence, only the integral over the surface remains. This
integration over the surface is reduced in its support by limiting the illuminated region to
only a portion of the surface by use of a tapered beam. A more detailed description of this
process can be found in many sources including Kapp [1996].

For 1-D surfaces, the contour length may be projected onto the x-axis. This reduces
the integration to an integral over one Cartesian coordinate. Hence, employing the

transformation
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dl' =1+ 23 (x') dx

Equation 3.1-2
we can construct the governing integral equations in rough surface scattering. First, the
Electric Field Integral equation (EFIE), can be derived directly from Equation 3.1-1 by
enforcing the following boundary condition on the perfectly conducting surface:

f(r)=E,(F)=0. This results in the following first kind integral equation applicable for

TE polarization.

E()

E()—j G(F, )1+ L (x) d

Equation 3.1-3
In deriving the Magnetic Field Integral Equation (MFIE), the following boundary
condition is enforced: the normal derivative of the tangential magnetic

field,of (r')/on" = aH (7")/on’, is zero on the surface. This results in the following

second kind integral equation applicable for TM polarization.

H (r) 2H! (r)+21 H (#,)OG(” #')w/1+Z (x")dx’

Equation 3.1-4
In order to express the equation governing the TE polarization in the form similar to the
MFIE, we take the normal derivative of both sides of Equation 3.1-4 along the unit
normal i defined at the observation point T. Then, we eliminate the weak singularity of
the normal derivative of the Green’s function through a limiting process [Ishimaru,
1994]. This yields the following second kind integral equation for the TE polarization

oE, (T) s 0E, (T) 5 “ 0E(T) aG(* )
on on J on

1+ 22 (x")dx’

Equation 3.1-5
The discretized versions of the above equations, when properly sampled, yield large, full

matrices that scale as the number of unknowns squared. Scattering from a rough terrain,
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formulated with this integral equation approach typically was limited to small surfaces or
narrow incident beams due to the matrix storage and inversion requirements of the
conventional method of moments (MOM). Solving the integral equations numerically via
the Method of Ordered Multiple Interactions (MOMI), however, has reduced this
computation time and storage without approximation [Kapp, 1996]. Rewriting the above

form of the second kind integral equations as
I(x) =J'(x) +IK(x, x")J(x")dx’
D

Equation 3.1-6
where J(x) is the unknown surface current, K(x,x") is the kernel or the propagator, and
J'(x) is known, the Kirchhoff current. Although the domain of integration D is infinite
by design, it can be made finite with the use of the appropriate tapered incident field. For
the TE and TM cases, respectively

J(x) = 2aE'y(x,z)

z={(x) ! ‘]i(x) = ZHL(X!Z)

z=7(x)

OE(X',Z")

J(x') =
() on’'

=) J(X') =H, (X, 2') 2000y

K(x,x) = —2%#&&% K(x,x) = 2%\/1%(%)

Equation 3.1-7
After discretizing the resulting second kind equation and expressing it in a vector-matrix

form

J=J0+PJ

Equation 3.1-8

In Equation 3.1-8 both J (unknown) and J' (known) are vectors and P is a square
propagator matrix. The discretization is commonly carried out by taking values of surface

height, current and propagator at the uniform grid {xm} of N discrete points separated by
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the spacing Ax . In this case, the m™ element of each one of the above vectors and the

(m,n)™ element of the propagator matrix are given by
Jn =IXn) I =3'(Xw) and P = P(Xn, X, )AX

The off diagonal elements, Py, with m#n, of the discretized propagator matrix P are

given by
aG(X , X ) 2 aG(X X )
p =22 m ) f1y72(x =950 X0) [ 72
mn anm Zx( n) Pmn 2 an’ 1+ZX(Xn)
where ~ Xm =(2m-1)Ax-N AX/2, m=1...N (observation point on the surface)

Xp = (2n —1)Ax =N Ax/2 ,N=L...N" (source point on the surface)

for the TE case and the TM case, respectively. The diagonal elements (usually called
“self terms™), however, require special treatment and are given by, [Toporkov et. al,
1998],

ZXX(XI'T‘I)
21+ 22 (x)

=+ AX

Pmm

The upper sign corresponds to the TM case and the lower sign to the TE case and

(,, (x,,) is the surface curvature at the point.

Direct matrix inversion becomes prohibitively large, requiring the storage of the
NxN propagator matrix, where N is the number of unknowns. Furthermore, the
computation time for LU decomposition scales as N*/3+N? —-5N/6 [Kapp 1996]; here
decomposing the original propagator matrix results in a lower triangular matrix, L and an
upper triangular matrix, U. The MOMI approach to the scattering problem recasts the
integral equation into a discretized form that is amenable to solution via simple forward
elimination and back substitution without the enormous memory requirements of LU
decomposition. After some manipulation, the discretized MFIE can be written in the

following form

86



I=[i-ulr-d ' 1-d Tr1-1 *Lw
Equation 3.1-9
Although it appears that matrix inversion is still needed to solve Equation 3.1-9, it can be
shown that alternating forward and back substitution may solve this equation. The first

term, Jg has been called the “new Born term”. The following is a general iterative

solution whose first term is Jg and the remaining terms are

I=S[-u T -d7 o p-ul fr-gy
51 }

Equation 3.1-10
The “new Born term” (n = 0) contains all orders of multiple scattering which are
continuously forward scattered, continuously backward scattered, and those which are
first forward scattered and then backward scattered. Numerical simulations have shown
that the “new Born term” itself is adequate for most practical surfaces. For very rough
perfectly conducting surfaces, a maximum of two MOMI iterations has typically proven
to be sufficient.
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3.2 The Development of a Numerical Impedance Boundary

Conditions for Lossy Dielectric Interfaces

In considering scattering from the ocean, it is common practice to model the ocean
surface as a perfect electric conductor (PEC). However, simulations that are more
accurate require that the effects of the finite conductivity of seawater be included in the
model. This is often achieved using an analytical impedance boundary condition (IBC).
These models are adequate for many numerical simulations. The range of validity of
such IBCs is somewhat unclear when considering low grazing angle (LGA) scattering
from surfaces with significant spectral content at high frequencies.

A second important application of IBCs in the context of rough surface scattering is
encountered in simulating propagation and scattering over natural terrain surfaces such as
moist soil. The loss tangent of such materials at microwave frequencies is significantly
smaller than the corresponding loss tangent of seawater. For this reason, analytical IBCs
are less accurate for such surfaces. In addition, quantification of the error introduced
with analytical 1BCs is difficult.

Consequently, to address some of these concerns, a numerical IBC was developed for
scattering from one-dimensional, lossy-dielectric interfaces. The numerical IBC is
appears in the form of an integral equation for the surface magnetic fields in which the
numerical IBC acts as a composite operator acting on the surface magnetic fields
[Adams, 2000]. This is in contrast to the standard form of the integral equation for the
magnetic field in which the correction term due to finite-loss effects appears as an
operation on the tangential surface electric fields.

The integral equations for the surface fields in two-dimensions are written as a set of
coupled integral equations. In addition, the more convenient operator form used by
Adams [1998] is employed. These operators can be interpreted as in matrix form, once
the problem is discretized using the method of moments (MOM). The equations are given

as
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Lue) = up) + 1 [ulp) 228) - 20 ) s

2 on'
1

SV = W Py - P 0,y

Equation 3.2-1

10yp) _ ow™p), B 19°Gil.p) _ awp)oGi(p.p) ...
2 an  on' +£§p(p) onon' on' on gjs

1 :
Ean‘-l-’ :anwmc +P3 = P00,y

Equation 3.2-2
where pOSand it is understood that a appropriate limiting procedure must be used to
numerically treat the hypersingular kernel 0G,/ondn'. It’s integral does not exist when

the observation point is located on the surface.
The interior integral equations corresponding to these exterior equations are given

below (and in the abbreviated, operator notation) in equations 3 and 4.

L) = — ¢ Oy(o)9C2(.p) _ oulp) Yok
L) = - 1 ulp)S2B0) - Wl .0 s
S =R+ B

Equation 3.2-3

1og) _ _ B )27C2(ep) _ W) 9G2(p.0) By
2 on éé”’(p) onan’ o on 20
1 5 .

EGnLIJ = -Py + P,O,0

Equation 3.2-4
Here the definitions of the operators are apparent through a comparison with the

equations. The following shorthand notation for the partial derivatives is also used:
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The operators with “hats” indicate the operators in the lower (dielectric) medium.
The integral equations Equation 3.4-2 and Equation 3.4-3 apply for both the TE and

TM polarizations. For TE polarization, we make the substitution y — E, while for TM
polarization, g - Hy. The relation of 9,y to the field quantities is determined as

follows. For TE polarization, E=Y E,, we have

AxOXE = — jopA xH

which reduces to

—§—>=-jophxH
Thus for TE polarization, the normal derivative of the electric field is related to the
magnetic field through the relation
oE, _

6_n = Jw Hey,

For TM polarization, we have the dual relation,

oH, L E
—=-jw
an JOU E g
Since the tangential electric and magnetic fields must be continuous across a material
boundary which does not support a surface current, we have as the boundary condition

between two media defined by the constitutive parameter pairs (g;, 14, ), (€5.H5)

1 aEy1: 1 OEy,
jopy On jwp, on

for TE polarization and

1 aHyl_ 1 aHy2
jwg on jwe, on
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for TM polarization. For a dielectric interface (no magnetic discontinuity), these can be

rewritten as

aEyl - aEyZ aHyl - iaHyz
an on ' on g on

If we consider a lossy dielectric interface, the above expression reflects the fact that the
tangential H-field tends to a finite value while the tangential E-field tends to zero.

Consider scattering from a dielectric interface for TE polarization. Two of the four
available integral equations in this case are

%OnE =9,EM™ + P,E - P,0,E
Equation 3.2-5
1 ~ A
EE :_PlE + PzanE

Equation 3.2-6
For a general dielectric constant, Equation 3.2-5 has two unknowns and must be
supplemented by an integral equation from the lower medium. From Equation 3.2-6, we
have

-1
%ﬁlélz =P,0,E O E:%HSIQ P,d,E

Equation 3.2-7
Using this result in Equation 3.2-5 gives an expression involving a single, unknown field

quantity

-1
1 . ~ ~
—aE:GE'”C+PE+PHP6E—P6E
2n n 3[2 1D2n 4%Yn

Equation 3.2-8
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The resulting integral equation is solved iteratively. The iteration count is reduced using
an approximate factorization procedure (MOMI) that renormalizes the modified integral
equation through the re-summation of the dominant multiple scattering interactions on
the rough surface [Kapp, 1996]. Performing this renormalization, we arrive at the
following matrix expression, written in the notation used by Kapp [1996].

0,E =2(1-u)y*(1-L)y e, E™+(1-u)*(1-L)" Lua,E

-1
+2(1-u)L(1-L) P, %+ Plg B,d,E

Equation 3.2-9

The number of iterations required to incorporate the effects of the finite loss of the
lower medium increases as the loss tangent of the lower medium decreases. This
behavior occurs because the numerical IBC is developed as a perturbation of the
magnetic field integral equation for PECs. This may be seen in Equation 3.2-9.
Comparing the result with that produced for a PEC surface, we immediately recognize
the first two terms on the left-hand side correspond to the PEC surface. The last term
accounts for the effects of the loss tangent of the lower medium. As the conductivity of
the lower medium increases, this last term tends to zero. The first order approximation to
scattering from the dielectric surface is thus the PEC result. The advantage over other
techniques, however, is that this equation is exact and will reproduce the correct result
even for surfaces with small curvature radii. One physically important problem where we
can expect this to be important is the problem if grazing backscatter from ocean surfaces.
For such problems, it is well known that the small wave structure produces the primary
contribution to the backscattered field. When these contributions become important, the
standard IBC fails and the present formulation will provide an advantage.

Unlike the analytical IBCs, the errors in the numerical IBC considered here can be
reduced to an arbitrarily small level via iteration of the derived integral equation. The
various factors affecting the convergence of the modified equation will be considered
including loss tangent, surface roughness spectrum and angle of incidence. The inverse

operation
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-1
10

is computed in O(N) operations due to the tightly banded nature (as conductivity
approaches infinity) of I52. Thus, the computational cost associated with this term is
negligible.

As an example of this technique, the scattered field from a wedge on a plane will be

calculated. For this purpose, we use the following surface [Browe, 1999]. The surface

height equations are given by

(] 1 1

— - <
20 P E]_ Q( 20 % 20 |X|
UJ 2 0 1

d<x| <

Hsgn( ) 2 M=
(P& T 2

B - <
%ECOS 6% > 6% X|<d

where o =

The surface is specified completely by three parameters: the radius of curvature of the
wedge tip measured at x =0 (p, ), the height of the surface from the plane to the wedge
tip if p, =0 (hp.y ), and the point on the x-axis where the height reaches eh__ (X,).

Although, the derivatives of the surface are required up through the third, the surface is
constructed under the constraint of continuity up to the second derivative. The three

parameters are shown graphically in Figure 3.2-1.
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TE Polarization TM Polarization

H

H Az Surface fully specified by three parameters:
I
| - Raduis of curvature at peak, p,
E : - Height of surface when p =0, h__
E " I h - Effective length of wedge, x,, point
max on x-axis where surface height reaches

ezh

measured
at x=0

Figure 3.2-1: Surface geometry illustrating the three parameters needed to fully
specify the surface. Also shown are the polarization definitions [Browe, 1999].

The wedge tip, in the region [x|< 3, is represented by a cosine function. The radius

of curvature at the wedge tip is measured at x =0, the point where the second derivative

of the cosine function is at its largest value. The faces of the wedge, in the region

0< |x| < L are represented by straight-line segments. The faces of the wedge are

J2a

smoothly joined to the planar surface by the Gaussian tails.

Figure 3.2-2 and Figure 3.2-3 show the scattered field for a beam incident to the
surface at 75° for two different tip radii. These figures plot the magnitude of the far field
as a function of the observation angle. The traces represent the different conductivities of
the lower medium. The real part of the permitivity in lower medium is 2.0 and the
conductivity of the medium varies from 0.1 to infinite (PEC) as noted in the legend.
Figure 3.2-2 shows the result for an electrically small tip radius; consequently, we expect

a large tip diffraction component.
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Figure 3.2-2: Scattering from wedge on a plane, small radius of curvature
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First, we note that the agreement between the dielectric cases and in the specular

direction (75°) is nearly perfect. This is due to the fact that we assume TE incidence and

the Fresnel reflection coefficient for this polarizations at angles approaching grazing is

one. Hence, we expect good agreement. Figure 3.2-3 demonstrates the scattering for a

much larger tip radius of curvature. In this case, the tip diffraction is considerably

smaller. This can be seen by comparing the backscatter regions of each plot. This region

is governed by tip diffraction since there are no other physical features which would

describe the backscattering. Note the 20 dB difference in computed cross section. The

phase interference effects in the back scatter region is due to interference between direct

tip diffraction and the tip diffracted energy which is reflected by the planar extension of

the wedge in the backscatter region.
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Figure 3.2-3: Scattering from wedge on a plane, larger radius of curvature

Each of the additional forward scatter features can be explained as well. A detailed
explanation can be found in the thesis by Browe [1999]. Most notable are the largest peak
due to specular reflection for the wedge face, and the interference between the waves
reflected by the planar areas and the tip diffraction in the forward direction.

The final figure, Figure 3.2-4, shows the iteration count as the normalized residual
error decreases (the iterative solution converges). Note that the convergence is shown for
the tip radius of one wavelength and the range of permitivities (2-j50 to 2-j1). A solution
for the permitivity of (2-j0.1) did not converge. From this plot, you can see that the
convergence slows significantly, as the lower medium becomes less and less lossy. This
is expected since the solution has been formulated as a perturbation series on the PEC
solution. In addition, we have provided a trace for the smaller radius of curvature, 0.0125
wavelengths. Again, we can see that the smaller radius of curvature results in slower
convergence; mostly likely this is due to multiple scattering within the lower medium at

the wedge tip and penetration through the wedge tip.
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Figure 3.2-4: Convergence as a function of iteration count

Finally it is noted that this is a work in progress since the possibly more interesting TM

case is not yet developed.
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3.3 The Incoherent Power via the Impulse Response Method

The use of the impulse response method has been well established in literature for the
calculation of the average incoherent power returned from the ocean surface under pulse
illumination. One of the advantages of this approach is numerical: the average return
power can be recast into a series of convolutions. The result, consequently, is found

easily and efficiently using the Fast Fourier Transform, the FFT.

Figure 3.3-1: The Geometry for the Impulse Response Method

The power due to an incremental area with a given backscattering cross section is
derived directly from the radar equation. Subsequently, extending this power to include
the effects of the entire surface will lead to an expression for the returned power [Brown,

1977]. The average power returned from an element of area, dA, with a cross-section per

unit area 6°(8, @) is given by the standard radar equation; see Figure 3.3-1.

dp (1) = PrOA (G4r([)e3’;zp)“0 O ya

Equation 3.3-1

where R = range from the radar to the elemental area, dA
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G(6,) = antenna gain at the given angles

The average power returned from a distributed target, such as the terrain in this case, is
calculated by a superposition of backscattered power from each elemental surface area,
dA. A superposition of power is appropriate since the scattering surface is assumed to
have a sufficiently random nature; there is no coherent return since the surface is
uncorelated. The average backscattered power returned from the illuminated surface can

be written as

. §_2(r0 —E(x,y)sec@)%
00 271 Gz(e’

Co

_ N 0
PO = o L ety seco) ¢)o’(6,9) pddp

Equation 3.3-2

where the slant range to the terrain has been re-written: R =ry — §(x,y)sec8. Since the
integration is over the flat surface, cylindrical coordinates can be replaced with the radar
coordinates (rZ = p? +h? O rydr, = pdp), and the range to the surface can be

approximated by the mean range for the evaluation of amplitude terms. Hence, the

returned power can be re-written

. E_ 2(r, —E(x,y)sece)%:7
0 O | —— *(8.0)0°(0.9) , doar,

Equation 3.3-3
The average power returned from the surface can then be found by evaluating the

expectation with respect to the surface heights.

. E_ 2(r, —E(x,y)sec@)%
. )\2 poa 0 2 0
P) O [ [ ] . : G2(6,¢)0°(6,9) r, dpdl, p (£) dE

Equation 3.3-4

Introducing the change of variables,
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2&(x,y)secO

Sxy) = Co 1 &)= ZSeCGPEEZSGCGEE

we express the average returned power as

MNPE EWWE

(Pa (D) O jjj p; (£)dE G*(6.9)" (6. @) v, dodr,

Equation 3.3-5
Recognizing the convolutional form in the random variable, E we re-write the power

received as

(P (1)) O )0’ (6, ) dedr,

2 PT 2& p ﬁ
)\2 P CO CO 2
) G*(e
(4m)’
Equation 3.3-6
Substituting for the constant delay term,

Equation 3.3-7
and introducing the sifting properties of the Dirac Delta Function, the power received is

written as follows

o \2 w2nPp(t-t)0psz(t-t) o2 ,
Pe®) ] sl ] T ~ E GZ(G,(P)OO(G,(P)d(pdroESE —C—?Edt

Equation 3.3-8
Hence, another convolution has appeared in the average return power integration. For that

reason, the average scattered intensity from a rough surface can be recast as a series of

convolutions
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(P, (1)) =Pr(t) Opz (1) O Pes(t)

Equation 3.3-9

From equation in Equation 3.3-9, the last term represents the average backscattered
power from a transmitted impulse function and has been called the “Flat Surface Impulse
Response” (FSIR)

s - 2"

N O c¢
P(t) = L62(8, )o° (6, 9 dA
rs () Tk SjJ’ ~ (6.9)0°(6,9)
Equation 3.3-10
where: (0] = a Dirac delta function which accounts for the two way

propagation delay
A = wavelength of the carrier
G(6, @ = radar antenna gain

o(8, @ = surface scattering cross section per unit area

dA = elemental surface area, dA = r,dr,de = pdpde
ro = slant range from the radar to the mean surface at dA
h = radar height above surface

This flat impulse response function is characterizes the average return from a surface
with vanishingly small roughness which has been illuminated by a delta function pulse.

3.4 Pulse Scattering from Rough Surface

In this section, the Kirchhoff approximation for rough surface scattering is quickly
reviewed, followed by an exposition, clarification and simplification of the work by
Ishimaru [1995] on two-frequency rough surface scattering. It shall be proposed that this
work will be used in conjunction with the two-frequency radiative transfer equation of

Chapter 7 as a boundary condition. This is a work in progress.
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3.4.1 The Kirchhoff approximation for rough surfaces

In this section, a brief account of the Kirchhoff approximation to scattering from a
rough surface is given. The interest in this approximation, with respect to the more exact
integral equation methods is the closed form, simple results. The Kirchhoff
Approximation, also know as the tangent plane approximation, is a high frequency
approximation. This implies that the surface is appears to be flat with respect to the
incident wavelength. Loosely following the development of Ishimaru [1997], and

assuming that the incident field, observed on the rough surface (x',y',{(x',y")), has the
form,
W) = e KT = e Tk Ikiyy =ikizl.y)
Equation 3.4-1

then the scattered, or in this case reflected field, has the form,
W) = goe kT =y o Ko =ikryy =ik (y) _ R (F)
So that the total field at the rough surface observation coordinate can be written as
L|Jtotal (—r.-u) 0 (1+ R)l.IJI (—r—u)

hence, from Green’s theorem, the approximate substitution can be made,

£0G(E,, ') aqﬁ"‘a'(?') SR E
() 6l

0
Lle( ) J. m’total
0

1+R) '*'))—aGg;’ﬁ')+(1+R)ﬁm 'F) G, T %ds

=
DE-EL

Equation 3.4-2
since, A'Ck , = — fA'Ck;, assuming an incident plane wave and making the far field

approximation for the Green’s function, the expression for the scattered field becomes
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Equation 3.4-3
Next, a substitution is made for the unit vector normal to the surface at the source point,

and the source position vector.

X'X+y'y+{(X',y')Z
i'+{(X',y")Z

= (XY )X =0 (X, Y) Y +2
L+ Y+ (XY

A=

In addition, the elemental surface area is projected onto the mean, flat surface at z = 0.

ds' = \/1+Z§(x',y')+Z§(x',y') dx' dy’

Equation 3.4-4

—jkrg - - - o
0¥(0) 015 (ke ki) R (kg + i JerbnRsaie Rt gueay
ry, g
—jkrg e - - o
- J LIJcl)‘reT[I' gZX(X',y')[( ksx - kix)+ R(ksx + kix ):Ie_J(kit_k5t)mt +(kiz _ksz)m (¥ dX'dy'
o .
—jkrg - N S
3 10l )+ Ry i Je bR i) gy

Equation 3.4-5
In order to make this solution useful, the surface is assumed a perfect electric conductor
(PEC), so that the reflection coefficient is negative one (-1) regardless of the incidence

angle.
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—jkr o o
0 (5,) ¥ [ [~ 2k, Jem iR i K Jacey gy gy
dmr, &

—Jkrg e - - o
- jq"oe—j ZX(X',y')[zkix]e_J(kit‘kst)mt +{ki, ke JT0cy) dx' dy’
4T[ro g

—jkrg - . o
- Jq"t‘)le—-l- Zy(X',y')[2kiy]e_1(k“_k5t)m‘ +lkiz ke JT0x'y) dx' dy
nr, &

Equation 3.4-6
Assuming that the surface is large (so that it is possible to exclude the edge contributions)
and integrating Equation 3.4-6 by parts [Ishimaru, 1997], yields

i woe Ko 0= 2k, + ki Bk, + kizAkz)B

(1 o IBKTE' gyt gy
v (O) 4mr, E Akz DSI' Y
—Jkro o
0j ¥ " @, 0,q) [ e KT gx'dy
2T 3

for F(8;,6,,9,) = El+cosei cos B, —sin ; sin B coscpsgand Ak, = Ky —k
O

etc.
Cos B; +cos B 0]

ix1

Equation 3.4-7
The mean, average field can now be found as

—jkrg

(W°(r,) Dj¥eke

Fe_’e’ e_JARmId ldl
2mr, (I S (ps)<g xay

- jkr
Poke O ~ikeg —kiz @'\ o= (ke —Kit JB* qurt o
Oj T F(e"GS"ps)Sf. <e sz ~Kiz >e stKit I gy’ dy

Equation 3.4-8
The average is recognized as the Fourier transform of the pdf, so that the bracketed
quantity is simply the characteristic function. Assuming Gaussian distributed roughness,
with a standard deviation of the heights, o, defining the characteristic function of the

Gaussian random variable, ®(Ak;), and recognizing the Dirac delta function
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—jkrg - ,
() 01¥2 " Fg, 0, )o(ak, )y e i) geay

21r, 3
k —ikro _BAkZGZ H
&y o F(6;.6, @ )e g2 Hé(Rst _Rit)

rlO
Equation 3.4-9
The mean field above shows that the scattering direction is in same x-y direction as the
incident field. Hence, when the scattered z-direction is chosen to be the opposite of the
incident field (ks; = -kj;) the coherent scattering corresponds to the reflected field,
reduced by the exponential factor related to the surface heights; the randomly elevated
plane [Brown, 1997].

3.4.2 Two-frequency rough surface scattering

Next the frequency correlation of the field is formed,

o .f 2 K,k «
(W(Eo k0™ (5 ko)) O L(';T o5 P00 ) (6,0,)

O g itk gtk [ dx,dy,dx, dy,
S'S

2 . g 2k,k «
({5 ko 0™ ko) D?in)iri F(6;.6,.0 )F (6:,0,.®)

-3 {8k e -8k 2 B <e—j(Akz,1<1—Akz,zz2)>

Esj' é e dx,dy,dx, dy,

Equation 3.4-10
The expression, RM, is vector of the x and y components of the wave number vector at

frequency 1 and the difference of the incident and scattered wavenumber vectors is

indicated

Aklz = (kiz,l - ksz,l) ; Ak22 :(kiz,Z - ksz,2)
Ath = (Rit,l - Rst,1); AR2t :(Rit,Z - Rst,z)
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Performing the average using a joint Gaussian distribution for the heights (assuming the

slopes are statistically independent)

1§ +2Cn il -3

2 2 (=
20°(1-C ir ))
) e ( n\'dt

2mo?,[1- C2(Fy

(Akz,1Z1—Akz,2Z2

<e_j(Akz,1Z1_Akz,2<2)> dZ1dZ2

=] J¢
—00 —00
2 2 |0

_(Akz,l+Akz,2 )7 o DKy 10k 262C (Fgr)

Equation 3.4-11
Substituting, Equation 3.4-11, converting to sum and difference coordinates in Equation

3.4-10, (defining a sum and difference for each Cartesian coordinate)

for xg= %(Xl +X2); Xq = (X1 ‘Xz)
Ll Cv o o= (e R+V. ¢
Tt =§(r1t o )=XX Y5 Ty = (B —Tor)=XgX +YqY

and the transverse (x-y) wavenumber vectors are also converted to sum and difference

coordinates

— —

. N . 2 _ I
Aky; = (kit,l - kst,l) = EAkCt +§Akdt @ Akyy = (kit,Z - kst,2) = Eﬂkct - EAkdt E
muﬁa:%@@+A@Jzﬁm:@@—A@J

results in the following expression for the total power (two-point, two-frequency

correlation)

2 “r 2 k.k
(Wl k0" (ko)) 0 P22 (e, 05, )

(erf g

2
(o . w2, +a2, ) 2c. (¢
- - 12 *8K3 e
gfe 0k T~k gy By ) e 12722l g (AkgpAKp,0 Cn(rdt)drdtdrst
S5

Equation 3.4-12
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Next the mean power is subtracted from the total power in order to find the fluctuating
power, <|5L|JS|2> = <|L|JS|2>—|<L|JS>|2and consequently, the two-frequency surface cross

section is written as

4T[]’ 0
0(s)(kb

< ro’kl ro’k2)> _<L|J(F07k1)><q)(?o’k2)>*ﬁ

k1k2

H |F(ei1es’(PsX %J’ ejARdtmstdet

S
2 2 |0 .
(Ak +Ak )2 %AkleKZZGZCn(fdt)_1De_jAkct (gt dr
E dt
s

Equation 3.4-13
This expression is equivalent to the two-frequency mutual coherence function of the
rough surface in the Kirchhoff approximation. If we assume that the incident wave is a

Gaussian tapered plane wave, the first integral in Equation 3.4-13 is evaluated

b2+y?) (3wi) (2+y2)

1 2 2 Ak 1 2 iAK "
_J' e 2b e 2b eJAkdt |-—ﬂstdrst — __I e b eJAkdt IjStdr-st
Ss Ss
2 2 2 )2
Xs YS 2 (Akdx +AI(dy ))
ik Yy
j e b?elfKaxXsgy s © b? gBaYsgy = 12 g 4

S

Equation 3.4-14
The applicability of this is reviewed in Chapter 2 for pulse propagation across a randomly
rough knife edge. There are two asymptotic limits where this integral may be evaluated:

small height and large height. Considering only the large height approximation,
2

(AkfZ +Ak§z)o7 >>1
the exponential function of the above argument will force the integrand to zero except
near Ty =0 so that the correlation function can be expanded into a series about T =0

[Brown, 1997].

2]
02 C(ry )0o? - p2, 24 +62 Ydp
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where the variance of the heights of the x and y surface slopes are given by o7 ,O%y

A1r2
Gg(kr = 2T H

<L|J(?o’ kl)w*(?o’ k2)> - <L|J(Fov k1)><LIJ(r0’ k2)>* ﬁ

2 _
0 Kike |F(ei,es,cp5)2”%e 1

2
Y 2 2
—72 (Aklz +Ak22 —ZAkleKZZ)

@ o~ Ikt Tt dFy

S
Equation 3.4-15

Evaluating the remaining integral, the result for large heights is given by

2 2 1.2
(Akdx +Akdy

2 _
KikoTh |F(9i,95,cpS]2 e 4

0
¥ (ky ky) O
STV T 95aK,, AK,,0

9,
AI((2:x _ Akgy
Akq; 0k,

2

_o” _ 2 202 Aky,dky, 202
Z(Aklz AkzZ) o OZX 120K 55 OZy

Equation 3.4-16
Applying the definitions for the wavenumber vectors, the final exponential can be

written as

H Ak, Ak H o H 2 %os @, sin’ @
exp - - 0= D- 4k k B;

E 20( AklZAkZZ ZOZyAklekZZ E E 1K2 H O-Zx O-Zy

interpreting these as pdfs for the acceptable slopes of the “facets” which contribute to the

backscattered power [Brown, 1997],
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2 2 .2
(Ak dx +Ak dy )b 2

2 _ (0}
LY |F(9i,(9s,cpsx2 e 4 e

_T(Aklz —0ka, )2
25cos? 6,

09 (kg ky) O

U 0 O
m[{x :Mtan ei COS @, EDE(y = (kl il k2)

B 2,\/kqk, 8 B 2\/kqk,

.0
tan 8; sin @, J
B

Equation 3.4-17

3.4.3 Future Work

A great deal of work is left undone in this rough surface scattering section. In the
simulation of the scattering from dielectric surfaces, the TM polarization case needs to be
completed. Once this step is taken, the numerical results can be compared with the
available, and popular, Leontovich (Impedance) Boundary Conditions (IBC). These
IBC’s have not been evaluated for their accuracy in certain parameter spaces, most
notably the low grazing angle region. Consequently, this is an avenue for further
progress. In addition, other interesting results are possible when this formulation is
extended to the TM polarization.

The two frequency surface scattering work, orignally developed by Ishimaru [1995]
still has a great deal of room to grow; particularly in its application as a boundary
condition. This effort will be more fully developed for use as a boundary condition for
the two-frequency radiative transfer equation developed in Chapter 7 . The small height
approximation to the above derivation may also be employed for greater applicability of
the method. In addition, boundary perturbation theory for rough surface scattering may be
used to derive a two-frequency rough surface scattering in the lower frequency limit in a
similar manner. Finally, in combination with two-frequency radiative transfer equations,
pulse propagation scattering simulations from a vegetated rough surface may be
accomplished.
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Chapter 4 The Impulse Response

In creating the convolutional model of this chapter, the radiative transfer equations
are presented for time dependent, forward-backward scattering. The model developed
assumes completely incoherent scattering and includes contributions from both the
vegetation and the surface scattering along with a relatively simple accounting for their
interaction. This model easily separates the three primary components of the scattering
problem — the radar system, the geometry, and the environment, and then recombines
them through a multiple convolution. The use of this simple model assumes that multiple
interactions are insignificant and that only narrow-band signals and narrow-beamwidth
antenna patterns are used.

