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Abstract

functional impact types.

cause or are linked to cancer.

Background: Numerous tools have been developed to predict the fitness effects (i.e,, neutral, deleterious, or
beneficial) of genetic variants on corresponding proteins. However, prediction in terms of whether a variant causes
the variant bearing protein to lose the original function or gain new function is also needed for better understanding
of how the variant contributes to disease/cancer. To address this problem, the present work introduces and
computationally defines four types of functional outcome of a variant: gain, loss, switch, and conservation of function.
The deployment of multiple hidden Markov models is proposed to computationally classify mutations by the four

Results: The functional outcome is predicted for over a hundred thyroid stimulating hormone receptor (TSHR)
mutations, as well as cancer related mutations in oncogenes or tumor suppressor genes. The results show that the
proposed computational method is effective in fine grained prediction of the functional outcome of a mutation, and
can be used to help elucidate the molecular mechanism of disease/cancer causing mutations. The program is freely
available at http://bioinformatics.cs.vt.edu/zhanglab/HMMvar/download.php.

Conclusion: This work is the first to computationally define and predict functional impact of mutations, loss, switch,
gain, or conservation of function. These fine grained predictions can be especially useful for identifying mutations that

Keywords: Genetic variants, Functional outcome, Hidden Markov model

Background

Mutations contribute to human evolution and disease
development. Over 79 million genetic variants have been
identified in 2535 humans from 26 populations around
the world (the 1000 Genomes project, 06/2014). The sheer
enormity of the number of these variants poses a grave
challenge for researchers to empirically examine their
individual or collective phenotypic or pathological effects
and identify the ones that are important determinators
for phenotypes or diseases. Consequently, to help narrow
down target variants that may have phenotypic and/or
pathological effect, various computational tools (e.g.,
[1-6]) have been introduced to predict the effect of
genetic variants. Specifically, these tools provide either a
quantitative score indicating the degree of deleteriousness
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of the variant (e.g., [1-4]), or a qualitative statement of
whether the variant is deleterious or neutral (e.g., [7]).

However, none of the existing tools can provide fine
grained prediction on the likely cellular outcome of
mutations, such as gain, loss, switch, or conservation of
function. Biologically, loss of function (LoF) mutations
cause the gene product to have reduced activity or com-
plete loss of function; gain of function (GoF) mutations
change the gene product to have a new and possibly
abnormal function; switch of function (SoF) mutations
cause the gene product to switch from one set of functions
to another set of functions [8], and thus may involve both
loss of the original functions and gain of new functions;
conservation of function (CoF) mutations, coined in this
study, refer to mutations that are neutral and do not alter
gene functions. Figure 1 illustrates these definitions.

Fine grained prediction of the effect of mutations on
function has important applications in disease and can-
cer research. For instance, two important classes of genes,
oncogenes and tumor suppressor genes, when mutated,
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Fig. 1 The consequences of loss, switch, gain or conservation of function mutations (M). The normal gene is indicated by a blue box and the
mutated gene by an orange box. The original functions are represented by blue circles and the new functions by green circles

can both lead to cancer. However, the effects that muta-
tions have on these cancer causing genes are almost the
opposite. Mutations in oncogenes can keep the genes
stuck in a state of constant or increased activity. A proto-
oncogene converted into an oncogene generally involves
gain of function. For example, in the proto-oncogene
BRAF, there is a well-known gain of function mutation,
V600E, that replaces the amino acid valine (V) with
the amino acid glutamic acid (E) at position 600. The
V600E mutation enables a 500-fold increased activation in
BRAF, stimulating the constant activation of the mitogen-
activated protein kinase (MEK) signaling that leads to a
tumor cell [9]. This mutation has been found frequently in
the skin cancer melanoma [10]. Contrarily, mutations in a
tumor suppressor gene cause the gene to lose the ability to
prevent or “suppress” abnormal cells from developing into
full-blown tumors, and therefore are essentially loss of
function mutations. An example can be seen in PTEN, one
of the most commonly down-regulated tumor suppres-
sor genes in cancer genomes. Substitutions for some of its
important residues, such as D92 and H93, result in signifi-
cantly reduced PTEN function [11]. Therefore, identifying
different types of mutations in terms of functional impacts
helps understand the driven event and the identification
of novel targets, which is crucial for the development of
targeted disease and cancer therapeutics.

