PRE-FETCH DOCUMENT CACHING TO IMPROVE
WORLD-WIDE WEB USER RESPONSE TIME

by
David Chunglin Lee
Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
in

Electrical Engineering

APPROVED:

ow F A

S.F. Midkiff, Chairman

T = e.«z,%
QN.J. Davis, IV C.E. Nunnély

March, 1996
Blacksburg, Virginia

Key Words: World-Wide Web, Pre-Fetch Caching

PRE-FETCH DOCUMENT CACHING TO IMPROVE
WORLD-WIDE WEB USER RESPONSE TIME

by
David Chunglin Lee
Scott F. Midkiff
Electrical Engineering

(ABSTRACT)
The World-Wide Web, or the Web, is currently one of the most highly used network
services. Because of this, improvements and new technologies are rapidly being
developed and deployed. One important area of study is improving user response time
through the use of caching mechanisms. Most prior work considered multiple user
caches running on cache relay systems. These systems are mostly post-caching systems;
they perform no “look ahead,” or pre-fetch, functions. This research studies a pre-fetch
caching scheme based on Web server access statistics. The scheme employs a
least-recently used replacement policy and allows for multiple simultaneous document
retrievals to occur. The scheme is based on a combined statistical and locality of
reference model associated with the links in hypertext systems. Results show that cache
hit rates are doubled over schemes that use only post-caching and are mixed for user
response time improvements. The conclusion is that pre-fetch caching Web documents
offers an improvement over post-caching methods and should be studied in detail for both

single user and multiple user systems.

Dedication

To my parents, Kun-chieh and Shiow Yeh Lee, who made this work possible.

iii

Acknowledgments
To Dr. Scott F. Midkiff for keeping me on track, providing excellent advice, and being

the best possible advisor.

To Dr. Nat J. Davis, IV for statistical help and questions, and Dr. Charles E. Nunnally for

serving on my committee.

To my parents, Kun-chieh and Shiow Yeh Lee, and my brother, Edward "Ted" C. Lee,

for all the encouragement and support through the years.

To Rhett D. Hudson for his suggestions and help. To Salah Almajdoub for all the
Microsoft Word tricks. To Al “Snowman” Walters and Mark “Grover” Musgrove for
providing incentive to get this done. To Yen Chuang and David Putzolu for all the good

games.

To my volunteer testers: Salah Almajdoub, Ray Bittner, Henry “G” Green, John Lund,
Barry Mullins, Mark “Grover” Musgrove, Rhett Hudson, Tyler Ormsby, Kevin “Bumble”
Paar, Jim Peterson, and Elvin Taylor for providing the user trace data that this research

work is based on.

iv

To Jeff Vest and Ping Fang for providing statistical consulting.

To Ed Schwab for helping collect some statistics on the BEV World-Wide Web server.

To Bruce Harper for supplying the Virginia Tech server access logs.

To the National Science Foundation for graduate assistantship funding by SUCCEED
(Cooperative Agreement No. EID-9109853). SUCCEED is a coalition of eight schools

and colleges working to enhance engineering education for the twenty-first century.

Table of Contents

CHAPTER 1. INTRODUCTION cereneeessssnesasssranenssanns - . o |
1.1 MOTIVATION ..ceeieitie e cciee ettt e et e e e steeeeeeatneasessbtraeessmbntsssesbntesaansateesssssasessentanseseseansmseesssameaneneseenmeeaenenan 1
1.2 CACHING PROBLEM........cvtiiieciriieieiretesssireessisiasstesesssessesssssessissssesssersssssssssssssssessssseesssessnsesesssesasssesssemaneees 2
1.3 THESIS ORGANIZATIONcoiiiveieiurreeiveeireeerreeiseiersssessssssissssssseiassssssssssssssssssesessnsesssstssessssssssnsessnseeesssseeennee 5
CHAPTER 2. BACKGROUNDocciitciinntiesessssseresssnssisisssaesessssasesssnssassssssssssesssssssassessassssssssssssassssssssnsass 8
2.1 THE WORLD=WIDE WEB.......uuuturtiiiiiiiiiiiiinieieteeeeeeiisisarsretesetesssessssssnsesetesetesesessssnrssesesesseseessessssesssesssssiosne 8
2.2 GLOBAL NAMING SCHEMESccuoitieiiiiieiiintrieeeeereresiointntrteseieiasarsrsssssesesessissesassssssesssssssseseessssssessssessssssssns 9
23 HTIML...oooeeeee et eree e e s tv e e s e s e abae e e eebn b e e e sttt e se s e b bhr st e santaeeeenbrtr e eaebanraesesrbrateeseeenrnteeenere 11
A N o OO U 13
2.5 CURRENT ISSUEStttiiiiiirereisiirreeeisiseeeeisisresesasisseseisissssesassssssssissssssintnsesssesnsesssosassnsssssesassnsesssessssasesesens 16
2.6 SUMMARY ...ovvteieeiettieeieeeieeeeeesasaseabeeeeeasseseeesesaseessasteeesaaasasesessssnsaassaseeesesarsntssssasnseneasssasstansssssssnnsesssesanens 17
CHAPTER 3. USER RESPONSE TIME IMPROVEMENT TECHNIQUESccoceterenmnreranes 18
3.1 DEFINITIONS.eoeiiiuteieeeeieteeeeetateeeeetaeeeessssseeessoantesssssatesaassnssesssasaseessesaneese s snteseseanssmaesssesnsansasssasnnrasesesannns 18
3.2 BASIC PERFORMANCE ISSUEScciiutiiiieirreseeieteeeieteteeeeeaneresessseesesessseseessnssesenssessssssssesesssensasensssssnsssanees 18
3.3 CONSTRAINTS ON INCREASING PERFORMANCEcuvitieiinreeeinnrreeietreseesssstessseosseresssssinsssssssssnnsssssssnssnnes 20
3.4 PROTOCOL (HTTP) REPLACEMENTcoiotiitiiieieeeertesieesteasseeeeessnasseessnsssassesssesansesnsessnsesssessnnssssssassessnns 21
3.5 DATA COMPRESSIONcuuuuimrireeeeereeiierereeeteseaessessssrrsssesesesesessiessssssesessssiesarsssssssasssesesesssesiesesessssssassssnsassses 24
3.6 MULTIPLE PROTOCOL INSTANCES......ccoitivttieieiiureeeieirteeeissneeeeesinseeeieiesssessssnssessnsnsessessssinsessssesssnsesesssonnes 26
I I 7o) 1. J USSR 26
3.8 SUMMARY ..uutittiitiiiiiii s ceiiiitttter et es e eessiib b et e e e e s eesesas s bba b et et e eetess s resssbn s e tatseesansrasassntntntesesenteteeesssessesosensnrnrere 27
CHAPTER 4. CACHINGccooruriecsccnseccsssnercesssnsesessonaresessansasssns - . 28
4,1 BASIC CONCEPTS ...uvteveieriieiieeiesterereteresieisissseresseeessssissssstssssessiesessrsrsssssssesssssssersssssssssessssssstassessssesiesssenn 28

vi

G L T USEF MOMEIS..........cooeeoeeeeeeee e ettt ettt et e e e e e e e e e r e e eee e e s veeerenans 29

4.1.2 Cache Relaying Versus CACRINGccocceceeiiciiiiiiiiiiiiineseceses e R 30
4. 1.3 PPO-JRICH CACHING. ...ttt eb et v ettt bbbt s st et e e eae s s ene et eaesrsatesean 31
4.2 HYPERTEXT ACCESS GRAPHSococvieiieiieecteieneerneeeseeiseesseessesesssessessssssssesssestesssessssssssssnsesssessssesssssssnseses 33
4.3 PRE-FETCH DOCUMENT PREDICTIONoovetrieiereertsrnieserenestesesessestssastssesessesassenessennesessssassesessessssessssasns 34
4.3.1 CAteGOFICAl HEUFISTICS.........occeveveeeiiiieisieeeseeiee et s e eesve e sae e ste bt e e e et e e s aeetseeraeentteeareeatteerrees 34
4.3.2 STALSHICAL HEUFISTICS ..ottt ettt e e ettt e e etae e e taae e s tbeeeattseseataeeanrneaan 35
4.3.3 Prediction Involving Multiple Servers...............c.ccouiimiiiiiiiiiiiiiii ettt 37
4.4 POST-FETCH DOCUMENT PREDICTIONccccvtiuiimimimteerienreteessenreseestenessestesesseesessessessessessessessessessessenes 38
4.5 CACHE HIERARCHYcoccivtiminiimimminiirint e seeseeceee st s sts e e seeseesaeses st enesee e enesseseenaeses st enessessesaeseesunssessessnnsenes 38
4.0 SUMMARYcceotimiiiiiieiriisiosesisitissst it ste e estenesetssessesens e seeseesestentesessessesseneeneseenaesseneeneestsaraneesessteseesessessenes 40
CHAPTER 5. DESIGN AND IMPLEMENTATION .- terssssssstssssssssssassnseas 41
5.1 DESIGN GOALS.....cocviiiiiiiiiiniiitiiet ettt sas st s et sate e sa e e s b s s s et etesh s besa b sa s s e o e s s e s e sasabesanesanentesans 42
5.2 CLIENT-SERVER INTERACTION......ccoitriitririiitiiiinieteiserae sttt oo st sss st e e sassennesas e esnssnessasans 42
5.3 SERVER DESIGN ...cuiiiiiiiiiiiiiiiiieisiiiieniisi it tsisi et sttt ss s sas sttt smss b s st s s b sasssan et sanssna sns 45
5.3.1 Statistical Access DatADASe..................ccooeeeecieiiiiiiiiiiiii ettt et 45
5.3.2 Server Process Layout and General NCSA httpd Operation................cccccveevoeeeceieraniescnaieeeenenns 46
5.4 CLIENT DESIGN ..ottt ettt ettt es e sttt e stk e e s s e st s s et e e st e s e s ab et e st e st emeesat e s eentanbennenane 47
5.5 PRE-FETCH PREDICTION ALGORITHMcciirimimiriiiiiiirieininieimisiiniseietsintessmisssastesesasesssseesssssesesnsssssanees 50
5.6 SUMMARYoouviieuieuiesiesietestesteteseantastesesseesestesestessasseneasessestensensstessensensesessenteseetesessesseetessassessessessessessessens 56
CHAPTER 6. PERFORMANCE - 57
6.1 EVALUATION METHOD........coiiiiiiiiiiiiiie ittt sab st s bbb s b saa s as e sha s e e s e e 57
G. 1.1 USCEF THACES ..ottt ettt et e e bbb e sttt s s aaee e s b e e s stba e e sabbee e e 59
6.1.2 PAFAMELEE SEL.........oooeeeeeeeeeee ettt e et e ettt e e e enae e e e sttt e e e sraaeeeesataaeae s ettt b saeaaanntsseeee e srnneens 61

vii

6.3 PRELIMINARY ANALYSIS....coiiitieieiiitieesiteeeeeiieeeieeetteeesesnseresorntesssssssssessestsseseenssnsesssesssseseessessnssessesssaneess 64
6.4 PERFORMANCE ANALYSIS ... cuutiieieiiteeeiitteiairtreeeesssseesesseesaeassessssssssssssarssssssesssssnnsesesmsssssesssssesesessssssnes 65
6.5 STATISTICAL ANALYSIS ...eitieiiiieiereiteeeeeeteeeeranteeesestseeeesseesesatntesasssssssserssssesesssassssesesassrsesesssssereessosssenes 65
6.6 GENERAL TRENDS AND OBSERVATIONScccocoiiniiiiiiniiitiieeieiosetentesesrescseestesesnesstesessessessessessessenssssenes 66

6.6.1 Effects of Network Bandwidlthccocouiiioiiiiiiiiiiiiesiiicit ettt 67

6.6.2 Effects of DOCUMEREt DEPUR...............cccooieieiiciie et e 68

6.6.3 Effects of Number of CRARNEISccoooveieeiieiii ettt rae e e sae e ara s sine s 69

6.6.4 Effects of Cache Size and Document Replacement Policyccccccecoiiiininiiniiiinsiieieeeinenn 69

6.6.5 COMBINALION EffECLSc..oeoeeoiii ettt ettt sbaesae et b asbebeenran 70
6.7 SUMMARY ..euvtevririieeeeeieieieeitsraretessseeaaaistssesasessesesassssssssesssesasasssesssssssesasasssssasassssnsessssssesssasssssssesioesssssssnsens 70
CHAPTER 7. CONCLUSIONS 72
CHAPTER 8. REFERENCES.... reestsesessteseessatsat e s asansaatnsane ceesesesnenenssaserneanannsanten 75
APPENDIX A. USER DOCUMENT CACHING ON THE WORLD-WIDE WEB..........cccccervennacennnne 87
APPENDIX B. HTTP REDUNDANCY ANALYSIS............ reesssrestasaisesesnsenrentaseas 118
APPENDIX C. WEB CHARACTERIZATION rretessssatessesesassanane teesseenesstnsnssensssssnsnrains 120
APPENDIX D. EXPERIMENTAL RESULTS.......... sesseesassniarsanestennanns 139
APPENDIX E. STATISTICAL ANALYSIS OF RESULTS 145
VITA .o cecceeeitisssncscsentisssasssssssstessa e ses s s s sssssssssssssssesasssstasssssessssssesesssesstosssssessssssessssssssstantestissssessasasstessssnse 151

viii

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

FIGURE 8.

TABLE 1.

TABLE 2.

TABLE 3.

TABLE 4.

TABLE 5.

TABLE 6.

TABLE 7.

TABLE 8.

TABLE 9.

List of Figures

STATISTICAL ACCESS DIGRAPH EXAMPLE.ccootieiiriireienrrieieresseesteensesssnessesnseessssssseesssesssseessesens 36
SERVER PROCESS DIAGRAM.ouiiiiiiicieeeieieeraieeieete st seeeetee st sneesaaessrasssensnsasansessasassesssseensens 46
CLIENT PROCESS DIAGRAM. ...c.cutiimtiiitteuteeterieesuesastesttestcaeseaaetesaresssessessssesasesssessasensseasasessssassessses 49
INITIAL WEB GRAPH.ccouiiiiimiiitiiiiiirieceeeeterntesr s sseeseesneesetesenesneesseassesesressasenssessstenssnsaseasssensnes 52
WEB GRAPH AFTER RETRIEVING NODE B.......ccooiiiiiiiiiieineier et et 53
WEB GRAPH AFTER RETRIEVING NODE C......ooiiiiiiiiiiriieiciteenirsssieeesieeeseseesssteessbesssssessssssessnsnes 54
WEB GRAPH WHEN USER MOVES TONODE B.ccocciiiiiecieieirtsereteiete ettt etestesresbesae e evesnens 55
USER INSTRUCTIONS.......eviiiiriiiiciietesreeenineesnesssiteseietessstesssanesanesssnneesarsnssasessssssesasaseessannessssnnesenes 60
List of Tables
SERVERS USED IN FEASIBILITY ANALYSISceitrueirieirtetateuesteietaneseesessessessensessnsssansasesssssensnsasens 32
USER READING TIME BETWEEN DOCUMENT FETCHEScvetrimiieteeieieereeaesessssasssssssessssessnsanssss 32
SAMPLE LIST OF HEURISTIC CATEGORIESveerteererereierereressenisssesasssssenessssassersssessesansssassessasessans 34
FACTORIAL BLOCKciiiiiiitieniieeiiie ettt e e sitse st e sttt et seeee s s sses s maesssnnessasanessasasennsesanens 63
EXPERIMENTAL RESULTS FACTORS.........ccvitreiiereriiriestnseisesiaessesessesessesasesssssenssessesesssssassnsnsenens 139
HIT RATIO RESULTS ...cuetiiiiiiiitietie e ceeieeeetes e st e mresss s s ssn s s e sasen s s e e sesannesabanessaneeseanens 140
RESPONSE TIME RESULTS.......cuvvtetiiierieennetsreresinieseesenceresersessssesencssesenssssssesescesessasessensenssesesseseses 141
TRANSFER RESULTS BASED ON FILES.......coiotiiiinieiiierinenieteesastesaessesessssssesessessassessessesssssesvens 142
TRANSFER RESULTS BASED ON BYTEScouiiteuieiitirerinisiesiestenieeseessesteseescessesseessesssesessasssenesses 144

ix

Chapter 1. Introduction

1.1 Motivation

The most widely used distributed information system today is the World-Wide Web, or
the Web. The Web has now become the largest single component of traffic on the
NSFNET backbone in both packets (21.4 percent) and bytes (26.5 percent) as of April
1995 [1]1. The Web [2, 3] provides a simple point and click hypertext interface that
allows a user to request information only when the user desires that information. Given

the popularity of the Web, it provides an important platform for study and improvement.

Improved performance and features of distributed information systems will be important
research objectives for several years to come. Other systems, such as Hyper-G [4],
Gopher [5], and WALIS [6], exist and provide different models of information access and
user features. These models can be used to determine features and performance
improvements that should and could be added to the Web. These systems are accessible

through the Web through the use of hosts that provide gateway interfaces.

There are a number of features that many people desire to see in the Web. Feature
improvement is generally an addition to the existing system and based on user

preferences; it is usually not an interesting engineering research topic. However, this

! NFSNET statistics beyond April 1995 are not available due to a change in the NSFNET structure.

research does consider some aspects of feature improvements as they relate to

performance improvements.

Performance improvements involve changing the basic system to achieve improved
throughput with the overall goal of reducing user response time. In this case, user
response time is defined as the time differential between the time the user requests
information and the time the information is provided, in its entirety, to the user. User
response time can be reduced through various means. Obviously, the best method is to
increase network capacity. This is not feasible in many cases, so alternatives have been
and are being sought. These methods include protocol modifications, data compression,
and document caching. Each of these will be briefly discussed with a focus on user

document caching, which is the primary concern of this research.

1.2 Caching Problem

Web document caching can occur in many forms. A specific user may have his or her
own local document cache. A group of users may have a document cache that all users in
the group access. This multiple user caching service is typically called cache relaying or
proxy caching. Several studies on cache relay schemes have been performed with some
beneficial results [7-9]. The focus of this research is to improve user response time
through user document caching. In this research, user document caching incorporates

both pre-fetch, or “look ahead,” and post-access caching.

The study implements pre-fetch caching with least-recently used (LRU) document
replacement. Pre-fetching is performed using statistical information transmitted from the
Web server. The algorithm results in approximately 1.6 times the cache hit rate when
compared to post-document caching alone. With the LRU document replacement
algorithm and reasonable pre-fetch cache sizes, the results are a 40 to 60 percent cache hit
rate. A different sample test of pre-fetch caching, by retrieving links a single level away
on a first-come, first-serve basis, resulted in an approximately two percent increase in the
cache hit rate. This is a fairly limited result, but the implication is that complex pre-fetch
algorithms may not be needed. Locality of reference models in pre-fetching algorithms

may prove to be a more cost-effective approach.

The increase in cache hit rates does not necessarily translate into reduced user response
time. For low network data rates, the user response time decreased significantly.
However, for high network data rates, simulation shows that there is a slight increase in

user response time. This is attributed to program design.

Luotonen [10] states that user-based caching is not as useful as cache relaying. The
primary reason is that multiple copies of the same document are maintained in different
user caches. This results in a high disk space cost for limited benefits. While this may be

true, typical users, at least those using a low data rate connection, will most likely see a

performance increase through the use of pre-fetch caching. This, for many users,
outweighs the cost of extra disk space. Another reason to prefer cache relaying is that a
larger base of users provides for better access statistics. These access statistics could be
used for document pre-fetching. While this is also true, individual servers have their own
set of statistics and it may be more helpful to use those statistics instead of those based on
a cache relay user population. This research investigates the feasibility of using server

statistics for document pre-fetching.

For this research, one can consider user caching to be equivalent to a single user using a
cache relay. This means that the results and techniques for single user pre-fetch caching

based on server access statistics can also be applied to multiple user cache relaying.

Another research objective was to obtain analytical data to characterize the Web. These
characteristics, presented in Appendix C, include statistical characteristics of Web
documents sizes and composition, HTTP data transfer rates, server types, and character
frequencies. This work was used to identify and study problems with HTTP. From this,

potential methods to improve HTML document transport are suggested.

1.3 Thesis Organization

Chapter 2 provides an overview of the technical features of the Web. Specifically, the
mechanisms behind the hypertext links and protocols are addressed. The three core

specifications of the Web, HTML, HTTP, and URLs, are reviewed.