Extending the basic model to volumes for which multiple scattering is important is
accomplished with effective parameters. It is these effective parameters that are obtained
by comparing the model with pulsed radar data at normal incidence, i.e., looking directly
down through the foliage and onto the ground. Hence, the overall model is a hybrid
approach wherein the basic physics are retained in the simple solution and are extended
to a more complicated environment with effective parameters. By examining the model-
based off-normal incidence, mean return waveforms, it is possible to estimate the degree
of foliage penetration and subsequent surface scattering.

Alternate forms of this computationally efficient method for the determination of the
scattered power density can be found in [Brown, 1977] for a rough surface and [Newkirk,
1996], [Adams, 1998] for a rough surface covering a penetrable volume. This approach
creates a numerically efficient method since the incoherent return can be cast as a series
of convolutions. Henceforth referred to as the Impulse Response approach, this method as
applied to rough surfaces has been briefly reviewed in section 3.3. This idea has been

extended to the volume response of vegetation over a rough surface.

4.1 Radiative Transfer

The geometry for the radiative transfer approach is given in Figure 4.1-1 below. In

this figure, the first two boundaries’ (enclosing the canopy) height statistics are described

110



by the same random variable, &(x)and the third (rough terrain) boundary’s height
statistics are described by the random variable, {(x). The mean heights of the layer

boundaries, d; and d,, are deterministic distances. Hence, we have implicitly assumed a
zero mean surface with a layer of vegetation whose average thickness is d;. This

vegetative layer has mean height above ground equal to a constant, d,.

Figure 4.1-1: the geometry describing the volume and surface. Note that dotted lines

indicate average levels for the associated boundary.

Beginning with a general form of the radiative transfer equation for the incoherent
power density or the intensity in the medium, a simple form of the radiative transfer
equation amenable to solution via convolution will be derived. The geometry for the
general radiative transfer equation is given in Figure 5.1-1

Assuming that the scattering process is polarization insensitive, we will use the scalar
radiative transfer equation, which relates the differential change in the power density over

volume ds. This is written as (including the time dependent variation)
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a|(§7?7t) -1 pct pagi | .7 1 a1 a Ay
—2 7 = —nol(5 7, t) + — S, S)I(S"; 7, t)dw +J.(S;T) — —I(5; 7, t
= POl T 1) 4n{{1p( NE;T) sGT) CS(?W( )
Equation 4.1-1
where

e I(S;T) is the power density in the § direction at the position: T
e § isadirection of the power density
e pisthe scatterer density

» 0,(r) is the scatterers total cross section which is the sum of the absorbing and
scattering cross sections: o,(T)= 0, (T)+ o (7)and as written here, may be a

function of position 7.
« p(58)is the scattering function of each scatterer; (prime denotes incident
direction(s)) and is related to the amplitude of the field scattering function

squared.

J,(5;T) is the source function (emission sources)

Figure 4.1-2: Scattering geometry for the intensity [Ishimaru, 1997]

Referring to Equation 4.1-1, the change in power in the T direction is proportional to
the power incident on the differential volume element. This power is then depleted by
absorption as well as scattering into other directions. On the other hand, the power, as it

propagates through the differential volume, increases by an amount due to scattering into
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the T direction from other directions ' as well as energy emitted inside the differential
volume:

We can now derive an impulse response representation by making the following
assumption regarding the scattering function (or classically, the phase function), p(f,f') :
It will be assumed that each scatterer scatters energy in the forward and backward

directions, exclusively.
6.8) = =[5 -9) + 0,56 +3)]
t

where or and oy, are the position dependent forward and backward scattering cross section
of each scatterer, respectively. These may be functions of depth into the medium, shown
explicitly by the ¥ dependence, as well as the scattering angle. In addition, we will
assume that there are no emission sources present; consequently, the source term,

Js(8;T), is zero. This is a good assumption for active sensing techniques [Ulaby, 1986].

With this scattering function assumed, the radiative transfer equation is recast into a
greatly simplified form. Since the direction of power density propagation § has been
limited to the radial direction, T, the equation governing the power density can be written
as a first order partial differential equation in two variables: time and distance. Implicitly
assuming the T dependence in the cross section parameters, the simplified equation of
transfer becomes

% = —pg O A(F;F,t) + p[ofI(f;?,t)+0bl(—f;?,t)] - Ci?) d I((;,tr,t)
Initial Condition: I(F;T,t=1ty) =1(T,ty)

Equation 4.1-2

In order to further simplify the equation of transfer, we split into it into two parts:

downwelling, that power density which propagates in the forward hemisphere and

upwelling, that power density which propagates in the backward hemisphere as defined
by the direction of propagation, .

Let us first consider the downwelling intensity. In its solution, we will assume that

the upwelling power density does not act as a source for the downwelling power density
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or a,(r) = 0. At this time, we consider this event to be second order scattering that may
be neglected. Next, we define an effective extinction coefficient per unit volume

Re (r)=po,(F) —po,(F). We then assume a medium that is radially distributed which

results in the modified effective extinction coefficient: Ee(r):pot(r) —-po;(r). Hence,

implementing these assumptions, we find the greatly simplified equation

IEFY) _ = o1 QIETY)
ar K I(FT.Y c.(f) ot

Equation 4.1-3

Since it has been assumed that the upwelling power density does not contribute to the

downwelling, there is no coupling of power from the upwelling into the downwelling.

Consequently, given an initial power density at the upper foliage boundary with free

space, lo(t — t’) where t’ is a range dependent delay, the solution for the downwelling
power density is found in closed form.

The time-dependent nature of the radiative transfer equation has been removed using

the method of characteristics. Rewriting the equation of transfer (for a single direction):

01(r,1) N o1(r,t) _

S = ek 11

cs(T)

Initial Condition:  I(r,t =ty) =1(r,ty)

Equation 4.1-4
Consequently, first parameterizing the variables along the characteristics r=s; t = T, we

next solve the differential equations for the parameterized equations (assuming a constant
speed of light for convenience)

=1, general solution: t(s,T)=s+ C,

with ILC.: t(s=0,1)=1 O C;=1

final solution: t(5,T) =s + T
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dr(s, 1)

4o = Cor  general solution: rs,1) =cos +C,
s

with I1.C.: r(s=0,7) =(h-¢)sec® O C,=(h-7)sec

final solution: r(s,T) = cys + (h—{)sec®

and solve for the characteristic variables:

_161)-(h —Z)sece,
T=1(s1) - r?s,r)—(:o_ {)secH

The equation of transfer is written

I(rG 1)t 1) ol 1)t t)or | a1l 1)tls 1) ot _ T
ds ar ds at ds 0 et
Initial Condition:  1(Sq,T) =14(T)

Equation 4.1-5
This has the solution

I(5,7) =1y (t)e 0 kes

Equation 4.1-6
The method of characteristics yields a time-shifted argument for the power density, while

the distance dependence can be found by simple integration. For r, = (r10 +&(x)sec 9),

and a more general, depth-dependent wave propagation speed,

2. S Hon_ e de K
l(r,r,e,cnt)—lo% ‘. Iflcs(u) Xp{ J’rlke(u)du}

Equation 4.1-7
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where Iy (t — t’) is the time-delayed incident power envelope; the time delay is a function
of the range in free space from the antenna to the canopy (r;) and the range into the
medium which may have a range dependent group velocity, cs(r). Note that the
downwelling power density is directed in the T direction or along a radial path from the
source antenna.

The differential equation governing the upwelling power density has a similar form;
however, the downwelling power density acts as a source for the upwelling. In addition,
the upwelling power density is directed in the =T direction or along a reverse radial path
toward the source antenna. Consequently, the governing differential equation is the same
with the exception of the coupling term relating the upwelling and the downwelling
intensities. The differential equation governing the upwelling power density is expressed

below.

OMEELY -} myi(#:7 - —-2 I(_F{g’t) +0,(r.8,@I(Fr.1)

or c(T)
Equation 4.1-8
Subsequently, substituting the solution for the downwelling power density into Equation
4.1-8, the following differential equation is created governing the upwelling power

density
ALY - ()1, - L 9N
ar c,(r) ot
n o du { "k }
+0,(n8,@ 1,7~ ——Fxp|- [ k.(n)d
ob( (p) E CO n Cs(u) p Irl (u’) l"l

Equation 4.1-9

The attenuated downwelling power density that passes through the foliage layer and is
subsequently scattered by the underlying surface acts as a source for the upwelling power
density at the foliage layer’s lower boundary. In addition, the downwelling power density
continuously contributes to the upwelling power density due to the coupling term. Note
that this source was absent in the differential equation for the downwelling.
Consequently, in formulating the solution, the upwelling power density has two

independent sources: the power waveform backscattered by the surface and the
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backscattered downwelling power density from within the volume. Finally, the upwelling
power density is evaluated at the top of the canopy (r = r;). Again, invoking the method
of characteristics as a solution method for the time dependence, the resulting solution of

Equation 4.1-9 has two independent terms

—Fr= - _ N5 dH 2Bk
(CFir=r 000 = 0,001, -2 ool 212 Ko )

r d =
+Ia20b(a)|°Et_é_zIST5) xp{—ZJS ke(U)dU} da

Equation 4.1-10
where

0.(8,¢) = a2(8, ) dA, the surface’s scattering cross section

r,=r,+&(x)secO
r,=r,+d,secO+ §(x)secH
r,=r,+(d, +d,)secO+ {(x)secH

This expression shows a simple superposition of two terms; the first term is the rough
surface return propagated back up through the foliage and the second term represents the
foliage scattered return. In order to construct the average return power in the impulse
response format, these two responses are averaged and manipulated to yield an impulse
response term in each case. However, an additional assumption is necessary for a fully
convolutional result similar to that given in the literature for a rough surface alone: the

random variables, {(x) and ¢&(x), describing the canopy and the rough surface,

respectively, must be assumed to be independent.

4.2 Incoherent Scattered Power: the Volume (Foliage) Return

In the formulation of the scattering from a rough surface with a vegetative cover, we
have assumed that scattering occurs exclusively in the forward and backward directions;
this implied that the power density in radial direction t does not interact with the power

density in any other radial direction. This in turn has led to a closed form result for the
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downwelling intensity and consequently, an uncoupled relatively simple equation for the
upwelling power density, Equation 4.1-10 in the previous section. The two terms of the
solution in Equation 4.1-10 can be simplified independently. Each represents a different
scattering phenomena, surface and volume scattering. In this section we examine the
foliage or volume return.

We begin with the second term of Equation 4.1-10 for the upwelling power density,
the volume response. After substitution for the slant range variables (ry, r, ...) with the

associated distance and random variables as a function of antenna pointing angle, 6,

r,=r,+&(x)secO
r,=r,+d,secO+ §(x)secH
=T+ (d1 +d2)sece+ {(x)secO

the power density is found to be approximated by the following

ro+&(x)seco+d; seco®

ool -2 Kduf

ro+&(x)seco,

I(-T;r,0,@t) :J'

ro+&(x)secO

== (r +E&(x)sec6) _ ZI“ du da
Co fo+&(x)secO C(p_)
Equation 4.2-1
In general, following a slightly modified version of the method of Adams and Brown
[1998a], and assuming a layered medium with parallel boundaries, the average power

density can be expressed as

ro+&(x)secO+ d;secO

(1(-F;r,8,1)) = jfr

10+&(x)secO

DOE'[ _ (1 *+§(x)sec) ~2f" d—“E dap, () dE

Co 0 +E(x)secd C(p_)

ob(a)exp{ —2f Ee(p)du}

ro+&(x)secO;

Equation 4.2-2
In order to create a convolutional form, the integration limits must be extended to
infinity. The upper limit may be extended to infinity by assuming that the extinction

coefficient becomes very large once the range extends beyond the lower foliage
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boundary; this will effectively eliminate the volume return after the lower foliage
boundary is surpassed. The lower limit of integration, on the other hand, can be extended
by the use of the unit step function, u(r - r;). Consequently, the average power density can
be rewritten in terms of integrals with infinite limits. Under the change of variables,

H'=pu- [r10 +&(x)sec e], the expression for the upwelling power density becomes

_= _ 22 _(rp +&(x)sech) _ G‘[r1o+E(X)59C9]£
(1(=F;r,6,@1)) _Ioo _{ocb(a)IOEt . 2f, C(U')E

o] - 28l ROoseed () e} u(ar g + £ secel] ot p  (€) e

Equation 4.2-3
Assuming that there is no volume return from the atmosphere between the antenna and
the foliage crown, the backscattering cross section, which is a function of distance, can

also be shifted by the slant range. Defining two new functions

Y dul
= 21—
g(y) !c(u')
Equation 4.2-4
o Y-, .. 0O
E(y) = Gb(v)expg—ije(Ll)du BU(V)
0

Equation 4.2-5

the average upwelling power density at the upper foliage layer can be rewritten

I

(I(-F;r,0,@1)) = } j IOEt —C—l ~ gla- 1]%(owq)dot pe(§)dE

Equation 4.2-6

where it has been previously defined that r, = (r10 +&(X) sec 6). Following the method

of Adams and Brown, [1998a], the following definitions are constructed which transform

distance into time
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t=gla-r] 0 a-n=g™(t)

dt'= ¢'la-r]da = g (g™(t))da

Substituting these expressions into the average upwelling power density of Equation

4.2-6, the average upwelling power density is reconstructed in the following form

. _ooee Hoon  JHE@ET()) L
(I(=F;r,6,@t)) = _{o_{ol"ft ‘. t ,(g_l(t,))dtpa(ﬁ)dé

'%wmwaa&

1
—
—
—
CIIT ]
—

|

|

|

—

Equation 4.2-7

where a new function has been defined:
- -1
£ = EC° (V)
g'(g™ (1)

Noting that Equation 4.2-7 contains a convolution in the variable z, we perform the z

integration, leaving the result in the form of a convolution (with convolution represented

by the symbol: ) shown in brackets below

. w [] r ~ r
GVm:mamm=yEL%———%EE——ﬁ?Aa&
—00 D CO CO

Equation 4.2-8
Substituting for the slant range in terms of the distance to the mean height and the

random variable representing the distribution about the mean, i.e. r, = (r,, + £(x)sec )
(I(-f;r=r,6,@1))
© [ o +&(x)secO ~ o +&(x)secO
:I[Lgpjm &9 )%EE_QOE<> )%pz(z)dE
-0 [] Co Co

Equation 4.2-9

First, we substitute for the constant delay term: we let

120



Then we make a change of variables with respect to the random variable representing the
crown height statistics; we form a new random variable and its associated probability
density function
T x)secO
E(x) = )50

0

c c,t
po(t) = —o_p 3" 1
secO °[pecO[]

Consequently, the average, upwelling power density becomes

Ch ©

(I(-F;r=r,8,@1t)) = —aj {lo(t —t, - & )D E(t —t - E)} pi(z)dz

Equation 4.2-10
Again, the average, upwelling power density is re-expressed in the following

convolutional form with respect to the modified surface height random variable

Co

(1fr=n0.g0) = 21, (t ~t JOE(t ~t)0p(t ~t)

Equation 4.2-11

Finally, in order to find the total power returning toward the radar, we integrate the

power density over a surface. In this case, a convenient surface is the top of the canopy.

Allowing for full penetration of the incident power density (i.e. no reflection from the

boundary separating free space from the foliage), we substitute for the incident power

density at the canopy (expressed in the { } brackets below) weighted by the antenna gain
G(8, @) in the direction (6, ¢),

L,e.@t-t,) = i(gr’;p) P (t -t,)

10

Equation 4.2-12
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Furthermore, we must assume a narrow beamwidth such that sec® = sec 6, (boresight

direction: 6p). This is required since the integral to be performed over the radial
coordinate implicitly contains 6 dependence; otherwise, a convolutional form can not be

obtained. For the power density traveling in the T direction:

FAS=f{0f-2)rdrde= PO{0E-2)pdpde

Averaging over the slopes (assuming they are independent of the surface heights), we

define the function:

t(e)=<ﬁsine+cose>
op 0t
Allowing for the additional delay due to the transmission back to the antenna (an
additional ty) from the canopy and the receiving antenna’s effective aperture, the

following result is obtained

_ 7 ¢ HG(B.9)
(Pr (1)) = 11 Sec8, Han2

(P (1 -2t0) DBl -200) g -20)

2
D}\iG(e’ 9 ro dadryg

(4”)2 o
Equation 4.2-13

substituting the original expression for to, we find

— CO ( )}OZIT[ E[3(9 (p) PT 2r10 %D EE 2r10 E] EE 2r10 HAZG(B (p) rlO d([ﬂl’lo
2 2.2

secBy o0 HAT co H(amPrd
2 2n 2 ~
_ A : Cot(eo) G (e Dp Et ~ 20 B EE —Zr—loﬁjpgé —zr—mEd(Pdrlo
(411) sec B o 0 5 rlO Co Co %

Equation 4.2-14
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Exploiting the shifting properties of the Dirac delta function and rearranging the resulting

integrals yields

¥ cot0)® by oE( Dbt
(am)® soeceg _{OPT(t t)OE( -t)0pg(t -t)

(Pr(1)) =

021 52(g, C2r ,
iy SO0 52N Edqdrlodt
00 Mo Co

00

= I{PT(t ~t)OE( -t)0p,(t -t )} Peo (1) dt’

= PT('[ )D E(t )D pg(t )D Pes: (1)
Equation 4.2-15

where the transmitted power waveform is given by P1(t) and the modified Flat Surface

Impulse Response function is given by

N cot(8y) 2 G*(8,9) S 2

Pea () =
rs (1) (4m)® sec® oo Y Co

Edcpdrlo

Equation 4.2-16

the modified probability density function for the crown height statistics is given by

c H ¢t
-(t) = 0 0
Pe () sec B, sz{secGOE

Equation 4.2-17

and E(t) is a function relating decay to depth of penetration into the foliage layer

£ = EC° )

g'(9~ (1)
Equation 4.2-18
This general solution for the volume response can be modified to yield a simpler
result. Assuming that the velocity is constant in each layer of the medium, the solution
becomes more apparent. Here, we assume that medium 1 contains the leaves and

branches (group velocity is ¢,;) and medium 2 is the trunk region (group velocity cy).
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The starting point for the upwelling power density due to the volume return (along a

radial in the T direction) is then given by

I(—F;r,0,@1)
_ cno+E(secordysecs | Hy _ 2(fp +E(x)sec®) _ 2fa - (o + E(x)secB)]
- Irlo +&(X)secBy o Co Cyg
\")

Ed:b(a)exp{ _2I20+E(x)sec61 ke(u)du} da

Equation 4.2-19
After following the previous procedure, the average power as a function of time,
scattered from a volume with an irregular interface at the crown can be expressed in the

convolutional form

(P(1))=Px (t) O Pes (1) 0 p5 (1) D E(Y)

Equation 4.2-20

where in this particular case,

t=g(r) = e g i(t) =  and g'(r) = 2 = constant
c 2 C
Equation 4.2-21

Hence, for a group velocity in the volume given by c,,

By = OO E(c,t/2)

c ct/2 1
- Y =200 K, () du'} u(c,t/2
gy  2/c, 2 expl - 257 K, ()} u(e, t/2)

Equation 4.2-22

Note that the unit step function u(t) “turns on” when t = 0.

4.3 Incoherent Scattered Power: the Rough Surface Return

We start with the expression for the power density attenuated by the foliage in its

downward passage, scattered from the surface, and then attenuated by the foliage in its
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upward passage; this is the first term of Equation 4.1-10 in section 4.1. Note that the
geometry of Figure 4.1-1 still applies
2r1 _ I3 du

(ir=5.8.00 =0,0.01, 4= -2 8 ol -2 K, (0 o

Equation 4.3-1
Substituting for the power density using the following relationship

(6,01 = =(0CE.0

41

Equation 4.3-2
where | is the power density (sometimes called intensity), P+ is the power waveform and
the T direction is specified by the angles 6 and ¢ The average power returned from
within the illuminated region can be evaluated by integrating over a surface
encompassing the illuminated area. In this case, we choose to integrate over the area at
the top of the canopy (r = ry). Hence, substituting the power waveform for the incident
power density in Equation 4.3-1 via the relationship in Equation 4.3-2 and performing the

ensemble average over the random variables, the total average power at the crown is

_ G(6,,9,) r rp d r3 1
<P(t)> - surfé[:J; y <05(9, @) - 4m;pa Pr Et_é_z_[ﬁ?ﬁ) Xp{_ Zfrl ke(“)dU}> ds

Equation 4.3-3

where the surface scattering cross section per unit area, a. (6, @), has been included. The

angles (6,¢) are spherical coordinates centered at the antenna and can be related to the
variables of integration. In addition, in this expression, the antenna gain has a boresight
angle given by (6,,@,) and the angles (8,,q,) are spherical coordinates defined with
respect to the antenna boresight direction, which may also be related to the variables of
integration.

Although the solution procedure can proceed with a propagation speed, c(7), and an

effective extinction coefficient, Ee(?) that vary with position as assumed in Equation
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4.3-3, the following results are simplified since they are based on a constant group

velocity and extinction coefficient in each layer.
» Free space, the group velocity is ¢y
« Layer 1, the canopy region, the group velocity is ¢y, the effective extinction
coefficient is Eel, ro(r,r,)
« Layer 2 the trunk region, the group velocity is c,,, the effective extinction

coefficient is Eez, ro(r,,r,)

Hence, the integrals with respect to the radial distance within the argument of the

transmitted power may be easily performed, yielding the average power at the radar

(PW)= [ 02(6,¢)

surface at
r=rio
NG2(8,, 2n _2Arp—n) 2o k
e ol o
V. \"

Equation 4.3-4
The results will be cast in a convolutional form for the average returned power. After
expanding the transmitted power waveform’s delay time argument in terms of the random

variables and constant terms,

r, =ry +&(x)secO
I, =ro+d;secO+ &(x)secO
ry=ro +(d; +d,)secO+ Z(x)secO

Or,—r, =d;secB
0 ry—r, =d,secB+(Z(x) —&(x))sec O

and performing the integrations with respect to the extinction coefficients, the average

return power as a function of time becomes
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NG?(8,,9,) o

Py (1)) = — 21 g/(6,9)
< R > Surfgze at (4T[)3I’4 ’
r=rqo
3o, P Et _2np  2&(x)sec® 2d;secO 2d,secO 2[Z(x)—E(x)]sec9 E
el T Co Co Cn1 Cv2 Cv2

Cexp{ — 2K¢10; sec 8- 2K, (d, +(x) ~ (X)) sec 8} pg (& )dEdC rdrde
Equation 4.3-5
where pg (&, ) is the joint probability density functions for the boundary heights of the

foliage volume and the rough surface and for the power density traveling in the T

direction:
fAS=f{0f-2)rdrde= FO{0E-2)pdpde
Averaging over the slopes (assuming they are independent of the surface heights), we

define the function:

t(6) = ﬁsin B+cosH
op

g

Equation 4.3-6

If the surface statistics are independent of the canopy height statistics, we write this as

NG?(8,,9,) o

(Pr@)=_ 11 Wos(e,cp)t(e)
"
P Et _2rg  2&(x)sec® 2d;sec® 2d,sec® 2[7(x)-E(x)]sec® E
e Co Co Cv1 Cyv2 Cv2

Cexp{ - 2Kyl s 8- 2Kgy (d + () ~E(x)) sec 8} pg (8)py (2) dEZ rdrdg

Equation 4.3-7
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where p, (&) andp,(C) are the independent probability density functions for the

boundary heights of the foliage volume and the rough surface, respectively. Rearranging

and substituting for the constant terms, Equation 4.3-7 is rewritten

22 - -
(PrR(D)=" Mo?(e,(p)t(e)exp{—ZSece(keldl+kezd2)}

3.4
Surface at (4T[) r
r=rio

quﬁom P Et - 2&(x)sec® 2((x)sec® E

Ca Cv2

rexp{ 2Ke, £(x) sec 0} pe (E)dEext) — 2Kl (x)sec§ pg (¢)drdrdg

Equation 4.3-8
where Eel,Eez are the effective extinction coefficients in medium 1 and 2, respectively ;

and

_2r, 2dysec® 2d,secH

Co Cv1 Cv2

1 1 1 ChC
— =H--—Hor c,= —0v2
Ca o Cw Cv2 = Co

Performing a change of variables which transform distance into time

to

{ = 2((x)secB dz = Cy, ()
Cy» 2secH

t, :M O dé& = Ca dt2
2secB

a

and defining some new functions,

~

fu(ty) = exp{—kez Cv2t1} P (1)
fio(ty) = exp{ Ke2 Catz} P2 (t2)
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Noting that the probability density functions describing the boundaries must also be

transformed,

— C l: Cv2t
Pults) = e epZE2sec8E

Poltz) = 23ec9 EZsece

we find that the average returned power can be expressed as

NG2(8,, - -
)= g 2S00 ®) ye)g (6 g exp{- 250c8kend, +Red, )}
Surface at (4T[) o
r=rio
C C (o] (o]
| Pt —tg =ty =ty )iy (ty) dty iy () dt, 1y drypde
45e¢? 6 Zeo o

Equation 4.3-9

Introducing a delta function and using its integration properties, we rewrite the above as

2n2 . _
Pr)= [ 2008 (o) (6, g)exp{ - 25ec iy +epd, )}
Surface at (4T[) Mo
r=rio
C,C ®© ®

Equation 4.3-10
Performing the t; and the t, integrations and expressing the result in convolutional form,

which is represented with the [0 symbol, we find

Canz )\ZGZ (ea ' (pa)

2 3 4
Surface at 4Sec” 0 (47T) "o
r = rlo

(P.(1)= (6)02 (8, ¢) xp{- 25ec O(kegdly + Kepd,))

[ﬁPT (t—to) Of(t—to) Ofp(t— to)] rodrip do

Equation 4.3-11
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Integrating over the foliage upper surface, the returned power can be recast into the

following convolutional form, following the methods outlined in previous section.

(P.(t))=Pr(t) Of, (1) Of,(t) O P (t)

Equation 4.3-12

where f, (t)and f,,(t) are functions which depend on the probability density functions

whose random variables are functions of the random variables representing the surface

and canopy statistics, &(x),{(x) as well as the extinction coefficients, and the antenna

boresight angle, 8. The flat surface impulse response function (FSIR), Pgs-(t), is similar to

the standard FSIR with the modifications (among others) that account for attenuation:

Keoe,, =2 3-27¢) 62(6,.0) 0200 (@)

Prs(8) = 4(4my? H (rY sec’ 0

@xp{— 2sec G(Eeld1 + Eezdz)} r'dr'de
Equation 4.3-13

Here the antenna gain is approximated by a circularly symmetric pattern with a pointing

angle given by (6,,@,) and the angles (6,,q,) are spherical coordinates defined with

respect to the antenna boresight direction. Consequently, the antenna gain can be

represented by

a2 . ]
G(8,, @) = Go(By, ) eXp-—sin” 8, 7
Oy 0

Equation 4.3-14
This expression Equation 4.3-13 for the FSIR includes additional effective parameters
related to the speeds in the different media, the incidence angle, and consequently, time

or range:
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h=Sog, +50 g, +h
Cvl Cv2
() =) + o
The integral for the FSIR can be simplified using the method presented in Brown [1977];
we begin by substituting the two-way incremental ranging time for the actual time:

= t—z%. Assuming that the beam is narrow such that the surface incremental cross

section is constant over the angular extent of interest and that sec® [Jsec8, (boresight)

and the surface is locally flat, the FSIR is found in the following form

2 2 2 0 ! ~ ~
PFS'(T) — A COCaCVZ(h ) GO(eO’(pOgos (eO’(pO)eXpE_ EOT-l:Zh erldl + keZdZ)E
1670 (CoT +2h') oo h O O

21

DI exp%—ﬂsm 0, Ddcp
Y

Equation 4.3-15
Note this expression can include an asymmetrical antenna pattern [Newkirk and Brown,
1992]. Summarizing, the final form of the solution to the average power returned due

only to the rough surface could be expressed in the following convolutional form,

<Pr (t)> =P (t) Of,(t,) OF,(t,) O P (1)

Equation 4.3-16
where f, (t,)and f,,(t,) are functions of time which depend on random variables which
are functions of the surface and canopy statistics, &(x),{(x), as well as the extinction

coefficients, and the pointing angle:

2{(x)secH Cyz ﬂ Cy,t;
t,=———"—— [ t,) =
' Cyy Puts) = 2secH ZHZsece
2&(x)secH c
t,=—"—— [ =
? . Poltz) = ZSeCGpEEZSeCGE
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f,(t) = eXp{_Eez Cy }ptl(tl)
ft2 (tz) = eXp{kez C.t, } P2 (tz)

Equation 4.3-17
The modified Flat Surface Impulse Response is given by

)\ccvz

4(4m)?

Prs:(t) = exp{ 258 B(Keyd; + Eezdz)}
oo 3t-20) o, %:)0:(6.0

Ej(;g (rY sec’ 0 1(0) pdpdo

Equation 4.3-18
for layered media with a constant velocity in each medium and where Eel, Eez are the

effective extinction coefficients in medium 1 (foliage region) and medium 2 (trunk
region), respectively.

Computationally, for the specific case in which the propagation speed of the “trunk”
region is equal to that of free space, one of the convolutions is no longer necessary and

the average power returned takes the following form.

2 -~ -~
Pr®)= [ L;‘pa) 628, ¢) exp{ - 25ec 8( Keqtly + kel )
Surface at (4T[) r

g, exp{ZEez £(x)sec 9} pg (§) dE

2((x)secH

Cv2

0%, Pr Et —ty- %xp{—ZEeZZ(X) sec 6} py () dZ rdr d

Equation 4.3-19
The expectation over the canopy statistics may be performed analytically if a Gaussian

distribution is assumed for the roughness.
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o]

N
(e o2Keo E(x)seC8 E—Iliexpm— %E
2T[O-canopy H 20canopy %

= exp{2k,§2 Oanopy SEC° 6}

Equation 4.3-20
and the power returned is rewritten in the following (computationally) simpler form

(P (1)) =Py (t) Ofyy(ty) O Pegi(t)

where the flat surface impulse response is now given by

Peg:(t) = New, G?(6,,9,) 02 (6,9)
FS 2(4TO3 ar s\

ZV - -
w2 Ot C/ 2ké; O%nopy sec’ p~25ecO(Kkedy +kepd2)

dpd
Egg (rY sec(e)e Papae

Equation 4.3-21

with a change a variables Er =T +%Eand some properties of the delta function
il il

AZ
Pes:(t) = 2(;;)23 G2(8,,%:) 03(8.9)

2 ~ ~ -
E"f I" 6(r) e2k§2 O anopy Sec” O o~ 256¢ 8(Keydy +Keod)
0

dpd
ot (r)sec(s) o
2
AZCVQ 2 0
= G“(0,, o, (6,
2y (62, 9:) 05 (6,9)
E}OZITT oft- 2/ 2k§2 O Ganopy SeC> O o ~256cB(Keydy +kepd) pdpde
0o () sec(e)

Equation 4.3-22
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4.4 Convolutional Model Results

Previously noted limitations of this radiative transfer result have included a limited
scattering pattern for each volume scatterer. The chosen scattering pattern demands
strictly forward scattering and backward scattering. This assumptions decreases the
number of coupled differential equations from N (when N scattering directions are used
in a quadrature approximation to the integral in the radiative transfer equation) down to
two: coupled integral equations, one governing forward and one reverse scattering.
Secondly, the upward propagating power density is assumed not to influence the
downward propagating power density. This last assumption is key since it allows a closed
form solution for the downward propagating power density. Otherwise, the solution
would be in the form of two coupled differential equations. Finally, the antenna is
assumed to have a narrow beamwidth and the transmitted pulse is narrowband.

