Abstract:

Technical Report # CS76007-R

Program Testing and Conditional Correctness

Dr. Johannes J. Martin
Virginia Polytechnic Institute
and State University

June, 1976

It is shown that some beliefs about program testing are
incorreect. A new notion of ocrrectness, conditional
correctness, is defined. It is then shown that conditional
correctness, which can in principle be achieved by

testing, is not accomplished by such methods as "testing
all branches" or "testing all paths". The latter method

is proven to be not only insufficient but also highly
redundant. Rules for establishing conditional correctness
by testing are given and illustrated by an example.

Key Words and Phrases: program testing, program correctness, condi-

tional correctness, testing all paths, testing all branches.

CR categories: 4.42, 5.24

Introduction

It is the purpose of this paper to demonstrate that some beliefs
about program testing are incorrect and to report a few results and

ideas that may eventually lead to a theory of program testing.

First, there is the conjecture that testing can only show the
presence of errors but not their absence. We find this statement
not only in articles that promote analytic methods of Program verifi-
cation {3] but also in pﬁblications concerned with program testing.

Examples are papers by Huang [5] and Keirstead [6].

Here we will not dwell on a refutation of this conjecture in its
general form. In [8] the author has proven that complete, finite
test point sets exist and that the sizes of these sets are linearly

related to the lengths of the programs tested,

Secondly, there is the assumption that testing must be exhaustive

in order to be conclusive. We find two versions of exhaustiveness.

a) Exhaustive testing is testing a program at ali points of its do-
main [3,4,5,7,9]. Assuming that testing must be exhaustive in this
sense is obviously equivalent to accepting the conjecture that testing

can not show the absence of errors.

b) Exhaustive testing is exhaustively examining the control flow of

& program [1,2,4,5]. This requires testpoints that cause

execution to follow every possible path through the program, where g
path is defined as a potential sequence of instructions executed from
start te stop., If the program contains loops this may imply the necessi-
ty of infinitely many test points. We will demonstrate that this strate~
8y 1is highly redundant in some sense but still insufficient for proving

correctness.

Thirdly, it is assumed that testing all branches of a program
(sometimes called thorough testing [5]) gives a high degree of
assurance that the program is correct. We will show that a whole class

of errors is not detected by this method.

Conditional correctness

Conventionally, a program is congidered correct if it agrees with
its specification. This definition requires a formal specification
of the program's desired properties in order to make proving correct-

ness possible.

Mostly, programs are written from quite informal problem speci~
fications and the precise description of the program's behaviour is
developed along with the development of the program itself. Also,
specifications, if formalized, are subject to the same types of in-
accuracies or gross blunders as programs. Furthermore, if the speci-
fications are developed along with the program then it is quite pos-
sible that both the program and its formal specification contain the
same errors as far as the original purpose of the program is con~

cerned.

A formal verification procedure can clearly not detect this last
type of error whereas tests performed at critical points would pro-
bably reveal the problem because test results can be more easily
checked for consistency with the original informal description of the

program than a formal specification.

We therefore suggest a new notion of correctness. We shall call
it conditional correctness in contrast to strict correctness in the
conventional sense. Note that our concept of conditional correctness,
which will be well defined, is not based on or related to the infor-

mal use of the term by Kopetz [7].

It follows from the results described by the author in {81 that,
in principle, conditional correctness can be proven by testing.
Moreover, under certain conditions conditional correctness is equi-

valent to strict correctness.

Definition:
Given a well defined set P of programs or other formal descrip-
tions that define a set F(P) of functiong,we sS4y a program p in P

is conditionally correct over P with respect to some given function g

if, with the assumption that g is an element of F(P), we can prove

that p computes (describes) g.