Chapter 3 gives background information on methods to improve user response time.
Bottlenecks, as well as some solutions, are noted. These bottlenecks and solutions
include HTTP limitations, potential new HTTP features such as data compression and
multiple protocol instances, and caching strategies. Rationale to support incremental

modifications to HTTP, as well as more study into data compression, is presented.

Chapter 4 describes caching concepts and models as well as current caching research.
The chapter outlines the theories and ideas used in this research. A limited overview of
prediction heuristics and metrics is provided. A new way to look at prediction, which is
based on server access statistics, is presented. The concepts discussed are then used to

generate a proposed cache hierarchy.

Chapter 5 provides the general design and implementation of the experimental system
used in the research. Design goals and limitations are presented. The layout of the server
and client process structure is given and an example of the pre-fetch algorithm is

presented. The client also has the capability to perform multiple simultaneous requests.

Chapter 6 presents experimental results for the client and server system described in
Chapter 5. The experiments examined the effects of four variables, pre-fetch depth,
available network bandwidth, cache size, and number of simultaneous requests, against
each other and against various caching situations. Results indicate that the proposed
system does improve user response time. Observations are made regarding the effects of

the variables used in the experiment.

Chapter 7 provides concluding remarks. A summary of important results and future

research directions is given.

Appendix A provides the experimental HTTP header specification used in this research.

This is presented in draft Request-For-Comment (RFC), or Internet-Draft, format.

Appendix B provides a brief redundancy overhead calculation.

Appendix C shows the results of an informal analysis of Web characteristics. The

www.yahoo.com server indices were recursively traversed to obtain characteristics such

as transfer time and document size.

Appendix D contains the data obtained from the experiments described in Chapter 6.

Appendix E provides the statistical results of a 2*_factorial analysis on the data contained

in Appendix D.

Chapter 2. Background

This chapter provides an overview of relevant concepts related to the Web. These include
the mechanism to encode documents in a display-independent manner, the means to
transport these documents from machine to machine, and the method to locate these
documents on a heterogeneous network. A brief discussion on current Web issues is

provided.

2.1 The World-Wide Web

The World-Wide Web was proposed by Tim Berners-Lee in 1989 as a means to deliver
information at CERN [11]. It has been described as “a wide-area hypermedia information
retrieval initiative aiming to give universal access to a large universe of documents™ [12].

The Web is composed of three primary specifications:

1. a global naming convention through the use of Uniform Resource Locators (URL)
(see Section 2.2),

2. adocument display language, specifically the Hypertext Markup Language (HTML)
(see Section 2.3), and

3. amechanism to transport and access these documents, the Hypertext Transfer

Protocol (HTTP) (see Section 2.4).

In addition, an HTML browser is required to interpret and display the document display
language and various types of servers are required to access and transmit, or “serve,” the

documents.

A significant amount of Internet, and hence, Web, technical specifications use a
meta-language presentation format known as Backus-Naur Form (BNF) [13] and various
modified forms such as the augmented BNF used in RFC 822 [14]. This thesis provides
simple examples, where applicable, to present general technical details. BNF notation is
not used in this text; however, knowledge of BNF may be necessary to review some of

the references.

Several of the references are Internet Drafts, which are working documents that are
constantly evolving. They may eventually become Request For Comments (RFCs) or
may be withdrawn at any time. All such documents referred to were in circulation at the

time of writing.

2.2 Global Naming Schemes
A stable, consistent, and uniform global naming convention of resources on a network is
an important aspect of distributed systems that allows for resource sharing [15]. Without

a global naming system, the same user at two different sites may need to use two different

names to access the same document. This is, obviously, undesirable on a world-wide

network. One name should access the same document regardless of the user location.

There is work within the Internet Engineering Task Force (IETF) to standardize a
Uniform Resource Name (URN) that will define name space and resolution protocols for
persistent object names [16, 17]. The URN specification is still in the discussion stage.
Because of this, the de facto Internet resource naming convention is the Web-specified
Universal Resource Identifier (URI), as specified in RFC 1630 [18]. It provides for a
consistent usage of registered name spaces and protocols to identify resources on the
network. The type of URI specification that the Web itself uses is known as a Uniform
Resource Locator (URL), as specified in RFC 1738 [19] and RFC 1808 [20]. Additional
information on uniform resource naming can be found by searching the Internet Draft and

RFC indices.'

Some illustrative examples of URL's are given in the following paragraphs.

The URL:

ftp://lwww.vt.edu/README

! Available through anonymous FTP at ds.internic.net in the directories /internet-drafts and /rfc,
respectively.

10

specifies to use anonymous FTP (File Transfer Protocol) to the host www.vt.edu to get

the file README.

An example URL that specifies an HTTP request to the host fiddle.ee.vt.edu, TCP port

80, to get the file home.html in the path /succeed is:

http://fiddle.ee.vt.edu:80/succeed/home.htmi

Note that the “/” (forward slash) in the URL has special meaning as a token separator and
does not necessarily imply a pathname. Special character encoding mechanisms are also

available for use.

2.3 HTML

Displaying an electronic document on various types of hardware and display systems is a
complex task. The International Organization for Standards (ISO) Standard Generalized
Markup Language (SGML) [21] provides a flexible and portable text-based specification
that allows the platform-independent creation and display of documents. The current
Web implementation uses a subset of SGML called the Hypertext Markup Language
(HTML) [22, 23]. HTML Version 3 provides for advanced document layout and

formatting, tables, and in-line images. A specific piece of software, commonly called a

11

browser, is needed to decode the HTML elements and display the document in a suitable
format on the local display system. Two of the more common browsers include Netscape

Navigator [24] and NCSA Mosaic [25]. Additional browsers may be found at [26, 27].

The decoding and displaying of HTML documents is done through parsing special
markup elements. The elements are enclosed in brackets, ‘<’ and ‘>’ (the greater than
and less than characters). Anything outside the bracket pairs is considered displayable
text. HTML elements either change the display of the text or graphics objects or provide
for layout and organization information about the document. For example, to specify text

in bold, one would use the ‘B’ and /B’ HTML elements:

This text is in BOLD. This text is not in bold.

which would be displayed by a browser as follows:

This text is in BOLD. This text is not in bold.

One central feature of HTML is that it allows links to other documents to be embedded

within an image and/or text through the use of URL's and the HREF anchor element.

This feature allows a user to jump directly to information that they need instead of

reading information in some pre-defined order. This feature creates a set of documents

12

that is referred to as hypertext. In this research, hypertext links are used to implement

pre-fetch based user document caching.

Another important aspect of HTML is that browsers ignore elements that they do not
know how to process. This attempts to provide for seamless extensibility in the Web. In
most cases, an older version of an HTML browser can still be used to view a newer
version of HTML without significant loss of information. Another example is a
terminal-based browser that cannot display graphics or different fonts. This terminal
would display the above example text (“This text is in BOLD. This text is

not in bold.”) as:

This text is in BOLD. This text is not in bold.

There is currently an effort to create a Virtual Reality Modeling Language (VRML) [28]

that allows for three-dimensional display and manipulation through the Web.

2.4 HTTP

Transport of HTML could take place through a variety of means: FTP, electronic mail,
and news articles. In fact, gateways on the Internet allow transmission of HTML
information through such means as noted above. Gateways also allow for the conversion

of non-HTML documents into HTML. This still does not provide a good transport

13

mechanism for HTML. To solve this, a simple stateless protocol was developed to
transport HTML from system to system. This protocol is known as the Hypertext
Transfer Protocol (HTTP) and is currently an Internet Draft [29,30]. The current version

of HTTP is Version 1.1.

HTTP is a simple request and response protocol that uses concepts from the Multipurpose
Internet Mail Extensions (MIME) specification [31]. MIME and HTTP provide a named
type, called a “content type,” for every document transferred, such as a GIF image,
HTML text, or PostScript file. In HTTP, documents are typically not combinations of
different document types. Instead, HTML documents typically contain in-line or external

links to separate documents.

HTTP provides a mechanism for negotiation of these content types as well as languages
and character sets. This, in theory, allows a browser to obtain proper documents for it to
display. For example, assume a server has two different graphic representations, using
JPEG and GIF, for a particular image and that a user has a browser that can only display
GIF images. The protocol allows the browser to tell the server that it can display a GIF

image. Based on this, the server can send the GIF image rather than the JPEG image.

This negotiation typically does not occur on the Web today. Most browsers inform the

server that it can accept all types of documents and the server sends all types. Rather than

14

this negotiation mechanism, the user usually manually selects the document types,

languages, and character sets to receive.

HTTP allows various actions, or “methods,” to be performed on a document. The most
commonly used methods are GET, HEAD, and POST. The GET method simply
retrieves the document and header information specified by a URL. The HEAD method
is similar to the GET method but only retrieves the header information. The POST
method allows a browser to send a document to the server. Other protocol features
include basic authentication, document retrieval based on modification dates, proxy

serving of documents, redirection, and expiration of documents.

One of the most important features of the protocol is that it uses a series of extensible text

request and response MIME header lines. The use of text and a common format allows

for new headers to be introduced without causing old implementations to fail. Old

implementations simply ignore headers they do not understand. Guidelines for adding

new headers have been introduced [32].

The formal syntax of a header is as follows:

[Header] : [Value] <CR><LF>

15

In the syntax above, the brackets are not part of the elements. CR is US-ASCII 13 and
LF is US-ASCII 10. The CR is optional in all cases, but it is needed to be MIME
compliant. All HTTP headers are limited to the 7-bit US-ASCII character set and are
typically case insensitive. To end the header block, two null headers (blank headers), i.e.,

two successive CR-LF combinations, are sent.

Some typical negotiation headers that accept all document types, GIF images and HTML

text in particular are:

Accept: */*<CR><LF>
Accept: image/gif<CR><LF>

Accept: text/htmI<CR><LF>

This research takes advantage of the text extensibility feature to introduce new headers

related to document access prediction.

2.5 Current Issues

As for any widely used system, there are a number of complaints leveled against the
Web. These fall into the two broad categories of feature issues and performance issues.
Some of the more common feature issues are lack of session support, poor data security,

and limited commercial transaction support. These are reviewed in Section 3.2. Also,

16

there is no inherent mechanism to provide for “self-organization” on the Web. Currently,
links must be manually maintained and some semi-automated databases exist to

categorize Web sites.

Performance issues relate to methods to increase performance, such as data compression,
multiple protocol instances, protocol redesign, and caching. Performance issues are

discussed in more detail in Section 3.1.

2.6 Summary

This chapter discussed the three core components of the Web. These are the means to
describe a document in a device-independent manner (HTML), the means to transport
these documents over a network (HTTP), and the means to locate these documents on a
distributed network (URL/URI). These three specifications combine to allow for a
machine and network independent mechanism to obtain information. Methods to
improve performance, which concentrate on HTTP, are described in the following

chapter.

17

Chapter 3. User Response Time Improvement Techniques

Response time is the metric that is most important to the user. It measures how fast the
user receives a document. Decreasing this time is the objective of most Web performance
research. This chapter discusses some implementation limitations on response time and
various ways around them. These solutions include data compression, multiple instances

of the protocol, a more efficient protocol, and document caching.

3.1 Definitions

The definition of user response time and transfer time, as they are used in this research,

are provided below.

e User response time is defined as the time differential between when a user requests a

document and when the user receives the document in its entirety.

e Transfer time is defined as the amount of time it takes to transfer a document over the

communications medium, including connection and request times.

3.2 Basic Performance Issues

The two most common performance metrics for network-based applications are network

transmission time and user response time. In many cases, these two metrics result in the

18

same value, such as the time needed to retrieve a document over a network. If the same
document is later retrieved from a local disk cache, the user response time is much faster
than it was before, since the network transmission time becomes zero. The metric that
this research is concerned with is user response time, as it includes network transmission

time and other factors.

Implementation bottlenecks for HTTP response time are described below.

e Server implementation. Obviously, using a slow computer as a server will lead to
worse response times than using a fast computer in the same network environment.
However, a poor server implementation will also severely degrade response time as
transmission times increase due to the server not being fast enough to handle the
request load. For example, a scheme as simple as having multiple processes already
spawned as compared to spawning a process for each service request can lead to

significant server response improvements [33].

e Client implementation. Client implementation issues are similar in nature to server
implementation issues. A fast parsing and decoding algorithm can decrease response
time. Displaying information as it is received also reduces apparent response time.

Loading a document using a local cached copy, as opposed to a network copy, also

19

reduces response time. This thesis investigates the use of caching to improve Web

user response time.

e Transport (network) limitations. A faster network generally improves user
response time. Obviously, this is not always feasible. Other mechanisms such as
protocol improvements and data compression can also help reduce response time.

These are discussed in Section 3.3.

The user model used by a specific scheme to increase performance must be suitable to the
task. Designing for worst-case user behaviors may create a sub-optimal design for 99
percent of user access patterns. For example, assume that a server is expecting an
average of 100 connections per minute. One hundred processes are started to handle the
expected connections. However, if only a dozen requests are made, then substantial
server resources are wasted. This implies that how users are characterized and the
performance criteria that result from the characterization are issues that need to be

considered. This is discussed in greater detail in Section 4.1.

3.3 Constraints on Increasing Performance

The existing infrastructure is an important factor to remember when using any intrusive
method used to increase performance. Intrusive methods are those that require some

aspect of the infrastructure to change. Almost all methods are intrusive. The

20

World-Wide Web consists of a large number of servers and many of these have scripts
and other custom software to perform specialized tasks. These servers often rely on
“loopholes” or “features™ in the Web. Any proposed design that is not significantly better
than the current technology or that does not provide an easy migration path and

backwards compatibility to the current technology will not be used.

3.4 Protocol (HTTP) Replacement

Revolutionary replacement of HTTP for purely performance gains is not feasible in the
foreseeable future. Huge performance improvements would be required to persuade a
large number of people to change to a new protocol. Such significant performance
improvements are unlikely. These performance improvements might also come at the
loss of the extensibility and ease of implementation that HTTP currently enjoys. Protocol
replacement might be beneficial and viable for very slow links or other specialized needs.
Optimization of the way HTTP is currently implemented might also reduce the benefits

of a new protocol.

The IETF HTTP-Next Generation (HTTP-NG) Working Group is developing a
replacement for the current HTTP [34]. There are two areas that must be considered
when designing a replacement protocol: features for performance improvements and

features for increased functionality.

21

Spero [35] and Padmanabhan and Mogul [36] provide an overview of performance

problems with HTTP. The basic problems include the following.

Use of a stateless protocol means that negotiation information must be transferred on
every request, even if it is for items that are part of the same document. Spero
speculates that this redundant information factor is around 95 percent of the header
information transferred [37]. The author's analysis shows that a typical worst case is
86 percent. Factoring in the required items that a stateful protocol must transfer
would reduce the potential savings. The difference in the redundancy percentages is
probably due to the more accurate analysis used to obtain the later number. For a
detailed analysis on redundant information, see Appendix B. Regardless of the exact

differences, there is a large amount of redundant information that is transferred.

A significant amount of the negotiation that occurs is useless since implementations
do not use the negotiation information. Almost all negotiation is performed by
displaying the item to be sent and having the user manually select that item. This
implies that this information does not need to be sent. Not using these fields will

reduce both the transfer time and the amount of redundant information.

The single request nature of HT TP means that some unnecessary transfer delay is

added by TCP’s round-trip time negotiation and slow start algorithm [35].

22

Padmanabhan and Mogul [36] describe and test some potential protocol modifications
that improve response time. These and other latency issues are more important on an

extremely slow network connection than a fast connection.

Several desirable features that are missing from HTTP are described below.

A common feature of many protocols that HTTP is missing is the concept of a
session. A session allows various actions to be associated with each other. The
design of HTTP implies no direct association between various user actions. However,
this causes problems. Consider, for example, an information provider that wants to
serve information only to registered users through the use of a password. HI'TP
allows for basic password authentication, but the user must enter the password for
every document access. This can be partially solved through clever, but complex, use
of randomly generated documents based on user requests or other schemes. This
added complexity is not desirable. A proposed solution exists in the form of HTTP

header modifications [38].

Partial document retrieval allows for selective retrieval of portions of a document.

This has been recently specified in an Internet-Draft, which provides an illustrative

example: “an Adobe PDF viewer needs to be able to access individual documents by

23

byte range; the table that defines those ranges is located at the end of the PDF file”

[39].

e Commercial security mechanisms are a hot topic on the Web. Bossert, et al. provide
an overview of security requirements for the Web [40]. A large number of proposals
to provide channel security, billing and auditing, and authentication exist. A brief

listing is provided in [41-43].

Many of these features and improvements can be added to the existing protocol through

header extensions and modifications.

3.5 Data Compression

A conceptually simple performance improvement is data compression. The Web
primarily uses seven-bit ASCII text transmitted over an eight-bit data channel. Using the
one extra bit for dictionary encoding could result in a sizable performance improvement
with little or no extra overhead. From results presented in Appendix C, approximately 76
percent of the documents transferred are text based. For typical text documents,

compression can range from 70 percent to 40 percent of the original size [44].

Any compression method used for user response time improvement should allow for fast

decompression. It would not be effective to send a compressed document only to have

24

the decompression take longer than transferring the non-compressed version of the
document. Another reason for fast decompression is that servers are usually fast
machines, while most clients are not. Note that servers can also pre-compress the
documents. However, compression on the fly is more desirable than pre-compressing.
Given these considerations, the author believes that some type of dictionary compression

method would be preferable.

Character frequency statistics from several experiments are reported in Appendix C.
However, there is significant variance between runs. Based on the high variance and the
fact that Bell, et al. advocate the use of adaptive compression techniques [44], an
adaptive dictionary compression technique may be the best method. A text-based
dictionary lookup is fast, especially given that 128 slots, using the eighth bit of the ASCII

character set, are available at no extra cost.

In theory, documents may be compressed on the server using UNIX compress [45] or
GNU gzip [46]. Many browsers support automatic decompression. The author believes
that “gzipping ” is not widely used because it requires significant effort by the server
administrator to pre-compress each document. Every update of the document requires
decompression, modifications, and then another compression. Most Web document

authors seem to avoid such tedious work.

25

In summary, compression for Web performance improvement is not frequently examined
or cited, even though it seems likely that compression could provide a significant

performance benefit.

3.6 Multiple Protocol Instances

Multiple protocol instances are the equivalent of wanting to retrieve » separate files and
using » simultaneous FTP sessions to retrieve them. This, in theory and in most practical
cases, is faster than » sequential FTP sessions. Netscape Navigator, the most commonly
used browser [26, 27], uses multiple protocol instances to improve performance. This
feature is also used in the experimental system that is described in Chapter 5. The

penalty for using this method is that additional network load is created.

3.7 Caching

Given the normal case that loading a document from local memory or disk is much faster
than loading over the network, caching is another way that response time might be
decreased. Several browsers, including NCSA Mosaic and Netscape Navigator, perform
some type of caching. The caching algorithms implemented by browsers vary
significantly. NCSA Mosaic stores images and documents in memory on a per session

basis, whereas Netscape Navigator does disk storage across sessions.

26

The two examples cited earlier are single user-based caching schemes. There are other
schemes that use statistics for multiple users to implement a caching policy. This is

discussed in more detail in Chapter 4

3.8 Summary

HTTP has a high level of overhead due to its simple nature and its extensibility.
However, this simplicity is one of the key factors in its widespread use. Common
problems associated with the protocol include statelessness, which leads to a high level of
redundancy, unnecessary features, and the single-request nature of the protocol.
Additional features, such as security mechanisms and partial document retrieval, are also
desirable. An IETF working group, the HTTP-NG working group, is studying the
possibility of a complete overhaul of the protocol. Other groups are making extensions to

the protocol to solve these problems.

Data compression, multiple simultaneous requests, and document caching are three ways
to transparently improve HTTP performance. Data compression seems to be a simple
method with the most benefits. Issuing multiple simultaneous requests has performance
benefits, but adds network load. Document caching shows promise, as well, and is

discussed in the next chapter.

27

Chapter 4. Caching

Data caching is a common method to improve performance in computer systems. CPU
caches in static memory improve performance by avoiding the need to retrieve data from
slower dynamic memory. Memory disk caches perform the same function for the slower
disk drive. Unsurprisingly, Web document caching is an active research area. Most
research has been conducted in the area of document caching for large user pools as
opposed to document caching for a single user. The research described in this thesis is

based on single user document caching.