As a simple example, a simulation for a layered medium with a constant propagation
speed and constant extinction coefficient in each layer was performed. The results are
shown in the following figures. The assumed parameters of the radar system are as
follows:

» Radar: Matched Filter, 1 kW transmit power
» Waveform: Square Pulse with 5 ns pulse length
e Antenna: Gaussian pattern, 0.5 to 5 degree beamwidth, nadir pointed

The medium is assumed to have the following bulk propagation properties (arbitrary
estimates since no data was available) and Gaussian statistics:

1. The foliage layer

e 15 meter thickness

» effective extinction coefficient as noted

» group velocity; free space

» Gaussian boundary statistics; variance of the heights: 1 m

» backscatter to forward scatter cross-section, os/ay, : 500

» absorption to total scattering cross-section, o, /oy : 0.9 (albedo)
2. The trunk layer

e 5 meter thickness

» effective extinction coefficient as noted

» group velocity: free space

» backscatter to forward scatter cross-section, os/ay, : 500

« absorption to total scattering cross-section, o, /o;: 0.9
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3. The ground layer

» perfect electric conductor (PEC)

» Gaussian statistics; variance of the heights: 0.3 m

The following results are based on derived data gathered from some measurements
made by Ulaby [1988]. From these measurements, the parameters for the scattering
amplitude described by Schwering were quantified. The Schwering amplitude scattering

model is written as follows

_E cos@ g
p(cosB)=(L-o)+ae P

Equation 4.4-1
This model describes isotropic scattering in all directions with the exception of the
forward direction, see Figure 4.4-1. In the forward direction, the amplitude is much larger
and is described by a Gaussian beam. The parameter, a, is related to the ratio of the
forward scattering lobe to the isotropic background. Since the convolutional model

predicts only forward-backward scattering, a is considered to be
o = (1 - forward-backward ratio) = 1 — 1/500

So that given an extinction cross section, o,, and an albedo, W, the forward backward

scattering cross sections can be derived.

O = of+ob:of+(1—a)of =Woao,

W =albedo = (os/(0s+0,)) = 0.9

where g, Os, 0, = extinction scattering, absorption cross sections, respectively. Under
high-moisture content conditions (referred to as “wet” in the following figures), Ulaby
measured the ratio of the forward scattering lobe to the isotropic to be 500-to-1 and an
extinction coefficient of 6 nepers per meter at 35 GHz. Other frequency parameters were

scaled by the frequency to the three-quarters power.
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s
Figure 4.4-1: Schwering’s scattering amplitude

Figure 4.4-2 shows the effect of canopy “roughness” on the return power waveform, the
first “hump” in the waveform. Although the waveforms align at some portions, the
leading edge of the return (the volume/foliage return) is “smeared” out by the roughness.
Mathematically, this is a result of the convolution with the pdf of the air-canopy
interface. When the standard deviation of the heights approaches zero, this convolution is
with a delta function and the interface has no effect. However, the pdf “spreads out” as
the roughness is made larger. Consequently, the return power waveform is more greatly
affected, as the roughness becomes larger. The surface return behaves in a similar
fashion. As the surface roughness is increased, the surface return “smears” as well.
However, in this and the remaining simulations, the surface roughness is held constant.

The surface return, average power waveform is the second “hump” in Figure 4.4-2.
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Normalized Return Power Waveform: 30000 ft

Radar: Pointing Angle (0 degrees), Pulse (5 ns), beamwidth (0.5 degrees)
Vegetation layer : 15 m depth, 0.5 np/m(1.5 GHz), "wet", fwd:back = 500:1

120 ¢ Gaussian Roughness, 1 m height std dev
Trunk layer : 5 m depth, 0.00 np/m, fwd:back = 500:1
Surface: Gaussian Roughness, 30cm height std dev, cross section: 5dB (1.5GHz)
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Figure 4.4-2: Air-canopy interface roughness effects on the return waveform

Ideally, the return waveform will have distinct features in the volume return and the
surface return is distinct. The best case for discerning features will employ narrow
beamwidth antennas, low altitudes and a nadir-pointing angle. In addition, a smaller
extinction coefficient will result in a greater ability to penetrate the foliage. In addition to
the volume return and the surface returns, a point target has been added to the model in a
manner consistent with the formulation of the model. In other words, the return from the
target is simply superimposed on the returns from the foliage-surface return.
Consequently, there is an assumption that no multiple scattering occurs between the

target and the surface or the foliage.
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Normalized Return Power Waveform: 30000 ft

Radar: Pointing Angle (O degrees), Pulse (5 ns), beamwidth (0.5 degrees)
Vegetation layer : 15 m depth, 2.0 np/m(10 GHz), "wet", fwd:back = 500:1

1.20 + Gaussian Roughness, 1 m height std dev

Trunk layer : 5 m depth, 0.01 np/m, fwd:back = 500:1

Surface: Gaussian Roughness, 30cm height std dev, 5dB (10GHz)
1.00
0.80 !

——Target Xsect: 5 m"2
0.60 ——Target Xsect: 1 m"2
—Target Xsect: 0.2 m"2

Normalized Magnitude

Target: 3m above
0.40 mean surface

0.20 //
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—

Figure 4.4-3: Average power returned from “wet” foliage at 10 GHz for different

target cross sections.
In Figure 4.4-4 the extinction coefficient has been reduced in a manner consistent with

the “dry” foliage conditions assumed in this chapter. Here we can see that the target has
begun to emerge from the return waveforms attributed to the surface and the foliage.
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Normalized Return Power Waveform: 30000 ft

Radar: RONING ANGEE. (O DEGREES), RUSE (BN, BEEAMWIDTH (0.5 DEGREES

Vegetation layer : 15M DEPIH O8NI/M(10GHD), "DR', PMD:BAK= B00:1
GALEEAN ROUGHNESS, 1 M HEIGHT SID DEV

Trunk layer : 5M DEPH OOl NA'M, PFAD:BAK= 5001

Surface: GALESAN ROUGHNESS 300M HEIGHT SID DEV, 80B (10GH?)

1.20 +
1.00 /\
0.80

/ \ ——Target Xsect: 5 m"2
0.60 —Target Xsect: 1 m"2

—Target Xsect: 0.2 m"2
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0.00 T T T - - - A T ~—
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Figure 4.4-4: Average power returned from “dry” foliage at 10 GHz for different

target cross sections.

Finally at 1.5 GHz, even in the wet foliage conditions, the target is visible and distinct
from the surface and foliage average power waveforms in Figure 4.4-5. Figure 4.4-6
shows the target clearly visible at 1.5 GHz under the “dry” conditions.

The returned power waveform must also be compared to the noise power level.
Given the power pattern of the antenna, P(6,¢), the antenna noise temperature due to an
extended target with a temperature distribution, T(6,¢), such as the earth in remote

sensing, is calculated as [Stutzman, 1998]

N

Tt

2 T Te.9P6 9)da

TA =
A QA

o— o

Equation 4.4-2
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Normalized Return Power Waveform: 30000 ft

Radar: Pointing Angle (0 degrees), Pulse (5 ns), beamwidth (0.5 degrees)
Vegetation layer : 15 m depth, 0.4 np/m(1.5 GHz), "wet", fwd:back = 500:1

120 4 Gaussian Roughness, 1 m height std dev
Trunk layer : 5 m depth, 0.01 np/m, fwd:back = 500:1
Surface: Gaussian Roughness, 30cm height std dev, 5dB (1.5GHz)
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Figure 4.4-5: Average power returned from “wet” foliage at 1.5 GHz for different

target cross sections.

For a constant temperature distribution, Ty, this simplifies considerably to

N

Tt

1
o 1
0

Ta =
A QA

2
T, P(6,9)dQ = i? ;" P(B, )dQ = iQA =T,
Qa0 0 Qp

o— I

Equation 4.4-3

Consequently, the noise power for a 35°C Earth and a 10 ns pulse length becomes

Py = kTys B = 1.38X10_23(273+35)@1%H: 4.112x1073w
O

The signal-to-noise level at the matched filter receiver can now be determined. Figure

4.4-7 shows the signal-to-noise ratio under ideal conditions; “dry” foliage at 1.5 GHz.
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Figure 4.4-6: Average power returned from “dry” foliage at 1.5 GHz for different

target cross sections.

Recall that each of these results given for the foliage penetration and subsequent

target detection occurs with ideal radar parameters:

the beamwidth is narrow, 0.5 degree
the altitude is 30,000 ft

the antenna is pointed directly downward (nadir),
and the surface roughness is consistent with road surfaces.

As these parameters are varied, the foliage and surface returns will “smear,” masking the

target in their waveforms. These detrimental effects are confounded by the increase of the

extinction through the foliage, and the target cross section.
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Figure 4.4-7: Signal-to-Noise ratio at 1.5 GHz under “dry conditions.

In the remaining figures, the effects of some of these factors are explored.
Specifically, the radar platform altitude and the beamwidth are varied. In addition to the
foliage and surface return waveforms, a point target has been included. This target has a
0.5 meter-squared cross section and lies 3 meters above the mean surface. Figure 4.4-8
again shows ideal conditions including “dry” foliage at 1.5 GHz. However, by the time
the beamwidth reaches 5 degrees, the target is completely lost in the foliage return. In
Figure 4.4-9 the effects of extinction have clearly decreased the target return so that it is
only visible with the narrowest beamwidth. In addition, by the time the beamwidth

reaches 5 degrees, the surface return is nearly lost to the volume return.
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Figure 4.4-8: 1.5 GHz, dry foliage average power waveform with 0.5 m? target
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Figure 4.4-9: 1.5 GHz, wet foliage average power waveform with 0.5 m? target
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Normalized Return Power Waveform: 70000 ft
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Figure 4.4-10: 10 GHz, dry foliage average power waveform with 0.5 m? target

The next two graphs show the average, return power waveforms for an altitude at
70,000 feet and 10 GHz. In Figure 4.4-10 the target is hidden and surface is nearly hidden
as the beamwidth increases. Figure 4.4-11 shows that under wet conditions the surface is
completely obscured as well as the target. Finally, Figure 4.4-12 shows that the increase
in frequency to 35 GHz and the accompanying rise in extinction results average return

power waveforms with no discernable features.

144



1.20 +

1.00

0.80

o
o)
S

Normalized Magnitude

0.40

0.20

0.00

Normalized Return Power Waveform: 70000 ft

Radar: Pointing Angle (0 degrees), Pulse (5 ns), 10 GHz Carrier

Vegetation layer : 15 m depth, 2.0 np/m(10 GHz), "wet", fwd:back = 500:1
Gaussian Roughness, 1 m height std dev

Trunk layer : 5 m depth, 0.00 np/m, fwd:back = 500:1

Surface: Gaussian Roughness, 30cm height std dev, 5dB (10 GHz & 1.5GHz)

——5 deg beam
—1.5 deg beam
——0.5 deg beam

\
\ ~—

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

time (ns)

200.00

Figure 4.4-11: 10 GHz, wet foliage average power waveform with 0.5 m? target
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Figure 4.4-12: 35 GHz, dry foliage average power waveform with 0.5 m? target
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Chapter 5 Beam Incidence in Radiative Transfer

In this study, the power scattered by a volume will be calculated using many different
techniques including radiative transfer, single scattering and multiple scattering. In all
cases, it is desired to manipulate the solution, making all the necessary assumptions, in
order to create the “convolutional model” that was introduced in Chapter 4 . The
necessary assumption is simply that the medium is strongly forward scattering. This
chapter examines this aspect of the convolutional model: the assumption that multiple
scattering is negligible outside the forward and backward directions. One measure of this
assumption is beam broadening. In most literature, the beam wave case is treated using
wave theory combined with the parabolic wave equation. This is a valid approach for
forward scattering in a small angle in the forward direction. However, as seen in the
studies by Schwering, the scattering of waves often has a component in other directions
(see Section 4.4). In this chapter, the frame work for higher orders of multiple scattering
for beam wave incidence are presented in the context of radiative transfer theory.

This chapter introduces the general radiative transfer solution. First, a forward-
backward solution is obtained. With the exception of time-dependence, this solution is
directly comparable to the convolutional result already developed. Subsequently, the
forward-backward solution is compared to one other approximation and the full solution;
the approximation includes scattering in all directions by the incident coherent power
density, but no multiple scattering in the incoherent power density. Next the full solution
to the radiative transfer equations for beam wave incidence is presented. Here, the
general transfer equation is numerically evaluated for an incident beam; this solution

includes multiple scattering as much as the classical radiative transfer equations allow.
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5.1 Radiative Transfer Theory

The geometry for the development of the general radiative transfer equation is given in
Figure 5.1-1

Figure 5.1-1: Scattering geometry for the intensity [Ishimaru, 1997]

Assuming that the scattering process is polarization insensitive, we will use the scalar
radiative transfer equation, which relates the differential change in the power density over

volume ds. This is written as

oI(5; T, 1) _

a7 po-t ~Aar A,z J A
—po G t) + ==L 1p(5,8)1(3; 7, t)dw +J,(5;T)
ds ! 4m {{T °
Equation 5.1-1

where

e I(§;7) is the power density in the § direction at the position: ¥
e S isadirection of the power density
e pisthe scatterer density

* 0,(r) is the scatterers total cross section which is the sum of the absorbing and

scattering cross sections: o,(T)= o0,,(F)+ o, (F)and as written here, may be a

abs

function of position 7.
. p(§§) is the scattering function of each scatterer; (prime denotes incident

direction(s)) and is related to the amplitude of the field scattering function squared.
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» J.(5;T) is the source function (emission sources)

Referring to Equation 5.1-1, the change in power in the t direction is proportional to the
power incident on the differential volume element. This power is then depleted by
absorption as well as scattering into other directions. On the other hand, the power, as it
propagates through the differential volume, increases by an amount due to scattering into
the t direction from other directions ' as well as energy emitted inside the differential

volume.
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5.2 Radiative Transfer for Strictly Forward-Backward

Scattering

In this section, the radiative transfer solution for forward scatter only is presented. In
some ways, this approach is a precursor and under some conditions, is directly

comparable to the forthcoming convolutional solution.

Gaussian

air-foliage

@incident
I incoherent
a>

l incoherent

Figure 5.2-1: Single scattering for a single scatterer

Beginning with the classic, source-free radiative transfer equation, the integral over

the solid angle is simplified.

p

d1(f,8)

ds

= —pgo 1(7,8) + 297 1p(s,8)1(F,§)de
4Tt i

This integral, which describes how the power density in one direction is scattered into

another, will be approximated for scattering exclusively in the forward and backward
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directions. This simple solution can be obtained by assuming a very restrictive function

for the scattering amplitude (sometimes referred to as the phase matrix) as follows

p(6.3) = it[of 5(5-3) +0, 85 +3) ]

where the Dirac delta function, d(*) has been introduced, as well as the forward and

backscattered cross sections, o; and oy, respectively. Note that this scattering function

obeys the identity

(p(.8)da = ans = anw,
ATt Oy

where W, is the albedo of the scatterer. Hence the integral of the scattering function
includes the loss due to scattering but excludes that due to absorption. Due to this
selection for a scattering function, the radiative transfer equation becomes (splitting it

into upward and downward directed power densities)

dig(r,8 ~ay, PaOt U o (e )2, PdO 8,
) < —pontg(r) + P BT (09 + LT )
dlg(F,8 —(w 2\, POt Uoy o o —(» 2\5, POt Oy | (.
009 < —p1.9)+ 2ot L2509) + 90T 2o )

Once again, converting (changing variables) to optical distance and rewriting this in

matrix form, the following greatly simplified form is discovered

B—1+ i e E
TR 0 I e 0, 1 oo g
dt Hd(r,s)g 0 __Ob 1-_9t O d(r,S)D 4mo, B’Ub

H 4mno 4110,
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Using the previously determined, the coherent intensity is substituted into the above

equation
D—l O O, 0O O of O 02
_Dg(f,é)gzg 4mo,  4mo, EDJ(?,§)5+ Jano; 5 ot
did;(8)n O_ % 4 O CH3(r8)g Q.9 0°
H 4o 4mo; H H 4o,

Equation 5.2-1
The solution to this problem can be found in several different ways; again, we may use
the approach of Cole [1968] or Variations of Parameters [Boyce, 1977]. The initial
conditions are stated as follows: the downward propagating incoherent power density at
the top of the foliage layer is zero; the upward propagating incoherent power density at

the bottom of the foliage layer is also zero. These conditions can be written as

o)D 00

Hd T-Td H)H

Substituting for the matrix entries in Equation 5.2-1 for convenience and assuming that

the incident beam is z-directed (normally incident), the differential equation is cast as

O o 0O
;0 Ga BOAMO D4not U

dTHdD H'B O(EHdD D 9% Eé(T)

H 4ma, H

p

2
where the forcing function: s(t) = Age 2% e"

Equation 5.2-2
the eigenvalues, A1, of the homogeneous system are found from the determinant of the

matrix

B2-a2)+p2 =0 O A=y a?-p? =2
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and the fundamental matrix (matrix of eigenvectors) and its complementary form which
reduces to unity with the initial condition, can be written as

_ _ 5 ] Be)\T Be-)\'[ U]
= [X1eM Xpe™ | =
[ . ? ] B(G +A)eM (a-A)e™

= LD[(O( AN (o - )\)e“] B(eh _e—AT) O
CD( ) B B (e—)\'[ )\T) [(a +Ak)\1' _(a —Ak_)\l' ] B
Equation 5.2-3

Note that the second fundamental matrix does display the desired property that

o 2) :3(— z) . Employing the boundary condition,

wia©+ W ia,) = 0

where in this case, the matrices W are given as follows:

—[0] 00 —[rd] 0 00

"B TH f

these values for the matrix indicate that there is no reflection at either boundary. If there
were reflection at either boundary, then these matrices, W, will include the reflection
coefficients; this case is demonstrated in Section 7.6. The solution of the differential

equation is written simply as

—=-1=]14]= T =

i(T)=$(T)i$( st)dt - o@D W “(ty) | (- t)s(t)at

Equation 5.2-4
This solution involves the fundamental matrix as well as the matrix, D, which

incorporates the boundary conditions. D is given by [Cole, 1968]
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and its inverse is given by

=1 _ 1 Dl_(a +AeMd —(a-Ae P | 0 B

[angs - @-ape] O -BETi-e) T aag

Equation 5.2-5

The integrals in Equation 5.2-4 may be evaluated analytically. Substituting for the inverse
of the fundamental matrix and the forcing function (coherent power density), the integrals

are evaluated.

P
8TAG; [3(e7‘t e_“) [(0( +A ™ - (a A)eAt]D%'obD
2
P
A, 2w? ¢ Dsle-(1+>\)t +S, e—(l—)\)t Ddt
~ 8m\g, {Eﬁge'(lﬂ)H S, e Mk B
2
-0 s [+ Sy ~(t-Mh R
. 1) - -1
Age 2%’ B (1+)\)(e ) (1_)\)(e )B
8mAG, []__S3 (e—(1+)\)r 1)_ Sy (e—(l—A)r 1) 0
8 @+2) @-2) g

Equation 5.2-6

where
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S; =[~(a~-)\)o; -Bay)
S, =[(a+A)or +Bay]
Sy =[-Bor —(a+A)ayp)
S; =[Bos +(@-2)ay]

At this point, the solution to the strictly forward scattering solution can be found.

As an example, the propagation of a beam through a strongly forward scattering
medium is given in Figure 5.2-2. The incoherent power density (diffuse power) behaves
as expected. The diffuse energy grows as the coherent beam penetrates deeper into the
medium. The coherent power constantly feeds the incoherent power; hence, the

incoherent power is expected to grow as the coherent power penetrates the medium.

Diffuse Power: Strictly Forward Scattering

6 wl Incident Beam, 20 wl layer; Albedo = 0.9;
0.02 7 Forward/Total Scattering = 0.9 , Backward/Total Scattering = 0.001

0.018 \
T 0.016 \
0.014

=~ 0.012 Observation Point

\ \ ——Depth: 1 wl
——Depth: 10 wl
——Depth: 18 wl
0.008 \ \\
& 0.006
0.002 \\

& @ P ® © A @ & & L & X ¥ ® O N QD
SR P SN M N T S RS N PN P S A N P
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o
o
=

Distance from Center of Beam (wavelengths)

Figure 5.2-2: Strictly Forward Scatter, incoherent power density at several depths

within the strongly forward scattering medium. Albedo = 0.9
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At some point, the coherent energy will become negligible and consequently, the diffuse
energy will no longer continue to grow. In fact due to absorption, the incoherent power
begins diminishing due to scattering out of the path and absorption, both of which are
defined as lost power in the strictly forward scatter model. Figure 5.2-3 displays similar
results for a smaller particle albedo. For that reason, the diffuse power level is somewnhat
reduced with respect to the previous case, since a smaller albedo implies greater

absorption. The general behavior, however, is consistent between the two results.

Diffuse Power: Strictly Forward Scattering

6 wl Incident Beam, 20 wl layer; Albedo = 0.7;
0.016 Forward/Total Scattering = 0.7 , Backward/Total Scattering = 0.001

o \
0.012
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Figure 5.2-3: Strictly Forward Scatter, incoherent power density at several depths
within the strongly forward scattering medium. Albedo = 0.7
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5.3 Modified Forward Scatter Solution

In this section, a second, simplified beam-transfer solution is presented. There is,
however, an added level of complexity: the coherent power is not restricted to scattering
in only the forward and backward directions. As in the general case presented in the next
section, the coherent power is scattered in directions as determined by the scattering
amplitude. However, the incoherent power density still only scatters in the forward
direction. Consequently, there is no coupling of incoherent power from one direction (ray
path) into another; multiple scattering in all but the forward and backward directions is
neglected. This solution will be used as a check case for the numerical simulation of the
next, more complex section since the results are greatly simplified. Starting with the same
integro-differential equation and assuming a normally incident beam (z-directed)

eos@) 219 sin(0) 155~ —p,,14(79)+ 2 1ot )11 5) 141 D)o

Equation 5.3-1
The primary approximation to be implemented is in the integral over the solid angle. For
the diffuse power density, lq, scattering can only occur in the forward direction. Hence,
the only contribution to the power density in a given direction is that due to field
scattered from coherent into the incoherent. In other words, the change in the incoherent
power density in a given direction is reduced by the extinction, increased by the forward
scatter of incoherent and increased by the coherent field scattered in that direction. This
incoherent power density can now only continue to travel in its original direction (as

indicated by the power scattering amplitudes below)

dly(r,s oAy, PdOt ooy oAy, PdOt 4 s oA
Ha08)- —py0014(7.8) + P2 p(e )14 (7.8)+ 5% 0l 21, 2)

= —pyoy I4(F.8) + >

Equation 5.3-2
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The exponential factors describing the incident, coherent power density are described in
the appendix for this chapter. The first term on the left-hand side is the usual extinction:
scattering loss (and absorption). The second term is the forward-scattered incoherent
power density and the last term is the contribution of the coherent intensity into the
incoherent power density. This idea is graphically illustrated in Figure 5.3-1; notice that
incoherent power does not scatter into new directions; hence, multiple scattering is
neglected to a great extent.

Incident
Gaussian
Beam
>
Coherent
Power
0
Incident
Incoherent
Power
Coherent to
Incoherent
zy

Attenuated §
Coherent
Power

Incoherent Power

Figure 5.3-1: Modified forward scatter

Next, a change of variables is made, converting physical distance into the optical
distance. This change is described by
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let: T =pyo;s, dt = pyods; Limits: s=0,1=0;S=s,, T=py0:S,
An Bn

boo P " Buod)

The power scattering amplitude is modified to reflect only forward scattering:

arguments: a, =

A _ O : . :
p(5,8) = =L, fractional forward scattering amplitude
o

t

With these changes, the first-order, ordinary differential equation becomes

diy(r,s . 2TO N 1 Cat2_h T
O(lj(r ):—Id(r,s)+ 4n01; Id(r,s)+HTp(s,z)A0e ant” ~bpt=Cp

A closed form solution may be obtained by first combining terms,

d Id(?’g) 2Tt & 1 (25 ~ant? —by1-C
+d - r,S)=-—ps z)Ase “n ntown
4To, d( ) 4np( ) 0

Equation 5.3-3
Then, using an integrating factor, the differential equation evolves to a greatly simplified

form

d g (F,8)eket

= oA 1 .. a2
dt +ke Id(r’s)ekeT = H_[p(S,Z)ekeTAoe ant” —bpt-Cp

Equation 5.3-4
The left-hand side is further simplified by changing the variables in order to reduce the

two-dimensional problem to one dimension,

let: ¢ =1c0s0 = pt = pupyo;s, df = ppyo,ds
when: 1=0,{=0; T=py0:S, =T,
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This change of variables trnasforms the energy propagating in angles other than forward-
backward to forward-backward. In addition, the coefficients in the exponential must take

a modified form

A, B, = B, ,E &
(lde‘jt)2 " (updot) o

a, =

yielding the simple equation

d oo i L
Egld(r,S)ekezg :4__'_[Hp(S’Z)AOe (an (Bn ke)z Cn

Equation 5.3-5
A general solution is obtained by integrating, remembering to include an arbitrary

constant, which is evaluated from the initial condition.

S 1 oova S mant2 (B —FKe )t-
I4(7,,8)eke¢ = = p(52)A, [ e Ot "B ke 1Cagtic
A5 = Lol

Equation 5.3-6
Rearranging and using an integral identity, the solution is rewritten in terms of the error

function.

Id(?’§) ::35_5[—:) —keZ Cn e(Bn ke /40(” @rf%/iz+ﬁ3—)a—erfEﬁ3—)HD

+ Ce el
Equation 5.3-7
Since the incoherent power density is zero at the top of the layer (the initial condition),

the constant factor, C, evaluates to zero. The resulting solution for the incoherent power

density in the chosen direction, specified by p = cos8, is written
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I4(F,3) = :S\F}ﬁ_:) o~kel~Cy e(Bn Kef /4y @rf%‘ﬁ“ﬁg—)aerféﬂ%)gg

Equation 5.3-8
The length of the ray to the observation point is

Incident,
Coherent
Gaussian
Beam

Coherent Coherent
Power Power

/

Coherent
Power

Coherent to
Incoherent
Scattering
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Coherent
Power .
Observation
* ‘ * / Point, r,
: v
6,
Incoherent Power
61
— Z0 — ZO —
Sg = F 0 T, = pdoti and ZO = Pg0iZ,

Figure 5.3-2: The incoherent power density, generated through the scattering by the

coherent power density, for several different directions at a single observation point.

Hence, at the observation point, (p,,2,),
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- et S

Equation 5.3-9

This is the power density at a given observation point, T, in the direction 6; or (5 ~

cosB). Figure 5.3-2 illustrates the variation of the incoherent power density assuming that
the medium scatters the incident, coherent power density isotropically.

Next, we consider the incoherent power density along the two paths: 8; and 6,,
Shown in Figure 5.3-2. The incoherent power propagating in the direction (6,) is
generated by the incident coherent power density along the path shown. Since this path
is longer with respect to the path for 6;, and since the path 8, intercepts more of the

incident power density, the path 6,, will have a larger incoherent power density.

Incoherent Power Density
6 wl Incident Beam, 20 wl layer; Albedo = 0.7; Observation: 1 wl into the medium

0.0025 —F————— For modified and strictly forward cases: —_—
Forward/Total Scattering = 0.7 , Backward/Total Scattering = 0.001
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—5 degree
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Figure 5.3-3: Incoherent power density scattered along the indicated angles as a
funciton of the observation point at a depth of 1 wavelength.
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This is the case if we ignore absorption. This effect can be seen in the numerical
simulation of the modified forward scatter approximation of Figure 5.3-3. Note that as

the angles become larger, the incoherent power density becomes larger.

Incoherent Power Density

6 wl Incident Beam, 20 wl layer; Albedo = 0.7; Observation: 10 wl into the medium
0014 +——— For modified and strictly forward cases: _—
Forward/Total Scattering = 0.7 , Backward/Total Scattering = 0.001

0.012 / \
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'%\ \ -
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N v o> VR PO ® D R P DD DO DTS
0%%%%%’\’\@@@%‘0'p}{b{b‘}‘}’,‘v',\'\%%@
OF 07 v AT T N & R AN N N N N N A S vl L i o

Distance from Center of Beam (wavelengths)

Figure 5.3-4: Incoherent power density scattered along the indicated angles as a
function of the observation point at a depth of 10 wavelengths.

An observation point on the beam axis is expected to yield the largest incoherent
power; however, when scattering loss and absorption are included, this expectation must
be modified. In Figure 5.3-3 through Figure 5.3-5, the peak is shifting away from the
beam axis. In these figures, the power density along different angles measured at a given
observation point along a radial at three different depths are displayed as a function of the
observation point. Note that at only one wavelength into the medium, the peak occurs
near the beam axis. This is due to the negligible effects of absorption and scattering of the
incident beam. However, as the depth is increased, the peak of the incoherent power
density shifts away from the beam axis. Since the peak of the incident beam must travel a
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greater distance through the medium, as the observation depth is increased, a balance will
be struck between the absorption/scattering loss and the observation point within the
beam. Hence, the peak shifts. This effect is limited to the two-dimensional simulation
developed in this chapter. Once three-dimensions are included, the peak shift will most
likely disappear. The three dimensional case is a subject for future work.

Incoherent Power Density

6 wl Incident Beam, 20 wl layer; Albedo = 0.7; Observation: 18 wl into the medium
0.016 ————— For modified and strictly forward cases:
Forward/Total Scattering = 0.7 , Backward/Total Scattering = 0.001
observation
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Figure 5.3-5: Incoherent power density scattered along the indicated angles as a

function of the observation point at a depth of 18 wavelengths.

The total power can now be calculated at the observation point using Gaussian quadrature
to integrate the contributions in every direction. First, the total intensity is expressed in
the following integral relationship over the solid angle surrounding the observation point.

I:'total = ‘{I Pdensity (Fo )dQ
i

Equation 5.3-10
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Approximating the polar angle integral using Gaussian Quadrature, the total power is

written as

21

N —
Potal = 2 YjJ Id(roal'lj)d(p
i=-N "0

Equation 5.3-11
Since the power density can be determined at the angles (quadrature points), p;, from the

previous development and recalling that the power density has no ¢-dependence

N 2m a N 2
Piotal = J__Z_Né Yi Id(rd'Uj)d(pz ZTTj_Z_Nyj Id(rO'Uj)

Equation 5.3-12
It is to be expected that the modified forward scatter solution will yield higher incoherent
power densities than the corresponding strictly forward scatter solution. This is true since,
given the same isotropic scatterers, the modified forward scatter solution captures some
of the energy that is considered lost in the strictly forward scatter solution.

This is seen in Figure 5.3-6 in which the same isotropic scatterers are used to simulate
total incoherent power in each of the strictly forward and modified forward cases. Only
the 10-wavelength depth result for strictly forward scatter is given in this figure
(indicated in the legend simply as “forward at 10 wl™), for reference. The strictly forward
case includes power in only the forward direction; however, the modified forward is
produced by summing the incoherent power in each of the forward directions as specified
by a 5-point Gaussian Quadrature. At a one-wavelength depth, the beamwidth is
consistent with the strictly forward/backward scattering solution, which will not show
beam broadening. However, as the incoherent power is measured at larger depths, beam
broadening becomes evident. This indicates that the strictly forward/backward scattering
solution will not be sufficiently accurate for isotropic scatters in electrically “deep”
media. Next, the full solution of the radiative transfer equations is derived for application

with a numerical solution
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Total Diffuse Power: Modified Forward Scatter

6 wl Incident Beam, 20 wl layer; Albedo = 0.7
0012 ————— Forward/Total Scattering = 0.7 , Backward/Total Scattering = 0.001 _—
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Figure 5.3-6: The total incoherent power at an observation point along the radial at
a given depth (strictly forward scatter and modified forward scatter)

The beam bifurcation is an effect that is only expected in these two-dimensional
simulations. Once the third dimension of the beam is included, this effect is expected to
disappear. Note that only the axial point would be accurate, within a constant, in three

dimensions since the problem is only symmetric at this point.

5.4 Beam Propagation using Radiative Transport Theory

An assumption employed in the derivation of the convolutional model, the subject of
the next section, is that the scattering processes that are significant include only forward
and backward scattering. This assumption implies that the illuminated volume contains
the only scatterers that scattering energy back toward the radar. A solution of the
radiative transfer equations has been presented for two cases now: strictly
forward/backward (f-b) scattering, and a modified forward scatter. From the modified
forward scatter solution, it is evident that isotropic scatterers can not be adequately
modeled using the f-b solution. In this section, the general radiative transfer equations

165



are developed and numerically solved for a beam-wave case. Again, it is seen that there
will be significant beam broadening. Although it has been postulated that the f-b solution
is inadequate for isotropic scattering, the full solution of the radiative transfer equations
will yield the most accurate solution for beam wave propagation within the framework
classical radiative transfer theory. Hence, this important result seems to be absent in

literature with the exception of one case presented by Ishimaru [1993].

5.4.1 General Radiative Transfer for an Incident Beam Waveform

We begin the following illustration in Figure 5.4-1. From this figure, a heuristic
derivation of the general transfer equation for beam incidence will be presented by

following the more restrictive derivation by Ishimaru [1997].