Note that g is not required to be in F(P). It is only required
that there exists a proof for "p computes g" if g in F(P) is used as

4 premise,

Clearly, conditional correctness becomes strict correctness if

both the program and its specification are members of the set P,

A special case arises if the set P contains all finite programs
and descrptions. Here conditional correctness is a priori strict
correctness if, indeed, there exists a formal specification s for the
given program p because both s and P are by definition members of P.
Here testing for conditional correctness would require the exhaustive
examination of all points x in the domain of p since F(P) contains all

functions that can be specified and, therefore, for any point x we

must expect at least two functions that agree everywhere except at x.

However, it has been shown in the paper mentioned above [8] that for
finite sets,f proportional to longl many testpoints suffice to prove
correctness. Note that such a finite set P that contains both the

program p and its specification s can easily be constructed:
P = { all descriptions q such that |q =MAX(lp[, s[>} .

Since conditional correctness can be demonstrated by testing we

can give it an interpretation that is independent of the function g

3

that the tested program is supposed to compute: if the set T={xi,yl

of test points has been used to prove p conditionally correct over
some get P, then we know that every program q in P that satisfies all
peints in T will compute the same function as p. Conversely, by speci-
fying P and a complete set T of test points we uniquely specify a
function. We might therefore consider the development of automatic

methods for constructing computer programs from pairs (P,T).

Conventional testing rules and conditional correctness

Proponents of conventional testing rules such as testing all
branches or testing all paths never claim that these rules assure
correctness in the strict sense. We will now examine if or to what

extent they achieve conditional correctness.

In order to do so we first have to choose a set P over which
conditional correctness ig to be proven. This is a rather important
step; the choice of P determines how meaningful the test results are
going to be. The more we restrict P the fewer test points we are
going to need. For example, in the trivial special case P={p} we may
rightly claim that p is conditionally correct over P without any test.
On the other hand, the more we enlarge P the more assurance we are
going to have that g is in F(P). Also, if we define P by defining the
properties of its elements (rather than by emmeration) we should
make sure that there exists a simple procedure that decides if D is
in P. Simplicity of the definition of P may also help a later attempt
to prove that g is in F(P). Thus, we should choose P such that we can

be confident that g is in F(P) and sure that p is in P,

We will pursue this goal by choosing the set of all programs
that have the same control schemata and use the same types of functions
in their branches as the given program p (e.g. rational functions

with not more than k constant coefficients for some value k).

This choice will, for example, give us perfect assurance if we
want to verify that an algorithm that is known to be correct has

been properly implemented.

Straight line programs

We will start with a simple straight line program. Such a pro-
gram consists of only one branch and there is only cne path that
control can follow. By conventional rules, a single test point

should be sufficient to give us a good assurance of correctness.

For the sake of simplicity, we assume that only primitives for
real arithmetic operating with unlimited accuracy are provided by
the programming language used. Therefore, every straight line pro—

gram will compute a rational function.

As the set P we choose the set of all programs that
(i) are applicable to the same domain X and map into the same
range Y as the given program p,
(ii) use the same number k of constant coefficients different from
0 and 1 as p, and

(iii) are limited in length by some number L z|pf.

Given p, these properties of P can be determined by a rather
simple auotmatic scanning mechanism ensuring p in P. Now, with the
assumption that some subset Q of P computes the desired function g

we want to demonstrate that p is in Q.

It is obvious that a single test point can not ensure p in Q
because the programs g in P compute all kinds of rational functions

each depending on k parameters. Given some point t=(x,y) we will

be able to find many different functions that satisfy this point.
However, with k points at almost arbitrary locations (except for a

set of "bad" test configurations whose measure is zerc) we will obtain
k independent conditions for k parameters and thus get a unique solu-
tion or, if the conditions turn out to be nonlinear, a finite set of
solutions for the parameters. Now the number of functions computable
by members of P is finite because the number of structurally different
expressions is finite for their lengths are bounded by L. Since the
set of common points of any two distinct rational functions is of
measure zero there must exist points (in fact most points will
qualify) where the desired function differs from all those other

functions that are stiil candidates after k tests.

Therefore, k+l tests are (usually necessary and) sufficient to

ensure conditional correctness.

