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(Abstract)

     The intent of this dissertation is to obtain estimates of the effects of natural terrain

features on the propagation and scattering of waves. It begins with the rough knife

obstruction case, moves into rough surfaces and finally concludes with several

approaches to a foliage covered rough surface. Each of these problems is encountered in

radar, remote sensing and communication systems.

     The first topic in this dissertation is the study of the effect of random edge roughness

on the diffraction of a wave. This has been accomplished by approximating the field

beyond the diffracting half-plane through the use of spectral techniques and the Kirchhoff

approximation. The relationships developed for the mean or average diffracted field and

the incoherent diffracted power are studied for a range of electrophysical parameters that

are representative of the situation encountered in a point-to-point communications link

with blockage by a rough edged half plane. The interpretation of the results is facilitated

by the observation that the total diffracted field is a superposition of the incident field and

the edge-diffracted field. When the roughness on the edge increases, the edge diffracted-

field becomes more incoherent and the phase interference consequently diminishes,

leading to an attenuation of the oscillations in the coherent or mean total field. The model

also addresses the effects of the knife edge in directions off the line-of-sight path as well

as its effects on pulse propagation.

      Next, rough surface scattering effects are addressed. Extending the idea of the knife

edge diffraction, this dissertation builds on the topic of a wedge on a plane by adapting

the Method of Multiple Ordered Interactions (MOMI) to the dielectric surface. In this
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development, the coupled integral equations governing the scattering by a dielectric

surface are combined into a single equation wherein the lossy dielectric enters the

solution as a perturbation of the result for a perfectly conducting surface. Hence, the

solution is not only exact, but as the loss increases, the convergence is rapid. Next, the

Kirchhoff approximation is expanded to a two-frequency form for use with the later

chapters which deal with pulse scattering by rough surfaces. Example waveform

calculations are given.

       Propagation and scattering by a volume of scatterers over a surface is then examined.

Starting from the radiative transfer equations, a model is developed herein for scattering

from vegetated rough terrain. It assumes completely incoherent scattering and includes

contributions from both the vegetation and the surface scattering along with a relatively

simple accounting for their interaction. The model is developed into a form that easily

separates the three primary components of the scattering problem – the radar system, the

geometry, and the environment, and then recombines them through a multiple

convolution.

      Extending the basic model to volumes for which multiple scattering is important is

accomplished through the use of effective parameters. These effective parameters are

obtained by comparing the model with pulsed radar data at normal incidence, i.e., looking

directly down through the foliage and onto the ground. Hence, our overall model is a

hybrid approach wherein the basic physics are retained in the simple solution. It is then

extended to a more complicated environment through the use of these effective

parameters. Example waveform calculations are given.

     The simple model assumes that multiple interactions are insignificant and that only

narrow-band signals and narrow-beamwidth antenna patterns are used. Consequently, a

more general radiative transfer approach is applied to the propagation of a beam through

the random medium. This effort is a test of the narrow beamwidth and  forward-backward

scattering approximations implicit in the convolutional model. Next, the same

convolutional model is developed using wave theory in order to clarify the assumptions

and lend some physical meaning to the free parameters of the convolutional model. First

the single scatter theory, with strictly forward and backward scattering is shown to be

equivalent to the convolutional approach derived with radiative transfer theory. Next,
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multiple scattering in a discrete random medium is investigated in the “extended”

Twersky approximation [Tsolakis, 1985]. This development leads to the mean Green’s

function for the medium, a form of the Distorted Wave Born Approximation and to a

two-frequency radiative transfer equation. This transfer equation is then shown to

simplify under the forward-backward assumption, eventually leading to a form which is

compatible with the convolutional result.

     Finally, the effects of multiple scattering between the volume and its boundary, the

rough surface, have been investigated. Using a numerical implementation (MOMI) of a

scatterer over a rough surface, the orders of significant multiple interactions between the

rough surface and the volume scattering components have been simulated. It is

demonstrated that foliage components well above the rough surface may be treated as

non-interacting; this includes components other than the trunks, which were not

simulated. However, it is evident that multiple scattering effects may be significant for

large objects near the rough surface.

     This work has been supported by grants from the Bradley Department of Electrical

and Computer Engineering, National Science Foundation, and the Virginia Space Grant

Consortium. Additional support has been provided by the U.S. Air Force at Hansom

Airforce Base under grant F19628-96-C-0071, and U.S. Army Research Office under

grant DAAG55-97-1-0164.



v

Dedication

I would like to dedicate this work to my family. Only their helpful support, understanding

and kindness have made this work possible.



vi

Acknowledgments

       I would like to express my sincere thanks to my advisor, Dr. Gary S. Brown for his

guidance, time and efforts on my behalf. I could not have started or finished without his

encouragement and assistance. His friendship and gentle supervision and the working

environment of the ElectroMagnetic Interactions Laboratory have made this experience

exciting and challenging.

       I would like to thank Dr. Ioannis Besieris for introducing me to the area of

electromagnetics so many years ago. He is a masterful teacher and certainly has made

one of the most feared subjects both exciting and comprehensible. In addition, I must

thank him for his constant friendship, encouragement and our long talks. I also express

my warmest appreciation to the rest of my committee. Dr Werner Kohler opened the

world of applied mathematics to me. His classes and counsel gave me the mathematical

tools and maturity to complete my research. Dr. Warren Stutzman has opened the world

of applied electromagnetics and inspired me to my first job in antennas. His practical

approach to the discipline has always kept me on track. Finally, I would like to thank Dr.

David DeWolf for his time and the many discussions we had. His deep insight into my

thesis subject has been a constant source of new ideas and instruction.

     Special thanks are also due to my friends and teachers in the ElectroMagnetic

Interactions Laboratory. First and foremost, I must thank my good friend, Dr. Robert

Adams for his encouragement, commiseration and instruction. He is a constant source of

new ideas and insight. Next, I must thank Dr. Raid Awadallah for his instruction and

kindness through this experience. In addition to being a great friend, he is a natural-born

teacher. Finally, I would like to thank the remainder of the ElectroMagnetic Interactions

Laboratory: Bryan Browe, Dr. Jakov Toporkov, Dr. Roger Marchand, and Dr. David

Kapp for their friendship and assistance. This entire group of friends and coworkers have

made this experience as enjoyable as possible.

     Finally, my deepest appreciation goes to my wife, Monica and my children Ian and

Connor who have endured over four years of neglect. Their constant diversion and love

have made my life complete. Retribution for lost time and lost kindness is required. I am



vii

unable express my regret for lost time with them. In addition, I thank my parents, Richard

and Isabelle Davis for their rich support and encouragement throughout the years. I look

forward to more time to spend with my entire family.

     I would like to thank all of the following sponsors for their generous support. This

research was supported by many different groups. First, I would like to thank Dr Ferrari

and the entire faculty and staff of the Bradley Department of Electrical and Computer

Engineering for my selection as a the Bradley Fellow. Next, I would like to thank Dr

Richard Weyers for his support for me through his Civil Infrastructure grant sponsored

by the National Science Foundation. Next I would like to thank Mr. William Stevens of

the U.S. Air Force at Hansom Airforce Base for his support, and Dr. James Harvey of the

U.S. Army Research Office. The author to these is indebted to individuals for technical

guidance and discussions on this problem. Finally, I would like to thank the Virginia

Space Grant Consortium for their support.



viii

Table of Contents

CHAPTER 1 INTRODUCTION AND LITERATURE SURVEY........................................................... 1

1.1 PROPAGATION OVER A ROUGH KNIFE EDGE..................................................................................... 2

1.2 FOLIAGE ABOVE A ROUGH SURFACE: AN APPROACH RATIONALE.................................................... 3

1.3 THE WAVEFORM SCATTERED BY A VEGETATED ROUGH SURFACE ................................................... 6

1.3.1 Volume Scattering................................................................................................................... 7

1.3.2 Scattering from a Rough Surface .......................................................................................... 14

1.3.3 Interaction between the Foliage and the Rough Surface ...................................................... 15

1.4 GOALS OF THIS RESEARCH .............................................................................................................. 17

CHAPTER 2 ROUGH KNIFE EDGE DIFFRACTION......................................................................... 19

2.1 REVIEW OF THE APPROXIMATIONS FOR A SMOOTH KNIFE EDGE..................................................... 20

2.2 ROUGHNESS ON THE KNIFE EDGE.................................................................................................... 26

2.2.1 The Coherent Field ............................................................................................................... 27

2.2.2 The Total Power.................................................................................................................... 30

2.3 EXAMPLE RESULTS ......................................................................................................................... 40

2.4 WIDE ANGLE SCATTERING BY RANDOMLY ROUGH KNIFE EDGE.................................................... 46

2.4.1 Paraxial approximation in wide angle scattering................................................................. 46

2.4.2 Stationary Phase Approximation to Wide-angle Scattering.................................................. 53

2.4.3 Appendix: Stationary Phase Evaluation of Equation 2.4-10................................................. 60

2.5 PULSE PROPAGATION ACROSS A RANDOMLY ROUGH KNIFE EDGE................................................. 67

2.5.1 Two-Frequency Coherence Function for a smooth knife edge ............................................. 69

2.5.2 Two-Frequency Coherence Function for a Rough Knife Edge ............................................. 73

2.6 CONCLUSIONS ................................................................................................................................. 79

CHAPTER 3 ROUGH SURFACE SCATTERING ................................................................................ 82

3.1 INTEGRAL EQUATION FORMULATION OF ROUGH SURFACE SCATTERING AND THE METHOD OF

ORDERED MULTIPLE INTERACTIONS......................................................................................................... 82

3.2 THE DEVELOPMENT OF A NUMERICAL IMPEDANCE BOUNDARY CONDITIONS FOR LOSSY

DIELECTRIC INTERFACES .......................................................................................................................... 88

3.3 THE INCOHERENT POWER VIA THE IMPULSE RESPONSE METHOD ................................................... 98

3.4 PULSE SCATTERING FROM ROUGH SURFACE................................................................................. 101

3.4.1 The Kirchhoff approximation for rough surfaces................................................................ 102

3.4.2 Two-frequency rough surface scattering............................................................................. 105

3.4.3 Future Work ........................................................................................................................ 109

CHAPTER 4 THE IMPULSE RESPONSE ........................................................................................... 110



ix

4.1 RADIATIVE TRANSFER................................................................................................................... 110

4.2 INCOHERENT SCATTERED POWER: THE VOLUME (FOLIAGE) RETURN........................................... 117

4.3 INCOHERENT SCATTERED POWER: THE ROUGH SURFACE RETURN ............................................... 124

4.4 CONVOLUTIONAL MODEL RESULTS .............................................................................................. 134

CHAPTER 5 BEAM INCIDENCE IN RADIATIVE TRANSFER ..................................................... 134

5.1 RADIATIVE TRANSFER THEORY .................................................................................................... 147

5.2 RADIATIVE TRANSFER FOR STRICTLY FORWARD-BACKWARD SCATTERING................................. 149

5.3 MODIFIED FORWARD SCATTER SOLUTION .................................................................................... 156

5.4 BEAM PROPAGATION USING RADIATIVE TRANSPORT THEORY ..................................................... 165

5.4.1 General Radiative Transfer for an Incident Beam Waveform............................................. 166

5.4.2 Characteristics Solution of the Coherent Power Density.................................................... 168

5.4.3 Solution for the Incoherent Power Density ......................................................................... 170

5.5 CONCLUSIONS AND FUTURE EFFORTS ........................................................................................... 183

5.6 APPENDIX: GEOMETRICAL CONSIDERATIONS ............................................................................... 185

5.6.1 Case 1: Forward Scattering................................................................................................ 186

5.6.2 Case 2: Backward Scattering.............................................................................................. 188

CHAPTER 6 SINGLE SCATTERING AND THE IMPULSE RESPONSE ...................................... 190

6.1 THE RADAR EQUATION ................................................................................................................. 191

6.2 THE SINGLE SCATTER APPROXIMATION........................................................................................ 192

6.2.1 The Scattered Field due to a Single Scatterer..................................................................... 192

6.2.2 The Mean Field in the Single Scatter Approximation ......................................................... 196

6.2.3 Statistical Description of the Random Medium................................................................... 196

6.2.4 The Mean Power in the Single Scatter Approximation ....................................................... 198

6.3 ACOUSTIC OR SCALAR WAVE PROPAGATION................................................................................ 202

6.3.1 The Coherent Field ............................................................................................................. 202

6.3.2 The Correlation of the Field ............................................................................................... 202

6.3.3 Return Power Density ......................................................................................................... 205

6.4 CONCLUSIONS AND FUTURE EFFORTS ........................................................................................... 214

CHAPTER 7 MULTIPLE SCATTERING APPROACH..................................................................... 216

7.1 THE MEAN FIELD AND THE DYSON EQUATION.............................................................................. 217

7.2 STATISTICAL DESCRIPTION OF THE RANDOM MEDIUM ................................................................. 219

7.3 THE DYSON EQUATION ................................................................................................................. 220

7.3.1 “Perfect Gas” Solution of the Dyson Equation .................................................................. 224

7.3.2 Dyson Equation for the “Perfect Gas Medium”................................................................. 227

7.3.3 The Dyson Equation for a Medium with Pair Correlations ................................................ 230



x

7.3.4 Low Frequency Approximation for the Mean Green’s function ......................................... 232

7.4 THE DISTORTED BORN APPROXIMATION ...................................................................................... 234

7.5 TWO FREQUENCY RADIATIVE TRANSFER EQUATION .................................................................... 236

7.6 SOLUTION OF THE TWO-FREQUENCY RADIATIVE TRANSFER EQUATION FOR A FORWARD-BACKWARD

SCATTERING MEDIUM.............................................................................................................................. 244

7.7 CONCLUSIONS AND FUTURE EFFORTS ........................................................................................... 250

7.8 APPENDIX: TWO FREQUENCY RADIATIVE TRANSFER EQUATION.................................................. 251

7.8.1 Two Frequency, Two Point Coherency Matrix ................................................................... 252

7.8.2 Two Frequency, Bethe-Salpeter Equation .......................................................................... 255

7.8.3 The Quasi-Homogenous Assumption .................................................................................. 258

7.8.4 Phase Space Analysis.......................................................................................................... 263

7.8.5 The Two-frequency Radiative Transfer Equation ............................................................... 269

CHAPTER 8 SURFACE-VOLUME INTERACTION ......................................................................... 273

8.1 SINGLE SCATTERER ABOVE A ROUGH SURFACE............................................................................ 278

Extension of the MOMI to Closed Bodies ......................................................................................... 279

8.1.1 A Combined Field Formulation .......................................................................................... 281

8.1.2 Example Results for TE Polarization .................................................................................. 283

8.1.3 Conclusions and Future Efforts .......................................................................................... 290

8.2 APPROXIMATE ANALYTICAL SOLUTION FOR THE MOMENTS OF A SINGLE SCATTERER ABOVE A

ROUGH SURFACE .................................................................................................................................... 292

8.2.1 The Reduced Integral Representation ................................................................................. 293

8.2.2 Reduction for a Circular Disk (3-D) Scatterer above a Rough Surface ............................. 295

8.2.3 Conclusions and Future Work ............................................................................................ 298

CHAPTER 9 SUMMARY AND FUTURE EFFORTS ......................................................................... 278

REFERENCES.......................................................................................................................................... 303

VITA .......................................................................................................................................................... 307



xi

List of Figures

Figure 1.3-1: The Incident Field ......................................................................................... 6

Figure 1.3-2: Upward and downward propagating power density...................................... 9

Figure 1.3-3: The total incident field with respect to the surface ..................................... 14

Figure 1.3-4: Surface to Foliage Interaction ..................................................................... 16

Figure 1.3-5: the second order approximate scattered field from the foliage and surface

combination............................................................................................................... 17

Figure 2.1-1: Knife Edge Diffraction Geometry............................................................... 20

Figure 2.1-2: Knife Edge Geometry, the “Aperture” Definition....................................... 21

Figure 2.1-3: Coherent Field as a Function of the Displacement of the Mean Height, hc,

of the knife edge from the LOS................................................................................. 26

Figure 2.2-1: Geometry for the Rough Knife Edge .......................................................... 27

Figure 2.2-2: The maximum distance from the knife edge to the receiver (R1) which

results in a coefficient in the exponent greater than 1............................................... 33

Figure 2.2-3: Correlation length that satisfies the inequality of Equation 2.2-19 by a

conservative factor of 10 for a carrier frequency of 3 GHz ...................................... 36

Figure 2.2-4: Comparison of the exponential decay with the behavior of the

complementary error function................................................................................... 37

Figure 2.3-1: Total mean power (receiver to knife edge: zo = 8 km)................................ 41

Figure 2.3-2: Coherent power  (receiver to knife edge: zo = 8 km). ................................. 41

Figure 2.3-3: Incoherent power (receiver to knife edge: zo = 8 km)................................. 42

Figure 2.3-4: Total mean power (knife edge height standard deviation: σ  = 5 m) .......... 43

Figure 2.3-5: Incoherent power (knife edge height standard deviation: σ  = 5 m) ........... 44

Figure 2.3-6: Total mean power (knife edge height standard deviation: σ  = 10 m) ........ 45

Figure 2.3-7: Incoherent power (knife edge height standard deviation: σ  = 10 m) ......... 45

Figure 2.4-1: Average Coherent Power; Varying Heights................................................ 50

Figure 2.4-2: Average Coherent Power; Varying Knife Edge Roughness ....................... 51

Figure 2.4-3: Average coherent power for varying roughness, knife edge displaced by 10

meters ........................................................................................................................ 52



xii

Figure 2.4-4: Average Coherent Power; Varying Mean Displacement from LOS........... 53

Figure 2.4-5: Failure of the stationary phase result........................................................... 56

Figure 2.4-6: Agreement of stationary phase and paraxial approximations, h = 1 m ....... 57

Figure 2.4-7: Degradation of the stationary phase result by observation distance ........... 58

Figure 2.4-8: Agreement of stationary phase and paraxial approximations, h = 10 m ..... 59

Figure 2.4-9: Degradation due to increased beamwidth ................................................... 59

Figure 2.5-1: Received pulse shape for 1 meter roughness............................................... 78

Figure 2.5-2: Received pulse shape for 10 meter roughness............................................. 79

Figure 3.1-1: Problem Geometry for the Derivation of Boundary Integral Equations ..... 83

Figure 3.2-1: Surface geometry illustrating the three parameters needed to fully specify

the surface.  Also shown are the polarization definitions [Browe, 1999]. ................ 94

Figure 3.2-2: Scattering from wedge on a plane, small radius of curvature ..................... 95

Figure 3.2-3: Scattering from wedge on a plane, larger radius of curvature..................... 96

Figure 3.2-4: Convergence as a function of iteration count .............................................. 97

Figure 3.3-1: The Geometry for the Impulse Response Method....................................... 98

Figure 4.1-1: the geometry describing the volume and surface. Note that dotted lines

indicate average levels for the associated boundary. .............................................. 111

Figure 4.1-2: Scattering geometry for the intensity [Ishimaru, 1997] ............................ 112

Figure 4.4-1: Schwering’s scattering amplitude ............................................................. 136

Figure 4.4-2: Air-canopy interface roughness effects on the return waveform .............. 137

Figure 4.4-3: Average power returned from “wet” foliage at 10 GHz for different target

cross sections........................................................................................................... 138

Figure 4.4-4: Average power returned from “dry” foliage at 10 GHz for different target

cross sections........................................................................................................... 139

Figure 4.4-5: Average power returned from “wet” foliage at 1.5 GHz for different target

cross sections........................................................................................................... 140

Figure 4.4-6: Average power returned from “dry” foliage at 1.5 GHz for different target

cross sections........................................................................................................... 141

Figure 4.4-7: Signal-to-Noise ratio at 1.5 GHz under “dry conditions. .......................... 142

Figure 4.4-8: 1.5 GHz, dry foliage average power waveform with 0.5 m2 target........... 143

Figure 4.4-9: 1.5 GHz, wet foliage average power waveform with 0.5 m2 target .......... 143



xiii

Figure 4.4-10: 10 GHz, dry foliage average power  waveform with 0.5 m2 target......... 144

 Figure 4.4-11: 10 GHz, wet foliage average power waveform with 0.5 m2 target ........ 145

Figure 4.4-12: 35 GHz, dry foliage average power waveform with 0.5 m2 target.......... 145

Figure 5.1-1: Scattering geometry for the intensity [Ishimaru, 1997] ............................ 147

Figure 5.2-1: Single scattering for a single scatterer....................................................... 149

Figure 5.2-2: Strictly Forward Scatter, incoherent power density at several depths within

the strongly forward scattering medium. Albedo = 0.9........................................... 154

Figure 5.2-3: Strictly Forward Scatter, incoherent power density at several depths within

the strongly forward scattering medium. Albedo = 0.7........................................... 155

Figure 5.3-1: Modified forward scatter ........................................................................... 157

Figure 5.3-2: The incoherent power density, generated through the scattering by the

coherent power density, for several different directions at a single observation point.

................................................................................................................................. 160

Figure 5.3-3: Incoherent power density scattered along the indicated angles as a funciton

of the observation point at a depth of 1 wavelength. .............................................. 161

Figure 5.3-4: Incoherent power density scattered along the indicated angles as a function

of the observation point at a depth of 10 wavelengths. ........................................... 162

Figure 5.3-5: Incoherent power density scattered along the indicated angles as a function

of the observation point at a depth of 18 wavelengths. ........................................... 163

Figure 5.3-6: The total incoherent power at an observation point along the radial at a

given depth (strictly forward scatter and modified forward scatter) ....................... 165

Figure 5.4-1: Scattering geometry for the intensity [Ishimaru, 1997] ............................ 166

Figure 5.4-2: Illustration of scattering which includes multiple scattering..................... 167

Figure 5.4-3: Illustration of the discrete angles in Gaussian quadrature......................... 181

Figure 5.4-4: Incoherent power transmitted into the medium at varying depths using the

full radiative transfer solution. ................................................................................ 182

Figure 5.4-5: Comparison of the transmitted total incoherent power at a 10 wavelength

depth into the medium for the f-b, modified forward and full solutions................. 183

Figure 5.6-1: Gaussian Quadrature Illustration – fixed scattering angles....................... 185

Figure 5.6-2: Translation of the Observation Coordinates into the Characteristics........ 186

Figure 5.6-3: Translation of the Observation Coordinates into the Characteristics........ 188



xiv

Figure 6.2-1: Scattering Polarization .............................................................................. 193

Figure 6.2-2: Scattering Geometry.................................................................................. 194

Figure 6.3-1: First order multiple scattering ................................................................... 205

Figure 6.3-2: Problem geometry ..................................................................................... 211

Figure 7.1-1: Local scattering coordinates ...................................................................... 218

Figure 7.8-1: The total incident field with respect to the surface ................................... 273

Figure 7.8-2: the first order approximate scattered field from the foliage and surface

combination............................................................................................................. 274

Figure 7.8-3: the second order approximate scattered field from the foliage and surface

combination............................................................................................................. 275

Figure 8.1-1 : Ordering of the Unknowns [Adams, 1999] .............................................. 281

Figure 8.1-2: Scatterer over a Randomly Rough Surface ............................................... 283

Figure 8.1-3: The Single Scatter Approximation: (a) Currents induced on the cylinder in

isolation (b) Currents induced on the surface in isolation....................................... 285

Figure 8.1-4: The Single Scatter Approximation: (a) Corrections to currents induced on

the surface (b) Correction to Currents induced on the cylinder .............................. 285

Figure 8.1-5: 10 wavelength ellipse, 60 wavelengths above a Gaussian rough surface . 286

Figure 8.1-6: 10 wavelength ellipse, 20 wavelengths above a Gaussian rough surface . 287

Figure 8.1-7: 10 wavelength ellipse, 5 wavelengths above a Gaussian rough surface ... 288

Figure 8.1-8: 10 wavelength ellipse, 50 wavelengths above a Gaussian rough surface . 289

Figure 8.1-9: 10 wavelength ellipse, 100 wavelengths above Gaussian rough surface .. 290

Figure 8.2-1: Geometry for the Reduced Integral Equation Approach........................... 293



1

Chapter 1  Introduction and Literature Survey

      The modeling and prediction of electromagnetic wave interaction with natural terrain

features is the subject of a vast body of literature covering a large array of topics. The

prediction of forward and/or backscattered waveforms is addressed in this thesis in three

arenas: past edges, over the terrain, and through vegetation. Propagation through

vegetation is actually in combination with the surface scattering, particularly in radar

studies.

      In Chapter 2 , the propagation in a mountainous region is examined using the physical

optics and the knife edge approximations. The effects of roughness are examined to

varying degrees along the line-of-sight, wide angle, and for pulse propagation. This work

is continued in Chapter 3  with moment method (MOM) simulations of scattering by a

one-dimensional rough surface which is either perfectly conducting or dielectric; this

study is work in progress. In  addition, as a precursor to the volume-surface interaction of

the next several sections, this chapter reviews other methods of predicting surface

scattering, including the impulse response method [Brown, 1997] and a two-frequency

Kirchhoff scattering result.

     Chapter 4  begins the examination of the interaction with a vegetated terrain. In this

chapter, the problem is examined with a radiative transfer approach and is quickly

reduced to a simple, computationally efficient solution method; henceforth referred to as

the convolutional model. The next chapter examines the possibility of beam spread within

the volume using more generalized transfer theory results. The following two chapters

present a reconciliation of the radiative transfer approach with wave theory. Chapter 6

attacks this problem using single scatter theory. Under limiting assumptions, the single

scatter solution is shown to reduce to the convolutional model. Chapter 7  develops the

multiple scattering equations and then presents a slight variation on existing, two-

frequency radiative transfer equations. Under the assumptions common to the previous

two chapters, this formulation also leads to a form similar to the convolutional model.

Finally, Chapter 8 examines the consequences of the interaction of the surface and
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volume components using numerical methods and an analytical method that remains a

work in progress.

1.1 Propagation Over a Rough Knife Edge

     Diffraction by a knife edge boundary has long been used as a model to estimate the

effect of path-obstructing ridges, mountains, and other natural obstacles in terrestrial-

based communication links. The use of this approximation is now of interest in assessing

blockage effects involving much shorter paths, e.g., such as in propagation in an urban

environment where buildings and other man-made obstacles cause the path blockage.

Although the knife edge boundary solution has been used extensively to model natural

and man-made diffracting objects, there has always been an uncertainty associated with

estimating the effects of edge roughness on the diffraction pattern.

       Previous efforts for modeling the diffraction by a rough edge using aperture

integration have appeared in the literature. Two papers in particular address the

communication problem by modeling the diffraction by edges using the Kirchhoff

approximation and nontransparent absorbing screens [Polishchuk, 1971] and [Polishchuk,

1974]. The paper by Dagurov, et al. [Dagurov, 1994] presents a method in which real

terrain data may be used to predict the propagation over rough edges using the Kirchhoff

approximation. On the other hand, the paper by George and Morris [George, 1989] which

addresses diffraction by serrated apertures in the optical limit, most closely resembles the

approach presented in this study.  The application in this case addresses the statistical

properties of a converging lens modeled as a serrated aperture.

     The results presented herein are noteworthy relative to these previous works for their

simplicity, their straightforward design implications, and their robustness. In addition,

they give, for the first time, the communication system designer the ability to estimate the

degree of variability possible in the received power levels resulting from a mid-path

diffracting object with rough edges. It is not possible to predict exactly what the received

power levels will be because the edge-diffracted field is a random process resulting from

the randomly rough edge. Once the system is set in place, the received power will

comprise only one realization of this random process. Without some method that either
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simulates averaging, e.g. moving the transmitter and/or the receiver or dithering the

carrier frequency, or provides a detailed description of the rough edge profile, this one

realization is what must be worked with.  However, the equation for the incoherent power

developed in this paper is appropriate for estimating the degree of variability that should

be expected. If this degree of variability (uncertainty) is too large, adjustments in the

system parameters will have to be undertaken during the link design phase to reduce it.

The important point is that engineers now have the ability to determine exactly what can

be changed to diminish the uncertainty!

1.2 Foliage above a Rough Surface: An Approach Rationale
     When studying scattering from the combination of a foliage layer above a rough

surface, one must deal with the scattering from the foliage, the rough surface, and the

interaction between the two. Of these three components to the fundamental scattering

problem, the foliage scattering and the interaction scattering are the most difficult to

analyze.

     Foliage by itself presents a challenge to the analyst because of the many-body aspects

of the problem. In addition, modeling foliage scattering from first principles is further

complicated by the fact that the scatterers are irregular at best and generally ill-defined.

From an electromagnetic point of view, leaves do not all look to be identical and twigs,

branches, and limbs conform to no particular shape! Thus, except for very low and very

high frequency limits, it is almost impossible to compute the scattering pattern of the

basic "constituents" of foliage. Some details are known about the typical volume fraction

of foliage and how this is partitioned between leaves and the woody components, and we

have some idea of the range of complex dielectric constant variation for wood and leaf

materials [Brown, 1982]. Yet another unknown is the variation of foliage density with

depth into a canopy. Finally, even though foliage is quite frequently classified as on the

edge of being a volumetrically sparse medium, this does not mean that there is a lack of

strong electromagnetic interactions between the various scattering components, e.g.,

twigs, branches, leaves, etc. Furthermore, for European forests that have been well
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managed and not logged (also called old growth forests), the volume fractional density of

the biomaterial may be as large as 5%.

     When dealing with independently scattering objects and scattering from rough

surfaces, it is possible to convert single-frequency models of the individual scattering

cross sections (for the discrete objects) and the scattering cross section per unit area (for

the extended surface scattering) into models for the incoherent time-dependent scattered

waveform produced under pulse illumination. For strongly interacting individual

scatterers, this simplification is not usually possible, the reason being that it is not

sufficient to know that the scatterer is in a volume because its location within the volume

must also be known.

     What can be done then to resolve this dilemma? First, an effective “scattering cross

section per unit illuminated volume, σv” may be extracted from airborne radar data, e.g.,

the scattered power Pr received by a pulsed radar is given by

( )
( ) σ

π
λφθ= 42

2
ii

2

tr R4
,GPP

Equation 1.2-1

where the effective scattering cross is given by

( )( )( ) velaz RR2/cT σΘΦ=σ

Equation 1.2-2

Solving Equation 1.2-1 and Equation 1.2-2 for σv yields

( )
( ) ( )( )elazii

2

22

t

r
v 2/cT,G

R4
P
P

ΘΦφθ
π=σ

Equation 1.2-3

In the above equations Pr is the received or scattered power, Pt is the transmitted power,

( )ii
2 ,G φθ  is the two-way antenna gain in the indicated direction, c is the speed of light, T

is the pulse length, R is the range to the volume, Φaz is the antenna's azimuthal

beamwidth, and Θel is its elevation beamwidth. Of course, some of these factors are a

function of time indicating what portion of the volume scatterers are being illuminated by
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the incident pulse waveform as it passes through the scattering medium. Equation 1.2-3 is

actually an approximation in that one should integrate over the volume bounded by the

antenna gain pattern weighting and the pulse width extent. The important point is that

incoherent power waveform data from a pulsed radar can be converted into an effective

"scattering cross section per unit illuminated volume". It should be noted that, within the

resolution limits imposed by the radar pulse width and antenna beamwidth, the σv

extracted from the data may be a function of the slant path distance (R) into the medium.

      The approach rationale followed in developing the model presented in this

dissertation is as follows. First, it is well known that the end users of such models are

extremely skeptical of any model that does not contain some measurements in its

development. That is, they are concerned that the model be designed so that it is capable

of at least reproducing known measurements. Consequently, it is essential to involve

measured data in the model. The second element of this model is based upon the

realization that it is possible to develop a somewhat general model for media that is not

too strongly interacting and this model may be "matched" to data to determine the actual

parameters that are embedded in the model and, perhaps, to extend it beyond its known

range of validity. In short, the model parameters can be determined by matching actual

measured data to the scattering results predicted by the model. It should be noted that

such an approach avoids long and questionable computations based on one's estimate of

what actually causes the scattering and how it does this. The reason for avoiding such

computations is very simple – there is no way to estimate how applicable they will be

since the accuracy of the overall model is unknown. By matching the model to data, the

model's accuracy is extended through the use of "effective parameters" that are

"calibrated" by the data. In summary then, the approach has been to develop a model that

is accurate but not overly (computationally) detailed, match it to measured foliage

scattering data to generate the model parameters ("effective parameters"), and then

investigate the accuracy of extending the model to other situations using the existing

"effective parameters".



6

1.3 The Waveform Scattered by a Vegetated Rough Surface
       Ideally, in estimating the returned signal from foliage covered terrain, scattering

models should include self and mutual interactions among all of the constituent

components. These would include interactions among the discrete scatterers comprising

the volume, the interactions between each surface element and finally the interactions

between the surface and the volume.  In the following sections, a brief introduction to the

literature surrounding these components will be presented.

      Beginning with full interaction problem, the incident field, incE
!

, see Figure 1.3-1, is

defined as the field that would exist in free space in the absence of the foliage and the

surface.  With introduction of a scatterer, i.e. foliage, the total field is found to be a

superposition of the incident field incE
!

 and the field scattered by the scatterer, sE
!

.
sinctotal EEE

!!!
+=

Consequently, our first task will be the construction of the scattered field produced by the

ith scatterer, s
iE

!
, of the N objects which comprise the volume of scatterers.

Figure 1.3-1: The Incident Field

     Each component of the foliage (leaves, twigs, branches, etc.) will scatter the energy

from the incident field. Isolated, each scatterer’s effect can be assessed using an integral

Foliage

E
inc

E
inc
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equation approach that leads to a Method of Moments (MOM) formulation. However,

considered as one system, a full solution to the interaction of waves with the foliage-

surface combination quickly out-paces present computing capabilities. Consequently,

approximate, analytical methods are employed.

1.3.1 Volume Scattering

      Modeling of scattering from a volume of scatterers has been handled in the literature

in one of two ways: phenomenological models (radiative transfer) or physical models

(wave theory). Extensive literature exists for scattering from vegetation and more

generally, random media. Consequently, the reader is referred to other sources for

complete literature reviews [Ishimaru, 1997], [Tsang, 1985]. In this review, only a few

recent works will be briefly discussed.

Radiative transfer approach

    The analytical, full wave approach to the multiple scattering problem presents many

mathematical challenges even in tenuous, i.e. sparse, medium; consequently, the simpler

ideas and the more tractable numerics of radiative transfer present an appealing

alternative.  However, since phase information is lost, the multiple scattering phenomena

described by transfer theory are not well understood. In addition, transfer theory may

only have a certain range of validity because of the following assumptions:

•  interactions are considered incoherent

•  interactions are considered to be far field

•  extinction, scattering and propagation parameters have no direct physical

interpretation

•  frequency dependence is not accurately modeled

•  certain multiple scattering processes are neglected, e.g. the so called

“enhanced backscatter”

There exist at least two different levels of modeling the environment in radiative transfer

theory.  The first and most abundant in the literature is a level that can become quite

detailed. Typical examples of this are found in references [Ulaby, 1990] and [Karam,
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1992, 1997]. Ulaby, et al., solves the vector radiative transfer equations iteratively. Their

model has been taken to the “second order” which is simply the second iterate of the

radiative transfer equations. Their major assumptions, beyond those inherent in the

radiative transfer method itself, include

•  flat surface, i.e., specular boundary

•  strongly forward scattering medium

Although in some cases, these approximations are valid, this model is not applicable

(because of the medium assumptions) for lower frequencies nor, to a lesser degree at high

frequencies because of the flat surface assumption.  The deficiencies of previous models

that this one claims to address are as follows [Ulaby, 1990]

•  canopy is not treated as a continuous layer in the horizontal direction

•  crown and foliage regions have the same scattering characteristics

•  uniform dielectric constant and size, etc. are assumed

     This model is created from the vector transfer equations for a two-layer medium. In

the “Michigan” model, the extinction and scattering matrices are based on measured

values of number density, extinction, etc. of leaves, needles, trunks and branches of all

sizes. After great effort, these values are all combined to form an effective extinction

matrix, layerk , and an effective phase/power scattering matrix, layerP , for each layer. In

addition, the tree canopies are modeled as spheroidal in shape, rather than planar. They

create transfer equations for the crown, trunk region and finally the underlying surface all

of the following form (for upward and downward propagating intensities, see Figure

1.3-2):
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Figure 1.3-2: Upward and downward propagating power density

   Given three sets of the above equations (one set each for the crown, trunk, ground),

Ulaby’s first order approximation to the radiative transfer equations is essentially a single

scatter model. Solution is accomplished through iteration and at this point, up to two

iterations have been reported [Ulaby, 1990], [McDonald, 1993]. Consequently, aside

from the extra work to characterize the contributions to the propagation matrices, the

result is the same as the bulk parameter models such as Schwering’s [1985,1986] and the

one described in this report. The difference is that the bulk parameters are characterized

before the computation in the Michigan model and after-the-fact in the bulk parameter

models.

−I

+I

z

ρ



10

     The second approach to the radiative transfer deals in bulk media and effective

parameters. A typical example of this approach would be the work of Johnson and

Schwering [1985, 1986]. This approach creates a simple, random medium with a single

type of scatterer. For millimeter wave propagation, they have assumed that the

constituents of the random medium will scatter energy primarily in the forward direction.