Figure 5.4-1: Scattering geometry for the intensity [Ishimaru, 1997]

The radiative transfer equation describes the evolution of the power density, I(T,§),

—

(sometimes called the total intensity) at the observation position, T, in a characteristic
direction, S. Interpreting this equation in Cartesian coordinates, we find the ordinary
differential equation in Equation 5.1-1 is interpreted as the following first-order partial

differential equation,

dI(F.8) _0z91(F,8), ap aI(F.3)

~ . PdOt A
= — | 1 I 1 '
ds ds 0z ds dp paci1(F.8) + A L{{TD(S,S) (F,§)dQ

Equation 5.4-1

166



The integral over the solid angle will be retained in this case. This integral represents the
summation of incoherent and coherent energy that is traveling in other directions, §' that
is scattered (according to the scattering amplitude, p(s,s’)) into the direction of interest,
S. This s illustrated in the Figure 5.4-2.

Incident
Gaussian
Beam
>
Coherent
Power
0
Incident
Incoherent =~
Power
Coherent to
Incoherent
YA 4

Attenuated $§
Coherent
Power

Incoherent Power

Figure 5.4-2: lllustration of scattering which includes multiple scattering

Evaluating the partial derivatives and splitting the total power density into coherent and

incoherent portions, and 1(F,3), respectively,
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00 (15(1 )+ 14(18) + 2220 ro68)(10.8) 1418

Equation 5.4-2

Recalling that the scattering process is considered entirely incoherent, Equation 5.4-2 can

be split into parts that govern the coherent and incoherent processes

014(F.8) . . ,\al14(F.3) oy, PaOt o s
cos(8)— "2 +sin(p)—42= —p o, 1 4(F,8) + §,8')14(F,8)dQ"
)71 wsin@) 71" = g0, 14(7.8) + P o6 8)14(7.)

is the incoherent or “diffuse’ power density. Each of these separate equations will be
considered separately in the following sections. Note that the coherent power density acts
as a source for the incoherent power density; consequently, a solution is attempted for the

coherent power density first.

5.4.2 Characteristics Solution of the Coherent Power Density

The equation for the coherent power density (reduced intensity) was given in the

previous subsection and is repeated here for convenience.

cos(e)w +sin(6)%ép’e) = —p40;01,(z.p.0)

Equation 5.4-3
The solution to this partial differential equation is most easily found using the method of

characteristics. Consequently, first parameterizing the variables along the characteristics
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letp=n0 @(n)=n
2=00 g(n)=0

We next solve the differential equations for the parameterized equations

dp _ sin(@),  general solution: p =ssin(8) + C,

1. with 1.C.: p(n,s=0)=n O C,;=n
final solution: p = s sin(8) + n

& cos(8),  general solution: z = s cos(8) + C,

2. with I.C.: z(n,s=0)=0 O C,=0
final solution: z = s cos(p)

and solve for the characteristic variables

z

> cos(6

) n = p—ztan(e)

Hence, the characteristic equation for an incident Gaussian beam becomes

d Iri (T",§)
ds

= — P40 Iri (?,g) 0 Il’i (f,g) = Cse—pdots

r]2

withIC: 1,;(p(s,n).z(s,n).0) = Ay e 2w

yields a solution to the characteristic equation incident beam.

r]2

~ 2 _
Iri(?,S) = Aoe 2w e PdOts
2

z

X S5 POt
or, 1;(z,p.8) = Age 2% ¢ = cos(0)
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Note that the beamwidth is set by the symbol, w. Consequently, when a beam is normally
incident (6 = 0°), the beam shape for the reduced intensity within the random medium is
a unchanged with the exception of the attenuation due to the extinction. This extinction is
due to particle density and total cross-section and appears as a function of depth into the

medium.

5.4.3 Solution for the Incoherent Power Density

The solution for the incoherent power density follows along the same procedure as
that of the coherent power. However, the complexity of this problem requires a numerical
solution, rather than the closed form solution for arbitrary scattering amplitudes. We
begin with the radiative transfer equation governing the incoherent power density;
restating the transfer equation

A

cos(e)‘ﬂtg—(zr’s)ﬂin(e)alda—g’g): 0001 14(7.8) + 20 6.8)(1(7 )+ 14 (7. 8o

Equation 5.4-4
This integro-differential equation cannot be solved for general amplitude-scattering
function, p, and general boundary conditions. Consequently, the numerical solution of
this equation is investigated. First invoking a change of variables from the polar angle to

the cosine of this angle, we let p = cos(e) and redefine the amplitude scattering function

as

p@.8) 0 p(uw)

Next, we assume azimuthal symmetry within the random medium and integrate out the
azimuthal dependence of the scattering function; this reduces the three dimensional
problem down to two dimensions. This will only be valid for plane wave incidence and
the beam axis for the beam wave incidence. Hence, the redefined amplitude scattering

function is rewritten as [Ishimaru, 1997]
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N (TRTY)

12n 12n
=— rdop— (d , "
ol @ancﬁp(ucau @)

Equation 5.4-5

Examples of this reduction are found in Ishimaru [1997]. For example, in terms of the

cosines of the incident and scattering angles, p and W’ respectively

isotropic: p, (U, 1) = W, = albedo

Rayleigh: po(u,p) = %%wzu'z +%(1-ule-u'2 =
More general amplitude scattering functions may be derived in terms of Legendre
polynomials as long as the scattering is symmetric about the direction of the incident
wave [Ishimaru, 1997].

Consequently, after transforming the variable and the limits of integration, the
transfer equation can be rewritten as follows (splitting the power density into diffuse and

coherent portions as previously discussed).

2000 ooy QU1 1)+ P70 ) g ) 10D

it
. PyO¢ 1 Ne (= N . PdO .
= —Py0¢ Id(ril'l) + d2 t Ilpo(u!U)ld(raU)dp— + ZT[I po(“*“inc)l ri (ral'linc)

Equation 5.4-6
Transforming back to the characteristics solution, we establish the following integro-

differential equation

di, (F, - P40 1 . S . PgO _
dd(r u‘):—pdotld(r,uﬁ 100 () (7 )b+ == P (b, ine i (F, i)
S 2 4 4m

The numerical solution of this equation has typically been performed using Gaussian
Quadrature [Boyce, 1984]. First, we break the integral into a summation, weighted by the

quadrature weights, y;.
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dlq(F. 1 P )+ D00t S )+ o0
%:_pdotld(r’ui)-k dzt .zNyij(}’li’uj)ld(r’uj)-F —
j=-

po(“h“inc)lri (?)

411

Now, the single, integro-differential equation with the summation over 2N quadrature
points may now be rewritten as a system of 2N ordinary differential equations. Given an
illumination which is normal to the boundary, the coherent power density incident to the

elemental volume, ds, located at observation coordinates (p, z) is given by

_PZ(S,Hi) ooy _PZ(S,Hi)

-~ 2 ~Pd Ot 2
. — 2w 0 _ 2w -Pq 0tz
Iri(p,z,ki) =Ape e cos0” = A e g Pd Ot

Where we recognize that the coordinates (p, z) must be translated into those appropriate
for the characteristics solution. This conversion and the necessary geometry are given in
the appendix to this chapter. From the results of this appendix, the incident coherent

intensity to the elemental volume, ds, can be written in the following generic form;

_pGsui)?
~ 2 _ _ 2 _ _
Iri(s,un;ki) =Age 2V g7Pa0tZ = p e Ans" Bns=Cy

Consequently, the differential equation can be written as a system of ordinary, first order

differential equations.

Olg(Po. 2o Hy) O Ola(Po. 2o Hn) O
iD . D: _ o |:| : |:|
ds O ' 0~ ~PdOtp : O
gd(vaZO’U—N)E Hq Ovzo’H—N)E
DprO(“N’p-N) prO(“N’p-—N) DD'd(POvaHN)
+ Pd9t O : g : BN :
> 0 : ) : a5 :
@’—Npo(lrl—NvHN) y—NpO(“—Nv“—N)EQd(pO’ZOvU—N)

- 2_ -
3 poliu e B Cn Tl oy, 75,1y ) 0
P40t : ] O

4 i : , i 5 :
T Bl e A B B oy, 20 )
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The “constants” A,B,C are functions of the angle, Y, and are defined in the Appendix.

Employing another change of variables so that the optical distance, T, is used

let: T =pyo;s, dt = pyo,ds
_ B,

An
(det )2 (det)

we can then rewrite the matrix equation as

an

DId(vaZovp-N)
d O :

dr O '
(pO’ Zo, M- N)

DId(vaZo’HN)
_d :

O™
1
o

0 :
Ed(vaZO’P-—N)
Dpro(lrleHN
U :

N—”

pro(Ir‘NvU—N) DDId(vaZo’p-N)
: (1] :

+
N |-

U
. : : o . E
@I—NPO(H—N’UN) y—NpO(lJ—N’U—N)Ead(vaZo’p-—N)E

po(lrlel)e_aN R Bmld (Po:Zo:Hn) O
+ Ao 0 : O

+ D : 0 : g
T[] - O
gjo(lJ N 1 DT Egd(pO’Zovu—N)E

Equation 5.4-7

making a substitution for the constant matrix elements

Dpro(lrlN |J-N) pro(IrleH—N)

wmi
]l

Let:

OoOonO

= 1 0
-1 + = : ) :
o U
- NF’o(Ir1 N UN) Y—NPO(LI—N’H—N)E
Equation 5.4-8

where 1 is the identity matrix. Using a short hand notation to denote the n™ quadrature

value for the power density, 14(0,.2q. 1) 0 lqn and the distances, d, the matrix

equation can be rewritten as

173



O —a, 12 -b, T-C 0
|| O || O l)e °N N N Ll O
q Dd:,N D_EDd;N D+ Aog Po(lrlN ) : BDd:,ND
w0 0°°0° 0 4np IS s
Ho-nH  Ha-nH g)O(H—Nyl)e N - EBOL_NE

Equation 5.4-9

Rather than an initial value problem, this a two-point boundary value problem. The
boundary condition on the downward propagating and upward propagating power

densities can be written in the following matrix form

a
z

AOoOO0O0OOOdQ
o S .S
|l\ =

DDDD%DDDD

FOOoIgnog

OOOO0OO0OO0OO0O004

o
I
zZ

Equation 5.4-10
This expression states that the downward propagating diffuse intensity is zero at the
upper interface and that the upward propagating diffuse power density is zero at the lower
interface. The solution of the nonhomogeneous boundary value problem can be obtained
in the form of an integral transform.

In a homogeneous medium we may transform the optical depth into one dimension;

let: = prt, such that drz%
[ Z EZ Z [
-a -b
Opnlgn O Olgy O B po(n L)e Ve Em NEKE BDIdN O
@O @ 0°°0° 0' o il
Bnland HenB O B E B B
%)O(H—N’l)e_C_Ne - - B

Equation 5.4-11
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since the cosines of the angles (quadrature values) are constant, they may be removed
from the under the differential. Consequently, multiplying through by the inverse leads to

the following matrix equation with some new definitions

U Z EZ_ Z U
0 polind) ey Fi [ i | D
Oyn0O OgnO o O, O
do, O_z0O. O, AgU Hn : 00 O
@b 0=Po DTB e o 07 O
Bd'_NE Bd’_NE [Po ( ) e CNg N Hn g_b_N Hn Eéﬁd’_'\l%
o H-n 0
01 O
— N 0 D_
where EEDS 1 B§
o —— 0
5 H-nH
B 01 0 B Bympo(lJN'HN) YnPolin,Hon) %
= E}-am . D+ O ZHN . ZHN %
O BO LB %/—NPO(IJ—NMN) y—NpO(lJ—N’U—N)[D
E H LnH H  2Mn 2u_y %

Following the Green’s Matrix solution in the book by [Cole, 1968], we start with the

standard matrix equation

Equation 5.4-12
where the matrix A is constant with respect to the modified optical distance, ¢, and the
forcing function, f, physically represents the coherent incident power density “feeding”
into the diffuse power density. The solution to Equation 5.4-12 can be cast as [Cole,
1968]
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Of @)t - BB W) T B 0@t

0

where D = [] w(e= 0)+W[Zd]L|J(Z Z4)

Equation 5.4-13

where the upper boundary of the random medium has been placed at an optical depth of
zero (¢ = 0) and the lower boundary of the medium occurs at ({ = {g), again in the
modified optical depth coordinates. The matrix, @, is a particular fundamental matrix
satisfying the homogeneous problem. Notice that the first integral must be re-evaluated
with each time step, whereas the second integral is computed once.

The matrices, W, help describe the boundary conditions as follows

W)+ W)=

Equation 5.4-14
where in this case, the matrices W are given as follows:

nl 00 0 0 00 0
0 O 0 O
0 0 0 0
—[o] [ 1 00 =[zg] 0 00
W =pn OmW =0 0 1 o0
0 O 0 O
0 0 0 . O
%) 0 0 OE %) 0 0 1%

Equation 5.4-15
The solution to the homogeneous problem is found from an eigenvalue analysis. In this

solution, we find the fundamental matrix, @, built up from the eigenvalues and

eigenvectors of the homogeneous problem.
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L|J(Z): E : Eekﬂ_,_g EF)\ZZ + ot E EFAZNZ
Ban1H HB2n .25 HBon2n

Equation 5.4-16

From this solution, we construct the following fundamental solution matrix,

_ _ BBMQMZ [31,2Ne)\2'\‘Z %BM Bion S
Q) = w@w0) = o g | =
%zme}\lZ BZN,ZNeAZNZ%ZNJ Ban2n

O@a(Q) - @on(Q D

o . . : O

_D . . . |:|
Honi(Q) - @nan (QOF

where : (ﬁ’J(Z) = %Bi,kBk,je)\kZ

Equation 5.4-17
A useful property of this matrix is that its inverse is as follows

Now we are ready to compute a numerical solution to the general problem. First, we

analytically evaluate the integrals in Equation 5.4-13 (as far as possible).
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O t t O
B AoPo (Hlvl)e—cN e_al %g 1 %E B
Z B(p.l.,l(_t) (pl,ZN(_t) BD ATy . 0
L e | :
Hoona (1) ®N,2N (_t)EDA -a L= t
’ ! oPo (on 1) ~cone 2N Bion 2N Hion FH
0 4Ty ©oe E
where @ ;(-t) = ¥ B; KBy e '
K
0 T EZ_ 10O
Bzg o Aopo(Unvl)e—cne an% bn%ﬂ%%
¢ — ¢ grm T AT, 0
[ o(=1)ft) = 5 O 0
0 0 [ t o0
o Apoliad) e oD
A :
O t o
BZNZB B, e Mkt Aopo(lrln e~ tne a”%ﬁ bn%%%
Z n=lk LElon® 4npn 0
= J’ |:| |:|
0[O t O
BN A tAOpO TN o= %g bn%ﬁm
By k ne
DZ %BZN,k amp, B

moving the integrations inside the summations

U HaHBZ_anH\ U
BZN 2N B Opo(“n ) Hif %1” kEdt B
> 3 BikBn— I
{ = Un=1k=1 0 0
[ o(-t)f() = O 0
0 g ¢ - SEZ'B%W@ i
ro 2N B AoPo (Hn L) —cn ¢o DHEH Ogt0
> BankBikn e e
gl o, |

Equation 5.4-18
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These integrations may be performed in closed form (in terms of the error function) using

the integral relationship

i.e—atz—btdt — %\Eebz/%l %rf E\/gz +LBQrfBLHD
U

0 yYNEYR 2a DE

Equation 5.4-19
Substituting this result into Equation 5.4-18,

[] 2N 2N A Po (1 1) _ O
o2 2 Bl,kBk,nMe ok O
¢ = n=1k=1 4Ty,
_ O . O
[ 3000 = B, I
> BonkBin —2 e\ O
%:1[(:1 4
Equation 5.4-20
]
where 1, =fe =" " dt
0
U H H [
b %
1 Hbiﬂ\kG/;;El;gEE 0 ET+)\|(HD n+>\k%§
== n eBJ” H n @rfD n + n O erf n 5
i E 0B 0 02l
TR LT
n E H n H H n HQ

Equation 5.4-21

For further simplification in notation,

let: o, =8 = A B, SLLY

TERTE (WA o Hn  HnPyOy

then we can rewrite the above expression after the change of variables and rearranging

the summations as
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02N A 1 [ - O
DZ—OEO(“n )2,/ C”ZBlkBkn nk O
Dn:]_ T[p.n Gn D
O
O
U

[l :
2N Aqp 1)1 |t . 2N
Oy —2oenes oliy )EW/_e S BonkBion Ik

@:1 4T[p.n Gn k=1 E

Consequently, we write the intensity in a given direction, using the new fundamental

matrix, as

S - 3@)D W s, T SR

o
where D = W[O]E(z 0)+W[Zd]¢(z Zq)

>
~
]
=l
~
~
O N

Equation 5.4-23

where all expressions are now known in closed form.

To find the total power at a location, T,, within the medium or at its boundary, we

integrate the power density over the solid angle surrounding the observation point. First

we express the total intensity as in the following integral relationship
Ptotal = L{I Pdensity (Fo )dQ
Tt

Equation 5.4-24

Approximating the polar angle integral using Gaussian Quadrature, we find

N 21 a
Potal = j_z_Nyjé Id(ro,IJj)d(p

Equation 5.4-25
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Since we can find the power density in the directions of the angles, W;, from the previous

development, the solution for the total incoherent power can be reached. Recalling that

the power density has no @-dependence

N 2m a N 2
Piotal = j_Z_N é Yi Id(rd'Uj)d(pz ZTTj_Z_Nyj Id(rO'Uj)

Equation 5.4-26

Figure 5.4-3: Illustration of the discrete angles in Gaussian quadrature

An example of this method is given in Figure 5.4-4. In this figure, the total incoherent
power density is given for various depths. Significant beam broadening is evident as the
incoherent power density is measured at deeper depths into the medium. In addition,

some numerical problems are evident at the larger radii. Although larger beamwidths are
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expected, the one-wavelength depth curve does not seem to decay. This is due not only to
the contribution of the backscattered energy but also to the following numerical problem.
As the number of quadrature points is increased, the eigenvalues of the scattering matrix
get larger and the solution becomes unstable. Hence, only five quadrature points were
used to generate these curves. Comparison with ten quadrature points showed reasonable
agreement out to a certain radius, then the solutions diverged. Comparison with the
modified forward scatter solution (which does not suffer numerical instability) shows
reasonable agreement out to a certain radius. This problem will require further refinement

of this method and will be a topic of future efforts.

Total Diffuse Power: Radiative Transfer Solution
6 wl Incident Beam, 20 wl layer; Albedo = 0.7

0016 — Full Solution: Isotropic Scattering; —
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Figure 5.4-4: Incoherent power transmitted into the medium at varying depths

using the full radiative transfer solution.

Figure 5.4-5 displays the total diffuse power at a depth of 10 wavelengths into the
medium. In addition to the full radiative transfer solution, this figure also shows the
results for the modified forward scatter result and the strictly forward/backward (f-b)
solution. The beam broadening is very evident between the full solution and the f-b
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solution. Consequently, as seen with the modified forward scatter solution, isotropic

scatterers may not be well represented in the f-b case for an electrical thick layer.

Total Diffuse Power

6 wl Incident Beam, 20 wl layer; Albedo = 0.7; Observation: 10 wl into the medium
0.016 Full Solution: Isotropic Scattering;
For modified and strictly forward cases:
Forward/Total Scattering = 0.7 , Backward/Total Scattering = 0.001

0.014 / \

- / \
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Figure 5.4-5: Comparison of the transmitted total incoherent power at a 10

wavelength depth into the medium for the f-b, modified forward and full solutions

Again, we note that the beam bifurcation is an effect that is only expected in these two-
dimensional simulations. Once the third dimension of the beam is included, this effect is
expected to disappear. Note that only the axial point would be accurate, within a constant,
in three dimensions since the problem is only symmetric at this point.

5.5 Conclusions and Future Efforts

This chapter has outlined the development of a general interpretation of the radiative
transfer equations. The beam wave solutions presented in this chapter have indicated that
beam broadening will become significant when the discrete objects scatter isotropically
or the medium is electrical deep. Isotropic scattering, however, is expected to yield a
large beam spread. Hence, further examination of beam broadening for more general

power scattering amplitudes, such as the one proposed by Schwering (see Section 4.4), is
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necessary. This is a work in progress; although the theory is developed, it has only been
tested for forward-backward, isotropic scattering and two-dimensional beam broadening.
The first step in the extension of this theory is the introduction of the third dimension.
Subsequently, the introduction of the more complex scattering patterns will require
further effort in the numerical implementation of the theory. In addition, there is still

room for original work in extending the solutions to polarized waves and pulsed waves.
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5.6 Appendix: Geometrical Considerations

In this solution, we must keep in mind that the directions are fixed by the quadrature
points. Consequently, for a given angle (quadrature), ;, the observation coordinates (po,
zo) must be calculated as in Figure 5.6-1. The problem is to find the radial distance in
antenna coordinates in terms. In all cases, the observation point will be in the quadrant
shown. Since a nadir pointed antenna pattern is symmetrical about the z-axis, only one

guadrant of data needs to be calculated.

z

v
Figure 5.6-1: Gaussian Quadrature Illustration — fixed scattering angles

An expression is needed for the incient field in the characteristics coordinates. Starting
with the expression for the incident Gaussian beam, with the corresponding loss into the

medium

p2

e 2W2 e_pd 0tz

the next sections develop the geometric expressions in the characteristic coordinates.
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5.6.1 Case 1: Forward Scattering

0° <6, <90°
do >
ds — »
N ei
Z0
Sj

S=Hj+1

if [do > po] - (e.g. Mi+1 in Figure 5.6-2) then the following evaluations hold

Integrate along characteristic from the upper boundary to the observation point so that:

. L So (p=po.2=2,)
Integration limits of s: f---ds = [--- s
0 (p=po-do.2=0)

p(s.1) = ssin® - (do()- py)  for {ssin®z(d, ()~ po )}

p(s.1) = ([do ()= po) —ssin®  for {ssin®<(d, ()~ po )}
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so for each case, we arrive at the same expression for the square of the radial distance, p

p2 (S,p.) = [SSine _(do(“)_ po)]2 = [(do(“)_ po) - SSine]2
= s%sin® @ - 2s[d, (u)-p,]sin® +[d, (1)-p,] ?
=s%sin’ 0 +23[p0 _do(“)]sme +[do(“)_po] ?

if [d0 < po] - (e.0. i in Figure 5.6-2) then the following evaluations hold

Integrate along characteristic from the upper boundary to the observation point so that:

. L So (p=po.2=2,)
Integration limits of s: [---ds = [~ s
0 (p=po—do,2=0)

p(s,u) = [p0 —dg(u) + ssine]
pz(s’p-) = [po - do(“) + ssin9]2

= s%sin20 +2s[p, - d, ()]sin® + [p, - d, ()]

= s2sin? 0 +2s[p, - d, ()]sin® + [d, ()-p,)J?

So in all cases the exponent for the incident coherent power density (normal incidence,

6c=0) is
with z(s,) = scos® =sp

2 2
P (s.zu)J,pd(jt 2(6m) _ P (8’2“)+ P4OISH
2w €05 Bin 2w cos(einc :00)
- - Ho Bz[po_do(“)]\/l_pz EKdo(U) _po)2 H
2 + 0 2 +pd0-tl-1 + 2
2w 0 2w 0 H 2w H
= As®> +Bs+C

where the definitions of the “constants” A,B,C are obvious by comparison.
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5.6.2 Case 2: Backward Scattering

90° < 6; <180°

do >

ds

_d_> po_>

Figure 5.6-3: Translation of the Observation Coordinates into the Characteristics
2

do() = % = —(z4 -z, )tan(8) = - (z4 —zo)l_TLl

o if [do > po] - (e.g. Wi in Figure 5.6-3) then the following evaluations hold

Integrate along characteristic from the lower boundary to the observation point so that:

. o So (P=po.2=2,)
Integration limits of s: [---ds = f-ods
0

(p:po _dOvz:Zd)
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pls.p) = [do () - po — scos(8-1/2)]

= [do(H) ~Po~ SSin(e)]! for {ssin(8) < do (1)~ po}
P 1) = [scos(@-11/2) - (do (1) - po)]
= [ssin(8)-do () + P, for {ssin(6) 2 do (1)~ po}

e if [d,<p,] - (e.0. pis1in Figure 5.6-3) then the following evaluations hold

Integrate along characteristic from the lower boundary to the observation point so that:

. L So (p=po.z2=2,)
Integration limits of s: [---ds = [ ds
0 (p:po—do,z:zd)

pls. 1) = [scos(®-1/2)~[d (1)-p,]] = [ssin6=[do()-po]]

» so for all values (and substituting in for d(l))

p?(s1) = [ssinB-[do (1)-po]]* = (-[(do()-po) -ssin6])*
= [ssin8+[p, - do(u)]]*

Hence, for this case, the exponent for the incident coherent power density (normal
incidence, @n:=0) is

with z(s,p) = z4 — ssin(B—11/2) = z4 + scos@ = z4 + sp

P26), o 26) _ sin®) + oo~ dou] ¥ o + sn)

2w? ' c0s By, 2w?

L A

As® + Bs + C

where the definitions of the “constants” A,B,C are obvious by comparison.
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Chapter 6 Single Scattering and the Impulse Response

The simplest wave approach to scattering and propagation by a random medium is the
single scatter approximation. Single scatter theory retains its simplicity by incorporating
the assumption that the field incident to a random medium interacts with each scatterer
only once and no multiple interactions occur among the scatterers that make up the
random medium. This creates a scattered field, which is a summation of scattered power
from each scatterer. The development of the convolutional model with single scatter
theory is a first step in examining the limitations of the convolutional model. In addition,
it is the first step in an extension of the convolutional model to more general scattering
geometries using wave theory. Since the convolutional model incorporates several
parameters that are determined by the physical environment, it has been proposed that
these constants can be determined strictly through calibration by measured data. Given
the results of the single scatter analysis, these constants may be interpreted in the context
of a physical system. The multiple scattering approach in Chapter 7 will extend this idea
that the constants in the convolutional model may be estimated, bounded and interpreted
both before and after the model is calibrated with measured data.

In a previous section, the impulse response approach was introduced as an efficient
means for computing the average power density from a rough surface. In this section,
this impulse response technique is again derived from single scatter theory applied to a
tenuous (sparse) random medium covering a rough surface. Like the radiative transfer
extension, this method can use the convolutional approach; however, the equations are
only developed into a form similar to the previous radiative transfer approach. The
remainder of the development is presumed to be the same. Unlike the extension from the
radiative transfer theory, the following method is derived for a more general case, which
includes depolarization, strongly scattering- tenuous medium, and scattering which is
more general than the forward-backward directions.

In addition, the single scatter derivation gives some insight into the pure
phenomenological development of Chapter 4 . It is then simplified to match the

convolutional approach, which only accounts for strictly forward scattering and
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backscattering. The single scatter approach also reduces to the common radar equation,

which is briefly reviewed in the next section for future reference.

6.1 The Radar Equation

In the development of the single scatter theory in a random medium, the total
received power, P, is written as a summation of the power scattered once by each particle.
This simplification is due to the randomness of the scatterers in the medium: all
interference effects are neglected. Consequently, summing up the power, Pg, returned to
the radar from a continuum of scatterers in a random medium can be expressed using the

standard radar equation

_p. N[6(6.9]°ps 0,09
& PT\I, (am)® R* v

Equation 6.1-1

where: A = wavelength of the carrier
G(8, @) = radar antenna gain in the direction (6, @) or k;
0u(8, @) = particle backscattering cross section per unit area

dv = elemental volume

R = slant range from the radar to dV
Pd = particle density per unit volume
Pr = transmitted power

In this expression, the transmitted power is assumed to be a continuous wave signal.
Consequently, the frequency dependence is monochromatic, since monochromatic
dependence is implicit in the backscattering cross-section. This narrowband
approximation is assumed in the transmitting and receiving subsystems as well as in the
intervening medium. It will be shown that single scatter result does reduce to this form
under the narrowband approximation. Next, the single scatter approximation is
introduced. This will eventually lead to the radar equation and the convolutional result of
Chapter 4 .
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6.2 The Single Scatter Approximation

We begin by assuming a plane wave is incident on the scatterer; the incident field and

the associated mean power density in free space are written as

Incident Field CEi(7) = Ege i g,
Incident Power Density : S; = %(Ei(?s) x FI?(?S)): —|E-

Equation 6.2-1

where the incidence direction is denoted by f(i, the polarization is indicated by

&; (perpendicular to the incidence direction) and the impedance of background medium is

given as (assumed to be non-magnetic)

n=“%

In the development of the single scatter theory in a random medium, the total received
power, Pg, is written as a summation of the power scattered once by each particle. This
simplification is due to the randomness of the scatterers in the medium: all interference

effects are neglected.

6.2.1 The Scattered Field due to a Single Scatterer

When the field scattered by a scatterer is examined, there are several regions in which
the field’s behavior is observed: the near field, Fresnel and far field regions. In the
Fresnel and particularly the near field regions, the scattered waves display complicated
phase and amplitude variations. Hence, for simplicity and as a common manner of
practical convenience, we assume that the scattered field due to some incident field is to
be observed only in the far field. Consequently when scatterers interact, they also are
assumed to be in each other’s far field. In acoustic wave propagation or when
depolarization of an electromagnetic wave is expected to be negligible, a scatterer will
scatter the incident field in all directions as weighted by scalar scattering amplitude.
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Outside of the near field region, we may assume that the scattered field behaves as a

spherical propagating wave, weighted by the scattering amplitude,

Equation 6.2-2

When the scatterer depolarizes the incident wave, the scattering amplitude will take on

a more complex structure. In the matrix representation, the scattered field can be written
in terms of the incident field. In the following matrix form, the incident and scattered

fields are decomposed into their TE () and TM (||) components [Ishimaru, 1997]:

EEsDE: e IR En(%s’%i) flz(i:(s’[(i) iDE
Es| R (ks Ki) oo (ks, ki) Eil

here the matrix (ks,Ri) is the tensor scattering amplitude; the scattering direction is

Equation 6.2-3

denoted by IA<S ;and R :|?0 - ?s| is the range from the scatterer to the observation point.

Figure 6.2-1: Scattering Polarization
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Referring to Figure 6.2-1, we see that for a given incident field, the scattered field in
the scattering plane can be determined. Then, both the incident and the scattered waves’
polarizations are defined with respect to the “plane of scattering.” This plane is created
using the vector incidence and vector scattering direction. Consequently, the fields can be
decomposed into TE and TM components (or perpendicular and parallel components)

with respect to the plane of scattering. Hence, the scattered field vector, E(F), and

scattered power density, §s , due to a single scatterer can be represented compactly as

| L e
Scattered Field: Eg(T,) = f(ks, ki) (E; (Ts) R
— e = 2
Scattered Power : Sy = % E, (%) x HS(FOX = zi‘Es(?o)‘
n

Equation 6.2-4

Figure 6.2-2: Scattering Geometry
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The total field, the sum of the incident and the scattered fields, at the observation point
can be written
o IkR

E;(Fy) + F(ky ki) (E; () -

E(T,)

Equation 6.2-5
Scattering and depolarization by an ensemble of N scatterers can be accomplished using
the single scatter approximation. Assuming that there is no correlation between
scatterers, the total field at an observation point T, can be written as the sum of the
incident field (the field in the absence of scatterers) and the scattered field due to each of

the scatterers.

Equation 6.2-6
When the incident field at scatterer, s, (under the summation) is simply given by the free-

space incident field evaluated at the position T, Equation 6.2-6 is the single scatter or

Born Approximation (often, the Born approximation is attributed to an integral
equation, not a summation). In other words, the incident field at each scatterer does not
include the field incident due to scattering from other scatterers. Often the dyadic
scattering matrix, above, is written as a product of the Fourier transform of the scattering
operator and the remainder of the far-field form of the Green’s function [Frisch, 1968]

Flke k)= 8k, kyeibi R - N6kl perikge el
T
Equation 6.2-7
This same form (Equation 6.2-6) can be extracted from the multiple scattering formalism
found in Ishimaru [1997], attributed to Twersky [1962] by eliminating all but the first

order terms; the zeroth order term is assigned to the incident field.
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6.2.2 The Mean Field in the Single Scatter Approximation

Since the incident field is known and therefore deterministic, the mean field is easily

written as

L L Ne_ij="" L
(B(Fa)) = Bj(Fa) + ( 3 ———Flke, ki) (B (F5)
s=1
This average is performed over all random quantities. For a gas, this may only include
position, while for foliage, it will include a host of characteristics including position, size,
orientation, water content, shape, etc. In this paper we shall explicitly treat random
position and the other quantities will be collected under a single random variable. In
addition, we shall assume that random position and these other random quantities (such

as orientation) are independent of the scatterer.