Although the probability of choosing a bad test point is ex-
tremely small and decreases with increasing accuracy in the limit
down to zero, a systematic method for avoiding bad choices would be
desirable. Since, at present, we have no such method the example

discussed further down falls short of being a correctness proof.

If one is only after a procedure that ensures conditional cor-
rectness with a high probability rather than certainty one single
test point does not perform too badly. Suppose we are given a cor-
rect straight line program p and some randomly chosen point x in
the domain of p. Certainly, almost all changes (i.e. errvors) that

could be introduced to p will change the behavior of F(p) at x.

- 10 -

IF - THEN - ELSE segments

The severe shortcomings of conventional test mehtods become
apparent if these methods are applied to conditional statements.
Consider the example

P IF x1 - 2%x2 + 3= 0
THEN (straight line code pl) ELSE (straight line code p2);

Here the set P contains all program of the form

IF f£(x1,x2) =z 0 THEN pl ELSE P2
with £(x1,x2) being rational over x1 and x2 and containing not more
than two constant coefficients. Since the program consists of two
branches (and two paths) conventional rules of testing suggest two

test points, one for each branch.

As conceded before, this procedure will test the segments pl
and p2 reasonably well (for conclusive testing we would have to use
k1l + k2 + 2 testpoints according to the previous argument) but it
will examine the conditicn itself only superficially. Suppose the
two test points chosen are u = (0,0) and v = (-2,1) where u and v
are vectors with x1 and x2 as components. Then any conditional ex-
pression of the form f(x1,x2) = xI -~ A%x2 + B z 0 with Az 0 and
B >A ~ 2 would yield the same test results and, in addition, there
is a large number of structurally different conditional expressions

that would equally work.

Searching for a cure we notice that a condition f(x) =z 0

partitions the domain into two regions separated by the boundary

- 11 -

£(x) = 0. This boundary is, in general, an algebraic curve the course
of which must be verified and, hence, tested similarly to a straight
line program namely by k + 1 tests where k is again the number of
constant parameters that occur in f(x). Each test that is meant to
ensure that a particular point is part of the boundary must actually
consist of a pair of test points located on both sides of and as

close as possible to the boundary.

In the above example, three point pairs are sufficient. These
could be located at (-1,1),(~1,1+e); (-3,0),(-3,e); (0,1.5),(0,1.5+e)
for some positive infinitesimal e. Note that the test points are
also located in the domains of the two segments pl and p2 and may

therefore serve as test points for these segments as well,

A slight complication occurs if the functionm f(x) of the édn—
dition f(x) = 0 can be factored. In this case the sufficient number
of tests is k + g where q is the number of irreducible factors of
f(x) since we might be forced to verify every factor individually,

The value of q is, of course, bounded by the degree of f.

Sometimes, pl and p2 may compute identical values atr both sides
of a boundary (e.g. in splining applications). Here the program must
be "instrumented" by additional test variables that will enable us

to decide which path is actually being taken upon testing.

- 12 =

Redundancy of testing all paths

In order to show that testing all paths may involve redundant
tests we consider the segment

IF A THEN y:=gl(x) ELSE y:=g2(x);
IF B THEN y:=f1(y) ELSE y:=£2(y);

There are four different paths through the program which compute

1) hl = fl(gl(x))
i) h2 = f1(g2(x))
ii1) h3 = £2(gl(x))
iv) h4 = £2(g2(x))

A simple calculation leads to

(D b4 = £2(s2(x)) = h3(h1 (h2(x))) = £2(gl(el T(£1 1 (£1(g2(x))))))
Thus if the functions hl, h2 and h3 are verified h4 is determined pro-
videdlthat hl is uniquely invertable over at least some small region
in its domain. Moreove;, a closer inspection of (1) shows that only
fl needs to be invertable over some part of its domain because
gl(glﬁl(z)) = z for all possible inverses gl—l as long as z.is in the
range of gl.