Hence, they define a scattering pattern that consists of a forward-directed (Gaussian) lobe

superimposed on a greatly reduced isotropic background level for all other directions.

This scattering pattern has subsequently been measured by Ulaby [1990] while in this

dissertation, the scattering pattern (or function) is often assumed or even simplified to

strictly forward-backward scattering. Using this simple model, Johnson and Schwering

solve the classical radiative transfer equation using a Legendre polynomial expansion of

the scattering pattern. Their results are straightforward and the model’s free parameters

allow simple matching to measured data. Whitman and Schwering have extended the

same work to pulse propagation by simple Fourier decomposition of the time domain

waveform [Whitman, 1996]. The response to each frequency component is determined

using the previously developed solution to the radiative transfer equations and finally, the

pulsed solution is synthesized by transforming back into the time domain. This study will

address the scattering by a vegetated rough surface using the bulk parameter idea in

Chapter 4 .

    The final topic addressed in the radiative transfer development is the propagation of

beams in the radiative transfer formulation. This topic was chosen since the effects of

beam spread within the random media are neglected in the “convolutional model” of

Chapter 4 , by default, when the scattering is assumed to be exclusively forward-

backward. Simulating the beam spread in a random medium requires the solution of the

full radiative transfer equations since the scattering pattern of the scatterers is arbitrary.

This solution accounts for multiple scattering within the context of the radiative transfer

theory. A few works have been performed in this area, the first was by Chang and

Ishimaru [1987] and the only other relevant example is given by Zardecki [1985]. In each

case, the solution method is similar to the one presented in this dissertation; however, the

boundary conditions are different and the cases presented for comparison are unique to

this dissertation.



11

Wave scattering approach

     If multiple scattering within the volume is expected to play an important role,

interactions among the discrete scatterers must be considered. Like the radiative transfer

approach, the wave approach encompasses a great deal of literature. Starting with

Maxwell’s equations or the wave equation, a wave approach will include all multiple

scattering, diffraction and interference effects. A full solution, however, quickly becomes

intractable and approximations must be made. Single scatter theory is the simplest

approach to the wave problem in a random medium. In scattering theory, the total field

can be written as a sum of the free-space incident field and the scattered field due to each

scatterer. The scattered field in a tenuous medium is a product of the dyadic scattering

amplitude, f,  and the applicable (far-field) Green’s function along with the field incident

to the scatterer.

∑
=

−
⋅+=

N

1s

jkR

sisaa R
e)r(iE)k̂,k̂(f)r(iE)r(E """"""

Equation 1.3-1

When the incident field at the scatterer number s, (under the summation) is simply given

by the free-space incident field evaluated at the position sr
" , Equation 1.3-1 is the single

scatter or Born Approximation (often, the Born approximation is attributed to an

integral equation, not a summation). In other words, the field incident to each scatterer

neglects the fields due to scattering from other scatterers. Often the dyadic scattering

matrix, f  in Equation 1.3-1, is written as a product of the Fourier transform of the

scattering operator and the remainder of the far-field form of the free space Green’s

function [Frisch, 1968]
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Equation 1.3-2

     Other assumptions in this method are that the location, shape or sizes of the individual

scatterers are uncorrelated. Hence, a simple summation of the scattered power waveform
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from each scatterer is possible. Single scattering theory plays a central role in the model

proposed in this report. A great deal of literature exists for the single scatter theory;

however, this literature will not be reviewed here. The single scatter approach, however,

will be reviewed and applied in Chapter 6 .

     An exact solution would consider not only the scattering from each individual object,

but the full interaction between them; this alters the field incident on each scatterer. One

method of solution that accounts for full interaction between N objects is the solution of

the associated N-coupled integral equations. Using the equivalence principle, the

scatterers may be replaced by equivalent currents that radiate in free space. In addition to

the requirement for more computing power than is commonly available, the exact

solution for the N-coupled integral equations for propagation through the foliage would

require an abundance of detailed data and a number of realizations to create acceptable

averages. Consequently, some approximations must be made.

     There is a multitude of these approximate wave approaches reported in the literature.

In continuous random media, the literature is well represented in the books by Ishimaru

[1997] and Tsang [1985]. Most notable for this dissertation are the papers by

Barabanenkov et al. [1971] and Besieris and Kohler [1981] in which a radiative transfer

equation is developed from the wave approach. Renormalization approaches are well

represented in the work of Frisch [1968] and DeWolf [1971]. For discrete random media,

many researchers have considered the effects of multiple scattering due to random

inhomogeneities. These methods perform a summation of the scattering effects in the

ensemble, then average the result. However, in order to retrieve a closed form result, they

have made basic assumptions about the scattering processes. Twersky has developed

integral equations that describe the higher order moments by neglecting multiple

scattering involving the same particle; various approximate solutions exist for these

equations [Twersky, 1964]. Tsolakis [1985] (among others) has created a transfer

equation from wave theory. This approach will be examined in detail and implemented

for a forward scattering medium in Chapter 7 .

     One popular method beyond the single scatter approach is the Distorted Wave Born

Approximation (DWBA) [Lang, 1981]. Beginning with the expression for the total field,

Lang derives a polarization-sensitive operator formulation for scattering from discrete
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random media. After considerable effort in deriving the integral equations for the field,

he invokes the Foldy approximation for the mean field. In this approximation, the

incident field at scatterer, s, (under the summation) is given by the average field

evaluated at the position sr
" ,

∑ ⋅+=
=

−N
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Equation 1.3-3

The Foldy formulation is equivalent to the assumption of scatterers with no correlation

and scattering amplitudes that are isotropic [Frisch, 1968]. In summary, the scattered

field is found by iterating the multiple scattering formulation and then assuming that the

effective incident field at each scatterer is the mean field (Foldy). Lang then embeds the

scatterers in the equivalent (mean) medium (DWBA) and scattered power is computed in

the single scatter approximation.  The mean medium has an effective, tensor dielectric

constant which in turn, is a function of the scattering amplitudes of the individual

scatterers. This use of an equivalent medium creates an environment where both the

incident and scattered fields attenuate while propagating. The scattered field derived from

the scatterers embedded in the equivalent medium results in solving the multiple

scattering equations in the first-order Born approximation. This solution is valid in a

medium in which the scatterers have a small albedo (ratio of the scattering cross section

to the total cross section) [Lang, 1981].

     Whether single scatter theory or multiple scatter theory is used, we will construct a

composite scattered field, s
fE

!
, due to the volume of scatterers, see Figure 1.3-3. In the

integral equation formulation, the scattered field results from an induced current, Jsn, on

each of the N scatterers; see Figure 1.3-3.
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Figure 1.3-3: The total incident field with respect to the surface

Initially, we present a derivation of the scattered field from the volume using a reduced

form of the radiative transfer approach that results in a form of the first order multiple

scattering result. The limitations of this result are apparent in the context of the first order

multiple scattering results.

1.3.2 Scattering from a Rough Surface

        Modeling the multiple scattering that takes place along the surface is also widely

addressed in the literature. Numerical implementations typically use the integral equation

formulation. Given a field incident on a statistically rough terrain, the integral equation

technique, typically implemented with the Method of Moments (MOM), can yield exact

results for a given surface. Average results for a collection of realizations are found using

Monte Carlo methods. The solution method used here is the MOM formulation

accelerated by the Method of Ordered Multiple Interactions (MOMI)  [Kapp, 1996]. It

will be explored in Section 3.1 and is used to verify some assumptions in the model

developed in this report. Analytical results, including Kirchhoff and perturbation

approximations, may also be useful in an analytically reduced integral equation

formulation. The Kirchhoff approximation is discussed in Section 3.4.1.

      A time dependent analytical approach for the calculation of the incoherent power

waveform scattered by an extended rough surface that is consistent with the single scatter

incE
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approach is the Impulse Response Method.  This method is derived under the assumption

that there exist a continuum of scattering facets on the surface that reflect a radar power

waveform [Brown, 1977]. Under certain assumptions, the return power from each

properly oriented surface facet enters a summation. The number of these properly

oriented facets per unit area of the surface defines a cross section per unit area. Section

3.3 presents a brief discussion of the impulse response method for calculating the

scattering from terrain in free space, i.e. no foliage cover.

1.3.3 Interaction between the Foliage and the Rough Surface

       Regardless of the modeling method used for the terrain and the volume scattering

individually, there will be an additional source of multiple interactions (or multiple

scattering): the interaction between the volume and the surface. This interaction

mechanism is not well explored in the literature. In addition, when it is addressed, only a

single interaction is discussed and in most cases only flat surfaces are considered [Le

Vine, 1992; Karam, 1997; Ulaby, 1990; McDonald, 1993].

      Once the surface scattered field, s
fsE , due to the currents induced on the surface, sJ

!
, is

calculated, it can act as an additional field incident upon the foliage on its path back

through the foliage to the radar. See the field s
fsE

!
 in Figure 1.3-4. This single passage

(from foliage to surface, and back to foliage) does not account for the full interaction

between the current induced in the foliage and the current on the surface. This single

passage approximation to the interaction between the foliage and the surface represents a

single interaction: the foliage-scattered field that creates the surface currents is due only

to the field incident from the radar. This approximation is explored in Chapter 8  through

a comparison with the exact results for a single scatterer above a rough surface. A full

interaction formulation requires that the currents on the surface and on each scatterer in

the foliage be coupled. Additional interaction terms would include corrections to the

foliage currents due to the surface scattered field that, in turn, will produce corrections to

the surface currents: an infinite series of these corrections will produce the full interaction

results. Alternatively, a coupled integral equation formulation relating the induced

currents will also produce the full interaction result.
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Figure 1.3-4: Surface to Foliage Interaction

Assuming that the integral equation approach is followed, the solution for the passage

from the surface through the foliage can be formulated using the equivalence principle.

The surface current, sJ
!

, is permitted to radiate in free space and the resulting field acts as

an additional incident field with respect to the foliage. Hence, the surface scattered field,
s
fsE , will induce a corrective current, s

snJ
"

, on the nth scatterer which must be vectorially

added to the previous current. This current radiates a second field scattered from the

foliage, s
fsfE

!
, in addition to the scattered field due only to the foliage, s

fE
!

.  See Figure

1.3-5. This is a first approximation to the foliage-surface-foliage interaction.

       A second order correction to the surface current will treat the incident field on the

surface as

s
fsf

s
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Consequently, a new surface current sJ
"

is found. This current will produce a new value

for the surface scattered field, s
fsE

!
, and a new value for the field incident to the foliage

from the surface. Continuing this process of iteration will produce the full interaction

result.
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      Alternatively, like the first passage through the vegetation, this second field scattered

from the foliage, s
fsfE

!
, can be found using the single scatter approximation. This result

may also be iterated, correcting the surface currents producing scattered fields. However,

this result will suffer the limitations of the single scatter theory.

Figure 1.3-5: the second order approximate scattered field from the foliage and

surface combination

1.4 Goals of this Research
      The goals of this research are to produce usable engineering models for the

propagation of waves in natural terrain features. Many numerically efficient codes have

been developed for the propagation past a rough knife edge, dielectric surfaces, and

foliage over a rough surface. The foliage-surface model can incorporate measured data

for calibration and accurately reproduce the general trends of an average returned

waveform from terrain and foliage with similar statistics and constituents as the

calibration data.  Numerical efficiency is best served with the impulse response approach,

which casts the returned waveform into a series of convolutions and uses empirically

derived parameters. Through its relation to first order multiple scattering theory, this

model was found to incorporate some limiting assumptions. These assumptions are
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exposed and the model is improved by the wave derivation of the same equations in

single scattering Chapter 6 and multiple scattering Chapter 7 .
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Chapter 2  Rough Knife Edge Diffraction

     Diffraction by a knife edge boundary has long been used as a model to estimate the

effect of path-obstructing ridges, mountains, and other natural obstacles in terrestrial-

based communication links. The use of this approximation is now of interest in assessing

blockage effects involving much shorter paths, e.g., such as in propagation in an urban

environment where buildings and other man-made obstacles cause the path blockage.

R.E. Collin developed a particularly simple yet very powerful approximate solution to the

problem of diffraction by a knife edge boundary [Collin, 1985]. The robustness of his

solution is due in part to (a) the careful manner in which he developed the approximation

and (b) the general tolerance of the knife edge diffraction problem to approximation.

    Although the knife edge boundary solution has been used extensively to model natural

and man-made diffracting objects, there has always been an uncertainty associated with

estimating the effects of edge roughness on the diffraction pattern. The purpose of this

chapter is to present an approximate solution to this edge-roughness problem when the

roughness is random in nature. The solution will use Collin’s approximate formulation of

the problem so that the fundamental physics of the distance-dependent phase interference

between the direct and diffracted fields is preserved [Collin, 1985].

    The roughness on the knife edge boundary is assumed to comprise a non-zero mean,

second order process with jointly Gaussian probability density function and a Gaussian

spectrum. The latter is used for demonstration purposes but the theory is not limited to

this spectral form. Using this approach, an expression is derived for the mean or coherent

field at a receiver on the side of the knife edge opposite to the transmitter; this result is

cast in terms of the error function of a complex argument. As might be expected, the most

important parameters in this result are the separation distances of the transmitter and

receiver from the knife edge, the degree of path blockage present, the edge roughness

parameters, and the antenna pattern of the transmitter. Numerical calculations

demonstrate the interplay of these factors and illustrate the effect of the roughness

relative to a knife edge without roughness. The calculation of the total and the diffuse

received power is reduced to two integrations, but it is shown that these can be
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considerably simplified due to the effective lack of any strong dependence on many of

the problem parameters. Computations illustrate the increase in the diffuse or incoherent

power at the expense of the coherent power and confirm the fact that if phase coherence

is not needed it may still be possible to use the averaged incoherent power to achieve a

transfer of power.

2.1 Review of the Approximations for a Smooth Knife Edge

       The power transferred between transmitter and receiver antennas when there is a

knife edge half-plane conductor located in the vicinity of the line connecting the two,

may be derived as follows [Collin, 1985]. Assuming that the total field above the knife

edge is simply the incident field, a scattered plane wave spectrum may be constructed and

this in turn may be used to produce results for the knife edge diffraction. In this

construction, the line-of-sight (LOS) path coincides with the z-axis and the x-axis is

parallel to the edge of the infinite half plane (the knife edge), see Figure 2.1-1.

Figure 2.1-1: Knife Edge Diffraction Geometry

   Within this framework, a Gaussian tapered beam with a beam-waist α is assumed to be

incident on the knife edge from a transmitter placed a distance 1R from the knife edge as
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measured along the LOS path. Referring to Figure 2.1-1, the heavy line represents the

LOS path. The height, h, is the perpendicular distance from the LOS to the knife edge

below. The distance 0z  describes the distance from the knife edge to the receiver as

measured along the LOS path.

      Consider that the z = 0 plane is an aperture bounded on only one side by the knife

edge which is a distance h below the LOS (z-axis).  Assume that a source, placed a finite

distance from the knife edge, produces a field in the aperture as shown in Figure 2.1-2. It

is assumed that the main beam of the transmitting antenna pattern may be approximated

as a Gaussian beam.

Figure 2.1-2: Knife Edge Geometry, the “Aperture” Definition

Hence, in order to account for the spherical and Fresnel phase effects in the incident field

over the aperture (z = 0) in combination with a Gaussian taper, this field is constructed as

follows:
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Equation 2.1-1

In this expression, the first and second exponential are due to the expansion of the

incident spherical wave’s phase while the third accounts for the tapering of the field.

       The transverse plane wave spectrum can be derived starting with the following

Fourier transform relation:
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Equation 2.1-2

where .yx 222 +=ρ  Once the plane wave spectrum is found, the diffracted plus the

direct transverse field at a given observation point ( 0z 0 > ) can be found via the inverse

Fourier transform relation:
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Equation 2.1-3

Typically in near-field to far-field transformation, the relationship in Equation 2.1-3 is

evaluated approximately via stationary phase to obtain the fields in the far field.

However, since we may be interested in fields in the Fresnel region, the exact form of

Equation 2.1-3 is used in conjunction with the following simplification: the fields of

interest will be measured near the z-axis. Hence, for an observation point at ( )000 z,y,x

with ( )2
0

2
0

2
0 yxz +>>  we expect only a small zk  component in the transverse plane at
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the observation point.  Under these conditions and using a binomial expansion, the wave

number vector can be written approximately as:
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Equation 2.1-4

which leads to the paraxial approximation for the phase function
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Equation 2.1-5

Consequently, using the paraxial approximation and substituting the plane wave spectrum

Equation 2.1-2 into the expression for the transverse field Equation 2.1-3, the field in the

half space, 0z > 0, along the z-axis (LOS) may be written as;
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Equation 2.1-6

Rearranging the order of integration, removing those terms that are constant, and using

the following identity (to be used extensively in subsequent sections),
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we can perform the integration over k-space with the final result, assuming that the field

measurements are performed on axis ( )0z,0y,0x 000 >==
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Note that a new distance 0d  has been defined as follows
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 Hence, the diffracted field as measured along the LOS path ( )0z,0y,0x 000 >==  can be

written [Collin, 1985] as
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Equation 2.1-9

where the function erf(z) is the error function used as defined in Abramowitz and Stegun

[1972]. Since the parameter, a, is complex, this will be evaluated using the error function

of a complex argument. The free space power along the LOS direction may be calculated

through the use of the following (in terms of the mean separation, hc)
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Equation 2.1-10

      If the beamwidth parameter, α, (a distance measure of the beamwidth at the knife

edge) is large with respect to the distance 0d , the real part in the expression for a  can be

dropped and the field can be evaluated using the Fresnel integral.
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Equation 2.1-11

where the functions C(z) and S(z) are the Fresnel integrals as defined in Abramowitz and

Stegun [1972].

      Given the system parameters listed in Table I (in the example from the final section)

for a typical terrestrial microwave communication link, the argument of the exponential,

in Equation 2.1-11, will affect the resulting coherent power as the beamwidth parameter,

α, becomes smaller, the frequency increases, or the separation distances decrease. For the

system parameters of Table I, there are only slight differences in the coherent power as

given in the approximation Equation 2.1-11 with respect to the more exact solution

Equation 2.1-9.  However, as α decreases, a disparity in the oscillations becomes evident.

For example, Figure 2.1-3 demonstrates that if α is reduced to 50 m (which corresponds

to reducing the beamwidth or placing the transmitter closer to the knife edge), the use of

the approximation Equation 2.1-10 may not always yield adequate results. This figure

compares the approximate solution for the power using the Fresnel integral to the

complete solution using the error function of a complex argument.
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Figure 2.1-3: Coherent Field as a Function of the Displacement of the Mean Height,

hc, of the knife edge from the LOS.

2.2 Roughness on the Knife Edge
      Consider the case when there is roughness along the knife edge, i.e. the knife edge is

rough along the x-direction transverse to the LOS path.  The geometry in this case is

depicted in Figure 2.2-1. The height h is now a function of x and relates the displacement

of the knife edge level with respect to the LOS path. In addition, this height is taken to be

a zero-mean stochastic variable.  Assuming Gaussian statistics for the height roughness

of the knife edge, we can divide this height into two parts

cc hhh δ+=

Equation 2.2-1

Hence, we have split the random height, h, into its mean (hc) and its fluctuating portion

chδ  (with zero mean).  The fluctuating portion is assumed to have a Gaussian probability

density function defined by )h(p cδ and standard deviation σ as given below
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σπ
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Equation 2.2-2

The statistics of the roughness are assumed independent of x, i.e. h is a spatially

stationary process.

Figure 2.2-1: Geometry for the Rough Knife Edge

2.2.1 The Coherent Field

      The average total field, also referred to as the coherent total field, is found by forming

the first moment of the transverse field (z > 0). Making a change of variables in order to

bring the fluctuating portion of the integration limit into the integrand, the integral

expression for the coherent field is rewritten as follows

Transmitter

Receiver

yx
z

hc

Mean Height

h(x)
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Equation 2.2-3

Note the lower limit for the u integration is now the mean height from the LOS to the

knife edge hc. After interchanging the order of integrations, gathering terms, and

performing the chδ integration, we can then perform the integration in the transverse

coordinate x leading to the following result for the coherent field along the LOS

direction:
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Equation 2.2-4

Note that this expression reduces to that given above in Equation 2.1-10 as the height

variance is reduced to zero. Finally, this integral can be split and written in terms of the

error function of a complex argument or the complementary error function of a complex

argument:
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Substituting this result for the integral, the final expression for the coherent field is

written as follows
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From this result for the mean or coherent field, the power in the coherent field may be

easily calculated. This power, coherentP , is given by (for simplicity, we assume the

intrinsic impedance of the medium is unity throughout this work)
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Equation 2.2-7

      It can be easily seen that as the roughness becomes negligible, i.e., 0→σ , the

coherent power becomes equivalent to Collin’s result [Collin, 1985], i.e.
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while the expression for the coherent power is given by
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Equation 2.2-8

Additionally, as the knife edge itself is withdrawn to infinity, we find a second limit: the

free space power along the LOS direction.
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Equation 2.2-9

As expected, in this limit the roughness along the knife edge is inconsequential.

2.2.2 The Total Power

      The total mean power on the z-axis (LOS path) at 0zz =  is given in terms of the two-

point probability function, ( )21, chhp δδ , as shown in the equation below
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Equation 2.2-10

The asterisk (*) denotes a complex conjugate. The joint probability density function (pdf)

for the Gaussian heights is expressed as
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Equation 2.2-11

where )(xCn  is their normalized correlation function.  Substituting for the joint pdf, we

find the average total power can be expressed as follows
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Equation 2.2-12

The normalized correlation function for the knife edge roughness may be expressed in the

form
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Equation 2.2-13

where )x(C ∆ , the correlation function for the knife edge roughness, is a function of the

separation distance x∆  along the knife edge.  Expanding the integrand in Equation

2.2-12, collecting terms, interchanging the order of the integrations, the 1chδ  and 2chδ

integrations can be accomplished yielding
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After some simplification and a change of variables: 2121 xxxorxxx +∆=−=∆ , the 2x

integration can be performed, reducing the number of integrations to three. Again a

change of variables is employed in order to bring ch  into the integrands: chuy += 11
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and chuy += 22 .  Upon performing this change, the 1y  integration can be evaluated,

resulting in the following double integral
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Equation 2.2-14

     This is the extent of our analytical evaluation. To further reduce Equation 2.2-14, we

must first rearrange the order of integration since the form in Equation 2.2-14 appears to

yield little insight into the important terms in the integrand.  Interchanging the order, we

find
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Equation 2.2-15

      Examining the integrand, we see the complementary error function is an apparently

complicated function of x∆ .  However, note that the x∆  integration contains an

exponential decay (as the square of the x∆ variable), particularly as the value of the

positive real constant

( ) 2
0

22
0

2* d2
k

2
1

aa

*aa α+
α

=
+

Equation 2.2-16

becomes large. Obviously, the beamwidth parameter is much larger than zero ( 0>>α )

since it represents the incident field spread in the aperture plane; hence, the first term in
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Equation 2.2-16 may be neglected.  Laplace’s method may then be employed if the

second term may be treated as a large parameter. Consequently, if we assume microwave

frequencies and an illuminated spot of at least α = 100 meters, we can set an upper limit

on 0d , a distance related to the separation between the receiver and transmitter. Figure

2.2-2 shows the required separation between the knife edge and the receiver (in order to

maintain the unity coefficient in the exponential) as a function of frequency and

beamwidth for a fixed distance from the transmitter to knife edge distance (4 km). As

expected, the support for the x∆  integration decreases as the frequency and beamwidth

increase or the separation distance parameter 0d  decreases.

Figure 2.2-2: The maximum distance from the knife edge to the receiver (R1) which

results in a coefficient in the exponent greater than 1

Note that unity is not a strict limit, only a convenient assignment. Once the x∆ integration

is constructed such that Laplace’s Method is applicable, we investigate the behavior of

the complementary error function. If the complementary error function is a slowly

varying function with respect to x∆ over the integration interval before the exponential
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drives the integrand to zero, it may be removed from the inner integrand and evaluated at

0=∆x . Consequently, the x∆ integration can be easily performed. This elementary

implementation of Laplace’s method may be justified through the following observations.

      Since the correlation function, )( xC ∆ , is directly proportional to square of the

roughness σ, it becomes negligible as the roughness becomes approaches zero. Hence, in

this limit the complementary error function in Equation 2.2-15 is slowly varying with

respect to the variable of integration, x∆ , and may be removed from under the integral

and evaluated at the peak of the integrand, 0=∆x .  Conversely, if the roughness is very

large, the correlation function will strongly influence the behavior of the complementary

error function in Equation 2.2-15, which may become a rapidly varying function of the

integration variable. Hence, with all other parameters held constant, we expect that if σ is

small, we can remove the complementary error function from the integrand; whereas for

σ  large, this may not be possible.

       For intermediate values of the roughness σ, we must more closely examine the

correlation function’s dependence on x∆ . For example, if we choose a Gaussian form,

the correlation function )( xC ∆  has the following form

( ) 2
x

2

l

x

2 exC

∆−

σ=∆

Equation 2.2-17

where xl  is the correlation length. Since this function will peak at 0=∆x  and decay to

zero at infinity, we can investigate its influence on the argument of the complementary

error function by examining the relevant arguments: xc lh ,, σ  and 2y . Through

extensive numerical investigation, it has been found that the variation of the

complementary error function with x∆  is strongly dependent on the correlation length

xl . Rearranging the argument of the complementary error function as shown below

( )[ ]
]1)aa(2))x(C(aa4[)aaa2(
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*224**2
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we can see that this expression depends on x∆ in two ways: first, directly with 2y , the

variable of integration in the outer integral, and second, as in the difference

( ))(2 xC ∆−σ . If 0≈∆x  or if xlx <<∆ , these dependencies will be constant (first case)

and roughly zero (second case) and the complementary error function will vary little with

x∆  in the region of interest. By construction, we have created the x∆ interval over which

there is a significant contribution, dictated by the exponential portion of the integrand
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Hence, if we can construct the correlation function in Equation 2.2-17 such it does not

vary significantly in the x∆  interval of interest then the argument of the complementary

error function and consequently the complementary error function itself will remain

constant over the significant x∆  interval.  In other words, we must compare the

following exponential functions

( ) 2
x

22
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aa

e.vse
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−

Equation 2.2-18

with the first required to decay much more rapidly than the second must. Hence, the

following inequality has been constructed which sets limits on the correlation length

2
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Equation 2.2-19

Figure 2.2-3 graphically portrays this requirement for the correlation length ten times

greater in the inequality above as a function of the distance 0d  and the beamwidth at a

frequency (3 GHz).
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Figure 2.2-3: Correlation length that satisfies the inequality of Equation 2.2-19 by a

conservative factor of 10 for a carrier frequency of 3 GHz

 

      Figure 2.2-4 gives a representative picture of the complementary error function for

the communication system described in Table 1 of a later section. As a reference, the first

exponential function of Equation 2.2-18 is included. Recall that this exponential function

will define the significant range for x∆  if Laplace’s Method is to apply. Note how the

complementary error function is relatively constant over the non-zero x∆  region defined

by the exponential, particularly as the correlation length increases.
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Figure 2.2-4: Comparison of the exponential decay with the behavior of the

complementary error function

      When the complementary error function is essentially independent of x∆ , the x∆

integration is easily performed. Then using the form of the correlation function in

equation Equation 2.2-17, this expression further reduces to (choosing a value of 0=∆x

meters and noting that 2)( σ=∆xC )
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       We can see that the exponential portion in the remaining 2y  integral produces its

most significant result about cc hy = . However, Laplace’s Method stationary phase and

saddle point techniques will not be applicable in the majority of cases due to the

magnitude of the coefficient in the exponential and its complex nature; it is not a large

parameter. Consequently, Equation 2.2-20 will be considered the final reduced form for

most reasonable physical situations.

      We may next investigate the limiting forms of the mean square field.  First, as the

edge is removed to infinity ( )∞→ch , the mean square field will reduce to the square of

the coherent field as given in Equation 2.2-7. This can be seen starting with the exact

form for the mean square field given in Equation 2.2-15 and allowing the condition

( )∞→ch
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Equation 2.2-21

and since { } 2erfc =∞− , the two integrals may be evaluated exactly yielding the free

space result for the mean square field
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Equation 2.2-22

which is identical to the square of the mean field or the coherent field.

      A second limit that requires investigation is that of the smooth edge. As expected, as

the roughness height tends toward zero, i.e. 0→σ , the resulting mean square field

becomes equal to the magnitude of the square of the coherent power from Equation 2.2-7.
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Again starting with the exact form for the mean square field given in Equation 2.2-15 and

allowing the condition 0→σ

( ) { } 2c

x
aa

aa

0

)hy(a
*

2* dyxdhaerfcee
)aa(a

KEE

2
*

*

2
c2

*
∆−∫∫

+

π=⋅
∆

+
−

∞

∞−

∞ −−!!

Equation 2.2-23

which reduces to the familiar form of Equation 2.2-7 for the square of the absolute value

of the mean field or to within a constant, the coherent power
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Equation 2.2-24

Consequently, as we suspected, the total power reduces to the power in the coherent field

for both the absence of the knife edge and for the smooth knife edge.

     Finally, we may express the power in the incoherent field using the expressions:
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under the assumptions mentioned in the previously, this expression may be reduced using

the approximations in Equation 2.2-20.

2.3 Example Results
       Consider the communication system described in Table 2.3-1 and whose system

parameters represent a model of a terrestrial microwave link.

Table 2.3-1. Terrestrial Microwave Link-to-Link Example

•  Frequency:                    f   = 3GHz     (λ = 0.1 m)

•  Distance from the transmitter to the knife edge: R1 = 4 km

•  Distance from the knife edge to the receiver: zo = 8 km

•  Beamwidth parameter: α = 200 m     (beamwidth ≅  2°)

(refer to Figure 2.1-2)

Figure 2.3-1 compares the total mean power to the knife edge roughness or the standard

deviation of the heights.

   Note that as the rms roughness on the knife edge increases, the amplitude oscillations

decreased due to the destruction of the phase interference between the direct and the

scattered fields.

      In the next several figures, the results for the mean power are given for knife edge to

receiver separation of 4 km. These values for power are given in dB and have been

normalized by the free-space result; the normalization for the power when the roughness

σ  is varied is

*

22

aa
Kπ

Equation 2.3-1
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Figure 2.3-1: Total mean power (receiver to knife edge: zo = 8 km).

Figure 2.3-2: Coherent power  (receiver to knife edge: zo = 8 km).
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     In Figure 2.3-2 we present the coherent power in which we can see a slight variation

from the total power of Figure 2.3-1. The total power is significantly larger than the

coherent power when the knife edge is nearer the LOS and σ is large. It remains greater

than or equal to this power throughout the calculations as would be expected. Note that

each of these figures shows that as roughness is increased and as the knife edge is closer

to the LOS, the power in the coherent field is lost to the incoherent field.

Figure 2.3-3: Incoherent power (receiver to knife edge: zo = 8 km).

      The incoherent power is given in Figure 2.3-3.  In addition, the constructive and

destructive interference in the total power that is usually predicted by conventional knife

edge theory is lost as roughness is introduced. The total diffracted field is a superposition

of the incident field and the edge-diffracted field; thus, the conventional oscillating

behavior of the total field as the point of observation is moved away from the edge is due

to the phase interference between these two fields. When the roughness on the edge

increases, the edge diffracted-field becomes more incoherent and the phase interference

consequently diminishes leading to an attenuation of the oscillations in the coherent or

mean total field.
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Figure 2.3-4: Total mean power (knife edge height standard deviation: σσσσ  = 5 m)

In the next several figures, we present the total mean and the incoherent power as a

function of distance from the knife edge for two different roughness values: σ  = 5 m

(Figure 2.3-4 and Figure 2.3-5) and σ = 10 m (Figure 2.3-6 and Figure 2.3-7). The

normalization for distance variation is simply:
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Figure 2.3-5: Incoherent power (knife edge height standard deviation: σσσσ  = 5 m)

Incoherent Power in LOS Direction

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

Knife-Edge to Receiver Distance (z0), km

N
or

m
al

iz
ed

 In
co

he
re

nt
 P

ow
er

 (d
B

)

1 m
5 m
10 m
15 m

Legend
Distance 
from LOS 

to knife-edge

Spot size radius = 200 m; Gaussian Height Statistics: Correlation length = 20 m, Std dev = 5 m



45

Figure 2.3-6: Total mean power (knife edge height standard deviation: σσσσ  = 10 m)

Figure 2.3-7: Incoherent power (knife edge height standard deviation: σσσσ  = 10 m)
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2.4 Wide Angle Scattering by Randomly Rough Knife Edge

      In the previous sections, we saw the results for scattering from a rough knife edge

along the line-of-sight (LOS) coordinate. Nevertheless, there are often multiple

transmitters or receivers and consequently, the power is desired in other directions. In this

section, we consider the field lying on points outside the LOS direction. This will be

accomplished primarily using the paraxial approximation, but will also be checked using

the method of stationary phase. The solution was also sought in terms of the saddle point

method; however, although it is more widely applicable than the stationary phase result,

the solution becomes very cumbersome. The saddle point solution was compared for a

smooth knife edge (two-dimensional problem) with favorable results; however, in three

dimensions, the solution has branch cuts similar to those found in Banos [1966]. This

solution has not been pursued at this point, yet it remains a topic of future exploration.

2.4.1 Paraxial approximation in wide angle scattering

     The paraxial approximation is expected to hold only for those directions near the LOS.

However, as we shall see, the spectral content of reasonably sized beams allows the

paraxial approximation to be used in most cases. The paraxial approximation breaks

down, as the beam becomes very narrow, consequently with increasing the spectral

content of the beam.

      We begin with the four dimensional, space/spectral integral from the previous

section. This describes the spectral summation of the beam components integrated over

the “aperture” region.
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As before, we implement the paraxial approximation which is essentially the binomial

expansion of the square root expression of the phase function
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and substituting into Equation 2.4-1, we find a function which can be integrated.
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The spectral integrals are easily accomplished since the spatial components of the

spectrum are no longer coupled. We have two similar integrals in the kx and ky

integrations
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Replacing the x and y spectral integrals by the above results (for x and y, respectively),

we find the total field after diffraction by the knife edge (in the physical optics

approximation)
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Next we must integrate the incident field over the aperture region, thus implementing the

physical optics approximation. Making a change of variables, dydu;hyu c =+= , and

evaluating the integral, we find the closed form solution.
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Equation 2.4-4

This is the final result for the smooth edge in terms of the complementary error function

of a complex argument.

      The rough knife edge has a similar development. Again, we start with the Kirchhoff

diffraction integral in the spectral domain, and implementing the paraxial approximation,
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Equation 2.4-5

Next we make the change of variables, dydu;hyu c =δ+= , and averaging over the

fluctuating portion of the roughness on the knife edge.
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Equation 2.4-6

This average over the fluctuating portion of the knife edge is evaluated using a Gaussian

probability density function
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Consequently, the integral for the mean field is evaluated to yield the following result for

total field due to the diffraction by a rough, knife edge obstruction: in the physical optics

approximation.
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Equation 2.4-7

From Equation 2.4-7, we see that the effects of the roughness only enter through the error

function. Of greater interest is the mean power or coherent power; this can be written as
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Equation 2.4-8

Figure 2.4-1 through Figure 2.4-4 show the results for scattering by a rough knife edge.
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Figure 2.4-1: Average Coherent Power; Varying Heights

Figure 2.4-1 shows the effect that varying the height of the knife edge, relative to the

line-of-sight path, has on the coherent power. From this figure, it can be seen that as the

knife edge is pulled away from the line-of-sight path toward infinity, the effect of this

obsticle diminishes. This is seen since the height of the oscillations is decreasing with

increasing distance. Figure 2.4-2 shows the effects of the roughness of the knife edge.

From this figure, the phase interference effects are damped out as the roughness is

increased. Just as was seen with the power along the line-of-sight path, this effect is due

to the destruction of the phase coherence of the energy scattered by the edge.
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Figure 2.4-2: Average Coherent Power; Varying Knife Edge Roughness

Figure 2.4-3 is very similar to that of Figure 2.4-2 since it shows the same effect. This

figure, however, was included since it also combines the effect of edge roughness with

the effect of mean edge displacement. Essentially, it demonstrates that the curves are

simply shifted and are slightly smaller in amplitude.
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Average Coherent Power
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Figure 2.4-3: Average coherent power for varying roughness, knife edge displaced

by 10 meters

    Finally, Figure 2.4-4 shows the effect of changing the mean height from the line-of-

sight path for a rough edge. This figure is similar to Figure 2.4-1 in that the curves appear

to be truncated at different points. For very rough edge, the effects are more closely

approaching the effect expected in geometrical optics, where the shadowing is distinct

and does not include the phase interference effects in the transition zones demonstrated in

classical diffraction by a smooth edge, see Figure 2.4-1.
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Figure 2.4-4: Average Coherent Power; Varying Mean Displacement from LOS

2.4.2 Stationary Phase Approximation to Wide-angle Scattering

     Alternatively, we can formulate the wide-angle scatter using the method of stationary

phase or saddle point integration, as needed.  In this approach, we begin by performing

the spatial integral (i.e. the integral over the aperture). From this effort, we find the result
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Equation 2.4-9

The error function of a complex argument yields a complex function. Combining terms,

rearranging and substituting for the complementary error function,
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Equation 2.4-10

Where we have substituted the series expansion for the error function of a complex

argument [Abromowitz, 1972]
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Each of these integrals is to be evaluated by the method of stationary phase.
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Stationary phase evaluation of the first integral yields (see Appendix 2.4.3)
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and the second integral yields a similar result with slightly shifted stationary points due to

the extra phase term (see Appendix 2.4.3)
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Equation 2.4-12

One computational note: the above exponential factor should be distributed into the

hyperbolic sine and cosine within the function g(ky) so that these functions do not “blow

up.” Hence,



56

( )
( ) ( )

( ) ( )


















































−

∑

α
+

−


















+

∑

α
+

α
+α

π
=

α+
−

α
−

α+
−

α

∞

=

−

α+
−

α
−

α+
−

α

∞

=

−

α
−

2
een

h4n

e2j

2
ee

h4n

eh4
h2

e

k,kg

4

kk

2

nk

4

kk

2

nk

1n
2

2
c2

4
n

4
kk

2
nk

4
kk

2
nk

1n
2

2
c2

4
n

c

ch

yx2

22
y

2
xy

22
y

2
xy2

22
y

2
xy

22
y

2
xy2

2

2
c

Equation 2.4-13

The figures demonstrate the use of the stationary phase result.