Earlier work addresses prediction of the functional type
of variants [12, 13] by trying to identify activating variants,

but none provides a precise computational definition for
all these classification types: loss, gain, switch, and conser-
vation of function. This work computationally classifies
genomic variants into four types on the basis of previous
work on functional effect prediction of genetic variants
using HMMvar [14], a method based on the principle
of evolutionary conservation and hidden Markov models
(HMMs). Multiple sequence alignment (MSA) captures
the evolutionary information within homology sequences.
Evolutionary analysis provides a powerful tool for pre-
dicting the functional impact of mutations. Presumptively,
a profile HMM built from the MSA is an implicit rep-
resentative of a set of functions of the protein family.
From each protein subfamily cluster, a HMM is built and
used to score the variants. Based on the “fitness” of a
sequence within a family or across subfamilies, differ-
ent types of mutations are defined. The loss of function
mutations weaken the fitness of the mutant type sequence
with the protein family, whereas the gain of function
mutations make the mutant type sequence fit better than
the wild type sequence in one of the subfamilies. The
switch of function mutation is a combination of loss of
function and gain of function, which causes the mutant
type sequence to lose functions from the original pro-
tein family but gain functions from other subfamilies.
Conservation of function means the mutation does not
cause any functional changes (see the Methods section for
details).
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Methods

Data Sources

111 thyroid stimulating hormone receptor (TSHR) muta-
tions (Additional file 1: Table S1) are extracted from
the TSH Receptor Mutation Database II [15]. They
are all nonsynonymous single nucleotide polymorphisms
(SNPs). 61 out of 111 are gain of function that constitu-
tionally activate the receptor independently of TSH; the
remaining 50 are loss of function that result in the loss of
TSH sensitivity.

Mutations on tumor protein p53 (TP53), a set of 2,565
SNP mutants (Additional file 1: Table S2), and corre-
sponding biological activity levels were obtained from
the database IARC TP53 [10]. The mutants were par-
titioned into four classes in terms of transactivity level:
nonfunctional, partially functional, functional (wildtype),
and supertrans (higher activity than wildtype) [11]. Trans-
activity level was measured by eight promoter-specific
activity levels and the classification was made in terms of
the median of these eight levels. Mutations are classified
as “nonfunctional” if the median is < 20, “partially func-
tional” if the median is > 20 and < 75, “functional” if the
median is > 75 and < 140, and “supertrans” if the median
is > 140.

For the epidermal growth factor receptor (EGFR) gene
and the proto-oncogene B-Raf (BRAF) gene, 124 activat-
ing mutations that are targeted by selective inhibitors to
inhibit only mutated genes [16] are evaluated (Additional
file 1: Table S3—-S4).

To validate HMMvar-func’s ability in predicting switch
of function, the four mutations in RAC1, PTPRD,
MAP2K4, and CDH1, identified by [8] to be likely “switch
of function” mutations, are examined.

Build multiple HMMvars

HMMvar [14] quantitatively predicts the functional
effects of variants. It builds a HMM based on the MSA of
a set of homologous sequences to the wild type sequence.
Then the wild type protein sequence and mutant type
protein sequence are matched against the HMM, respec-
tively. HMMvar provides a score to measure the fitness or
similarity between the sequence and the “protein family”
represented by the HMM. If the mutant type sequence fits
almost the same as the wild type sequence, the mutation
has little effect on the protein function. To identify differ-
ent types of mutations, a MSA of homologous sequences
is clustered and each cluster is viewed as a “subfamily’,
which captures specific functions. If a mutant sequence
fits better than the corresponding wild type sequence in
one of the “subfamilies’, then probably the variant enables
the protein to “acquire” new functions. With this assump-
tion, clustering the homologous sequences, including the
query sequence, identifies “subfamilies’, each of which

Page 3 0f 10

represents a functional profile. The detailed steps are
given below.