4.1 Basic Concepts

Document caching attempts to load a document from a faster memory than where it is
permanently stored. The document is stored in the faster memory based on the prediction
that the user will view the document at a later time. Loading from a remote
network-connected disk, e.g., a WWW server, is typically much slower than loading from
a local disk. The difficulty in caching is to accurately predict which documents will be

viewed next or in the near future.

A key idea used in most caching systems, such as memory and disk cache systems, is the

concept of locality of reference. Locality implies that the location of the next document

access will be near to the location of the last, or a recent, document access. The hypertext

28

Web structure provides locality that can be applied to Web document pre-fetching

caching.

4.1.1 User Models

The user access model is an important consideration when designing caching schemes.
For a particular model, performance may be excellent. But, if the model does not
accurately follow the user’s actual access pattern, then performance can degrade

substantially. User models for hypermedia research are as follows [47, 48].

¢ Directed search browsing — The directed search model implies that users spend
time searching for information within a specific locality of the Web. The user has

specific information that he or she is deliberately seeking.

¢ General-purpose browsing — Users behaving according to the general-purpose
model spend some time within one Web locality and then go to another. This is
repeated throughout the session. A user has some unformulated idea as to what he or

she wants to find and the user is looking around for it.

e Random browsing — The random model is the “window shopping” model. The

user has no real objective in mind and is looking briefly at many documents.

29

4.1.2 Cache Relaying Versus Caching

One factor that affects distributed information caching is the level at which caching is
done. This can be divided into two general cases, single user caching and multiple user
caching. In the Web, multiple user caching is generally referred to as a cache relay. The
end goal of each caching method is the same, that is to reduce response time and network
load. However, details vary as specific algorithms take advantage of access properties

attributed to the users being served by the cache.

A Web proxy server allows a client to retrieve Web documents by going through a
special server instead of connecting directly to the server containing the document in
question. It “relays” requests for one or more clients. A cache relay is a proxy server that
performs caching. The caching is based on statistics generated from individual requests
of clients that use the server. It does not account for other users who do not use the cache
relay. Glassman reported that his cache relay had a cache hit rate of roughly 50 percent or

more [8]. This shows that caching is a viable scheme.

Pitkow and Recker present a caching model based on human memory models [49]. The
concept is that a given document is accessed within a specific time frame, say from 1 PM
to 2 PM, within a given time period, say within any given week. This document has a
certain probability of being accessed within the same time frame in the next week. The

algorithm involves caching documents based on the time of day and other parameters.

30

Their conclusion is that this type of caching can be beneficial for very large caches at a

cache relay.

As noted in Chapter 1, current research is not focused on single user caching
mechanisms. This study does not attempt to address the question of the performance of
single user caching versus multiple user caching. It does, however, look at a different
pre-fetch caching concept than generally examined in multiple user caching schemes.
Typically, pre-fetching is done based on statistics obtained from a proxy server’s local
user population. These statistics are typically site specific. This study looks at the
statistics obtained from servers. These statistics are based on global user access patterns

for the documents being served.

The concept of using global access statistics can be applied to multiple user caching, but
it is simpler to study the single user case. From a logical standpoint, the algorithm
presented, prediction based on remote server statistics, is of the most benefit for directed

search browsers. Thus, this study focuses on the directed search browsing user model.

4.1.3 Pre-fetch Caching

The key to being able to perform pre-fetch caching is that there is idle time between
requests or multiple communications channels that can be used to fetch documents before

they have been requested. Idle time is simply the period when the user is viewing the

31

document. Based on the theory that idle time will be prevalent, a sample measurement
was made. The idle time between requests was measured on three different servers that

were serving four distinct types of documents, as described in Table 1.

Table 1. Servers Used in Feasibility Analysis

Server Description

www.vt.edu Virginia Tech WWW server

fiddle.ee.vt.edu | SUCCEED Electronic Connectivity Deliverable Team and
IEEE SAC/IEEE Region 3 WWW server

www.bev.net Blacksburg Electronic Village WWW server

The data for each server is presented in Table 2. The data was obtained by parsing access
logs and comparing consecutive HTML requests from the same host within 100 accesses.
Consecutive requests beyond 100 accesses were not considered. Single accesses and
non-HTML accesses were also ignored. Note that the number of items, or document
requests, used to calculated the byte average is given in the third column and the number
of items used to calculate the wait time average is given in the fifth column. These
numbers differ since the average number of bytes is calculated using every entry whereas

the average wait time is limited to successive requests.

Table 2. User Reading Time Between Document Fetches

SERVER Average Bytes or Number of Average Time Between Number of
File Size Items for Bytes Requests (Seconds) Items for Time

www.vt.edu 3270.0 999.0 36.9 626.0

fiddle.eevt.edu 11954.7 4677.0 98.5 1459.0

www.bev.net 35727 1234.0 47.7 622.0

TOTAL Average | 6265.8 2303.3 61.0 902.3

32

From the results in Table 2, the average time between consecutive requests was 61.0
seconds. Each request was 6,265.8 bytes. Considering that the average HTML document
size is around 5K to 6K bytes (see Appendix C), this means that a user typically spends a

minute or so reading each document, or processes about 100 bytes a second.

4.2 Hypertext Access Graphs

The focus of this research is user document caching as opposed to site document caching.
The premise is that hypertext links can be used to predict access. These links allow a
graph of the allowable hypertext access patterns to be constructed. For most cases, the
only possible paths that can be followed are dictated by the arcs on the graph. Adding a
heuristic to these arcs allows a prediction model to be built. This forms the basis of the

pre-fetch caching used in this research.

Hypertext links are modeled as an arc in a directed graph (digraph), allowing a Web to

be examined from a graph theoretic point of view. The digraph’s nodes are the Web
documents. The number of hops from a source to a destination node is called the depth, of
the destination, away from the source node. Local self-references have a depth of zero
(no arc out) and are discarded. Multiple paths from one document to a directly connected
document are considered to be one link. Bidirectional paths are not allowed; these are

considered separate arcs to and from each document.

33

4.3 Pre-Fetch Document Prediction

All pre-fetch, or “look ahead,” prediction is based on some heuristic measure. The most
common pre-fetch caching concept is that of locality of reference, as described in Section
4.1. This concept can be applied to the Web since the number of local references to a
given document is limited. There are known paths to the document’s location. The
possible heuristics to determine which paths the user will access vary, but typically fall

into prediction based by category and prediction based by statistics.

4.3.1 Categorical Heuristics

A categorical prediction heuristic is based on a common observation, such as index
documents are fetched more often than terminal information documents. So when the

user is idle, index documents would be fetched before information documents.

Table 3. Sample List of Heuristic Categories

Category Description

INDEX A table of contents or a listing of links. Usually visited often. Typically has many
outgoing links.

BOOK A set of documents organized in a book format. Has links going in forward and
backward directions.

ICON Inline image used in a fashion similar to a desktop icon. Icons are used frequently.

Typically has many incoming links.

INFORMATION | Terminal document, typically no further outgoing links and only a few incoming

links.

ROOT Root home document. Typically accessed very often and has links to and from the
document.

DATA Item such as a PostScript file; typically not used often. Typically has only a few
links to it.

IMAGE A graphic that is not used as an icon. Typically has a few links to it.

FORMS A data entry document. Frequency of use is hard to estimate.

34

A simple table of categories is presented in Table 3. Note that these categories are
arbitrary. They are defined based on some description of a “common” situation and have
associated metrics assigned based on the frequency of access. Typically, each document
must be assessed and partitioned by a human since automatic categorization is a non-
trivial task. Considering that poor categorization may occur, high cache hit rates are
unlikely. For these reasons, categorical heuristics are not studied in detail in this

research.

4.3.2 Statistical Heuristics

Statistical information, such as the percentage of users that have accessed a particular
document, are likely to improve cache hit rates. If 99 percent of the users do not find a
particular document useful enough to access, then it is unlikely that a particular user in
question will access it. Also, since server access statistics are fairly accurate, statistics are

an improvement over static metrics based on categorical heuristics.

To further improve prediction based on access statistics, one can use the most powerful
feature of hypertext, embedded links. A hypertext system can be mapped into a
hierarchical graph [50], as discussed in Section 4.2. It is assumed that users usually
follow the links in the hypertext graph. This assumption is not always true, but is most of
the time. An exception is that most browsers include “forward” and “back” buttons.

These buttons allow a user to move, in a linear fashion, to a document that they have

35

already accessed. While this traversal is still on the graph, the associated access

information is not recorded at the server.

Current Node

® ©
’0.7/ 0.2 /99 @A 1.0
Table sent to or

Letter ipdigates node name. Arc inferred by client
values indicate access statistics B-05

Directly Linked (Depth 1)

Indirectly Linked (Depth 2)

D-0.1
based on parent node. Levels E-035 H-0.1
may continue indefinitely. C.02 '
F-0.198

Figure 1. Statistical access digraph example.

A simple example is provided in Figure 1. Nodes A through H represent different

documents. Node A is the document that the current user has most recently requested; it
is the root of all possible digraphs for this state. Nodes B, C, and D are the next possible
documents that the user can access using the hypertext links from node A. These are one

depth unit away from the root node A. Nodes E, F, G, and H are two depth units away

36

from node A. For example, node E can be accessed using a hypertext link in B, but there

is no hypertext link directly from A to E.

Each arc is labeled with a probability of access based on previous accesses of the
destination node. Note that all probabilities sum to at most unity. Sums can be less than
unity since there is the possibility that a user reaches a document and goes no further.
Each depth level can be assigned a factor to reduce the probability of access from node A,
since these access probabilities are given from the parent node of the link in question. An
alternative method is to simply multiply the probabilities along the path. The probability
of accesses for a depth two search from node A, using multiplicative probabilities, is
given in the table in Figure 1. For example, node E has a probability of 0.7 of being
accessed from node B and node B has a probability of 0.5 of being accessed from node A,

implying that the probability of access of node E from node A is 0.35.

There is the possibility that simple pre-fetching along the possible traversal routes can
also obtain a good hit ratio and performance improvement. This is briefly examined in

this research.

4.3.3 Prediction Involving Multiple Servers

Statistical pre-fetch prediction has one serious implementation problem. When multiple

servers are being accessed by a particular user, there is no server data to predict when a

37

user will move from one server to another server. If the user goes to the next sever, a
metric must be applied to determine when to stop pre-fetching documents from the old
server. This stop pre-fetch metric will need to be carefully researched. If a poor metric is
used, then unused files will be pre-fetched and the cache hit ratio will decrease slightly.

This issue is not addressed in this research.

4.4 Post-Fetch Document Prediction

Post-fetch prediction is typically based on the assumption that once a document has been
seen by a user, there is a high probability that the user will look at that document again.
Most current browsers implement some form of post-fetch document retrieval. Some of
the implementations are only session based. A new session results in a document being
retrieved across the network as opposed to being loaded from local disk. Others cache

across sessions.

4.5 Cache Hierarchy

Current Web caching mechanisms can be divided into user caches and cache relays.
Cache relay systems can be classified based on the number of machines that the relay
serves. These classifications range from lab cache servers to a University-wide cache
server. However, the current basic function of any cache relay system is to make access
predictions for some set of users. In the future, cache relay functions may include
making pre-fetch prediction. So, the simplest cache relay is the single user cache. User

caching can be divided into three separate caching functions.

38

e Pre-fetch prediction cache — A pre-fetch prediction cache stores documents that the
user has not yet viewed. The system has retrieved these documents based on a

prediction that the user is likely to view the documents.

e Temporary document cache — A temporary document cache stores documents that

the user has previously viewed.

¢ Permanent document cache — A permanent document cache also stores documents
that the user has already viewed. However, these documents have been viewed many
times, meaning that the user is almost always going to view these documents during
any given session. For typical usage, the temporary and permanent document cache

can be combined into a single temporary cache.

In theory, this hierarchy of caches allows better prediction based on past accesses than
one large document post-cache. However, permanent document caches are not studied as
they require a large amount of statistical information from users and servers that is not
readily available or easily obtainable. Pre-fetch and temporary caches are considered in

this research.

39

4.6 Summary

Pre-fetching documents may improve Web performance. One minute of idle time on the
network, a typical document viewing time, allows a large number of documents to be
pre-loaded. A potential pre-fetch method is one that converts a series of Web documents
into a graph and assigns probabilities to the possible user access patterns. This provides a
simple method to implement pre-fetching. Additionally, using access statistics from
individual server logs provides a unique solution for obtaining the probabilities for a

pre-fetch algorithm.

The pre-fetching scheme, combined with a traditional post-cache scheme, leads to the

simple cache hierarchy presented in Section 4.5. This scheme is the basis for the

experimental system described in Chapter 5.

40

Chapter 5. Design and Implementation

Designing a HTTP pre-fetch caching system that uses multiple communications channels
on a UNIX workstation is a complex task that requires attention to how the operating
system allows multiple processes, or threads of control, to interact. A number of other
issues also exist. The interaction between client and server must be specified to be
backward compatible and still perform the desired tasks efficiently. Pre-fetch statistics

must also be obtained and stored.

This research on user-based pre-fetch caching resulted in two programs. The NCSA
httpd server [51] was modified so that it could accept pre-fetch requests and transmit
document access probabilities to the client. A client that could interpret these
probabilities and make multiple requests while still servicing the user’s requests was also
implemented. The client was designed to be integrated into a library that was not
specifically designed to handle multiple requests. A communications mechanism to
transport the access probabilities was specified as an HTTP header extension and is
described in Appendix A. The protocol and other implementation changes are

transparent to the server administrator and, more importantly, to the user.

41

5.1 Design Goals

The design goals were as follows.

1. The design must be easily integrated into NCSA Mosaic for X-Windows [25] and run
on multiple platforms. This can be done by ensuring that the design works with the
World-Wide Web common code library (libwww) [52], used by NCSA Mosaic. The
experimental system was developed without using the library; however, the
implementation was tested to compile with the library. Note that compatibility with
libwww results in a multiple process design that introduces some severe performance
penalties. These penalties are addressed in Chapter 6.

2. The design must be simple and involve little to no intrusion into the infrastructure,
i.e., it must be backward compatible.

3. No change in user access models or methods must be made. Some amount of server

changes may be necessary.

5.2 Client-Server Interaction

Pre-fetch document retrieval and prediction can occur at the server or at the client. Each

approach is briefly discussed.

42

Server-side prediction requires extensive HT TP protocol modifications, which violates
one of the design goals (see Section 5.1). The primary advantages and disadvantages are

as follows.

1. Server lookup tables can be pre-computed and automated. No link information needs
to be transferred if the server can automatically send the document. However, this is
especially difficult if pre-fetching is to be performed across multiple servers.
Essentially, access information must be traded across servers and the statistics may
need to be corrected for different user sets.

2. The server does not know the state of the client. This information must be transferred

and continuously updated.

A client-based prediction scheme has the following advantages and disadvantages.

1. The client already knows the documents that it has and does not have.

2. The client does not know the prediction information and has to receive this
information from the server. It also does not necessarily know all of the available
server documents.

3. The client may have to compute values and occasionally make guesses about which

documents to retrieve.

43

A combination of client- and server-based pre-fetch document retrieval and prediction is
also possible, but requires extensive modifications to HTTP. Based on the relative
advantages and disadvantages, client side pre-fetch prediction is used in this work. This
allows for a simple, non-intrusive modification to the HTTP protocol through the

introduction of two new headers.

1. Predict — The Predict header is used by the client to request prediction information
for a particular document. If a server does not perform prediction or understand this
header, then the header is simply ignored.

2. Predict-Link — This header is used by the server to send link prediction information
for the current document. For example, prediction probabilities values of other
documents will be sent. The client should understand this since it is only sent in

response to the Predict header.

A key feature of this header design is that server processing of the parameters requested
by the client does not have to occur exactly as expected by the client. This allows
different servers to implement different statistical computations based on their own needs,
within constraints. For example, categorical heuristics can be used instead of statistical
heuristics by sending fixed probabilities to the clients. Clients can choose to interpret the

values as they desire and pre-fetch document in a slightly different order as desired, for

44

example pre-fetching graphic images after source documents. These headers and their

use are described in detail in Appendix A.

5.3 Server Design

5.3.1 Statistical Access Database

Since the caching scheme is based on statistical access patterns, a server with a high
number of accesses was modified to save user access patterns using a special database.
To provide this data to the client, the server was modified to access this special database
and interface with the client using pre-fetch caching. The database treats each document
as a graph node, as discussed in Section 4.2, and stores statistical access information for
that document and its outgoing hypertext links. The information stored is the percentage

of users who traversed the outgoing link among all users who accessed the document.

These access statistics do not faithfully model actual user access patterns. For example,
the actions of the “forward” and “back” buttons on browsers are not recorded. Other
effects, such as user caching, also reduce the accuracy of the model. User caching results
in user accesses that are made locally but not recorded by the server. However, the access

statistics should be accurate enough to enable good prediction.

45

5.3.2 Server Process Layout and General NCSA /httpd Operation

The NCSA httpd server (version 1.4) [51] was modified to access the statistical prediction
database and recognize and respond to the new headers. The server was designed by
NCSA to operate as a traditional one process per client daemon, as illustrated in Figure 2.
These concurrent processes allow the server to simultaneously service multiple clients.
The solid lines in Figure 2 indicate UNIX inter-process communications (IPC) channels,

and the dashed lines indicate network socket channels.

Client 3

Client 2

Client 1 Client n

Parent
Process

http port 80

Figure 2. Server process diagram.

46

Each process is a separate entity that, once spawned from the parent process, requires no
further interaction. Since each process is self-contained, the required modifications to
NCSA httpd were minor. They entailed adding parsing logic to identify the Predict

header and code to read the database and send out the Predict-Link headers.

The basic algorithm is as follows.

1. The parent process receives a connection request. The parent spawns, or has
pre-spawned, a client process that processes the request. The parent process goes
back to step 1.

2. The child determines the type of request.

3. The child processes the request headers. A flag is set if the Predict header is noted.

4. The child attempts to fulfill the request. If the Predict header flag is set, the process
sends any available Predict-Link information.

5. The child process sends the requested document then logs the request and exits.

5.4 Client Design

A key goal in designing the client was to integrate the client changes transparently into
the libwww library. This means that developers using /ibwww would not have to change
anything for this system to work. This was achieved by building the client as a multiple

process program and remapping the socket calls. Since it uses multiple processes, a

47

variety of UNIX IPC mechanisms were used to communicate between each process. This
design is inefficient compared to a multi-threaded approach, but threading is not universal

in UNIX environments so that mechanism was not used.

In the design, there are three basic classes of process.

1. The client application itself, which processes user inputs.

2. A master pre-fetch process that interfaces between the client application and the
network. The master process also manages several slave processes that pre-fetch
documents. Specifically, the master process implements the cache deletion and
insertion algorithm, receiving complete files from the slaves, performs the pre-fetch
prediction algorithm and directs slave processes to obtain documents as needed, and
serves as an intermediary between the client requests and the actual network or cache
loads.

3. Multiple concurrent slave processes, each performing a simple HTTP GET request

across the network.

Figure 3 shows the process organization. As in Figure 2, the solid lines in Figure 3

indicate UNIX IPC communication channels and the dashed lines indicate network socket

channels.

48

Servers

Figure 3. Client process diagram.

All internal communications involve the pre-fetch master. This creates a bottleneck as
the pre-fetch master performs all the essential tasks in the system. However, this
particular design required modifications of only four procedures in libwww. All
applications written to use that library should be able to use this code without

modifications to the way they access the network.

Alternative designs were explored, especially dealing with the master-slave relationships.

The task of maintaining distributed cache coherency and a distributed pre-fetch prediction

algorithm were complex. Tests using file locking resulted in high overhead generated by

49

testing file locks. An iterative approach, i.e., one process cycling through many small

tasks, required complex interactions that had to be re-coded if algorithms were changed.

The inefficiencies of the design would not affect cache hit rate experiments. The design
was expected to be efficient enough for user response time tests. This, however, proved

to be false for high network transfer speeds.

5.5 Pre-Fetch Prediction Algorithm

The implemented pre-fetch server reads the statistical access database and provides
outgoing link information only for the current requested document, i.e., of zero depth. It
does not provide probabilities for the other documents pointed to by the current
document. Note that the specification in Appendix A allows for servers to provide more
than one level of information. This feature was not used as this would have increased

database complexity.