Figure 2.4-5: Failure of the stationary phase result.

Figure 2.4-5 shows a case of poor agreement. If the observation distance is not large, the

stationary phase approximation does not provide a good estimate for the average coherent

field. Figure 2.4-5 shows an example of the failure of the stationary phase result. It was
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predicted that the stationary phase result should provide a good estimate when the

observation distance is large and the beam width factor is small.

Figure 2.4-6: Agreement of stationary phase and paraxial approximations, h = 1 m

      Figure 2.4-6 shows reasonably good agreement for a large observation distance and a

small beamwidth. The stationary phase agrees in magnitude with the paraxial result. The

ripples in the paraxial result may be a matter of further investigation since the stationary

phase result should hold as the angles get larger, whereas the paraxial should break down.

However, the angles explored are small enough so that the paraxial should also be

accurate.
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Figure 2.4-7: Degradation of the stationary phase result by observation distance

     Figure 2.4-7 has the same parameters as Figure 2.4-6 but the observation distance is

smaller. The degradation of the stationary phase result is obvious from this comparison.

This is seen in the magnitude of the peak and the alignment in the “lit” region. As the

beam width becomes larger, we expect that the saddle point method of integration will

become necessary. Figure 2.4-7 shows another case where agreement is expected. In

general, the magnitudes do agree (although only the real part is shown). This figure is

simply an example showing the effect of increasing the separation from the line-of-sight

to the knife edge. Finally,  Figure 2.4-8 shows another case where the failure of the

stationary phase result has been predicted: increased beamwidth. This result should be

compared to the narrower beamwidth result of  Figure 2.4-6.

Average Coherent Field

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-9 -8.1 -7.2 -6.3 -5.4 -4.5 -3.6 -2.7 -1.8 -0.9 8E-14 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1 9

Observation Angle (deg from LOS)

N
or

m
al

iz
ed

 F
ie

ld

Stationary Phase Paraxial

Mean Displacement = 10 m;  Observation Distance = 5 km; alpha = 50 m



59

Figure 2.4-8: Agreement of stationary phase and paraxial approximations, h = 10 m

Figure 2.4-9: Degradation due to increased beamwidth
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2.4.3 Appendix: Stationary Phase Evaluation of Equation 2.4-10

      The evaluation of this integral
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where the partial derivatives are given in shorthand notation and evaluated at the

stationary point. An approximation to the integration is given below; here the amplitude

terms have been expanded to include only the first term of the Taylor series and the phase

terms include the first two terms.
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Equation 2.4-14

Substituting for the stationary points and simplifying, this approximation to the integral

can be written
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Note if we let ( ) ( )ysy2xsx1 kkk,kkk −=−= , the phase may be written in the

following matrix form:
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Equation 2.4-16

Hence, if we diagonalize the matrix, Φ, using the matrix of eigenvectors, P , we find that

we map from the vector [ ]21 kkK = , to [ ]21 k~k~K~ = as follows:
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Consequently, the integral becomes (after expanding the argument of the exponent from

its matrix form)
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hence, using a result from contour integration,
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Equation 2.4-17

Next we find the stationary point
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adding the squares from Equation 2.4-18 and Equation 2.4-19
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using this relationship, we may now solve for the stationary points
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Since the observation distance is growing large, we expect the third term to become

negligible (with the exception of hc →∞, free space). The remainder of the development

is essentially the same as the previous since the partial derivatives are the same. Restating

the approximation to the integration where the amplitude terms have been expanded to

include only the first term of the Taylor series and the phase terms include the first two

terms.
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Consequently, the integral becomes (after expanding the argument of the exponent from

its matrix form)
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2.5 Pulse Propagation Across a Randomly Rough Knife Edge

    In this section, the frequency correlation of a pulsed waveform transmitted across a

knife edge obstacle is examined. In turn, the frequency correlation will yield information

about the average power in the transmitted pulse waveform. This will be accomplished

using the two-frequency mutual coherence function as described in Ishimaru [1997].

       In order to construct the response of the medium to a scattered pulse, the correlation

of the output-scattered fields must be derived. Writing the input signal as
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where )t(Ei  is the complex amplitude of the signal. If we write the incident pulse as an

inverse Fourier transform, the complex amplitude, E(t), can be written
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and the input spectrum becomes (for real signals)
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Then the transmitted pulse can be written as the time-domain, incident pulse convolved

with the time and frequency dependent impulse response of the knife edge obstacle, or

equivalently, in the frequency domain, the output signal becomes [Ishimaru, 1997],
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Here the Fourier transform of the complex amplitude, E, is written as E~ . A general

expression for the correlation of the transmitted field, or the total power, is then found in

the following time correlated signal,
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Equation 2.5-1

where )(E~i ω is the complex envelope of the incident wave form at the time harmonic

frequency ω and Γ  is the two-frequency mutual coherence function.

      The two-frequency mutual coherence function is the correlation of the time-varying,

frequency domain transfer function, H(ω,t), at two different frequencies and two different

times [Ishimaru, 1997]
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Equation 2.5-2

Once the two-frequency mutual coherence is constructed, the scattered power density is

found when t1 = t2 = t
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Equation 2.5-3
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2.5.1 Two-Frequency Coherence Function for a smooth knife edge

      Since the expression for the rough knife edge is so complicated, the result for the

smooth knife edge is a valuable check. Starting with the expression for the transmitted

monochromatic field by a smooth knife edge,
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where  the frequency dependent parameter, a, was previously defined as
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Since all quantities are deterministic, no averaging is required and the spatial integrals are

simply a product of separable integrations. Performing these spatial integrations
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Equation 2.5-4

Substituting for the frequency-dependent parameters
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For a narrow bandwidth signal or a large observation distance, the complementary error

function can be approximated by their values evaluated at the carrier frequency, leading

to
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Changing the frequency integration to sum/difference coordinates
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the average power is approximately written for relatively small bandwidths, 0d ω<<ω ,

with the narrow band approximation
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Equation 2.5-5

If the incident pulse is assumed Gaussian (infinite in time), then the input signal and its

spectrum are written
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Equation 2.5-7

The sum-frequency integration is easily accomplished using Laplace’s Method (for the

narrow band assumption)
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This approximation has been checked for the values used in the examples for the LOS

power calculations in Section 2.3 for pulse widths down to 10 nanoseconds for a 1 GHz

carrier (or a 10% bandwidth in all cases 10MHz – 10GHz). Rearranging the difference-

frequency integral,
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Equation 2.5-9

If the convolutional operator is denoted, ⊗ , then the integral is the inverse transform of a

product (with a delay factor), which is a convolution of the corresponding time domain

functions
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It is evident that as the factor, η, decreases, the pulse will distort for a smooth knife edge

since the transmitted pulse is a convolution of the original with this decaying exponential.



73

Consequently, as the decay time of the exponential increases, the transmitted pulse width

increases due to the convolution – pulse spread. Since η is very large, the exponential

function is nearly a delta-function; this indicates that the pole due to the difference

frequency could have been neglected.   The constant delay term, t0, is simply the time of

passage, due to the finite speed of light, from the knife edge to the observation point.

2.5.2 Two-Frequency Coherence Function for a Rough Knife Edge

       After a change of variables to bring the fluctuating portion of the knife edge

roughness into the integral as was done in Section 2.2, the frequency correlation of the

pulse transmitted across a rough knife edge is given by
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Equation 2.5-11

Through a comparison with Equation 2.5-3, the two-frequency mutual coherence function

for the pulse propagation across the knife edge is seen to be
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given the joint pdf for the knife edge heights, ( )2c1 h,hp δδ . Again, assuming Gaussian

statistics, and changing the x-integration into difference and sum coordinates,
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the indicated average may be accomplished in closed form, yielding the following

unwieldy result, which includes the correlation function C(xd).
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performing the xs integration,
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Another change of variables in order to change the limits, c2,12,1 huy +=  yields
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The y1 integration may be evaluated to yield
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Equation 2.5-15

Assuming a Gaussian correlation function,
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The approximation that the erfc(*) is relatively constant over the integration range

remains true for large correlation lengths. Hence, the correlation function can be

evaluated at xd = 0 and the xd integration can be performed, yielding
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Equation 2.5-16

Since the y2 integration may not be evaluated at this point, we introduce the expression

for the power density as a function of time (in sum and difference coordinates), and the

pulse spectrum (Equation 2.5-6). Simplifying, using a narrow band approximation
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under the narrow band assumption, the sum-frequency integral is performed,
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Equation 2.5-18

Due to the limiting, narrow bandwidth approximation, the pulse response is the product

of two independent integrals: one in the difference frequency and the other in the y2

variable. The difference frequency integration yields a replica of pulsed waveform that is

simply time-shifted. The y2 integration has been derived previously in Section 2.2.2,

when the continuous wave power was calculated.
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Hence, the transmitted pulse, in the narrow-band approximation, is simply the time-

delayed replica of the incident pulse weighted by the amplitude and phase effects of the

rough knife edge. As an example, Figure 2.5-1 shows the received pulse shape for a

transmitted Gaussian pulse incident on a rough edge (1 meter roughness) for different

mean displacements of the knife edge from the LOS. The received pulse is simply an

amplitude weighted replica of the incident pulse due to all the approximations
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(narrowband, etc.). The weights are identical to the curves found for the power received

in Section 2.3.

Figure 2.5-1: Received pulse shape for 1 meter roughness

Figure 2.5-2 shows a similar result as the previous figure, however, in this figure, the

roughness is greater and therefore, the amplitudes are lower. Again, the weights of the

curves are determined to be those found simply for the received power in Section 2.3.

    When the pulse shape is considered to be the superposition of the direct and the

scattered wave, one may expect that a significant dispersion effect will be present since

the direct path can be much less than the path from the transmitter to knife edge to

receiver. However, due to the narrow bandwidth assumption, dispersion will only become

significant when the electrical path length is significant with respect to the pulse width.

For a 20-meter separation from the LOS path to the edge, the dispersion effect will only

become significant for pulse lengths on the order of nanoseconds, which have been

discounted by the narrow band assumption. We may try to observe the dispersion effect

as we move the edge farther from the LOS path. However, as the edge is removed away
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from the LOS path, the scattered wave becomes less significant, due to the beam taper;

consequently, the dispersion effect will not be appreciable.

Figure 2.5-2: Received pulse shape for 10 meter roughness

2.6 Conclusions

      We have presented a method for predicting the total field beyond a rough knife edge.

Using a spectral approach in combination with the paraxial approximation and the

Kirchhoff approximation, we can predict the field, total power and its coherent and

incoherent components in the line-of-sight direction beyond the obstruction. In this

chapter we have presented the particular case for a Gaussian roughness on the knife edge.

The coherent field was given in terms of the complementary error function and the total

power is given by an approximate expression; note that this expression was seen to be

valid only for large, but practical, correlation lengths. The knife edge obstruction creates

a total field that is a superposition of an incident field, iE
"

, and the edge-diffracted field,

dE
"

. We note that the incident field is the field in the absence of the knife edge and the

diffracted field can be separated into two components: a mean and a fluctuating portion,
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The mean diffraction field is a result of an effectively smooth knife edge; hence, this term

is present even in the absence of roughness on the edge. The fluctuating portion results

from the roughness on the knife edge. Hence, for small relative roughness, the diffracted

field is equivalent to the mean diffracted field.

1for0EandEE
0

ddd <<
λ
σ≈δ≈

"""

We have seen this result for the Gaussian roughness; the smooth knife edge results in the

conventional oscillatory behavior of the total field which is simply a manifestation of the

interference between the incident and the diffracted fields. On the other hand, when the

roughness on the edge increases, the edge diffracted-field becomes more incoherent and

the phase interference consequently diminishes, leading to an attenuation of the

oscillations in the coherent or mean total field.

1for0EandEE
0

ddd >>
λ
σ≈δ≈

"""

Hence, as the roughness increases, we see in the figures that the interference pattern in

the total field and total power decreases since the diffracted field becomes more

incoherent. The model also predicts that the incoherent power is strongest near to the

rough knife and is not generally appreciable when the point of observation of the

diffracted field is far away from the edge. This, of course, is in complete agreement with

our understanding that shadows, and hence the details of the shadow-causing boundary

(knife edge), exist only a finite distance behind the boundary.

   The wide angle scattering from a rough knife edge may be interpreted in a similar

manner. The paraxial approach and the stationary phase result agree in magnitude under

narrow (but reasonable) beamwidths and for large observation distances. This was a

result of the assuming that the phase portion of the spectral integration dominates the

result. However, under other circumstances, these large distance and smaller beamwidths

may not be desirable. Hence, although an attempt at saddle point integration of the

spectral integration has been performed, this task was interrupted by the difficulties

encountered with the branch cuts emerging due to the spectral kernel and the branch cut
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from a Hankel function which enters the solution after reducing the problem by one

dimension. This task can be completed using a transformation found in Banos [1966].

     Finally a preliminary result has been presented for the propagation of a pulse past the

rough knife edge. In reducing the problem to a usable form, it was found that a

narrowband approximation was necessary. The received pulse, in both the smooth and

rough edge result was found to be an amplitude-weighted replica of the transmitted pulse.

The knife edge height and the roughness play the same role as previously recorded for

LOS, continuous wave results: they change the amplitude of the pulse. Even with this

approximation, the possibility of pulse spread was encountered under some extreme

circumstances. In addition, due to the narrow band assumption, several integrals were

dismissed as insignificant; however, as the bandwidth grows, these integrals will assume

a greater role and consequently pulse distortion and dispersion may become an issue. As

a future effort, the results presented in this dissertation should be generalized for larger

bandwidths.
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Chapter 3  Rough Surface Scattering

      Rough surface scattering has become a well-established field. There have been many

different  approaches to the problem, ranging from the purely analytical to the purely

numerical. However, in problems such as the foliage problem, few approaches go beyond

the flat surface or the Kirchhoff models [Ulaby, 1990; Lang, 1993]. In this thesis

scattering by the surface bounding a random medium will also be handled using the

known techiques of impulse response [Brown, 1977] in section 3.3 and the Kirchhoff

approximation in section 3.4.1. The Kirchhoff approximation is also rederived for a two-

frequency which is applied to pulse scattering by a rough surface [Ishimaru, 1993] in

section 3.4.2. Typically, in the numerical approaches, the integral equation plays a key

role. The numerical solution is also examined in this thesis, first, by briefly reviewing a

fast iterative method, the method of ordered multiple interactions (MOMI) in section 3.1

[Kapp, 1996]. This idea is then applied to a reformulation of scattering by dielectric

surfaces in Section 3.2. In addition, the numerical (MOMI) approach is employed in

Chapter 8  in order to examine the interaction of an object above a rough surface.

3.1 Integral Equation Formulation of Rough Surface Scattering

and the Method of Ordered Multiple Interactions

     The integral equation governing both the TE and TM polarizations in the 2-D scalar

problem has been derived in many sources including [Ishimaru, 1994], by many different

techniques, such as equivalence and the use of Green’s Identities. Green’s second identity

is given by

sd
n

)r(f)r,r(G
n

)r,r(G)r(f)r(f)r(f
SS

i ′








′∂
′∂′−

′∂
′∂′+= ∫

∞+

"
""

""
"""

,        Vr ∈

Equation 3.1-1
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In Equation 3.1-1, V represents a certain volume in space surrounded by the closed

surface S and S∞ as shown in Figure 3.1-1.

Figure 3.1-1: Problem Geometry for the Derivation of Boundary Integral Equations

Referring to Ishimaru [1994], an intermediate result derived by these methods is our

starting point; we start with the following integral equation relating the total scalar field,

)r(f " , at the observation point, r" , to the incident field, )r(f i "  using Green’s theorem:
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where the contour integration is taken over a boundary enclosing the source and

observation points consists of a hemisphere at infinity and a contour along the rough

surface; see Figure 3.1-1.

      The Green’s function, )'r,r(G !" , and its normal derivative are chosen such that their

contribution is zero at infinity; hence, only the integral over the surface remains. This

integration over the surface is reduced in its support by limiting the illuminated region to

only a portion of the surface by use of a tapered beam. A more detailed description of this

process can be found in many sources including Kapp [1996].

      For 1-D surfaces, the contour length may be projected onto the x-axis.  This reduces

the integration to an integral over one Cartesian coordinate. Hence, employing the

transformation

S

z

V

V’

'n̂

∞S)r(f inc "
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xd)x(1ld 2
x ′′ζ+=′

Equation 3.1-2

we can construct the governing integral equations in rough surface scattering. First, the

Electric Field Integral equation (EFIE), can be derived directly from Equation 3.1-1 by

enforcing the following boundary condition on the perfectly conducting surface:

0)r(E)r(f y == "! . This results in the following first kind integral equation applicable for

TE polarization.

∫
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Equation 3.1-3

In deriving the Magnetic Field Integral Equation (MFIE), the following boundary

condition is enforced: the normal derivative of the tangential magnetic

field, 'n/)'r(H'n/)'r(f y ∂∂=∂∂ !! , is zero on the surface. This results in the following

second kind integral equation applicable for TM polarization.

∫ ′′ζ+
′∂

′∂′+=
∞

∞−
xd)x(1

n
)r,r(G)r(H2)r(H2)r(H 2

xy
i
yy

""
"""

Equation 3.1-4

In order to express the equation governing the TE polarization in the form similar to the

MFIE, we take the normal derivative of both sides of  Equation 3.1-4 along the unit

normal n̂ defined at the observation point r! .  Then, we eliminate the weak singularity of

the normal derivative of the Green’s function through a limiting process [Ishimaru,

1994]. This yields the following second kind integral equation for the TE polarization
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Equation 3.1-5

The discretized versions of the above equations, when properly sampled, yield large, full

matrices that scale as the number of unknowns squared. Scattering from a rough terrain,
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formulated with this integral equation approach typically was limited to small surfaces or

narrow incident beams due to the matrix storage and inversion requirements of the

conventional method of moments (MOM). Solving the integral equations numerically via

the Method of Ordered Multiple Interactions (MOMI), however, has reduced this

computation time and storage without approximation [Kapp, 1996]. Rewriting the above

form of the second kind integral equations as

∫ ′′′+=
D

i xd)x(J)x,x(K)x(J)x(J

Equation 3.1-6

where )x(J  is the unknown surface current, )x,x(K ′  is the kernel or the propagator, and

)x(Ji  is known, the Kirchhoff current.  Although the domain of integration D is infinite

by design, it can be made finite with the use of the appropriate tapered incident field. For

the TE and TM cases, respectively
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Equation 3.1-7

After discretizing the resulting second kind equation and expressing it in a vector-matrix

form

PJJJ i +=

Equation 3.1-8

In Equation 3.1-8 both J (unknown) and iJ  (known) are vectors and P is a square

propagator matrix. The discretization is commonly carried out by taking values of surface

height, current and propagator at the uniform grid {xm} of N discrete points separated by
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the spacing x∆ . In this case, the mth element of each one of the above vectors and the

(m,n)th element of the propagator matrix are given by

)x(JJ mm = ,   )x(JJ m
ii

m =    and  x)x,x(PP nmmn ∆=

The off diagonal elements, Pmn with m≠n, of the discretized propagator matrix P are

given by

)x(1
n
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2
x

m

nm
mn ζ+

∂
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,      
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n
)x,x(G2P n

2
x

nm
mn ζ+

′∂
∂=

where       2)12( xNxmxm ∆−∆−= , Nm ,...,1=    (observation point on the surface)

                 2)12( xNxnxn ∆−∆−= , Nn ,...,1=       (source point on the surface)

for the TE case and the TM case, respectively. The diagonal elements (usually called

“self terms”), however, require special treatment and are given by, [Toporkov et. al,

1998],

[ ] x
)x(12

)x(P
m

2
x

mxx
mm ∆

ζ+π

ζ±=

The upper sign corresponds to the TM case and the lower sign to the TE case and

)x( mxxζ  is the surface curvature at the point.

         Direct matrix inversion becomes prohibitively large, requiring the storage of the

NxN propagator matrix, where N is the number of unknowns. Furthermore, the

computation time for LU decomposition scales as N3/3+N2 –5N/6 [Kapp 1996]; here

decomposing the original propagator matrix results in a lower triangular matrix, L and an

upper triangular matrix, U. The MOMI approach to the scattering problem recasts the

integral equation into a discretized form that is amenable to solution via simple forward

elimination and back substitution without the enormous memory requirements of LU

decomposition. After some manipulation, the discretized MFIE can be written in the

following form
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[ ] [ ] [ ] [ ] LUJLIUIJLIUIJ 11i11 −−−− −−+−−=

Equation 3.1-9

Although it appears that matrix inversion is still needed to solve Equation 3.1-9, it can be

shown that alternating forward and back substitution may solve this equation. The first

term, JB, has been called the “new Born term”. The following is a general iterative

solution whose first term is JB and the remaining terms are

[ ] [ ]{ } [ ] [ ]∑
∞

=

−−−− −−−−=
0n

i11n11 JLIUILULIUI  J

Equation 3.1-10

The “new Born term” (n = 0) contains all orders of multiple scattering which are

continuously forward scattered, continuously backward scattered, and those which are

first forward scattered and then backward scattered. Numerical simulations have shown

that the “new Born term” itself is adequate for most practical surfaces. For very rough

perfectly conducting surfaces, a maximum of two MOMI iterations has typically proven

to be sufficient.
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3.2 The Development of a Numerical Impedance Boundary

Conditions for Lossy Dielectric Interfaces

       In considering scattering from the ocean, it is common practice to model the ocean

surface as a perfect electric conductor (PEC).  However, simulations that are more

accurate require that the effects of the finite conductivity of seawater be included in the

model.  This is often achieved using an analytical impedance boundary condition (IBC).

These models are adequate for many numerical simulations.  The range of validity of

such IBCs is somewhat unclear when considering low grazing angle (LGA) scattering

from surfaces with significant spectral content at high frequencies.

      A second important application of IBCs in the context of rough surface scattering is

encountered in simulating propagation and scattering over natural terrain surfaces such as

moist soil.  The loss tangent of such materials at microwave frequencies is significantly

smaller than the corresponding loss tangent of seawater.  For this reason, analytical IBCs

are less accurate for such surfaces.  In addition, quantification of the error introduced

with analytical IBCs is difficult.

      Consequently, to address some of these concerns, a numerical IBC was developed for

scattering from one-dimensional, lossy-dielectric interfaces.  The numerical IBC is

appears in the form of an integral equation for the surface magnetic fields in which the

numerical IBC acts as a composite operator acting on the surface magnetic fields

[Adams, 2000].  This is in contrast to the standard form of the integral equation for the

magnetic field in which the correction term due to finite-loss effects appears as an

operation on the tangential surface electric fields.

      The integral equations for the surface fields in two-dimensions are written as a set of

coupled integral equations. In addition, the more convenient operator form used by

Adams [1998] is employed. These operators can be interpreted as in matrix form, once

the problem is discretized using the method of moments (MOM). The equations are given

as
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where S∈ρ and it is understood that a appropriate limiting procedure must be used to

numerically treat the hypersingular kernel 'nn/G1 ∂∂∂ . It’s integral does not exist when

the observation point is located on the surface.

       The interior integral equations corresponding to these exterior equations are given

below (and in the abbreviated, operator notation) in equations 3 and 4.
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 Here the definitions of the operators are apparent through a comparison with the

equations. The following shorthand notation for the partial derivatives is also used:

nn ∂
ψ∂=ψ∂
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The operators with “hats” indicate the operators in the lower (dielectric) medium.

     The integral equations Equation 3.4-2 and Equation 3.4-3  apply for both the TE and

TM polarizations. For TE polarization, we make the substitution yE→ψ  while for TM

polarization, yH→ψ . The relation of ψ∂n  to the field quantities is determined as

follows. For TE polarization, yEŷE =
!

, we have

Hn̂jEn̂
""

×µω−=×∇×

which reduces to

Hn̂j
n

E
ŷ y "

×µω−=
∂

∂
−

      Thus for TE polarization, the normal derivative of the electric field is related to the

magnetic field through the relation
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For TM polarization, we have the dual relation,
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Since the tangential electric and magnetic fields must be continuous across a material

boundary which does not support a surface current, we have as the boundary condition

between two media defined by the constitutive parameter pairs ( ) ( )2211 ,,, µεµε
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for TM polarization. For a dielectric interface (no magnetic discontinuity), these can be

rewritten as

n
H

n
H

,
n

E
n

E 2y

2

11y2y1y

∂
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ε
ε=

∂
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∂
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=
∂

∂

If we consider a lossy dielectric interface, the above expression reflects the fact that the

tangential H-field tends to a finite value while the tangential E-field tends to zero.

     Consider scattering from a dielectric interface for TE polarization. Two of the four

available integral equations in this case are
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Equation 3.2-5
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n21 ∂+−=

Equation 3.2-6

For a general dielectric constant, Equation 3.2-5 has two unknowns and must be

supplemented by an integral equation from the lower medium. From Equation 3.2-6, we

have
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Using this result in Equation 3.2-5 gives an expression involving a single, unknown field

quantity
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The resulting integral equation is solved iteratively. The iteration count is reduced using

an approximate factorization procedure (MOMI) that renormalizes the modified integral

equation through the re-summation of the dominant multiple scattering interactions on

the rough surface [Kapp, 1996]. Performing this renormalization, we arrive at the

following matrix expression, written in the notation used by Kapp  [1996].
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Equation 3.2-9

      The number of iterations required to incorporate the effects of the finite loss of the

lower medium increases as the loss tangent of the lower medium decreases.  This

behavior occurs because the numerical IBC is developed as a perturbation of the

magnetic field integral equation for PECs.  This may be seen in Equation 3.2-9.

Comparing the result with that produced for a PEC surface, we immediately recognize

the first two terms on the left-hand side correspond to the PEC surface. The last term

accounts for the effects of the loss tangent of the lower medium. As the conductivity of

the lower medium increases, this last term tends to zero. The first order approximation to

scattering from the dielectric surface is thus the PEC result. The advantage over other

techniques, however, is that this equation is exact and will reproduce the correct result

even for surfaces with small curvature radii. One physically important problem where we

can expect this to be important is the problem if grazing backscatter from ocean surfaces.

For such problems, it is well known that the small wave structure produces the primary

contribution to the backscattered field. When these contributions become important, the

standard IBC fails and the present formulation will provide an advantage.

       Unlike the analytical IBCs, the errors in the numerical IBC considered here can be

reduced to an arbitrarily small level via iteration of the derived integral equation.  The

various factors affecting the convergence of the modified equation will be considered

including loss tangent, surface roughness spectrum and angle of incidence.  The inverse

operation
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is computed in O(N) operations due to the tightly banded nature (as conductivity

approaches infinity) of 2P̂ . Thus, the computational cost associated with this term is

negligible.

      As an example of this technique, the scattered field from a wedge on a plane will be

calculated. For this purpose, we use the following surface [Browe, 1999]. The surface

height equations are given by
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2
B cπρ=δ .

      The surface is specified completely by three parameters: the radius of curvature of the

wedge tip measured at 0x =  ( cρ ), the height of the surface from the plane to the wedge

tip if 0c =ρ  ( maxh ), and the point on the x-axis where the height reaches max
2he−  ( lx ).

Although, the derivatives of the surface are required up through the third, the surface is

constructed under the constraint of continuity up to the second derivative.  The three

parameters are shown graphically in Figure 3.2-1.
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Surface fully specified by three parameters:

- Raduis of curvature at peak, c

- Height of surface when c = 0, hmax

- Effective length of wedge, xL, point 
   on x-axis where surface height reaches
   e-2hmax

measured 
at x=0

Figure 3.2-1: Surface geometry illustrating the three parameters needed to fully

specify the surface.  Also shown are the polarization definitions [Browe, 1999].

      The wedge tip, in the region δ≤x , is represented by a cosine function.  The radius

of curvature at the wedge tip is measured at 0x = , the point where the second derivative

of the cosine function is at its largest value.  The faces of the wedge, in the region

α
≤≤δ

2
1x , are represented by straight-line segments.  The faces of the wedge are

smoothly joined to the planar surface by the Gaussian tails.

      Figure 3.2-2 and Figure 3.2-3 show the scattered field for a beam incident to the

surface at 75° for two different tip radii.  These figures plot the magnitude of the far field

as a function of the observation angle. The traces represent the different conductivities of

the lower medium. The real part of the permitivity in lower medium is 2.0 and the

conductivity of the medium varies from 0.1 to infinite (PEC) as noted in the legend.

Figure 3.2-2 shows the result for an electrically small tip radius; consequently, we expect

a large tip diffraction component.
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Figure 3.2-2: Scattering from wedge on a plane, small radius of curvature

      First, we note that the agreement between the dielectric cases and in the specular

direction (75°) is nearly perfect. This is due to the fact that we assume TE incidence and

the Fresnel reflection coefficient for this polarizations at angles approaching grazing is

one. Hence, we expect good agreement.  Figure 3.2-3 demonstrates the scattering for a

much larger tip radius of curvature. In this case, the tip diffraction is considerably

smaller. This can be seen by comparing the backscatter regions of each plot. This region

is governed by tip diffraction since there are no other physical features which would

describe the backscattering. Note the 20 dB difference in computed cross section. The

phase interference effects in the back scatter region is due to interference between direct

tip diffraction and the tip diffracted energy which is reflected by the planar extension of

the wedge in the backscatter region.
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Figure 3.2-3: Scattering from wedge on a plane, larger radius of curvature

      Each of the additional forward scatter features can be explained as well.  A detailed

explanation can be found in the thesis by Browe [1999]. Most notable are the largest peak

due to specular reflection for the wedge face, and the interference between the waves

reflected by the planar areas and the tip diffraction in the forward direction.

      The final figure, Figure 3.2-4, shows the iteration count as the normalized residual

error decreases (the iterative solution converges). Note that the convergence is shown for

the tip radius of one wavelength and the range of permitivities (2-j50 to 2-j1). A solution

for the permitivity of (2-j0.1) did not converge. From this plot, you can see that the

convergence slows significantly, as the lower medium becomes less and less lossy. This

is expected since the solution has been formulated as a perturbation series on the PEC

solution. In addition, we have provided a trace for the smaller radius of curvature, 0.0125

wavelengths. Again, we can see that the smaller radius of curvature results in slower

convergence; mostly likely this is due to multiple scattering within the lower medium at

the wedge tip and penetration through the wedge tip.
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Figure 3.2-4: Convergence as a function of iteration count

Finally it is noted that this is a work in progress since the possibly more interesting TM

case is not yet developed.
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3.3 The Incoherent Power via the Impulse Response Method
      The use of the impulse response method has been well established in literature for the

calculation of the average incoherent power returned from the ocean surface under pulse

illumination. One of the advantages of this approach is numerical: the average return

power can be recast into a series of convolutions.  The result, consequently, is found

easily and efficiently using the Fast Fourier Transform, the FFT.

Figure 3.3-1: The Geometry for the Impulse Response Method

     The power due to an incremental area with a given backscattering cross section is

derived directly from the radar equation. Subsequently, extending this power to include

the effects of the entire surface will lead to an expression for the returned power [Brown,

1977].  The average power returned from an element of area, dA, with a cross-section per

unit area ),(0 φθσ  is given by the standard radar equation; see Figure 3.3-1.

dA
R)4(

),(),(G)t(P)t(dP 43

o22
T

R π
φθσφθλ=

Equation 3.3-1

where   R =  range from the radar to the elemental area, dA

ro
R

)x(ξ

h
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             ),(G φθ  =  antenna gain at the given angles

The average power returned from a distributed target, such as the terrain in this case, is

calculated by a superposition of backscattered power from each elemental surface area,

dA. A superposition of power is appropriate since the scattering surface is assumed to

have a sufficiently random nature; there is no coherent return since the surface is

uncorelated. The average backscattered power returned from the illuminated surface can

be written as

( )

( )

( ) ( ) ( ) ρφρφθσφθ
θξ−






 θξ−−

π
λ= ∫ ∫

∞ π

dd,,G
sec)y,x(r

c
sec)y,x(r2tP

4
)t(P 02

0

2

0
4

0

0

0
T

3

2

R

Equation 3.3-2

where the slant range to the terrain has been re-written: θξ−= sec)y,x(rR 0 . Since the

integration is over the flat surface, cylindrical coordinates can be replaced with the radar

coordinates ( ρρ=⇒+ρ= ddrrhr 00
222

0 ), and the range to the surface can be

approximated by the mean range for the evaluation of amplitude terms. Hence, the

returned power can be re-written

( )

( )
( ) ( ) 00

02

0

2

0
4

0

0

0
T

3

2

R drdr,,G
r

c
sec)y,x(r2tP

4
)t(P φφθσφθ






 θξ−−

π
λ≅ ∫ ∫

∞ π

Equation 3.3-3

The average power returned from the surface can then be found by evaluating the

expectation with respect to the surface heights.

( )

( )
( ) ( ) ξξφφθσφθ
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
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 θξ−−

π
λ≅ ξ

∞

∞−

∞ π

∫ ∫ ∫ d)(pdrdr,,G
r

c
sec)y,x(r2tP

4
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0

0

0
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3
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R

Equation 3.3-4

Introducing the change of variables,
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
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~
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we express the average returned power as
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Equation 3.3-5

Recognizing the convolutional form in the random variable, ξ~ , we re-write the power

received as

( ) ( ) ( ) 0
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Equation 3.3-6

Substituting for the constant delay term,

0

0

c
r2't =

Equation 3.3-7

 and introducing the sifting properties of the Dirac Delta Function, the power received is

written as follows
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c
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π
λ≅

∞

∞−

∞ π ξ

Equation 3.3-8

Hence, another convolution has appeared in the average return power integration. For that

reason, the average scattered intensity from a rough surface can be recast as a series of

convolutions
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)t(P)t(p)t(P)t(P FS~Tr ⊗⊗= ξ

Equation 3.3-9

From equation in Equation 3.3-9, the last term represents the average backscattered

power from a transmitted impulse function and has been called the “Flat Surface Impulse

Response” (FSIR)

dA),(),(G
r

c
r2t

)4(
)t(P o2

Surface
4

0

0

3

2

FS φθσφθ





 −δ

π
λ= ∫∫

Equation 3.3-10

where:  δ(∗) = a Dirac delta function which accounts for the two way 

propagation delay

 λ = wavelength of the carrier

G(θ, φ) = radar antenna gain

σ(θ, φ) = surface scattering cross section per unit area

dA = elemental surface area, φρρ=φ= ddddrrdA 00

r0 = slant range from the radar to the mean surface at dA

h  =    radar height above surface

This flat impulse response function is characterizes the average return from a surface

with vanishingly small roughness which has been illuminated by a delta function pulse.

3.4 Pulse Scattering from Rough Surface
      In this section, the Kirchhoff approximation for rough surface scattering is quickly

reviewed, followed by an exposition, clarification and simplification of the work by

Ishimaru [1995] on two-frequency rough surface scattering. It shall be proposed that this

work will be used in conjunction with the two-frequency radiative transfer equation of

Chapter 7  as a boundary condition. This is a work in progress.
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3.4.1 The Kirchhoff approximation for rough surfaces

      In this section, a brief account of the Kirchhoff approximation to scattering from a

rough surface is given. The interest in this approximation, with respect to the more exact

integral equation methods is the closed form, simple results. The Kirchhoff

Approximation, also know as the tangent plane approximation, is a high frequency

approximation. This implies that the surface is appears to be flat with respect to the

incident wavelength. Loosely following the development of Ishimaru [1997], and

assuming that the incident field, observed on the rough surface ))'y,'x(,'y,'x( ζ , has the

form,

( )'y,'xjk'yjk'xjk
0

'rkj
0

i iziyixi ee)'r( ζ−−−⋅− ψ=ψ=ψ
"""

Equation 3.4-1

then the scattered, or in this case reflected field, has the form,

( ) )'r(Ree)'r( i'y,'xjk'yjk'xjk
0

'rkj
0

r rzryrxr "" ""

ψ=ψ=ψ=ψ ζ−−−⋅−

So that the total field at the rough surface observation coordinate can be written as

( ) )'r(R1)'r( itotal "" ψ+≅ψ

hence, from Green’s theorem, the approximate substitution can be made,
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Equation 3.4-2

since, ir k'n̂k'n̂
""

⋅−=⋅ , assuming an incident plane wave and making the far field

approximation for the Green’s function, the expression for the scattered field becomes
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Equation 3.4-3

Next, a substitution is made for the unit vector normal to the surface at the source point,

and the source position vector.
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"

In addition, the elemental surface area is projected onto the mean, flat surface at z = 0.
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Equation 3.4-4
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Equation 3.4-5

In order to make this solution useful, the surface is assumed a perfect electric conductor

(PEC), so that the reflection coefficient is negative one (-1) regardless of the incidence

angle.
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Equation 3.4-6

Assuming that the surface is large (so that it is possible to exclude the edge contributions)

and integrating Equation 3.4-6 by parts [Ishimaru, 1997], yields
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Equation 3.4-7

The mean, average field can now be found as
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Equation 3.4-8

The average is recognized as the Fourier transform of the pdf, so that the bracketed

quantity is simply the characteristic function. Assuming Gaussian distributed roughness,

with a standard deviation of the heights, σ, defining the characteristic function of the

Gaussian random variable, Φ(∆kz), and recognizing the Dirac delta function
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Equation 3.4-9

The mean field above shows that the scattering direction is in same x-y direction as the

incident field. Hence, when the scattered z-direction is chosen to be the opposite of the

incident field (ksz = -kiz) the coherent scattering corresponds to the reflected field,

reduced by the exponential factor related to the surface heights; the randomly elevated

plane [Brown, 1997].