6.2.3 Statistical Description of the Random Medium
The probability of finding a scatterer within an incremental volume will be expressed as

p(ﬂ)d?j :w

or the random number of scatterers within the unit volume divided by the total number of

scatterers within the entire volume. The number density of the scatterers, p(?s), is the

number of scatterers within a unit volume. If we consider other aspects of the scatterer to
be random, then the probability density function can be written as
p(€;) = M
) N
where the vector random variable, y represents the orientation, etc.
In order to describe the spatial distribution of the scatterers in addition to each
scatterer’s individual statistics, we construct the probability density function (pdf) of

Equation 6.2-8. The joint distribution of any two scatterers written in a cluster expansion

of centered random variables [Frisch, 1968]:
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elofuol.)} = drur): E{dr) dr).drd} = drurar)
E{o(r.) olr2)olrs)olre )} = drit) drar) +dr ) drar)

+C(fy. 7 )C(Fy. Fa) +ClFLL Ty Fau P

where E{*} indicates expected value

When Gaussian random variables are chosen, only the two-point correlation function
exists. The use of these higher order statistics will prevent the absurdity that two
scatterers can occupy the same space. Within the foliage, the correlation represents a
spatial correlation and therefore, a finite correlation length is required. Hence, we
construct the pdf with pair correlations. Another major assumption will also be included:
the scatterer’s individual properties (rotation, size, etc.) are statistically independent of
the position statistics [Tsolakis, 1985].

p(&. &) =P P )[p(Fl)P(?z) + C(Fl’ [P )]

Equation 6.2-8

Here, the vector random variable, &, represents a combination of the random variables
for position, T, and other scatterer properties, y. The function, P(y, ), is a joint pdf that

describes the scatterer’s size, rotation, etc. The density, p(T), describes the scatterer’s

number density in the volume and finally the pair correlation between the scatterers is

given by the correlation function C(7,7").

Recognizing that the incident field is deterministic in the single scatter
approximation, the average field is rewritten

N e—JkR

=1 R

<E(ra)> = E;(T,) + [dF
V S

If the medium is uniform, the position probability density function is simply p(?s)/ N

and the summation can be replaced by multiplication by N. Simplifying we find the mean

field at an observation point 7, .
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e—ij

(B(R) = Ej(Fa) + for S——(F(ka, k) ) (E; (7o) plFe)
V

Equation 6.2-9

Here the configuration average <-> is shown implicitly and the random positions are

treated explicitly. In the notation of Tsolakis [1985], the average field is given by

(E(f2))= E;(Fa) + Jars <<u >>EEi(fs)p(rs)

Equation 6.2-10

In this form the average over random quantities, excluding the position, is given by

=a =a _ =a
<UJ> E<UJ> = [dyjuj p(y;)
Vi
Equation 6.2-11

The double brackets indicate averaging over a specific vector of random variables, YV,

<

representing the orientation, etc. The scattering operator is given in this case (far field,

tenuous medium) by

Equation 6.2-12
and represents a scattering characteristic of the individual scatterer. This notation will be

used extensively in the next chapter which addresses multiple scattering.

6.2.4 The Mean Power in the Single Scatter Approximation

Next we consider the mean power transport through a random medium using the
single scatter approximation. We begin by forming the two-point, two-frequency
correlation of the field. Denoting the complex-conjugate transpose by the asterisk with

an over-bar
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*

EE k2) =

E(T,
% (Ta k) + ZUJ(kl)EE (Fj. k1) Eﬂ% (Tp ko) + Zl ?(kz)ii(?j,kz)g

O

Equation 6.2-13

expanding this expression

*

E(Fa k) [ (Fy ko) = E; (Fa ko) CE; (Fp ky)

N —a - =
+ _zluj (k) O (Fj, ke) TE; (Tp, K2)
J:

+

- % b ¥
3 (ko) (7 ko) B (ko)
J

Mz

1

N —a *
3 uj (k) CE; (7, ky) CEF (T kz)tﬁi, (2) ]

j =1

Mz

+

|
-
—

j_
We next average the above equation to form the correlation of the fields at two points and

two frequencies.

<

m
—

1) (B (Fy k) = (E; (Fa ko) CEF (oo ko))

<Z uJ(kl)DE (T;, kl)[E (Fy, k2)>

J_

+ <J_E_1 Ei(? T kz)[ﬁj (kz)H>

<Z 2 uJ(kl)DE (Fj ky) CE; (r,,kz)ﬂj (kz)H>

j=1j=1

Equation 6.2-14

The averaging operator commutes with the summations. In addition, we recognize that

the incident field is deterministic, since the incident field is specified. After factoring the
first three terms in Equation 6.2-14, it becomes
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+ ng J§l<ﬁ?(k1) B (), ko) CE; (7, kz)ﬁu-(kz)*>

Equation 6.2-15
Finally, we note that the last average will require a joint probability density function.
Consequently, we must include correlation between the position vectors, even if we
desire delta correlation. Substituting for the pdf in the final term (assuming only
correlations in position), we find

<3?<k1) E, (7). k) [ (7, k»t@i’-(b)@ >

00

[ uj (k) TE; (7 k) CE; (7, 2)Eﬁj(k2)a
E( P(V1)P(V2) [p(rl) (rz)"'C(rl’rz)])dEdEz

Equation 6.2-16
Recognizing the form for the average of the mean field in Equation 6.2-15, substituting

=1

Equation 6.2-16 and evaluating the average of the last term, the correlation is rewritten as
<E(?a’k1)[E*(?bvk2)> = E E@E (Fp, 2)>
=a - - [Eb H* -
+ [d&; f d&; uj(ky) OE; (5, ke) LE; (T ko) d j'(kz)D P(y;)P(y;)C(T;. 1)
VoV

Equation 6.2-17
If we assume that the positions are delta-correlated and substituting Equation 6.2-11 for

the configuration averages (averages over orientation, etc.),
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Equation 6.2-18
This is the result for the single scatter approximation to the two-point, two-frequency
correlation of the fields with delta correlated scatterers (in position). The left hand side is
called the coherency matrix, which is defined as [Goodman, 1985]

%ED(?a,kl)EE(fb,k2)> <ED(Ta,k1)E|’|‘(fb,k2)>B
E(E||(favk1)EE(fb,kz)> <E”(?a,k1)E|’[(rb,k2)>E

Equation 6.2-19
at a common observation point, (Fa :?b), the trace gives the mean power density of the

signal and the off-diagonal elements give the correlation between the power densities.

The coherency matrix may be transformed into the more familiar Stokes parameters as

follows
o g<Ea(fa,k1)E:D(fb,k2)>+<E”(fa,k1)EE(fb,k2)> g
3,0 B (Eale k)ES( ko))~ (Ey(Ta k)Ej(Fo ka) 5
S‘azg‘g (E(Fa k)EG (o ko)) + (En(fa, k)] (o ko)) O
3t o] BN k) ED (o) = (B0 k)Ef o o))

Equation 6.2-20
Once the configurationally averaged Green’s function is calculated for the medium
(Equation 6.2-11), the coherency matrix is known; consequently, the Stokes parameters
are known. Hence, since the incident field is deterministic at a given point, and once the
pdf’s are assigned, all the parts of the problem have been determined and the vector

problem can be solved, in the single scatter approximation.
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6.3 Acoustic or Scalar Wave Propagation

In a one-dimensional case or an acoustic case, no depolarization will occur and the

scattering amplitude is a scalar. Hence, the field can be written with the vector directions
implicitly understood to be IA<i. The following solution can hold for a scalar field or

simply one of the components of the polarized fields from the previous section. For weak
cross-polarization, these components may then be recombined to form the Stokes
parameters or the polarization sensitive result. For strong cross-polarization, there is an
extra term in each of the following equations. In single scatter theory, this is would be a
relatively simple addition. In scattering approximations beyond the single scatter, the
solution would require the added complexity of a pair of coupled equations.
Consequently, the simplicity of the following equations relies on the single scatter

approximation.

6.3.1 The Coherent Field

If the individual scatterer characteristics  (orientation, etc.) are statistically
independent of position, the coherent or average field is simply an integration performed
over the spatial extent of the random medium. If the orientation of the scatterer and the
scatterer’s position are independent, the average in assuming no depolarization can be

written (assuming far field interactions)

= iK[Ta =T |

(E()) = (1) + s er—|<f(ﬁs,ﬁi>>Ei<fs)p(fs)

Fra =T

Equation 6.3-1

6.3.2 The Correlation of the Field

The calculation of the average scattered power density, rather than the coherency
matrix, begins with the calculation of the two-point correlation of the scattered field. We
begin with the previous result for the single scattered field and multiply by its complex

conjugate observed at a different location and at a different frequency.
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E(?a’kl)E*(?b’kZ) =

o N [ NT 1O
[Ei(Fa kq) + Yuj(ky) Ej(Fy.ke) OCEi (Fp ko) + 3 [uj (k) Ei(Fj. k)| O
0 i=1 00 i=1 0

Equation 6.3-2

expanding this form, we obtain
* — * N - *
E(fa ky) E (Fp.Kp) = Ej(Fa. kp)E; (Fp k) + _zlu?(kl)Ei(rj’kl)Ei (Fp.k2)
J:
- NT y - *
FE(fark) 30 E (ko)
J:
it Fbtes ]
+ _zluj(kl)Ei(rj’kl) _Xluj (ko) Ei(Fj ky)
j= i=

Equation 6.3-3
Hence, as previously derived in the polarization sensitive form, we arrive at the two-
point, two-frequency correlation of the field. The average two-frequency correlation at an

observation point, T, takes the form (letting 7, =7, =T,)
(o k1) E"(Forka)) = (E(To. ko)) (E"(Fou ko))
EAC AN GUSIHON HES LA USRS

Equation 6.3-4

Again, averaging over the configurations (size, orientation)

(E(Torks) E"(To k) = (E(To, ko)) (E7(Fo ko))
gt g Ei(f,kl)E’{(r',kz)<<u§’(k1)>><<uj’.(k2)>>*c(f,r')

Equation 6.3-5

Finally, we assume delta-correlated scatterers and the two-frequency correlation of the

fields reduces to
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(E(Forks) E™(Fo k2)) = (E(To,ky)) (E7 (o kz))
g Ei(fj,kl)Ef(fj,k2)< w0 (ky) >< w0 (ky) >

Equation 6.3-6

In an attempt to improve the single scatter formulation, the first order multiple
scattering solution allows for exponential decay into the medium to the point at which the
scattering occurs [Ishimaru, 1997]. Then an additional exponential decay term is
introduced to account for the wave traveling from the scatterer to the observation point.
This loss will be justified in the multiple scattering formulation and results from
absorption and scattering. Once absorption by the scatterer is included, this lost energy,

represented by the absorption cross section, g, , is added to the scattering cross section to
form the total or extinction cross section, o; = g, + 05. Hence, as a coherent wave

travels through an uncorrelated random medium, the coherent field is diminished by the
total cross section of the scatterers encountered.
Therefore, referring to Figure 6.3-1, single scattering by a differential volume located

at Fj inside a random medium can be written

~Yeff AT _Yeff.

e 2 oplr —(fkok) De 2
|r0 _rj |

(loss in) (scattering) (loss out)

here the power loss coefficient is given by y.¢R :IoR p<ot>dR and is derived from an

average over the distribution of total scatterer cross sections where (o) is the average

total cross section. The first order multiple scattering form will be used in the next several

sections.
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Foliage Layer

Figure 6.3-1: First order multiple scattering

6.3.3 Return Power Density

From the correlation of the output-scattered fields, we may construct pulse
propagation results. Reviewing the development of Section 2.5.1, if we write the incident
field as an inverse Fourier transform, the complex amplitude, E(t), of the input, scalar

field can be written:
Ei(T},t) = [ dwE;(Fj,we

Equation 6.3-7
The incident field is a function of position since it is weighted by the antenna pattern. The
output field can be written as an inverse Fourier transform, employing a frequency

domain transfer function approach (generalized to include time dependent behavior)
E(F;,) = [ doo H(wy +00,t) (T, 00) "
Equation 6.3-8
Next, we find the position and time-dependent field correlation of the output field
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(Elra, t)E (o 1))

< A E(T,, e 1 [dos,E (. ) ej‘*’z‘2>

00 [ee]

oy [y (E(Fy, @) (B (Fy, 7)) oIty - wpty)

Equation 6.3-9
The two-position, two-frequency correlation in Equation 6.3-9 has been found in the
previous section in terms of the incident field. Hence, from Equation 6.3-5, the frequency
domain transfer function can be found. However, the coherent power density, is assumed
negligible since it is dissipated by scattering and absorption. More importantly, the
coherent power is not likely to be part of the backscattered energy since it is specularly
reflected at the boundary(s). The coherent power will only be included in the
backscattered waveform when the antenna is pointed at nadir. Using the previously

derived two-frequency correlation
(E(Fas @)E (T, 02)) = [ Ej(Fk)H(@)E] (7' ko)H(2) p(F, 7))V} dV;
= Ei(f,k1)<<u?(k1)>>i§f(f',k2)<<u§’.(k2)>> C(F,7)dv; dv;

Equation 6.3-10

where we note that the joint pdf, p(r, r ) has been replaced by the position correlation

function since the other portions lead to the coherent field which has been neglected.
In first order multiple scattering theory, the transfer function at a single frequency can
be simply derived from the transform of the spatial scattering function f(IZS,IZi) modified

by the loss in the medium and gain of the antenna at the given frequency. If we assume

that the scatterers are delta-correlated and we let the observation points coincide,

r, =T, = Ty, the time independent transfer function is seen to be
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_yef'f _yef'f R2

([W))e 2 e 2

—jkpRy  _Yeff o . n —jkiR,  _Yeff p
1 2

H(w)

Equation 6.3-11
where Ry refers to the penetration depth into the random medium to the scattering

element at T and R refers to the distance from the scattering center to the observation
point T, . In addition, frequency dependence has been added to the scattering amplitude

(uy is the carrier radian frequency). Finally, as the number of scatterers approaches
infinity, we begin to refer to scattering from a differential scattering volume. Hence,
given the number density of the scatterers, the transfer function corresponding to
scattering by a differential scattering element becomes

_ Yeff R 1 _ Yeff

Hewy) = ((u3k))e 2 e 2 plr)av,

One additional term will be introduced into the transfer function, the antenna pattern
that weights the incident field. For simplicity, antenna gain at a given frequency for

monostatic operation can be represented as follows

Gr(6,9;0) =G (6,¢;0) = G(w)

Note the monostatic assumption: transmitting and receiving directions are identical.

Next, we rewrite the gain of the transmit antenna as

G1(8,@w) = gr(w)gT(w)

Additionally, assume that the gain on transmit and the effective aperture area on receive
are represented by

N2 «
—GRr(w) =gr(wWgr(w)
41t

Equation 6.3-12
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Consequently, using only the frequency deviation, wy, from the carrier, wy, in place of the
entire radian frequency wy+wy (for brevity of notation) within the arguments, the transfer

function is rewritten to include the antenna pattern’s weighting

_ Yeff R,

gR(o)l)gT(o)l)<<u?(0)l)>>e_y;ﬁRle 2 p(”-)dvj

—ika(Ri+Ry)  _Yeft (4R, A
gR(oa)gT(oa)ejRT e 2 8 )<<f(ki’ks;°)l) >>p(fj)de

H(wy)

—

Equation 6.3-13
Consequently, after including the monostatic assumption (R = R; = Ry), we may move

the antenna dependence from the incident field into the transfer function, so that

HE)H" (@) = g ()7 )] {15 (k) B (2o () (5 ko)) ) B2 Jav,

* _ 2w -wp),

\<<f (Ri'lzs;wl) >><<f (IZi,f(s;wZ) >> e e 2VeltRpF Jav,

GZ((*)O/ R4 ]

A2
4m

Equation 6.3-14

and the average power becomes

(P(Y) = [ deyf =, dey s (0 )ET (e, Je 10172t § H@)H (@) 0q ()0

Equation 6.3-15
since the position dependence of the incident field has been moved to the transfer

function. Next, we rewrite the two-frequency and position dependent integrand

Mo + 0,0 + ) = (H(wg +w1)H (g + @)

TGRS
Fkikeica) >><<F(Ri,f<s;w2) >> T

R4

N 52 \<< ~2yettR o f;
= IE‘[G (@Y e e P(rj)dvj
V

Equation 6.3-16
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This quantity, I, is a simplified version of the two-frequency mutual coherence
function [Ishimaru, 1997]. It has been simplified for the single scatter case. The two-
frequency mutual coherence function is the correlation of the time-varying, frequency
domain transfer function, H(w,t), at two different frequencies and two different times (for

time-varying medium) [Ishimaru, 1997]

M= (o + 0,0 + 0055ty 1) = (Hey + 6, t)H (@ + 0, 1)

Once the two-frequency mutual coherence is constructed, the scattered power density is

found when t; = t, =t [Ishimaru, 1997] from

(P(Y)) = J %, donf 5, denE, (@ )BT (@r)e 7@ 2 1y + 01,y + )

When the bandwidth of the pulse is narrow with respect to the carrier frequency, the
narrow-band approximation can also be made. In this case, the scattering function, as a
function of frequency, is roughly constant and can be evaluated at the center, carrier
frequency. Once this narrow-bandwidth approximation is made, the only frequency
dependence in the two-frequency mutual coherence function appears in the Fourier

kernel. A change of variables to the difference frequency w, =w, —w, yields a simpler

expression. The two frequency mutual function for a narrow band input signal becomes
[Ishimaru, 1997]

2 g luy (Ry+Ry)/c

R4

g 2Veff Rp(?j)dvj

Equation 6.3-17
Once the two-frequency mutual coherence function is constructed, the backscattered
power density has been determined. When a finite number of discrete scatterers is
present, in contrast to the formulation above, the volume integration over the density of

scatterers will be replaced with a discrete summation.
For each scattering direction, IA<S, given the incident field direction, I2i , the scattered

field must be re-computed. Next, we make several definitions concerning the radar cross-
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section of this scatterer. First is the differential radar cross-section, oy for given incident

and scattered field directions

Equation 6.3-18

The bistatic cross-section will be denoted as oy; and is defined by the following

Opi = 4n0d(r(i’r<s): 4’#f(ﬁi’ﬁs)|2

Equation 6.3-19

Another important cross-section in this work is the total observed cross-section (the

scattering cross-section), o, . Denoting a differential unit of solid angle as dQ, this cross-

section is written

05 = [[04dQ
4

Substituting Equation 6.3-19 into Equation 6.3-9, employing the narrow beamwidth and

narrow band approximations, the inverse transforms are easily performed and the

backscattered waveform reduces to

22
Pty = -%ﬁ%%%fﬁom(k“ —k;)e 2Vt Ro(F) %?- dV

volume of
scatterers

r\J

NG?(8,¢) 2veff R R

- D 6, (ki —k;) e 2R (F) P - 22 Hiv

volufge of (41T)3R4 P TD c O
scatterers

Equation 6.3-20

Here, the free space, time delay to the scattering element at dV has been included. This
time delay could be made more general by including a medium-dependent propagation

speed.
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Referring to Figure 6.3-2, the single scatter result is customized for application to the
foliage problem with the rough interface. Breaking the volume integral into depth and
surface integrations, we find a composite of a surface integration over the canopy and an
integration along the depth coordinate along a given radial (ray-path). The return average
power is given by

2 A2G2(F) 2( +1)

Pr(t:6,) = oy (—F, P e 2¥ert” ()P H - Hir ds
007 o L (e O PO

crown

Equation 6.3-21
This returned power density is identical to the power density predicted by the
convolutional radiative transfer result; however, the integrations have been re-arranged

and time dependence is ignored up to this point.

Figure 6.3-2: Problem geometry
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Rearranging the order of integration, this is seen to be equivalent to the radiative transfer
result derived in Chapter 4 . Assuming a the porpagation spped is the same everywhere,

the radiative transfer approach of Chapter 4 yielded

N _b 20 o %=
I(-r;r,6,@t) =1 op(a)l,Ht — —EBXpO -2 Ke(u)du Dda
a Co 0 a

where a = r;y +&(x)sec 6,
b =rgy+¢(x)secO+d;secO

When we integrate this radiative transfer result over the surface, substitute for the
incident intensity, simplify the limits and compensate for the effective receiving area of
the antenna, identical results are realized for the radiative transfer and the first order

multiple scattering approaches.

o0 211 M2 2 2 ~
e =] f Job(ooEA §9 Lk R %exp{—zfﬁ R} dapdp
I

Equation 6.3-22
This, after the same manipulations found in Chapter 4 , can be written as

0 2TT oo Doo

Pe® = [ [ [ OJ %Et———t%(t)dt[pz(z)dz pdgdp

0 0 —oo[Fw

Equation 6.3-23
Hence, the inner, bracketed convolutional integral of Equation 6.3-8 is the one-

dimensional average power received along the radial. Rewriting,

0 2TT oo Doo

Pe®) = [ [ [ OfPe(t ')G(t-t')dt'gpg(i)di pdgdp

0 0 -o[+tow

Equation 6.3-24
the impulse response and the corresponding one-dimensional, two-frequency mutual

coherence function can be identified as a Fourier transform pair:
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(o]

G(t) = | I(wg)e 8" doy

Equation 6.3-25
In general, for scattering in three-dimensions and for wide-band signals, the power

density is written [Ishimaru, 1997]

[P o . 0
I(t) = mf E[OA@M—ZTR%WME%LAE@FZTR%M‘ME pdV

scatterers

Equation 6.3-26

where

e_zjkR e—2IOR p(oy)dR

A(t,0,) = Uj(w)F(wq; ks, ki) g7 (w)gg ()

R2

Ei (w,) = the complex envelope of the incident signal at the frequency, wy,

and the asterisk signifies the complex conjugate. This analysis produced a simplified
version of the impulse response for the volume return. Next, the surface return is briefly
addressed.

First, this formulation does not account for the coherent and incoherent power
transmitted through the foliage, scattered by the underlying rough surface, and
transmitted back through the foliage to the radar. Under the single scatter approximation,
the ground-scattered return does not interact with the volume return and consequently, is
consistent with the results from the radiative transfer approach. The surface backscattered

power due to the incident coherent field is given by

G (F - 2r
PR (t, e, (p) = NG 3(r2) J’J’ O'g (e’ (p) e_zyeff (r3_r1) PTE - 2(r3 rl) _c1 E ds
(4T[) 3" canopy C c

crown

Equation 6.3-27
The quantity, o3 (6, @), is the surface radar cross section per unit area. Here, the coherent

field suffers an exponential decay as it propagates to the surface; it scatters incoherently
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(for non-nadir pointing); and consequently propagates back through the foliage. Since
this integration is identical to the surface return found in the radiative transfer description,
the remainder of this solution, like that of the foliage return, can be found in section 4.3,
of Chapter 4 . In addition to the coherent power, an incoherent component will be
incident to the surface due to scattering within the foliage. The incoherent power incident
to the surface will assume a similar form. Consequently, there are two contributors to the
power incident to the surface: incoherent power generated within the random medium
and an attenuated coherent power. The surface will scatter each of these components
incoherently back to the radar. At the receiver, under the narrowband and narrow

beamwidth approximations, the received incoherent power due to surface scattering can

be written
NG+ (k)Gr (K 2 -
PR(t) 0 T( I)3 2F\’( S) J-J- O.;)(e,(p) e Yeff (I’3 I’]_)
(amPrs  canopy
crown
'3 A a 2rp ' rg-=r' ry-n
otk k) Pt =T {2 T (o s
rIl e cC C c c

Equation 6.3-28

where the amplitude (1/r) dependence has been approximated.

6.4 Conclusions and Future Efforts

Like the convolution result, the first order multiple scattering result can accommodate
a spatially varying velocity and may be re-cast into a convolutional, impulse response
form when the narrow-band and narrow-beamwidth approximations are employed. More
importantly, a further limitation of the convolutional approach has been identified: use of
a narrow bandwidth approximation. This assumption is expected due to the use of
constant forward and backscatter coefficients with respect to frequency in deriving the
radiative transfer results. The use of the narrow beamwidth approximation has already
been identified in the radiative transfer approach. However, using the full expression for
two-frequency mutual coherence function, the impulse response approach may be
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extended to broader bandwidth pulses in addition to broader beamwidth antenna patterns
while maintaining some convolutional aspects. In addition, it was demonstrated that the
single scatter solution could be extended to include polarization effects. This effort looks
feasible and should be attempted.

Concluding, finding the two-frequency mutual coherence function (or the impulse
response) is key to determining the pulse propagation. Once this function is known, the
pulse can be reconstructed. Next, a multiple scattering approach will be investigated in
order to determine if a more general two-frequency mutual coherence function can be
found. In addition, the multiple scattering approach will yield further insight into the

extinction and effective medium parameters.
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Chapter 7 Multiple Scattering Approach

In this chapter, the multiple scattering solution is developed in the Twersky
approximation for both the mean field and its correlation. Like the exploration of the
beam solution to the full radiative transfer equations, this step in the further development
of the convolutional model is important in many regards. First the coefficients found in
the convolutional model, such as extinction, and forward and backward scattering cross
sections, are purely heuristic at this point. Although these values are expected to be
calibrated by measured data, the number of free parameters in the convolutional model
renders this calibration somewhat uncertain. In other words, a measured waveform may
be reproduced using several different combinations of the free parameters found in the
convolutional model. Consequently, if these parameters can be estimated or bounded at
the outset, the calibration may be more accurate. Multiple scattering theory may be used
to estimate these parameters. For example, as we see in the derivation of the mean field,
multiple scattering theory predicts the decay of the wave as it propagates through a
random medium. Hence, extinction coefficients may be estimated from these results and
then fine-tuned using measured data rather than blindly fitting the data.

The first step executed in the multiple scattering approach is to calculate the mean
field for a discrete random media with pair correlations. Using the Twersky expansion of
the scattered fields, an equation for the mean Green’s function is developed. Several
different solution techniques are then explored including renormalization [Frisch, 1968]
in Section 7.3.3 and stationary phase (for uncorrelated scatterers) in Section 7.3.2. This
last approach is applicable to scalar version of the Distorted Wave Born Approximation
(DWBA) proposed by Lang [1981]. The DWBA is then proposed as a viable alternative
to the convolutional approach in Section 7.4.

In Section 7.5, the two-frequency radiative transfer equation is derived closely
following the works of Barabanenkov [1971], Besieris [1981] and Tsolakis [1985]. Like
Tsloakis, this is a development for discrete random media. The one variation, however, is
that the discrete scatterers support only forward-backward scattering; they do not scatter

isotropically, as assumed by Tsolakis [1985]. This leads to a simpler form for the two-
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frequency radiative transfer equations. A solution is presented in Section 7.6. Here it is
proposed that the two-frequency rough surface scattering results of Section 3.4.2 should
be used as the boundary condition. If, at this point, certain additional scattering
mechanisms are ignored (as is done in the radiative transfer approach), the convolutional
form may be recovered. Finally, the full development of the two-frequency radiative
transfer equations is reviewed in the Appendix. Here it can be seen that the problem is
reduced from the three-dimensional version for isotropic scattering down to a one-

dimensional version when forward-backward scattering is assumed.

7.1 The Mean Field and the Dyson Equation

The single scattered field is defined as the incident field scattered by each of the N

scatterers to the observation point, 7 =T,, and is written as a simple summation over the

scatterers that form the random medium. Equation 7.1-1 casts this as a vector equation

that employs the dyadic notation that maintains the polarization.

Equation 7.1-1
or adopting the notation of Twersky [Ishimaru, 1997], this expression can be written

more compactly as in Equation 7.1-2.

Equation 7.1-2

where the total field at point T =T, is given by Ea, and the incident field at position
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far field of the others, this operator can be described by the product of the dyadic
amplitude scattering function f(RS, Ri) and the far field Green’s function. We use the

familiar form

~ A

B} ~ik|f - 7
E(y) = e|—

- - |

Equation 7.1-3

Figure 7.1-1: Local scattering coordinates

The vector directions are described in Figure 7.1-1. It is assumed that the incident
wave is a plane wave and the scattered wave expands as a spherical wave. The
assumption of the incident plane wave is reasonable as long as this scatterer is in the far
field of either the source or another scatterer. In that case, the incident spherical wave is
locally planar.

Consequently, the total field at an observation point =T, is a summation of the

double scattered fields (incident field scattered by each of the N scatterers to a different

member of the N scatterers, then to the positionT =T, ), the triple scattered fields, etc.
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Equation 7.1-4
Next, we address the Twersky approximation. If backscattering is not important, Twersky
removed scattering paths that include the same scatterer twice (or more) in the above

summations. He writes

Equation 7.1-5
Equation 7.1-5 is an example of Twersky’s “expanded form.” Noting the limits on the
summations, we see that in his formulation a number of events are ignored. These include
ignoring triple scattering between two scatterers, ignoring quadruple scattering between

three scatterers, etc.

7.2 Statistical Description of the Random Medium

If we consider the number density (number of scatterers per unit volume), then the

probability density function can be written as

p((Oj) = —P(yjlglp(rj)
Equation 7.2-1
In order to describe the spatial distribution of the scatterers in addition to each
scatterer’s individual statistics, we construct the joint probability density function (pdf).
The joint distribution of any two scatterers written in a cluster expansion of centered

random variables [Frisch, 1968]:
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where E{*} indicates expected value

When Gaussian random variables are chosen, only the two-point correlation function is
non-zero. The use of these higher order statistics will prevent the absurdity that two
scatterers can occupy the same space. Within the foliage, the correlation range represents
a spatial correlation and is therefore presents a finite correlation length. Hence, we
construct the pdf with pair correlations. Another assumption is to be made: the scatterer’s
individual properties (rotation, size, etc.) are statistically independent of the position
statistics [Tsolakis, 1985].

p(E1. &) = P(Vl)P(Vz)[p(fl)p(fz) +C(f1, ) )]
Equation 7.2-2
Where the vector random variable, &, represents a combination of the random variables
for position, T, and other scatterer properties, y. The function, P(yy ), is a joint pdf that

describes the scatterer’s size, rotation, etc. The pdf, p(F), describes the scatterer’s

number density in the volume and finally the spatial pair correlation between the

scatterers is given by the correlation function C(7,7").

7.3 The Dyson Equation

We are now in a position to describe the characteristic moments of the field. The first

moment, or the mean field, is described by the “Dyson” equation. We begin with
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Equation 7.1-5, the equation for the total field at an observation point, T,. We then

average, first with respect to the position [Tsolakis, 1985].

[pGJka)+C&p?kn

=1 k=1, N2

N =a =j =k . _ AU

S UjmkmmEIEi(rm)p(rj,rk,rm)+
+

+

Equation 7.3-1
in the last integral, the symbolic form for the joint pdf of the three position vectors is
given, instead of the explicit (much longer) form. Since the statistics of position do not

depend on the specific scatterers, the summations can be performed resulting in

+ NN =1)(N - 2)g7 U (i Clim B (Fy)
V

Lol6;) olrc)olrm) +0(e;)eleic )+ plrc)olim. )+ plrm ol i)

N3

dr\ dF jdf

Equation 7.3-2
As the number of scatterers becomes large, N — o, the factors of N cancel and in the

limit, the equation for the mean field reduces to
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=a

<E(fa)>? 0 Ej(fa) +\j/ uj EEi(?j)p(?j)d?j

Equation 7.3-3
It can be seen, through Neumann expansion of the following integral equation, that the
above “expanded” form for the mean field can be rewritten in the following compact

integral equation form:
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Equation 7.3-5
Since the Twersky operator contains the scattering amplitude as a parameter, we must
also average over the orientation, size, etc. Following the notation used by Tsolakis
[1985], we average the Twersky operator and its corresponding spatially averaged form

over the configuration space,
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=a =a =a
uj))=(uj) = fdyjujP(y;)
Yj \4
—a —a —a
<Uj> = <Uj> = [dy; Uj P(y;)
vji Vv
Hence, we can rewrite the mean field and the mean Twersky operator equations as

(E(f))= Ej(Fa) + fdi; <<3?>>E4Ei(f,-)>p<fj>
\Y

- Jd; <<ET>> E<<ﬁf<>> 1E; (7i)) C(F. i)

Equation 7.3-7

Equation 7.3-6

Equation 7.3-8

where the double brackets, <<->> indicate configuration averaging with respect to the

subscript index of the “Twersky operator.”