To obtain probabilities for depths greater than zero, the client requests the documents that
are referred to by the outgoing links. This is performed recursively to some maximum
specified depth. A weight is then applied to the returned probability values by
multiplying the values by a constant factor. This constant factor is increased as the

document depth increases.

50

Other methods of obtaining weighted probabilities for depths greater than zero could have
been implemented. Examples would include having the server maintain extensive
pre-computed probability tables for each document or recursively obtain and compute,
upon client request, the weighted probabilities. These other algorithms are more complex
and require significant redesign of the server. Since the access statistics are not
completely accurate and the protocol allows for many different implementations, the
implemented method was a reasonable compromise between multiplicative probabilities,

as described in Section 4.3.2, and other methods.

The basic algorithm is as follows.

1. At the “current document,” obtain heuristics (probabilities) for all direct links. Enter
these into a table. Note that the “current document” is the document that the user is
currently viewing.

2. Retrieve the document with the highest heuristic value and enter its link heuristic
information into the table based on the following rules.

e Weight the heuristic by some amount depending on its depth from the “current
document.” The implementation uses a fixed weight of ten percent per unit of
depth.

o Ifthe entry is a duplicate, remove the entry with the lowest heuristic value.

51

3. Ifthe user views another document, reduce all heuristic values in the table by some

weight. The implementation uses a fixed weight of ten percent.

@ Current Node

05 .- 02 005
B c /D Directly Linked (Level 0)
07" 02" 089 0010
E F G "H. ndirectly Linked (Level 1)
At Node A
B, 0.500
C, 0.200
D, 0.050

Figure 4. Initial web graph.

An example of the algorithm is given in Figures 4 to 7. Figure 4 provides the initial state
of the system from the client’s perspective. Lines indicate links and circles indicate
documents. Solid lines and circles are links and documents that have been traversed, or
viewed. Dashed lines and circles are links and documents that the client knows about but

has not yet traversed. Dotted lines and circles are links and documents that the server

52

knows about but that the client has no information. The table used to store probability

information is used to predict document access patterns.

In Figure 4, the initial state is that the client knows about nodes A, B, C, and D. It
currently is displaying node A. The assumptions for this example are that only one
channel is available and the user is viewing node A. This means that there is currently no
network transmission. Since the network is idle, the client selects node B for retrieval
because it has the highest probability of being viewed next. This is shown in Figure 5.

The check mark in the table indicates that the client has obtained this node.

L Current Node

02/ 005
C ‘D Directly Linked (Level 0)
07" 02% 099 0010
E F: ‘G H' |ndirectly Linked (Level 1)

At Node A ' Get Node B
B, 0.500 v C, 0.200
C, 0.200 E, 0.070
D, 0.050 D, 0.050
F, 0.020

Arbitrary 10% weight used to reduce probability of each level of indirect links

Figure 5. Web graph after retrieving node B.

53

In Figure 5, the table has been updated to include all the nodes that the client can see after
obtaining nodes A and B. Probabilities from node B to node E and F are set to ten
percent of their original values since E and F are at depth two from A. The next step,
assuming the user is still idle, is to obtain node C. The results are shown in Figure 6.
Note that the link from B to F is removed since the link from C to F has a higher access
probability. This process continues until the user moves to a new document or there are

no more documents to retrieve.

. Current Node

005
‘D; Directly Linked (Level 0)

0.0 1.0

H Indirectly Linked (Level 1)

At Node A Get Node B Get Node C
B, 0.500 v . C, 0.200 v F, 0.099

C, 0.200 v E, 0.070 E, 0.070
D, 0.050 D, 0.050 D, 0.050
'F, 0.020

Use maximum probability of duplicate destinations
(B to F link removed from table)

Figure 6. Web graph after retrieving node C.

54

An example of the user deciding to view node B is given in Figure 7. The probabilities
are again updated with B as the current node. The link from B to F reappears and the link
from C to F is removed. Link B to F has a higher probability since the user is currently at

node B.

User Moves
0.6‘5\
Current Node ‘ D
07, 02" 00 1.0
E F ‘G’ 'H_ Directly Linked (Level 0)

Node A Get Node B Get Node C . At Node B
B, 0.500 v C, 0.200 v F, 0.0990 ‘E, 0.700

C, 0.200 v E, 0.070 E, 0.070 'F, 0.200
D, 0.050 D, 0.050 D, 0.050 D, 0.005
F, 0.020

Existing contents of table dropped 10% to account for move

Figure 7. Web graph when user moves to node B.

Pre-fetch tables are maintained using a simple ordered insertion and lowest probability
deletion algorithm. The table size is fixed at 100 items. Probabilities obtained beyond

this limit are discarded.

55

5.6 Summary

This chapter presented the general design of a system to implement pre-fetch caching in
the Web, include the basic structure of the server and client. The server design is fairly
standard, whereas the client has some design “quirks” so that it can be integrated into
libwww. The method to communicate prediction information was described and an
detailed specification is available in Appendix A. Finally, the specific pre-fetch

algorithm was illustrated.

56

Chapter 6. Performance

Testing was done to evaluate the effectiveness of the concepts developed in this research.
Traces generated by multiple users were used to drive the pre-fetch caching system.
These traces recorded the document and its time of request for a particular user. The
performance of the system was tested for different cache sizes, maximum document
retrieval depths, available network bandwidth, and number of simultaneous requests.

Statistical results and experimental observations are presented.

6.1 Evaluation Method

The NCSA httpd server daemon (version 1.4) [51] running on fiddle.ee.vt.edu (fiddle)
was used to obtain user access patterns. The server modifications associate the Referrer
HTTP headers, which report the document that the user utilized to access the current
document, with the current document (URL) retrieved. This increases the accuracy of the
server prediction access database. However, this does not solve all of the accuracy

problems with the access logs as discussed in Section 5.3.1.

The server, fiddle, provides access to documents for the SUCCEED Electronic

Connectivity Deliverable Team and the IEEE Student Activities Committee/IEEE

Region 3. The server had an average 2,943 hits (accesses) per day from June 9, 1995 to

57

September 5, 1995. The server access data was collected over 16 days, from June 9,
1995, at 16:51:37, to June 25, 1995, at 20:41:26. The user trace data was taken from July

14, 1995, to July 21, 1995. Note that this is after the server access data was recorded.

The research could have used several methods for obtaining performance results for
user-based caching, including obtaining document access traces for a massive number of
users on a real server. This trace could then be used to drive the simulation of the
caching algorithm. Alternatively, real users can be used to obtain performance results in
real-time. These methods are typically used in cache relay experiments [8-9, 49]. Other
methods include randomly generating document requests and selecting a few “typical”
users and obtaining a trace of their activities. This research uses the last approach of

tracing a few “typical” users.

The first option was not used for the same reasons that the access logs do not provide
entirely accurate prediction values. Traces recorded by the server have numerous
idiosyncrasies indicating that those traces are not accurate. Foremost was the high
number of “impossible” jumps — there was no path between the two documents —from
document to document in the server trace logs. Caching is the best explanation for these
jumps. Another reason is that the number of accesses by a majority of users was below
six HTML documents. The focus of this study is directed search browsing and the

assumption is that such users will visit a large number of documents. Additionally,

58

deployment of the experimental browser for real-time performance testing was not
feasible. It was also felt that random accesses would not accurately model real users,
even random browsing users. This led to obtaining actual user traces from users given a

directed browsing task.

6.1.1 User Traces

Eleven users were asked to perform a directed browsing task on fiddle using a modified
version of the NCSA Mosaic (version 2.6) browser. The modifications mapped fiddle to
another server, which was mounted using the Network File System (NFS) to the same
documents, to simplify tracking user access patterns. Using the original server, fiddle,
would result in other users appearing in the data and require searching and re-parsing of
the data. Originally, the test plan called for using both the IEEE and SUCCEED
documents on fiddle. However, due to the nature of the IEEE documents which require
some familiarity with the IEEE, those documents were not used. Using only the
SUCCEED trace patterns resulted in ten user traces being selected instead of eleven. The

eleventh user did not perform SUCCEED document retrievals.

All users were beyond novice level in Web browsing expertise. The users were graduate
or senior undergraduate students in the Bradley Department of Electrical Engineering.
Each user was given essentially the same set of instructions and a question related to a

directed browsing task. These are shown in Figure 5.

59

INSTRUCTIONS

1. Press reload every time you go back or go to a document that you've been to
before.

2. Try to stay on the server fiddle.ee.vt.edu.

3. You are looking for information content. There are no absolute answers to the
questions below, other than you are done when you reach the point you think you
know the answer enough to tell somebody else. It is primarily a directed browsing
task.

SUCCEED

QUESTION: Assume that you are interested in starting a virtual corporation. Or,
essentially, you have a group of geographically isolated individuals that are in your
workgroup. You wish to make this a cohesive workgroup. Find out general
information as to what areas, technologies, or other aspects of electronic means of
communications would help you do this.

If you know the technologies already then you may be interested in seeking specific
details, like products. Otherwise you may be seeking to determine what
technologies are available.

Figure 8. User instructions.

The resulting user traces contained an average of 27.4 requests and had an average
duration of 862 seconds (14.37 minutes). An average of seven requests per user were
duplicates. Nothing prevented the user from leaving the server fiddle. Requests for

documents that were not on fiddle were not included in the study.

The user traces were converted into a format suitable for simulation. Otherwise, the
traces were unchanged. The default action of NCSA Mosaic to cache inline images, even
when the user reloads the document, was kept in the simulation. This was done

considering that images are typically larger than HTML documents and that almost every

60

browser caches images. The theoretical hit rate of the experimental system should be

higher since, for a true no caching situation, images would not be cached.

6.1.2 Parameter Set

Four parameters, or factors, were selected as experimental parameters. Each factor had
two value levels. From this, a multivariate analysis 2* factorial block was designed. The

four factors are described below.

o Bandwidth — The capacity of the network connection between the server and the
client is the bandwidth factor. The two value levels were fixed at a software-induced
1000 bytes per second bandwidth and unimpeded (no software imposed limit)
Ethernet bandwidth. The maximum capacity available on the 10-BaseT Ethernet
segment was estimated at 600 kilobytes per second, which was measured through

100 megabyte FTP transfers.
e Depth of returned prediction links — The depth factor, as discussed in Section 4.2,
is the limit on how deep the simulation will try to retrieve documents. The depth

limit value was selected to be zero and ten levels deep.

e Number of channels — The number of channels indicates the number of

simultaneous transfers that can be active. There is always one channel available for

61

the user, so that immediate response can be given to the user. The other additional
channels support the pre-fetch function. Levels are one additional channel and eight

additional channels.

e Pre-fetch cache size — The caching algorithm was based on a least-recently-used
(LRU) cache replacement scheme. Each different cache type (see Section 5.1) uses
the same LRU algorithm. The cache sizes used for pre-fetch prediction were 50,000
bytes and 1,000,000 bytes. Temporary prediction cache size and permanent
prediction cache size were fixed at large values of 10,000,000 bytes, which is

significantly larger than the total size of all documents viewed.

The high and low values selected were based on what seemed to be reasonable minimum

and maximum values rather a theoretical high and low values.

All possible combinations of parameters resulted in a factorial block of 16 different
observations per experiment, as presented in Table 4. Each experiment, consisting of one
user trace, was performed three times to reduce the effects of background network traffic.
A total of ten user traces were used, resulting in a total of 480 different observations for

the entire test suite.

62

Table 4. Factorial Block

Designation | Depth |Speed Channel | Cache Size
0000 0 1 kbps 2 50kb
0001 0 1 kbps 2 1 MB
0010 0 1 kbps 9 50 kb
0011 0 1 kbps 9 1 MB
0100 0 Normal 2 50 kb
0101 0 Normal 2 1 MB
0110 0 Normal 9 50 kb
0111 0 Normal 9 1 MB
1000 10 1 kbps 2 50 kb
1001 10 1 kbps 2 1 MB
1010 10 1 kbps 9 50 kb
1011 10 1 kbps 9 1 MB
1100 10 Normal 2 50 kb
1101 10 Normal 2 1 MB
1110 10 Normal 9 50 kb
1111 10 Normal 9 1 MB
6.2 Study Limitations

The general assumptions and limitations for the performance experiments are as follows.

1. In this research, the temporary document cache is the same as the permanent
document cache. These caches were given a fairly large default size of 10,000,000
bytes.

2. There was a limit of 100 document references that can be in the pre-fetch tables.

There was no limit on the data types that can be retrieved for the cache. This may be

63

desirable since some users may only have a text browser and thus may not retrieve
graphic images. However, it would be reasonable to expect that most users would
like to see graphic images.

3. Simulations were allowed to run all day. Thus some effects of varying network loads
may be included. Additionally, the server accessed the documents through NFS,
which may have introduced some slight network delay. Each simulation was run

three times in an attempt to average out these effects.

6.3 Preliminary Analysis

A sample run of link-only pre-fetch prediction was made to assess the performance of
that algorithm relative to the statistical pre-fetch algorithm. The link-only prediction
scheme is to pre-fetch documents based on the links in the current document in the order
that they appear. Order of appearance is the only metric used to determine which
document to pre-fetch over another document. Effectively, a statistical weight of 100
percent was assigned to all links. Both experimental runs used the “best” possible

parameter settings for both algorithms, which are noted below.

1. Bandwidth was the highest possible.
2. Depth was ten levels.
3. The number of channels was set at eight.

4. The cache size was set to 1,000,000 bytes.

64

The results for these experiments are shown in Appendix D. The relevant identifiers in
the table are “linkonly” and “1111.” The outcome for this limited experiment between
the two different pre-fetching algorithms was that using only document links is slightly
worse than using statistical information. This indicates that if better prediction data is

available it is quite likely that better performance can be achieved.

6.4 Performance Analysis

Complete experimental results are in Appendix D. The experiments tested performance
against a control of a browser not using pre-fetch caching. The conclusion is that
pre-fetch caching has a performance advantage over no pre-fetch caching. Details are

presented in Section 6.5.

6.5 Statistical Analysis’

The original intent was to statistically compare the performance of the various parameter
settings. Cache hit ratios and effective user response times were determined from the
data in Appendix D. These were then transformed into bivariate variables through the
use of a sinusoidal and logarithmic function, respectively. This was necessary since the
statistical analysis model requires a standard normal distribution [53]. The results and

factors were then processed using SAS [54], a statistical analysis package, and run as a

' Two consultants from the Virginia Tech Department of Statistics Consulting Center, Jeff Vest and Ping
Fang, helped in the preparation of the analysis results.

65

multivariate analysis of variance under the general linear model procedure. The results

for the statistical analysis are included in Appendix E.

Analysis was performed on all possible combinations of factors. The four-way analysis
was tested against the hypothesis of no overall four-way combination effects and the
results rejected this hypothesis. Further analysis revealed that all combinations also
rejected the null hypothesis of no overall effects. This means that each factor has a
significant effect on the variables. The overall result is that the statistical multivariate
analysis was inconclusive. All four factors, bandwidth, depth, number of channels, and
pre-fetch cache size, are equally important variables in affecting the cache hit ratio and
user response time. Since no statistical conclusions can be drawn, the results presented in
this study are inferences based on mean comparisons of various experimental variables

and parameters.

6.6 General Trends and Observations

The original prediction was that environments with slow network speeds would not
benefit as much as those with high network speeds. However, this proved to be false.
The high network speeds, in this design, actually suffer somewhat. This is most likely
due to the design of the program, since processes must wait on the master process for
service. Ideally, given that network and CPU resources are not saturated, the response

time for pre-fetch caching should, at worst, equal that for non-pre-fetch caching. This did

66

not occur. Hit rates for all situations with pre-fetching are at least double what they were

without pre-fetching.

The primary variables of interest are the pre-fetch hit rate and the effective user response
time. The pre-fetch hit rate, as opposed to the total hit rate, gives an accurate indicator on
how well the prediction algorithm works. The effective user response time indicates the

performance effect on the user.

6.6.1 Effects of Network Bandwidth

The most noticeable effect of network bandwidth is that the higher bandwidth (available
Ethernet capacity) observations uniformly have worse effective user response times than
the lower bandwidth observations (1,000 bytes per second). In theory, given sufficient
network capacity and computer speed, the worst possible pre-fetch times would be close
to the non-pre-fetch times. In the implementation studied, the average worst time per
request is about eight times higher than the nominal time of 0.35 seconds. The nominal
time is the user response time without any pre-fetch caching. A single extreme time that
is 45.99 times higher than the nominal time causes this high average. The typical range
was 1.10 to 2.82 times higher. This effect is attributed to the design of the experimental
client software. Each process, including the user request process, must wait on several
processes to be able to access the cache and the pre-fetch algorithms. The contention and

internal data transfer times were significantly greater than the network transfer times.

67

This can also be observed and verified by the increase in response time relative to the
number of actual files retrieved. The higher response times occur when an extremely
large number of files are retrieved. An average of 937 files are retrieved in these cases

compared to average actual user requests of 27.4 files.

The average actual user response time was 11.1 seconds. The average response time
reduction for low network bandwidth was 61 percent. This represents a significant
improvement, up to a 7.2 second decrease, in the user response time. This improvement
could possibly be better, considering the above problems with delays introduced by client

process contention.

The network capacity does not appear to have any direct linear effect on the cache hit
ratio. The hit ratio varies significantly across different network bandwidths and the

relationship to network capacity is not obvious.

6.6.2 Effects of Document Depth

A pre-fetch depth of zero appears to provide better overall performance than a higher
depth. The average zero-depth cache hit ratio was approximately equal to the average of
the higher depth pre-fetch cache hit ratio, but the average number of unnecessary files for
zero-depth cases was considerably less than for the higher depth pre-fetch. Several

samples showed that there were actually no unnecessary files downloaded.

68

The hit rate for the higher depth pre-fetch varied greatly, from 0.292 to 0.617. The hit
rate for zero-depth varied from 0.350 to 0.471. This supports the observation, as made in
Section 6.5.4, that the caching algorithm seems to be significantly influenced by the
pre-fetch depth. These values may also have been affected by the LRU replacement

policy, as will be discussed in Section 6.6.4.

6.6.3 Effects of Number of Channels

As expected, more simultaneous sessions, or channels, led to an apparent increase in the
hit ratio. However, more channels also resulted in a significant increase in the number of
unnecessary files. There appears to be no correlation between the number of channels

and the user response time.

6.6.4 Effects of Cache Size and Document Replacement Policy

There appears to be some degradation introduced by the LRU document replacement
policy. A sample experiment, which is not reported in detail, with a 10,000,000 byte
pre-fetch cache resulted in a significant increase in the hit ratio. This means that
documents requested by the user are deleted from the smaller cache before they are used.
Specific experiments for this effect were not conducted. However, the early deletion of
cached documents can be observed from the aggregate average over the 480 observations

of 3.8 megabytes of deleted files for 400 kilobytes of files that the user actually requests.

69

The LRU policy is overwhelmed by retrieving an order of magnitude more bytes and files

than are used.

Another observation is that there are a large number of unnecessary files. An average of

144.1 files were never used and 133.5 of these were deleted out of the cache.

All of the observations indicate that the cache was fairly active and the cache size limited
the hit ratio. It may have also adversely affected user response time. The implication of
this is that a better caching policies should be used for inserting items into and deleting
items from the cache. Better insertion control should reduce the number of unnecessary

files and better deletion control should increase the hit ratio.

6.6.5 Combination Effects

The effects of factor combinations were hard to observe due to the large number of
combinations and the variety of data values. Since the statistical analysis showed that
four-way combinations had a significant effect, there are no definite conclusions that can

be drawn.

6.7 Summary

Experimental results indicate that pre-fetching is a viable scheme to improve Web

performance. A better client design should allow for performance increases without the

70

observed response time decreases. The LRU strategy for cache control is probably not

the most desirable option.

All of the measured variables had statistically significant effects on performance. The
general result is that the individual “better” cache parameter settings of high depth levels,
high network speeds, high number of multiple sessions, and large cache sizes, tended to
provide better results. Combinations of settings had more ambiguous results, especially

in the case of high network speeds and a large number of sessions.

71

Chapter 7. Conclusions

This research began by exploring possible methods to improve user response time in
World-Wide Web transactions. Statistical characteristics of average transfer time, user
idle time, and document size and composition indicated that user-based pre-fetch caching
would be a beneficial area to explore. Pre-fetch methods were evaluated, designed, and
implemented. The resulting system uses a modified Web server to send statistical
information about document links to an experimental browser. The browser can then
pre-fetch documents while the user views other documents. Performance experiments
were conducted to see if, and by how much, the system improves user response time.
Additionally, the experiments studied the effects of various cache parameters to see how

they affect performance.