3.4.2 Two-frequency rough surface scattering

     Next the frequency correlation of the field is formed,
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Equation 3.4-10

The expression, 1,itk
"

, is vector of the x and y components of the wave number vector at

frequency 1 and the difference of the incident and scattered wavenumber vectors is

indicated
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Performing the average using a joint Gaussian distribution for the heights (assuming the

slopes are statistically independent)
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Equation 3.4-11

Substituting, Equation 3.4-11, converting to sum and difference coordinates in Equation

3.4-10, (defining a sum and difference for each Cartesian coordinate)
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and the transverse (x-y) wavenumber vectors are also converted to sum and difference

coordinates
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results in the following expression for the total power (two-point, two-frequency

correlation)
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Equation 3.4-12
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Next the mean power is subtracted from the total power in order to find the fluctuating

power, 2
s

2
s

2
s ψ−ψ=δψ and consequently, the two-frequency surface cross

section is written as
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Equation 3.4-13

This expression is equivalent to the two-frequency mutual coherence function of the

rough surface in the Kirchhoff approximation. If we assume that the incident wave is a

Gaussian tapered plane wave, the first integral in Equation 3.4-13 is evaluated
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Equation 3.4-14

The applicability of this is reviewed in Chapter 2 for pulse propagation across a randomly

rough knife edge. There are two asymptotic limits where this integral may be evaluated:

small height and large height. Considering only the large height approximation,

( ) 1
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kk
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2
z2

2
z1 >>σ∆+∆

the exponential function of the above argument will force the integrand to zero except

near 0rst ≈"  so that the correlation function can be expanded into a series about 0rst ≈"

[Brown, 1997].
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where the variance of the heights of the x and y surface slopes are given by 22
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Equation 3.4-15

Evaluating the remaining integral, the result for large heights is given by
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Equation 3.4-16

  Applying the definitions for the wavenumber vectors, the final exponential can be

written as
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interpreting these as pdfs for the acceptable slopes of the “facets” which contribute to the

backscattered power [Brown, 1997],
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2
dx

Equation 3.4-17

3.4.3 Future Work

    A great deal of work is left undone in this rough surface scattering section. In the

simulation of the scattering from dielectric surfaces, the TM polarization case needs to be

completed. Once this step is taken, the numerical results can be compared with the

available, and popular, Leontovich (Impedance) Boundary Conditions (IBC). These

IBC’s have not been evaluated for their accuracy in certain parameter spaces, most

notably the low grazing angle region. Consequently, this is an avenue for further

progress. In addition, other interesting results are possible when this formulation is

extended to the TM polarization.

     The two frequency surface scattering work, orignally developed by Ishimaru [1995]

still has a great deal of room to grow; particularly in its application as a boundary

condition. This effort will be more fully developed for use as a boundary condition for

the two-frequency radiative transfer equation developed in Chapter 7 . The small height

approximation to the above derivation may also be employed for greater applicability of

the method. In addition, boundary perturbation theory for rough surface scattering may be

used to derive a two-frequency rough surface scattering in the lower frequency limit in a

similar manner. Finally, in combination with two-frequency radiative transfer equations,

pulse propagation scattering simulations from a vegetated rough surface may be

accomplished.



110

Chapter 4  The Impulse Response

      In creating the convolutional model of this chapter, the radiative transfer equations

are presented for time dependent, forward-backward scattering. The model developed

assumes completely incoherent scattering and includes contributions from both the

vegetation and the surface scattering along with a relatively simple accounting for their

interaction. This model easily separates the three primary components of the scattering

problem – the radar system, the geometry, and the environment, and then recombines

them through a multiple convolution. The use of this simple model assumes that multiple

interactions are insignificant and that only narrow-band signals and narrow-beamwidth

antenna patterns are used.

    Extending the basic model to volumes for which multiple scattering is important is

accomplished with effective parameters. It is these effective parameters that are obtained

by comparing the model with pulsed radar data at normal incidence, i.e., looking directly

down through the foliage and onto the ground. Hence, the overall model is a hybrid

approach wherein the basic physics are retained in the simple solution and are extended

to a more complicated environment with effective parameters. By examining the model-

based off-normal incidence, mean return waveforms, it is possible to estimate the degree

of foliage penetration and subsequent surface scattering.

    Alternate forms of this computationally efficient method for the determination of the

scattered power density can be found in [Brown, 1977] for a rough surface and [Newkirk,

1996], [Adams, 1998] for a rough surface covering a penetrable volume. This approach

creates a numerically efficient method since the incoherent return can be cast as a series

of convolutions. Henceforth referred to as the Impulse Response approach, this method as

applied to rough surfaces has been briefly reviewed in section 3.3.  This idea has been

extended to the volume response of vegetation over a rough surface.

4.1 Radiative Transfer
      The geometry for the radiative transfer approach is given in Figure 4.1-1 below. In

this figure, the first two boundaries’ (enclosing the canopy) height statistics are described
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by the same random variable, )x(ξ and the third (rough terrain) boundary’s height

statistics are described by the random variable, )x(ζ . The mean heights of the layer

boundaries, d1 and d2, are deterministic distances.  Hence, we have implicitly assumed a

zero mean surface with a layer of vegetation whose average thickness is d1. This

vegetative layer has mean height above ground equal to a constant, d2.

Figure 4.1-1: the geometry describing the volume and surface. Note that dotted lines

indicate average levels for the associated boundary.

      Beginning with a general form of the radiative transfer equation for the incoherent

power density or the intensity in the medium, a simple form of the radiative transfer

equation amenable to solution via convolution will be derived. The geometry for the

general radiative transfer equation is given in Figure 5.1-1

      Assuming that the scattering process is polarization insensitive, we will use the scalar

radiative transfer equation, which relates the differential change in the power density over

volume ds. This is written as (including the time dependent variation)

h
θ

10r"

20r"

30r"
3r"

1r
"

d1

d2

2r"
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)t,r;ŝ(I
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s
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"

"""
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∂
∂−+ω∫∫π

ρσ+σρ−=
∂

∂
π

Equation 4.1-1

where

•  I( ŝ ; r" ) is the power density in the ŝ  direction at the position: r"

•  ŝ  is a direction of the power density

•  ρ is the scatterer density

•  )r(t
!σ is the scatterers total cross section which is the sum of the absorbing and

scattering cross sections: )r()r()r( scabst
""! σ+σ=σ and as written here, may be a

function of position r" .

•  ( )'ŝ,ŝp is the scattering function of each scatterer; (prime denotes incident

direction(s)) and is related to the amplitude of the field scattering function

squared.

•  )r;ŝ(Js
"  is the source function (emission sources)

Figure 4.1-2: Scattering geometry for the intensity [Ishimaru, 1997]

        Referring to Equation 4.1-1, the change in power in the r̂  direction is proportional to

the power incident on the differential volume element. This power is then depleted by

absorption as well as scattering into other directions. On the other hand, the power, as it

propagates through the differential volume, increases by an amount due to scattering into

dω’

'ŝ

ŝ

dω

ds
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the r̂  direction from other directions 'r̂  as well as energy emitted inside the differential

volume:

      We can now derive an impulse response representation by making the following

assumption regarding the scattering function (or classically, the phase function), ( )'r̂,r̂p .

It will be assumed that each scatterer scatters energy in the forward and backward

directions, exclusively.

( ) ( ) ( )[ ]ŝ'ŝŝ'ŝ2'ŝ,ŝp bf
t

+δσ+−δσ
σ

=

where σf and σb are the position dependent forward and backward scattering cross section

of each scatterer, respectively. These may be functions of depth into the medium, shown

explicitly by the r"  dependence, as well as the scattering angle.  In addition, we will

assume that there are no emission sources present; consequently, the source term,

)r;ŝ(Js
" , is zero. This is a good assumption for active sensing techniques [Ulaby, 1986].

        With this scattering function assumed, the radiative transfer equation is recast into a

greatly simplified form. Since the direction of power density propagation ŝ  has been

limited to the radial direction, r̂ , the equation governing the power density can be written

as a first order partial differential equation in two variables: time and distance. Implicitly

assuming the r"  dependence in the cross section parameters, the simplified equation of

transfer becomes

[ ]

)t,r(I)tt,r;r̂(I:ConditionInitial
t

)t,r̂,r(I
)r(c

1)t,r;r̂(I)t,r;r̂(I)t,r;r̂(I
s

)t,r̂,r(I

00

s
bftd

""

"

"
"""

"

==
∂

∂−−σ+σρ+σρ−=
∂

∂

Equation 4.1-2

      In order to further simplify the equation of transfer, we split into it into two parts:

downwelling, that power density which propagates in the forward hemisphere and

upwelling, that power density which propagates in the backward hemisphere as defined

by the direction of propagation, r̂ .

       Let us first consider the downwelling intensity. In its solution, we will assume that

the upwelling power density does not act as a source for the downwelling power density
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or 0)r(b =σ . At this time, we consider this event to be second order scattering that may

be neglected. Next, we define an effective extinction coefficient per unit volume

)r()r()r(k~ fte
""" σρ−σρ= . We then assume a medium that is radially distributed which

results in the modified effective extinction coefficient: )r()r()r(k~ fte σρ−σρ= . Hence,

implementing these assumptions, we find the greatly simplified equation

t
)t,r;r̂(I

)r(c
1)t,r;'r̂(I)r(k~

r
)t,r;r̂(I

s
e ∂

∂−−=
∂

∂ "

"
"

"

Equation 4.1-3

Since it has been assumed that the upwelling power density does not contribute to the

downwelling, there is no coupling of power from the upwelling into the downwelling.

Consequently, given an initial power density at the upper foliage boundary with free

space, Io(t – t’) where t’ is a range dependent delay, the solution for the downwelling

power density is found in closed form.

    The time-dependent nature of the radiative transfer equation has been removed using

the method of characteristics. Rewriting the equation of transfer (for a single direction):

)t,r(I)tt,r(I:ConditionInitial

)t,r(Ik~)r(c
t

)t,r(I
r

)t,r(I)r(c

00

ess

==

−=
∂

∂+
∂

∂ ""

Equation 4.1-4

Consequently, first parameterizing the variables along the characteristics τ== t;sr , we

next solve the differential equations for the parameterized equations (assuming a constant

speed of light for convenience)

             

( ) ( )
( )

( ) τ+=τ

τ=⇒τ=τ=

+=τ=τ

s,st:solutionfinal

C,0st:.C.Iwith

Cs,st:solutiongeneral,1
ds

,sdt

1

1
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( ) ( )
( ) ( ) ( )

( ) ( ) θζ−+=τ

θζ−=⇒θζ−=τ=

+=τ=τ

sechsc,sr:solutionfinal

sechCsech,0sr:.C.Iwith

Csc,sr:solutiongeneral,c
ds

,sdr

0

2

200

 and solve for the characteristic variables:

( ) ( )

( ) ( ) ( )
0
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c
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,
c
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θζ−−τ−τ=τ
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The equation of transfer is written
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Equation 4.1-5

This has the solution

sk~c
0

e0e)(I),s(I −τ=τ

Equation 4.1-6

The method of characteristics yields a time-shifted argument for the power density, while

the distance dependence can be found by simple integration. For ( )θξ+= sec)x(rr 101 ,

and a more general, depth-dependent wave propagation speed,

{ }µµ−





µ
µ−−=φθ ∫∫ d)(k~exp

)(c
d

c
rtI)t,,,r;r̂(I

r

r e

r

r
s0

1
o

11

Equation 4.1-7
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where I0 (t – t’) is the time-delayed incident power envelope; the time delay is a function

of the range in free space from the antenna to the canopy (r1) and the range into the

medium which may have a range dependent group velocity, cs(r). Note that the

downwelling power density is directed in the r̂  direction or along a radial path from the

source antenna.

       The differential equation governing the upwelling power density has a similar form;

however, the downwelling power density acts as a source for the upwelling.  In addition,

the upwelling power density is directed in the r̂−  direction or along a reverse radial path

toward the source antenna. Consequently, the governing differential equation is the same

with the exception of the coupling term relating the upwelling and the downwelling

intensities. The differential equation governing the upwelling power density is expressed

below.

)t,r;r̂(I),,r(
t

)t,ŝ,r̂(I
)r(c

1)t,r;r̂(I)r(k~
r

)t,r;r̂(I
b

s
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∂
−∂

"
"

"

Equation 4.1-8

Subsequently, substituting the solution for the downwelling power density into Equation

4.1-8, the following differential equation is created governing the upwelling power

density
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Equation 4.1-9

     The attenuated downwelling power density that passes through the foliage layer and is

subsequently scattered by the underlying surface acts as a source for the upwelling power

density at the foliage layer’s lower boundary. In addition, the downwelling power density

continuously contributes to the upwelling power density due to the coupling term. Note

that this source was absent in the differential equation for the downwelling.

Consequently, in formulating the solution, the upwelling power density has two

independent sources: the power waveform backscattered by the surface and the
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backscattered downwelling power density from within the volume. Finally, the upwelling

power density is evaluated at the top of the canopy (r = r1). Again, invoking the method

of characteristics as a solution method for the time dependence, the resulting solution of

Equation 4.1-9 has two independent terms

{ }
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Equation 4.1-10

         where

dA),(),( 0
ss φθσ=φθσ , the surface’s scattering cross section

( ) θζ+θ++=
θξ+θ+=

θξ+=

sec)x(secddrr
sec)x(secdrr

sec)x(rr

21103

1102

101

This expression shows a simple superposition of two terms; the first term is the rough

surface return propagated back up through the foliage and the second term represents the

foliage scattered return.  In order to construct the average return power in the impulse

response format, these two responses are averaged and manipulated to yield an impulse

response term in each case.  However, an additional assumption is necessary for a fully

convolutional result similar to that given in the literature for a rough surface alone: the

random variables, ζ(x) and )x(ξ , describing the canopy and the rough surface,

respectively, must be assumed to be independent.

4.2 Incoherent Scattered Power: the Volume (Foliage) Return

      In the formulation of the scattering from a rough surface with a vegetative cover, we

have assumed that scattering occurs exclusively in the forward and backward directions;

this implied that the power density in radial direction r̂  does not interact with the power

density in any other radial direction. This in turn has led to a closed form result for the
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downwelling intensity and consequently, an uncoupled relatively simple equation for the

upwelling power density, Equation 4.1-10 in the previous section. The two terms of the

solution in Equation 4.1-10 can be simplified independently. Each represents a different

scattering phenomena, surface and volume scattering. In this section we examine the

foliage or volume return.

      We begin with the second term of Equation 4.1-10 for the upwelling power density,

the volume response. After substitution for the slant range variables (r1, r2, …) with the

associated distance and random variables as a function of antenna pointing angle, θ,

( ) θζ+θ++=
θξ+θ+=

θξ+=

sec)x(secddrr
sec)x(secdrr

sec)x(rr

21103

1102

101

the power density is found to be approximated by the following
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Equation 4.2-1

In general, following a slightly modified version of the method of Adams and Brown

[1998a], and assuming a layered medium with parallel boundaries, the average power

density can be expressed as
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Equation 4.2-2

      In order to create a convolutional form, the integration limits must be extended to

infinity. The upper limit may be extended to infinity by assuming that the extinction

coefficient becomes very large once the range extends beyond the lower foliage
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boundary; this will effectively eliminate the volume return after the lower foliage

boundary is surpassed.  The lower limit of integration, on the other hand, can be extended

by the use of the unit step function, u(r - r1). Consequently, the average power density can

be rewritten in terms of integrals with infinite limits. Under the change of variables,

[ ]θξ+−µ=µ sec)x(r' 10 , the expression for the upwelling power density becomes

[ ]
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Equation 4.2-3

Assuming that there is no volume return from the atmosphere between the antenna and

the foliage crown, the backscattering cross section, which is a function of distance, can

also be shifted by the slant range. Defining two new functions

∫
γ

µ
µ=γ

0 )'(c
'd2)(g

Equation 4.2-4
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Equation 4.2-5

the average upwelling power density at the upper foliage layer can be rewritten
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Equation 4.2-6

where it has been previously defined that ( )θξ+= sec)x(rr 101 .  Following the method

of Adams and Brown, [1998a], the following definitions are constructed which transform

distance into time
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Substituting these expressions into the average upwelling power density of Equation

4.2-6, the average upwelling power density is reconstructed in the following form
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where a new function has been defined:
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Noting that Equation 4.2-7 contains a convolution in the variable z, we perform the z

integration, leaving the result in the form of a convolution (with convolution represented

by the symbol: ⊗ ) shown in brackets below
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Equation 4.2-8

Substituting for the slant range in terms of the distance to the mean height and the

random variable representing the distribution about the mean, i.e. ( )θξ+= sec)x(rr 101
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First, we substitute for the constant delay term: we let
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0

10
0 c

rt =

Then we make a change of variables with respect to the random variable representing the

crown height statistics; we form a new random variable and its associated probability

density function

0c
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Consequently, the average, upwelling power density becomes
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Equation 4.2-10

Again, the average, upwelling power density is re-expressed in the following

convolutional form with respect to the modified surface height random variable
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Equation 4.2-11

       Finally, in order to find the total power returning toward the radar, we integrate the

power density over a surface. In this case, a convenient surface is the top of the canopy.

Allowing for full penetration of the incident power density (i.e. no reflection from the

boundary separating free space from the foliage), we substitute for the incident power

density at the canopy (expressed in the { } brackets below) weighted by the antenna gain

),(G φθ  in the direction ),( φθ ,

( ) ( )0T2
10

00 ttP
r4

),(Gtt,,I −
π

φθ=−φθ

Equation 4.2-12
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Furthermore, we must assume a narrow beamwidth such that 0secsec θ≈θ (boresight

direction: θ0). This is required since the integral to be performed over the radial

coordinate implicitly contains θ dependence; otherwise, a convolutional form can not be

obtained. For the power density traveling in the r̂  direction:

( ) ( ) φρρ−ξ∇⋅=φ−ξ∇⋅=⋅ ddẑr̂ddrrẑr̂Sdr̂
!

Averaging over the slopes (assuming they are independent of the surface heights), we

define the function:

ξ∇
θ+θ

ρ∂
ξ∂=θ cossin)(t

Allowing for the additional delay due to the transmission back to the antenna (an

additional t0) from the canopy and the receiving antenna’s effective aperture, the

following result is obtained
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substituting the original expression for t0, we find

( )
( )

( )
( )

10
0

2

0 0

10~
0

10

0

10
T3

10

2

0

00
3

2

1010
0

2

0
2

10
2

2

0

10~
0

10

0

10
T2

100

00

R

drd
c
r2tp

c
r2tE~

c
r2tP

r
),(G

sec
tc

4

drdr
r4

),(G
c
r2tp

c
r2tE~

c
r2tP

r4
),(G

sec
tc

)t(P

φ∫ ∫ 







−⊗








−⊗





















−φθ

θ
θ

π
λ=

φ∫ ∫
π

φθλ






−⊗





−⊗



















−

π
φθ

θ
θ=

∞ π

ξ

∞ π

ξ

Equation 4.2-14



123

Exploiting the shifting properties of the Dirac delta function and rearranging the resulting

integrals yields
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where the transmitted power waveform is given by PT(t) and the modified Flat Surface

Impulse Response function is given by
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the modified probability density function for the crown height statistics is given by
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and )t(E~  is a function relating decay to depth of penetration into the foliage layer

))t(g('g
))t(g(E)t(E~ 1

1

−

−

=

Equation 4.2-18

       This general solution for the volume response can be modified to yield a simpler

result. Assuming that the velocity is constant in each layer of the medium, the solution

becomes more apparent. Here, we assume that medium 1 contains the leaves and

branches (group velocity is cv1) and medium 2 is the trunk region (group velocity cv2).
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The starting point for the upwelling power density due to the volume return (along a

radial in the r̂  direction) is then given by
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Equation 4.2-19

After following the previous procedure, the average power as a function of time,

scattered from a volume with an irregular interface at the crown can be expressed in the

convolutional form
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where in this particular case,
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Hence, for a group velocity in the volume given by cv,
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Equation 4.2-22

Note that the unit step function u(t) “turns on” when t = 0.

4.3  Incoherent Scattered Power: the Rough Surface Return
       We start with the expression for the power density attenuated by the foliage in its

downward passage, scattered from the surface, and then attenuated by the foliage in its
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upward passage; this is the first term of Equation 4.1-10 in section 4.1. Note that the

geometry of  Figure 4.1-1 still applies
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Substituting for the power density using the following relationship
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Equation 4.3-2

where I is the power density (sometimes called intensity), PT is the power waveform and

the r̂  direction is specified by the angles θ and φ. The average power returned from

within the illuminated region can be evaluated by integrating over a surface

encompassing the illuminated area. In this case, we choose to integrate over the area at

the top of the canopy (r = r1). Hence, substituting the power waveform for the incident

power density in Equation 4.3-1 via the relationship in Equation 4.3-2 and performing the

ensemble average over the random variables, the total average power at the crown is
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            Equation 4.3-3

where the surface scattering cross section per unit area, ),(0
s φθσ , has been included. The

angles (θ,φ) are spherical coordinates centered at the antenna and can be related to the

variables of integration.  In addition, in this expression, the antenna gain has a boresight

angle given by ),( 00 φθ  and the angles ),( aa φθ  are spherical coordinates defined with

respect to the antenna boresight direction, which may also be related to the variables of

integration.

      Although the solution procedure can proceed with a propagation speed, )r(c " , and an

effective extinction coefficient, )r(k~e
"  that vary with position as assumed in Equation
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4.3-3, the following results are simplified since they are based on a constant group

velocity and extinction coefficient in each layer.

•  Free space, the group velocity is c0

•  Layer 1, the canopy region, the group velocity is cv1, the effective extinction

coefficient is 1ek~ , )r,r(r 21∈

•  Layer 2 the trunk region, the group velocity is cv2, the effective extinction

coefficient is 2ek~ , )r,r(r 32∈

Hence, the integrals with respect to the radial distance within the argument of the

transmitted power may be easily performed, yielding the average power at the radar
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Equation 4.3-4

The results will be cast in a convolutional form for the average returned power. After

expanding the transmitted power waveform’s delay time argument in terms of the random

variables and constant terms,
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and performing the integrations with respect to the extinction coefficients, the average

return power as a function of time becomes
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where ),(p ζξξζ is the joint probability density functions for the boundary heights of the

foliage volume and the rough surface and for the power density traveling in the r̂

direction:
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Averaging over the slopes (assuming they are independent of the surface heights), we

define the function:
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If the surface statistics are independent of the canopy height statistics, we write this as
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where )(pand)(p ζξ ζξ are the independent probability density functions for the

boundary heights of the foliage volume and the rough surface, respectively. Rearranging

and substituting for the constant terms, Equation 4.3-7 is rewritten
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where 2e1e k~,k~ are the effective extinction coefficients in medium 1 and 2, respectively ;

and

2v

2

1v

1

0

10
0 c

secd2
c
secd2

c
r2t θ−θ−=

02v

2v0
a

2v0a cc
cccor

c
1

c
1

c
1

−
=





−=

Performing a change of variables which transform distance into time

2
a

a
2

1
2v

2v
1

dt
sec2
cd

c
sec)x(2t

dt
sec2
cd

c
sec)x(2t

θ
=ξ⇒θξ=

θ
=ζ⇒θζ=

and defining some new functions,

{ }
{ } )t(ptck~exp)t(f

)t(ptck~exp)t(f

22t2a2e22t

11t12v2e11t

=

−=



129

Noting that the probability density functions describing the boundaries must also be

transformed,
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we find that the average returned power can be expressed as
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Introducing a delta function and using its integration properties, we rewrite the above as
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Equation 4.3-10

Performing the t1 and the t2 integrations and expressing the result in convolutional form,

which is represented with the ⊗  symbol, we find
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130

Integrating over the foliage upper surface, the returned power can be recast into the

following convolutional form, following the methods outlined in previous section.

)t(P)t(f)t(f)t(P)t(P 'FS2t1tTr ⊗⊗⊗=

Equation 4.3-12

where )t(fand)t(f 2t1t  are functions which depend on the probability density functions

whose random variables are functions of the random variables representing the surface

and canopy statistics, )x(),x( ζξ as well as the extinction coefficients, and the antenna

boresight angle, θ. The flat surface impulse response function (FSIR), PFS’(t), is similar to

the standard FSIR with the modifications (among others) that account for attenuation:
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Here the antenna gain is approximated by a circularly symmetric pattern with a pointing

angle given by ),( 00 φθ  and the angles ),( aa φθ  are spherical coordinates defined with

respect to the antenna boresight direction. Consequently, the antenna gain can be

represented by


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2
000aa sin2exp),(G),(G

Equation 4.3-14

This expression Equation 4.3-13 for the FSIR includes additional effective parameters

related to the speeds in the different media, the incidence angle, and consequently, time

or range:
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The integral for the FSIR can be simplified using the method presented in Brown [1977];

we begin by substituting the two-way incremental ranging time for the actual time:

c
'r2t −=τ .  Assuming that the beam is narrow such that the surface incremental cross

section is constant over the angular extent of interest and that secθ ≅  secθ0 (boresight)

and the surface is locally flat, the FSIR is found in the following form
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Equation 4.3-15

Note this expression can include an asymmetrical antenna pattern [Newkirk and Brown,

1992]. Summarizing, the final form of the solution to the average power returned due

only to the rough surface could be expressed in the following convolutional form,
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Equation 4.3-16

where )t(fand)t(f 22t11t  are functions of time which depend on random variables which

are functions of the surface and canopy statistics, )x(),x( ζξ , as well as the extinction

coefficients, and the pointing angle:
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The modified Flat Surface Impulse Response is given by
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Equation 4.3-18

for layered media with a constant velocity in each medium and where 2e1e k~,k~  are the

effective extinction coefficients in medium 1 (foliage region) and medium 2 (trunk

region), respectively.

     Computationally, for the specific case in which the propagation speed of the “trunk”

region is equal to that of free space, one of the convolutions is no longer necessary and

the average power returned takes the following form.
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Equation 4.3-19

The expectation over the canopy statistics may be performed analytically if a Gaussian

distribution is assumed for the roughness.
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and the power returned is rewritten in the following (computationally) simpler form

)t(P)t(f)t(P)t(P 'FS11tTr ⊗⊗=

where the flat surface impulse response is now given by
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with a change a variables 




 +=

2
ctr~'r and some properties of the delta function

( )
( )

( ) ( )

( )
( )

( ) ( )
φρρ∫ ∫

θ

−δ
⋅

φθσφθ
π

λ=

φρρ∫ ∫
θ

δ⋅

φθσφθ
π

λ=

+θ−θσ∞ π

+θ−θσ∞ π

−

ddee
sec'r

c
'r2t

),(),(G
42
c

ddee
sec'r
r~

),(),(G
42
c)t(P

)dk~dk~(sec2seck~2

0

2

0
4

0
saa

2
3

2v
2

)dk~dk~(sec2seck~2

0

2

2
ct 4

0
saa

2
3

2v
2

'FS

22e11e
22

canopy
2
2e

22e11e
22

canopy
2
2e

Equation 4.3-22



134

4.4  Convolutional Model Results
      Previously noted limitations of this radiative transfer result have included a limited

scattering pattern for each volume scatterer. The chosen scattering pattern demands

strictly forward scattering and backward scattering. This assumptions decreases the

number of coupled differential equations from N (when N scattering directions are used

in a quadrature approximation to the integral in the radiative transfer equation) down to

two: coupled integral equations, one governing forward and one reverse scattering.

Secondly, the upward propagating power density is assumed not to influence the

downward propagating power density. This last assumption is key since it allows a closed

form solution for the downward propagating power density. Otherwise, the solution

would be in the form of two coupled differential equations.  Finally, the antenna is

assumed to have a narrow beamwidth and the transmitted pulse is narrowband.

       As a simple example, a simulation for a layered medium with a constant propagation

speed and constant extinction coefficient in each layer was performed. The results are

shown in the following figures. The assumed parameters of the radar system are as

follows:

•  Radar: Matched Filter, 1 kW transmit power
•  Waveform: Square Pulse with 5 ns pulse length
•  Antenna: Gaussian pattern, 0.5 to 5 degree beamwidth, nadir pointed

The medium is assumed to have the following bulk propagation properties (arbitrary

estimates since no data was available) and Gaussian statistics:

1. The foliage layer
•  15 meter thickness
•  effective extinction coefficient as noted
•  group velocity; free space
•  Gaussian boundary statistics; variance of the heights: 1 m
•  backscatter to forward scatter cross-section, σf /σb : 500
•  absorption to total scattering cross-section, σa /σt : 0.9 (albedo)

2. The trunk layer
•  5 meter thickness
•  effective extinction coefficient as noted
•  group velocity: free space
•  backscatter to forward scatter cross-section, σf /σb : 500
•  absorption to total scattering cross-section, σa /σt : 0.9
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3. The ground layer
•  perfect electric conductor (PEC)
•  Gaussian statistics; variance of the heights: 0.3 m

     The following results are based on derived data gathered from some measurements

made by Ulaby [1988]. From these measurements, the parameters for the scattering

amplitude described by Schwering were quantified. The Schwering amplitude scattering

model is written as follows

( )
2

0cos2
cos

e1)(cosp








θ
θ−

α+α−=θ

Equation 4.4-1

This model describes isotropic scattering in all directions with the exception of the

forward direction, see Figure 4.4-1. In the forward direction, the amplitude is much larger

and is described by a Gaussian beam. The parameter, α, is related to the ratio of the

forward scattering lobe to the isotropic background. Since the convolutional model

predicts only forward-backward scattering, α is considered to be

α = (1 - forward-backward ratio) = 1 – 1/500

So that given an extinction cross section, eσ , and an albedo, W, the forward backward

scattering cross sections can be derived.

( ) effbfs W1 σ=σα−+σ=σ+σ=σ

W = albedo =  (σs /(σs +σa )) = 0.9

where σe, σs, σa = extinction scattering, absorption cross sections, respectively. Under

high-moisture content conditions (referred to as “wet” in the following figures), Ulaby

measured the ratio of the forward scattering lobe to the isotropic to be 500-to-1 and an

extinction coefficient of 6 nepers per meter at 35 GHz. Other frequency parameters were

scaled by the frequency to the three-quarters power.
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Figure 4.4-1: Schwering’s scattering amplitude

Figure 4.4-2 shows the effect of canopy “roughness” on the return power waveform, the

first “hump” in the waveform. Although the waveforms align at some portions, the

leading edge of the return (the volume/foliage return) is “smeared” out by the roughness.

Mathematically, this is a result of the convolution with the pdf of the air-canopy

interface. When the standard deviation of the heights approaches zero, this convolution is

with a delta function and the interface has no effect. However, the pdf “spreads out” as

the roughness is made larger. Consequently, the return power waveform is more greatly

affected, as the roughness becomes larger. The surface return behaves in a similar

fashion. As the surface roughness is increased, the surface return “smears” as well.

However, in this and the remaining simulations, the surface roughness is held constant.

The surface return, average power waveform is the second “hump” in Figure 4.4-2.

ik̂

sk̂
θ
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Figure 4.4-2: Air-canopy interface roughness effects on the return waveform

     Ideally, the return waveform will have distinct features in the volume return and the

surface return is distinct. The best case for discerning features will employ narrow

beamwidth antennas, low altitudes and a nadir-pointing angle. In addition, a smaller

extinction coefficient will result in a greater ability to penetrate the foliage. In addition to

the volume return and the surface returns, a point target has been added to the model in a

manner consistent with the formulation of the model. In other words, the return from the

target is simply superimposed on the returns from the foliage-surface return.

Consequently, there is an assumption that no multiple scattering occurs between the

target and the surface or the foliage.
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Figure 4.4-3: Average power returned from “wet” foliage at 10 GHz for different

target cross sections.

In Figure 4.4-4 the extinction coefficient has been reduced in a manner consistent with

the “dry” foliage conditions assumed in this chapter. Here we can see that the target has

begun to emerge from the return waveforms attributed to the surface and the foliage.
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Figure 4.4-4: Average power returned from “dry” foliage at 10 GHz for different

target cross sections.

Finally at 1.5 GHz, even in the wet foliage conditions, the target is visible and distinct

from the surface and foliage average power waveforms in Figure 4.4-5. Figure 4.4-6

shows the target clearly visible at 1.5 GHz under the “dry” conditions.

       The returned power waveform must also be compared to the noise power level.

Given the power pattern of the antenna, P(θ,φ), the antenna noise temperature due to an

extended target with a temperature distribution, T(θ,φ), such as the earth in remote

sensing, is calculated as [Stutzman, 1998]

( ) ( ) Ωφθφθ
Ω

= ∫∫
ππ

d,P,T1T
2

00A
A

Equation 4.4-2
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Figure 4.4-5: Average power returned from “wet” foliage at 1.5 GHz for different

target cross sections.

For a constant temperature distribution, T0, this simplifies considerably to

( ) ( ) 0A
A

0
2

00A

0
0

2

00A
A TTd,PTd,PT1T =Ω

Ω
=Ωφθ

Ω
=Ωφθ

Ω
= ∫∫∫∫

ππππ

Equation 4.4-3

Consequently, the noise power for a 35°C Earth and a 10 ns pulse length becomes

W10112.4
10

1)35273(1038.1BTkP 13
8

23
sysN

−
−

− ×=




+×==

The signal-to-noise level at the matched filter receiver can now be determined. Figure

4.4-7 shows the signal-to-noise ratio under ideal conditions; “dry” foliage at 1.5 GHz.
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Figure 4.4-6: Average power returned from “dry” foliage at 1.5 GHz for different

target cross sections.

      Recall that each of these results given for the foliage penetration and subsequent

target detection occurs with ideal radar parameters:

•  the beamwidth is narrow, 0.5 degree
•  the altitude is 30,000 ft

•  the antenna is pointed directly downward (nadir),
•  and the surface roughness is consistent with road surfaces.

As these parameters are varied, the foliage and surface returns will “smear,” masking the

target in their waveforms. These detrimental effects are confounded by the increase of the

extinction through the foliage, and the target cross section.
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Figure 4.4-7: Signal-to-Noise ratio at 1.5 GHz under “dry conditions.

     In the remaining figures, the effects of some of these factors are explored.

Specifically, the radar platform altitude and the beamwidth are varied. In addition to the

foliage and surface return waveforms, a point target has been included. This target has a

0.5 meter-squared cross section and lies 3 meters above the mean surface. Figure 4.4-8

again shows ideal conditions including “dry” foliage at 1.5 GHz. However, by the time

the beamwidth reaches 5 degrees, the target is completely lost in the foliage return. In

Figure 4.4-9 the effects of extinction have clearly decreased the target return so that it is

only visible with the narrowest beamwidth. In addition, by the time the beamwidth

reaches 5 degrees, the surface return is nearly lost to the volume return.
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Figure 4.4-8: 1.5 GHz, dry foliage average power waveform with 0.5 m2 target

Figure 4.4-9: 1.5 GHz, wet foliage average power waveform with 0.5 m2 target
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Figure 4.4-10: 10 GHz, dry foliage average power  waveform with 0.5 m2 target

    The next two graphs show the average, return power waveforms for an altitude at

70,000 feet and 10 GHz. In Figure 4.4-10 the target is hidden and surface is nearly hidden

as the beamwidth increases.  Figure 4.4-11 shows that under wet conditions the surface is

completely obscured as well as the target. Finally, Figure 4.4-12 shows that the increase

in frequency to 35 GHz and the accompanying rise in extinction results average return

power waveforms with no discernable features.
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 Figure 4.4-11: 10 GHz, wet foliage average power waveform with 0.5 m2 target

Figure 4.4-12: 35 GHz, dry foliage average power waveform with 0.5 m2 target
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Chapter 5  Beam Incidence in Radiative Transfer

     In this study, the power scattered by a volume will be calculated using many different

techniques including radiative transfer, single scattering and multiple scattering. In all

cases, it is desired to manipulate the solution, making all the necessary assumptions, in

order to create the “convolutional model” that was introduced in Chapter 4 . The

necessary assumption is simply that the medium is strongly forward scattering. This

chapter examines this aspect of the convolutional model: the assumption that multiple

scattering is negligible outside the forward and backward directions. One measure of this

assumption is beam broadening. In most literature, the beam wave case is treated using

wave theory combined with the parabolic wave equation. This is a valid approach for

forward scattering in a small angle in the forward direction. However, as seen in the

studies by Schwering, the scattering of waves often has a component in other directions

(see Section 4.4). In this chapter, the frame work for higher orders of multiple scattering

for beam wave incidence are presented in the context of radiative transfer theory.