The argument can be extended in a straight forward way to mul-
tiple branches (CASE statements) on each level. If there are n
branches on the first level and m on the second then the total number
of paths is n.m; however, the number of paths that need to be tested
is mim-1 provided that at least one of the functions fi on the second

level is uniquely invertable for some region of its domain.

-~ 13 =

Furthermore, if i levels (i > 2) follow each other each having 3

branches (1L = j £ i) then the number of paths that need to be tested

turns out to be

i
(Zn.) +1-1
=1
i
rather than II n. as testing all paths would require,
j=1

We conclude that conventional testing rules are indeed both

insufficient and wasteful.

In the next section we will show how the concept of conditional

correctness eases the problems connected with testing loop comstructs.

- 14 -

Conditional correctness and loops

Consider the set P that contains all programs of the form

WHILE f(x,y) =z 0 DO y:= g(x,y) END

and no others, and some given program P in P. Clearly, p is proven

conditionally correct over P if both f and g are determined.

In order to see how these two functions can be verified by
testing we will distinguish two cases, a simple special case and the
general one. Both times we will assume that f and g are rational or
otherwise testable i.e, IF~THEN-ELSE or other loop constructs. We
also assume that a counter i has been added to the loop; thus the
augmented segment has the form

i:= 0; WHILE f(x,y) = 0 DO y:= g(x,y); i:= i+l END

Such a loop partitions the domain (X,Y) into partitions ZO...Zj
such that for all points (x,y) in Zj the loop takes j turns.
Further, if we aim to place a test point z into the partition Zj then
the value of the counter i will tell us after the test whether we
were successful,

Case A

Testing proceeds precisely as it would for straight line pro-
grams and conditional constructs if both x and y can be selected
freely on entry to the loop and if all components of vy are part
of the range of the function that is to be computed by the loop.
In this case, all test points for g can be placed into the region

Zl; f can be tested at the boundary between ZO and Zl.

- 15 -

Case B

In reality, we will rarely deal with case A since
i) some components of x and y are usually fixed on entry to a loop
by initialization and
i1i) some compeonents of y represent frequently intermediate results
that do not occur in the range of the desired function. For ex-
ample, increments typically belong into this category.
In both cases it is unlikely that all test points can be placed into
ZO or Zl. Searching for the proper test points we may therefore have
to consider functions of the form
f(x,gi(x,y)) Z20and y = gi(x,y) with
gi(x,y) =y for i=0 and gi(x,y) = g(x,gi_l(x,y)) for 1 =z 1.
It follows from the definition of gi that g is determined if gi is

verified for two consecutive values of i.

- 16 -

An example

The following program computes the inverse vof x = y3 where
e3 < x < (xo-—e)3 for some positive limit Xq and some small positive

value e. The method used is a binary search.

P:=3; e:=l.e-6; inv:=false; [i:=0];
if x < (x0-e)**p and x < e**p then
begin low:=0; hi:=x0;

repeat y:i:=.5%(hit+low); [i:=i+1];

case
(y-e)**p = x: hi:=y
(yte)*®*p = x: low:=y
else : invi=true

wntil inv

end

The domain of the program is the plane defined by X, and x, and
the range is defined by y, inv, and the auxiliary variable i. Simpli-

fying our discussion we introduce the variable x' such that x = (X')3.

The set P over which we will test for conditional correctness

will consist of all programs of the form

pl; if f1 then begin p2; repeat p3; case f2:p4; £3:p5; else:pb

until £5 end

where all p's and f's are straight line programs or conditions of not

more constant coefficients than the corresponding segments in the

- 17 -

given progran.

Figure 1 shows the regions of the domain that correspond to the

different numbers of iterations needed.

X'8

T e o

[0e—-

Je
° 0 S{e lt:)e Isie z
FIGURE 1 Partition of the domain

Testing will proceed as follows
a) Since the first if splits the plane (xo,x') into two regions
separated by the straight line boundaries x' = Xy~e and x' = e

which depend on the two parameters e = l.e-6 and p = 3, we will

need four test point pairs.