The study showed that the user response time for low-speed or highly congested network
connections is substantially improved (decreased) by a simple pre-fetch prediction
implementation. This improvement, on average, varies from an 18 percent to 63 percent
reduction in response time for an average response time of 11.1 seconds. However, the
study also showed that there is a slight increase, of 109 to 135 percent, in times for fast
network connections. This increase in response time is attributed to implementation

problems that result in significant client process contention.

72

From the Georgia Tech’s Graphic, Visualization, and Usability Center’s Second
World-Wide Web survey, at least 20 percent of respondents indicated that they were
running servers with network connection capacity of 128 kbps or less [55]. Considering
that 62 percent of the client population appears to be using slow lines, i.e., less than

T1 [56], the pre-fetch prediction mechanisms outlined here should provide a performance
improvement for many users. Limitations imposed by increased network traffic caused
by pre-fetching were not explored in this study, so achievable performance increases may

not be as good as this study indicates.

The results also show that LRU may not be the best policy for pre-fetch cache
management. Many unused files are retrieved and many needed files are retrieved and
then discarded prior to use. Other recent studies have also shown that the LRU policy is a
poor choice for proxy servers [9]. However, the LRU policy still improves hit ratios and,
in certain situations, user response time. Another consideration with the caching policy
involves cache coherency. Cache coherency problems can reduce the actual hit ratio and
performance benefits. An increasing number of documents, such as current news briefs,
seem to be based on document reloading and/or frequent updates, meaning that a cached

document will be more likely to be out of date.

Given that all the factors under study had a significant effect on the hit ratio and user

response time, more research is needed. The factors under study were a selection of the

73

possible factors that would be used in any realistic pre-fetch caching system. Future
studies should consider that these factors and the number the levels were insufficient and

should use factors with higher degrees of freedom for each parameter.

The single user caching paradigm has numerous problems. Many of these have been
noted by Luotonen and others [9, 10]. The experimental system developed through this
research indicates that document pre-fetching is a viable user response time improvement
method. Since the concepts used in this research can be applied to both single-user and
multiple-user systems, justification for deploying a pre-fetch scheme exists. Future
research should be directed at determining better algorithms for user-based pre-fetch
caching as well as systems for cache-relay. Additional work needs to be done in the area
of pre-fetching across multiple systems. Such questions as when to stop pre-fetching
following a server change can substantially affect performance of the caching

mechanism.

74

Chapter 8. References

[1] J.E. Pitkow, “GVU Center NSFNET Statistics,” Web Document, Graphics,
Visualization, and Usability Center, Georgia Institute of Technology, May 22,

1995, http://www.cc.gatech.edu/gvu/stats/NSF/merit.html (February 1996).

[2] T. Berners-Lee, “An Executive Summary of the World-Wide Web Initiative,”
Web Document, World-Wide Web Consortium, February 23, 1995,

http://www.w3.org/hypertext WWW/Summary.html (February 1996).

[3] R.J. Vetter, C. Spell, and C. Ward, “Mosaic and the World-Wide Web,”

Computer, Vol. 27, No. 10, pp. 49-56, October 1994.
[4] F. Kappe, “Hyper-G: A Distributed Hypermedia System,” Proc. INET '93,
pp. DCC-1 - DCC-9, August 1993. Also available at

ftp://ftp.ncsa.uiuc.edu/Hyper-G/papers/inet93.ps.

[5] F. Anklesaria, M. McCalhill, P. Lindner, D. Johnson, D. Torrey, and B. Alberti,

“The Internet Gopher Protocol: A Distributed Document and Search and Retrieval

75

[6]

(7]

[8]

Protocol,” RFC-1436, University of Minnesota, March 1993. Available at

ftp://ds.internic.net/rfc/rfc1436.txt.

M.]. Fullton, K.J. Goldman, B.J. Kunze, H. Morris, and F. Schiettecatte, “WAIS
over 7239.50-1988,” RFC-1625, June 1994. Available at

ftp://ds.internic.net/rfc/rfc1625.txt.

M. Abrams, S. Williams, G. Abdulla, S. Patel, R. Ribler, and E.A. Fox,
“Multimedia Traffic Analysis Using Chitra95,” TR-95-05, Dept. of Computer
Science, Virginia Polytechnic Institute and State University, April 7, 1995. Also
available at
http://ei.cs.vt.edu/~succeed/95multimediaAWAFPR/95multimediaAWAFP

R.html.

S. Glassman, “A Caching Relay for the World-Wide Web,” Proc. of the First
International World-Wide Web Conf., Amsterdam: Elsevier, pp. 69-76, May
25-27, 1994. Also available at

http://www1.cern.ch/PapersWWWW94/steveg.ps.

76

[9]

[10]

[11]

[12]

[13]

M. Abrams, C.R. Standridge, G. Abdulla, S. Williams, and E.A. Fox, “Caching
Proxies: Limitations and Potentials,” 7R 95-12, Department of Computer Science,

Virginia Polytechnic Institute and State University, July 1995.

A. Luotonen and K. Altis, “World-Wide Web Proxies,” Electronic Proceedings,
Proc. of the First International World-Wide Web Conf., May 25-27, 1994,

http://www1.cern.ch/PapersWWW?94/luotonen.ps (February 1996).

T. Berners-Lee, “History to Date,” Web Document, World-Wide Web
Consortium, October 3, 1995,

http://www.w3.org/hypertext/WWW/History.html (February 1996).

K. Hughes, “Entering the World-Wide Web: A Guide to Cyberspace,” Web

Document, Honolulu Community College, October 1993,

http://www.hcc.hawaii.edu/guide/www.guide.html (February 1996).

P. Naur, ed., “Revised Report on the Algorithm Language ALGOR 60,”

Computer Journal, Vol. 5, No. 1, pp. 349-367, April 1963.

77

[14]

[15]

[16]

[17]

[18]

D. Crocker, “Standard for the Format of ARPA Internet Text Messages,”
RFC-822, University of Delaware, August 1982. Available at

ftp://ds.internic.net/rfc/rfc822.txt.

F.B. Schneider and S. Mullender, ed. Distributed Systems, Second Edition, New

York: ACM Press, 1993.

K. Sollins, “Thoughts on Standardizing URN Resolution Protocols,”
Internet-Draft, Massachusetts Institute of Technology, June 1995. (Thisis a
working document.) Available at

ftp://ds.internic.net/internet-draft/draft-ietf-uri-urn-thoughts-0.0.txt.

P. Hoffman and R. Daniel, “URN Resolution Overview,” Internet-Draft, Proper
Pub., May 1995. (This is a working document.) Available at

ftp://ds.internic.net/internet-drafts/draft-ietf-uri-urn-res-descript-00.txt.

T. Berners-Lee, “Universal Resource Identifiers in WWW: A Unifying Syntax for
the Expression of Names and Address of Objects on the Network as used in the
World Wide Web,” RFC-1630, CERN, June 1994. Available at

ftp://ds.internic.net/rfc/rfc1630.txt.

78

[19]

[20]

[21]

[22]

[23]

T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource Locators
(URL),” RFC-1738, CERN, Xerox Corp., University of Minnesota, December

1994. Available at ftp://ds.internic.net/rfc/rfc1738.txt.

R. Fielding, “Relative Uniform Resource Locators,” RFC-1808, University of

California at Irvine, June 1995. Available at ftp://ds.internic.net/rfc/rfc1808.txt.

B. Marchal, “An Introduction to SGML,” Web Document, January 3 1996,

http://www .brainlink.com/~ben/sgml/ (February 1996).

T. Berners-Lee and D. Connolly, “Hypertext Markup Language: A Representation
of Textual Information and Metainformation for Retrieval and Interchange,
Version 2,” RFC-1866, CERN, November 1995. Available at

ftp://ds.internic.net/rfc/rfc1866.txt.

D. Raggett, “HyperText Markup Language Specification Version 3.0,”
Internet-Draft, World-Wide Web Consortium, March 1995. (This is a working
draft.) Available at

ftp://ds.internic.net/internet-drafts/draft-ietf-html-specv3-00.xt.

79

[24]

[25]

[26]

[27]

(28]

[29]

Netscape Communications Corp., Netscape Navigator, version 2.0 Gold Beta 1,

1996 Available at http://home.netscape.com/.

NCSA Software Development Group, NCSA Mosaic for X-Windows, version 2.6,

1995. Available at ftp://ftp.ncsa.uiuc.edu/Mosaic/Unix/binaries/2.6.

J. Cates, “The Creative Internet: Browser Statistics,” Web Document, California
Institute of Technology, July 1995,

http://www.galcit.caltech.edu/~ta/browsers/browser.shtml (August 1995).

D.J. Garaffa, “BrowserWatch,” Web Document,

http://www.browserwatch.com/ (February 1996).

G. Bell, A. Parisi, and M. Pesce, “The Virtual Reality Modeling Language,
Version 1.0 Specification,” Web Document, May 26, 1995,

http://vrml.wired.com/vrml.tech/vrml10-3.html (February 1996).

T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext Transfer Protocol -
HTTP/1.0,” Massachusetts Institute of Technology, Internet-Draft, October 1995.
(This is a working draft.) Available at

ftp://ds.internic.net/internet-drafts/draft-ietf-http-v10-spec-04.txt.

80

[30]

[31]

[32]

[33]

R. Fielding, H. Frystyk, and T. Berners-Lee, “Hypertext Transport Protocol -
HTTP/1.1,” Internet-Draft, University of California, Irvine, November 1995.
(This is a working draft.) Available at

http://ds.internic.net/internet-drafts/draft-ietf-http-v11-spec-00.txt.

N. Borenstein and N. Freed, “MIME (Multipurpose Internet Mail Extensions) Part
One: Mechanisms for Specifying and Describing the Format of Internet Message
Bodies,” RFC-1521, September 1993. Available at

ftp://ds.internic.net/rfc/rfc1521.txt.

D.M. Kiristol, “A Proposed Extension Mechanism for HTTP,” Internet-Draft,
AT&T Bell Labs, January 1995. (This is a working draft.) Available at

ftp://ds.internic.net/internet-drafts/draft-kristol-http-extensions-00.txt.

R.E. McGrath, “Performance of Several HTTP Demons on an HP 735
Workstation,” NCSA Computer and Comm. Group, April 25, 1995. Unpublished
Technical Report. Available at
http://www.ncsa.uiuc.edu/InformationServers/Performance/V1.4/report.ht

mil.

81

[34] S.E. Spero, “Progress on HTTP-NG,” Web Document, University of North
Carolina,
http://iwww.w3.org/hypertext WWW/Protocols/HT TP-NG/http-ng-status.ht

ml (February 1996).

[35] S.E. Spero, “Analysis of HTTP Performance Problems,” Web Document, July

1994, http://sunsite.unc.edu/mdma-release/http-prob.html (February 1996).

[36] V.N. Padmanabhan and J.C. Mogul, “Improving HTTP Latency,” Electronic
Proceedings, Proc. Second World-Wide Web Conf., October 1994,
http://iwww.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLaten

cy.html (February 1996).

[37] S.E. Spero, “Next Generation Hypertext Transport Protocol,” University of North
Carolina, Internet-Draft, March 1995. (This is a working draft.) Available at

http://sunsite.unc.edu/ses/ng-notes.txt.

[38] A.Hopmann, “HTTP Session Extension,” Internet-Draft, ResNova Software, Inc.,

July 1995. (This is a working draft.) Available at

ftp://ds.internic.net/internet-drafts/draft-ietf-http-ses-ext-00.txt.

82

[39]

[40]

[41]

[42]

[43]

A. Luotonen and J. Franks, “Byte Ranges with HTTP URLSs,” Internet-Draft, June
1995. (This is a working draft.) Available at

ftp://ds.internic.net/internet-drafts/draft-luotonen-http-url-byterange-00.txt.

G. Bossert, S. Cooper, and W. Drummond, “Requirements for HyperText
Transfer Protocol Security,” Internet-Draft, April 1995. (This is a working draft.)
Available at

ftp://ds.internic.net/internet-drafts/draft-bossert-httpsec-req-00.txt.

K.E.B. Hickman, “The SSL Protocol,” Internet-Draft, Netscape Communications
Corp., February 1995. (This is a working draft.) Available at

ftp://ds.internic.net/internet-drafts/draft-hickman-netscape-ssl-01.txt.

J. Hostetler, J. Franks, and P. Hallam-Baker, “A Proposed Extension to HTTP:

Digest Access Authentication,” Internet-Draft, March 1995. (This is a working

draft.) Available at

ftp://ds.internic.net/internet-drafts/draft-ietf-http-digest-aa-01.txt.

D.R. Stinson, Cryptography: Theory and Practice, Boca Raton: CRC Press, 1995.

83

[44]

[45]

[46]

[47]

[48]

[49]

T.C. Bell, J.G. Cleary, and I.H. Witten, Text Compression, Englewood Cliffs:

Prentice Hall, 1990.

Sun Microsystems Corp. SunOS 5.4, compress, 1994.

Jean-loup Gailly, et al., gzip, Version 1.4, August 1993. Available at

ftp://ftp.uu.net/pub/OS/gnu.

L.D. Catledge, “Characterizing Browsing Strategies in the World-Wide Web,”
Georgia Institute of Technology, 1994. Unpublished Technical Report. Available
at
http://www.gatech.edu/lcc/idt/Students/Catledge/browsing/UserPatterns.P

aper4.formatted.html.

F. Valdez, M. Chignell, and B. Glenn, “Browsing Models for Hypermedia
Databases,” Proc. of the Human Factors Society - 32nd Annual Meeting,

Anaheim, Cal., Human Factors Society, pp. 318-322, October 24-28, 1988.

J.E. Pitkow and M.M. Recker, “A Simple Yet Robust Caching Algorithm Based

on Dynamic Access Patterns,” Electronic Proceedings, Proc. 2nd World Wide

Web Conf, 1994,

84

[50]

[51]

[52]

[53]

[54]

http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/pitkow/caching.ht

ml (February 1996).

R.A. Botafogo, E. Rivlin, and B. Shneiderman, "Structural Analysis of
Hypertexts: Identifying Hierarchies and Useful Metrics," ACM Transactions on

Information Systems, Vol. 10, No. 2, pp. 142-180, April 1992.

NCSA Software Development Group, Affpd, Version 1.4, 1995. Available at

ftp://ftp.ncsa.uiuc.edu/MWeb/httpd/Unix/ncsa_httpd/httpd_1.4.

W3C, W3C Reference Library (Zibwww), Version 3, 1995. Available at

http://www.w3.org/hypertext \WWWW/library.

J. Vest and P. Fang, Personal Communications, September 7, 1995. Department
of Statistics Consulting Center, Virginia Polytechnic Institute and State

University.

“SAS/STAT User’s Guide, Release 6.03 Edition,” Cary: SAS Institute, Inc.,

December 1992,

85

[55] J.E.Pitkow and M.M. Recker, “Using the Web as a Survey Tool: Results from the
Second WWW User Survey, “ TR-94-40, Graphics, Visualization, and Usability
Center, Georgia Institute of Technology, 1994. Also available at

http://ftp.gvu.gatech.edu/pub/gvu/tech-reports/94-40.ps.Z.

[56] I.E. Pitkow and C. Kehoe, “GVU’s Third WWW User Survey,” Graphics,
Visualization, and Usability Center, Georgia Institute of Technology, Web

Document, April 1995, http://www.cc.gatech.edu/gvu/user_surveys

(February 1995).

[57]1 R.Fielding, H. Frystyk, and T. Berners-Lee, “Hypertext Transport Protocol -
HTTP/1.1,” Internet-Draft, University of California, Irvine, November 1995.
(This is a working draft.) Available at http://ds.internic.net/internet-

drafts/draft-ietf-http-v11-spec-00.txt.

[58] NCSA httpd Software Development Group, “Features of NCSA HTTPD 1.5,”

Web Document, August 1, 1995,

http://hoohoo.ncsa.uiuc.edu/docs/features-1.5.htmi#KeepAlive (February

1996).

86

Appendix A. User Document Caching on the World-Wide Web

The following is a draft document that is included to provide additional details about the
research presented in this thesis. There may be a more current document available than

the draft presented here.

The draft document has been reformatted to fit thesis constraints.

87

INTERNET DRAFT David C. Lee

<draft-lee-www-cache-04.txt> Scott F. Midkiff
February, 1996 Virginia Tech
Experimental Bradley Department of Electrical Engineering

Expires July 1, 1996

User Pre-Fetch Document Caching on the World-Wide Web

Status of This Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the
Internet Engineering Task Force (IETF), its areas, and its working groups. Note that

other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be

updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use

Internet-Drafts as reference material or to cite them other than as “work in progress.”

88

To learn the current status of any Internet-Draft, please check the “1id-abstracts.txt”
listing contained in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa),
nic.nordu.net (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast),

or ftp.isi.edu (US West Coast).

Distribution of this document is unlimited. It is available at the following URI.

http://fiddle.ee.vt.edu/~dlee/thesis/rfc-predict.html.

Abstract

This RFC specifies an experimental flexible client-based predictive pre-fetch (“look
ahead”) request mechanism for the World-Wide Web. The specification provides for
additional header modifications to the Hypertext Transport Protocol [1, 2]. It is currently

specified for use with HTTP 1.1.

The pre-fetch mechanism can be used for both multiple user caching (proxy or cache
relaying) and single user caching. The caching concept relies on accessing statistics from

the server.

89

Table of Contents

1.0 INTRODUCTION..... trretesessssnnansesessntesseresssesnanesssrase 92
1.1 PREDICTION METHODS........ccooiitttttiiiteterereriirereeeeeressssanssnsssssaiesesesesessrssesemeesessnsnsnsssesseseeessnrnresenssseessasens 92
1.1.1 Categorical HEUPISTCS...............ccccciiiiiiiiiiicc ittt ettt 93
1. 1.2 SEALISHCQI HEUFISICS ..ottt e ettt ea e sttt et e e e eeeneeseree e 94
1.1.3 OBTAINING STATISTICS FOR THE BROWSERcccicrtiiiimiiiiniernesseeeisineeseiaeesosseesiasessssesssessesssesssesassesans 95
1.2 DEFINITIONS OF PROTOCOL HEADER PARAMETERSuuuiiiiitieeeeeeteneereeeersnisiessssssessesssiseseannseseecanessseeenns 96
L.2.1 Prediction "DepIR"c.ccooiiioiiiiiniiieieseeeeeee sttt ettt b ettt a et a bt neaaeeenea 96
1.2.2 Statistical PrediCtion VAIUEScc.covevueeemviiiiiiie e eeeee e e ee s e s eeer e e e s vaae e s e 96
2.0 CLIENT REQUEST HEADERS.......... 97
2.1 APPLICABLE IMETHODScoiiiiiiititieeciteteennreeeaeeeraessssnsesessssnsesesssssesessssssnsesssssenessssssssessseesosssseessnssssnessansn 98
2.2 ADDITIONAL METHODS.........ccoiitttteeeeeieiiitrteteeeeeeessersssissttessssessssssssssssssssessesssssmasassessssssssnsssssresssssesssansses 99
2.3 REQUEST HEADERScouvuritieivreeeerrreesesssreeessssreessesnseseiatssseessssnsessssrsessssessssssssssssssssssssnssseesesnssnsnsesssans 100
2.3.] PrediCtion ParamMeELers......................oooueeviiiiiiiiiiiieeeeeeisiteees e e et et ettt e e et e e e e ae s e s it bbb as sttt seeeees 101
2.3.2 Prediction Link Ignore HeQdersccccoimimiiiiiiciiiiiiiieecee et 104
2.3.3 Heuristical Specifier HEARFS................cc.ccccuvieerieeeieiieis et teetae e e estas e s v e ssas e e e nae e e 106
3.0 SERVER RESPONSE HEADERS . 106
3.1 PREDICTION INFORMATION ACROSS SERVERS ...ccccetitiiiiirirrrieieiererersrininisiniieiesessssessrssssmsmsosessesssersrrsses 107
3.2 SERVER RESPONSE HEADERSccttvtvttuuuuututitetisreresessererseeeeeeterererssersssssssssssssssssesesessesssssssrarssssnsssesessesases 107
3.2.1 No Prediction Information Availableccccocccviviininiiiniininiieccieinin s 107
3.2.2 Link IRfOFMQALION.ccccciiitiiiiieteeeeet ettt sttt ettt s 110

90

4.0 CONCLUDING REMARKS

5.0 SECURITY

6.0 REFERENCES................

7.0 AUTHOR'S ADDRESSES.

91

112

113

114

...116

1.0 Introduction

Local disk access is typically several times faster than network access. This leads to the
observation that if a user views a document that is already on the local disk, then the user
will experience a faster response time. Many methods of performing Web document
caching exist. Most research is focused on cache relays [3-5]. These vary from storing
all documents visited to predictively “looking ahead” [6] and retrieving documents that

an algorithm predicts the user will view. This memo deals with a pre-fetching scheme for

the World-Wide Web.