    This chapter introduces the general radiative transfer solution. First, a forward-

backward solution is obtained. With the exception of time-dependence, this solution is

directly comparable to the convolutional result already developed. Subsequently, the

forward-backward solution is compared to one other approximation and the full solution;

the approximation includes scattering in all directions by the incident coherent power

density, but no multiple scattering in the incoherent power density. Next the full solution

to the radiative transfer equations for beam wave incidence is presented. Here, the

general transfer equation is numerically evaluated for an incident beam; this solution

includes multiple scattering as much as the classical radiative transfer equations allow.
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5.1 Radiative Transfer Theory
   The geometry for the development of the general radiative transfer equation is given in

Figure 5.1-1

Figure 5.1-1: Scattering geometry for the intensity [Ishimaru, 1997]

      Assuming that the scattering process is polarization insensitive, we will use the scalar

radiative transfer equation, which relates the differential change in the power density over

volume ds. This is written as

( ) )r;ŝ(J'd)t,r;'ŝ(I'ŝ,ŝp
4

)t,r;ŝ(I
s

)t,r;ŝ(I
s

4

t
t

"""
"

+ω∫∫π
ρσ+σρ−=

∂
∂

π

Equation 5.1-1

where

•  I( ŝ ; r" ) is the power density in the ŝ  direction at the position: r"

•  ŝ  is a direction of the power density

•  ρ is the scatterer density

•  )r(t
!σ is the scatterers total cross section which is the sum of the absorbing and

scattering cross sections: )r()r()r( scabst
""! σ+σ=σ and as written here, may be a

function of position r" .

•  ( )'ŝ,ŝp is the scattering function of each scatterer; (prime denotes incident

direction(s)) and is related to the amplitude of the field scattering function squared.

dω’

'ŝ

ŝ

dω

ds
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•  )r;ŝ(Js
"  is the source function (emission sources)

Referring to Equation 5.1-1, the change in power in the r̂  direction is proportional to the

power incident on the differential volume element. This power is then depleted by

absorption as well as scattering into other directions. On the other hand, the power, as it

propagates through the differential volume, increases by an amount due to scattering into

the r̂  direction from other directions 'r̂  as well as energy emitted inside the differential

volume.
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5.2 Radiative Transfer for Strictly Forward-Backward

Scattering

       In this section, the radiative transfer solution for forward scatter only is presented. In

some ways, this approach is a precursor and under some conditions, is directly

comparable to the forthcoming convolutional solution.

Figure 5.2-1: Single scattering for a single scatterer

      Beginning with the classic, source-free radiative transfer equation, the integral over

the solid angle is simplified.

( ) ( ) ( ) ( )∫∫ Ω
π
σρ

+σρ−=
π4

td
td 'd'ŝ,rI'ŝ,ŝp

4
ŝ,rI

ds
ŝ,rId ""

"

This integral, which describes how the power density in one direction is scattered into

another, will be approximated for scattering exclusively in the forward and backward

incident

incoherent

air-foliage

i f

incoherent

Gaussian
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directions. This simple solution can be obtained by assuming a very restrictive function

for the scattering amplitude (sometimes referred to as the phase matrix) as follows

( ) ( ) ( )[ ]ŝ'ŝŝ'ŝ2'ŝ,ŝp bf
t

+δσ+−δσ
σ

=

where the Dirac delta function, δ(*) has been introduced, as well as the forward and

backscattered cross sections, bf and σσ  respectively. Note that this scattering function

obeys the identity
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where Wo is the albedo of the scatterer. Hence the integral of the scattering function

includes the loss due to scattering but excludes that due to absorption. Due to this

selection for a scattering function, the radiative transfer equation becomes (splitting it

into upward and downward directed power densities)
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ŝ,rI
ds
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Once again, converting (changing variables) to optical distance and rewriting this in

matrix form, the following greatly simplified form is discovered
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Using the previously determined, the coherent intensity is substituted into the above

equation
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Equation 5.2-1

The solution to this problem can be found in several different ways; again, we may use

the approach of Cole [1968] or Variations of Parameters [Boyce, 1977]. The initial

conditions are stated as follows: the downward propagating incoherent power density at

the top of the foliage layer is zero; the upward propagating incoherent power density at

the bottom of the foliage layer is also zero. These conditions can be written as
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Substituting for the matrix entries in Equation 5.2-1 for convenience and assuming that

the incident beam is z-directed (normally incident), the differential equation is cast as
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where the forcing function: ( ) τ−

ρ−

=τ eeAs
2

2

w2
0

Equation 5.2-2

the eigenvalues, λ1,2, of the homogeneous system are found from the determinant of the

matrix

( ) λ±=β−α±=λ⇒=β+α−λ 22
2,1

222 0
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and the fundamental matrix (matrix of eigenvectors) and its complementary form which

reduces to unity with the initial condition,  can be written as

( ) [ ]
( ) ( )

( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] 









λ−α−λ+α−β
−βλ−α−λ+α

λ
=τΦ










λ−αλ+α
ββ==τψ

λτ−λτλτλτ−

λτ−λτλτλτ−

λτ−λτ

λτ−λτ
λτ−λτ

eeee
eeee

2
1

ee
eeeXeX 21

Equation 5.2-3

Note that the second fundamental matrix does display the desired property that

( ) ( )zz
1

−Φ=Φ
−

. Employing the boundary condition,

[ ] [ ] ( ) 0IW)0(IW ddd
0 d =τ+

τ

where in this case, the matrices W are given as follows:

[ ] [ ]







=






=
τ

10
00

W,
00
01

W
d0

these values for the matrix indicate that there is no reflection at either boundary. If there

were reflection at either boundary, then these matrices, W, will include the reflection

coefficients; this case is demonstrated in Section 7.6. The solution of the differential

equation is written simply as

( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( )∫∫
ττ−τ

−ΦτΦτΦ−−ΦτΦ=τ
dd

0
d

1

0
dttstWDdttstI

Equation 5.2-4

This solution involves the fundamental matrix as well as the matrix, D, which

incorporates the boundary conditions.  D is given by [Cole, 1968]
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[ ] ( ) [ ] ( )

( ) ( ) ( )[ ] 







λ−α−λ+α−β

λ
λ

=

τ=τΦ+=τΦ=

λτ−λτλτλτ−

τ

dddd

d

eeee
02

2
1

W0WD d
0

and its inverse is given by

( ) ( )[ ]
( ) ( )[ ]

( ) 








λ−β−
λ−α−λ+α

λ−α−λ+α
= λτλτ−

λτ−λτ

λτ−λτ

−

2ee
0ee

ee

1D
dd

dd

dd

1

Equation 5.2-5

The integrals in Equation 5.2-4 may be evaluated analytically. Substituting for the inverse

of the fundamental matrix and the forcing function (coherent power density), the integrals

are evaluated.

( ) ( )

( ) ( )[ ] ( )
( ) ( ) ( )[ ]

( ) ( )
( ) ( )

( )
( )( ) ( )

( )( )

( )
( )( ) ( )
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

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


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−
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
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eSeS
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0
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1
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Equation 5.2-6

where
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( )[ ]
( )[ ]

( )[ ]
( )[ ]bf4

bf3

bf2

bf1

S
S
S
S

σλ−α+βσ=
σλ+α−σβ−=

βσ+σλ+α=
βσ−σλ−α−=

At this point, the solution to the strictly forward scattering solution can be found.

     As an example, the propagation of a beam through a strongly forward scattering

medium is given in Figure 5.2-2. The incoherent power density (diffuse power) behaves

as expected. The diffuse energy grows as the coherent beam penetrates deeper into the

medium. The coherent power constantly feeds the incoherent power; hence, the

incoherent power is expected to grow as the coherent power penetrates the medium.

Figure 5.2-2: Strictly Forward Scatter, incoherent power density at several depths

within the strongly forward scattering medium. Albedo = 0.9
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At some point, the coherent energy will become negligible and consequently, the diffuse

energy will no longer continue to grow. In fact due to absorption, the incoherent power

begins diminishing due to scattering out of the path and absorption, both of which are

defined as lost power in the strictly forward scatter model. Figure 5.2-3 displays similar

results for a smaller particle albedo. For that reason, the diffuse power level is somewhat

reduced with respect to the previous case, since a smaller albedo implies greater

absorption. The general behavior, however, is consistent between the two results.

Figure 5.2-3: Strictly Forward Scatter, incoherent power density at several depths

within the strongly forward scattering medium. Albedo = 0.7
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5.3 Modified Forward Scatter Solution

      In this section, a second, simplified beam-transfer solution is presented. There is,

however, an added level of complexity: the coherent power is not restricted to scattering

in only the forward and backward directions. As in the general case presented in the next

section, the coherent power is scattered in directions as determined by the scattering

amplitude. However, the incoherent power density still only scatters in the forward

direction. Consequently, there is no coupling of incoherent power from one direction (ray

path) into another; multiple scattering in all but the forward and backward directions is

neglected. This solution will be used as a check case for the numerical simulation of the

next, more complex section since the results are greatly simplified. Starting with the same

integro-differential equation and assuming a normally incident beam (z-directed)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫∫ Ω+
π
σρ

+σρ−=
ρ∂

∂θ+
∂

∂θ
π4

rid
td

dtd
dd 'dẑ,rI'ŝ,rI'ŝ,ŝp

4
ŝ,rIŝ,rIsin

z
ŝ,rIcos """

""

Equation 5.3-1

The primary approximation to be implemented is in the integral over the solid angle. For

the diffuse power density, Id, scattering can only occur in the forward direction. Hence,

the only contribution to the power density in a given direction is that due to field

scattered from coherent into the incoherent. In other words, the change in the incoherent

power density in a given direction is reduced by the extinction, increased by the forward

scatter of incoherent and increased by the coherent field scattered in that direction. This

incoherent power density can now only continue to travel in its original direction (as

indicated by the power scattering amplitudes below)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) nn
2

n CsBsA
0

td
d

td
dtd

ri
td

d
td

dtd
d

eAẑ,ŝp
4

ŝ,rIŝ,ŝp
4

ŝ,rI

ẑ,rIẑ,ŝp
4

ŝ,rIŝ,ŝp
4

ŝ,rI
ds

ŝ,rId

−−−

π
σρ

+
π
σρ

+σρ−=

π
σρ

+
π
σρ

+σρ−=

""

"""
"

Equation 5.3-2
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The exponential factors describing the incident, coherent power density are described in

the appendix for this chapter. The first term on the left-hand side is the usual extinction:

scattering loss (and absorption). The second term is the forward-scattered incoherent

power density and the last term is the contribution of the coherent intensity into the

incoherent power density. This idea is graphically illustrated in Figure 5.3-1; notice that

incoherent power does not scatter into new directions; hence, multiple scattering is

neglected to a great extent.

Figure 5.3-1: Modified forward scatter

Next, a change of variables is made, converting physical distance into the optical

distance. This change is described by

ŝz
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( ) ( )td

n
n2

td

n
n

otdotdtd

Bb,Aa:umentsarg

s,ss;0,0s:Limits;dsd,s:let

σρ
≡

σρ
≡

σρ=τ==τ=σρ≡τσρ≡τ

The power scattering amplitude is modified to reflect only forward scattering:

amplitudescatteringforwardfractional,)ŝ,ŝ(p
t

f
σ
σ≡

With these changes, the first-order, ordinary differential equation becomes

( ) ( ) ( ) ( ) nn
2

n Cba
0d

t

f
d

d eAẑ,ŝp
4
1ŝ,rI

4
2

ŝ,rI
d

ŝ,rId −τ−τ−

π
+

πσ
πσ

+−=
τ

""
"

A closed form solution may be obtained by first combining terms,

( ) ( ) ( ) nn
2

n Cba
0d

t

fd eAẑ,ŝp
4
1ŝ,rI

4
2

1
d

ŝ,rId −τ−τ−

π
=











πσ
πσ

−+
τ

"
"

Equation 5.3-3

Then, using an integrating factor, the differential equation evolves to a greatly simplified

form

( ) ( ) ( )











πσ
σ−≡

π
=+

τ
−τ−τ−ττ

τ

t

f
e

Cba
0

kk
de

k
d

4
1kwhere

eAeẑ,ŝp
4
1eŝ,rIk

d
eŝ,rId nn

2
nee

e "
"

Equation 5.3-4

The left-hand side is further simplified by changing the variables in order to reduce the

two-dimensional problem to one dimension,

ootd

tdtd

s;0,0:when
dsd,scos:let

τ≡σρ=τ=ζ=τ
σµρ≡ζσµρ=µτ≡θτ≡ζ
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This change of variables trnasforms the energy propagating in angles other than forward-

backward to forward-backward. In addition,  the coefficients in the exponential must take

a modified form

( ) ( ) µ
≡

σµρ
≡β

σµρ
≡α e

e
td

n
n2

td

n
n

kk~,B,A

yielding the simple equation

( ) ( ) ( ) nen
2

ne Ck~
0

k~
d eAẑ,ŝp

4
1eŝ,rI

d
d −ζ−β−ζα−ζ

πµ
=





ζ
"

Equation 5.3-5

A general solution is obtained by integrating, remembering to include an arbitrary

constant, which is evaluated from the initial condition.

( ) ( ) ( ) CdteAẑ,ŝp
4

1eŝ,rI nen
2

ne Ctk~t

0
0

k~
od +∫πµ

= −−β−α−
ζ

ζ"

Equation 5.3-6

Rearranging and using an integral identity, the solution is rewritten in terms of the error

function.

( ) ( ) ( ) ( ) ( )
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
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


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n

4k~Ck~

n

0
d

Ce

2
k~erf

2
k~erfee

8
ẑ,ŝpAŝ,rI "

Equation 5.3-7

Since the incoherent power density is zero at the top of the layer (the initial condition),

the constant factor, C, evaluates to zero. The resulting solution for the incoherent power

density in the chosen direction, specified by µ = cosθ, is written
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enne"

Equation 5.3-8

The length of the ray to the observation point is

otdo
o

tdo
o

o zandzzs σρ=ζ
µ

σρ=τ⇒
µ

=

Figure 5.3-2: The incoherent power density, generated through the scattering by the

coherent power density, for several different directions at a single observation point.
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Equation 5.3-9

This is the power density at a given observation point, or
" , in the direction θ1 or ( ŝ  ~

cosθ). Figure 5.3-2 illustrates the variation of the incoherent power density assuming that

the medium scatters the incident, coherent power density isotropically.

      Next, we consider the incoherent power density along the two paths: θ1 and θ2,

Shown in Figure 5.3-2. The incoherent power propagating in the direction (θ2) is

generated by the incident coherent power density along the path shown. Since this path

is longer with respect to the path for θ1, and since the path θ2 intercepts more of the

incident power density, the path θ2, will have a larger incoherent power density.

Figure 5.3-3: Incoherent power density scattered along the indicated angles as a

funciton of the observation point at a depth of 1 wavelength.
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This is the case if we ignore absorption. This effect can be seen in the numerical

simulation of the modified forward scatter approximation of Figure 5.3-3. Note that as

the angles become larger, the incoherent power density becomes larger.

Figure 5.3-4: Incoherent power density scattered along the indicated angles as a

function of the observation point at a depth of 10 wavelengths.

      An observation point on the beam axis is expected to yield the largest incoherent

power; however, when scattering loss and absorption are included, this expectation must

be modified. In Figure 5.3-3 through Figure 5.3-5, the peak is shifting away from the

beam axis. In these figures, the power density along different angles measured at a given

observation point along a radial at three different depths are displayed as a function of the

observation point. Note that at only one wavelength into the medium, the peak occurs

near the beam axis. This is due to the negligible effects of absorption and scattering of the

incident beam. However, as the depth is increased, the peak of the incoherent power
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greater distance through the medium, as the observation depth is increased, a balance will

be struck between the absorption/scattering loss and the observation point within the

beam. Hence, the peak shifts. This effect is limited to the two-dimensional simulation

developed in this chapter. Once three-dimensions are included, the peak shift will most

likely disappear. The three dimensional case is a subject for future work.

Figure 5.3-5: Incoherent power density scattered along the indicated angles as a

function of the observation point at a depth of 18 wavelengths.

The total power can now be calculated at the observation point using Gaussian quadrature

to integrate the contributions in every direction. First, the total intensity is expressed in

the following integral relationship over the solid angle surrounding the observation point.
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Equation 5.3-10
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Approximating the polar angle integral using Gaussian Quadrature, the total power is

written as

( ) φµ= ∑ ∫
−=

π
d,rIyP

N

Nj
jod

2

0
jtotal

"

Equation 5.3-11

Since the power density can be determined at the angles (quadrature points), µi, from the

previous development and recalling that the power density has no φ-dependence

( ) ( )∑∑ ∫
−=−=

π
µπ=φµ=

N

Nj
jodj

N

Nj
jddj

2

0
total ,rIy2d,rIyP ""

Equation 5.3-12

It is to be expected that the modified forward scatter solution will yield higher incoherent

power densities than the corresponding strictly forward scatter solution. This is true since,

given the same isotropic scatterers, the modified forward scatter solution captures some

of the energy that is considered lost in the strictly forward scatter solution.

      This is seen in Figure 5.3-6 in which the same isotropic scatterers are used to simulate

total incoherent power in each of the strictly forward and modified forward cases. Only

the 10-wavelength depth result for strictly forward scatter is given in this figure

(indicated in the legend simply as “forward at 10 wl”), for reference. The strictly forward

case includes power in only the forward direction; however, the modified forward is

produced by summing the incoherent power in each of the forward directions as specified

by a 5-point Gaussian Quadrature. At a one-wavelength depth, the beamwidth is

consistent with the strictly forward/backward scattering solution, which will not show

beam broadening. However, as the incoherent power is measured at larger depths, beam

broadening becomes evident. This indicates that the strictly forward/backward scattering

solution will not be sufficiently accurate for isotropic scatters in electrically “deep”

media. Next, the full solution of the radiative transfer equations is derived for application

with a numerical solution
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Figure 5.3-6: The total incoherent power at an observation point along the radial at

a given depth (strictly forward scatter and modified forward scatter)

The beam bifurcation is an effect that is only expected in these two-dimensional

simulations. Once the third dimension of the beam is included, this effect is expected to

disappear. Note that only the axial point would be accurate, within a constant, in three

dimensions since the problem is only symmetric at this point.

5.4 Beam Propagation using Radiative Transport Theory

     An assumption employed in the derivation of the convolutional model, the subject of

the next section, is that the scattering processes that are significant include only forward

and backward scattering. This assumption implies that the illuminated volume contains

the only scatterers that scattering energy back toward the radar. A solution of the

radiative transfer equations has been presented for two cases now: strictly

forward/backward (f-b) scattering, and a modified forward scatter. From the modified

forward scatter solution, it is evident that isotropic scatterers can not be adequately

modeled using the f-b solution.  In this section, the general radiative transfer equations
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are developed and numerically solved for a beam-wave case. Again, it is seen that there

will be significant beam broadening. Although it has been postulated that the f-b solution

is inadequate for isotropic scattering, the full solution of the radiative transfer equations

will yield the most accurate solution for beam wave propagation within the framework

classical radiative transfer theory. Hence, this important result seems to be absent in

literature with the exception of one case presented by Ishimaru [1993].

5.4.1 General Radiative Transfer for an Incident Beam Waveform

     We begin the following illustration in Figure 5.4-1. From this figure, a heuristic

derivation of the general transfer equation for beam incidence will be presented by

following the more restrictive derivation by Ishimaru [1997].

Figure 5.4-1: Scattering geometry for the intensity [Ishimaru, 1997]

     The radiative transfer equation describes the evolution of the power density, ( )ŝ,rI " ,

(sometimes called the total intensity) at the observation position, r" , in a characteristic

direction, ŝ .  Interpreting this equation in Cartesian coordinates, we find the ordinary

differential equation in Equation 5.1-1 is interpreted as the following first-order partial

differential equation,

( ) ( ) ( ) ( ) ( ) ( )∫∫ Ω
π
σρ

+σρ−=
ρ∂

∂
∂
ρ∂+

∂
∂

∂
∂=

π4

td
td 'd'ŝ,rI'ŝ,ŝp

4
ŝ,rIŝ,rI

sz
ŝ,rI

s
z

ds
ŝ,rId ""

"""

Equation 5.4-1

dΩ’

'ŝ

ŝ

dΩ

ds
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The integral over the solid angle will be retained in this case. This integral represents the

summation of incoherent and coherent energy that is traveling in other directions, 'ŝ  that

is scattered (according to the scattering amplitude, p(s,s’)) into the direction of interest,

ŝ .  This is illustrated in the Figure 5.4-2.

Figure 5.4-2: Illustration of scattering which includes multiple scattering

Evaluating the partial derivatives and splitting the total power density into coherent and

incoherent portions, and ( )ŝ,rI " , respectively,

ŝz

θ

Incident
Gaussian
Beam

Coherent
Power

Attenuated
Coherent

Power

Coherent to
Incoherent

Incident
Incoherent

Power

Incoherent Power
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( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )∫∫ Ω+
π
σρ

++σρ−

=
ρ∂
+∂θ+

∂
+∂θ

π4
rid

td
ridtd

ridrid

'd'ŝ,rI'ŝ,rI'ŝ,ŝp
4

ŝ,rIŝ,rI

ŝ,rIŝ,rIsin
z

ŝ,rIŝ,rIcos

""""

""""

Equation 5.4-2

Recalling that the scattering process is considered entirely incoherent, Equation 5.4-2 can

be split into parts that govern the coherent and incoherent processes

( ) ( ) ( ) ( ) ( )ŝ,rIŝ,rIsin
z

ŝ,rIcos ritd
riri "
""

σρ−=
ρ∂

∂θ+
∂

∂θ

Illustrates the coherent or “reduced” power density and

( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ Ω
π
σρ

+σρ−=
ρ∂

∂θ+
∂

∂θ
π4

d
td

dtd
dd 'dŝ,rI'ŝ,ŝp

4
ŝ,rIŝ,rIsin

z
ŝ,rIcos ""

""

is the incoherent or “diffuse’ power density. Each of these separate equations will be

considered separately in the following sections. Note that the coherent power density acts

as a source for the incoherent power density; consequently, a solution is attempted for the

coherent power density first.

5.4.2 Characteristics Solution of the Coherent Power Density

      The equation for the coherent power density (reduced intensity) was given in the

previous subsection and is repeated here for convenience.

( ) ( ) ( ) ( ) ( )θρ∂σρ−=
ρ∂

θρ∂θ+
∂

θρ∂θ ,,zI,,zIsin
z

,,zIcos ritd
riri

Equation 5.4-3

The solution to this partial differential equation is most easily found using the method of

characteristics. Consequently, first parameterizing the variables along the characteristics
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( )
( ) 00z

let

2

1

=ηφ⇒=
η=ηφ⇒η=ρ

We next solve the differential equations for the parameterized equations

1. 

( ) ( )
( )

( ) η+θ=ρ
η=⇒η==ηρ

+θ=ρθ=ρ

sins:solutionfinal
C0s,:.C.Iwith

Csins:solutiongeneral,sin
ds
d

1

1

2. 

( ) ( )
( )

( )θ=
=⇒==η

+θ=θ=

cossz:solutionfinal
0C00s,z:.C.Iwith

Ccossz:solutiongeneral,cos
ds
dz

2

2

 and solve for the characteristic variables

( ) ( )θ−ρ=η
θ

= tanz,
cos

zs

Hence, the characteristic equation for an incident Gaussian beam becomes

( ) ( ) ( )

( ) ( )( ) 2

2

td

w2
0ri

s
3riritd

ri

eA,,sz,,sI:ICwith

eCŝ,rIŝ,rI
ds

ŝ,rId

η−

σρ−

=θηηρ

=⇒σρ−= ""
"

yields a solution to the characteristic equation incident beam.

( )

( ) ( )θ
σρ−

ρ−

σρ−
η−

=ρ

=

cos
z

w2
0ri

sw2
0ri

td2

2

td
2

2

eeAŝ,,zI,or

eeAŝ,rI "



170

Note that the beamwidth is set by the symbol, w. Consequently, when a beam is normally

incident (θ = 0°), the beam shape for the reduced intensity within the random medium is

a unchanged with the exception of the attenuation due to the extinction. This extinction is

due to particle density and total cross-section and appears as a function of depth into the

medium.

5.4.3 Solution for the Incoherent Power Density

      The solution for the incoherent power density follows along the same procedure as

that of the coherent power. However, the complexity of this problem requires a numerical

solution, rather than the closed form solution for arbitrary scattering amplitudes. We

begin with the radiative transfer equation governing the incoherent power density;

restating the transfer equation

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫∫ Ω+
π
σρ

+σρ−=
ρ∂

∂θ+
∂

∂θ
π4

rid
td

dtd
dd 'd'ŝ,rI'ŝ,rI'ŝ,ŝp

4
ŝ,rIŝ,rIsin

z
ŝ,rIcos """

""

Equation 5.4-4

This integro-differential equation cannot be solved for general amplitude-scattering

function, p, and general boundary conditions. Consequently, the numerical solution of

this equation is investigated. First invoking a change of variables from the polar angle to

the cosine of this angle, we let ( )θ=µ cos  and redefine the amplitude scattering function

as

( ) ( )',p'ŝ,ŝp µµ⇒

Next, we assume azimuthal symmetry within the random medium and integrate out the

azimuthal dependence of the scattering function; this reduces the three dimensional

problem down to two dimensions. This will only be valid for plane wave incidence and

the beam axis for the beam wave incidence. Hence, the redefined amplitude scattering

function is rewritten as [Ishimaru, 1997]
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( ) ( )∫ φµφµφ∫ π
φ

π
=µµ

ππ 2

0

2

0
o ',';,p'd

2
1d

2
1',p

Equation 5.4-5

Examples of this reduction are found in Ishimaru [1997]. For example, in terms of the

cosines of the incident and scattering angles, µ and µ’, respectively

( )

( ) ( )( )



 µ−µ−+µµ+=µµ

≡=µµ

2222
o

oo

'11
2
1'1

4
3',p:Rayleigh

albedoW',p:isotropic

More general amplitude scattering functions may be derived in terms of Legendre

polynomials as long as the scattering is symmetric about the direction of the incident

wave [Ishimaru, 1997].

      Consequently, after transforming the variable and the limits of integration, the

transfer equation can be rewritten as follows (splitting the power density into diffuse and

coherent portions as previously discussed).

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )incriinco
td1

1
do

td
dtd

1

1
rido

td
dtd

d2d

,rI,p
4

'd',rI',p
2

,rI

'd',rI',rI',p
4

,rI,rI1
z

,rI

µµµ
π
σρ

+∫ µµµµ
σρ

+µσρ−=

∫ µµ+µµµ
π
σρ

+µσρ−=
ρ∂

µ∂µ−+
∂

µ∂µ

−

−

"""

"""
""

Equation 5.4-6

Transforming back to the characteristics solution, we establish the following integro-

differential equation

( ) ( ) ( ) ( ) ( ) ( )incriinco
td1

1
do

td
dtd

d ,rI,p
4

'd',rI',p
2

,rI
ds

,rId µµµ
π
σρ

+∫ µµµµ
σρ

+µσρ−=µ

−

"""
"

The numerical solution of this equation has typically been performed using Gaussian

Quadrature [Boyce, 1984]. First, we break the integral into a summation, weighted by the

quadrature weights, yj.
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( ) ( ) ( ) ( ) ( ) ( )rI,p
4

,rI,py
2

,rI
ds

,rId
riincio

tdN

Nj
jdjioj

td
idtd

id """
"

µµ
π
σρ

+∑ µµµ
σρ

+µσρ−=µ
−=

Now, the single, integro-differential equation with the summation over 2N quadrature

points may now be rewritten as a system of 2N ordinary differential equations. Given an

illumination which is normal to the boundary, the coherent power density incident to the

elemental volume, ds, located at observation coordinates (ρ, z) is given by

( ) zw2

),s(

0
0cos

z
w2

),s(

0iri
td

2
i

2

otd2
i

2

eeAeeAk̂;z,I σρ−

µρ
−σρ−

µρ
−

==ρ

Where we recognize that the coordinates (ρ, z) must be translated into those appropriate

for the characteristics solution. This conversion and the necessary geometry are given in

the appendix to this chapter. From the results of this appendix, the incident coherent

intensity to the elemental volume, ds, can be written in the following generic form;

( ) nn
2

ntd
2

2
i

CsBsA
0

zw2
),s(

0inri eAeeAk̂;,sI −−−σρ−
µρ

−
==µ

Consequently, the differential equation can be written as a system of ordinary, first order

differential equations.

( )

( )

( )

( )
( ) ( )

( ) ( )

( )

( )

( )

( )

( )

( )















µρ

µρ



















µ

µ

π
σρ+

















µρ

µρ

















µµµµ

µµµµ
σρ+

















µρ

µρ
σρ−=

















µρ

µρ
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−−−

−

−−−

−−−−−−

−

−−

−−−
No0d

No0d

CsBsA
N0

CsBsA
N0

0
td

No0d

No0d

NN0NNN0N

NN0NNN0N
td

No0d

No0d
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No0d
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,z,I

,z,I

e1,p

e1,p
A

4

,z,I

,z,I

,py,py

,py,py

2

,z,I

,z,I

,z,I

,z,I
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d

NN
2

N

NN
2

N
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The “constants” A,B,C are functions of the angle, µ, and are defined in the Appendix.

Employing another change of variables so that the optical distance, τ, is used

( ) ( )td

n
n2

td

n
n

tdtd

Bb,Aa

dsd,s:let

σρ
≡

σρ
≡

σρ≡τσρ≡τ

we can then rewrite the matrix equation as

( )

( )

( )

( )
( ) ( )

( ) ( )

( )

( )

( )

( )

( )

( )















µρ

µρ



















µ

µ

π
+

















µρ

µρ

















µµµµ

µµµµ
+

















µρ

µρ
−=

















µρ

µρ

τ

−
−τ−τ−

−

−τ−τ−

−−−−−−

−

−−

−−−
No0d

No0d

cba
N0

cba
N0

0

No0d

No0d

NN0NNN0N

NN0NNN0N

No0d

No0d

No0d

No0d

,z,I

,z,I

e1,p

e1,p

4
A

,z,I

,z,I

,py,py

,py,py

2
1

,z,I

,z,I

,z,I

,z,I

d
d

NN
2

N

NN
2

N

##

#

$

#%#

$

##

Equation 5.4-7

making a substitution for the constant matrix elements

( ) ( )

( ) ( )















µµµµ

µµµµ
+−≡

−−−−−

−

NN0NNN0N

NN0NNN0N

,py,py

,py,py

2
1IS:Let

$

#%#

$

Equation 5.4-8

where I  is the identity matrix. Using a short hand notation to denote the nth quadrature

value for the power density, ( ) n,dnood I,z,I ⇒µρ  and the distances, d, the matrix

equation can be rewritten as
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( )

( ) 






























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
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

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
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

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####

Equation 5.4-9

Rather than an initial value problem, this a two-point boundary value problem. The

boundary condition on the downward propagating and upward propagating power

densities can be written in the following matrix form




















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
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








−

−

0

0
0

0

I

I
I

I

N,d

1,d

1,d

N,d

#

#

#

#

Equation 5.4-10

This expression states that the downward propagating diffuse intensity is zero at the

upper interface and that the upward propagating diffuse power density is zero at the lower

interface. The solution of the nonhomogeneous boundary value problem can be obtained

in the form of an integral transform.

      In a homogeneous medium we may transform the optical depth into one dimension;

µ
ζ=τµτ≡ζ ddthatsuch,:let
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Equation 5.4-11
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since the cosines of the angles (quadrature values) are constant, they may be removed

from the under the differential. Consequently, multiplying through by the inverse leads to

the following matrix equation with some new definitions
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Following the Green’s Matrix solution in the book by [Cole, 1968], we start with the

standard matrix equation

( ) ( ) ( )ζ+ζ=
ζ
ζ fIP

d
dI

Equation 5.4-12

where the matrix A is constant with respect to the modified optical distance, ζ, and the

forcing function, f, physically represents the coherent incident power density “feeding”

into the diffuse power density. The solution to Equation 5.4-12 can be cast as [Cole,

1968]
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( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( )
[ ] ( ) [ ] ( )d
0

0

1
d

1

0

1

d

dd

W0WDwhere

dttftWDdttftI

ζ=ζψ+=ζψ=

ψζψζψ−ψζψ=ζ

ζ

ζ −ζ−ζ −
∫∫

Equation 5.4-13

where the upper boundary of the random medium has been placed at an optical depth of

zero (ζ = 0) and the lower boundary of the medium occurs at (ζ = ζd), again in the

modified optical depth coordinates. The matrix, ψ, is a particular fundamental matrix

satisfying the homogeneous problem. Notice that the first integral must be re-evaluated

with each time step, whereas the second integral is computed once.

     The matrices, W, help describe the boundary conditions as follows

[ ] [ ] ( ) 0IW)0(IW d
0 d =ζ+

ζ

Equation 5.4-14

where in this case, the matrices W are given as follows:
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





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





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W d0

%

%

%

%

Equation 5.4-15

The solution to the homogeneous problem is found from an eigenvalue analysis. In this

solution, we find the fundamental matrix, ψ, built up from the eigenvalues and

eigenvectors of the homogeneous problem.
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( ) ζλζλζλ

















β

β
++

















β

β
+

















β

β
=ζψ N221 eee

N2,N2

N2,1

2,N2

2,1

1,N2

1,1

#$##

Equation 5.4-16

From this solution, we construct the following fundamental solution matrix,

( ) ( ) ( )0
1−
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Equation 5.4-17

A useful property of this matrix is that its inverse is as follows

( ) ( )ζ−Φ=ζΦ
−1

Now we are ready to compute a numerical solution to the general problem. First, we

analytically evaluate the integrals in Equation 5.4-13 (as far as possible).
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moving the integrations inside the summations
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Equation 5.4-18
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These integrations may be performed in closed form (in terms of the error function) using

the integral relationship










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0

btat 22

Equation 5.4-19

Substituting this result into Equation 5.4-18,
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Equation 5.4-20
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Equation 5.4-21

For further simplification in notation,

( ) tdn

n

n
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td
2
n

n
2
n

n
n

Bb,Aa:let
σρµ

=
µ

≡β
σρµ

=
µ

≡α

then we can rewrite the above expression after the change of variables and rearranging

the summations as
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Consequently, we write the intensity in a given direction, using the new fundamental

matrix, as

( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( )
[ ] ( ) [ ] ( )d
0

0
d

1

0

d

dd

W0WDwhere

dttftWDdttftI

ζ=ζΦ+=ζΦ=

−ΦζΦζΦ−−ΦζΦ=ζ

ζ

ζζ−ζ
∫∫

Equation 5.4-23

where all expressions are now known in closed form.

     To find the total power at a location, or
" , within the medium or at its boundary,  we

integrate the power density over the solid angle surrounding the observation point. First

we express the total intensity as in the following integral relationship

( )∫∫
π

Ω=
4

odensitytotal drPP "

Equation 5.4-24

Approximating the polar angle integral using Gaussian Quadrature, we find

( ) φµ= ∑ ∫
−=

π
d,rIyP

N

Nj
jod

2

0
jtotal

"

Equation 5.4-25
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Since we can find the power density in the directions of the angles, µi, from the previous

development, the solution for the total incoherent power can be reached. Recalling that

the power density has no φ-dependence

( ) ( )∑∑ ∫
−=−=

π
µπ=φµ=

N

Nj
jodj

N

Nj
jddj

2

0
total ,rIy2d,rIyP ""

Equation 5.4-26

Figure 5.4-3: Illustration of the discrete angles in Gaussian quadrature

      An example of this method is given in Figure 5.4-4. In this figure, the total incoherent

power density is given for various depths. Significant beam broadening is evident as the

incoherent power density is measured at deeper depths into the medium. In addition,

some numerical problems are evident at the larger radii. Although larger beamwidths are

µ-2

µ2

µ-1

µ1

or
"

z
θ
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expected, the one-wavelength depth curve does not seem to decay. This is due not only to

the contribution of the backscattered energy but also to the following numerical problem.

As the number of quadrature points is increased, the eigenvalues of the scattering matrix

get larger and the solution becomes unstable. Hence, only five quadrature points were

used to generate these curves. Comparison with ten quadrature points showed reasonable

agreement out to a certain radius, then the solutions diverged. Comparison with the

modified forward scatter solution (which does not suffer numerical instability) shows

reasonable agreement out to a certain radius. This problem will require further refinement

of this method and will be a topic of future efforts.

Figure 5.4-4: Incoherent power transmitted into the medium at varying depths

using the full radiative transfer solution.