In this chapter, we will only discuss the scalar wave propagation problem. In addition,
since the expressions involving long summations are completed, the explicit arguments
for the Green’s function will be used in order to reduce confusion. Hence, we reduce the
previous equations for the mean field and the mean Green’s function to their scalar form

(or component form of an uncoupled, polarized vector equation)
(E(R)) = E;(Fy) + \I/d?j <<u?>><Ei(rj)>p(fj)
; \I/dfj \;/drk <<u‘}>><<ui>><|zi(fk)>(:(rj,rk)

Equation 7.3-9
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Equation 7.3-10

7.3.1 “Perfect Gas” Solution of the Dyson Equation

The solution to the “perfect gas” problem, i.e. zero correlation case, has been derived
in Ishimaru [1997]. Starting with the Foldy-Twersky integral equation for the scalar

coherent field,
(E(F)))= E;(F,) + sdrjul
V

Equation 7.3-11
we explicitly include the far-field expression for the scattering operator (assumes tenuous

medium).

e—jk\fa —fj\

(E(r)= E;(Ty) + édj-f(ks,Ri)m@i(mp(f,-)

Equation 7.3-12
A simple case occurs when the incident field is a normally incident plane wave and the

medium is homogeneous with a depth, d.

-iKra -ty

(E(r))= E;(T)) + Tz 7 dy def(Rs,Ri)ﬁ@i(rj»p(q)
J Y T,

oO—

4

Equation 7.3-13
Under these assumptions, the effects of the medium are not significant in the direction
transverse to the propagation direction. Therefore, we expect the mean field to be
invariant in the x and y directions for a z-directed incident plane wave [Ishimaru, 1997].
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Consequently, the integral over the volume of scatterers can be written. We find that the

stationary point in transverse directions occurs when [Ishimaru, 1997]

a(k\fa —fj\): G%J(Xa P+l —yj)2+(za—zj)2ﬁzo

0X Xa

in the x-coordinate and the following

and =0

a(k\?a—rj\): 6@(\/(xa—xj)2+(ya—yj)2+(za—zj)2ﬁ

0y Ya
(ya_yj)_

=k =
‘?a —?j‘

0

in the y-coordinate. Hence, this yields the stationary points (Xq =X, Yys =Y) , where (Xs, Ys)

is the stationary point. In the evaluation of the integral by stationary phase, the second

order partial derivatives are needed,

02 (k\fa—fj\)_ 62@(\/(Xa_xj)2+(ya_yj)2+(za_Zj)zﬁ

2 2
0X g 0Xg

225



02 (k|?a—Fj|): azﬁ(\/(xa _Xj)2+(ya _yj)2+(za _Zj)zﬁ

and finally,

0* (. -7 _ ~kxa=xfya-y))
0%,0Y5 f -1y

Hence, the stationary phase evaluation of the double integral in the x and y coordinates is

given by
021 [~ ¢ . 0
o | ETn]f(ki,ki)exp{— jk(z-z,}, for z, < z E
[ dy fdx f(ks, i)4n1? ?| 0g 0
—00 —00 - I - ~ A |:|
v Dzl?]f(—ki,ki)exp{—jk(za—z)},for 24> 2

Equation 7.3-14

Hence, this analysis has lead to a medium that scatters in the forward and backward
directions; all other scattering is cancelled, on average. If the backscattered field is
neglected with respect to the forward-scattered field, the resulting integral equation for

the mean field is then given by

~

B} B} d TR B}
(E(F))= Ej(Fa) + dzZTn]f(ki,ki)exp{—jk(z—za)}<Ei(?j)>p(?j)
0
Equation 7.3-15

This equation is solved exactly if the form of the solution is taken to be
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<E(r)>:0e‘iKZ

The solution and the effective medium wavenumber, K, for incident plane wave is then

found to be

(E(r))=Eq expgrj%+4—)2m‘ ti’ki p Ezg= Egexp{-jK3

Equation 7.3-16
The uniform scatterer density is given by p. Assuming lossless scatterers, we may

employ the optical theorem in order to obtain the damping of the field.

~

<E(?a)>:Eo GXDE— jEu Z"f(ti’ki)p_jpzsc Hzé

Equation 7.3-17

Absorption loss may be added phenomenologically.

7.3.2 Dyson Equation for the “Perfect Gas Medium™

The equation for the mean Green’s function in the perfect gas approximation (i.e. no

correlation among scatterers) is given by

~ ~

(G(7. 7)) = f(ks,l“(i)e(fj,rk) + \I/dfmf(ks,ki)G(fj,fm)<G(fm,fk)>p(?m)

Equation 7.3-18
noting the explicit substitution for the Twersky scattering operator by its far field
approximation. Next, we assume that the scattering function is independent of the
observation direction. So that

f(RS,Ri;w):f(Ri;w)
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where the frequency dependence has been explicitly included in the argument list. Hence
we have scatterers that are strongly forward or backward scattering or that are isotropic.

Hence, the scattering amplitude is no longer a function of the observation coordinate, ?j

and may be removed from the integral. The equation for the mean Green’s function is
now written (with the frequency dependence assumed in both the Green’s function itself

and the scattering amplitude)

(6(75.74)) = t(k Jo(r; 7o) + f(Ri)\j/dTm G}, Fm) (G (T 7)) P(Fim)

Equation 7.3-19
Operating on Equation 7.3-11 with the (D2 +k2) and recalling that this operates on the

observation coordinate T; only

B2 +12) e m0)= B2 +k2 )i (& Jo 7 m)
+ (DZ + kz)f (lA<, )J'd?m G(ij ?m)<G(?m ’ _r.k)> p(_fm)
v
Equation 7.3-20
by definition of the Green’s function, operation on the first term on the left hand side and

the operation on the Green’s function within the integration result in Dirac delta

functions.

(DZ +k2)<G(?j,Fk)>= - f(ﬁi)es(fj —Fk) - f(Ri)\j/dFm 6(?,- ~Tm XG(Fm’Fk)>p(Fm)
= - f(Rl)é(fJ _?k) - <G(fj,fk)>f kl)p(fj)
Equation 7.3-21
Hence, the Dyson equation for the mean Green’s function is written as

[D2 K2 +f(|2i)p(rj)] (67, 70)) = = (ki Jalr; - i)

Equation 7.3-22

228



In the strictly forward/backward scattering medium, the scattering occurs in one
direction only. Recognizing that the propagation is only in this one direction, that of the
incident direction, there is no loss of generality to assume that the propagation direction
is z-directed. Consequently, the Laplacian reduces to a one-dimensional form, and under
the assumption that the solution takes the form of a plane wave, the equation for the mean

Green’s function becomes

2 K A
e DI CUTRERICYL RN

Equation 7.3-23
Of course, an arbitrary incident field may be written as a superposition of plane waves.

Performing a Fourier transform, the mean Green’s function is given by

F( |2i,|2i f(iRi,Ri)
i U2 - (k2 +F(i IA<,,IA<,)p(FJ)) i U2 - kgﬁ ]

I+

N —
|

(G(7j. T, 1)) =

Equation 7.3-24

and the poles of the system, ke, are given by

keff = i\/kz +f(i|2,,|2,)p(?l)

f(i Ri , kl)p(fj)
2k

0 k+

Equation 7.3-25
the approximate equality (via the binomial expansion) holds when the medium
perturbation to the wavenumber is much less than the free space wavenumber. This form

results in a solution for the effective medium Green’s function

T

Equation 7.3-26
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which is identical to the plane wave result for stationary phase, Equation 7.3-16. Hence,
in the perfect gas assumption, the effect of the medium is a ‘renormalization of the
wavenumber, which is replaced by an effective wave number, having generally an

imaginary part” (see Equation 7.3-17) [Frisch, 1965].

7.3.3 The Dyson Equation for a Medium with Pair Correlations

In general, the perfect gas assumption does not hold and the mean Green’s function

takes on a more complicated form [Frisch, 1968]:

(G(F,7;0) = G(F,T;0)+ G, P ;)M\, 7 )G, F'; w))
Equation 7.3-27
Here the “Mass Operator”, M, encompasses averaging over the range of correlations
among the different scatterers and is most easily understood from the diagram technique
[Frisch, 1968]. In the restrictive case of this chapter, however, the averaging is limited to

pair correlations and the equation for the mean Green’s function reduces to the following

form (assuming only far field interactions)
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Equation 7.3-28

where the kernel of the reduced Mass operator is denoted by M(F.,,T,). The mass
operator is already in a reduced form since we’ve only considered pair correlations.
Next, the operator, (D2 +k2), is applied to the above equation. This operator is

applied to all functions of the observation coordinate, including the scattering amplitude.

The result of this operation will result in a simpler form if the scattering amplitude can be
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excluded from this operation. The scattering amplitude is independent of the observation

direction in only two circumstances:

e Isotropic Scattering (treated by Tsolakis)

» Forward or Backward Scattering directions relative to the incident direction

Then, the scattering amplitude is a function of frequency and the incidence direction
only. Isotropic scattering was not only used by Tsolakis, but also by Frisch in deriving
the Foldy Approximation [Frisch, 1965].

After applying the operator when the scattering amplitude is independent of the

observation direction, the equation for the mean Green’s function becomes
(o7 1o, mo)= - 1{k)alr -r) - #(k Jyom ol - o 7))

- f(Ri)_rd?m Idfn 6(fj _fm)M(?mv?n)<G(fnv?k)>
\Y \Y

Equation 7.3-29

Above, the scattering amplitude is shown as a function of the incident direction only.
This result can be interpreted for either the isotropic or the forward/backward case.

In a homogeneous random medium, both the mass operator kernel and the Green’s

function are functions of the distance coordinate. Hence, the equation for the mean

Green’s function finally assumes the form

(o2 +12+ £k Jocrp) o r0) = - £k ol -7,

Equation 7.3-30
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Again, solving by Fourier transform techniques, noting the convolutional integral,

<é(u,?k)> = 7 f(k|)~ " ~
ﬁﬂ —K? - f(ki)p(fj) - (&) (F; =) ﬁ
Equation 7.3-31
The effective wavenumber in this Fourier space is found from the dispersion relation

EJ k2 - F(k )p(r) (&) M(F; - )ﬁ 0
Equation 7.3-32
A more manageable solution can be found if we apply the first-order smoothing
approximation to the mass operator [Frisch, 1968]. In this approximation, the kernel of

the Mass operator, M(F.,, T, ), in the double integral, is replaced by the approximation

[0 107y £ (Ki,Ke )G}, F) Moy, TGP, )
V V
0 [drp, Idfnf(&i,&S)G(?j,rm)[G(fm,fn)C(fm,fn)]<G(rn,?k)>
Vv Vv
Equation 7.3-33

7.3.4 Low Frequency Approximation for the Mean Green’s function

An alternate solution for the mean Green’s function can be found by making certain
limiting assumptions. When the discrete scatterers are large with respect to the
wavelength, the scattering is primarily forward scattering; this approximation is the
primary focus of this thesis. However, when the scatterers are small with respect to the
wavelength, they begin to scatter more isotropically. In addition, the measured scattering
amplitude matches the prediction of Schwering. Here the scattering pattern is a strong
forward scatterer superimposed on a much weaker isotropic background. Hence, the
isotropic solution is of some interest.

Frisch used the isotropic scattering approximation to derive the mean Green’s

function for small scatterers [Frisch, 1968] and eventually produced the Foldy
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Approximation and a further extension to correlated, isotropic scatterers. Starting with

the equation for the mean Green’s function in the first-order smoothing approximation,

Il
—y
—_

=>
bl
7
SN—
()
~—~
=l
i
=~
~—
+
—
o
==l

1(ki Ko )G (71, T ) (6 7)) P(Tin)

+ [dFp, Idfnf(f<i,&s)c;(rj,fm)M(fm,fn)<G(rn,fk)>
Vv V

(G(T}. 7))

Equation 7.3-34

we operate on it with the Helmholtz operator (DZ + k2) and recall that the operator qu IS

related to the free space Green’s function. Consequently,

(02 +12) (a0, 10) = =815, 1) = ki, ke )6 7))
- g 1{k k. Jo, Tea; T(e s mo)et)

Equation 7.3-35

If we consider small, discrete scatterers, the correlation function becomes localized.
Hence, the correlation function is very peaked at the scatterer location ., and the slowly

varying mean Green’s function may be removed from the integration.

(02 +12) (e, 1) D801y - 4t (ki ke J(6(75, 1) )T
- <G(?n,?k)>p(Fn)\I/d?n £(k;, k)G (7, F)C(F; Fo)

taking into account the isotropic scattering pattern, this can be rewritten

233



B]2+k2+4nf(k)p(?n) H B B
ﬁ +amtp(F)f (K)[dF, G(F;, F)C(F s, Tp) @(G(rj,rk» 0-8(F;, i)
Vv

7+ K AT (T, O, T O, ) O, 1) 0807, )

in this form, we see by the definition of the Green’s function that the wavenumber has
been modified.

The finite size scatterers are expected to produce spatial correlation functions that are
essentially unit step functions. Finally approximating the correlation function with
[Frisch, 1965]

where a is the dimension of the scatterer (or the correlation length in a continuous

random medium. Since (a/A <<1), the effective wavenumber reduces to

k&t O KEogy +4Tp(7, )f (k)e® a° (1 + j2Keoigy )

Kerr [ kFololy\/ 1+ 4mtp(F, )f (K)e? a2 (L+ j2Koigya)

Hence the effect of the random medium is another renormalization, shows a double
renormalization of the wavenumber [Frisch, 1965]. This shows that the correlation in the
random medium has introduced an additional exponential loss term attributable to

multiple scattering in the effective medium, as the wave propagates into the medium.

7.4 The Distorted Born Approximation

In the previous chapter concerning the single scatter approach, we saw that the mean
power could be derived using this simple theory. In the last chapter, single scatter theory,

we found the average power is given by
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P(t) = <E(Ta,t1)E*(fbvt2)>

< ofdle(fa, w)e 191 ofdan*(fb,wz)e‘j‘*’ztz>

gy da, (E(F,, o) (7, wp) ) e 710111 02t2)

Equation 7.4-1

—

in the case of co-located observation points 7, =T, . In the single scatter, scalar wave

propagation, we found that the two-frequency mutual coherence function could be

rewritten as

(E(a )E" (T, )

= % dorf %, do o \{Id?'Ei(?,kl)E?(F',k2)<<u?(k1)>><<u5’.(k2)>>*c(?,F')dvj av;

Equation 7.4-2
where the incident field is known (deterministic). In the single scattering approach, the
configurationally averaged Twersky operators were replaced by the single scatter result;
in the Distorted Born Approximation, however, the mean Green’s function, found
through multiple scattering approach, is used. The result will be similar to the single
scattering approach, except for the substitution of the effective wave number for the free
space wavenumber. In addition, the artificial introduction of the loss term found in the
single scatter development is no longer necessary since will enter the complex form of

the effective wavenumber. The average power was finally given as

(P(D) = J 7, doy 1 %, doy ) oy Jo 102

[ H(w, +w)H (0, + ;) py (F)dF
V

Equation 7.4-3
And the two-frequency mutual coherence function is given by
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(G + 6y, 0 + ) = <H(000 +)H (0o +0,))

< ><<f i i) >>*e"'(keﬁ (wn)-Keff (c2))R

R4 p(?J')dVJ'

Equation 7.4-4
Consequently, the convolutional model could also be derived in the DWBA. Starting
from Equation 7.4-4, the scattering amplitude would be replaced with the forward-
backward solution. Then, upon making the assumptions and following the steps of
Section 4.2, the DWBA could be reduced to the convolutional-DWBA result. This of
course, would be a limited form of the DWBA compared with the above result and with
the vector result of Lang [1981].

7.5 Two Frequency Radiative Transfer Equation

The solution using single scatter theory is greatly enhanced through the introduction
of the Distorted Wave Born Approximation (DWBA). Although based in multiple
scattering theory for the mean field, the DWBA still neglects the effects of multiple
scattering its formulation of the propagation of the power density. In this section, the
wave based approach to power propagation is extended to include multiple scattering
though the development of a two-frequency radiative transfer equation. This development
closely follows that of Tsolakis [1985] and Besieris [1981]. These papers, in turn, are
based on a previous, pioneering work by Barabanenkov [1971].

The coherency matrix is formed by forming the following product
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E(Fa,ky) (E ™ (Fp, ko) =

O _ * 0

Lw 0
% (Fa,kq) + z uJ(kl)EIEI(rJ,kl) BEE (fp.k2) + Z H’J(kz)ﬂfu(r,,kz)g S
O =1 0o _ 0
O N N =a  =j . U0 N N =b i _ 7 O
BF 3 3 uj(k)Wk(k) BT k) Opgvy 5 @j(|<2)Elljk(kz)EEi(?lokz)D 0
SRl el 7 g
0 J - j . DE k#j O
0 : - - O _j _ ¥ O
Gy 3 3 DitOmEOmmCOD Oy N N B ) Gk im() B O

O 0 i it (Kq 1) Wm (K1)
FLk=Lm=1 g (Ei(Fm k) HE2, 2 2 0 N
0 k#j mzk 0 g=1 k=1m=1, - (Ei(fm.k1) g O
0 m#j 00 k#j m#k O
B . B

Equation 7.5-1

Using the Twersky approximation, the two frequency, two-point correlation can be
written in a convenient, closed form [Tsolakis, 1985]. At this point rather than pursuing a
case with depolarization, we will concentrate on scalar wave propagation. Referring to
the Appendix, assuming no depolarization, each component of the coherency matrix can

be written

(E(Fa k0)E" (Fo. k) = (E(Ta ko) )(E™ (T ko)
+\;/d?j<<U(ra,rj;k1)>><E(?j,k1)E*(fj,k2)><<U(?b,rj;k2)>>*p(?j)
+\I/d?j\j/d?k<< (Fa k) (B )E (P k) (U o)) ClF )

Equation 7.5-2
Note that when this operator is applied to an incident field, it yields zero. In addition, this
expression explicitly shows the frequency dependence in the Green’s function as well as
the field quantities.

Defining the two-point, two-frequency coherence function

M (Tas o K1, ko) = (E(Ta k)E (T ko)
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We apply the operator twice; once with respect to the observation coordinate at 1, and

then with respect to the observation coordinate at T, ; forming the difference

(02 +12) T (Fa. T ke ko) = (08 +K3) T (Fa, ok ko)

fa
Equation 7.5-3

and using the result for the mean field, we find

(12 -2 Jo @ -k2) +{e &k Jocra) =1 koo oo} | (7 ok ko)

= - (Ri,kl)r-(ra,fa,kl,k2)<<u*(fb,fa;kz)>>p(fa)
(Ua, Foik)) T (o, o ku ko) £ (ki k2 o )
- Jn, [k kel 7) ~£ (ki ko )oe. o)

B (UG, T kD)) T (Fj ok ka) + (U7 (P Fiika))) P (T oo k)

Equation 7.5-4

This closed equation is the desired form of the scalar-valued Bethe-Salpeter equation
found in the papers by both Besieris [1981] and Tsolakis [1985]. The difference is in the
form of the scattering amplitude function. Rather than assuming isotropic scattering as
was done in the paper by Tsolakis [1985], a forward/backward scattering approximation
is assumed for the scattering amplitude. Hence, rather than dipole-like scatterers in which
the scatterer is small with respect to the wavelength, we have assumed that the scatterer is
large with respect to the wavelength. We next follow in the footsteps of Besieris and
Tsolakis in order to derive the two-frequency radiative transfer model.

Recall that under one of the propagation conditions assumed in this chapter, the
waves are scattered in the forward direction only. Since the incident wave is assumed to
be propagating in the z-direction, the Laplacian, the field quantities and the green’s
function reduce to a z-variation only, and the wave equation will reduce to a one-

dimensional form. For example, Equation 7.5-4 becomes
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é@%—%@*(@ k2 ) +{tlki. ko oz ) —f*(ﬁi,kz)p(zb)}é M2 32Ky ko)
=~ tlki k) 2oz ke k) (U@, 20k0))) 0l o)
+ <<U(Z arZ b;k1)>> (z,zy,ke, k) f*(Ri,kz)p(z b)
_ \I/dzk[f(ﬁi,kl)c(za,zk)—f*(&i,kz)C(zj,zb)]

H(U@az k)T @25 keke) + (U252 1K) T (202 ke k)

Equation 7.5-5
the following steps, however, will reflect the more general, three-dimensional result. The
three dimensional problem is more general and will apply to both the isotropic and the
forward/backward cases (within a constant).

The next step in deriving the transfer model is a transformation to center of mass

coordinates. With this in mind, we substitute
-1 I
R = E(ra+ fp) and 7= (T, — Tp)
_1 _
ks = E(kl-l' kp) and kg = (ky — kj)

We define a new set of functions: mutual coherence function, the scatterer correlation,

the mass operator kernel, and the mean Green’s function
r'(?a1fb1 k11 kZ) = r(ﬁ,f, kS’ kd)
clr..7)= BR.7)

f(kl)c(fa’?bX<U(fa,?b? k1)>> = MEﬁj?ks”lde



Considering a “smoothly inhomogeneous” medium, we may simplify the expressions by
assuming that these quantities vary rapidly with the difference variable and slowly with
the sum variables. Expanding these functions in a Taylor series, substituting into the
equation for the two-frequency mutual coherence function and truncating after the first
term, we arrive at a simpler form.

A Fourier transform with respect to the fast (difference) variable changes our solution
space to “phase space” [Besieris, 1981]. This particular transform, the Wigner Transform,

is accomplished for the two-frequency coherence function as follows
W(R, G, ke, k) :Zi; dr (R, 7 kg, kg Je 107
11t

The result, W, will be referred to as the two-frequency Wigner distribution function.
where the transform variable has been identified as the vector, u. The other quantities of

interest transform as follows [Tsolakis, 1985],

«R, ) = (21)3jd?B(R,r)e jou
Tt

MR,G.) = (Zl)gfdﬂvl(ﬁ,f, Je-iom
Tt

(B(R0...))) = (2i[)3;dr<<e(R,r, )))en1o

Equation 7.5-6

The ellipsis in Equation 7.5-6 has been added to indicate placeholders for additional
(dummy) variables.

The configurationally averaged Wigner-transformed Green’s function is found from

the Dyson equation of Equation 7.3-30 (suitably transformed to center of mass

coordinates)
(0# 1+ 1o (R 1) = - (ki Joe) - 1{k Jyor mer -7 (e 7))

Equation 7.5-7
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and the solution via Fourier transform yields

(B(R.1.K)) = k)R HR k)] ™ = () He (Rt k) + iy Ry ko) |

Equation 7.5-8
The quantity H(ﬁ,U,ks) is the “complex Hamiltonian” of the effective medium, as

defined in the paper by Besieris [1981].

In this expression, the imaginary portion of the transformed mass operator kernel
accounts for scattering loss. Like Besieris and Tsolakis, we assume that the regular and
scattering loss terms are small, but not negligible. Hence, a constant energy surface is

defined by setting the Hamiltonian equal to zero

Hg(R,T,k¢) +jH,(R,T,ks) =0
OHg(R,U,k) =0

This equation defines the surface in the (R, u) coordinate space where the wavenumber is
equal to the effective wavenumber. This is directly reminiscent of the definition for the
effective wavenumber from Equation 7.3-32.
The remainder of the development is similar to that found in ray optics. Hence, the
these results are comparable to the ray equation result [Marcuse, 1982]
dr

n— =[S
dl

where the function S defines the constant phase surface, n is the refractive index and the
vector T points from a fixed origin to all points on the light ray. However, in the
development of this chapter, the surfaces of constant energy and constant phase may not

coincide. We can see that an effective index of refraction may be defined as follows

nerr (R.0.ks) = |OgHR R, T, ks]u:keﬁ

Later, this form will be slightly modified in order to comply with the definitions given by
Tsolakis [1985].
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In order to derive an equation of transfer that is similar to that given in literature, the
coherent power must be separated from the incoherent power. This is a requirement since
the standard radiative transfer equations are based primarily on the propagation of
incoherent power. The first step in producing a radiative transfer formulation will be to
split the two-frequency Wigner distribution into a coherent, W¢, and an incoherent, W,,

portion.
W(ﬁz,u,ks,kd)=2ij dF (R, 0, kg, kg Je™197
T
=We (R, T, kg, kg) + W, (R, U, kg, Kg)

the coherent portion obeys a generalized transport equation derived by Tsolakis [1985],

|DUHR(R,H,kS)| dWC(ﬁ,U,ks,kd)

+ [fl(ks»(ﬁ) + I\7|| (ﬁiul’ kSXWC(I?Q,H,kS, kd)

dl
o 1dfg(ke) oo 1dMg ROLk)D o
- jkyre+ = —RSIg(R) + = ——RA T ISIeW (R, T, kg, kyg) = 0
JdE]4— 2 dk, P(R) > dk. E c( s+ Kqg)

Equation 7.5-9
Notice that this equation behaves just as expected. The form is the same as the overall
transport equation with the exception of the scattering integral. Hence, as proposed in
previous chapters concerning classical radiative transfer formulation, the coherent power
propagates, losing power but no power is scattered back into its path. There are
differences with the radiative transfer formulation that will be acknowledged in an
upcoming discussion. The incoherent portion of the two-frequency Wigner distribution is
chosen as follows [Tsolakis, 1985].

w (ﬁ,U,ks,kd):ks |DUHR(:,U,ks)|3
|DUHR( ’kas)|

5{[HR(§,U; k) ]'1} 1R, 5, ks kq)

Equation 7.5-10
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This is the two-frequency incoherent power density at a point R propagating in the

direction, S=U/u. Adopting the effective wavenumber, ke, as the value of u for which

Hr (R, us, k, )=0, the definition for

Equation 7.5-11
In an anisotropic medium, the phase velocity and the group velocity are not in the same
direction. This case has been derived for the isotropic scatterers by Tsolakis [1985] but

will not be addressed here. In the case of isotropic pair correlations, the quantities,
Mg (f%, g, ks) M, (ﬁ, u, ks) and cp(F?,U - U') , no longer depend on a vector, u, only on its

magnitude. Consequently, the two-frequency radiative transfer equation reduces to
[Tsolakis, 1985]

YR A (TCN R ) R R T

+ j&n—(:(’mg(—s+2nd%ha(ﬁ)m(ks)+ M (R, kegr (R, ke )5, ke ) El(ﬁ,g,ks,kd)

4

+soI|Iid dQ(§')p(ﬁ,
angle

5,5 kIR, 5. k. kg )

+ Qs )p(R, 5,5 ko JWe R /5. k)
solid
angle
Equation 7.5-12
Equation 7.5-12 looks like the classical radiative transfer equation. The extinction

coefficient is given by

G(§,§,ks)=ﬁm[f|(ks)p(ﬁ)+l\7ll(ﬁ,ﬂ',ksj
Sileff VM1 s

Equation 7.5-13
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The first term represents the true absorption and the second term is the loss due to

scattering. There is an extra factor, which accounts for frequency offset effects.

K [k, R s
Jksneﬂ dR " E}4—+Em[p( R e (ko )+ M (R, kege (R, K )5 K ) 5

Equation 7.5-14
Recall, however, that the frequency dependence of this solution is limited due to a

narrowband assumption. The “power” scattering amplitude (or “phase matrix” from

radiometry) is given by

p(a’g'gl'ks) 2|fkl2( ] k(ﬁ ) [([(R U—U Keg (R Ks )+p(R)]

Equation 7.5-15
An obvious difference from the classical transfer formulation is the extinction. When the
difference frequency is zero, the extinction coefficient is real as expected; on the other

hand, a non-zero difference frequency yields a complex extinction coefficient.

7.6 Solution of the two-frequency radiative transfer equation
for a forward-backward scattering medium

The derivation of the two-frequency radiative transfer equation for discrete scatterers
has been shown to reduce to a one-dimensional transfer equation when the scattering
amplitude of the particles has strongly forward and backward patterns only. In general,

the two-frequency radiative transfer equation is given as
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) (1 o it k)] =5 Rk

. ji%—k((’_)g(_s+2ndd75[p(ﬁ)f,?(ks)+ W (R kers (R, k)5 ke ] TR0 S ke k)

Nesr (R K ) O4 0

+ 1 dQE)P(R.5, 5k JI(R.S k. kg )
solid
angle

+ 7dQ(E)p(R. 55" ko JWe (R, 5. ks kg)
angle

Equation 7.6-1
Assuming the incident field is z-directed and if we assume strictly forward-backward
scatterers, the two-frequency radiative transfer equation simplifies to a linear,

nonhomogeneous set of ordinary differential equations.

n2, (ﬁ,ks)z—l[l(ﬁ,i,ks,kd)ngf% Rok)| = -R{R.2.k IR 2.k kg)

1 gy
+ 1 d@E)pR, 55 kIR, 2, ke, kg )

Equation 7.6-2
For simplicity in notation, the difference frequency component has been absorbed into a
new, modified extinction coefficient, K. However, both the coherent and the incoherent
power densities travel in only one direction, z. Therefore, both of these terms are
accompanied by delta functions which reduce the integral over the solid angle to simple
forward or backward scattering. If the incident power is normal to the boundary (foliage-
air interface), a new power density (intensity) dependent variable can be defined that only

depends on the depth coordinate, Z.
Id (sz’ ksv kd) = I(sz’ ks’ kd)ngfzf (Z’ ks)
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in turn, this can be split into forward and backward propagating power density

components

EIJ(Z 7,kg,kq), for downward/forward propagationC
Td(z,z,ks,kd) = |:|
Ll
O'd

OoOoOon.o

I5(2,2,kq,kq), for upward /backward propagation

Consequently, the selection of this forward-backward scattering function has produced

the following simplified, coupled radiative transfer equations.

)
52K Ka) = (2,1 13 (2 kerkg) + [0713(Zokeuka) + Opl3 (Zokeu ke )

dz
+01 We(Z kg, kg)
~a@haka) - Rz 52 ke ko) + o0l K ko) * 015 2k o)

+0,We (Z, kg, kyq)
Equation 7.6-3
Additionally, we consider the problem to be bounded above by the air-foliage interface
and below by the rough surface. Assuming no reflection from the air-foliage boundary,
the foliage surface boundary causes the only reflection. The two-point boundary value

problem will then have the following boundary condition (in matrix form)

El 0 (z=0) D0 O (z= )D 00

b oHiz=0 Br (- o
Equation 7.6-4
From this representation, given a surface with a complex reflection coefficient, I, the
downward propagating wave and the upward propagating reflected wave cancel by
construction. Consequently, converting (changing variables) to optical distance and

rewriting this in matrix form, and
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J(Z’ksakd)D:E_R(Z’ks)"'of ob 03 (z, ke, kd)
{@Zkokg 0 -0 )- o0 3 2.k, kd

o
0% @/\/ K )
Er Op
Equation 7.6-5
Substituting for the elements of the matrix and dropping the arguments of the coherent

and incoherent power densities, the above “Schuster” equations can be rewritten in the
familiar form [Schuster, 1905],

+D Ego! BDD+D [y
dZHdD 18 aHHdD B’“bﬁ/\/ 2)

Equation 7.6-6
the eigenvalues, A1, of the homogeneous system are found from the determinant of the

matrix

B2-a2)+p2 =0 O A=y a?-p? =2

and the fundamental matrix (matrix of eigenvectors),

0 N2 0
[Xl e X, e )\Z] Be” pe s O
Ha+ A (a-A)e™

and its more convenient form,

s et o] prn)
( ) 2\B ? (0(2 _)\2) (eAT _e—)\T) B[(O( +)\)e“ _(a —7\)6_“ ]B

i D[(G +)\)e—)\T —(CX _)\)e)\r ] B(e)w _e—)\T) 0
B B (e—)\T _e)\T) [(G +)\)e)\r —(CX _)\)e—)\T ] B

Note that the second fundamental matrix does display the desired property that
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Consequently, for the boundary condition

Wis0)+ W ia(z,) = 0

where in this case, the matrices W are found from Equation 7.6-6:

—[0] 1 00 [Zd] 0o

BT THr 1H

Although the solution method outlined previously can be used, the general is found by

the variation of parameters this time:

14(2) = @(2)uo + ®(2)

Z=-1 o
[® thEW
0 H‘Gb

The solution for the “initial value matrix is formed by evaluating the boundary condition

Equation 7.6-7
as follows:

at Z=0,
03(z=0)J_ 00
d;z=0g B

0 [ 0]%3()%“13( i? t DfSNC dt Ez%ﬁ
0 [ 0]($ _) H)H

L oia=[ o
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at Z:Zd,

Hi(z=0)U_ 00O

o lo@o)=Idgf o 0= fF

so that the solution for the initial vector is found from

Equation 7.6-8

0 i il ZS](_?(O)) ] 9 o0

I o) + 1 3(zs-0 37 e 47 91

0@ oo O - Z4 — ° o i

ﬁ-[r 1%352)(,)5“ °:§r -1 m(zd't)ﬁébﬁ%(t)dt%

and

_ O o) 0'Z Zq _ ° o 7

A e i o
O o) 07 Zy — ° o} =
b0 s

where: ®(Z4-t)=—

the solution is found to be as follows

O
10 T8 (kg kg) - €220 )+, (k, kg -2

Where,
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2 g B(e—x(zd —t)_e)\(Zd —t)) [(0( +)\)e)‘(zd —t)_(a —)\)e_)‘

1 E[(aﬂ)e—x(zd—t)_(a_x)ex(zd —t)] Bl @0 e —t)2 0

Z4 —t)]%

Equation 7.6-9



1 Moy + ¢ [a-A])-0,(a+A)-0¢ B

A FB(e_)\Zd +e7\Zd) _(a_)\k—}\zd +(a+}\k)\zd
1 T(op-0ffa+)])-0,B+A -a)+oe B
A

rB(e—}\Zd +e}\Zd) _(a_)\k—AZd +(a+}\k)\zd

Let the frequency dependent ratio of backward to forward scattering cross-section be
denoted x(kq). Then assuming a narrowband signal so that the forward scattering cross
section is constant with frequency, the backward scattering cross section is written in
terms of the forward scattering cross section, o, (k) = o5 (ks) X(Ks) . Reintroducing the

frequency dependence of the scattering cross section, I, into Equation 7.6-9, and

1 rog [x+al-x)+Ar0+x)-p]

A FB(e_AZd +e7\Zd) _ G_)\k—}\zd +(a+}\k)\zd
1 T(op-0ffa+)])-0,B+A -a)+oe B
A

rB(e—}\Zd +e}\Zd) _ G_)\k_)\zd +(a+}\k)\zd

Applying the two-frequency reflection coefficient previously derived from the Kirchhoff
approximation above to the solution (see Section 3.4.2), the incoherent intensity will be
determined. The only missing information is the source term, the coherent power density.
This will be found in a manner similar to the above solution. Therefore, all quantities
have been found in Equation 7.6-7. With this information, we may find the two-
frequency mutual coherence function and finally weight the result by the spectrum of the
transmitted pulse. Performing the necessary inverse Fourier transforms completes the

recovery of the time domain solution.