The pipeline is shown in Fig. 2. First, homologous
sequences to the wild type protein are identified by PSI-
BLAST [17] against the UniProt90 [18] database. Then
the homologous sequences are aligned by the multiple
sequence alignment algorithm MUSCLE [19] with param-
eters “-maxiters 1 -diags -sv -distancel kbit20_3" The
number of iterations (= 1) is specified by the “-maxiters”
option. The “-diags” option enables an optimization for
speed. The “-distancel” option specifies the distance mea-
sure. These options enable Muscle to run the fastest pos-
sible. To ensure the quality of the MSA, further processing
was performed. First, redundant sequences are removed.
If the identity percentage between the aligned positions
of any two sequences in the alignment exceeds a thresh-
old (95 %), the shorter sequence is discarded. Then low
quality columns (those with the number of gaps exceed-
ing a threshold (99 %)) are discarded. Given a variant,
a region of the MSA is selected by left and right exten-
sion from the position of the variant, keeping the query
sequence consecutive in the MSA. If the length of the
selected region of the MSA is less than 10 base pairs, more
extensions are continuously performed considering the
quality of the columns (e.g. the percentage of gaps is less
than 10 %). Finally, empty rows are removed (rows with all
gaps).

With the postprocessed MSA, the combinatorial
entropy optimization (CEO) algorithm [20] is used to per-
form the clustering. This algorithm minimizes the sum
of the difference between observed and expected entropy
across different clusters over all the positions in the MSA.
Minimizing the combinatorial entropy yields an opti-
mized partition of the MSA such that the columns are
conserved in a subfamily (cluster) but differ between sub-
families. For each of the clusters, a profile HMM is built,
which represents a “subfamily” of specific functions that
differ from those of the target cluster; then HMMvar can
be used to score the variants. Denote these “subfamilies”
by Co, C1, ..., Cx—1, where Cy is the target cluster that
contains the wild type sequence, and the corresponding
HMMs as Hy, Hy, ..., Hx_1. Only the clusters with size
greater than one are used for prediction in the pipeline.

Classification of mutations

The HMM in HMMyvar [14] is used to predict the degree
of harm in the variants and only one HMM is built
from the MSA of all the homologous sequences. In this
paper, multiple HMM:s are built for prediction, one HMM
for each of the k clusters. For a given variant v;, let
S (0 < m < k — 1) denote the quantitative HMM-
var score of variant v; obtained from H,,. Note that Hj
is the HMM built from the target group Cy where the
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Fig. 2 Flowchart of the classification procedure. The dashed line represents the wild type sequence
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Fig. 2), thus S? is the score of variant v; calculated from ! 14 e S0

H)j. Since the scores are sensitive to the clustering, a soft 4 = 1

classification is used. Given a variant v;, the probabil- L g e S

ity L? of losing the original functions from Cy and the 0. ) j
where S is the score calculated from Hy, S = min S,

1<j<k—1

probability A7 of acquiring new functions from C, are
and ¢ is the user defined cutoff. The logistic functions

defined by
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correspond to assuming that the logarithms of the odds
ratios for L? and A7 are linear in the threshold ¢. Then
from combinatorial probability, the confidence scores are
L% (1—AY), L% A%, (1 — LY x A%, and (1 — L?) * (1 — AY)
for loss of function (LoF), switch of function (SoF), gain
of function (GoF), and conservation of function (CoF),
respectively. The binary tree in Fig. 3 demonstrates how
the confidence score for different types is calculated. The
mutation type corresponding to the maximum probability
(confidence score) is taken as the predicted type. If there
is a tie for the maximum probability, the tie is broken by
the order LoF, SoF, CoF, GoF. For a given variant v; and
predefined cutoff¢, S? > t indicates that in the target “sub-
family’, the wild type sequence fits better than the mutant
type sequence, so there is a higher probability of losing
the original function. Further, if for the “subfamilies” x,
from which the minimum HMMvar score is calculated,
the wild type sequence fits better than the mutant type
sequence, then no new function is acquired and results in
LoF (L? > 0.5 and A7 < 0.5). Otherwise, v; is classified as
SoF (L? > 0.5and A7 > 0.5) with higher confidence score,
because although v; probably causes the protein loss of
function in subfamily Cy, v; obtains the specific function
in some C,,. On the other hand, if S? < t, the variant could
potentially cause gain of function. Then if the mutant type
sequence fits better in subfamily x (S} < ¢), which means
there exists at least one other “subfamily” that the mutant
type sequence fits better than the wild type sequence, the
variant v; is classified as GoF (L? < 0.5and A7 > 0.5) with
higher confidence score; otherwise, v; is classified with
CoF (L? < 0.5and A¥ < 0.5).