Figure 5.4-5 displays the total diffuse power at a depth of 10 wavelengths into the

medium. In addition to the full radiative transfer solution, this figure also shows the

results for the modified forward scatter result and the strictly forward/backward (f-b)

solution. The beam broadening is very evident between the full solution and the f-b
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solution. Consequently, as seen with the modified forward scatter solution, isotropic

scatterers may not be well represented in the f-b case for an electrical thick layer.

Figure 5.4-5: Comparison of the transmitted total incoherent power at a 10

wavelength depth into the medium for the f-b, modified forward and full solutions

Again, we note that the beam bifurcation is an effect that is only expected in these two-

dimensional simulations. Once the third dimension of the beam is included, this effect is

expected to disappear. Note that only the axial point would be accurate, within a constant,

in three dimensions since the problem is only symmetric at this point.

5.5 Conclusions and Future Efforts

     This chapter has outlined the development of a general interpretation of the radiative

transfer equations. The beam wave solutions presented in this chapter have indicated that

beam broadening will become significant when the discrete objects scatter isotropically

or the medium is electrical deep. Isotropic scattering, however, is expected to yield a

large beam spread. Hence, further examination of beam broadening for more general

power scattering amplitudes, such as the one proposed by Schwering (see Section 4.4), is

Total Diffuse Power

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.0
0

0.9
6

1.9
2

2.8
8

3.8
4

4.8
0

5.7
6

6.7
2

7.6
8

8.6
4

9.6
0

10
.56

11
.52

12
.48

13
.44

14
.40

15
.36

16
.32

17
.28

18
.24

Distance from Center of Beam

N
or

m
al

iz
ed

 P
ow

er
 

Full Solution
Modified Fwd: 5
Strictly Forward

6 wl Incident Beam, 20 wl layer; Albedo = 0.7; Observation: 10 wl into the medium
 Full Solution: Isotropic Scattering; 

For modified and strictly forward cases: 
Forward/Total Scattering = 0.7 , Backward/Total Scattering = 0.001 



184

necessary. This is a work in progress; although the theory is developed, it has only been

tested for forward-backward, isotropic scattering and two-dimensional beam broadening.

The first step in the extension of this theory is the introduction of the third dimension.

Subsequently, the introduction of the more complex scattering patterns will require

further effort in the numerical implementation of the theory. In addition, there is still

room for original work in extending the solutions to polarized waves and pulsed waves.
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5.6 Appendix: Geometrical Considerations

      In this solution, we must keep in mind that the directions are fixed by the quadrature

points. Consequently, for a given angle (quadrature), µi, the observation coordinates (ρo,

zo) must be calculated as in Figure 5.6-1. The problem is to find the radial distance in

antenna coordinates in terms. In all cases, the observation point will be in the quadrant

shown. Since a nadir pointed antenna pattern is symmetrical about the z-axis, only one

quadrant of data needs to be calculated.

Figure 5.6-1: Gaussian Quadrature Illustration – fixed scattering angles

An expression is needed for the incient field in the characteristics coordinates. Starting

with the expression for the incident Gaussian beam, with the corresponding loss into the

medium

zw2 td2

2

ee σρ−
ρ−

the next sections develop the geometric expressions in the characteristic coordinates.
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5.6.1 Case 1: Forward Scattering

[ ]o
i

o 900 ≤θ≤

Figure 5.6-2: Translation of the Observation Coordinates into the Characteristics
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so for each case, we arrive at the same expression for the square of the radial distance, ρ
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where the definitions of the “constants” A,B,C are obvious by comparison.
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5.6.2  Case 2: Backward Scattering
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Figure 5.6-3: Translation of the Observation Coordinates into the Characteristics
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•  if  [ ]ood ρ>  - (e.g. µi in Figure 5.6-3) then the following evaluations hold

     Integrate along characteristic from the lower boundary to the observation point so that:
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•  if  [ ]ood ρ<  - (e.g. µi+1 in Figure 5.6-3) then the following evaluations hold

Integrate along characteristic from the lower boundary to the observation point so that:

                Integration limits of s: 
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•  so for all values (and substituting in for d(µ))
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Hence, for this case, the exponent for the incident coherent power density (normal

incidence, θθθθinc=0) is
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where the definitions of the “constants” A,B,C are obvious by comparison.
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Chapter 6  Single Scattering and the Impulse Response

      The simplest wave approach to scattering and propagation by a random medium is the

single scatter approximation.  Single scatter theory retains its simplicity by incorporating

the assumption that the field incident to a random medium interacts with each scatterer

only once and no multiple interactions occur among the scatterers that make up the

random medium. This creates a scattered field, which is a summation of scattered power

from each scatterer. The development of the convolutional model with single scatter

theory is a first step in examining the limitations of the convolutional model.  In addition,

it is the first step in an extension of the convolutional model to more general scattering

geometries using wave theory. Since the convolutional model incorporates several

parameters that are determined by the physical environment, it has been proposed that

these constants can be determined strictly through calibration by measured data. Given

the results of the single scatter analysis, these constants may be interpreted in the context

of a physical system. The multiple scattering approach in Chapter 7  will extend this idea

that the constants in the convolutional model may be estimated, bounded and interpreted

both before and after the model is calibrated with measured data.

       In a previous section, the impulse response approach was introduced as an efficient

means for computing the average power density from a rough surface.  In this section,

this impulse response technique is again derived from single scatter theory applied to a

tenuous (sparse) random medium covering a rough surface. Like the radiative transfer

extension, this method can use the convolutional approach; however, the equations are

only developed into a form similar to the previous radiative transfer approach. The

remainder of the development is presumed to be the same. Unlike the extension from the

radiative transfer theory, the following method is derived for a more general case, which

includes depolarization, strongly scattering- tenuous medium, and scattering which is

more general than the forward-backward directions.

      In addition, the single scatter derivation gives some insight into the pure

phenomenological development of Chapter 4 . It is then simplified to match the

convolutional approach, which only accounts for strictly forward scattering and
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backscattering. The single scatter approach also reduces to the common radar equation,

which is briefly reviewed in the next section for future reference.

6.1 The Radar Equation

        In the development of the single scatter theory in a random medium, the total

received power, P, is written as a summation of the power scattered once by each particle.

This simplification is due to the randomness of the scatterers in the medium: all

interference effects are neglected. Consequently, summing up the power, PR, returned to

the radar from a continuum of scatterers in a random medium can be expressed using the

standard radar equation

[ ]
( )

dV
V R4

),(),(GPP 43
bd

22

TR ∫
π

φθσρφθλ=

Equation 6.1-1

where: λ = wavelength of the carrier
G(θ, φ) = radar antenna gain in the direction ( ) ik̂or, φθ
σb(θ, φ) = particle backscattering cross section per unit area
dV = elemental volume
R = slant range from the radar to dV
ρd               = particle density per unit volume
PT         =  transmitted power

In this expression, the transmitted power is assumed to be a continuous wave signal.

Consequently, the frequency dependence is monochromatic, since monochromatic

dependence is implicit in the backscattering cross-section. This narrowband

approximation is assumed in the transmitting and receiving subsystems as well as in the

intervening medium. It will be shown that single scatter result does reduce to this form

under the narrowband approximation. Next, the single scatter approximation is

introduced. This will eventually lead to the radar equation and the convolutional result of

Chapter 4 .



192

6.2 The Single Scatter Approximation
      We begin by assuming a plane wave is incident on the scatterer; the incident field and

the associated mean power density in free space are written as

( )

( ) ( )( ) ( ) i
2

sis
*
isii

i
rkj

0si

êrE
2
1rHrE

2
1S:DensityPowerIncident

,êeErE:FieldIncident i

"""""""

"" ""

η
=×=

= ⋅−

Equation 6.2-1

where the incidence direction is denoted by ik̂ , the polarization is indicated by

iê (perpendicular to the incidence direction) and the impedance of background medium is

given as (assumed to be non-magnetic)

ε
µ=η 0

In the development of the single scatter theory in a random medium, the total received

power, PR, is written as a summation of the power scattered once by each particle.  This

simplification is due to the randomness of the scatterers in the medium: all interference

effects are neglected.

6.2.1 The Scattered Field due to a Single Scatterer

     When the field scattered by a scatterer is examined, there are several regions in which

the field’s behavior is observed: the near field, Fresnel and far field regions. In the

Fresnel and particularly the near field regions, the scattered waves display complicated

phase and amplitude variations. Hence, for simplicity and as a common manner of

practical convenience, we assume that the scattered field due to some incident field is to

be observed only in the far field.  Consequently when scatterers interact, they also are

assumed to be in each other’s far field. In acoustic wave propagation or when

depolarization of an electromagnetic wave is expected to be negligible, a scatterer will

scatter the incident field in all directions as weighted by scalar scattering amplitude.
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Outside of the near field region, we may assume that the scattered field behaves as a

spherical propagating wave, weighted by the scattering amplitude,

iis

jkR

s E)k̂,k̂(f
R

eE
−

=

Equation 6.2-2

     When the scatterer depolarizes the incident wave, the scattering amplitude will take on

a more complex structure. In the matrix representation, the scattered field can be written

in terms of the incident field. In the following matrix form, the incident and scattered

fields are decomposed into their TE (⊥ ) and TM (||) components [Ishimaru, 1997]:













=




 ⊥
−

⊥

||i

i

is22is21

is12is11
jkR

||s

s

E
E

)k̂,k̂(f)k̂,k̂(f
)k̂,k̂(f)k̂,k̂(f

R
e

E
E

Equation 6.2-3

here the matrix )k,k(f is

&&
 is the tensor scattering amplitude; the scattering direction is

denoted by sk̂ ; and so rrR "" −=  is the range from the scatterer to the observation point.

Figure 6.2-1: Scattering Polarization

sk̂

θa

θi
ik̂
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      Referring to Figure 6.2-1, we see that for a given incident field, the scattered field in

the scattering plane can be determined. Then, both the incident and the scattered waves’

polarizations are defined with respect to the “plane of scattering.” This plane is created

using the vector incidence and vector scattering direction. Consequently, the fields can be

decomposed into TE and TM components (or perpendicular and parallel components)

with respect to the plane of scattering.  Hence, the scattered field vector, ( )rEs
""

, and

scattered power density, sS
"

, due to a single scatterer can be represented compactly as

( ) ( ) ( ) 2
oso

*
soss

jkR

siso

rE
2
1rHrE

2
1S:PowerScattered

,
R

e)r(iE)k,k(f)r(sE:FieldScattered

""""""

""&&""

η
=×=

⋅=
−

Equation 6.2-4

Figure 6.2-2: Scattering Geometry
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The total field, the sum of the incident and the scattered fields, at the observation point

can be written

R
e)r(iE)k̂,k̂(f)r(iE)r(E

jkR

sisaa

−
⋅+= """"""

Equation 6.2-5

Scattering and depolarization by an ensemble of N scatterers can be accomplished using

the single scatter approximation. Assuming that there is no correlation between

scatterers, the total field at an observation point or
"  can be written as the sum of the

incident field (the field in the absence of scatterers) and the scattered field due to each of

the scatterers.

∑
=

−
⋅+=

N

1s

jkR

sisaa R
e)r(iE)k̂,k̂(f)r(iE)r(E """"""

Equation 6.2-6

When the incident field at scatterer, s, (under the summation) is simply given by the free-

space incident field evaluated at the position sr
" , Equation 6.2-6 is the single scatter or

Born Approximation (often, the Born approximation is attributed to an integral

equation, not a summation). In other words, the incident field at each scatterer does not

include the field incident due to scattering from other scatterers. Often the dyadic

scattering matrix, above, is written as a product of the Fourier transform of the scattering

operator and the remainder of the far-field form of the Green’s function [Frisch, 1968]

( )
sa

rkj
sa

rkjssrkkj
isis rdrde)r,r(Se

4
]k̂k̂I[e)k̂,k̂(S~)k̂,k̂(f ssasssi """" """""""

⋅⋅−⋅−− ∫∫⋅π
−==

Equation 6.2-7

This same form (Equation 6.2-6) can be extracted from the multiple scattering formalism

found in Ishimaru [1997], attributed to Twersky [1962] by eliminating all but the first

order terms; the zeroth order term is assigned to the incident field.
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6.2.2 The Mean Field in the Single Scatter Approximation

     Since the incident field is known and therefore deterministic, the mean field is easily

written as

∑
=

−
⋅+=

N

1s
sis

jkR

aa )r(iE)k̂,k̂(f
R

e)r(iE)r(E """"""

This average is performed over all random quantities. For a gas, this may only include

position, while for foliage, it will include a host of characteristics including position, size,

orientation, water content, shape, etc. In this paper we shall explicitly treat random

position and the other quantities will be collected under a single random variable. In

addition, we shall assume that random position and these other random quantities (such

as orientation) are independent of the scatterer.

6.2.3 Statistical Description of the Random Medium

 The probability of finding a scatterer within an incremental volume will be expressed as

( ) ( )
N

dzdydxr
rdrp jjjj

jj

"
"" ρ

=

or the random number of scatterers within the unit volume divided by the total number of

scatterers within the entire volume. The number density of the scatterers, ( )sr"ρ , is the

number of scatterers within a unit volume. If we consider other aspects of the scatterer to

be random, then the probability density function can be written as

( ) ( )
N

rP
)(p jj

j

"" ργ
=ξ

where the vector random variable, γ  represents the orientation, etc.

     In order to describe the spatial distribution of the scatterers in addition to each

scatterer’s individual statistics, we construct the probability density function (pdf) of

Equation 6.2-8. The joint distribution of any two scatterers written in a cluster expansion

of centered random variables [Frisch, 1968]:
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( ) ( ){ } ( ) ( ) ( ) ( ){ } ( )
( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )

( ) ( ) ( )43213241

423143214321

3213212121
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""""""""""

++

+=ρρρρ

=ρρρ=ρρ

where E{*} indicates expected value

When Gaussian random variables are chosen, only the two-point correlation function

exists. The use of these higher order statistics will prevent the absurdity that two

scatterers can occupy the same space. Within the foliage, the correlation represents a

spatial correlation and therefore, a finite correlation length is required. Hence, we

construct the pdf with pair correlations. Another major assumption will also be included:

the scatterer’s individual properties (rotation, size, etc.) are statistically independent of

the position statistics [Tsolakis, 1985].

( ) ( ) ( ) ( ) ( ) ( )[ ]21212121 r,rCrrPP,p """" +ρργγ=ξξ

Equation 6.2-8

Here, the vector random variable, ξ , represents a combination of the random variables

for position, r" , and other scatterer properties, γ . The function, )(P 2,1γ , is a joint pdf that

describes the scatterer’s size, rotation, etc. The density, )r("ρ , describes the scatterer’s

number density in the volume and finally the pair correlation between the scatterers is

given by the correlation function )'r,r(C "" .

      Recognizing that the incident field is deterministic in the single scatter

approximation, the average field is rewritten

( )
N
r

)r(iE)k̂,k̂(f
R

erd)r(iE)r(E sN

1s
sis

jkR

V
aa

"
""""""" ρ

⋅+= ∑∫
=

−

If the medium is uniform, the position probability density function is simply ( ) N/rs
"ρ

and the summation can be replaced by multiplication by N. Simplifying we find the mean

field at an observation point ar" .
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( )ssis

jkR

V
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∫

Equation 6.2-9

Here the configuration average •  is shown implicitly and the random positions are

treated explicitly.  In the notation of Tsolakis [1985], the average field is given by

)r()r(iEurd)r(iE)r(E ss
a
s

V
saa

""""""""
ρ⋅∫+=

Equation 6.2-10

In this form the average over random quantities, excluding the position, is given by

)(puduu j
a
j

V
j

a
j

a
j

j

γγ=≡ ∫
γ

Equation 6.2-11

The double brackets indicate averaging over a specific vector of random variables, γ ,

representing the orientation, etc.  The scattering operator is given in this case (far field,

tenuous medium) by

sa

rrjk

is
a
s

rr
e)k̂,k̂(fu

sa

""

""

−
≡

−−

Equation 6.2-12

and represents a scattering characteristic of the individual scatterer. This notation will be

used extensively in the next chapter which addresses multiple scattering.

6.2.4 The Mean Power in the Single Scatter Approximation

     Next we consider the mean power transport through a random medium using the

single scatter approximation. We begin by forming the two-point, two-frequency

correlation of the field.  Denoting the complex-conjugate transpose by the asterisk with

an over-bar
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expanding this expression
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We next average the above equation to form the correlation of the fields at two points and

two frequencies.
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Equation 6.2-14

     The averaging operator commutes with the summations. In addition, we recognize that

the incident field is deterministic, since the incident field is specified. After factoring the

first three terms in Equation 6.2-14, it becomes
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Equation 6.2-15

Finally, we note that the last average will require a joint probability density function.

Consequently, we must include correlation between the position vectors, even if we

desire delta correlation. Substituting for the pdf in the final term (assuming only

correlations in position), we find
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Equation 6.2-16

Recognizing the form for the average of the mean field in Equation 6.2-15, substituting

Equation 6.2-16 and evaluating the average of the last term, the correlation is rewritten as
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Equation 6.2-17

If we assume that the positions are delta-correlated and substituting Equation 6.2-11 for

the configuration averages (averages over orientation, etc.),



201

*

2
b
j2j

*
i1j1

a
j

V
j

2b
*

1a2b
*

1a

)k(u)k,r(E)k,r(iE)k(urd

)k,r(E)k,r(E)k,r(E)k,r(E

⋅⋅⋅+

⋅=⋅

∫
"""""

""""""""

Equation 6.2-18

This is the result for the single scatter approximation to the two-point, two-frequency

correlation of the fields with delta correlated scatterers (in position). The left hand side is

called the coherency matrix, which is defined as  [Goodman, 1985]
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Equation 6.2-19

at a common observation point, ( )ba rr "" = , the trace gives the mean power density of the

signal and the off-diagonal elements give the correlation between the power densities.

The coherency matrix may be transformed into the more familiar Stokes parameters as

follows
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Equation 6.2-20

Once the configurationally averaged Green’s function is calculated for the medium

(Equation 6.2-11), the coherency matrix is known; consequently, the Stokes parameters

are known. Hence, since the incident field is deterministic at a given point, and once the

pdf’s are assigned, all the parts of the problem have been determined and the vector

problem can be solved, in the single scatter approximation.
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6.3 Acoustic or Scalar Wave Propagation
      In a one-dimensional case or an acoustic case, no depolarization will occur and the

scattering amplitude is a scalar. Hence, the field can be written with the vector directions

implicitly understood to be ik̂ . The following solution can hold for a scalar field or

simply one of the components of the polarized fields from the previous section. For weak

cross-polarization, these components may then be recombined to form the Stokes

parameters or the polarization sensitive result. For strong cross-polarization, there is an

extra term in each of the following equations. In single scatter theory, this is would be a

relatively simple addition. In scattering approximations beyond the single scatter, the

solution would require the added complexity of a pair of coupled equations.

Consequently, the simplicity of the following equations relies on the single scatter

approximation.

6.3.1 The Coherent Field

      If the individual scatterer characteristics  (orientation, etc.) are statistically

independent of position, the coherent or average field is simply an integration performed

over the spatial extent of the random medium. If the orientation of the scatterer and the

scatterer’s position are independent, the average in assuming no depolarization can be

written (assuming far field interactions)

( )ssis
sa

rrjk

V
saa r)r(iE)k̂,k̂(f

rr
erd)r(iE)r(E

sa ""
""

"""
""

ρ
−

+=
−−

∫

Equation 6.3-1

6.3.2 The Correlation of the Field

     The calculation of the average scattered power density, rather than the coherency

matrix, begins with the calculation of the two-point correlation of the scattered field. We

begin with the previous result for the single scattered field and multiply by its complex

conjugate observed at a different location and at a different frequency.
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expanding this form, we obtain
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Equation 6.3-3

Hence, as previously derived in the polarization sensitive form, we arrive at the two-

point, two-frequency correlation of the field. The average two-frequency correlation at an

observation point, or" , takes the form (letting oba rrr """ == )
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Equation 6.3-4

Again, averaging over the configurations (size, orientation)
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Equation 6.3-5

Finally, we assume delta-correlated scatterers and the two-frequency correlation of the

fields reduces to
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Equation 6.3-6

      In an attempt to improve the single scatter formulation, the first order multiple

scattering solution allows for exponential decay into the medium to the point at which the

scattering occurs [Ishimaru, 1997]. Then an additional exponential decay term is

introduced to account for the wave traveling from the scatterer to the observation point.

This loss will be justified in the multiple scattering formulation and results from

absorption and scattering. Once absorption by the scatterer is included, this lost energy,

represented by the absorption cross section, aσ , is added to the scattering cross section to

form the total or extinction cross section, sat σ+σ=σ .  Hence, as a coherent wave

travels through an uncorrelated random medium, the coherent field is diminished by the

total cross section of the scatterers encountered.

      Therefore, referring to Figure 6.3-1, single scattering by a differential volume located

at jr" inside a random medium can be written
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here the power loss coefficient is given by ∫ σρ=γ R
0 teff dRR and is derived from an

average over the distribution of total scatterer cross sections where tσ  is the average

total cross section. The first order multiple scattering form will be used in the next several

sections.
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Figure 6.3-1: First order multiple scattering

6.3.3 Return Power Density

      From the correlation of the output-scattered fields, we may construct pulse

propagation results. Reviewing the development of Section 2.5.1, if we write the incident

field as an inverse Fourier transform, the complex amplitude, E(t), of the input, scalar

field can be written:
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Equation 6.3-7

The incident field is a function of position since it is weighted by the antenna pattern. The

output field can be written as an inverse Fourier transform, employing a frequency

domain transfer function approach (generalized to include time dependent behavior)
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Equation 6.3-8

Next, we find the position and time-dependent field correlation of the output field

or
"
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Foliage Layer
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Equation 6.3-9

The two-position, two-frequency correlation in Equation 6.3-9 has been found in the

previous section in terms of the incident field. Hence, from Equation 6.3-5, the frequency

domain transfer function can be found. However, the coherent power density, is assumed

negligible since it is dissipated by scattering and absorption. More importantly, the

coherent power is not likely to be part of the backscattered energy since it is specularly

reflected at the boundary(s). The coherent power will only be included in the

backscattered waveform when the antenna is pointed at nadir. Using the previously

derived two-frequency correlation
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Equation 6.3-10

where we note that the joint pdf, ( )'r,rp "" , has been replaced by the position correlation

function since the other portions lead to the coherent field which has been neglected.

      In first order multiple scattering theory, the transfer function at a single frequency can

be simply derived from the transform of the spatial scattering function )k̂,k̂(f is  modified

by the loss in the medium and gain of the antenna at the given frequency. If we assume

that the scatterers are delta-correlated and we let the observation points coincide,

oba rrr """ == , the time independent transfer function is seen to be
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Equation 6.3-11

where R1 refers to the penetration depth into the random medium to the scattering

element at jr"  and R2 refers to the distance from the scattering center to the observation

point or" . In addition, frequency dependence has been added to the scattering amplitude

(ω0 is the carrier radian frequency). Finally, as the number of scatterers approaches

infinity, we begin to refer to scattering from a differential scattering volume. Hence,

given the number density of the scatterers, the transfer function corresponding to

scattering by a differential scattering element becomes
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       One additional term will be introduced into the transfer function, the antenna pattern

that weights the incident field. For simplicity, antenna gain at a given frequency for

monostatic operation can be represented as follows

)(G);,(G);,(G TR ω=ωφθ=ωφθ

Note the monostatic assumption: transmitting and receiving directions are identical.

Next, we rewrite the gain of the transmit antenna as

)(g)(g);,(G *
TTT ωω=ωφθ

Additionally, assume that the gain on transmit and the effective aperture area on receive

are represented by

)(g)(g)(G
4

*
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2
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π
λ

Equation 6.3-12
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Consequently, using only the frequency deviation, ω1, from the carrier, ω0, in place of the

entire radian frequency ω0+ω1 (for brevity of notation) within the arguments, the transfer

function is rewritten to include the antenna pattern’s weighting
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Equation 6.3-13

Consequently, after including the monostatic assumption (R = R1 = R2), we may move

the antenna dependence from the incident field into the transfer function, so that
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and the average power becomes
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Equation 6.3-15

since the position dependence of the incident field has been moved to the transfer

function. Next, we rewrite the two-frequency and position dependent integrand
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This quantity, Γ , is a simplified version of the two-frequency mutual coherence

function [Ishimaru, 1997]. It has been simplified for the single scatter case. The two-

frequency mutual coherence function is the correlation of the time-varying, frequency

domain transfer function, H(ω,t), at two different frequencies and two different times (for

time-varying medium) [Ishimaru, 1997]

)t,(H)t,(H)t,t;,( 220
*

110212010 ω+ωω+ω=ω+ωω+ωΓ≡Γ

Once the two-frequency mutual coherence is constructed, the scattered power density is

found when t1 = t2 = t [Ishimaru, 1997] from
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When the bandwidth of the pulse is narrow with respect to the carrier frequency, the

narrow-band approximation can also be made. In this case, the scattering function, as a

function of frequency, is roughly constant and can be evaluated at the center, carrier

frequency. Once this narrow-bandwidth approximation is made, the only frequency

dependence in the two-frequency mutual coherence function appears in the Fourier

kernel. A change of variables to the difference frequency 21d ω−ω=ω  yields a simpler

expression. The two frequency mutual function for a narrow band input signal becomes

[Ishimaru, 1997]
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Equation 6.3-17

Once the two-frequency mutual coherence function is constructed, the backscattered

power density has been determined. When a finite number of discrete scatterers is

present, in contrast to the formulation above, the volume integration over the density of

scatterers will be replaced with a discrete summation.

       For each scattering direction, sk̂ , given the incident field direction, ik̂ , the scattered

field must be re-computed. Next, we make several definitions concerning the radar cross-
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section of this scatterer. First is the differential radar cross-section, dσ  for given incident

and scattered field directions
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Equation 6.3-18

The bistatic cross-section will be denoted as biσ  and is defined by the following:
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Equation 6.3-19

Another important cross-section in this work is the total observed cross-section (the

scattering cross-section), sσ . Denoting a differential unit of solid angle as dΩ, this cross-

section is written

∫∫ Ωσ=σ
π4

ds d

Substituting Equation 6.3-19 into Equation 6.3-9, employing the narrow beamwidth and

narrow band approximations, the inverse transforms are easily performed and the

backscattered waveform reduces to
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Equation 6.3-20

Here, the free space, time delay to the scattering element at dV has been included. This

time delay could be made more general by including a medium-dependent propagation

speed.
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     Referring to Figure 6.3-2, the single scatter result is customized for application to the

foliage problem with the rough interface. Breaking the volume integral into depth and

surface integrations, we find a composite of a surface integration over the canopy and an

integration along the depth coordinate along a given radial (ray-path).  The return average

power is given by
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Equation 6.3-21

This returned power density is identical to the power density predicted by the

convolutional radiative transfer result; however, the integrations have been re-arranged

and time dependence is ignored up to this point.

Figure 6.3-2: Problem geometry
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Rearranging the order of integration, this is seen to be equivalent to the radiative transfer

result derived in Chapter 4 . Assuming a the porpagation spped is the same everywhere,

the radiative transfer approach of Chapter 4   yielded
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When we integrate this radiative transfer result over the surface, substitute for the

incident intensity, simplify the limits and compensate for the effective receiving area of

the antenna, identical results are realized for the radiative transfer and the first order

multiple scattering approaches.
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This, after the same manipulations found in Chapter 4 , can be written as
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Equation 6.3-23

Hence, the inner, bracketed convolutional integral of Equation 6.3-8 is the one-

dimensional average power received along the radial. Rewriting,
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Equation 6.3-24

the impulse response and the corresponding one-dimensional, two-frequency mutual

coherence function can be identified as a Fourier transform pair:
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In general, for scattering in three-dimensions and for wide-band signals, the power

density is written [Ishimaru, 1997]
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where
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and the asterisk signifies the complex conjugate. This analysis produced a simplified

version of the impulse response for the volume return. Next, the surface return is briefly

addressed.

     First, this formulation does not account for the coherent and incoherent power

transmitted through the foliage, scattered by the underlying rough surface, and

transmitted back through the foliage to the radar. Under the single scatter approximation,

the ground-scattered return does not interact with the volume return and consequently, is

consistent with the results from the radiative transfer approach. The surface backscattered

power due to the incident coherent field is given by
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The quantity, ),(o
s φθσ , is the surface radar cross section per unit area. Here, the coherent

field suffers an exponential decay as it propagates to the surface; it scatters incoherently
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(for non-nadir pointing); and consequently propagates back through the foliage. Since

this integration is identical to the surface return found in the radiative transfer description,

the remainder of this solution, like that of the foliage return, can be found in section 4.3,

of  Chapter 4 . In addition to the coherent power, an incoherent component will be

incident to the surface due to scattering within the foliage. The incoherent power incident

to the surface will assume a similar form. Consequently, there are two contributors to the

power incident to the surface: incoherent power generated within the random medium

and an attenuated coherent power. The surface will scatter each of these components

incoherently back to the radar. At the receiver, under the narrowband and narrow

beamwidth approximations, the received incoherent power due to surface scattering can

be written
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Equation 6.3-28

where the amplitude (1/r) dependence has been approximated.

6.4 Conclusions and Future Efforts
      Like the convolution result, the first order multiple scattering result can accommodate

a spatially varying velocity and may be re-cast into a convolutional, impulse response

form when the narrow-band and narrow-beamwidth approximations are employed.  More

importantly, a further limitation of the convolutional approach has been identified: use of

a narrow bandwidth approximation. This assumption is expected due to the use of

constant forward and backscatter coefficients with respect to frequency in deriving the

radiative transfer results. The use of the narrow beamwidth approximation has already

been identified in the radiative transfer approach.  However, using the full expression for

two-frequency mutual coherence function, the impulse response approach may be
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extended to broader bandwidth pulses in addition to broader beamwidth antenna patterns

while maintaining some convolutional aspects. In addition, it was demonstrated that the

single scatter solution could be extended to include polarization effects. This effort looks

feasible and  should be attempted.

     Concluding, finding the two-frequency mutual coherence function (or the impulse

response) is key to determining the pulse propagation. Once this function is known, the

pulse can be reconstructed. Next, a multiple scattering approach will be investigated in

order to determine if a more general two-frequency mutual coherence function can be

found. In addition, the multiple scattering approach will yield further insight into the

extinction and effective medium parameters.
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Chapter 7  Multiple Scattering Approach

     In this chapter, the multiple scattering solution is developed in the Twersky

approximation for both the mean field and its correlation. Like the exploration of the

beam solution to the full radiative transfer equations, this step in the further development

of the convolutional model is important in many regards. First the coefficients found in

the convolutional model, such as extinction, and forward and backward scattering cross

sections, are purely heuristic at this point. Although these values are expected to be

calibrated by measured data, the number of free parameters in the convolutional model

renders this calibration somewhat uncertain. In other words, a measured waveform may

be reproduced using several different combinations of the free parameters found in the

convolutional model. Consequently, if these parameters can be estimated or bounded at

the outset, the calibration may be more accurate. Multiple scattering theory may be used

to estimate these parameters. For example, as we see in the derivation of the mean field,

multiple scattering theory predicts the decay of the wave as it propagates through a

random medium. Hence, extinction coefficients may be estimated from these results and

then fine-tuned using measured data rather than blindly fitting the data.

       The first step executed in the multiple scattering approach is to calculate the mean

field for a discrete random media with pair correlations. Using the Twersky expansion of

the scattered fields, an equation for the mean Green’s function is developed. Several

different solution techniques are then explored including renormalization [Frisch, 1968]

in Section 7.3.3 and stationary phase (for uncorrelated scatterers) in Section 7.3.2. This

last approach is applicable to scalar version of the Distorted Wave Born Approximation

(DWBA) proposed by Lang [1981]. The DWBA is then proposed as a viable alternative

to the convolutional approach in Section 7.4.

        In Section 7.5, the two-frequency radiative transfer equation is derived closely

following the works of Barabanenkov [1971],  Besieris [1981] and Tsolakis [1985]. Like

Tsloakis, this is a development for discrete random media. The one variation, however, is

that the discrete scatterers support only forward-backward scattering; they do not scatter

isotropically, as assumed by Tsolakis [1985]. This leads to a simpler form for the two-
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frequency radiative transfer equations. A solution is presented in  Section 7.6. Here it is

proposed that the two-frequency rough surface scattering results of Section 3.4.2 should

be used as the boundary condition. If, at this point, certain additional scattering

mechanisms are ignored (as is done in the radiative transfer approach), the convolutional

form may be recovered. Finally, the full development of the two-frequency radiative

transfer equations is reviewed in the Appendix. Here it can be seen that the problem is

reduced from the three-dimensional version for isotropic scattering down to a one-

dimensional version when forward-backward scattering is assumed.

7.1 The Mean Field and the Dyson Equation

       The single scattered field is defined as the incident field scattered by each of the N

scatterers to the observation point, arr "" = , and is written as a simple summation over the

scatterers that form the random medium. Equation 7.1-1 casts this as a vector equation

that employs the dyadic notation that maintains the polarization.

∑ ⋅+=
=

−N

1j

jkR

jisaa R
e)r(iE)k̂,k̂(f)r(iE)r(E """"""

Equation 7.1-1

or adopting the notation of Twersky [Ishimaru, 1997], this expression can be written

more compactly as in Equation 7.1-2.

∑ ⋅+=
=

N

1j
j

a
jaa )r(iEu)r(iE)r(E """"""

Equation 7.1-2

where the total field at point arr "" =  is given by aE
"

, and the incident field at position

arr "" =  is denoted by iE
"

 and the operator 
a
nu  describes how the total field at the point

nrr "" =  scatters to the position, arr "" = . In a tenuous medium where each scatterer is in the
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far field of the others, this operator can be described by the product of the dyadic

amplitude scattering function )k̂,k̂(f is
"

 and the far field Green’s function. We use the

familiar form

)r(iE)k̂,k̂(f
rr

e)r(sE jij
ja

rrjk

a
ja """

""
""

""

⋅
−

=
−−

Equation 7.1-3

Figure 7.1-1: Local scattering coordinates

       The vector directions are described in Figure 7.1-1. It is assumed that the incident

wave is a plane wave and the scattered wave expands as a spherical wave. The

assumption of the incident plane wave is reasonable as long as this scatterer is in the far

field of either the source or another scatterer. In that case, the incident spherical wave is

locally planar.

      Consequently, the total field at an observation point arr "" =  is a summation of the

double scattered fields (incident field scattered by each of the N scatterers to a different

member of the N scatterers, then to the position arr "" = ), the triple scattered fields, etc.

sk̂

θa

θi
ik̂
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Equation 7.1-4

Next, we address the Twersky approximation. If backscattering is not important, Twersky

removed scattering paths that include the same scatterer twice (or more) in the above

summations. He writes
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Equation 7.1-5

Equation 7.1-5 is an example of Twersky’s “expanded form.” Noting the limits on the

summations, we see that in his formulation a number of events are ignored. These include

ignoring triple scattering between two scatterers, ignoring quadruple scattering between

three scatterers, etc.

7.2 Statistical Description of the Random Medium
      If we consider the number density (number of scatterers per unit volume), then the

probability density function can be written as

( ) ( )
N

rP
)(p jj

j

"ργ
=ω

Equation 7.2-1

     In order to describe the spatial distribution of the scatterers in addition to each

scatterer’s individual statistics, we construct the joint probability density function (pdf).

The joint distribution of any two scatterers written in a cluster expansion of centered

random variables [Frisch, 1968]:
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where E{*} indicates expected value

When Gaussian random variables are chosen, only the two-point correlation function is

non-zero. The use of these higher order statistics will prevent the absurdity that two

scatterers can occupy the same space. Within the foliage, the correlation range represents

a spatial correlation and is therefore presents a finite correlation length. Hence, we

construct the pdf with pair correlations. Another assumption is to be made: the scatterer’s

individual properties (rotation, size, etc.) are statistically independent of the position

statistics [Tsolakis, 1985].

( ) ( ) ( ) ( ) ( ) ( )[ ]21212121 r,rCrrPP,p """" +ρργγ=ξξ

Equation 7.2-2

Where the vector random variable, ξ , represents a combination of the random variables

for position, r" , and other scatterer properties, γ . The function, )(P 2,1γ , is a joint pdf that

describes the scatterer’s size, rotation, etc. The pdf, )r("ρ , describes the scatterer’s

number density in the volume and finally the spatial pair correlation between the

scatterers is given by the correlation function )'r,r(C "" .

7.3 The Dyson Equation
      We are now in a position to describe the characteristic moments of the field. The first

moment, or the mean field, is described by the “Dyson” equation. We begin with
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Equation 7.1-5, the equation for the total field at an observation point, ar
" . We then

average, first with respect to the position [Tsolakis, 1985].
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Equation 7.3-1

in the last integral, the symbolic form for the joint pdf of the three position vectors is

given, instead of the explicit (much longer) form. Since the statistics of position do not

depend on the specific scatterers, the summations can be performed resulting in
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Equation 7.3-2

As the number of scatterers becomes large, N→∞, the factors of N cancel and in the

limit, the equation for the mean field reduces to
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Equation 7.3-3

It can be seen, through Neumann expansion of the following integral equation, that the

above “expanded” form for the mean field can be rewritten in the following compact

integral equation form:
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where the spatially averaged Twersky operator is given below
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Since the Twersky operator contains the scattering amplitude as a parameter, we must

also average over the orientation, size, etc. Following the notation used by Tsolakis

[1985], we average the Twersky operator and its corresponding spatially averaged form

over the configuration space,
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Hence, we can rewrite the mean field and the mean Twersky operator equations as

)r,r(C)r(iEUurdrd

)r()r(iEurd)r(iE)r(E

kjk
j
k

a
j

V
k

V
j

jj
a
j

V
jaa

""""""

""""""""

⋅⋅∫∫+

ρ⋅∫+=

Equation 7.3-7

)r,r(CUUurdrd

)r(UurduU

nm
n
k

m
n

j
m

V
n

V
m

m
m
k

j
m

V
j

j
k

j
k

""""

""

⋅⋅∫∫+

ρ⋅∫+=

Equation 7.3-8

where the double brackets, • , indicate configuration averaging with respect to the

subscript index of the “Twersky operator.”