This memo first reviews some prediction metrics and then provides some definitions that
will be used in the specification. This is followed by a discussion of client and server

HTTP headers.

1.1 Prediction Methods

Predictive pre-fetching requires information about the likelihood of a particular document
being accessed in the future. There are two basic methods that can be used to develop
these prediction probabilities. The first is to categorize documents into assigned next
access probabilities based on some characteristic of the document. The second is to use
historical user access patterns as the basis for next access probabilities. These are

discussed in more detail in [6], but an overview is provided here.

92

1.1.1 Categorical Heuristics

Categorical heuristics require “buckets” into which documents are tossed. Documents
may be classified by examining the number of links contained within a document or the
number of documents that link to it. For example, a document that has a large number of
links is typically an “index” document. An “icon” image document will typically have
many documents linking to it. Pure “informational” documents will typically have few
links from it and few documents linking to it. Another classification scheme may be
based on the organization of the documents. A “book” classification may mean that the
documents are organized in a page forward and backward manner with an associated

table of contents.

The classification is used as the prediction metric. A “index” document will typically be
accessed more often than a “informational” document. Thus, each category has some

associated access probability.

Categorical heuristics have two main problems.

1. Complex logic is needed to automatically and accurately classify each document.
One would envision that an administrator would have to manually classify each
document.

2. The classifications may not be good predictors of actual user access probabilities. For

example, not all “index” documents are equally likely to be accessed.

93

The protocol specified in this memo does not completely specify a mechanism to use

categorical heuristics.

1.1.2 Statistical Heuristics

The other method to predict accesses is to use historical user access patterns to predict
future user access patterns. For example, if 95 percent of users have accessed document
X and 10 percent have accessed document Y, the pre-fetch algorithm should obtain
document X before Y. It may or may not decide to obtain document Y at all. The basic

requirements of statistical prediction are as follows.

1. Adaptable. If the statistics are not adaptable, then over time, the statistics may not

match the actual frequency of access and, thus, the predictions will be inaccurate.

2. Accurate. Ifthe statistics are not accurate, then the predictions will not be accurate.

Using current logging methods, some which may require modification, there are two

easily obtainable statistics.

1. Total document hit statistics. The total document hit statistics are the total number of

users who have accessed that document on that server.

94

2. Total link traversal statistics. The total link traversal statistics are the number of users
who have traversed a particular link from a particular source document. The sum of
the number of users traversing a link in the source document plus the number of users
who did not traverse a link (perhaps because they ended the session) equals the total

document hit count for the source document.

These two statistics are not entirely accurate as they do not reflect all possible user
movements. For example, by using caching algorithms, there are documents that are
accessed that are not logged by the server. Another example is that the forward and back
buttons on many browsers allow a user to traverse up and down links without accessing

the server.

1.1.3 Obtaining Statistics for the Browser

Numerous methods are available to provide the browser with the access statistics
necessary to perform pre-fetch prediction. These include a new protocol, embedding
statistics within HTML documents, and modifications to HTTP. This memo specifies
HTTP header modifications to provide the client with the appropriate statistical

information.

95

1.2 Definitions of Protocol Header Parameters

1.2.1 Prediction "Depth"

Depth is defined to be the number of reference links (specified by an HTML HREF
element) away from a specific document. A depth of zero represents links from the
specific document. A depth of one represents links from documents of depth zero. How
an implementation uses the depth feature of the protocol is loosely specified. For clients,
the general inference is that the larger the number, the more items the user wants to
pre-fetch. For servers, the depth metric should be fairly tightly bound to the number of
links away from a specific document. Note also that the deeper the level, the worse the
statistical accuracy becomes. A server implementation may decided to ignore a client

request for pre-fetch retrievals at large depths.

1.2.2 Statistical Prediction Values

Prediction values, for a particular document, are a measure of the probability that the
document will be viewed in the near future. The range that the experimental specification

specifies for the prediction values is as follows.

1.000 The user will almost certainly view this document.

0.000 It is highly unlikely that the user will view this document.

96

The prediction values are not necessarily statistical access probabilities. However, it is
strongly encouraged that they do have some statistical relationship. The prediction values
can be any metric as long as they fall into the bounds specified above. Clients should
interpret any value above 1.000 as 1.000 and any negative value as 0.000. Significant
digits beyond three decimal places should be ignored. Clients should accept any number

of significant digits, however.

Note that clients can apply their own weights to the server supplied prediction values.
For example, if a client tracks the accuracy of server prediction values and notes that they
are not accurate, it may choose to only obtain documents with very high prediction

values.

97

2.0 Client Request Headers

The normal HTTP client headers can be used in the pre-fetch scheme. Non-pre-fetching
servers should ignore pre-fetch headers. All document references returned by the
pre-fetch scheme are based on the Universal Resource Locator (URL) specification of
RFC 1738 [6] and RFC 1808 [7]. All standard and relative URLs can be used where an

URI/URL specification is allowed.

2.1 Applicable Methods

The headers specified below are only applicable to the GET and HEAD methods
specified in HTTP 1.1. Since prediction has no meaning for the other methods, the

prediction headers are to be ignored in the content of other headers.

The actions that the server should associate with the methods are as follows.

GET The client sends the GET request and the prediction headers (and
other headers) are returned by the server with the document in
question. By implication, this means that the user will view the
document. Servers should be aware that the user may not actually

view the document.

98

HEAD

The client sends the HEAD request and the prediction headers (and
other headers) are returned with the document header information.
Servers should interpret this action as a query for prediction

information.

Servers may ignore client prediction headers if they are not sent with either method above

or those listed in Section 2.1.1.

2.2 Additional Methods

This specification also allows for an additional method type to be introduced.

PREDICT-GET

PREDICT-GOT

The functionality and parameters of the PREDICT-GET method
are the same as for the HTTP GET method. The requested
document should be returned or an error returned. This allows the
server to log these requests separately without severely skewing
the server log statistics.

The functionality and parameters of the PREDICT-GOT method
are the same as for the HTTP HEAD method. Only document
header information is returned. This allows the server to log these
requests as documents viewed by a user that was requested through

the pre-fetching mechanism.

99

Clients are encouraged to use these methods if the server supports them. This allows the
server to keep more accurate statistics when pre-fetching is used. Servers adhering to this

specification must support these new methods.

2.3 Request Headers

Kristol specifies extension mechanisms for HTTP [8]. In a sense, these headers could be
applied as extension headers and handed off to the appropriate prediction manager.
However, considering the large bulk of headers that may be generated, an additional

keyword is not in the best interests of performance.

The headers have been structured to be extendible, as prediction method changes, with a
limited basic set of required parameters. The parameters are defined to be short and their
context may vary within different prediction schemes. General, common sense

interpretations are given that each prediction scheme must observe.

If the server does not understand a parameter, it should ignore it.

Note that if a client sends the HTTP 1.1 KeepAlive header, then the server should

remember client prediction request information across the session. That is, the prediction

document information should be sent for every request after a Predict header is seen. A

100

new Predict header should cause the server to reset the parameters to its prediction

algorithm. This applies to all client-initiated headers.

2.3.1 Prediction Parameters

The basic header format is as follows.

Predict = “Predict” ".” depth-range [*;” parameter[‘=" value]]

Parameters are as follows.

Depth-Range =*d” =" (DIGIT*3) “-" (DIGIT*3)

Max-Size = “ms” “="(DIGIT*100)|"TB"|"GB”|"MB”|’KB”
Num-ltems =“n” “=" (DIGIT*5)

Allow-Types = “allow-types” “=* (Content-Type)[, (Content-Type)]

Allow-Methods

“allow-methods” “=* (HTTP Method)[, (HTTP

Method)]

Remote-Servers = “rservers” ‘=" (DIGIT*3)

Descriptions of each parameter and options follow. The defaults, if the parameter is not

supplied, are given in parenthesis. Note that negative values are not allowed. Server’s

should treat all negative values as an absolute value.

101

Depth-Range

Max-Size

Num-Iltems

Allow-Types

Allow-Methods

Maximum depth range to return. Must be supplied.
Servers should make every effort to accurately supply data
according to this parameter.

Maximum total size of items to return (default 1 MB).
Note that this is not the size of the prediction information
but the size of the documents that are referenced to by the
prediction information. This can be used by clients specify
the available disk space. A maximum size of zero (0)
indicates that the client does not wish to receive prediction
information.

Maximum number of items (default “20”). A value of zero
indicates that the client does not wish to receive prediction
information.

Allowable HTTP Content-Types (default “*/*”). The
server should only provide prediction information for the
documents that have the specified Content-Types. Multiple
Content-Types are separated by commas.

List of allowed HTTP methods (default is all methods).

The server should only provide prediction information for

102

documents that can be accessed by the specified methods.
Multiple HTTP methods are separated by commas.

Remote-Servers Number of server hops away to obtain prediction statistics
from. For example, if the value is two, then the current
server should try to obtain pre-fetch statistics for
documents on other servers. These other servers are one
hop and two hops away from the current server. By

default, this value is set to zero.

Some examples are shown below.

Predict: d=0-0; n=1, ms=1KB;
This example specifies that prediction information for only one document, up to
one kilobyte in size, should be sent. This document can only be linked from the

currently requested document.

Predict: d=1-10; ms=1MB; rservers=5; Allow-Methods=GET, POST
This example specifies that prediction information for documents that total up to
one megabyte and at most ten links from the current request, should be sent. The

server should only send prediction information for documents that can be

103

accessed via GET and POST. If the server has prediction information from other

servers of up to five hops away, it should use that as well.

Predict: d=0-1; ms=20KB; n=10; Allow-Types=text/*, image/*;

. This example specifies that prediction information for documents, at a depth of
zero to one and up to 20 kilobytes of documents, should be sent. No more than
ten document prediction headers should be sent and these documents should either

be text or image types.

To be compliant with this specification, this header must be supported. The only required
option to recognize is the depth-range. Servers may ignore options they do not

understand.

If authentication is required to access documents, then the server may choose not to
respond to requests for prediction information for documents that the user is not
authorized to receive. Authentication header information should be sent by the client in

addition to the prediction request.

2.3.2 Prediction Link Ignore Headers

The link ignore headers are used to inform the server of URIs or matches of URIs to

ignore in returning prediction information.

104

Predict-lgnore = “Predict-Ignore” “:” URI-Location |

RN

URI-Base-Location

To ignore a specific URI, use the URI-Location. Otherwise use the URI-Base-Location

with a wildcard to ignore a set of URIs. Regular expressions are not allowed.

The following is an example of ignoring a set of documents.

Predict-Ignore: http://fiddle.ee.vt.edu/succeed/*

This example informs the server fiddle.ee.vt.edu to ignore all HTTP accessible
documents that have an URI that conforms to the pattern
http:/ffiddle.ee.vt.edu/succeed. Thus,
http://fiddle.ee.vt.edu/succeed/home.html would be not be in any prediction

information but http://fiddle.ee.vt.edu/succeed.html would be.

This header must be supported by the server. It is optional for the client.

105

2.3.3 Heuristical Specifier Headers

This header field is reserved for future definition and usage. This is to allow the usage of
heuristical categorization and keyword based pre-search information. The format is given

below.

Predict-Heuristic = “Predict-Heuristic” “:” undefined

This header must be recognized by the server. Since it is not defined, it is ignored. Itis

optional for the client.

Usage of Predict-Heuristic and Predict is allowed. If a server receives both, it should

use the Predict-Heuristic characteristics to assist in sending link statistics as defined by

Predict.

106

3.0 Server Response Headers

3.1 Prediction Information Across Servers

This specification allows for servers to transfer or obtain prediction information from
other servers and use that to send to clients. A distributed prediction database may help

increase user response time.

No method is specified as to how to do this. A suggested method would be to have the
server send HEAD requests for a specific document for which it has a link and obtain

prediction values to store.

3.2 Server Response Headers
A server that performs prediction will only send the prediction response headers in

response to detection of a valid client Predict header. Otherwise, it will be

indistinguishable from a server that does not support prediction.

3.2.1 No Prediction Information Available

No prediction information and server errors can be indicated in two methods. The first
method is indistinguishable from a server that does not support prediction; that is,

sending no header information at all. The second is to inform the client of why there is

107

no prediction information. This header must only be used in the case of an error or

unavailable prediction information.

Predict-Link-Info

Reason-Code

= “Predict-Link-Info” “” Reason-Code Reason-String

= (DIGIT*3)

Typical reasons will be as follows.

Reason-Code

1XX

2XX

100

101

102

103

104

112

113

114

Reason-String

Statistical link failures

Failed.

Failed.

Failed.

Failed.

%s.

Failed.

No link information: %s.
No prediction information for URI %s.
Unauthorized or unsupported option(s): %s.

Unauthorized or unsupported access request:

Unauthorized or unsupported method: %s.

OK. Unauthorized or unsupported option(s): %s.

OK. Unauthorized or unsupported access request:

%s.

OK. Method %s remapped to %s.

Heuristical link failures

108

200

201

202

203

204

212

213

214

5XX

500

501

599

Failed.

Failed.

Failed.

Failed.

%s.

Failed.

No link information: %s.
No prediction information for URI %s.
Unauthorized or unsupported option(s): %s.

Unauthorized or unsupported access request:

Unauthorized or unsupported method: %s.

OK. Unauthorized or unsupported option(s): %s.

OK. Unauthorized or unsupported access request:

%s.

OK. Method %s remapped to %s.

Server errors

Server prediction error: %s.

Prediction database failure.

General server error.

This header is optional. Multiple Predict-Link-Info headers may be sent. Some

reason-codes are failures while others indicate warnings. The HTTP status-code

should not be used to convey prediction failure information.

109

3.2.2 Link Information

The sorting order for link information is defined to be in decreasing prediction values.
Thus, the first link sent should be of the highest prediction value and the last link sent
should be of the lowest prediction value. All link information should be sent in sorted
order. Following the design philosophy of the Internet, the client should be prepared to
accept link information in any order. The client may even wish to sort the link

information according to its own algorithm.

Predict-Link = “Predict-Link” " URI-Location”,” p-value [*;”

parameters [‘=" value]]

Parameters are as follows.

Depth = “d” "=" (DIGIT*3)
Size = “sz” “=* (DIGIT*100)
Links-out = “lo” “=" (DIGIT*5)
Links-in = ‘" “=* (DIGIT*5)
P-heuristic = “h” “=* <undefined>

Content-type = “content-type (Content-Type)
Method = “method” “=" (HTTP Method)

P-value “p” "=*[0|1] "."(DIGIT*3)

110

Parameter explanations are as follows.
Depth Document depth away from requested document.
Size Size of document, which should be equivalent to the

Content-Length.

Links-out Number of links in the document (including image and
applet types).
Links-in Number of links to the document (if known). This value

can be an estimate.

P-heuristic Heuristic categories. Currently undefined.
Content-type HTTP Content-Type associated with document.
Method Allowed HTTP access methods for document.
P-value Prediction value as defined in Section 1.2.2.

Examples (assuming the base document is

http://fiddle.ee.vt.edu/~dlee/thesis/rfc-predict.html) are shown below.

Predict-Link: http://fiddle.ee.vt.edu/succeed/, p=0.992; d=0; sz=13262

Potentially pre-fetch the document at URI /fiddle.ee.vt.edu/succeed/. This has

a high prediction value, so most clients will pre-fetch this document.

111

Predict-Link: ftp:index.html, p=0.032
Get the document, via FTP, at URI /fiddle.ee.vt.edu/~dlee/thesis/index.html.

This has a low prediction value so most clients would not pre-fetch this document.

It is recommended that implementations send the depth parameter used in the prediction,
since server implementations may not support the requested client depth. Also note that a
prediction value of 0.000 may be sent indicating the existence of an URI and the client

may still choose to retrieve that document.

112

4.0 Concluding Remarks

This work is part of M.S. thesis work at Virginia Tech [6]. It is an experimental
specification that appears to provide for response time reductions and fairly high cache

hit ratios.

113

5.0 Security

This RFC does not deal with security considerations.

114

6.0 References

[1]

(2]

[3]

[4]

T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext Transfer Protocol -
HTTP/1.0,” Massachusetts Institute of Technology, Internet-Draft, October 1995.
This is a working draft. Available at

ftp://ds.internic.net/internet-drafts/draft-ietf-http-v10-spec-04.txt.

R. Fielding, H. Frystyk, and T. Berners-Lee, “Hypertext Transport Protocol -
HTTP/1.1,” Internet-Draft, University of California, Irvine, November 1995. This
is a working draft. Available at http://ds.internic.net/internet-drafts/draft-ietf-

http-v11-spec-00.txt.

A. Luotonen and K. Altis, “World-Wide Web Proxies,” Electronic Proceedings,
Proc. of the First International World-Wide Web Conf., 1994,

http://www1.cern.ch/PapersW\WW94/|luotonen.ps (February 1996).

M. Abrams, C.R. Standridge, G. Abdulla, S. Williams, and E.A. Fox, “Caching

Proxies: Limitations and Potentials,” 7R 95-12, Department of Computer Science,

Virginia Polytechnic Institute and State University, July 1995.

115

[5]

[6]

[6]

[7]

[8]

S. Glassman, "A caching relay for the World-Wide Web," Proc. of the First
International World-Wide Web Conf., Amsterdam: Elsevier, pp. 69-76, October

1994. Also available at http://www1.cern.ch/PapersWWW94/steveg.ps.

D.C. Lee, “Improving User Response Time for the World-Wide Web Using
Pre-Fetch Data Caching,” Master's Thesis, Virginia Polytechnic Institute and
State University, 1996. Available at

http://fiddle.ee.vt.edu/~dlee/thesis/text.ps.

T. Berners-Lee, L. Masinter, and M. McCahill, "Uniform Resource Locators
(URL)," RFC-1738, CERN, Xerox Corp., University of Minnesota, December

1994. Available at ftp://ds.internic.net/rfc/rfc1738.txt.

R. Fielding, "Relative Uniform Resource Locators,", RFC-1808, University of
California, Irvine, June 1995. Available at ftp://ds.internic.net/rfc/rfc1808.txt.
D.M. Kiristol, "A Proposed Extension Mechanism for HTTP," Internet-Draft,
AT&T Bell Labs, January 1995. This is a working draft. Available at

ftp://ds.internic.net/internet-drafts/draft-kristol-http-extensions-00.txt.

116

7.0 Author's Addresses

David C. Lee

EE Graduate Student

Bradley Department of Electrical Engineering
347 Whittemore Hall

Blacksburg, Virginia 24061-0111

EMAIL: dlee@vt.edu

PHONE: (540) 231-8398

Dr. Scott F. Midkiff

Associate Professor

Bradley Department of Electrical Engineering
340 Whittemore Hall

Blacksburg, Virginia 24061-0111

EMAIL: midkiff@vt.edu

PHONE: (540) 231-5190

117

Appendix B. HTTP Redundancy Analysis

Redundancy in the HTTP protocol is frequently cited as an undesirable feature of HTTP
[34-37]. A “back of the envelope” calculation of typical overhead is provided here. The
values represent those collected from analysis (see Appendix C) of what seem to be the
most common server and browser available, NCSA’s hffpd server and Netscape
Navigator’s browser [26, 27]. Note that the overhead of HTTP, as indicated by the

characterization in Appendix C, is approximately two percent.

The average header size, including the client request and server response, as well as the
average request length, is approximately 250 bytes. There are a number of (typically)
required items, and these are the length of the data being transmitted, the modification
date, the server response code, the type of request being made, and the request length. A

conversion to binary, for the best compression, leads to the following.

e length—4 bytes

e modification date — 4 bytes
e response code — 2 bytes

e request type — 1 byte

e request length — approximately 25 bytes on average

118

This results in 36 bytes of required data rather then the approximately 250 bytes needed
by the current protocol. The percentage of unnecessary data transferred is calculated as

follows.