Results

Prediction of TSHR mutations

Thyroid-stimulating hormone (TSH, thyrotropin) and its
receptor TSHR together play a key role in controlling thy-
roid function. Mutations in TSHR can be loss of function
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or gain of function, leading to hypo or hyperthyroidism,
respectively. The discovery of large serial gain of function
mutations in TSHR is of great interest, revealing a new
disease mechanism of mutations that constantly increase
the basal activity of a receptor [21]. 111 TSHR mutations
were collected from the TSHR Mutation Database and
their functional outcomes predicted . Table 1 shows the
result. Prediction is not available for three of the vari-
ants because the bit scores calculated are not significant.
For the remaining 108 mutations, 61 are annotated by
the database as “gain of function’, 47 “loss of function”
HMMvar-func predicts 39 gain of function (GoF) muta-
tions, 25 loss of function (LoF), 42 switch of function
(SoF), and two conservation of function (CoF). As only
two types of mutations, LoF and GoF, are annotated by
the database, the predicted 25 LoF and 39 GoF mutations
are used to calculate the performance metrics. Figure 4
shows the ROC with respect to ¢ for HMMvar-func based
on CEO clustering. The best performance is achieved at
t = 2.7 with sensitivity 78.9 % (with respect to GoF),
specificity 65.4 %, and accuracy 73.4 %. The predicted
types with high confidence scores are more reliable, thus
it is reasonable to focus on these variants, which also
avoids the ambiguity of confidence score ties. Consider-
ing only the variants with the maximum confidence score
greater than 0.5 (33 in total, 18 GoF and 15 LoF), the
sensitivity (with respect to GoF), specificity, and accuracy
are 85.7 %, 68.2 %, and 76.7 %, respectively. The detailed
confidence scores are in Additional file 1: Table S1. The
CEO algorithm automatically determines the number of
clusters to minimize (locally) the combinatorial entropy
[20]. Due to the processing of the MSA, the MSA used
for the clustering step is a segment of the original MSA,
and this segment is possibly different for different vari-
ants. As a result, the number of clusters generated by the
CEO algorithm is not fixed for all the variants. The aver-
age number of clusters generated in this data set is 19 from

N (1-A

LoF SoF
0. X 0xp X
L (1-A) LA

Lose original
functions

Fig. 3 The probability combination rule to calculate the confidence score for the classification of mutations

Gain new
functions

N (1-A))
GoF CoF
(119 A X (119 (1-A%)
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Table 1 The confusion matrix of the prediction results for the
TSHR mutations. The rows correspond to the database
annotation, the columns the predicted categories

GoF LoF SoF CoF
GoF 30 8 23 0
LoF 9 17 19 2

162 sequences in the original MSA (excluding the clusters
with size one).

Two aspects of the HMMvar-func prediction method
merit investigation, the clustering method and the cutoff
score ¢t set in Fig. 4. The present work uses the CEO algo-
rithm suggested in [20]. The K-means clustering method,
used in previous work [22], is compared with the CEO
algorithm in Fig. 5 (k = 4). The K-means clustering is
extremely sensitive to the initial guesses, so 100 runs with
random initial guesses are performed to reduce this effect.
The number of clusters generated by the CEO method
is controlled to be the same as in the K-means cluster-
ing (k = 4) for a fair comparison. Figure 5 shows that
the CEO statistics are much better than what would be
expected from using K-means, but that the CEO clusters
are not optimal, and a lucky K-means clustering can do
much better than CEO.

The inner coherence of the clusters generated by CEO
and K-means is also compared in Table 2. The “median”
and “best” K-means are defined in terms of the median
and best accuracy shown in Fig. 5, respectively. The Dunn
index and Davies-Bouldin index are consistent with the
accuracy metrics. Better cluster quality corresponds to a
higher Dunn index and a lower Davies-Bouldin index.
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Fig. 4 Receiver operating curve (ROC) for prediction of TSHR
mutations. Receiver operating curve (ROC) for prediction of TSHR
mutations (sensitivity is with respect to GoF; the area under curve
(AUQ) is 0.613)

Page 6 of 10

0.7

0.5

0.4

T T T
specificity sensitivity accuracy

Fig. 5 The performance of HMMvar-func based on K-means
clustering or CEO clustering. (100 random initial guesses are
evaluated for K-means clustering on the TSHR data set with k=4 and
t=2:7.The red diamond points represent the corresponding
performance of the CEO clustering)

As expected, results here demonstrate that both the
clustering method and the cutoff score ¢ can affect the
prediction results, the better the cluster quality, the more
accurate the prediction. Since there is no consensus on
which clustering method works best, and clustering algo-
rithms can find only a locally optimal clustering, it is
advisable to perform multiple clusterings, and use only
the best (by Dunn index, e.g.) clusters for downstream
prediction.