7.7 Conclusions and Future Efforts

The multiple scattering approach has yielded two useful results with respect to the
convolutional model of Chapter 4 : the Distorted Wave Born Approximation (DWBA),
and the two-frequency radiative transfer equation. From the calculation of the mean

250



Green’s function, the DWBA will provide an avenue to calculate the scattered power.
More specifically, however, using the mean Green’s function in the convolutional result
from the single scatter development of Section 6.3.3 will yield a more predictable and
interpretable convolutional model. In this development, the simple far field form of the
Green’s function in combination with the scattering amplitude would be replaced by the
mean Green’s function, see Section 7.3. Finally, the two-frequency radiative transfer
equation was reduced to a forward-backward result. Hence, if the upward propagating
power density can not scatter into the downward propagating power density, then this
two-frequency radiative transfer result can be manipulated into the convolutional form,
following the steps in Section 4.2. Consequently, the result will be a more general,
physically interpretable form of the convolutional model.

This section of the dissertation has created a host of possible avenues to explore. First,
the DWBA should be implemented, first for uncorrelated scatterers and then with pair
correlated scatterers. This result will lend some physical interpretation to the
convolutional solution. Then the solution of Section 7.6 must be implemented (along with
the two-frequency rough surface result) and compared with the simple convolutional
result. Not only will this provide further insight into the physical mechanisms, but it will
also add some new dimensions to the analysis — frequency dependence. Obviously,
implementing this solution will add complexity to the simple convolutional result, in the

form of some difficult inverse Fourier transforms.

7.8 Appendix: Two Frequency Radiative Transfer Equation

The solution using single scatter theory is greatly enhanced through the introduction
of the Distorted Wave Born Approximation (DWBA). Although based in multiple
scattering theory for the mean field, the DWBA still neglects the effects of multiple
scattering its formulation of the propagation of the power density. In this section and the
following sections, the wave based approach to power propagation is extended to include
multiple scattering though the development of a two-frequency radiative transfer
equation. This development closely follows that of Tsolakis [1985] and Besieris [1981].

These papers, in turn, are based on a previous, pioneering work by Barabanenkov [1971].
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7.8.1 Two Frequency, Two Point Coherency Matrix

The coherency matrix is formed by forming the following product

E(Fa, ke) B (Fp. kp) =

= %

A
*l

k) + 5 0 (ko) OB (7 ko) [ (Tp.ka) + z Hij(kz)ﬂfu(r kz)g

j=1

I:II:II:II:IHLI:I

Ea(kl)ﬁii(kl)EEi(?k,kl)

0Oy,

0 B

b =] _
@ukz)m’k(kz)mi(fk.kz)

H
+
ﬂ\MZ

IMZ
>

N IIMZ
—_—
EX

'_.‘!H\MZ

Oy

b = —k
j (k) ik (k) tim (kq) o
(Ei(Fm. K1) J

Mz
~ X
mmlwln

=
=
=
xh-
/;
b
g
3
—~~
~
=
Mz

E|E|("m’|(1) an

HEoooooooo
OO 005

H
Flimz

333
HHIIMZ

bxﬁ
Himz
333

00 Ca

~ X
HH IIMZ

@DDDQDDDD@DDLT_H;
=~
AN

Mmoo
poo

Equation 7.8-1
Next, we expand this form up through third order summations

E(Fa,ky) (B (Fp, ko) = Ej(Fa,ky) B (T, ko)

0Oy,

Uj (k) (B (7, k) CE] (F kp) +E; (ra,kl)mz Hu(kz)tE.(r,,kz)

*

N =a - - N B:b . - |:|
+ 3 uj(ky) E;(Tj ky) OY %Jk(kz)ﬂfi(rk,kz)%
j=1 k=1

+ Ej(T, kl)DZ Z Hlj(kz)mk(kz)DEu(fk kZ)H
k¢J
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+ Z Z uJ(k1)ﬁllk(k1)DE (Tk, k1)EE (Fp, k2)

j=1 k=1,
K# j
N = *
+ 3 uj(ky) [Ej(Fj k) DZ Z Hlj(kz)mk(kz)EE i(Tk, kz)g
j=1
k¢J
N N =a =]j L N b o D;
+ 3 3 uj(ky) Mk (ke) CE; (Fi, k) Oy Hij(kz)DEi(rj,kz)E
j=1 k=1, j=1
K#]
o N N N &b =j =k - D;
+Ei(fa.k)y 5 % Hij(kz)mk(kz)mm(kz)ﬂfi(rm'kz)%
j=1 k=1, m=1,
k#j mzk
m# |
N N N = —i
+ 3 Y 3 uj(ky)Wk(ky)m(ky) CE;j (P, k) CEj (T, Kp)
j=1 k=1, m=1,
k#j mzk
m#j

Equation 7.8-2
Averaging over position only, replacing the summations by simple multiplication, and

noting the form
N B Lo D; N ; a x
> glj(kz)ﬂfi(rykza Z i (T 2)@1(‘(2)H
j:_']_ :

Equation 7.8-3

Equation 7.8-2 becomes, as we let letting the number of scatterers, N, go to infinity,
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(ECFa k) B (Fy ka) ) = Ei(Fa ko) CE] (T ko)

g, Uj (k) CE; (7, k) TE; (P ko) Py, JolF))

+{df,—Ei(fa,kl)ir(fj,kz)tg?(kz)gP(v,-)p(f,-)

* 07 £ Uj k) B (7 ) E?(Fk,kz)@i(kz)g (e o+ clry v ]
[0 )olr )+ (7]
P( )"'C(?j’?k)]

+ [dFj [QP [olFm U] (k) E; (Fjoky) (B (i gﬂm(kzﬂﬁ(kz)ﬁ
V V V 0 d
i) ol o ) o ). 7 )()(f) ()( m)
b
- gy 0Py [0 0 (k) ik (k) CE; (P, ko) B (i, kz)tgim(mg

B N R Y PO R POV & R W O SO

[dFmE; (Ta, ke) (Ef (T, kz)EEEm(kz)H EET‘k(kz)H EEE (kz)H
EE(?J)p(rk)p( J+olFm )l ,,rk)+p( J)C(rk rm)"'p(rk)C(J rm)]
+ yf,- yfk fdfmﬁj (ky) Ck (ky) Clim (ko) (B (P o) CE (P k)

() el ol )+ ol ol 7+ 0lF; el T )+ 0l )7

Equation 7.8-4

Note that the double integrals may be combined, as well as the triple integrals, etc. By

m[=

0 [07y By (. k) CE; (7, kz)tgj (kz)E Egi (kz)

\—/

+Idf Idrkuj(kl)mk(kl)EE (Fi. k) (Ef (7, kz)[p(fj

E; (7]

=+

<

d?jfd
V

neglecting the terms involving triple scatter between two scatterers (Twersky
approximation), etc. Just as was found for the single scatter approximation to the field
correlation, the coherent fields in Equation 7.8-4 can be identified and separated. In

addition, under this “extended Twersky approximation”, Equation 7.8-4 can be written in
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a more convenient, closed form [Tsolakis, 1985]. Hence, Equation 7.8-4 becomes
[Tsolakis, 1985]

. =a = % b 1 a
17,83 (k) (T k) B (75 o) B (k) o)
1 G (k) CECT; k) (B (ko) Bk (k) )

AR 0 0

Equation 7.8-5
Here, the mean Green’s function, G, has been defined in Equation 7.3-28. Including the
configuration averaging, the Bethe-Salpeter equation for the mutual coherence tensor
becomes [Tsolakis, 1985]

Equation 7.8-6

7.8.2 Two Frequency, Bethe-Salpeter Equation

At this point rather than pursuing a case with depolarization, we will concentrate on
scalar wave propagation. Hence, assuming no depolarization, the components of the

coherency matrix can be written

(E(Fa kD)E" (Fo. k) = (E(Ta ko) )(E™ (T ko)
o, (67T k) )) (B K )E™ (7 ko)) (G (o ika))) lF))
+\j/d?j\j/d?k<<G(?a,?j;k1)>><E(?j,kl)E*(?k,k2)><<G(?b,?k;k2)>>*C(?j,?k)

Equation 7.8-7
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First we note that operating on the mean field, with the (D2 +k2) and recalling that this

operates on the observation coordinate T, only, the equation for the mean field becomes

( n? +k1XE(ra,k1) = ( +kf)Ei(ra,k1) + \I/drj (D%a +kf)<<u?>><5(fj,k1)>p(rj)
I R (CHCMCURRIETRNS

-tk e k)o) - f(l?i)édfk (61, T3 K0) (ECTa kp)) C(Ta, Ty)

Equation 7.8-8
Note that when this operator is applied to an incident field, it yields zero. In addition, this
expression explicitly shows the frequency dependence in the Green’s function as well as
the field quantities.

Recall that under one of the propagation conditions assumed in this chapter, the
waves are scattered in the forward direction only. Since the incident wave is assumed to
be propagating in the z-direction, the Laplacian, the field quantities and the green’s
function reduce to a z-variation only, and the wave equation will reduce to a one-

dimensional form. For example, Equation 7.8-8 becomes

2
Eﬂ%wfﬁaza’kl»: %44(1% (z 4, ky) + jdr %-Fkl@ E(Z kl) p(r;)
dZ

* [0z, {dzkﬁg+k5@< (6412 k) (EG k) O 1,210

= 0~ (ki JECza kp))p(z ) - Tk )jdzk<<G(za,zj;k)>><E(za,k1)>C(za,zk)

Equation 7.8-9

However, the three dimensional problem is more general and will apply to both the
isotropic and the forward/backward cases (within a constant).

Defining the two-point, two-frequency coherence function
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M (Fa, o Ky, ko) = (E(Ta k)E (T ko))

We apply the operator twice to Equation 7.8-8; once with respect to the observation

coordinate at T, and then with respect to the observation coordinate at 7, ; forming the

difference

(03 +k2) T (P o ki ko) = (02, +E) P Pk ko)

= (02 K JEL k)" (ko)) = (03, +K3) (B k))(E" (o ko)

+(D$a +k12)jdfj <<U(fa,f,-;k1)>>r'(fj,fj,kl,k2)<<U(Fb,?j:kz)>>* o,

|
—
]
SN
+
=~
NN
o
=l
—
—
C
—~
=l
®
=l
=~
i
N
S~———
N
)
—~
=l
i
=~
2
=~
N
N
—
—
C
—~
=l
o
=l
=~
N
N
S~———
N
*
e
=l
- <<

Equation 7.8-10
using the result for the mean field (first two terms on the left) from Equation 7.8-8,
Tsolakis [1985],

= =tk k) Tk ko) (U7 o Taika)) olra)

+ (UG, Tk T (o Tk ko) £ (R Ko JolF)
C(Fafk)_f*(lzhkz)c(?j,?b)]
[g«u(ra,f,-;kl)}}r'(rj,fb,kl,kz) + <<U*(Fb,?j;k2)>>F'(?a,Fj,kl,kz)E

Equation 7.8-11
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This closed equation is the desired form of the scalar-valued Dyson equation found in the
papers by both Besieris [1981] and Tsolakis [1985]. The difference is in the form of the
scattering amplitude function. Rather than assuming isotropic scattering as was done in
the paper by Tsolakis [1985], a forward/backward scattering approximation is assumed
for the scattering amplitude. Hence, rather than dipole-like scatterers in which the
scatterer is small with respect to the wavelength, we have assumed that the scatterer is
large with respect to the wavelength. We next follow in the footsteps of Besieris and

Tsolakis in order to derive the two-frequency radiative transfer model.

7.8.3 The Quasi-Homogenous Assumption

The next step in deriving the transfer model is a transformation to center of mass

coordinates. With this in mind, we substitute

R= %(fawb) and 7= (T, - Tp)

ks = %(kl"' kp) and kg = (kg — k3)

Making the corresponding changes to the functional variables, we define the quantities;
the first by straight substitution:

olR 17 = p(Fa).p(Tp)
020
f@?i,ksi%kdasf(kl)orf(kz)

For notational convenience, the modified expression for the scattering amplitude no
longer includes a reference to the incidence direction. Starting with the Mutual

Coherence Function, we define a new set of functions
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(UG, 75 k) = <<UQ§ +%?,F';ks +%kd @>
_ <<G%(?a N N O A T : Ly, @> <<G%(r +(F =) Tk +%kd @>

=((eR+ 1 ,?';ks+£kd
O 2 2

— -1

where we have let 7, = T, —T"', so that the second argument is simply 7'

Here, we have shown two specific sets of arguments; several different argument sets
appear in Equation 7.8-10; these are derived in a similar fashion. Next, we transform the
operator:

d> d*[_Ho oz 9 oz 0o oz _ a oz
- = + - + —

22 d2H hz oz, oz oz, Bz 0z, 0z 0z,
JLof o _tof_,00
20z0 O az Zazm 0Z 0z

(extrapolating) O (D%a - D%b): 205

Substituting, the reformulated equation for the mutual coherence becomes
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0 0
- dr MER + T e+ Sk PR - Ler - kg kg O
0 2 2 00O 2 O
wpdr MR =T ek - Lk BEER - e e ek ko
v a2 2 '0g 2 0
- qar thk, + Tky BBER - Lo r 4 v
Y O 2 00 2 N
7

Equation 7.8-12

Considering a “smoothly inhomogeneous” medium, we may simplify the expressions by
assuming that these quantities vary rapidly with the difference variable and slowly with
the sum variables. Expanding these functions in a Taylor series (truncated to the second

term) about the value

Taylor Series: p(§)about &€ = R :

plfz) =plR +570= p(R) + 3 [0p(R] o T+

p(?z) = p@i —%?E= p(R) - %[Dﬁp(ﬁ)]?:o F +...
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Taylor Series: f(k)about k = k; :

1, dflk
f(kl)zf(ks)+§kd df(sS) +

1 dfik
flla) = ko) 2y )
S

Equation 7.8-13
Substituting into the equation for the two-frequency mutual coherence function and
truncating after the first term, we arrive at the following form of Equation 7.8-11
20, 0 + kg Hr (R, kg kg) +
O 2 O
0 . . - dfp (ki K SO0
fr (ks )Ogp(R) F +12f.(ks)p(R)+jdk'—s) kgp(R) O (R, T, kg, Kg) +
0 S 0
@f(ks)p(ﬁ)«e*(ﬁ,f; ko)) =t (ke )RR (G(R, T: ko)) @r(ﬁ,?,ks,kd)
1 _
F AP MR, Pk, +—ky (R T -7 ke K
I 0 S 2 d B S d)
1 —1 = — - 1 D ¥ 7!
+J0F (7= T) DM E}i,r ,ks+§kd§-(R,r—r K kg)

_%Id?'M (R, 7 ke )P ma (R, T =T kg kq)

Equation 7.8-14

262



In this form, a narrowband pulse assumption has been incorporated. Hence, under this

assumption, the scattering amplitude is peaked at the carrier frequency.

7.8.4 Phase Space Analysis

A Fourier transform of Equation 7.8-14 with respect to the fast (difference) variable
changes our solution space to “phase space” [Besieris, 1981]. This particular transform,
the Wigner Transform, is accomplished for the two-frequency coherence function as

follows
W(§’07ks7kd)=zij dF (R, 7 ky, kg Je 19T
T

The result, W, will be referred to as the two-frequency Wigner distribution function.
where the transform variable has been identified as the vector, G. The other quantities of

interest transform as follows [Tsolakis, 1985],

R, 0) = ﬁj dr B(ﬁ,f)e—juuf
Tt

M(RG,..) = (21)3 _[d?l\/l(l?i,?, )e‘Jqu
T

<<é(fz,u,...)>> = (2111)3 Idr<<e(fa,r,...)>>e—jm

Equation 7.8-15
The ellipsis in Equation 7.8-15 has been added to indicate placeholders for additional
(dummy) variables. The “equation of evolution” for the two-frequency Wigner
distribution function is now written from the Wigner transform of Equation 7.8-14
(taking advantage of the convolutional property of the Fourier transform to eliminate

several integrals) [Tsolakis, 1985]
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ﬁ, kkd+21[f (ks p(R) + M, (R ( ks)]ﬁw(ﬁ,ﬂ,ks,kdh
[

Eywp(ﬁHdMR( Tk )G W i k) +
2 dk, dk,  F
i[fa (k,)ORP(R) + D Mg (R0 ko | g WCR, Bk, ko) -

i0aMg (R, 0"k, )04 W(R, 0, kg, kg) +

jir [ @R, 0 -0+ p(R)|W(R, T kg, kg)

1
(2m)®
E@f(ks)p(ﬁ)«é*(ﬁ,ﬂ; ks)>>—f*(ks)p<ﬁ)<<é<f<,ﬂ; ks))) ﬁ

=0
Equation 7.8-16

In this development, the following Fourier property was employed
O PR Tk kg )} = 105 WIR, U kg, ko)

The configurationally averaged Wigner-transformed Green’s function is found from the

Dyson equation of Equation 7.3-30 (suitably transformed to center of mass coordinates)

# e+ s()pm) (@) = - 1{k)al) - 1{kJyarme-r(er.m)

Equation 7.8-17

and the solution via Fourier transform yields
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fks)

u? —k? - fg (ks)P(R) - Mg (R, T, ks)] — jlf (kg)p(R) + M, (R, T, k)]

«G@j*»:[

NN L R
= 1k )2 HR k)] ™ = 21 )| He (R Tk +H (R, 0 ko) |
Equation 7.8-18

The quantity H(F?,U,ks) is the “complex Hamiltonian” of the effective medium, as

defined in the paper by Besieris [1981]. Here, the complex Hamiltonian has been broken

down into its real and imaginary portions. The parts,
fr (ks)P(R) + Mg (R, U, k;)

are identified as refraction terms [Tsolakis, 1985]. The scattering loss terms are identified
as [Tsolakis, 1985]:

f, (ke)p(R) + M, (R, U, k)

In this expression, the imaginary portion of the transformed mass operator kernel
accounts for scattering loss. Like Besieris and Tsolakis, we assume that the regular and
scattering loss terms are small, but not negligible. Hence, a constant energy surface is

defined by setting the Hamiltonian equal to zero

Hg(R,T,k¢) +jH,(R,T,ks) =0
OHg(R,0,k) =0

This equation defines the surface in the (R, u) coordinate space where the wavenumber is
equal to the effective wavenumber. This is directly reminiscent of the definition for the

effective wavenumber from Equation 7.3-32. In addition, the term,
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ﬁf(ks)p(ﬁ)«é*(ﬁ,ﬁi ks>>>—f*(ks)p(fe><<é(f<,ﬂ: k;))) H

appears in the purely scattering integral. “It is reasonable then for its computation to
neglect completely the imaginary part of the effective complex Hamiltonian. [Tsolakis,

1985]” Consequently, the following approximation is used

£k )p(R)((G(R, 0: k) Tff (ks )’ 2HR (R.0: k)] ™

Employing this approximation, and evaluating the inverse Fourier transform into a

principal value, P{*}, and the associated singularity

(k)PR(ER.T: ))) OPH 1) [ Ha R k)] [ + indHa (R.5: k)

Hence, we make the following approximation

e )pUR(E R, ) JoRI(BR 0 ko))

6[u2 — k2 -fr (ks)p(ﬁ) - |\~/|R (I?Q, u, ks)]

O- j2n‘f(ks) ‘2

Equation 7.8-19
Including this approximation, the equation of evolution of the two-frequency Wigner

distribution reduces to

266



k, Ofs (k) =. dMg (R, T k .
_JTdBMp(RM : S)E{N(R,kasvkd)
D dks dks

U
1 =~ ~ (3 - =
+ E[fR(ks)Dﬁp(R)"'DﬁMR ( U ’ks]ma W(R, T, ks, k)

- > Dqlig (R, 0 ks )05 W(R, T, kq, Ky)

_ %|f(ks]2 5{ [HR (R.T: k) ]1} jdu [ @R, 0 -0+ p(R)|W(R, T k. kg)

Equation 7.8-20

The following interesting observations were added in the paper by Tsolakis [1985],

The effects of deterministic absorption are subsumed in the term
f, (ks )p(R) W(R, T, kg, ky) . On the other hand, absorption due to pair correlations
(randomness) among scatterers enters through the factors involving
Mg (R0, k) M, (R,0.k,) and cp(ﬁ,U—U'). The interaction between the
deterministic absorption and the statistical fluctuations in the medium has been

neglected completely.

Given the “weak absorption” approximation, the scattering integral is significant only on

the energy surface HR(ﬁ,U,ks):O [Besieris, 1981]. “Let specifically, dl, be the

differential of a curvilinear ray that passes the point Rin the direction of the group

velocity DGHR(ﬁ,U,kS):O” [Tsolakis, 1985]. Then the Hamilton-Jacobi equations

corresponding to the effective Hamiltonian, Hg (ﬁ, u, ks), assume the form
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A5 - OoHa(Rouk)
dl OaHR R, 0.k )
d,__ OgHe(RiK)
dl OaHR R, 0.k )

Equation 7.8-21
These results are expected since the ray path is similarly defined in ray optics. Hence, the
these results are comparable to the ray equation result [Marcuse, 1982]
dr

n— =[S
dl

where the function S defines the constant phase surface, n is the refractive index and the
vector T points from a fixed origin to all points on the light ray. However, in the
development of this chapter, the surfaces of constant energy and constant phase may not
coincide. Hence, these Hamilton-Jacobi equations apply to the ray path with respect to
the constant energy and phase surfaces, respectively. In addition, we can see that an
effective index of refraction may be defined as follows

ner (R, 0, ks ) = |DUHR(§,D,ks]u:keﬁ

This form will be slightly modified in a later section in order to comply with the
definitions given by Tsolakis [1985].

Combining the Hamilton-Jacobi equations with the results for the evolution of the two-
frequency Wigner distribution and noting that

%W(ﬁ,u,ks,kd) . DF—QW(I?,U,kS,kd)G%—IT +DHW(F§,U,ks,kd)%

R(ﬁ,U,k ) . B DQHR( ’U’ks)
T PN B Ev Y

Equation 7.8-22
we arrive at the transport equation for the two-frequency Wigner distribution
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dW(R, U, kg, Kq)
d
- 2|f(ks)|25{[HR(ﬁz,u; k) ]‘1} dor [R, 0 - 1)+ p(R)|W(R, T, ke, kg)

ks |, 1dfg (k) 1dMR( k)0 s _
W(R.T. K. ki) =
1042 Tk, P(R) + dk, o (R0, ks, ka)

OgHg (F?,U,ks)| + [fl (ks )o(R) + M, (ﬁ’ul’ksjw(ﬁauvks’kd)

_Jk

Equation 7.8-23
This is the “generalized transport equation.” This is not the same as the transport equation

for the photometric intensity. That relationship is developed in the next section.

7.8.5 The Two-frequency Radiative Transfer Equation

In order to derive an equation of transfer that is similar to that given in literature, the
coherent power must be separated from the incoherent power. This is a requirement since
the standard radiative transfer equations are based primarily on the propagation of
incoherent power. The first step in producing a radiative transfer formulation will be to
split the two-frequency Wigner distribution into a coherent, W¢, and an incoherent, W,

portion.

W(ﬁz,a,ks,kd)=2ij dr (R, 0, ke, kg Je 10T
Tt
=We (R, T, ks, kg) + W, (R, T, kg, Kg)

the coherent portion obeys a generalized transport equation derived by Tsolakis [1985],

kg (R 0.k )| Rk 4 o)+, (R 0k JWe (R ks k)
Ok 1dfgl) s 1dMg ROk )D o )
iKg E,4—+2 dk. p(R)+2 k. EWC(R,u,kS,kd) =0

Equation 7.8-24
Notice that this equation behaves just as expected. The form is the same as the overall
transport equation with the exception of the scattering integral. Hence, as proposed in
previous chapters concerning classical radiative transfer formulation, the coherent power

propagates, losing power but no power is scattered back into its path. There are
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differences with the radiative transfer formulation that will be acknowledged in an
upcoming discussion.

The incoherent portion of the two-frequency Wigner distribution is chosen as follows
[Tsolakis, 1985].

W, (ﬁ’u’ks’kd):ks |DUHR( ,U,ks)|

|D H (~ 0K )|3 6{[HR(|§,U; Ks) ]_1} I(ﬁ,§,ks,kd)
aHr R UKy

Equation 7.8-25

In Equation 7.8-25, the two-frequency incoherent power density at a point

R propagating in the direction, S=T/u, has been defined. Adopting the effective

wavenumber, Kefr, as the value of u for which Hg (ﬁ, us, ks):O , the definition for

Equation 7.8-26
In an anisotropic medium, the phase velocity and the group velocity are not in the same
direction. This case has been derived for the isotropic scatterers by Tsolakis [1985] but
will not be addressed here. In the case of isotropic pair correlations, the quantities,
Mg (R,0.ks) M, (R.0.k,) and @R, d - ), no longer depend on a vector, u, only on its
magnitude. Consequently, the two-frequency radiative transfer equation reduces to
[Tsolakis, 1985]
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i RS [t ()] = el s )R s k)

+jks—k((’_)g(_+2nd—[p( B )fs (ke )+ W (R, kot (R ke ).k ] OI(RS Ko kg )

Nest \R, ks ) 04 0

+ 1 dQE)P(R.5, 5k JIR.S k. kg )
solid
angle

+ 1d(E)pR. 5.5 ke We (R.5, ke ky)
solid
angle
Equation 7.8-27
In Equation 7.8-27, we see that this looks like the classical radiative transfer equations.

The extinction coefficient is given by

G(§,§,ks)=ﬁm[f|(ks)p(ﬁ)+l\7ll(ﬁ,ﬂ',ksj
Sileff ' M1 s

Equation 7.8-28
The first term represents the true absorption and the second term is the loss due to

scattering. There is an extra factor, which accounts for frequency offset effects.

K [k, R s
Jksneﬂ dR - E}4—+Em[p( R e (ko )+ M (R, kege (R s )5, K ) 5

Equation 7.8-29
Recall, however, that the frequency dependence of this solution is limited due to a

narrowband assumption. The “power” scattering amplitude (or “phase matrix” from

radiometry) is given by

p(R.5.5.k,) = 2|ka)' k(@ ) [(p(R -0, kg (R K) )+p(R)]

Equation 7.8-30
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An obvious difference from the classical transfer formulation is the extinction. When the
difference frequency is zero, the extinction coefficient is real as expected; on the other

hand, a non-zero difference frequency yields a complex extinction coefficient.
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Chapter 8 Surface-Volume Interaction

The interaction of the foliage with the underlying rough surface can be handled in
many ways. The simplest is to assume that the random medium above the rough surface
does not interact with the rough surface. This has been the approach in the convolutional
method. After this level of approximation, comes single scatter interaction, double
scatter interaction, etc. Finally, the most complete model is a full interaction. Thus far,
this level has only been achieved numerically with a simple closed body above a rough
surface.

The returned power from the volume must be modified by the addition of the time-
delayed return from the rough surface under the random medium. As previously seen, the
radiative transfer method accounts for this second scattering event simply by assuming
that the incident wave to the rough surface is due to an attenuated version of the original,
free-space, time-delayed incident power waveform. The attenuation is due to the

collection of scatterers along each radial from the antenna.

Figure 7.8-1: The total incident field with respect to the surface
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After the power waveform is then scattered by the surface, it again travels back up
through the foliage, suffering the same attenuation. The details of this approach were
developed in the Section 4.3.

Since there are many assumptions are inherent in the radiative transfer result, there is
a question as to the validity of this approach. Can the interaction between the foliage and
surface be modeled simply by this single interaction? This question may be addressed by
interpreting the interaction in the context of equivalent currents and multiple scattering.
Referring to Figure 7.8-1, the incident field induces currents in the volume which
reradiate to the surface and toward the antenna (single scatter interpretation). This is the

foliage, single-scattered field, E: . This foliage scattered field, E:, is also incident on the

rough surface in addition to the free space incident field E™. It is then scattered back

through the foliage, (see Figure 7.8-2) resulting in a second scattered field returned to the

radar, E, , due to the foliage-surface-foliage interaction (a second order interaction).

Figure 7.8-2: the first order approximate scattered field from the foliage and surface

combination
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Naturally, the question arises: are the multiple interactions between the foliage and

the surface a necessary component in this portion of the model? That is, is there a

S

significant second order surface interaction due to incidence of the field E:,, , the foliage-
surface-foliage field, to the surface? When E:, is incident on the surface (note the

addition of E, into Figure 7.8-3 with respect to Figure 7.8-2) will there be a significant
correction to the surface scattered field? This additional incident field will modify the

surface currents, which will radiate, ES, creating a new foliage scattered field, ES, .

The third order approximation to the interaction between the foliage and the surface
would repeat this process again. This process will continue indefinitely, or until the
corrections become negligible. Notice that with each iteration, the final foliage scattered
field is not used as an incident field for the surface.

Figure 7.8-3: the second order approximate scattered field from the foliage and

surface combination
Hence, extensions of this single passage event would include an infinite series of

interactions between the foliage and the surface in the case of single scattering theory or

fully coupled integral equations in the integral equation approach. Is the first order
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scattering interaction term adequate? Three methods of approximation to the second term

have been examined in this study:

1. Modified “First Order Multiple Scattering” theory
2. Exact formulation using the Method of Moments (MOM)

3. Reduced integral equation approach

Due to the complexity of the second approach listed only a limited number of
scatterers can be placed above the surface. Hence, we will investigate the higher order
interactions based on a single scatterer above a rough surface. Since the radiative transfer
approach cannot simulate this situation, another approach was required. After some
investigation the first listed approach was found to not only support the single scatterer
investigation, but also turned out to be a more general version of the radiative transfer
result as developed in Chapter 4 . This first order multiple scattering approach, under
certain assumptions reduces to the result given for the radiative transfer approach. This is
detailed in Chapter 6 .