1 - —— = 86% (Equation 1)

This comparison assumes that an infinite (very large) number of requests are made to
eliminate the effects of the necessary protocol negotiation. This is not an accurate
assumption, especially considering that this would be at least ten’s of bytes for a
responsive stateful protocol. This assumption biases the comparison in favor of the
"new" stateful protocol over HTTP 1.0/1.1. With compression of the textual headers and
inclusion of transactions per session, overhead is moved to the session rather than
document access transaction. Session overhead can be significant, since a casual
examination of our servers indicates that most users request under ten documents per

session.

119

Appendix C. Web Characterization

The following is a draft paper that is included to provide additional details about the
characteristics of Web documents and traffic. There may be a more current document

available than the draft presented here.

The draft paper has been reformatted to fit thesis constraints.

120

World-Wide Web Characterization Study

David C. Lee Scott F. Midkiff
dlee(@vt.edu midkiffl@vt.edu
(540) 231-8398 (540) 231-5190

Virginia Polytechnic Institute and State University
The Bradley Department of Electrical Engineering

Blacksburg, Virginia 24061-0111

Abstract

This paper provides a simple characterization of the World-Wide Web in terms of
average document sizes, average transmission times, character frequencies, Hypertext
Transport Protocol header sizes, basic document type frequencies, and server product
frequencies. The method used to obtain the data was to recursively obtain and collect
statistical information on the documents referenced by the www.yahoo.com Web
document database. In the study, 15,000 nodes were visited with an average of six or
more documents retrieved per node. The results may be of use to researchers studying

methods to improve the Web or developers of client/server applications for the Web.

121

Introduction

This paper presents a characteristic study of the World-Wide Web, or the Web. These
characteristics include the average size of Web documents, image, and other data types,
the number of references in an average Web document, the average connection times, the
server product types and frequencies, the transmitted data character frequencies, and so
forth. Note that a high variance in the averages exists. Additionally, the Web is still ina
explosive growth stage which means that the presented statistics may change significantly

in the future.

The basic study was performed by recursively retrieving Web documents linked to by the
www.yahoo.com Web document database. This work was originally conducted as
preliminary research for a MS Thesis examining Web pre-fetch catching schemes [1].

Some key results of the study are as follows.

e NCSA httpd [2] was the most common server (43.2 percent of total surveyed hosts),
o Hypertext Markup Language (HTML) [3] and inline images compose most of the
documents surveyed, with 83.4 percent of total documents; however, these two

document types only comprise 40.3 percent of total bytes,

122

e an average of 19.1 links (including inline images) per HTML document with 4.2
inline images per HTML document,
e and the average URL size (not including the protocol, server port, and server host

name) was 21.4 characters.
Experimental Setup

A recursive automated web browser, StatFetcher, was developed to gather data for the
study. The Web browser included a simple Hypertext Transport Protocol (HTTP) [4]
implementation, a HTML [3] parser module, and recuréive control logic. The operation
of the browser amounted to retrieving a document, extracting all the link references,
retrieving the new documents, and so forth. A hard limit on the number of recursion
levels could be specified by the researcher. A recursion level is the number of documents
away from the starting, or root, document. In the reported study, the maximum recursion

level was set at 15.

The protocol implementation conformed to HTTP version 1.0 [4]. The HTTP module
provided the document type identification based on the Content-Type headers and
document filename extensions when Content-Type headers were not available. Server
product information was obtained from the Server header line. Note that only server

product names were recorded and not specific version recursion information.

123

StatFetcher sent headers as shown in Table 1. The C programming language "%s"
notation indicates where the Uniform Resource Locator (URL) [5] path reference was
placed. From our observations, StatFetcher headers were roughly 200 to 1000 bytes
shorter than typical browser headers. Character frequencies do not include the User-

Agent header but otherwise include the client and server headers.

Table 1. StatFetcher HTTP Headers

GET %s HTTP/1.0<CR><LF>

Accept: */*<CR><LF>

User-Agent: StatFetcher/2.00<CR><LF>
<CR><LF>

A special HTML parser was built to parse the HTTP references encoded in the href, img,
and applet elements. These elements represent document links, in-line images, and Web
Java-based [6] applet applications. Relative URL references [7] were followed based on
the URL of the current document. The parser ignored all other HTML elements and
non-HTTP references and makes some attempts to correct HTML errors. Errors not
corrected resulted in failed connections or HTTP non-200 response warnings. The
HTTP-based links were retrieved in the order extracted, unless the recursion depth limit

was reached. If the depth limit was reached, no links for the document would be

124

retrieved. It is important to note that no special timeout provisions were imposed by the

software itself; timeouts were handled by the underlying operating system.

The first link that StatFetcher retrieved was the root index document of the Yahoo
database, at the URL http://www.yahoo.com/. The Yahoo database is organized in a
hierarchical fashion which supports the recursive nature of the study. The documents in

Yahoo were included in the data obtained.

Some hosts and file types were deliberately excluded from the study. The exclusions
were hosts with large Web document databases, references to Common Gateway
Interface (CGI) based scripts [8], and references to HTTP search queries. As defined in

HTTP 1.0, the search queries are URL’s which contained a question mark (“?”).

Accurate detection of duplicate HTML documents is important since a large number of
duplicate documents can substantially skew the characterization. Originally, the
duplicate detection method was straight-forward. The entire path and host information
were stored and compared. This resulted in large disk space requirements and substantial
search times as the data set grew in size. Currently, four items are recorded along with
the host address and server port information. These include two CRC-16 values and a
simple checksum that are calculated over the URL path reference. The CRC-16 generator

polynomials are as follows.

125

16, 12, .5
X +x°+x +1

<+ xP P+

The last item stored is the last ten characters of the URL path reference. All four values,
as well as the host address and port number, must match in order for the URL to be
considered a duplicate. This substantially reduces the data storage requirements while
providing no false negatives, or no missed detection of duplicates, for hosts that are not
multi-homed. That is, hosts that have more than one IP address for the server may have
some duplicate documents recorded in the results. The number of such occurrences
should be very low. Note that there is a chance that false positives, or inaccurate (false)
detection of duplicates, may result. From a casual examination of the logging output,
very few, if any, false positives resulted. Even if false positives occurred, they should not

skew the statistics any more than a failed connection would.

Experimental Results

StatFetcher was run on a Sun Microsystems Sparc 5 running the Solaris 2.4 operating

system. The 10-Base-T Ethernet network in the Virginia Tech Information Systems

Center 475 Whittemore Hall Laboratory was connected, through the campus FDDI

126

backbone, to the Internet via a T2 line. The data used to for these results are available on

the Web at the following URL.

http://fiddle.ee.vt.edu/~dlee/thesis/webstudy/v2.00/run2.html

The study period lasted a total of 23 days, from January 16, 1996 at 9:20 AM to February
8, 1996 at 11:00 PM. It resulted in 167.8 hours, or approximately 7 days, of successful
data transfers. The study included weekend and weekday hours. Several scheduled local
network and electrical outages occurred during the study period. These outages resulted
in temporary suspension of the data gathering process. Additionally, at least two
observed partial 20-30 minute (non-local) backbone outages were observed during the
study period. The data gathering process was not suspended during any non-local

(observed or not observed) backbone outages.

A total of 15,000 Web servers were visited with 98,371 documents retrieved. This
resulted in an average of 6.6 documents retrieved per server. A enforced limit of 50
documents per server was used and a specified maximum of 15,000 nodes could be
visited. Potentially, 220,757 documents could have been retrieved. A total of 76,779, or
34.7 percent, of the potential documents were found to be duplicates. A total of 5,636, or

2.6 percent, of the attempts resulted in unsuccessful connection errors or non-HTTP

127

protocols. A total of 76,669, or 34.7 percent, of the potential requests were not made

because more than 50 documents per server would have been retrieved.

The study contained a total of 4,165 clearly non-US hosts. Non-US hosts were defined as
hosts that did not have a gov, mil, net, com, edu, or us domain and the recorded address

was not a numerical IP address.

Of the successful requests, 1,295 responses were incorrect or resulted in an unexpected
connection terminated. A total of 14,490 returned documents were the result of
unsuccessful (non-200 HTTP response code) attempts. A non-200 response code
typically means that the document specified was not available or incorrect. These errors
are most probably the result of document maintenance oversights by the document
author. 10,939, or 75.5%, of these non-200 response errors resulted in warning HTML
documents generated by the server. These warning documents were recorded in the

study’s data set.

A total of 1.2 gigabytes of data was transferred over the network. The data included two
percent of overhead (25 megabytes) and approximately 1.2 gigabytes of documents.
Overhead data is defined to be HTTP headers. This is illustrated in Table 1. Note that
the overhead data may vary by a percent, depending on what type of browser is used.

Percentages given are percentages of total bytes transferred.

128

Table 2. Total Byte Overhead Breakdown of the Study

NUMBER OF BYTES
Total Bytes 1,226,973,794 (100.0%)
Total Document Bytes 1,201,989,482 (98.0%)
Total Header Bytes 24,984,312 (2.0%)
Total Request Header Bytes 8,097,710 (0.7%)
Total Response Header Bytes 16,886,602 (1.4%)

Note that a significant amount of variance was found in the following data. This was not
unexpected. Documents on the Web are of a variety of media and subject material and
are subject to high variance in content. All the average statistics presented meet the 95
percent confidence interval test and can be considered good statistics. Detailed statistical

information can be found at the URL mentioned above.

The average link capacity was determined to be 1,989.3 bytes per second. This relatively
low capacity results from both non-US hosts being in the survey and the increasingly
common severe congestion on the Internet. The average transfer time was 6.1 seconds
with 1.3 seconds spent performing the connection to the remote host. An average of 0.4

seconds, from the 1.3 seconds, was used for Domain Name Service lookups.

Reported connection time averages loosely supports the NCSA htipd development

group's testing of their HTTP 1.1 [9] Keep-Alive functionality. The NCSA developers

experienced a 33 percent improvement in time response by keeping the connection open

129

for multiple requests [10]. The data from the current study shows that the average
connection time is 21 percent. However, the data collected from previous studies
correlated well with the NCSA testing. These previous studies showed that the average

connection time was approximately 30 percent.

One specific HTML document characteristic that may be of interest is that an average
document has 19.1 links referring to other documents. Inline images were 22 percent (4.2
links) of the references and 0.01 links, or 0.1 percent, referred applet documents. The rest
of the references were to other documents types. The average URL request size, not

including the host, port, and protocol type, was 21.4 characters.

Table 2 provides average breakdown of files by document type and Table 3 provides the
average breakdown by file sizes by document type. The first column, in both tables, lists
the document type and, in parenthesis and where applicable, the general HTTP Content-
Type is given. The second column provides the total files and bytes for Table 3 and 4,
respectively. The third column in Table 4 presents average file size information.

Percentages given are the percentages of total number of files or bytes transferred.

The row entitled “HTTP non-200 responses code HTML responses” indicate HTML

documents that were received from a server in response to a incorrect HTTP request.

Inline images are images (GIF, JPEG, or any other image format) retrieved that are

130

referenced within a document through the HTML IMG language element. All other
images are images retrieved that are referenced through the HTML REF anchor
elements. Inline images are rendered by a browser with the document it is referred to by
whereas other images will be displayed as a separated document. Note that the numbers
for Virtual Reality Modeling Language (VRML) [11] and applet documents may be
somewhat deceiving since several VRML and Java “how-to” Web sites were included in
the study. These “how-to” sites typically have large collections of example documents.
The last table entry, “other document types,” merely indicates that all other document

types are included in this designation.

Table 3. Total File Characteristics of the Study

DOCUMENT TYPE NUMBER OF
FILES

Total number of files transferred 98,371 (100.0%)
HTML (text/html) 61,141 (62.2%)
VRML (text/vrml) 317 (0.3%)
HTTP non-200 response code HTML 10,939 (11.1%)
responses

Other text types (text/*) 2,310 (2.3%)
Inline images (image/*) 20,823 (21.2%)
Non-inline images (image/*) 1,354 (1.4%)
Video (video/*) 108 (0.1%)
Audio (audio/*) 155 (0.2%)
Applets 375 (0.4%)
PDF (*/pdf) 37 (0.0%)
Postscript (*/postscript) 260 (0.3%)
Other document types (*/*) 550 (0.6%)

131

Table 3 shows that the categories of document types is fairly complete. From
observations during the study run, most of the documents in the “other” category were
miscellaneous binary documents such as programs and word processing documents.
HTML documents and associated inline images are the predominate document types in
the survey. The HTTP HTML responses can be discarded for the most part since they
represent error conditions that occurred. These error responses were probably mostly due

to errors in the source documents.

Table 4. Total Byte Characteristics of the Study

DOCUMENT TYPE NUMBER OF BYTES | AVERAGE
SIZE
Total number of bytes 1,201,989,482 (100.0%) 12,218.9
transferred
HTML (text/html) 364,533,244 (30.3%) 5,962.2
VRML (text/vrml) 61,797,666 (5.1%) 194,945.2
HTTP non-200 response 2,575,757 (0.2%) 235.5
code HTML responses
Other text types (text/*) 95,907,511 (8.0%) 41,5184
Inline images (image/*) 120,660,770 (10.0%) 5,794.6
Non-inline images 126,778,299 (10.5%) 93,9324
(image/*)
Video (video/*) 124,947,374 (10.4%) | 1,156,920.1
Audio (audio/*) 27,543,109 (2.3%) 177,697.5
Applets 850,458 (0.1%) 2,267.9
PDF (*/pdf) 17,068,472 (1.4%) 461,310.1
Postscript (*/postscript) 70,975,825 (5.9%) 272,983.9
Other document types (*/*) 188,350,997 (15.7%) 342,456.4

132

Table 4 provides a contrast for the information presented in Table 3. As can be seen from
Table 4, HTML and inline image documents are typically short and only account for a
combined 40.3 percent of total bytes transferred. Other document types are, on average,

significantly larger, except the applet document type.

A total of 164 different server products were encountered in the study. Note that the
original design of the study did not anticipate more than one Web server per host.
StatFetcher did record hosts with multiple different servers but may not have keep
entirely accurate totals for each server type. The margin of error should be insignificant.
The numbers presented in Table 5 should be fairly close to what was actually discovered
in the study. Table 5 presents the top ten server products that were encountered in the

study.

Table 5. Top Ten Server Products Encountered in the Study

SERVER NAME NUMBER OF HOSTS
(out of 15,000)
1. NCSA httpd Server 6,474 (43.2%)
2. Apache 2,097 (14.0%)
3. CERN 1,995 (11.6%)
4. Netscape Communications Server' 1,011 (7.0%)
5. Netscape Commerce Server” 880 (5.8%)
6. WebStar 522 (3.5%)
7. WebSite 343 (2.3%)
8. MAC HTTP 219 (1.5%)
9. HTTPS 215 (1.4%)
10. No server specified 111 (0.7%)

"This total includes both the Netscape Communications Server and the Netsite Server.
*This total includes both the Netscape Commerce Server and the Netsite Commerce server.

133

Character frequencies for each of the document types were also obtained. The character
frequencies counted the occurrences of each different 8-bit binary combination in the
transmitted data stream. These frequencies are available at the URL provided in the

beginning of this section.

Conclusions

The indications from this characterization is that overhead induced by connection time is
more significant (21 percent) that those induced by HTTP headers (two percent). With
the introduction and potentially wide-spread use of the HTTP 1.1 Keep-Alive header,
HTTP headers themselves will become the most obvious reducible overhead. From a
casual observation of the recent World-Wide Web related Internet Drafts, HTTP headers
seem to be continuously expanding. Reducing the header overhead is one of the goals of

the HTTP-NG effort [12].

Text-based HTML documents are the predominate document type with 62.2 percent of
total documents and 30.3 percent of total bytes. All text document types comprise of
75.9 percent of total documents and 43.6 percent of total bytes. Implementation of
simple on-the-fly compression schemes may reduce the size of an average text document

by 40 to 70 percent [13]. Performing compression on text alone would provide a

134

significant data reduction for the Internet. Compressing other document types may also

provide a tremendous increase in capacity for the Internet.

The Web characteristics presented in this paper will undoubtedly change over time.
Considering that the Web begun to dominate the NSFNET backbone traffic in April 1995
[14], the results discussed may help researchers curtail the rapid growth in Web network

traffic.

References

[1] D.C. Lee, “Pre-Fetch Document Caching to Improve World-Wide Web User
Response Time”, Master's Thesis, Virginia Polytechnic Institute and State
University, March 1996. Available at

http://fiddle.ee.vt.edu/~dlee/thesis/text.ps.

[2] NCSA Software Development Group, Aftpd, Version 1.5a, 1996. Available at

ftp://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/httpd_1.5a.

[3] T. Berners-Lee and D. Connolly, "Hypertext Markup Language: A Representation

of Textual Information and Metainformation for Retrieval and Interchange,

135

Version 2," RFC-1866, CERN, November 1995. Available at

ftp://ds.internic.net/rfc/rfc1866.txt.

[4] T. Berners-Lee, R. Fielding, and H. Frystyk, "Hypertext Transfer Protocol -
HTTP/1.0," MIT/LCS, Internet-Draft, October 1995. This is a working draft.
Available at

ftp://ds.internic.net/internet-drafts/draft-ietf-http-v10-spec-04.ixt.

[5] T. Berners-Lee, "Universal Resource Identifiers in WWW: A Unifying Syntax for
the Expression of Names and Address of Objects on the Network as used in the
World Wide Web," RFC-1630, CERN, June 1994. Available at

ftp://ds.internic.net/rfc/rfc1630.txt.

[6] Sun Microsystems Computer Corp., “The Java Language Specification, Version

1.0 Beta,” October 1995.

[7] R. Fielding, "Relative Uniform Resource Locators," RFC-1808, UC Irvine, June

1995. Available at ftp://ds.internic.net/rfc/rfc1808.txt.

[8] NCSA Software Development Group, “The Common Gateway Interface,”

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html (January 1996).

136

[9] R. Fielding, H. Frystyk, and T. Berners-Lee, “Hypertext Transport Protocol -
HTTP/1.1,” Internet-Draft, UCI, November 1995. This is a working draft.
Available at http://ds.internic.net/internet-drafts/draft-ietf-http-v11-spec-

00.txt.

[9] NCSA httpd Server Development Team, “Features of NCSA HTTPD 1.5,”

http://hoohoo.ncsa.uiuc.edu/docs/features-1.5.htmi#KeepAlive (January

1996).

[11] G. Bell, A. Parisi, and M. Pesce, “The Virtual Reality Modeling Language,
Version 1.0 Specification,” Web document, May 1995,

http://vrml.wired.com/vrml-tech/vrml|10-3.html (August 1995).

[12] S.E. Spero, "Next Generation Hypertext Transport Protocol," UNC, Internet

Draft, March 1995. This is a working draft. Available at

http://sunsite.unc.edu/ses/ng-notes.txt.

[13] T.C.Bell, J.G. Cleary, and [.H. Witten, Text Compression, Englewood Cliffs:

Prentice Hall, 1990.

137

[14] J.E. Pitkow, "GVU Center NSFNET Statistics," Georgia Institute of Technology
Graphics, Visualization, and Usability Center,

http://www.cc.gatech.edu/gvu/stats/NSF/merit.html (August 1995).

138

Appendix D. Experimental Results

This appendix presents experimental results. Table 5 contains the parameters, or factors,
and their settings. The first column is the designated identifier for each setting. The row
labeled AVERAGE is the average for all 16 settings. The row labeled linkonly is the

data set associated with document link pre-fetching where each link is effectively given

an equal access probability.

Table 5. Experimental Results Factors

Designation |Depth |Bandwidth|Channel |Cache Size
0000 0 1000 2 50
0001 0 1000 2] 1000
0010 0 1000 9 50
0011 0 1000 9 1000
0100 0 0 2 50
0101 0 0 2 1000
0110 0 0 9 50
0111 0 0 9 1000
1000 10 1000 2 50
1001 10 1000 2 1000
1010 10 1000 9 50
1011 10 1000 9 1000
1100 10 0 2 50
1101 10 0 2 1000
1110 10 0 9 50
1111 10 0 9 1000
AVERAGE N/A |N/A N/A N/A

linkonly 10 0 9 1000

139

Table 6 shows the hit ratio results. Hit Ratio (column two) is composed of Partial and
Prefetch (columns three and four, respectively) and indicates all pre-fetch cache hits.
Partial (column three) represents partial pre-fetch cache hits, i.e., hits where the
requested document was being pre-fetched at the time of the user request. Prefetch
(column four) represents completely pre-fetched documents. Total Hit Ratio (column
6) is the combination Hit Ratio and Partial (columns 2 and 3) of Temp and Hit Ratio
(columns 4 and 5, respectively). It represents the total cache hit ratio for all caches.