Switch of function

The switch of function mutations reported in [8] are
tested. The R132H mutation in IDH1, shown experimen-
tally [23] to lead to loss of the original function but gain of
new function, essentially falls into the category of “switch
of function” defined in the current study, and is also
investigated here. As shown in Table 3, three mutations
(in PTPRD, MAP2K4, CDH1) are predicted as switch of
function with confidence score over 0.6. As an exam-
ple, Fig. 6 shows the tree generated by Jalview [24] from
the processed alignment of homologous sequences of the
MAP2K4 protein (trees for RAC1, PTPRD, and CDHI are
shown in Additional file 2: Figures S1-S3). The tree is

Table 2 The comparison of CEO and K-means

Dunn Davies-Bouldin Accuracy Sensitivity Specificity

CEO 0429 0.838 0.654 0.667 0.638
median K-means 0.378 0973 0.574 0.569 0.560
best K-means  0.513 0.839 0.679 0.742 0.600
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Table 3 Switch of function mutations
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Table 4 Prediction of oncogenic mutations

Gene Variant Predicted type Confidence score  Gene Total GoF SoF LoF CoF
RACT A95E SoF 0.548 EGFR 78 31 44 1 0
PTPRD R28Q SoF 0.728 BRAF 46 13 27 5 0
MAP2K4 Q142L SoF 0.800

CDH1 H233Q SoF 0.651

IDH1 R132H GoF 0533 Similarly, the two mutations in PTPRD and CDH1 are

built according to the average distance using BLOSUM®62
and based on sum of scores for the residue pairs at each
aligned position. The tree shows three clusters, Cig, Cas,
and Cp, with Cy being the target cluster. The minimum
score S7 is calculated from Cy9. According to the HMM-
var scores, C19 and Cyg are the potential subfamilies that
the protein MAP2K4 might switch to due to Q142L (not
all the potential subfamilies are listed). Q142L, a missense
mutation, has been identified as one of the major somatic
mutations in human lung cancer samples [25]. It is pre-
dicted to be “damaging” by SIFT [1]. However, another
commonly used programs PolyPhen-2 [2] predicts it as
“neutral” The HMMuvar-func prediction together with
[8] suggests an alternative hypothesis for the functional
impact of the variant, namely “switch of function” in
MAP2K4, which seems to be more likely considering its
common occurrence in lung cancer samples [25].

likely to lead to switch of function with high probability.
PTPRD has been found to be somatically mutated in col-
orectal carcinoma with the R28Q mutation [26]. H233Q in
CDH1 was found to be associated with breast cancer [27].

The prediction for A95E in RACI1 gene is switch of
function. However, the confidence score is only slightly
greater than 0.5, because the probability L? (Fig. 3) of
losing the original functions is low (0.55) whereas the
probability A7 of acquiring new functions is high (0.997),
making a switch of function classification unreliable.
Previous studies are more agreed on the ‘gain of func-
tion’ prediction. As discussed before, the cutoff ¢ is an
important factor in determining the final prediction. If
¢t = 3.0 instead of 2.7, A95E is predicted as gain of func-
tion with confidence score 0.524. Similarly the R132H
mutation in IDH1 is predicted as gain of function with
low confidence score (L? = 0.40, A7 = 0.89). The con-
fidence score calculation assumes the independence of
losing the original functions and gaining new functions.
As a result, for those variants with low confidence scores,

the cluster number

Fig. 6 Distance tree of the MAP2K subfamilies. Colors indicate different subfamilies. The minimum score S} is calculated from Cy9. Cg is the target
cluster. Cyg is an example subfamily that the mutant protein could switch to. The leaves are protein sequences. Two sequences are merged
according to the BLOSUMG62 matrix by averaging the substitution distance over all the positions in the MSA. The numeric prefix of a sequence ID is

= — i
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the probability of losing the original functions (L) and the
probability of acquiring new functions (A7) should both be
considered.