    In this chapter, we will only discuss the scalar wave propagation problem. In addition,

since the expressions involving long summations are completed, the explicit arguments

for the Green’s function will be used in order to reduce confusion. Hence, we reduce the

previous equations for the mean field and the mean Green’s function to their scalar form

(or component form of an uncoupled, polarized vector equation)
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7.3.1 “Perfect Gas” Solution of the Dyson Equation

      The solution to the “perfect gas” problem, i.e. zero correlation case, has been derived

in Ishimaru [1997]. Starting with the Foldy-Twersky integral equation for the scalar

coherent field,
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Equation 7.3-11

we explicitly include the far-field expression for the scattering operator (assumes tenuous

medium).
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A simple case occurs when the incident field is a normally incident plane wave and the

medium is homogeneous with a depth, d.
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Under these assumptions, the effects of the medium are not significant in the direction

transverse to the propagation direction. Therefore, we expect the mean field to be

invariant in the x and y directions for a z-directed incident plane wave [Ishimaru, 1997].
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Consequently, the integral over the volume of scatterers can be written. We find that the

stationary point in transverse directions occurs when [Ishimaru, 1997]
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in the y-coordinate. Hence, this yields the stationary points )yy,xx( ss == , where (xs, ys)

is the stationary point. In the evaluation of the integral by stationary phase, the second

order partial derivatives are needed,
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Hence, the stationary phase evaluation of the double integral in the x and y coordinates is

given by
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Equation 7.3-14

Hence, this analysis has lead to a medium that scatters in the forward and backward

directions; all other scattering is cancelled, on average. If the backscattered field is

neglected with respect to the forward-scattered field, the resulting integral equation for

the mean field is then given by
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Equation 7.3-15

This equation is solved exactly if the form of the solution is taken to be
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The solution and the effective medium wavenumber, K, for incident plane wave is then

found to be
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Equation 7.3-16

The uniform scatterer density is given by ρ. Assuming lossless scatterers, we may

employ the optical theorem in order to obtain the damping of the field.
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Equation 7.3-17

 Absorption loss may be added phenomenologically.

7.3.2 Dyson Equation for the “Perfect Gas Medium”

      The equation for the mean Green’s function in the perfect gas approximation (i.e. no

correlation among scatterers) is given by
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Equation 7.3-18

noting the explicit substitution for the Twersky scattering operator by its far field

approximation. Next, we assume that the scattering function is independent of the

observation direction. So that

( ) ( )ω=ω ;k̂f;k̂,k̂f iis
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where the frequency dependence has been explicitly included in the argument list. Hence

we have scatterers that are strongly forward or backward scattering or that are isotropic.

Hence, the scattering amplitude is no longer a function of the observation coordinate, jr"

and may be removed from the integral.  The equation for the mean Green’s function is

now written (with the frequency dependence assumed in both the Green’s function itself

and the scattering amplitude)
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Equation 7.3-19

Operating on Equation 7.3-11 with the ( )22 k+∇  and recalling that this operates on the

observation coordinate jr
"  only
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Equation 7.3-20

by definition of the Green’s function, operation on the first term on the left hand side and

the operation on the Green’s function within the integration result in Dirac delta

functions.
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Hence, the Dyson equation for the mean Green’s function is written as
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Equation 7.3-22
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       In the strictly forward/backward scattering medium, the scattering occurs in one

direction only. Recognizing that the propagation is only in this one direction, that of the

incident direction, there is no loss of generality to assume that the propagation direction

is z-directed. Consequently, the Laplacian reduces to a one-dimensional form, and under

the assumption that the solution takes the form of a plane wave, the equation for the mean

Green’s function becomes
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Equation 7.3-23

Of course, an arbitrary incident field may be written as a superposition of plane waves.

Performing a Fourier transform, the mean Green’s function is given by
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and the poles of the system, keff, are given by
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the approximate equality (via the binomial expansion) holds when the medium

perturbation to the wavenumber is much less than the free space wavenumber. This form

results in a solution for the effective medium Green’s function
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which is identical to the plane wave result for stationary phase, Equation 7.3-16. Hence,

in the perfect gas assumption, the effect of the medium is a ‘renormalization of the

wavenumber, which is replaced by an effective wave number, having generally an

imaginary part” (see Equation 7.3-17) [Frisch, 1965].

7.3.3 The Dyson Equation for a Medium with Pair Correlations

      In general, the perfect gas assumption does not hold and the mean Green’s function

takes on a more complicated form [Frisch, 1968]:
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Equation 7.3-27

Here the “Mass Operator”, M̂ , encompasses averaging over the range of correlations

among the different scatterers and is most easily understood from the diagram technique

[Frisch, 1968]. In the restrictive case of this chapter, however, the averaging is limited to

pair correlations and the equation for the mean Green’s function reduces to the following

form (assuming only far field interactions)
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∫∫+

ρ∫+=

∫∫+

ρ∫+=

Equation 7.3-28

where the kernel of the reduced Mass operator is denoted by ( )nm r,rM "" . The mass

operator is already in a reduced form since we’ve only considered pair correlations.

     Next, the operator, ( )22 k+∇ , is applied to the above equation. This operator is

applied to all functions of the observation coordinate, including the scattering amplitude.

The result of this operation will result in a simpler form if the scattering amplitude can be
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excluded from this operation. The scattering amplitude is independent of the observation

direction in only two circumstances:

•  Isotropic Scattering (treated by Tsolakis)

•  Forward or Backward Scattering directions relative to the incident direction

Then, the scattering amplitude is a function of frequency and the incidence direction

only. Isotropic scattering was not only used by Tsolakis, but also by Frisch in deriving

the Foldy Approximation [Frisch, 1965].

     After applying the operator when the scattering amplitude is independent of the

observation direction, the equation for the mean Green’s function becomes

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
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ρ−−δ−=

−δ∫∫−

ρ−δ∫−−δ−=+∇

Equation 7.3-29

Above, the scattering amplitude is shown as a function of the incident direction only.

This result can be interpreted for either the isotropic or the forward/backward case.

      In a homogeneous random medium, both the mass operator kernel and the Green’s

function are functions of the distance coordinate. Hence, the equation for the mean

Green’s function finally assumes the form

( )( ) ( ) ( )
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( ) ( )
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Equation 7.3-30
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 Again, solving by Fourier transform techniques, noting the convolutional integral,

( )
( ) ( ) 
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22

i
k """
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Equation 7.3-31

The effective wavenumber in this Fourier space is found from the dispersion relation

( ) ( ) 0)rr(M~k̂f~)r(k̂f~ku njiji
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 −−ρ−− """

Equation 7.3-32

A more manageable solution can be found if we apply the first-order smoothing

approximation to the mass operator [Frisch, 1968].  In this approximation, the kernel of

the Mass operator, ( )nm r,rM "" , in the double integral, is replaced by the approximation

( ) [ ]
( ) [ ] )r,r(G)r,r(C)r,r(G)r,r(Gk̂,k̂frdrd
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∫∫≅
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Equation 7.3-33

7.3.4 Low Frequency Approximation for the Mean Green’s function

      An alternate solution for the mean Green’s function can be found by making certain

limiting assumptions. When the discrete scatterers are large with respect to the

wavelength, the scattering is primarily forward scattering; this approximation is the

primary focus of this thesis. However, when the scatterers are small with respect to the

wavelength, they begin to scatter more isotropically. In addition, the measured scattering

amplitude matches the prediction of Schwering. Here the scattering pattern is a strong

forward scatterer superimposed on a much weaker isotropic background. Hence, the

isotropic solution is of some interest.

      Frisch used the isotropic scattering approximation to derive the mean Green’s

function for small scatterers [Frisch, 1968] and eventually produced the Foldy
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Approximation and a further extension to correlated, isotropic scatterers. Starting with

the equation for the mean Green’s function in the first-order smoothing approximation,
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Equation 7.3-34

we operate on it with the Helmholtz operator ( )22 k+∇  and recall that the operator j
ku  is

related to the free space Green’s function.  Consequently,
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Equation 7.3-35

If we consider small, discrete scatterers, the correlation function becomes localized.

Hence, the correlation function is very peaked at the scatterer location nr
"  and the slowly

varying mean Green’s function may be removed from the integration.
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taking into account the isotropic scattering pattern, this can be rewritten
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in this form, we see by the definition of the Green’s function that the wavenumber has

been modified.

      The finite size scatterers are expected to produce spatial correlation functions that are

essentially unit step functions. Finally approximating the correlation function with

[Frisch, 1965]

a
'rr

2 e
−

−
ε

where a is the dimension of the scatterer (or the correlation length in a continuous

random medium. Since ( 1/a <<λ ), the effective wavenumber reduces to

( ) ( )
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"
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Hence the effect of the random medium is another renormalization, shows a double

renormalization of the wavenumber [Frisch, 1965]. This shows that the correlation in the

random medium has introduced an additional exponential loss term attributable to

multiple scattering in the effective medium, as the wave propagates into the medium.

7.4 The Distorted Born Approximation

       In the previous chapter concerning the single scatter approach, we saw that the mean

power could be derived using this simple theory. In the last chapter, single scatter theory,

we found the average power is given by
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Equation 7.4-1

in the case of co-located observation points ba rr "" = . In the single scatter, scalar wave

propagation, we found that the two-frequency mutual coherence function could be

rewritten as
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Equation 7.4-2

where the incident field is known (deterministic). In the single scattering approach, the

configurationally averaged Twersky operators were replaced by the single scatter result;

in the Distorted Born Approximation, however, the mean Green’s function, found

through multiple scattering approach, is used. The result will be similar to the single

scattering approach, except for the substitution of the effective wave number for the free

space wavenumber. In addition, the artificial introduction of the loss term found in the

single scatter development is no longer necessary since will enter the complex form of

the effective wavenumber. The average power was finally given as
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Equation 7.4-3

And the two-frequency mutual coherence function is given by
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Equation 7.4-4

Consequently, the convolutional model could also be derived in the DWBA. Starting

from Equation 7.4-4, the scattering amplitude would be replaced with the forward-

backward solution. Then, upon making the assumptions and following the steps of

Section 4.2, the DWBA could be reduced to the convolutional-DWBA result. This of

course, would be a limited form of the DWBA compared with the above result and with

the vector result of Lang [1981].

7.5 Two Frequency Radiative Transfer Equation
     The solution using single scatter theory is greatly enhanced through the introduction

of the Distorted Wave Born Approximation (DWBA). Although based in multiple

scattering theory for the mean field, the DWBA still neglects the effects of multiple

scattering its formulation of the propagation of the power density. In this section, the

wave based approach to power propagation is extended to include multiple scattering

though the development of a two-frequency radiative transfer equation. This development

closely follows that of Tsolakis [1985] and Besieris [1981]. These papers, in turn, are

based on a previous, pioneering work by Barabanenkov [1971].

      The coherency matrix is formed by forming the following product
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Equation 7.5-1

Using the Twersky approximation, the two frequency, two-point correlation can be

written in a convenient, closed form [Tsolakis, 1985]. At this point rather than pursuing a

case with depolarization, we will concentrate on scalar wave propagation. Referring to

the Appendix, assuming no depolarization, each component of the coherency matrix can

be written
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Equation 7.5-2

Note that when this operator is applied to an incident field, it yields zero. In addition, this

expression explicitly shows the frequency dependence in the Green’s function as well as

the field quantities.

     Defining the two-point, two-frequency coherence function

)k,r(E)k,r(E)k,k,r,r(' 2b
*

1a21ba
"""" ≡Γ
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We apply the operator twice; once with respect to the observation coordinate at ar"  and

then with respect to the observation coordinate at br" ; forming the difference
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Equation 7.5-3

and using the result for the mean field, we find
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Equation 7.5-4

     This closed equation is the desired form of the scalar-valued Bethe-Salpeter equation

found in the papers by both Besieris [1981] and Tsolakis [1985]. The difference is in the

form of the scattering amplitude function. Rather than assuming isotropic scattering as

was done in the paper by Tsolakis [1985], a forward/backward scattering approximation

is assumed for the scattering amplitude. Hence, rather than dipole-like scatterers in which

the scatterer is small with respect to the wavelength, we have assumed that the scatterer is

large with respect to the wavelength. We next follow in the footsteps of Besieris and

Tsolakis in order to derive the two-frequency radiative transfer model.

      Recall that under one of the propagation conditions assumed in this chapter, the

waves are scattered in the forward direction only. Since the incident wave is assumed to

be propagating in the z-direction, the Laplacian, the field quantities and the green’s

function reduce to a z-variation only, and the wave equation will reduce to a one-

dimensional form. For example, Equation 7.5-4 becomes
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Equation 7.5-5

the following steps, however, will reflect the more general, three-dimensional result. The

three dimensional problem is more general and will apply to both the isotropic and the

forward/backward cases (within a constant).

      The next step in deriving the transfer model is a transformation to center of mass

coordinates. With this in mind, we substitute
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2
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We define a new set of functions: mutual coherence function, the scatterer correlation,

the mass operator kernel, and the mean Green’s function
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Considering a “smoothly inhomogeneous” medium, we may simplify the expressions by

assuming that these quantities vary rapidly with the difference variable and slowly with

the sum variables. Expanding these functions in a Taylor series, substituting into the

equation for the two-frequency mutual coherence function and truncating after the first

term, we arrive at a simpler form.

      A Fourier transform with respect to the fast (difference) variable changes our solution

space to “phase space” [Besieris, 1981]. This particular transform, the Wigner Transform,

is accomplished for the two-frequency coherence function as follows

( ) ruj
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""""""" ⋅−∫ Γ
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=

The result, W, will be referred to as the two-frequency Wigner distribution function.

where the transform variable has been identified as the vector, u" . The other quantities of

interest transform as follows [Tsolakis, 1985],
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Equation 7.5-6

The ellipsis in Equation 7.5-6 has been added to indicate placeholders for additional

(dummy) variables.

      The configurationally averaged Wigner-transformed Green’s function is found from

the Dyson equation of Equation 7.3-30 (suitably transformed to center of mass

coordinates)
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Equation 7.5-7
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and the solution via Fourier transform yields

( )[ ] ( )[ ] 1
sIsRs

1
ss )k,u,R(jH)k,u,R(Hkf

2
1)k,u,R(H2kfk,r,R(G~ −− +== """""""!

Equation 7.5-8

The quantity )k,u,R(H s
""

 is the “complex Hamiltonian” of the effective medium, as

defined in the paper by Besieris [1981].

      In this expression, the imaginary portion of the transformed mass operator kernel

accounts for scattering loss. Like Besieris and Tsolakis, we assume that the regular and

scattering loss terms are small, but not negligible. Hence, a constant energy surface is

defined by setting the Hamiltonian equal to zero

0)k,u,R(H
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sR

sIsR
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""
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This equation defines the surface in the (R, u) coordinate space where the wavenumber is

equal to the effective wavenumber. This is directly reminiscent of the definition for the

effective wavenumber from Equation 7.3-32.

      The remainder of the development is similar to that found in ray optics. Hence, the

these results are comparable to the ray equation result [Marcuse, 1982]

S
dl
rdn ∇=
"

where the function S defines the constant phase surface, n is the refractive index and the

vector r"  points from a fixed origin to all points on the light ray. However, in the

development of this chapter, the surfaces of constant energy and constant phase may not

coincide. We can see that an effective index of refraction may be defined as follows

( ) ( )
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=
∇= """"

"

Later, this form will be slightly modified in order to comply with the definitions given by

Tsolakis [1985].
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      In order to derive an equation of transfer that is similar to that given in literature, the

coherent power must be separated from the incoherent power. This is a requirement since

the standard radiative transfer equations are based primarily on the propagation of

incoherent power. The first step in producing a radiative transfer formulation will be to

split the two-frequency Wigner distribution into a coherent, WC, and an incoherent, WI,

portion.

( )
)k,k,u,R(W)k,k,u,R(W

ek,k,u,Rrd
2
1)k,k,u,R(W

dsIdsC

ruj
dsds

""""

""""" ""

+=

∫ Γ
π

= ⋅−

the coherent portion obeys a generalized transport equation derived by Tsolakis [1985],

( ) ( ) ( )[ ]
( ) ( ) 0)k,k,u,R(W

dk
k,'u,RM~d

2
1)R(

dk
kdf

2
1

4
kjk

)k,k,u,R(Wk,'u,RM~)R(kf
dl

)k,k,u,R(dWk,u,RH

dsC
s

sR

s

sRs
d

dsCsIsI
dsC

sRu

=







+ρ+−

+ρ+∇

""""
"

"""""""
""

"

Equation 7.5-9

Notice that this equation behaves just as expected. The form is the same as the overall

transport equation with the exception of the scattering integral. Hence, as proposed in

previous chapters concerning classical radiative transfer formulation, the coherent power

propagates, losing power but no power is scattered back into its path. There are

differences with the radiative transfer formulation that will be acknowledged in an

upcoming discussion. The incoherent portion of the two-frequency Wigner distribution is

chosen as follows [Tsolakis, 1985].

( ) ( )
( )

[ ]{ } ( )ds
1

sR3
sRu

sRu
sdsI k,k,s,RI)k;u,R(H

k,u,RH

k,u,RH
kk,k,u,RW """"

""

""
""

"

" −δ
∇

∇
=

Equation 7.5-10
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This is the two-frequency incoherent power density at a point R
"

propagating in the

direction, uus "" = . Adopting the effective wavenumber, keff, as the value of u for which

( ) 0k,su,RH sR =""
, the definition for

( ) ( )
( )seff k,s,Rku

s

sRu
seff k

k,su,RH
k,s,Rn

""

"
""

""

=










 ∇
=

Equation 7.5-11

In an anisotropic medium, the phase velocity and the group velocity are not in the same

direction. This case has been derived for the isotropic scatterers by Tsolakis [1985] but

will not be addressed here. In the case of isotropic pair correlations, the quantities,

( ) ( )sIsR k,u,RM~,k,u,RM~ """"
 and ( )'uu,R """

−φ , no longer depend on a vector, u, only on its

magnitude. Consequently, the two-frequency radiative transfer equation reduces to

[Tsolakis, 1985]
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( ) ( ) ( )dsC

angle
solid

s

ds

angle
solid

s

dssseffsR
s

s

seffs

d

dsss
2

effdss
2
eff

k,k,s,RWk,'s,s,Rp'sd

k,k,s,RIk,'s,s,Rp'sd

k,k,s,RIk,sk,Rk,R'M~kfR
dk
d2

4
k

k,Rnk
kj

k,k,s,RIk,s,Rk,Rnk,k,s,RI
dl
dk,Rn

""""""

""""""

""""""
"

""""""""

∫∫ Ω+

∫∫ Ω+


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
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


+ρπ++

α−=−

Equation 7.5-12

Equation 7.5-12 looks like the classical radiative transfer equation. The extinction

coefficient is given by

( ) ( ) ( ) ( )[ ]sIsI
seffs

s k,'u,RM~)R(kf
k,Rnk

1k,s,R """
"

""
+ρ=α

Equation 7.5-13
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The first term represents the true absorption and the second term is the loss due to

scattering. There is an extra factor, which accounts for frequency offset effects.

( ) ( ) ( ) ( )( )[ ] 







+ρ+ sseffsR

s

s

seffs

d k,sk,Rk,R'M~kfR
dk
d

2
1

4
k

k,Rnk
kj """"
"

Equation 7.5-14

Recall, however, that the frequency dependence of this solution is limited due to a

narrowband assumption. The “power” scattering amplitude (or “phase matrix” from

radiometry) is given by

( ) ( ) ( )
( ) ( )( )[ ])R(k,Rk,'uu,R

k,Rnk
k,Rkkf2

k,'s,s,Rp seff
s

2
eff

2
s

s
2
eff

2
s

s
"""""

"

"
"""

ρ+−φ=

Equation 7.5-15

An obvious difference from the classical transfer formulation is the extinction. When the

difference frequency is zero, the extinction coefficient is real as expected; on the other

hand, a non-zero difference frequency yields a complex extinction coefficient.

7.6  Solution of the two-frequency radiative transfer equation

for a forward-backward scattering medium

      The derivation of the two-frequency radiative transfer equation for discrete scatterers

has been shown to reduce to a one-dimensional transfer equation when the scattering

amplitude of the particles has strongly forward and backward patterns only. In general,

the two-frequency radiative transfer equation is given as
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+ρπ++

κ−=−

Equation 7.6-1

Assuming the incident field is z-directed and if we assume strictly forward-backward

scatterers, the two-frequency radiative transfer equation simplifies to a linear,

nonhomogeneous set of ordinary differential equations.

 

( ) ( ) ( )[ ] ( ) ( )
( ) ( ) ( )

( ) ( ) ( )dsC

angle
solid

s

ds
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solid

s

dsss
2

effdss
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eff

k,k,ẑ,RWk,'s,s,Rp'sd
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∫∫ Ω+

∫∫ Ω+

κ−=−

Equation 7.6-2

For simplicity in notation, the difference frequency component has been absorbed into a

new, modified extinction coefficient, κ~ . However, both the coherent and the incoherent

power densities travel in only one direction, z. Therefore, both of these terms are

accompanied by delta functions which reduce the integral over the solid angle to simple

forward or backward scattering. If the incident power is normal to the boundary (foliage-

air interface), a new power density (intensity) dependent variable can be defined that only

depends on the depth coordinate, Z.

( ) ( ) ( )s
2

effdsdsd k,Znk,k,ẑ,ZIk,k,ẑ,ZI −≡
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in turn, this can be split into forward and backward propagating power density

components

( )
( )

( ) 















≡
−

+

npropagatiobackward/upwardfor,k,k,ẑ,ZI

npropagatioforward/downwardfor,k,k,ẑ,ZI
k,k,ẑ,ZI

dsd

dsd

dsd

Consequently, the selection of this forward-backward scattering function has produced

the following simplified, coupled radiative transfer equations.

( ) ( ) ( ) ( ) ( )[ ]
( )

( ) ( ) ( ) ( ) ( )[ ]
( )dsCb

dsdfdsdbdsds
dsd
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−+−
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−++
+

Equation 7.6-3

Additionally, we consider the problem to be bounded above by the air-foliage interface

and below by the rough surface. Assuming no reflection from the air-foliage boundary,

the foliage surface boundary causes the only reflection. The two-point boundary value

problem will then have the following boundary condition (in matrix form)

( )
( )

( )
( ) 







=








=
=









Γ−

+








=
=









−

+

−

+

0
0

ZZI
ZZI

1
00

0ZI
0ZI

00
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dd
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d

d

Equation 7.6-4

From this representation, given a surface with a complex reflection coefficient, Γ, the

downward propagating wave and the upward propagating reflected wave cancel by

construction. Consequently, converting (changing variables) to optical distance and

rewriting this in matrix form, and
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Equation 7.6-5

Substituting for the elements of the matrix and dropping the arguments of the coherent

and incoherent power densities, the above “Schuster” equations can be rewritten in the

familiar form [Schuster, 1905],
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d
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Equation 7.6-6

the eigenvalues, λ1,2, of the homogeneous system are found from the determinant of the

matrix

( ) λ±=β−α±=λ⇒=β+α−λ 22
2,1

222 0

and the fundamental matrix (matrix of eigenvectors),
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and its more convenient form,
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Note that the second fundamental matrix does display the desired property that
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( ) ( )zz
1

−Φ=Φ
−

Consequently, for the boundary condition
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d
0 d =+

where in this case, the matrices W are found from Equation 7.6-6:
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Although the solution method outlined previously can be used, the general is found by

the variation of parameters this time:
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The solution for the “initial value matrix is formed by evaluating the boundary condition

as follows:
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so that the solution for the initial vector is found from
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Equation 7.6-8

and
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the solution is found to be as follows
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Equation 7.6-9

Where,
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Let the frequency dependent ratio of backward to forward scattering cross-section be

denoted )k( dχ . Then assuming a narrowband signal so that the forward scattering cross

section is constant with frequency, the backward scattering cross section is written in

terms of the forward scattering cross section, )k()k()k( ssfsb χσ=σ . Reintroducing the

frequency dependence of the scattering cross section, Γ, into Equation 7.6-9, and
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Applying the two-frequency reflection coefficient previously derived from the Kirchhoff

approximation above to the solution (see Section 3.4.2), the incoherent intensity will be

determined. The only missing information is the source term, the coherent power density.

This will be found in a manner similar to the above solution. Therefore, all quantities

have been found in Equation 7.6-7. With this information, we may find the two-

frequency mutual coherence function and finally weight the result by the spectrum of the

transmitted pulse. Performing the necessary inverse Fourier transforms completes the

recovery of the time domain solution.

7.7 Conclusions and Future Efforts

      The multiple scattering approach has yielded two useful results with respect to the

convolutional model of Chapter 4 : the Distorted Wave Born Approximation (DWBA),

and the two-frequency radiative transfer equation. From the calculation of the mean
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Green’s function, the DWBA will provide an avenue to calculate the scattered power.

More specifically, however, using the mean Green’s function in the convolutional result

from the single scatter development of Section 6.3.3 will yield a more predictable and

interpretable convolutional model. In this development, the simple far field form of the

Green’s function in combination with the scattering amplitude would be replaced by the

mean Green’s function, see Section 7.3. Finally, the two-frequency radiative transfer

equation was reduced to a forward-backward result. Hence, if the upward propagating

power density can not scatter into the downward propagating power density, then this

two-frequency radiative transfer result can be manipulated into the convolutional form,

following the steps in Section 4.2. Consequently, the result will be a more general,

physically interpretable form of the convolutional model.

     This section of the dissertation has created a host of possible avenues to explore. First,

the DWBA should be implemented, first for uncorrelated scatterers and then with pair

correlated scatterers. This result will lend some physical interpretation to the

convolutional solution. Then the solution of Section 7.6 must be implemented (along with

the two-frequency rough surface result) and compared with the simple convolutional

result.  Not only will this provide further insight into the physical mechanisms, but it will

also add some new dimensions to the analysis – frequency dependence. Obviously,

implementing this solution will add complexity to the simple convolutional result, in the

form of some difficult inverse Fourier transforms.

7.8 Appendix: Two Frequency Radiative Transfer Equation

     The solution using single scatter theory is greatly enhanced through the introduction

of the Distorted Wave Born Approximation (DWBA). Although based in multiple

scattering theory for the mean field, the DWBA still neglects the effects of multiple

scattering its formulation of the propagation of the power density. In this section and the

following sections, the wave based approach to power propagation is extended to include

multiple scattering though the development of a two-frequency radiative transfer

equation.  This development closely follows that of Tsolakis [1985] and Besieris [1981].

These papers, in turn, are based on a previous, pioneering work by Barabanenkov [1971].
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7.8.1 Two Frequency, Two Point Coherency Matrix

       The coherency matrix is formed by forming the following product
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Equation 7.8-2

Averaging over position only, replacing the summations by simple multiplication, and

noting the form
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Equation 7.8-2 becomes, as we let letting the number of scatterers, N, go to infinity,



254

( ) ( )

( ) ( )

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]kjkj

*

2
b
j

*

2
j
k2k

*
i1ai

V
k

V
j

kjkj

*

2
b
k2k

*
i1j1

a
j

V
k

V
j

jj

*

2
b
j2j

*
i1ai

V
j

jj2b
*
i1j1

a
j

V
j

2b
*
i1ai2b

*
1a

r,rCrr)k(u)k(u)k,r(E)k,r(Erdrd

r,rCrr)k(u)k,r(E)k,r(iE)k(urdrd

rP)k(u)k,r(E)k,r(Erd

rP)k,r(E)k,r(iE)k(urd

)k,r(E)k,r(E)k,r(E)k,r(E

""""""""""

""""""""""

""""""

""""""

""""""""

+ρρ



⋅



⋅⋅∫∫+

+ρρ



⋅⋅⋅∫∫+

ργ



⋅⋅∫+

ργ⋅⋅∫+

⋅=⋅

( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]mjkmkjkjmmkj

*

2
b
m2m

*
i1k1

j
k1

a
j

V
m

V
k

V
j

mjkmkjkjmmkj

*

2
b
k

*

2
k
m2m

*
i1j1

a
j

V
m

V
k

V
j

kjkj2b
*
i1k1

j
k1

a
j

V
k

V
j

r,rCrr,rCrr,rCrrrr

)k(u)k,r(E)k,r(iE)k(u)k(urdrdrd

r,rCrr,rCrr,rCrrrr

)k(u)k(u)k,r(E)k,r(iE)k(urdrdrd

r,rCrr)k,r(E)k,r(iE)k(u)k(urdrd

""""""""""""

"""""""

""""""""""""

"""""""

""""""""""

ρ+ρ+ρ+ρρρ⋅





⋅⋅⋅⋅∫∫∫+

ρ+ρ+ρ+ρρρ⋅







⋅






⋅⋅⋅∫∫∫+

+ρρ⋅⋅⋅∫∫+

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
'

""""""""""""

"""""""

""""""""""""

"""""""

+

ρ+ρ+ρ+ρρρ⋅

⋅⋅⋅⋅∫∫∫+

ρ+ρ+ρ+ρρρ⋅







⋅






⋅






⋅⋅∫∫∫+

mjkmkjkjmmkj

2b
*
i1mi1

k
m1

j
k1

b
j

V
m

V
k

V
j

mjkmkjkjmmkj

*

2
b
j

*

2
j
k

*

2
k
m2m

*
i1a

V
m

V
k

V
j

r,rCrr,rCrr,rCrrrr

)k,r(E)k,r(E)k(u)k(u)k(urdrdrd

r,rCrr,rCrr,rCrrrr

)k(u)k(u)k(u)k,r(E)k,r(iErdrdrd

Equation 7.8-4

Note that the double integrals may be combined, as well as the triple integrals, etc. By

neglecting the terms involving triple scatter between two scatterers (Twersky

approximation), etc. Just as was found for the single scatter approximation to the field

correlation, the coherent fields in Equation 7.8-4 can be identified and separated. In

addition, under this “extended Twersky approximation”, Equation 7.8-4 can be written in
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a more convenient, closed form [Tsolakis, 1985]. Hence, Equation 7.8-4 becomes

[Tsolakis, 1985]
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Equation 7.8-5

Here, the mean Green’s function, G, has been defined in Equation 7.3-28.  Including the

configuration averaging, the Bethe-Salpeter equation for the mutual coherence tensor

becomes [Tsolakis, 1985]
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Equation 7.8-6

7.8.2 Two Frequency, Bethe-Salpeter Equation

      At this point rather than pursuing a case with depolarization, we will concentrate on

scalar wave propagation. Hence, assuming no depolarization, the components of the

coherency matrix can be written
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First we note that operating on the mean field, with the ( )22 k+∇  and recalling that this

operates on the observation coordinate ar"  only, the equation for the mean field becomes
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Equation 7.8-8

Note that when this operator is applied to an incident field, it yields zero. In addition, this

expression explicitly shows the frequency dependence in the Green’s function as well as

the field quantities.

      Recall that under one of the propagation conditions assumed in this chapter, the

waves are scattered in the forward direction only. Since the incident wave is assumed to

be propagating in the z-direction, the Laplacian, the field quantities and the green’s

function reduce to a z-variation only, and the wave equation will reduce to a one-

dimensional form. For example, Equation 7.8-8 becomes
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Equation 7.8-9

However, the three dimensional problem is more general and will apply to both the

isotropic and the forward/backward cases (within a constant).

      Defining the two-point, two-frequency coherence function
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We apply the operator twice to Equation 7.8-8; once with respect to the observation

coordinate at ar"  and then with respect to the observation coordinate at br" ; forming the

difference
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using the result for the mean field (first two terms on the left) from Equation 7.8-8,

Tsolakis [1985],
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Equation 7.8-11



258

This closed equation is the desired form of the scalar-valued Dyson equation found in the

papers by both Besieris [1981] and Tsolakis [1985]. The difference is in the form of the

scattering amplitude function. Rather than assuming isotropic scattering as was done in

the paper by Tsolakis [1985], a forward/backward scattering approximation is assumed

for the scattering amplitude. Hence, rather than dipole-like scatterers in which the

scatterer is small with respect to the wavelength, we have assumed that the scatterer is

large with respect to the wavelength. We next follow in the footsteps of Besieris and

Tsolakis in order to derive the two-frequency radiative transfer model.

7.8.3 The Quasi-Homogenous Assumption

      The next step in deriving the transfer model is a transformation to center of mass

coordinates. With this in mind, we substitute
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Making the corresponding changes to the functional variables, we define the quantities;

the first by straight substitution:
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For notational convenience, the modified expression for the scattering amplitude no

longer includes a reference to the incidence direction. Starting with the Mutual

Coherence Function, we define a new set of functions
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where we have let 'rrr ab
""" −= , so that the second argument is simply 'r" .

Here, we have shown two specific sets of arguments; several different argument sets

appear in Equation 7.8-10; these are derived in a similar fashion. Next, we transform the

operator:
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Substituting, the reformulated equation for the mutual coherence becomes
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Equation 7.8-12

Considering a “smoothly inhomogeneous” medium, we may simplify the expressions by

assuming that these quantities vary rapidly with the difference variable and slowly with

the sum variables. Expanding these functions in a Taylor series (truncated to the second

term) about the value
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Equation 7.8-13

Substituting into the equation for the two-frequency mutual coherence function and

truncating after the first term, we arrive at the following form of Equation 7.8-11
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Equation 7.8-14
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In this form, a narrowband pulse assumption has been incorporated. Hence, under this

assumption, the scattering amplitude is peaked at the carrier frequency.

7.8.4 Phase Space Analysis

      A Fourier transform of Equation 7.8-14 with respect to the fast (difference) variable

changes our solution space to “phase space” [Besieris, 1981]. This particular transform,

the Wigner Transform, is accomplished for the two-frequency coherence function as

follows

( ) ruj
dsds ek,k,r,Rrd

2
1)k,k,u,R(W

""""""" ⋅−∫ Γ
π

=

The result, W, will be referred to as the two-frequency Wigner distribution function.

where the transform variable has been identified as the vector, u" . The other quantities of

interest transform as follows [Tsolakis, 1985],
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∫
π

=

∫
π

=

∫
π

=φ

Equation 7.8-15

The ellipsis in Equation 7.8-15 has been added to indicate placeholders for additional

(dummy) variables. The “equation of evolution” for the two-frequency Wigner

distribution function is now written from the Wigner transform of Equation 7.8-14

(taking advantage of the convolutional property of the Fourier transform to eliminate

several integrals) [Tsolakis, 1985]
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Equation 7.8-16

In this development, the following Fourier property was employed

{ } )k,k,u,R(Wj)k,k,r,R(r dsudsr
"""""

"" ∇=Γℑ

The configurationally averaged Wigner-transformed Green’s function is found from the

Dyson equation of Equation 7.3-30 (suitably transformed to center of mass coordinates)

( )( ) ( ) ( ) ( ) )'r,R(G)'rr(M'rdk̂frk̂f)r,R(G)r(kfk
V

iis
22

r
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Equation 7.8-17

and the solution via Fourier transform yields
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Equation 7.8-18

The quantity )k,u,R(H s
""

 is the “complex Hamiltonian” of the effective medium, as

defined in the paper by Besieris [1981]. Here, the complex Hamiltonian has been broken

down into its real and imaginary portions. The parts,

)k,u,R(M~)R()k(f sRsR
""!

+ρ

are identified as refraction terms [Tsolakis, 1985]. The scattering loss terms are identified

as [Tsolakis, 1985]:

)k,u,R(M~)R()k(f sIsI
""!

+ρ

In this expression, the imaginary portion of the transformed mass operator kernel

accounts for scattering loss. Like Besieris and Tsolakis, we assume that the regular and

scattering loss terms are small, but not negligible. Hence, a constant energy surface is

defined by setting the Hamiltonian equal to zero

0)k,u,R(H

0)k,u,R(jH)k,u,R(H

sR

sIsR

=≅

=+
""

""""

This equation defines the surface in the (R, u) coordinate space where the wavenumber is

equal to the effective wavenumber. This is directly reminiscent of the definition for the

effective wavenumber from Equation 7.3-32. In addition, the term,
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appears in the purely scattering integral. “It is reasonable then for its computation to

neglect completely the imaginary part of the effective complex Hamiltonian. [Tsolakis,

1985]” Consequently, the following approximation is used
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Employing this approximation, and evaluating the inverse Fourier transform into a
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Equation 7.8-19

Including this approximation, the equation of evolution of the two-frequency Wigner

distribution reduces to
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Equation 7.8-20

The following interesting observations were added in the paper by Tsolakis [1985],

The effects of deterministic absorption are subsumed in the term

( ) )k,k,u,R(W)R(kf dssI
"""

ρ . On the other hand, absorption due to pair correlations

(randomness) among scatterers enters through the factors involving

( ) ( )sIsR k,u,RM~,k,u,RM~ """"
 and ( )'uu,R """

−φ . The interaction between the

deterministic absorption and the statistical fluctuations in the medium has been

neglected completely.