Temp (column 5) represents the post-cache (temporary cache) hit rates.

Table 6. Hit Ratio Results

Designation [Hit Ratio |Partial Prefetch |Temp Total Hit Ratio
0000 0.431 0.282 0.453 0.26 0.713
0001 0.502 0.162 0.401 0.263 0.664
0010 0.477 0.355 0.382 0.263 0.832
0011 0.665 0.068 0.471 0.263 0.733
0100 0.45 0.203 0.392 0.262 0.653
0101 0.49 0.123 0.35 0.263 0.613
0110 0.59 0.13 0.457 0.263 0.72
0111 0.625 0.091 0.454 0.263 0.716
1000 0.417 0.247 0.401 0.263 0.664
1001 0.608 0.162 0.507 0.263 0.77
1010 0.494 0.182 0.414 0.263 0.676
1011 0.813 0.067 0.617 0.263 0.88
1100 0.42 0.134 0.292 0.262 0.554
1101 0.461 0.097 0.296 0.263 0.558
1110 0.517 0.079 0.333 0.263 0.596
7111 0.622 0.072 0.432 0.262 0.694
AVERAGE 0.536 0.142 0.416 0.262 0.678
linkonly 0.602 0.058 0.398 0.263 0.66

140

Table 7 presents user response time results. The effective response time (column two) is
user response time with pre-fetch caching. The control response time (column three) is

the response time without any pre-fetch caching but with temporary (post) caching. The
ERT/CRT column indicates the ratio of effective response time versus control response

time. This ratio indicates the performance improvement (for values less than 1) or

degradation (for values greater than 1).

Table 7. Response Time Results

Designation |Effective RT |Control RT |[ERT/CRT
0000 8.078 11.193 0.722
0001 8.58 11.082 0.774
0010 5.225 11.088 0.471
0011 7.94 11.079 0.717
0100 0.487 0.35 1.391
0101 0.418 0.345 1.212
0110 0.579 0.349 1.659
0111 0.357 0.344 1.038
1000 9.275 11.074 0.838
1001 5.117 11.077 0.462
1010 6.184 11.079 0.558
1011 3.884 11.078 0.351
1100 0.579 0.336 1.723
1101 0.961 0.343 2.802
1110 15.911 0.346| 45.986
1111 0.997 0.354 2.816
AVERAGE 4.661 5.72 0.815
linkonly 0.462 0.354 1.305

Table 8 presents results that characterize the cache insertion and deletion algorithm. The

second column indicates the average total number of files retrieved, the third column

141

provides the average number of unnecessary files retrieved, and the fourth column reports
the average number of files that were deleted. The average number of files that an user
viewed is given in column five. This includes all requests, including post-cache hits.
Columns six and seven provide the percentage of unnecessary and deleted files, as
compared to total number of files retrieved, respectively. Negative values of unnecessary

files are not errors. Negative values result because of post-cache hits.

Table 8. Transfer Results Based on Files

Designaton |Total Files (Unnec. Deleted |Total Used|% Unnec. |% Del.

0000 38.8 1.4 14.367 27.4 0.294 0.370
0001 26.4 -1 0 27.4 -0.038 0.000
0010 47.333 19.933 26.333 27.4 0.421 0.556
0011 26.4 -1 0 27.4 -0.038 0.000
0100 39.733 12.333 14.933 27.4 0.310 0.376
0101 27.967 0.567 0 274 0.020 0.000
0110 43.267 15.867 16.7 27.4 0.367 0.386
0111 26.5 -0.9 0 27.4 -0.034 0.000
1000 63.367 35.967 37.3 27.4 0.568 0.589
1001 69.067 41.667 0 27.4 0.603 0.000
1010 693.033| 665.633 661.3 27.4 0.960 0.954
1011 152.7 125.3 43.3 274 0.821 0.284
1100 71.833 44.433 43.567 274 0.619 0.607
1101 325.667| 298.267| 282.967 274 0.916 0.869
1110 937.4 910| 908.467 274 0.971 0.969
1111 154.433| 127.033 86.067 27.4 0.823 0.557
AVERAGE 171.494| 144.094| 133.456 27.4 0.840 0.778
linkonly 40.767 13.367 0.067 27.4 0.328 0.002

142

Table 9 presents the same type of information as Table 8, except that the average values
here are the bytes sent and received. Column two shows the average total bytes in the

cache upon experiment termination, which is related to the other columns as follows.

Total Bytes = Cache - Deleted + User R/'W (Equation 2)

The variable named Cache consists of the values in column six, Deleted represents values
in column seven, and User R/W represents the values in column five. Column three
shows the average total number of user bytes read from the network to service user trace
requests, including HTTP headers. Column four indicates the average bytes written
(HTTP requests) to service user trace requests. Column five, User R/W, is composed of
column three and four. Column six shows the average number of bytes read from the
cache to fulfill user requests, and the last column, number seven, provides the average

number of bytes deleted from the cache.

143

Table 9. Transfer Results Based on Bytes

Designation| T otal Bytes |User Read [User Write [User R/W |Cache Deleted

0000 494862.16] 401629.84 4184.3| 405814.1]| 280845.6| 197367.
0001 351314.44] 421294.13 4259.7| 425553.8| 235017.1 0
0010 559837.25] 285640.94 3676.5| 289317.4| 171708.9| 373989.4
0011 350958.91 421355 4250.7| 425614.7| 246008.8 0
0100 509929.72| 403060.19 4193.7| 407253.9] 280882.3] 208224.1
0101 364446.28 421355 4259.7| 425614.7] 247663 0
0110 591799.75] 421486.56 4254| 425740.6] 249880| 271071.5
0111 352095.28 406164 4178.1| 410342.1] 227073 .4 0
1000 774823.31| 413738.78 42322 417971] 254445.9| 447729.1
1001 741842.88| 421361.59 4259.7| 425621.3| 328933.8 0
1010 6362063| 256249.14 3509.4| 259758.5] 139551.6] 6185431
1011 2581541.5| 421361.59 4259.7| 425621.3| 360430.7| 1456403
7100 861862.56| 418312.47 4248.7| 422561.2| 222594.1| 522772.3
1101 13514172] 421361.59 4259.7| 425621.3| 225683.7| 12383788
1110 36674916| 419726.88 4244| 423970.9| 187567.3|36348184
1111 4757834.5| 420155.03 4254 5] 424409.5| 219655.3| 3517613
AVERAGE | 4365240.5| 398390.81 4158.35| 402549.2| 242371.3] 3869536
linkonly 1148856.9| 4124125 2839.8| 415252.3] 209178.1] 5599.867

144

Appendix E. Statistical Analysis of Results

This appendix provides the results from the SAS [54] analysis of the data presented in
Appendix D. SAS was set-up for multivariate factorial testing using its general linear

model. The classes are the four parameters, or factors, presented Section 6.1.2.

The first set of data is a comparison conducted using the average response time as the
dependent variable. The second set uses the cache hit ratios as the dependent variable.
The sources are the factors and combinations thereof. Low “Pr > F” values indicate high

correlation.

The SAS System
10:17 Thursday, September 7, 1995

General Linear Models Procedure
Class Level Information

Class Levels Values

SPEED 2 0 1000

DEPTH 2 0 10

CHANNEL 2 18

CACHESIZ 2 50000 1000000

Number of observations in data set = 480
General Linear Models Procedure

Dependent Variable: LNAVGTPR

Source DF Sum of Squares F vValue Pr > F
Model 15 822.82842227 352.99 0.0001
Error 464 72.10627688
Corrected Total 479 894.93469915
R-Square C.V. LNAVGTPR Mean
0.919428 46.59603 0.84601618
Source DF Type I SS F Value Pr > F
SPEED 1 495.40631065 3187.91 0.0001
DEPTH 1 30.71471665 197.65 0.0001
SPEED*DEPTH 1 78.06416719 502.34 0.0001
CHANNEL 1 9.52435374 61.29 0.0001
SPEED*CHANNEL 1 45.01046540 289.64 0.0001

145

DEPTH*CHANNEL
SPEED*DEPTH*CHANNEL
CACHESIZ
SPEED*CACHESIZ
DEPTH*CACHESIZ
SPEED*DEPTH*CACHESIZ
CHANNEL*CACHESIZ
SPEED*CHANNE*CACHESI
DEPTH*CHANNE*CACHESI
SPEE*DEPT*CHAN*CACHE

Source

SPEED

DEPTH

SPEED*DEPTH

CHANNEL
SPEED*CHANNEL
DEPTH*CHANNEL
SPEED*DEPTH*CHANNEL
CACHESIZ
SPEED*CACHESIZ
DEPTH*CACHESIZ
SPEED*DEPTH*CACHESIZ
CHANNEL*CACHESIZ
SPEED*CHANNE*CACHESI
DEPTH*CHANNE*CACHEST
SPEE*DEPT*CHAN*CACHE

Dependent Variable:
Source

Model

Erroxr

Corrected Total

R HRRBRRBRRPR

o
L

P RRPRRPRPRERPREBERRRMER

ISINPHIT

DF
15

464
479

R-Square
0.398193

Source

SPEED

DEPTH

SPEED*DEPTH

CHANNEL
SPEED*CHANNEL
DEPTH*CHANNEL
SPEED*DEPTH*CHANNEL
CACHESIZ
SPEED*CACHESIZ
DEPTH*CACHESIZ
SPEED*DEPTH*CACHESIZ
CHANNEL*CACHESIZ
SPEED*CHANNE*CACHEST
DEPTH*CHANNE*CACHESI
SPEE*DEPT*CHAN*CACHE

Source

SPEED

DEPTH

SPEED*DEPTH

CHANNEL
SPEED*CHANNEL
DEPTH*CHANNEL
SPEED*DEPTH*CHANNEL
CACHESIZ

g
RPRRERBRHEHRRRRERRBERPRRER RS

o
o]

HRRPRRRBP R

15

21.
21.

9
18
[¢]
15

31.

16

13.

.45734350
56645503
57468862
.01259006
.91349512
.00118912
.72123876
47647820
.88245261
50247763

Type III SS

495

30.
78.
9.

45
15

21.
21.

9

18.
0.

15

31.

16
13

Sum o
4
6
10

O Q00000000000 OR

.40631065
71471665
06416719
52435374
.01046540
.45734350
56645503
57468862
.01259006
91349512
00118912
.72123876
47647820
.88245261
.50247763

f Squares
.01190776
.06337754
.07528530

Cc.Vv.
26.19929

Type I SS
.02134018
.00166121
.71541797
.50746196
.11365920
.03549789
.03369737
.46813266
.23676751
.43433003
.05553879
.33524997
.03225647
.00324944
.01764709

Type III SS

OO0 0o 00 OoOR

.02134018
.00166121
.71541797
.50746196
.11365920
.03549789
.03369737
.46813266

146

99.47 0.0001
138.78 0.0001
138.83 0.0001

58.00 0.0001
121.71 0.0001

0.01 0.9303
101.17 0.0001
202.55 0.0001
108.64 0.0001

86.89 0.0001

F Value Pr > F
3187.91 0.0001
197.65 0.0001
502.34 0.0001

61.29 0.0001
289.64 0.0001

99.47 0.0001
138.78 0.0001
138.83 0.0001

58.00 0.0001
121.71 0.0001

0.01 0.9303
101.17 0.0001
202.55 0.0001
108.64 0.0001

86.89 0.0001

F Value Pr > F
20.47 0.0001

ISINPHIT Mean

0.43632369

F Value Pr > F
78.16 0.0001
0.13 0.7216
54 .75 0.0001
38.83 0.0001
8.70 0.0033
2.72 0.1000
2.58 0.1090
35.82 0.0001
18.12 0.0001
33.24 0.0001
4 .25 0.0398
25.66 0.0001
2.47 0.1168
0.25 0.6183
1.35 0.2458
F Value Pr > F
78.16 0.0001
0.13 0.7216
54.75 0.0001
38.83 0.0001
8.70 0.0033
2.72 0.1000
2.58 0.1090
35.82 0.0001

SPEED*CACHESIZ
DEPTH*CACHESIZ
SPEED*DEPTH*CACHESIZ
CHANNEL*CACHESIZ
SPEED*CHANNE*CACHESI
DEPTH*CHANNE*CACHESI
SPEE*DEPT*CHAN*CACHE

R R P RR R R
coooooo

.23676751
.43433003
.05553879
.33524997
.03225647
.00324944
.01764709

18
33

25

General Linear Models Procedure
Multivariate Analysis of Variance

Dependent Variable: LNAVGTPR

Source DF Type III SS
SPEED 1 495.40631065
DEPTH 1 30.71471665
SPEED*DEPTH 1 78.06416719
CHANNEL 1 9.52435374
SPEED*CHANNEL 1 45.01046540
DEPTH*CHANNEL 1 15.45734350
SPEED*DEPTH*CHANNEL 1 21.56645503
CACHESIZ 1 21.57468862
SPEED*CACHESIZ 1 9.01259006
DEPTH*CACHESIZ 1 18.91349512
SPEED*DEPTH*CACHESIZ 1 0.00118912
CHANNEL*CACHESIZ 1 15.72123876
SPEED*CHANNE*CACHESI 1 31.47647820
DEPTH*CHANNE*CACHESI 1 16.88245261
SPEE*DEPT*CHAN*CACHE 1 13.50247763
Exror 464 72.10627688
Dependent Variable: ISINPHIT
Source DF Type III SS
SPEED 1 1.02134018
DEPTH 1 0.00166121
SPEED*DEPTH 1 0.71541797
CHANNEL 1 0.50746196
SPEED*CHANNEL 1 0.11365920
DEPTH*CHANNEL 1 0.03549789
SPEED*DEPTH*CHANNEL 1 0.03369737
CACHESIZ 1 0.46813266
SPEED*CACHESIZ 1 0.23676751
DEPTH*CACHESIZ 1 0.43433003
SPEED*DEPTH*CACHESIZ 1 0.05553879
CHANNEL*CACHESIZ 1 0.33524997
SPEED*CHANNE*CACHESI 1 0.03225647
DEPTH*CHANNE*CACHESI 1 0.00324944
SPEE*DEPT*CHAN*CACHE 1 0.01764709
Error 464 6.06337754
Univariate Procedure
Variable=TPR
Moments

N 480 Sum Wgts

Mean 0 Sum

Std Dev 0.387988 Variance

Skewness 0.466422 Kurtosis

uss 72.10628 CSS

cv Std Mean

147

.12
.24
.25
.66
.47
.25
.35

F Value

3187
197
502

61
289
99

138.
138.

58.
121.

0

101.

202
108

86.

.91
.65
.34
.29
.64
.47
78
83
00
71
.01
17
.55
.64
89

F Value

78.

54

38.

35.
18.

33

25

16
.13
.75
83
.70
.72
.58
82
12
.24
.25
.66
.47
.25
.35

480

0

0.150535
1.450105
72.10628
0.017709

OO0 000 o0Oo

.0001
.0001
.0398
.0001
.1168
.6183
.2458

Pr > F

OO0 O0O0O0O00O0OO0O0OO0OO0O0OO0o

.0001
.7216
.0001
.0001
.0033
.1000
.1090
.0001
.0001
.0001
.0398
.0001
.1168
.6183
.2458

T:Mean=0 0 Pr>|T| 1.0000

N

Num "= 0 480 Num > O 223
M(Sign) -17 Pr>=|M| 0.1319
Sgn Rank -2976 Pr>=|S| 0.3282
W:Normal 0.963439 Pr<W 0.0001
Quantiles (Def=5)
100% Max 1.634591 99% 1.121395
75% Q3 0.189334 95% 0.663361
50% Med -0.0135 90% 0.458253
25% Q1 -0.22463 10% -0.40732
0% Min -1.08543 5% -0.60457
1% -0.90846
Range 2.720022
Q3-01 0.413959
Mode -0.347
Extremes
Lowest Obs Highest Obs
-1.08543(237) 1.121395¢(157)
-1.03674(472) 1.122744(136)
-0.98898(427) 1.140475(129)
-0.91856(415) 1.300455(139)
-0.90846 (226) 1.634591(287)
Variable=TPR
Histogram # Boxplot
1.7+* 1 *
.* 1 0
’*** '7 O
_**** lo 0
Lkkkkk 13 |
LRk ek oKk ko 27 |
0.3+******************* 56 |
Lk ok ok o ok ok ok ok ok e o e ok ok ok ok ok ok o o o ok ok e ok ok o ok o ok ok ok ok 108 [
_** 125 | S *
_**************************** 83 d————— +
Lkkk ok kok ko 25 |
K2 9 |
L kkkkk 13 0
-1.1+* 2 0
B e e

* may represent up to 3 counts

Normal Probability Plot

*

& kodek ok

FREE L+

Rlalal X
FrKhhk

+******
+*~k*****
% % ke ok ok ok ok
*odk ok okkok ok
****++
+4F kL
d*odekk ok hk

o
w
-_— ———— ¢t

148

-1.1+%*

it e e it S N e ittt
-2 -1 0 +1 +2
Variable=PHIT
Moments
N 480 Sum Wgts 480
Mean 0 Sum [0}
Std Dev 0.11251 Variance 0.012658
Skewness -0.37717 Kurtosis -0.09255
Uss 6.063378 CSS 6.063378
cv . Std Mean 0.005135
T:Mean=0 0 Pr>|T| 1.0000
Num *= 0 480 Num > 0 268
M(Sign) 28 Pr>=|M| 0.0120
Sgn Rank 3036 Pr>=|8| 0.3185
W:Normal 0.966162 Pr<W 0.0001
Quantiles (Def=5)
100% Max 0.261379 99% 0.228501
75% Q3 0.0723 95% 0.175108
50% Med 0.013937 90% 0.129272
25% Q1 -0.06974 10% -0.15514
0% Min -0.30618 5% -0.20183
1% -0.29606
Range 0.567563
Q3-Q1 0.142041
Mode 0.101619
Extremes
Lowest Obs Highest Obs
-0.30618(276) 0.228501(405)
-0.30618(275) 0.229979(406)
-0.30618(274) 0.261379(28)
-0.29606 (261) 0.261379(29)
-0.29606 (259) 0.261379(30)
Variable=PHIT
Histogram # Boxplot
0.275+% 3 |
EZ22Y 12 |
Lk k ok ko kk K 23 \
_*************** 43 i
_********************************* 97 m———— +
.****************************** 90 L S
—0.025 4k kkkddkhkdkkdokokkdkokohokokkk 72 | |
Uk kkkkkkkkhkkkkokk 48 Fo——— +
kkkkkkk Rk khok ok k ok 41 |
Lkkkkokkkk 23 |
Lk k kR ok 16 |
LEEE 9 0
-0.325+% 3 0
R ek et ST e el

* may represent up to 3 counts

149

Normal Probability Plot

0.275+ ++*
I R kk kK
| dokkokk
I JHkokokk
| e ok ok ok
| dedkokok kg
-0.025+ *k ok K
| *kkok
| Rk kk
| ph kKK
| SRR EKR
|+*****
-0.325+*
R i e e e e e e et e
-2 -1 0 +1 +2

150

VITA

David C. Lee was born on September 19, 1972. He graduated from Nitro High School in
1990 and finished his Bachelor of Science in Computer Engineering at Virginia Tech in
1994. He was a recipient of the Marshall Hahn Engineering Scholarship in 1990 and
worked as a Co-operative Education student with Lexmark International in Lexington,
Kentucky. He has been a Graduate Research Assistant with the Southeastern University

and College Coalition for Engineering EDucation (SUCCEED) since August 1994,

He has been a member of IEEE since January 1993, serving as Branch Chairman of the
[EEE Student Branch at Virginia Tech in May 1993 to August 1994. Additionally, he has
been a member of Eta Kappa Nu since January 1994. He was also President of the
Bradley Department of Electrical Engineering’s Student Advisory Council in August
1993 to May 1994. He has also served as the Student Representative for IEEE Region 3
since May 1994. He was award the 1993-1994 Larry K. Wilson IEEE Regional Student
Activities Award for Region 3 for his involvement in bringing the IEEE Region 3

Southeast Conference to Virginia Tech in 1997.

i

151