Application to cancer mutations

Oncogenic mutations in the EGFR gene and the BRAF
gene [16] are evaluated. All the variant data are listed in
Additional file 1: Table S3. Activating mutations in EGFR
and BRAF are frequently found to be associated with
cancer [28-31]. Improper activation results in increased
malignant cell survival, proliferation, invasion, and metas-
tasis. Table 4 shows the total number of activating (GoF)
mutations evaluated and the corresponding number of
predicted GoF, SoF, LoF, and CoF classifications for each
gene. The predicted types are dominated by gain of func-
tion and switch of function classifications as expected,
because the GoF and SoF mutations are both expected
to have the protein acquiring new functions. The median
confidence score for GoF is greater than that for SoF,
which means the mutant gene is more likely to keep the
original functions. Distribution details of the confidence
scores for both genes are in Fig. 7.

The predicted types for TP53 mutations are compared
against the transactivity level as shown in Fig. 8. The medi-
ans of the transactivity level in the GoF and CoF groups
are higher than those in the SoF and LoF groups, as ‘loss
of function’ mutations inactivate tumor suppressor genes
and the genes are likely losing the original functions as
a result of LoF or SoF. The LoF variants predicted by
HMMvar-func were also scored by HMMuvar, and results
show that a majority of them (70 %) have scores greater
than 2, which is considered by HMMvar to be deleterious.

In [32], the authors concluded that the mutants of
TP53 on the 273rd codon show growth modulation activ-
ities regardless of its specific transactivation. Specifically,
the R273H mutation enhances cell growth in spite of its
reservation of transactivation activity, whereas the R273L
mutation suppresses cell growth in spite of its com-
plete loss of the TP53 specific transactivation. HMMuvar-
func predicts R273H to be gain of function mutation
and R237L switch of function mutation. Therefore, the
HMMyvar-func prediction of the functional outcome of
these two mutations is indeed consistent with the finding
in [32].

— (o) P

(O] — '

> |

8 o - : © e
0 — ! . .

> | ! o :

z ’ = — i

3 —

8 o . . i

c Tp] '

o : :

IR = 0 —

GoF SoF CoF LoF

Mutation Types

Fig. 8 The transactivity level of the gene TP53 in different predicted mutation groups
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Discussion

This paper, based on previous work [14], proposes using
multiple hidden Markov models to predict the fine
grained functional impact of mutations on proteins. A
soft classification of functional outcome type based on the
logistic function and combinatorial probabilities follows
HMMvar scoring. The prediction pipeline is applied to
various datasets with positive results, providing evidence
that the pipeline is capable of identifying different types of
mutations.

This paper is the first to computationally define func-
tional impact of mutations: loss, switch, gain, and con-
servation of function. Sequences homologous to the gene
with mutations are clustered as protein families or sub-
families, which are represented by profile HMMs that
implicitly capture evolutionary/functional information.
Thus computing the fitness of a sequence against the pro-
files indicates the functional transfer among subfamilies.
The HMMs, rather than focusing on a specific position
or the mutant position as some evolutionary analysis
methods do, consider a region extended from the mutant
position.

The quality of the MSA is important to the prediction
performance. The MSA processing step in the pipeline
keeps the homologous sequences and removes redundant
sequences over an alignment similarity threshold; low
quality columns are also eliminated. Finally, the proper
region is selected by left and right extension from the
position of the variant. The cluster quality also affects the
prediction. Rather than tinkering with some variant of K-
means clustering to find the correct number of clusters
and avoid local optimal solutions, the CEO [20] algo-
rithm is used in the prediction pipeline. The CEO algo-
rithm achieves good clustering (also possibly only locally
optimal) by considering conservation in both the overall
family and subfamilies.

Note that the traditional definition of GoF [20], includes
both those variants that acquire a new function while
maintaining the original one and also the ones that
enhance the original function. The GoF defined in this
paper is limited to only the former case.

Prediction of the functional impact of variants, such as
deleterious or neutral, is important, but computationally
predicting the fine grained type of mutations is equally
crucial, especially in cancer studies. These fine grained
predictions can be used to target mutated genes and
mutations that play crucial roles in resistance to certain
therapeutic agents.

Conclusion

This work presents HMMvar-func, a new method for pre-
dicting the functional outcome of mutations in coding
regions. The fine grained prediction provides richer infor-
mation than current existing tools that can be especially
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useful for studying mutations in cancer. The prediction
can be used to help filtering and identifying from many
coding variants the ones that truly contribute to the dis-
ease/cancer of interest, thus serving as a prioritization tool
for variants for further downstream studies.
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