The first approach, the modified first order multiple scattering result, does begin with
a single scatterer. Hence, since the convolutional, radiative transfer approach is related to
this method, we need only show that the foliage to surface to foliage interaction requires
only the first order interaction, i.e. truncate the infinite series of interactions as previously
described with only the first interaction to verify the assumption. In addition, if this
method were successfully implemented as a convolution, it would serve as a more
general approach than the radiative transfer method as developed in the first section of
this chapter.

Verification of the first order multiple scattering result will require a comparison with
an exact solution. Consequently, the next section of this chapter examines the exact
formulation for a single scatterer above a rough surface and solution via the efficient
MOMI method as previously described. This result may serve as an exact result when
compared with the first order multiple scattering solution obtained for a single scatterer

above a rough surface.
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Finally, in the following section, the exact integral equation method is simplified
using some reasonable assumptions. This method will result in a more accurate method to
simulate interaction between a single scatterer above a rough surface than the first order
multiple scattering approach. In addition, it may also yield a more tractable numerical
model when it is extended to a collection of scatterers above a rough surface than the full
Method of Moments approach. This more accurate representation of the interaction may

be required at some level of simulation.
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8.1 Single Scatterer above a Rough Surface

The impulse response model, like most radiative transfer models, does not account for
any interaction between the scatterers (foliage) and the boundary (surface). In
establishing a range of validity for this assumption, a measure and threshold of “no
interaction” must be established. Once this measure is established, numerous simulations
of the exact scattered field must be examined in order to verify this assumption over a
large parameter space including

» the scatterer’s size normalized to wavelength

» the scatterer’s separation from the rough surface normalized to wavelength

» the scatterer’s orientation (if it is not circular)
Consequently, we must assess the magnitude of the contribution of multiple scattering
interactions between the scatterer and the rough surface. One approach to establishing the
measure of significant interaction would be to include each level of multiple scattering
and measure its contribution to the exact solution. Hence, we begin with the assumption
that the surface and the scatterer do not interact. Next, we assess the correction for a
single scatter interaction.

In order to verify this assumption of independent scattering, an “exact” numerical
model has been created using the method of moments (MOM); the numerical solution for
the currents on the scatterer and the rough surface accounts for all orders of interactions.
After the problem is cast into the proper integral equation, the geometry is discretized in
preparation for a solution via the familiar Method of Moments (MOM). Specifically, the
Method of Ordered Multiple Interactions (MOMI) has been modified and is implemented
as a solution method. This will be described in Section 3.1. Once the currents are found
from the integral equation, the scattered fields can be simply found using the proper
radiation integral; the far-field formulation has been used. A brief description of the

MOMI as originally applied to rough surfaces can be found in Section 3.1.
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Extension of the MOMI to Closed Bodies

The MOMI method, as discussed in Section 3.1, is a solution method for the MOM

derived matrix equation of the following form:

Y=y 4Py

Equation 8.1-1
where P is a propagator matrix, { is an unknown scalar field and qﬂ”c is the known
incident field. In it original form, , the MOMI neglected self-interaction terms P;; [Kapp,
1996]. The propagator matrix (P) was thus decomposed into lower triangular (L) and

upper triangular (U) matrices, each having zero entries along the diagonal,

P_L+U

Equation 8.1-2
Consistent discretization of (1) requires that the diagonal elements P;; be retained
[Toporkov, 1998]. This modification was incorporated by decomposing the propagator

matrix as

P_. L+D+U

Equation 8.1-3
where Disa diagonal matrix with D=P; [Adams, 1999]. In the application of MOMI to

integral equations having singular kernels, Adams has been found that optimal

convergence properties are obtained in the decomposition . Physically, maintaining the

self interaction terms in f)separate from (L) and (U) provides better convergence
properties when applying the method to integral equations having singular kernels
because these equations exhibit strong coupling between oppositely directed fields on the

surface of a scatterer [Adams, 1999]. The decomposition leads to the matrix equation

W=(D-U)" D([D-L)" ¢"™ +P,Y
Equation 8.1-4

where D=1 - D and the MOMI propagator, Py, is defined as
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P, =(D-U)*D(D-L)LD*U

Equation 8.1-5

Neumann iteration of Equation 8.1-4 yields the candidate solution

b=3 P, (O-U)'D(D-1) Y™

Equation 8.1-6
which is the same as equation (28) of [Kapp, 1996] under the substitution D — |. The

MOMI series (6) provides a very robust and rapidly convergent solution to the MFIE for
scattering from extended rough surfaces in two dimensions. The series has never been
observed to diverge [Adams, 1999]. These desirable properties have been attributed to the
manner in which the MOMI series re-sums the multiple scattering terms present in the

Neumann series for the original integral equation.

The Born term in the MOMI series, (D-U)™"D(D-L)™"¢"™, includes the
contributions to the current due to all orders of continuous forward scattering (D —L)™,

all orders of backscattering, (D-U)™. In addition, it accounts for one order of

interaction between the backward and forward traveling waves on the surface (resulting
from the multiplication of these operators). The largest effect neglected by the order zero
iterate of the MOMI series is that of a wave which twice changes directions on the rough
surface before again interacting with the currents on the surface - a triple scattering event.

Consequently, the ordering of the unknowns in the original matrix Equation 8.1-1
is found to have a drastic effect on the convergence of the MOMI series. A different
ordering of unknowns in the MOMI series will result in the summation of different
multiple scattering terms. In the case of a random ordering of the unknowns in the
original matrix Equation 8.1-1 for the rough surface scattering problem, the number of
MOMI iterations required to converge to a given error tolerance can be orders of
magnitude larger than in the case of the physically based forward-backward ordering. It is
not immediately clear how the unknowns in Equation 8.1-1 should be ordered for the
application of MOMI to closed body scattering problems. Adams describes two methods

of ordering the unknowns in the matrix equation, illustrated in Figure 8.1-1. An ordering
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which is sequential-in-¢ (SIP) produces an iterative series that mimics the progression of
creeping waves around the surface of the cylinder [Adams, 1999]. However, Adams
finds that the ordering which is sequential-in-x (SIX) is somewhat analogous to the
forward-backward approach used in [Kapp and Brown, 1996] and is preferred in

convergence tests.

L) FI
A i
I i-F
b ] B
SIP Ordering SIX Ordering

Figure 8.1-1 : Ordering of the Unknowns [Adams, 1999]

8.1.1 A Combined Field Formulation

The scattering problem is formulated in a way that does not give rise to a singular or
nearly singular integral equation [Adams, 1999]. In the following, we consider a
combined field integral equation (CFIE) representation. The CFIE is a linear combination
of the magnetic field integral equation (MFIE) and the electric field integral equation
(EFIE) as indicated below.

oEFIE + MFIE =CFIE,

While the CFIE can be used to provide a unique solution to the scattering problem, the
use of MOMI as formulated with a combined field description of the scattering problem
introduces additional difficulties associated with the kernels of the EFIEs. These
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difficulties are explored and settled in the paper by Adams [1999]. He finds that the
singularity of the EFIE kernel for TE scattering is much weaker than that for the TM
cases and is therefore more amenable to the MOMI series solution technique. Hence,
only the TE case is treated here.

The electric field integral equation (EFIE) for TE scattering from a PEC object is

— pEinc _ a_E
0=E IJano GdS,

Equation 8.1-7
The CFIE for the TE case is obtained by adding this to the MFIE for this problem using

the complex constant a. This leads to

aEinc aEinc

OE
- —2J'§[ . K., dS,

—=20E™ +2
on

Equation 8.1-8

where

Equation 8.1-9
Discretization of this equation is discussed in [Adams, 1998]. The resulting matrix
equation can be put in the MOMI form.

The CFIE is guaranteed to have a unique solution whenever a is complex. This
requirement provides significant freedom in the choice of a. We further constrain a by
requiring that it provide optimal convergence properties for an arbitrary incident field.
Adams that stipulates that the choice of a is made in order to minimize the maximum
eigenvalue of the propagator (accelerates convergence for arbitrary incidence angles). In
addition, the optimal a for the surface (MFIE) a is different from that for the cylinder.
Therefore, we choose a as a function of position: a = a(p). Surface scattering using the
MOMI approach in the past used only the MFIE formulation which is consistent with a=

0, and becomes exact in the flat surface limit.
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8.1.2 Example Results for TE Polarization

Simulations that follow demonstrate the investigations into an elliptical cylinder
above a rough surface. A MOMI code was produced which includes unknowns on both
an elliptical cylinder and a rough surface. The coupling parameter, a, on each surface
was chosen to be the optimum for the observation point on the surface. Consequently, a
is the asymptotic value described above on the cylinder and a = 0 on the surface. The
cylinder was chosen to be elliptical in order to resemble the foliage problem. All of the
simulations which follow use TE Polarization and A/10 sampling. Other parameters
depend upon the size of the scatterer and its separation from the surface; these include the
following

* incident spotsize = 20A to 30A
100A to 200A

10A , minor axis = 2.5\

» surface length

» ellipse: major axis

5\ to 60A above the mean surface

» height of the ellipse

AZ

Major

‘4— axis in A +‘

Mean Plane i

These variables are identified in Figure 8.1-2.

Figure 8.1-2: Scatterer over a Randomly Rough Surface
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The total cross section of the elliptical cylinder and rough surface combination is plotted
in the figures that follow. The far field form of the Hankel function normalizes this value:

2 ejkp—j}

%
This solution which includes the full interaction will be referred to as the “exact
solution”.

In addition to the total cross section of the full interaction problem, the total cross
section of various stages of interaction are also included. First, the simple incoherent
addition of scatter power is included; this case will be referred to as “incoherent addition”
(1A) in the examples that follow. This curve will allow the assumptions of the impulse
response method (no interaction) to be compared with a full interaction solution. Hence,
it is equivalent to calculating the total cross of the ellipse and the surface in isolation and
simply adding the resulting power, see Figure 8.1-3(a) and Figure 8.1-3(b), respectively.
The source in this case is will be referred to as the “free-space incident field” and the

resulting induced currents as the “incident currents.”
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Figure 8.1-3: The Single Scatter Approximation: (a) Currents induced on the
cylinder in isolation (b) Currents induced on the surface in isolation
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Figure 8.1-4: The Single Scatter Approximation: (a) Corrections to currents

induced on the surface (b) Correction to Currents induced on the cylinder

The next step is the addition of the first order correction to both the current on the
surface and the ellipse. Thus, after the current on the ellipse is calculated in isolation, its

radiated field is added to the free-space field incident on the surface, see Figure 8.1-4(a).
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This results in the simple correction of the incident currents and the single scatter currents
due to the ellipse. In turn, this corrected current on the surface is permitted to radiate and
induce a correction to the current on the ellipse. This results in a double scatter event, yet
is still a first order correction to the incident current on the ellipse, see Figure 8.1-4(b).
Finally, the composite system with the first order corrected currents is allowed to radiate.
This result is referred to as the double scatter result in the following example results.

In Figure 8.1-5 through Figure 8.1-7, we see the effect of separation on the total cross
section for the elliptical scatter/rough surface system by varying the separation between a
6 wavelength elliptical cylinder and the surface.

Total Cross Section

Ellipse: 4 to 1, 10 wl diameter, 60 wl above a Gaussian Rough Surface (0.5wl height variance, 5 wl correlation), 100 realizations, 200 wl
15

10 LA

AAI‘VW’

74

Magnitude (dB)
o
=2

éu”vll'

AA i ’
™ T~

-10 + g w vt

-15 t t
-100 -80 -60 -40 -20 0 20 40 60 80 100

Angle of observation
—— surface&cylinder alone: field addition ——Full interaction
——Double Scatter —— surface&cylinder alone: power addition

Figure 8.1-5: 10 wavelength ellipse, 60 wavelengths above a Gaussian rough surface

In these figures, the exact total cross-section can be compared with the incoherent
addition of the surface and the scatterer (radiative transfer assumption) and the first order
interaction between these parts. It is obvious from the figures that the double scatter

approximation provides a better estimate of the total cross section of the composite
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system than the simple incoherent addition of the cross sections of the individual
elements. It can also be seen that a larger the separation between the ellipse and the
surface results in an increasingly better approximation by the incoherent addition with
respect to the exact result. This fact has been verified by examining the cumulative root

mean square error (cumulative with respect to the observation angles).

Total Cross Section

Ellipse: 4 to 1, 10 wl diameter, 20 wl above a Gaussian Rough Surface (0.5wl height variance, 5 wl correlation), 100 realizations,g30
15

10 NTAY

5 s
) N

i
: o %

Magnitude (dB)
o
-

A

-15
-100 -80 -60 -40 -20 0 20 40 6l 0 100
Angle of observation
—— surface&cylinder alone: field addition ——Full interaction
——Double Scatter —— surface&cylinder alone: power addition

Figure 8.1-6: 10 wavelength ellipse, 20 wavelengths above a Gaussian rough surface

Since the agreement between the incoherent addition of the parts and the exact total cross
section becomes closer, we can expect a threshold for the distance at which higher order
interactions become significant. In addition to the separation, this threshold will most
likely depend on the observation direction, the illumination direction and the orientation
of the ellipse. Further numerical studies will be required to find these relationships. We
can see that the calculation of the returned power for most foliage components will
probably not require accounting the higher order interactions. However, a land-based

target buried beneath the foliage, may require accounting for these interactions.
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Total Cross Section

Ellipse: 4 to 1, 10 wl diameter, 5 wl above a Gaussian Rough Surface (0.5wl height variance, 5 wl correlation), 100 realizations,g30
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Angle of observation

Magnitude (dB)
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—— surface&cylinder alone: field addition ——Full interaction
——Double Scatter —— surface&cylinder alone: power addition

Figure 8.1-7: 10 wavelength ellipse, 5 wavelengths above a Gaussian rough surface

It seems apparent that the farther the scatterer is from the surface, the less interactions
become important. In Figure 8.1-8 and Figure 8.1-9, the full interaction problem and the
simple power addition are examined for large separations and off-nadir incidence (30

degrees). These results show good agreement and indicate very little interaction.

288



Scattered Power: Cylinder 50 Wavelengths above a Rough Surface
20 degree, TE Incidence, 200 wl surface, Gaussian (0.5 Wavelength rms Height, 5 Wavelength Correlation Length), 100 realizations

10

5 ‘W W«x
- f hy
10 N
.—/'/ -

-90 -70 -50 -30 -10 10 30 50 70
Scattering Angle (degrees)

—ellipse, 3:1w/ surface, g20 = Addition of cylinder & surface

Figure 8.1-8: 10 wavelength ellipse, 50 wavelengths above a Gaussian rough surface
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Figure 8.1-9: 10 wavelength ellipse, 100 wavelengths above Gaussian rough surface

Scattered Power: Cylinder 100 Wavelengths above a Rough Surface

20 degree incidence, TE, 200 wl surface, Gaussian (0.5 W avelength rms Height, 5 W avelength Correlation Length), 100 realizations
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8.1.3 Conclusions and Future Efforts

90

The solution of the cylinder above a rough surface serves as a basis for comparison

with the first order multiple scattering approach and ultimately the radiative transfer

approach. The results from these simulations will justify the requirements for higher

order interactions in the foliage-surface scattering problem. As one would expect, we

have seen an increased importance for the higher order interactions as the scatterer is

moved closer to the surface or its size increases. This method is obviously inadequate as

the number of scatterers increases or as the incidence angle increases since the problem

becomes numerically intractable. The conclusions drawn from the example are not

surprising and include the following
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» the iterations required increased as the ratio of the body size to height above the
surface decreased

» the interaction between the surface and the cylinder decreases as the separation is
increased and incidence angle is decreased (measured from the vertical)

e the beamwidth must be significantly larger than the ellipse to see the effects of
multiple scattering

» the single/double scatter corrections significantly improve the estimate for power

returned relative to the simple power addition (at least for small roughness)

In addition, we have seen slower convergence in our technique as the scatterer is moved
closer to the surface. Consequently, a stabilized bi-conjugate gradient solution
(BIiCSTAB) in combination with the MOMI has been implemented as an aide for the
convergence of the problem. We note that the application of the BICSTAB routine to the
MOM equations in one particular example (16A cylinder major axis, 3\ above the rough
surface) did not converge within the number of iterations allotted. Likewise, the straight
MOMI solution required 30 iterations. However, when the BICSTAB routine was applied
to the MOM equations after the MOMI preconditioner was applied, the ellipse and rough
surface system required only 10 MOMI/BiCSTAB iterations.

Two final notes: since these simulations occur with monochromatic waves and the
interest in this work involves pulsed energy, the pulse chosen for comparison will be
slowly varying and of long duration. Primarily, we are interested in the importance of the
interactions, not the solution; consequently, until a time-dependent code is introduced, we
will assume that the importance of the interactions in the pulsed energy problem is
similar to that in the monochromatic problem. In addition, one further assumption of the
impulse response model requires our attention; the assumption of no wide-angle
scattering. This may be significant for all components of foliage and ground-based

targets.

291



8.2 Approximate Analytical Solution for the Moments of a
Single Scatterer above a Rough Surface

If it is found that the scatterer above the rough surface includes important
interactions that are not included in the modified first order multiple scattering solution,
this solution must be refined. In addition, if the return from a strong scattering object,
such as a vehicle, under the vegetation is desired, then the coherent return may be
desired. The exact solution for the problem of multiple scatterers above a rough surface
will become numerically intractable as the number of scatterers increase. Consequently,
alternative methods must be used or the exact solution must be simplified. As we have
seen in the previous sections, the exact solution for a single scatterer above the rough
surface in combination with the first order multiple scattering will produce some insight
into the validity of the radiative transfer result. An alternate approach that simplifies the
exact results, yet unlike the first order multiple scattering result, maintains the coherent
response, begins with the exact integral equations and incorporates some reasonable
assumptions. Like the first order multiple scattering response, we begin with a single
scatterer over a rough surface and propose an extension to N scatterers above a rough
surface.

We start with coupled integral equations: one representing the current on the rough
surface and the other representing that on the scatterer. From equivalence, the MFIE for
the current on the scatterer in the presence of the rough surface can be written

Ja(r)=2f, xH'(R)+2A, x I, (7')x0'G(T,T')dS,

Scatterer
Surface

+20,x [, (5" )x0'G(T,1")dS,
Rough
Surface

Equation 8.2-1
where the subscripts 1 and 2 will indicate points or currents on the scatterer and the
rough surface, respectively. The current is evaluated at the observation point, which is on
the scatterer. Note the presence of the term, the last term. From equivalence, the MFIE

for the current on the rough surface in the presence of the scatterer can be written
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3, (T,) =20, xH'(T,)+2f, x 13, (F")x0'G(%,, ") dS,
Scatterer
Surface

+20, % [[1,(R,")*0'G(R, T,')dS,
Rough
Surface

Equation 8.2-2
The current is evaluated at the observation point, which is on the scatterer. Note the
presence of the coupling, the second term. The geometric quantities in these two

equations are defined in Figure 8.2-1.

2 Iisz h

Observation ﬁ
point

Figure 8.2-1: Geometry for the Reduced Integral Equation Approach

8.2.1 The Reduced Integral Representation

The overall goal is to simplify the solution for a single scatterer over a rough
surface. Since the scatterer is assumed to be small with respect to the distance to the
surface, the far-field form of the Green’s function will be used for interactions involving

the scatterer as the source and the surface as the observation location. In addition, when
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the object is modeled as a smooth ellipse or a disc, the Physical Optics (PO)
approximation will be used to estimate the induced currents on the scatterer due to the
incident field. In all remaining sections, these two simplifications shall be considered
accurate. Starting with the coupled integral equations and substituting into the integrands
of (1) and (2) in the previous section, we find for the scatterer

Ja(n) = 20, xA'(R) +2, % [[T,(1)* 0G5, 1) dS,

Rough
Surface

Equation 8.2-3
In this formulation, the integral equation for the current on the scatterer still involves two

unknowns. For the currents on the rough surface, we find the following equation

J,,(%,) = 2/, xH'(T,)

il il
+20,x g DR XA(R) +20,x [13,(5) X DG, 1) S, B0 Gy (1, 1) 05,
Scatterer Rough
Surface [ ] Surface (]

+2f,x I, (5")x0'G(T,,1,')dS,
Rough
Surface

Equation 8.2-4
where Gg(r,r’) is the far-field form of the free space Greens Function. Those vales with
a subscripted “1” are in reference to the scatterer and those with a “2” are with respect to
the surface. In addition, the primed coordinates reference the sources and unprimed
reference the observation points. This integral equation consists of three terms

1. The first term is the well-known Kirchhoff term
2. The second term couples the currents of the surface to that of the scatterer
3. The third term is the familiar multiple scattering term for the surface to surface
interactions
Notice that the PO current on the scatterer is known; consequently, the only unknown in
the integral equation for the surface current is the surface current itself. Moving the

normal unit vectors inside the integrals and using the vector identity
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Equation 8.2-5

Expanding the gradient of the Greens Function:

( ) 1

= % 7 +Jk[ﬁ(Ir )k,

ﬂl
ﬂl

ﬂl
ﬂl

r-—

, U
OG(r,T") :%—r |+jk[§(r T )

Equation 8.2-6
where, following the notation of [Ishimaru, 1978], the direction from the source point to

the observation point is given by

r-r L
( ) = the scattering direction

Employing the far-field approximation, the Greens function and its gradient become

—-jkR

e
G(f,F') O——e ™ = G_(F,T'
(r,r") 4T[R (r,r")

—ij - N N
O'G(RT) O jke—e ™ k= jkG(F, ')k
(r,r) 0] R s =IKG(F, F)k,
Equation 8.2-7
where R = F—T'. Further reduction of integral equations is accomplished by assuming

the scatterer has a definite geometrical shape (disc, etc.). In this case the backscatter and
forward scatter from known scatterer geometry may have an analytical result, further
simplifying the integral equations.

8.2.2 Reduction for a Circular Disk (3-D) Scatterer above a Rough
Surface

In 3-D, the integral equations were specialized to a circular disc with random tilt and

height above a randomly rough surface and in 2-D, the integral equations were
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specialized to a strip with random tilt above a corrugated surface. Only the results of
these derivations will be given in this report. These results should include more
interaction terms with the surface than the first order multiple scattering theory but with
less computational demand than the exact solution. For a flat disc, horizontally suspended

over a rough surface, the current on the rough surface is

Js(T,) =2fi, xH(F,) + jkMexp{—jkﬁzs Eih}

EH[( n, Elﬁ )sz (rl))+ st(nz Eﬁsz (rl)])]exp{ Jkst ETl}dsl

+ Zé[g{js(fz') (ﬁz Dizz') ‘(ﬁz Ejs(fz'))Fﬂazz}|D'G(fzvf2')|dsz'

2
MkAexp EJl(kA)
41¢ 25

o (D052 R )= 6 3 o] I
S2

S2

expf{- ijsz} E—jkh s,
4T[2RSZ RSZ Ed

Equation 8.2-8

where the Bessel Function of the first kind, J1(x), has arisen due to the circular disk and A

~ [, TRaos Rs2 ~ (2 Rz Ros] G s () 3

is the area of one face of the disk. It has been assumed that the disk is very thin. The first
term is the Kirchhoff current on the surface. The second term, the first integral term, is
an additional Kirchhoff current term due to the incident field from the Kirchhoff current
on the disc: the Kirchhoff current on the disk radiates to the surface. Shadowing must be
accounted for in the use of this term: the Physical optics current on the underside of the
disc, due to the incident field will typically be zero. The third term is the surface in
isolation. Finally, the fourth term is a multiple interaction result: the current on the
surface radiates to the disk and is re-radiated to the surface again ... ad nauseum. Note

that this integral equation has only one unknown: the current on the surface.
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The integral equation for the disk simply involves Kirchhoff current and the current
due to the surface radiating to the disk. Note that this equation is fully coupled to the

solution for the current on the surface
jl(?l) =27 X Hi(?l)

+ foész(rz ) + kﬁi r1'r2 0GR, 7' )(Z s, (' ))gj

Equation 8.2-9
If the surface is gently undulating, the z-directed currents will be nearly zero, hence, the

integral equations for the currents become

Js(fy) =2fi, xFi, (1) + jkMexp{—jkﬁ23 )
2TR g

EH[( n, Elﬁ )sz (ry' ))+ st(nz Eﬁsz (ry' )])]exp{ Jkst ETl}dsl
¥ Zg];{js(?z') (> R ) - (A T (1))R o } ' G (T, 7,1 S,

i 2
, exp{= jkR,d kAexpE jkh El(kA)
4TPR s 5 Ras EJ

h Dexp{ ijSZ} E—thz s,
RszD 4T[2R32 Rsz Ed

Equation 8.2-10

s )2 Ros)- (1 T ()R s

And

Ji(n) =22 x H;(n) + ZIIJsz(rz ) + K- = G(r. 7' Edsz
2

Equation 8.2-11
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A more complex result is available for a disk with arbitrary tilt and in 2-D, a strip with
arbitrary tilt.

8.2.3 Conclusions and Future Work

This section has started with the exact coupled integral equations for a rough surface
in the presence of a single scatterer and reduced these using the far-field form of the
Green’s function for the scattered field due to the scatterer and the physical optics
solution to the scatterer’s current. Furthermore, we have isolated an approximate integral
equation for the surface scattering in the presence of the disk. This integral equation only
involves one unknown, the current on the rough surface.

In addition, we have simplified the expression for a scatterer that is a circular disk. In
addition, the term that represents the multiple interactions between the scatterer and the
surface has been isolated and should be evaluated relative to the surface in isolation. This
investigation will yield an analytical solution as to the validity of the single interaction
assumption for the radiative transfer result. The next step in this process is to numerically
implement the above integral equations. These results may then be compared with those
obtained with MOM/MOMI. Concurrently, the average results will be attempted
analytically for a random height and then the random orientation. These results should be
implemented numerically.

In the extension to N scatterers above a rough surface, no interaction between
scatterers will be accommodated; the result will include interaction with the surface, like
the first order multiple scattering result. Unlike the first order multiple scattering result
discussed earlier, these results will include a more comprehensive treatment of the
interaction with the surface in addition to the preservation of the coherent field.
Numerical solutions and comparison with MOM results for two to three scatterers can be
performed in an effort to assess the mutual interactions among the scatterers themselves
(ignored by the presented single scatter theory). An attempt to derive analytic expressions
for the field moments from these equations will be made, including the mutual coherence

functions.
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Chapter 9 Summary and Future Efforts

This dissertation has covered a large variety of subjects, all concerning the interaction
of waves with rough edges, surfaces and random media. First, a method for predicting the
total field beyond a rough knife edge was presented. Using a spectral approach in
combination with the paraxial approximation and the Kirchhoff approximation, we can
predict the field, total power and its coherent and incoherent components in the line-of-
sight direction beyond the obstruction. The mean diffraction field is a result of an
effectively smooth knife edge; hence, this term is present even in the absence of
roughness on the edge. The fluctuating portion results from the roughness on the knife
edge. Hence, for small relative roughness, the diffracted field is equivalent to the mean
diffracted field. As the roughness on the edge increases, the edge diffracted-field
becomes more incoherent and the phase interference consequently diminishes, leading to
an attenuation of the oscillations in the coherent or mean total field.

The wide angle scattering from a rough knife edge may be interpreted in a similar
manner. The paraxial approach and the stationary phase result agree in magnitude under
narrow (but reasonable) beamwidths and for large observation distances. In order to
increase the applicability of this model, the saddle point evaluation of the spectral
integration must be completed. This task can be completed using a transformation found
in Banos [1966]. Finally, the propagation of a pulse past the rough knife edge was
presented. In reducing the problem to a usable form, it was found that a narrowband
approximation was necessary. The received pulse, in both the smooth and rough edge
result was found to be an amplitude-weighted replica of the transmitted pulse., due to the
narrow band assumption, several integrals were dismissed as insignificant; as the
bandwidth grows, these integrals will assume a greater role and consequently pulse
distortion and dispersion may become an issue. As a future effort, the results presented in
this dissertation should be generalized for larger bandwidths.

Extending the idea of the knife edge diffraction, this thesis builds on the topic of a
wedge on a plane by extending the Method of Multiple Ordered Interactions (MOMI) to
the dielectric surface. This model is developed as a more exact alternative to the
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Impedance (Leontovich) Boundary Condition (IBC). In this development, the coupled
integral equations governing the scattering by a dielectric surface are combined into a
single equation where the lossy dielectric enters the solution as a perturbation of solution
for a perfectly conducting surface. Hence, the solution is not only exact, but as the loss
increases, the convergence is rapid. Other interesting results are possible when this
formulation is extended to the TM polarization.

In predicting the radar return from vegetation, a number of approaches have been
developed: radiative transfer, single scatter, and multiple scatter. In this dissertation, the
focus has been on the formulation a simple model from radiative transfer theory that is
numerically efficient and depends on the empirical identification of effective parameters.
However, there are a number of verification studies that were performed and several
different levels of verification have been outlined in this dissertation. The Impulse
Response (Convolutional) model allows a superposition of surface and volume responses.
Its numerical implementation is via the Fast Fourier transform, FFT, which allows a fast
numerical solution. This approach, although originally derived from the radar equation
and then by the radiative transfer equations, has been shown to be equivalent to the “first
order multiple scattering theory.” This equivalence has been derived under the
assumptions of narrow-band and narrow-beamwidth with a limited scattering pattern.

The beam wave solutions presented have indicated that beam broadening will
become significant when the discrete objects scatter isotropically or the medium is
electrical deep. Isotropic scattering, however, is expected to yield a large beam spread.
Hence, further examination of beam broadening for more general power scattering
amplitudes, such as the one proposed by Schwering (see Section 4.4), are necessary. This
is a work in progress; although the theory is developed, it has only been tested for
forward-backward and isotropic scattering. In addition, there is still room for original
work in extending the solutions to polarized waves and pulsed waves.

The single scatter approximation was examined next in the simulation of volume
scattering. This approach has exposed several of the major assumptions of the
convolutional model, since the single scatter result also leads to the same convolutional
equations. The narrow-band and narrow-beamwidth approximations are the primary

limitations, beyond the forward-backward scattering approximation. However, using the
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full expression for two-frequency mutual coherence function, the impulse response
approach may be extended to broader bandwidth pulses in addition to broader beamwidth
antenna patterns while maintaining some convolutional aspects. In addition, it was
demonstrated that the single scatter solution could be extended to include polarization
effects. This effort looks feasible and should be attempted.

The multiple scattering approach will vyields further insight into the physical
parameters that make up the extinction and effective medium parameters. The multiple
scattering approach has yielded two useful results with respect to the convolutional
model: the Distorted Wave Born Approximation (DWBA), and the two-frequency
radiative transfer equation. From the calculation of the mean Green’s function, the
DWBA will provide an avenue to calculate the scattered power. More specifically,
however, using the mean Green’s function in the convolutional result from the single
scatter development will yield a more predictable and interpretable convolutional model.
In this development, the simple far field form of the Green’s function in combination
with the scattering amplitude would be replaced by the mean Green’s function. Finally,
the two-frequency radiative transfer equation was reduced to a forward-backward result
and is expected to be easily manipulated into the convolutional form, which will include
the effects of surface and foliage roughness. Consequently, the result will be a more
general, physically interpretable form of the convolutional model. This section of the
dissertation has created a host of possible avenues to explore. First, the DWBA should be
implemented, first for uncorrelated scatterers and then with pair correlated scatterers.
This result will lend some physical interpretation to the convolutional solution. Then the
solution must be implemented (along with the two-frequency rough surface result) and
compared with the simple convolutional result. Not only will this provide further insight
into the physical mechanisms, but it will also add some new dimensions to the analysis —
frequency dependence. Obviously, implementing this solution will add complexity to the
simple convolutional result, in the form of some difficult inverse Fourier transforms.

In the third region of interaction, the volume and surface interaction, an exact
solution to the single scatterer above a rough surface has been implemented via the
MOMI method of solution to the MOM problem. This effort is necessary in order to

compare the first order multiple scattering result with a result with known accuracy. It
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has been observed that the interaction is certainly present, particularly when the scatterer
is closer to the surface and as incidence angle is further removed from nadir. These
results provide a basis of comparison for the impulse response. The results presented are
restricted to the TE incidence and must be extended to the construction of the MOMI
model for TM polarization for an elliptical cylinder over a rough surface. It is apparent
that foliage components well above the rough surface may be treated as non-interacting;
this includes components other than the trunk region, which was not simulated. However,
it is evident that multiple scattering effects may be significant for a large conducting
object near the rough surface. In addition to the impulse response approach, a second
analytical approach has been formulated which begins with the exact integral equations.
We hope to find an analytical, or at least computationally efficient, solution to both the
mean and second order, time dependent power density for the single scatterer above a

rough surface.
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