Given the “weak absorption” approximation, the scattering integral is significant only on

the energy surface ( ) 0k,u,RH sR =""
 [Besieris, 1981]. “Let specifically, dl, be the

differential of a curvilinear ray that passes the point R
"

in the direction of the group

velocity ( ) 0k,u,RH sRu =∇ ""
" ” [Tsolakis, 1985]. Then the Hamilton-Jacobi equations

corresponding to the effective Hamiltonian, ( )sR k,u,RH ""
, assume the form
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Equation 7.8-21

These results are expected since the ray path is similarly defined in ray optics. Hence, the

these results are comparable to the ray equation result [Marcuse, 1982]

S
dl
rdn ∇=
"

where the function S defines the constant phase surface, n is the refractive index and the

vector r"  points from a fixed origin to all points on the light ray. However, in the

development of this chapter, the surfaces of constant energy and constant phase may not

coincide. Hence, these Hamilton-Jacobi equations apply to the ray path with respect to

the constant energy and phase surfaces, respectively.  In addition, we can see that an

effective index of refraction may be defined as follows

( ) ( )
effkusRuseff k,u,RHk,u,Rn

=
∇= """"

"

This form will be slightly modified in a later section in order to comply with the

definitions given by Tsolakis [1985].

    Combining the Hamilton-Jacobi equations with the results for the evolution of the two-

frequency Wigner distribution and noting that
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Equation 7.8-22

we arrive at the transport equation for the two-frequency Wigner distribution
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Equation 7.8-23

This is the “generalized transport equation.” This is not the same as the transport equation

for the photometric intensity. That relationship is developed in the next section.

7.8.5 The Two-frequency Radiative Transfer Equation

      In order to derive an equation of transfer that is similar to that given in literature, the

coherent power must be separated from the incoherent power. This is a requirement since

the standard radiative transfer equations are based primarily on the propagation of

incoherent power. The first step in producing a radiative transfer formulation will be to

split the two-frequency Wigner distribution into a coherent, WC, and an incoherent, WI,

portion.
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the coherent portion obeys a generalized transport equation derived by Tsolakis [1985],
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Equation 7.8-24

Notice that this equation behaves just as expected. The form is the same as the overall

transport equation with the exception of the scattering integral. Hence, as proposed in

previous chapters concerning classical radiative transfer formulation, the coherent power

propagates, losing power but no power is scattered back into its path. There are
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differences with the radiative transfer formulation that will be acknowledged in an

upcoming discussion.

      The incoherent portion of the two-frequency Wigner distribution is chosen as follows

[Tsolakis, 1985].

( ) ( )
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[ ]{ } ( )ds
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sRu
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" −δ
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∇
=

Equation 7.8-25

In Equation 7.8-25, the two-frequency incoherent power density at a point

R
"

propagating in the direction, uus "" = , has been defined. Adopting the effective

wavenumber, keff, as the value of u for which ( ) 0k,su,RH sR =""
, the definition for
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 ∇
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Equation 7.8-26

In an anisotropic medium, the phase velocity and the group velocity are not in the same

direction. This case has been derived for the isotropic scatterers by Tsolakis [1985] but

will not be addressed here. In the case of isotropic pair correlations, the quantities,

( ) ( )sIsR k,u,RM~,k,u,RM~ """"
 and ( )'uu,R """

−φ , no longer depend on a vector, u, only on its

magnitude. Consequently, the two-frequency radiative transfer equation reduces to

[Tsolakis, 1985]
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Equation 7.8-27

In Equation 7.8-27, we see that this looks like the classical radiative transfer equations.

The extinction coefficient is given by

( ) ( ) ( ) ( )[ ]sIsI
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Equation 7.8-28

The first term represents the true absorption and the second term is the loss due to

scattering. There is an extra factor, which accounts for frequency offset effects.
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Equation 7.8-29

Recall, however, that the frequency dependence of this solution is limited due to a

narrowband assumption. The “power” scattering amplitude (or “phase matrix” from

radiometry) is given by
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Equation 7.8-30
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An obvious difference from the classical transfer formulation is the extinction. When the

difference frequency is zero, the extinction coefficient is real as expected; on the other

hand, a non-zero difference frequency yields a complex extinction coefficient.
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Chapter 8  Surface-Volume Interaction

     The interaction of the foliage with the underlying rough surface can be handled in

many ways. The simplest is to assume that the random medium above the rough surface

does not interact with the rough surface. This has been the approach in the convolutional

method.  After this level of approximation, comes single scatter interaction, double

scatter interaction, etc. Finally, the most complete model is a full interaction. Thus far,

this level has only been achieved numerically with a simple closed body above a rough

surface.

      The returned power from the volume must be modified by the addition of the time-

delayed return from the rough surface under the random medium. As previously seen, the

radiative transfer method accounts for this second scattering event simply by assuming

that the incident wave to the rough surface is due to an attenuated version of the original,

free-space, time-delayed incident power waveform. The attenuation is due to the

collection of scatterers along each radial from the antenna.

Figure 7.8-1: The total incident field with respect to the surface
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After the power waveform is then scattered by the surface, it again travels back up

through the foliage, suffering the same attenuation. The details of this approach were

developed in the Section 4.3.

       Since there are many assumptions are inherent in the radiative transfer result, there is

a question as to the validity of this approach. Can the interaction between the foliage and

surface be modeled simply by this single interaction? This question may be addressed by

interpreting the interaction in the context of equivalent currents and multiple scattering.

Referring to Figure 7.8-1, the incident field induces currents in the volume which

reradiate to the surface and toward the antenna (single scatter interpretation). This is the

foliage, single-scattered field, s
fE

"
. This foliage scattered field, s

fE
"

, is also incident on the

rough surface in addition to the free space incident field incE
"

. It is then scattered back

through the foliage, (see Figure 7.8-2) resulting in a second scattered field returned to the

radar, s
fsfE

"
, due to the foliage-surface-foliage interaction (a second order interaction).

Figure 7.8-2: the first order approximate scattered field from the foliage and surface

combination
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      Naturally, the question arises: are the multiple interactions between the foliage and

the surface a necessary component in this portion of the model?  That is, is there a

significant second order surface interaction due to incidence of the field s
fsfE

"
, the foliage-

surface-foliage field, to the surface? When s
fsfE

"
 is incident on the surface (note the

addition of s
fsfE

"
 into Figure 7.8-3 with respect to Figure 7.8-2) will there be a significant

correction to the surface scattered field?  This additional incident field will modify the

surface currents, which will radiate, s
fsfsE

"
, creating a new foliage scattered field, s

fsfsfE
"

.

The third order approximation to the interaction between the foliage and the surface

would repeat this process again. This process will continue indefinitely, or until the

corrections become negligible. Notice that with each iteration, the final foliage scattered

field is not used as an incident field for the surface.

Figure 7.8-3: the second order approximate scattered field from the foliage and

surface combination
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scattering interaction term adequate? Three methods of approximation to the second term

have been examined in this study:

1. Modified “First Order Multiple Scattering” theory

2. Exact formulation using the Method of Moments (MOM)

3. Reduced integral equation approach

      Due to the complexity of the second approach listed only a limited number of

scatterers can be placed above the surface. Hence, we will investigate the higher order

interactions based on a single scatterer above a rough surface. Since the radiative transfer

approach cannot simulate this situation, another approach was required.  After some

investigation the first listed approach was found to not only support the single scatterer

investigation, but also turned out to be a more general version of the radiative transfer

result as developed in Chapter 4 .  This first order multiple scattering approach, under

certain assumptions reduces to the result given for the radiative transfer approach.  This is

detailed in Chapter 6 .

       The first approach, the modified first order multiple scattering result, does begin with

a single scatterer. Hence, since the convolutional, radiative transfer approach is related to

this method, we need only show that the foliage to surface to foliage interaction requires

only the first order interaction, i.e. truncate the infinite series of interactions as previously

described with only the first interaction to verify the assumption. In addition, if this

method were successfully implemented as a convolution, it would serve as a more

general approach than the radiative transfer method as developed in the first section of

this chapter.

      Verification of the first order multiple scattering result will require a comparison with

an exact solution. Consequently, the next section of this chapter examines the exact

formulation for a single scatterer above a rough surface and solution via the efficient

MOMI method as previously described.  This result may serve as an exact result when

compared with the first order multiple scattering solution obtained for a single scatterer

above a rough surface.
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     Finally, in the following section, the exact integral equation method is simplified

using some reasonable assumptions. This method will result in a more accurate method to

simulate interaction between a single scatterer above a rough surface than the first order

multiple scattering approach. In addition, it may also yield a more tractable numerical

model when it is extended to a collection of scatterers above a rough surface than the full

Method of Moments approach. This more accurate representation of the interaction may

be required at some level of simulation.
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8.1 Single Scatterer above a Rough Surface

      The impulse response model, like most radiative transfer models, does not account for

any interaction between the scatterers (foliage) and the boundary (surface). In

establishing a range of validity for this assumption, a measure and threshold of “no

interaction” must be established. Once this measure is established, numerous simulations

of the exact scattered field must be examined in order to verify this assumption over a

large parameter space including

•  the scatterer’s size normalized to wavelength

•  the scatterer’s separation from the rough surface normalized to wavelength

•  the scatterer’s orientation (if it is not circular)

Consequently, we must assess the magnitude of the contribution of multiple scattering

interactions between the scatterer and the rough surface. One approach to establishing the

measure of significant interaction would be to include each level of multiple scattering

and measure its contribution to the exact solution. Hence, we begin with the assumption

that the surface and the scatterer do not interact. Next, we assess the correction for a

single scatter interaction.

       In order to verify this assumption of independent scattering, an “exact” numerical

model has been created using the method of moments (MOM); the numerical solution for

the currents on the scatterer and the rough surface accounts for all orders of interactions.

After the problem is cast into the proper integral equation, the geometry is discretized in

preparation for a solution via the familiar Method of Moments (MOM). Specifically, the

Method of Ordered Multiple Interactions (MOMI) has been modified and is implemented

as a solution method. This will be described in Section 3.1. Once the currents are found

from the integral equation, the scattered fields can be simply found using the proper

radiation integral; the far-field formulation has been used. A brief description of the

MOMI as originally applied to rough surfaces can be found in Section 3.1.
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Extension of the MOMI to Closed Bodies

         The MOMI method, as discussed in Section 3.1, is a solution method for the MOM

derived matrix equation of the following form:

ψ+ψ=ψ Pinc

Equation 8.1-1

where P is a propagator matrix, ψ is an unknown scalar field and ψinc is the known

incident field. In it original form, , the MOMI neglected self-interaction terms Pii [Kapp,

1996].  The propagator matrix (P) was thus decomposed into lower triangular (L) and

upper triangular (U) matrices, each having zero entries along the diagonal,

ULP +→

Equation 8.1-2

Consistent discretization of (1) requires that the diagonal elements Pii be retained

[Toporkov, 1998]. This modification was incorporated by decomposing the propagator

matrix as

UD̂LP ++→

Equation 8.1-3

where D̂ is a diagonal matrix with D̂ = Pii [Adams, 1999]. In the application of MOMI to

integral equations having singular kernels, Adams has been found that optimal

convergence properties are obtained in the decomposition . Physically, maintaining the

self interaction terms in D̂ separate from (L) and (U) provides better convergence

properties when applying the method to integral equations having singular kernels

because these equations exhibit strong coupling between oppositely directed fields on the

surface of a scatterer [Adams, 1999]. The decomposition leads to the matrix equation

( ) ( ) ψ+ψ−−=ψ −−
M

inc11 PLDDUD

Equation 8.1-4

where D = I - D̂  and the MOMI propagator, PM, is defined as
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ULD)LD(D)UD(P 111
M

−−− −−=

Equation 8.1-5

Neumann iteration of Equation 8.1-4 yields the candidate solution

∑
∞

=

−− ψ−−=ψ
0n

inc11n
M )LD(D)UD(P

Equation 8.1-6

which is the same as equation (28) of [Kapp, 1996] under the substitution ID → . The

MOMI series (6) provides a very robust and rapidly convergent solution to the MFIE for

scattering from extended rough surfaces in two dimensions. The series has never been

observed to diverge [Adams, 1999]. These desirable properties have been attributed to the

manner in which the MOMI series re-sums the multiple scattering terms present in the

Neumann series for the original integral equation.

      The Born term in the MOMI series, inc11 )LD(D)UD( ψ−− −− , includes the

contributions to the current due to all orders of continuous forward scattering 1)LD( −− ,

all orders of backscattering, 1)UD( −− .  In addition, it accounts for one order of

interaction between the backward and forward traveling waves on the surface (resulting

from the multiplication of these operators). The largest effect neglected by the order zero

iterate of the MOMI series is that of a wave which twice changes directions on the rough

surface before again interacting with the currents on the surface - a triple scattering event.

          Consequently, the ordering of the unknowns in the original matrix Equation 8.1-1

is found to have a drastic effect on the convergence of the MOMI series. A different

ordering of unknowns in the MOMI series will result in the summation of different

multiple scattering terms.  In the case of a random ordering of the unknowns in the

original matrix Equation 8.1-1 for the rough surface scattering problem, the number of

MOMI iterations required to converge to a given error tolerance can be orders of

magnitude larger than in the case of the physically based forward-backward ordering. It is

not immediately clear how the unknowns in Equation 8.1-1 should be ordered for the

application of MOMI to closed body scattering problems. Adams describes two methods

of ordering the unknowns in the matrix equation, illustrated in Figure 8.1-1.  An ordering
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which is sequential-in-φ (SIP) produces an iterative series that mimics the progression of

creeping waves around the surface of the cylinder [Adams, 1999].  However, Adams

finds that the ordering which is sequential-in-x (SIX) is somewhat analogous to the

forward-backward approach used in [Kapp and Brown, 1996] and is preferred in

convergence tests.

                  SIP Ordering                                                          SIX Ordering

Figure 8.1-1 : Ordering of the Unknowns [Adams, 1999]

8.1.1 A Combined Field Formulation

     The scattering problem is formulated in a way that does not give rise to a singular or

nearly singular integral equation [Adams, 1999]. In the following, we consider a

combined field integral equation (CFIE) representation. The CFIE is a linear combination

of the magnetic field integral equation (MFIE) and the electric field integral equation

(EFIE) as indicated below.

α=+α CFIEMFIEEFIE

     While the CFIE can be used to provide a unique solution to the scattering problem, the

use of MOMI as formulated with a combined field description of the scattering problem

introduces additional difficulties associated with the kernels of the EFIEs. These
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difficulties are explored and settled in the paper by Adams [1999]. He finds that the

singularity of the EFIE kernel for TE scattering is much weaker than that for the TM

cases and is therefore more amenable to the MOMI series solution technique. Hence,

only the TE case is treated here.

       The electric field integral equation (EFIE) for TE scattering from a PEC object is

∫∫ ∂
∂−=

S
0

0

inc dSG
n
EE0

Equation 8.1-7

The CFIE for the TE case is obtained by adding this to the MFIE for this problem using

the complex constant α.  This leads to

0
S 0

incinc
inc dSK

n
E2

n
E2E2

n
E

α∫∫ ∂
∂−

∂
∂+α=

∂
∂

Equation 8.1-8

where








∂
∂+α≡α n
GGK

Equation 8.1-9

Discretization of this equation is discussed in [Adams, 1998].  The resulting matrix

equation can be put in the MOMI form.

      The CFIE is guaranteed to have a unique solution whenever α is complex. This

requirement provides significant freedom in the choice of α. We further constrain α by

requiring that it provide optimal convergence properties for an arbitrary incident field.

Adams that stipulates that the choice of α is made in order to minimize the maximum

eigenvalue of the propagator (accelerates convergence for arbitrary incidence angles). In

addition, the optimal α for the surface (MFIE) α is different from that for the cylinder.

Therefore, we choose α as a function of position: α = α(ρ). Surface scattering using the

MOMI approach in the past used only the MFIE formulation which is consistent with α=

0, and becomes exact in the flat surface limit.
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8.1.2 Example Results for TE Polarization

       Simulations that follow demonstrate the investigations into an elliptical cylinder

above a rough surface.  A MOMI code was produced which includes unknowns on both

an elliptical cylinder and a rough surface. The coupling parameter, α, on each surface

was chosen to be the optimum for the observation point on the surface. Consequently, α

is the asymptotic value described above on the cylinder and α = 0 on the surface. The

cylinder was chosen to be elliptical in order to resemble the foliage problem.  All of the

simulations which follow use TE Polarization and λ/10 sampling. Other parameters

depend upon the size of the scatterer and its separation from the surface; these include the

following

•  incident spot size      =  20λ to 30λ

•  surface length           =  100λ to 200λ

•  ellipse: major axis    =  10λ  , minor axis  =  2.5λ

•  height of the ellipse  =  5λ to 60λ above the mean surface

These variables are identified in Figure 8.1-2.

Figure 8.1-2: Scatterer over a Randomly Rough Surface
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The total cross section of the elliptical cylinder and rough surface combination is plotted

in the figures that follow. The far field form of the Hankel function normalizes this value:

4
jjk

e
k
2 π−ρ

ρπ

This solution which includes the full interaction will be referred to as the “exact

solution”.

     In addition to the total cross section of the full interaction problem, the total cross

section of various stages of interaction are also included. First, the simple incoherent

addition of scatter power is included; this case will be referred to as “incoherent addition”

(IA) in the examples that follow. This curve will allow the assumptions of the impulse

response method (no interaction) to be compared with a full interaction solution. Hence,

it is equivalent to calculating the total cross of the ellipse and the surface in isolation and

simply adding the resulting power, see Figure 8.1-3(a) and Figure 8.1-3(b), respectively.

The source in this case is will be referred to as the “free-space incident field” and the

resulting induced currents as the “incident currents.”
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Figure 8.1-3: The Single Scatter Approximation: (a) Currents induced on the

cylinder in isolation (b) Currents induced on the surface in isolation

Figure 8.1-4: The Single Scatter Approximation: (a) Corrections to currents

induced on the surface (b) Correction to Currents induced on the cylinder

      The next step is the addition of the first order correction to both the current on the

surface and the ellipse. Thus, after the current on the ellipse is calculated in isolation, its

radiated field is added to the free-space field incident on the surface, see Figure 8.1-4(a).
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This results in the simple correction of the incident currents and the single scatter currents

due to the ellipse. In turn, this corrected current on the surface is permitted to radiate and

induce a correction to the current on the ellipse. This results in a double scatter event, yet

is still a first order correction to the incident current on the ellipse, see Figure 8.1-4(b).

Finally, the composite system with the first order corrected currents is allowed to radiate.

This result is referred to as the double scatter result in the following example results.

      In Figure 8.1-5 through Figure 8.1-7, we see the effect of separation on the total cross

section for the elliptical scatter/rough surface system by varying the separation between a

6 wavelength elliptical cylinder and the surface.

Figure 8.1-5: 10 wavelength ellipse, 60 wavelengths above a Gaussian rough surface

In these figures, the exact total cross-section can be compared with the incoherent

addition of the surface and the scatterer (radiative transfer assumption) and the first order

interaction between these parts. It is obvious from the figures that the double scatter

approximation provides a better estimate of the total cross section of the composite
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system than the simple incoherent addition of the cross sections of the individual

elements. It can also be seen that a larger the separation between the ellipse and the

surface results in an increasingly better approximation by the incoherent addition with

respect to the exact result. This fact has been verified by examining the cumulative root

mean square error (cumulative with respect to the observation angles).

Figure 8.1-6: 10 wavelength ellipse, 20 wavelengths above a Gaussian rough surface

Since the agreement between the incoherent addition of the parts and the exact total cross

section becomes closer, we can expect a threshold for the distance at which higher order

interactions become significant. In addition to the separation, this threshold will most

likely depend on the observation direction, the illumination direction and the orientation

of the ellipse. Further numerical studies will be required to find these relationships.  We

can see that the calculation of the returned power for most foliage components will

probably not require accounting the higher order interactions. However, a land-based

target buried beneath the foliage, may require accounting for these interactions.
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Figure 8.1-7: 10 wavelength ellipse, 5 wavelengths above a Gaussian rough surface

It seems apparent that the farther the scatterer is from the surface, the less interactions

become important. In Figure 8.1-8 and Figure 8.1-9, the full interaction problem and the

simple power addition are examined for large separations and off-nadir incidence (30

degrees). These results show good agreement and indicate very little interaction.
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Figure 8.1-8: 10 wavelength ellipse, 50 wavelengths above a Gaussian rough surface

Scattered Power: Cylinder 50 Wavelengths above a Rough Surface
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Figure 8.1-9: 10 wavelength ellipse, 100 wavelengths above Gaussian rough surface

8.1.3 Conclusions and Future Efforts

       The solution of the cylinder above a rough surface serves as a basis for comparison

with the first order multiple scattering approach and ultimately the radiative transfer

approach. The results from these simulations will justify the requirements for higher

order interactions in the foliage-surface scattering problem.  As one would expect, we

have seen an increased importance for the higher order interactions as the scatterer is

moved closer to the surface or its size increases.  This method is obviously inadequate as

the number of scatterers increases or as the incidence angle increases since the problem

becomes numerically intractable. The conclusions drawn from the example are not

surprising and include the following

Scattered  Po w er: C ylin der 100 W avelen g th s ab o ve a R o ug h  Su rface

-20

-15

-10

-5

0

5

10

-90 -70 -50 -30 -10 10 30 50 70 90

Scattering Angle (degrees)

M
ag

ni
tu

de
 (

dB
)

ellipse 3:1w/surface,g20 Addition of cyinderl & surface alone

20 degree incidence, TE, 200 wl surface, Gaussian (0.5 W avelength rms Height, 5 W avelength Correlation Length), 100 realizations



291

•  the iterations required increased as the ratio of the body size to height above the

surface decreased

•  the interaction between the surface and the cylinder decreases as the separation is

increased and incidence angle is decreased (measured from the vertical)

•  the beamwidth must be significantly larger than the ellipse to see the effects of

multiple scattering

•  the single/double scatter corrections significantly improve the estimate for power

returned relative to the simple power addition (at least for small roughness)

In addition, we have seen slower convergence in our technique as the scatterer is moved

closer to the surface. Consequently, a stabilized bi-conjugate gradient solution

(BiCSTAB) in combination with the MOMI has been implemented as an aide for the

convergence of the problem. We note that the application of the BiCSTAB routine to the

MOM equations in one particular example (16λ cylinder major axis, 3λ above the rough

surface) did not converge within the number of iterations allotted. Likewise, the straight

MOMI solution required 30 iterations. However, when the BiCSTAB routine was applied

to the MOM equations after the MOMI preconditioner was applied, the ellipse and rough

surface system required only 10 MOMI/BiCSTAB iterations.

      Two final notes: since these simulations occur with monochromatic waves and the

interest in this work involves pulsed energy, the pulse chosen for comparison will be

slowly varying and of long duration.  Primarily, we are interested in the importance of the

interactions, not the solution; consequently, until a time-dependent code is introduced, we

will assume that the importance of the interactions in the pulsed energy problem is

similar to that in the monochromatic problem. In addition, one further assumption of the

impulse response model requires our attention; the assumption of no wide-angle

scattering. This may be significant for all components of foliage and ground-based

targets.
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8.2  Approximate Analytical Solution for the Moments of a

Single Scatterer above a Rough Surface
        If it is found that the scatterer above the rough surface includes important

interactions that are not included in the modified first order multiple scattering solution,

this solution must be refined.  In addition, if the return from a strong scattering object,

such as a vehicle, under the vegetation is desired, then the coherent return may be

desired. The exact solution for the problem of multiple scatterers above a rough surface

will become numerically intractable as the number of scatterers increase.  Consequently,

alternative methods must be used or the exact solution must be simplified. As we have

seen in the previous sections, the exact solution for a single scatterer above the rough

surface in combination with the first order multiple scattering will produce some insight

into the validity of the radiative transfer result. An alternate approach that simplifies the

exact results, yet unlike the first order multiple scattering result, maintains the coherent

response, begins with the exact integral equations and incorporates some reasonable

assumptions. Like the first order multiple scattering response, we begin with a single

scatterer over a rough surface and propose an extension to N scatterers above a rough

surface.

       We start with coupled integral equations: one representing the current on the rough

surface and the other representing that on the scatterer. From equivalence, the MFIE for

the current on the scatterer in the presence of the rough surface can be written

∫∫ ∇××+

∫∫ ∇××+×=

Surface
Rough

22122s1

Surface
Scatterer

11111s11
i

111s

dS)'r,r(G')'r(Jn̂2

dS)'r,r(G')'r(Jn̂2)r(Hn̂2)r(J

!!!!

!!!!!!!!

Equation 8.2-1

where the subscripts 1 and  2 will indicate points or currents on the scatterer and the

rough surface, respectively. The current is evaluated at the observation point, which is on

the scatterer. Note the presence of the term, the last term. From equivalence, the MFIE

for the current on the rough surface in the presence of the scatterer can be written
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∫∫ ∇××+

∫∫ ∇××+×=

Surface
Rough

22222s2

Surface
Scatterer

11211s22
i

222s

dS)'r,r(G')'r(Jn̂2

dS)'r,r(G')'r(Jn̂2)r(Hn̂2)r(J

!!!!

!!!!!!!!

Equation 8.2-2

The current is evaluated at the observation point, which is on the scatterer. Note the

presence of the coupling, the second term. The geometric quantities in these two

equations are defined in Figure 8.2-1.

Figure 8.2-1: Geometry for the Reduced Integral Equation Approach
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the object is modeled as a smooth ellipse or a disc, the Physical Optics (PO)

approximation will be used to estimate the induced currents on the scatterer due to the

incident field. In all remaining sections, these two simplifications shall be considered

accurate. Starting with the coupled integral equations and substituting into the integrands

of (1) and (2) in the previous section, we find for the scatterer

∫∫ ∇××+×=

Surface
Rough

22122s11
i

111s dS)'r,r(G')'r(Jn̂2)r(Hn̂2)r(J !!!!!!!!

Equation 8.2-3

In this formulation, the integral equation for the current on the scatterer still involves two

unknowns. For the currents on the rough surface, we find the following equation

∫∫ ∇××+

∫∫ ∇×













∫∫ ∇××+××+

×=

Surface
Rough

22222s2

Surface
Scatterer

112ff

Surface
Rough

22122s11
i

12

2
i

222s

dS)'r,r(G')'r(Jn̂2

dS)'r,r(G'dS)'r,r(G')'r(Jn̂2)r(Hn̂2n̂2

)r(Hn̂2)r(J

!!!!

!!!!!!!!

!!!!

Equation 8.2-4

where  Gff(r,r’) is the far-field form of the free space Greens Function.  Those vales with

a subscripted “1” are in reference to the scatterer and those with a “2” are with respect to

the surface.  In addition, the primed coordinates reference the sources and unprimed

reference the observation points. This integral equation consists of three terms

1. The first term is the well-known Kirchhoff term

2. The second term couples the currents of the surface to that of the scatterer

3. The third term is the familiar multiple scattering term for the surface to surface

interactions

Notice that the PO current on the scatterer is known; consequently, the only unknown in

the integral equation for the surface current is the surface current itself.  Moving the

normal unit vectors inside the integrals and using the vector identity
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Expanding the gradient of the Greens Function:
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where, following the notation of  [Ishimaru, 1978], the direction from the source point to

the observation point is given by
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Equation 8.2-7

where 'rrR """
−≡ . Further reduction of integral equations is accomplished by assuming

the scatterer has a definite geometrical shape (disc, etc.).  In this case the backscatter and

forward scatter from known scatterer geometry may have an analytical result, further

simplifying the integral equations.

8.2.2 Reduction for a Circular Disk (3-D) Scatterer above a Rough

Surface

        In 3-D, the integral equations were specialized to a circular disc with random tilt and

height above a randomly rough surface and in 2-D, the integral equations were
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specialized to a strip with random tilt above a corrugated surface.  Only the results of

these derivations will be given in this report. These results should include more

interaction terms with the surface than the first order multiple scattering theory but with

less computational demand than the exact solution. For a flat disc, horizontally suspended

over a rough surface, the current on the rough surface is
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Equation 8.2-8

where the Bessel Function of the first kind, J1(x), has arisen due to the circular disk and A

is the area of one face of the disk. It has been assumed that the disk is very thin. The first

term is the Kirchhoff current on the surface.  The second term, the first integral term, is

an additional Kirchhoff current term due to the incident field from the Kirchhoff current

on the disc: the Kirchhoff current on the disk radiates to the surface. Shadowing must be

accounted for in the use of this term: the Physical optics current on the underside of the

disc, due to the incident field will typically be zero. The third term is the surface in

isolation. Finally, the fourth term is a multiple interaction result: the current on the

surface radiates to the disk and is re-radiated to the surface again … ad nauseum. Note

that this integral equation has only one unknown: the current on the surface.
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      The integral equation for the disk simply involves Kirchhoff current and the current

due to the surface radiating to the disk. Note that this equation is fully coupled to the

solution for the current on the surface
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Equation 8.2-9

If the surface is gently undulating, the z-directed currents will be nearly zero, hence, the

integral equations for the currents become
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A more complex result is available for a disk with arbitrary tilt and in 2-D, a strip with

arbitrary tilt.

8.2.3  Conclusions and Future Work

       This section has started with the exact coupled integral equations for a rough surface

in the presence of a single scatterer and reduced these using the far-field form of the

Green’s function for the scattered field due to the scatterer and the physical optics

solution to the scatterer’s current. Furthermore, we have isolated an approximate integral

equation for the surface scattering in the presence of the disk. This integral equation only

involves one unknown, the current on the rough surface.

      In addition, we have simplified the expression for a scatterer that is a circular disk. In

addition, the term that represents the multiple interactions between the scatterer and the

surface has been isolated and should be evaluated relative to the surface in isolation. This

investigation will yield an analytical solution as to the validity of the single interaction

assumption for the radiative transfer result. The next step in this process is to numerically

implement the above integral equations. These results may then be compared with those

obtained with MOM/MOMI. Concurrently, the average results will be attempted

analytically for a random height and then the random orientation. These results should be

implemented numerically.

      In the extension to N scatterers above a rough surface, no interaction between

scatterers will be accommodated; the result will include interaction with the surface, like

the first order multiple scattering result. Unlike the first order multiple scattering result

discussed earlier, these results will include a more comprehensive treatment of the

interaction with the surface in addition to the preservation of the coherent field.

Numerical solutions and comparison with MOM results for two to three scatterers can be

performed in an effort to assess the mutual interactions among the scatterers themselves

(ignored by the presented single scatter theory). An attempt to derive analytic expressions

for the field moments from these equations will be made, including the mutual coherence

functions.
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Chapter 9  Summary and Future Efforts

      This dissertation has covered a large variety of subjects, all concerning the interaction

of waves with rough edges, surfaces and random media. First, a method for predicting the

total field beyond a rough knife edge was presented. Using a spectral approach in

combination with the paraxial approximation and the Kirchhoff approximation, we can

predict the field, total power and its coherent and incoherent components in the line-of-

sight direction beyond the obstruction. The mean diffraction field is a result of an

effectively smooth knife edge; hence, this term is present even in the absence of

roughness on the edge. The fluctuating portion results from the roughness on the knife

edge. Hence, for small relative roughness, the diffracted field is equivalent to the mean

diffracted field. As the roughness on the edge increases, the edge diffracted-field

becomes more incoherent and the phase interference consequently diminishes, leading to

an attenuation of the oscillations in the coherent or mean total field.

       The wide angle scattering from a rough knife edge may be interpreted in a similar

manner. The paraxial approach and the stationary phase result agree in magnitude under

narrow (but reasonable) beamwidths and for large observation distances. In order to

increase the applicability of this model, the saddle point evaluation of the spectral

integration must be completed. This task can be completed using a transformation found

in Banos [1966]. Finally, the propagation of a pulse past the rough knife edge was

presented. In reducing the problem to a usable form, it was found that a narrowband

approximation was necessary. The received pulse, in both the smooth and rough edge

result was found to be an amplitude-weighted replica of the transmitted pulse., due to the

narrow band assumption, several integrals were dismissed as insignificant; as the

bandwidth grows, these integrals will assume a greater role and consequently pulse

distortion and dispersion may become an issue. As a future effort, the results presented in

this dissertation should be generalized for larger bandwidths.

     Extending the idea of the knife edge diffraction, this thesis builds on the topic of a

wedge on a plane by extending the Method of Multiple Ordered Interactions (MOMI) to

the dielectric surface. This model is developed as a more exact alternative to the
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Impedance (Leontovich) Boundary Condition (IBC). In this development, the coupled

integral equations governing the scattering by a dielectric surface are combined into a

single equation where the lossy dielectric enters the solution as a perturbation of solution

for a perfectly conducting surface. Hence, the solution is not only exact, but as the loss

increases, the convergence is rapid. Other interesting results are possible when this

formulation is extended to the TM polarization.

       In predicting the radar return from vegetation, a number of approaches have been

developed: radiative transfer, single scatter, and multiple scatter. In this dissertation, the

focus has been on the formulation a simple model from radiative transfer theory that is

numerically efficient and depends on the empirical identification of effective parameters.

However, there are a number of verification studies that were performed and several

different levels of verification have been outlined in this dissertation. The Impulse

Response (Convolutional) model allows a superposition of surface and volume responses.

Its numerical implementation is via the Fast Fourier transform, FFT, which allows a fast

numerical solution. This approach, although originally derived from the radar equation

and then by the radiative transfer equations, has been shown to be equivalent to the “first

order multiple scattering theory.” This equivalence has been derived under the

assumptions of narrow-band and narrow-beamwidth with a limited scattering pattern.

       The beam wave solutions presented have indicated that beam broadening will

become significant when the discrete objects scatter isotropically or the medium is

electrical deep. Isotropic scattering, however, is expected to yield a large beam spread.

Hence, further examination of beam broadening for more general power scattering

amplitudes, such as the one proposed by Schwering (see Section 4.4), are necessary. This

is a work in progress; although the theory is developed, it has only been tested for

forward-backward and isotropic scattering. In addition, there is still room for original

work in extending the solutions to polarized waves and pulsed waves.

       The single scatter approximation was examined next in the simulation of volume

scattering. This approach has exposed several of the major assumptions of the

convolutional model, since the single scatter result also leads to the same convolutional

equations. The narrow-band and narrow-beamwidth approximations are the primary

limitations, beyond the forward-backward scattering approximation. However, using the
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full expression for two-frequency mutual coherence function, the impulse response

approach may be extended to broader bandwidth pulses in addition to broader beamwidth

antenna patterns while maintaining some convolutional aspects. In addition, it was

demonstrated that the single scatter solution could be extended to include polarization

effects. This effort looks feasible and should be attempted.

     The multiple scattering approach will yields further insight into the physical

parameters that make up the extinction and effective medium parameters. The multiple

scattering approach has yielded two useful results with respect to the convolutional

model: the Distorted Wave Born Approximation (DWBA), and the two-frequency

radiative transfer equation. From the calculation of the mean Green’s function, the

DWBA will provide an avenue to calculate the scattered power. More specifically,

however, using the mean Green’s function in the convolutional result from the single

scatter development will yield a more predictable and interpretable convolutional model.

In this development, the simple far field form of the Green’s function in combination

with the scattering amplitude would be replaced by the mean Green’s function. Finally,

the two-frequency radiative transfer equation was reduced to a forward-backward result

and is expected to be easily manipulated into the convolutional form, which will include

the effects of surface and foliage roughness. Consequently, the result will be a more

general, physically interpretable form of the convolutional model. This section of the

dissertation has created a host of possible avenues to explore. First, the DWBA should be

implemented, first for uncorrelated scatterers and then with pair correlated scatterers.

This result will lend some physical interpretation to the convolutional solution. Then the

solution must be implemented (along with the two-frequency rough surface result) and

compared with the simple convolutional result.  Not only will this provide further insight

into the physical mechanisms, but it will also add some new dimensions to the analysis –

frequency dependence. Obviously, implementing this solution will add complexity to the

simple convolutional result, in the form of some difficult inverse Fourier transforms.

        In the third region of interaction, the volume and surface interaction, an exact

solution to the single scatterer above a rough surface has been implemented via the

MOMI method of solution to the MOM problem. This effort is necessary in order to

compare the first order multiple scattering result with a result with known accuracy. It
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has been observed that the interaction is certainly present, particularly when the scatterer

is closer to the surface and as incidence angle is further removed from nadir. These

results provide a basis of comparison for the impulse response. The results presented are

restricted to the TE incidence and must be extended to the construction of the MOMI

model for TM polarization for an elliptical cylinder over a rough surface. It is apparent

that foliage components well above the rough surface may be treated as non-interacting;

this includes components other than the trunk region, which was not simulated. However,

it is evident that multiple scattering effects may be significant for a large conducting

object near the rough surface. In addition to the impulse response approach, a second

analytical approach has been formulated which begins with the exact integral equations.

We hope to find an analytical, or at least computationally efficient, solution to both the

mean and second order, time dependent power density for the single scatterer above a

rough surface.
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