- 18 -

The pairs
Xt 3 3 3 1.7 1.7 H 4e he
x': 3~ 3-e-g ; 1.7-e 1l.7-e-c ; 3e 3e-¢

may be used for testing the boundary x' Xg~e as well as the
constants assigned to e and p. The value of & is positive and as
small as the computational resolution permits., The pair

b4 3e 3e

of
x': e ete

may serve to verify x' = e.

b) We will test the assignment y:=.5%(hi+low) and the two
initialization statements low:=0 and hi:=x0 by three points in
the region Zl (first iteration). We use three points because we want
to check the two constants: .5 and 0. Since two of the above test
points are already in Zl we will only need one more at, say,

Xy = 2.9, x' = 1.45-e-¢,

¢) Finally, we will need two more pairs of test points around the

boundaries y-e = x' and y+e = x'., Since the previous test point

may serve as a constituent for the pair that is to check y-e = x',
the other constituent becomes X = 2.9, x' = 1.45~e. This point is

. , i i+l
located in some region Zj such that 2 #%e = 2,9 = 2 *e., The expected

result for y at this point is 1.45-2e. The pair for testing y+e = x!

is constructed accordingly.

- 19 -

Conditional and strict correctness

There is one particularly important question that needs to be

resolved if testing is to be used to prove strict correctness.

Suppose we have two sets Pl and P2 of programs (descriptions)
such that the program p in Pl is the program to be verified and the
description s in P2 is its specification. Further suppose we have
test point sets Tl and T2 that prove P and s conditionally correct
over, respectively, Pl and P2, Since it follows from the definition
of conditional correctness that P is equivalent to s if both are
conditionally correct over the union of Pl and P2 with respect to
the same complete test point set T we would like to compute T, if

possible, from T1 and T2.

We can easily show that, in genmeral, T is not the union of T1
and T2. Consider the two sets Pl = {p} and P2 = i{s} . Clearly,

Tl and T2 are empty. However, the set T for {p,8} can not be empty.

On the other hand, if Pl contains P2 (or vice versa) then the
set T sufficient for testing over Pl U P2 is Tl (T2) since P1 (P2)

containg both p and s.

- 20 -

Conclusion and outlook

We believe that the notion of conditional correctness will serve
as a useful foundation for further theoretical and practical work in
the area of program testing. Since the conventional method of testing

all branches is insufficient and the method of testing all paths is

both insufficient and wasteful it seems to be very desirable to de-
velop the principles outlined in this paper into a complete theory

and, thereafter, practical method of testing,

We should hope that for certain classes of desciptions auto-
matic procedures for test point generation can be found that are less
complex and time consuming than systems for the automatic proving of

Program correctness by purely analytic means.

However, a general procedure for test point selection can clearly

not exist because of the well known decidability problems.

- 2] -

References

Boehm,B. Software and its impact: a quantitative assessment.
Datamation 19 (May 1973), 48-59,

Brown,J.R. and Lipow,M. Testing for software reliability.
Sigplan Notices 10~6 (June 1975) 518-527

Dahl,0.~J. et Al. Stuctured programming.
Academic Press, 1972

Goodenough,J.B. and Gerhart,S.L. Toward a theory of test data
selection. Sigplan Notices 10-6 (June 1975) 493-510

Huang,J.C. An approach to program testing,
ACM Computing Surveys 7-3 (Sept.1975) 113-128

Keirstead,R.E. On the feasibility of software certification.
Stanford Research Inst. PB-245 213 NTIS report
June 1975

Kopetz,H. On the connections between range of variable and
control structure testing. Sigplan Notices 10-6
(June 1975) 511-517

Martin,J.J, Finiteness and bounds of complete test point sets
for program verification. VPI&SU tech. report
C576003R

Poole,P.C. Debugging and testing. 1In Bauer,F.L. Advanced
course on software engineering, Springer Verlag
New York 1973, 278-318

