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Abstract
Background: The neonatal bovine mammary fat pad (MFP) surrounding the mammary parenchyma (PAR) is thought 
to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic 
hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from ~65 d old 
Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules 
preferentially expressed in one tissue relative to the other.

Results: Over 9,000 differentially expressed genes (DEG; False discovery rate ≤ 0.05) were found of which 1,478 had a 
≥1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736) we noted 
significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. 
Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. 
PAR (n = 742) belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical 
pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-
enriched. Network analysis uncovered a central role of MYC, TP53, and CTNNB1 in controlling expression of DEG highly-
expressed in PAR vs. MFP. Similar analysis suggested a central role for PPARG, KLF2, EGR2, and EPAS1 in regulating 
expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue 
crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., ANGPTL1, SPP1, IL1B in PAR 
vs. MFP; ADIPOQ, IL13, FGF2, LEP in MFP vs. PAR) with DEG preferentially expressed in the other tissue, particularly 
transcription factors or pathways (e.g., MYC, TP53, and actin cytoskeletal signaling in PAR vs. MFP; PPARG and LXR/RXR 
Signaling in MFP vs. PAR).

Conclusions: Functional analyses underscored a reciprocal influence in determining the biological features of MFP and 
PAR during neonatal development. This was exemplified by the potential effect that the signaling molecules 
(cytokines, growth factors) released preferentially (i.e., more highly-expressed) by PAR or MFP could have on molecular 
functions or signaling pathways enriched in the MFP or PAR. These bidirectional interactions might be required to 
coordinate mammary tissue development under normal circumstances or in response to nutrition.

Background
As reported by Connor and colleagues [1]: "The mam-
mary gland is a complex organ of various tissue and cell
types that will undergo multiple stages of growth, differ-
entiation, secretory activity, and involution during the
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lifetime of a female mammal". Among the "various tis-
sues" the parenchyma (PAR), which is, in lactating mam-
mary gland, the tissue that synthesizes and secretes milk,
and the fat pad (MFP), which is a matrix of connective
and adipose tissue surrounding the PAR [2], are consid-
ered the most crucial during post-natal development.

Interactions between PAR and MFP during bovine
mammary development are still not fully understood. It
has been postulated that during mammary development
the MFP surrounding PAR exerts proliferative effects on
the PAR through secretion of local modulators of growth
induced by the impacts of selected systemic hormones
(e.g., growth hormone, estrogen) [1,3-5] or growth fac-
tors (e.g., IGF-1) [6,7]. It is believed that such an effect
occurs because the epithelial tissue that is in direct con-
tact with the MFP has a greater degree of proliferation
compared with the more central epithelial tissue [8-10].

Local interaction between PAR and MFP could occur in
both directions, i.e., MFP acts on PAR and PAR acts on
surrounding MFP [11]. How these tissues could commu-
nicate through locally-produced modulators has not yet
been studied in the pre-weaning prepubertal bovine
mammary gland. Hovey and colleagues [12], using prepu-
bertal ewes, showed that IGF1 mRNA expression was
greater in MFP cells adjacent to PAR than in MFP cells
with no PAR contact, which indicated the existence of a
local "diffusible factor" secreted by PAR that could
increase the expression of IGF isoform in MFP. Based on
those findings, a potential crosstalk between the two tis-
sues was suggested. It was proposed that MFP stimulates
PAR and PAR then exerts a positive feedback on the MFP
during development [2].

Mammary gland development and tissue interactions
have been previously studied using gene expression anal-
ysis. For example, in a serial slaughter study [13] it was
observed that peak expression of IGF1 in MFP and estro-
gen receptor-α (ESR1) in PAR from 100 kg body weight
Holstein heifers coincided with peak mammary epithelial
cell proliferation [14]. Expression of both genes decreased
in mammary tissue in older animals. Regarding tissue
interaction, Thorn and colleagues [15] hypothesized that
the MFP could impact PAR through inflammation-
related proteins, such as TNFα, IL-6, and IL-1β. They
showed in vitro the inhibitory effect on proliferation of
TNFα, but not IL-6 or IL-1β, on epithelial cell prolifera-
tion.

Li and colleagues [16] conducted a microarray study
exploring the interaction between MFP and PAR in
response to estrogen treatment in prepubertal heifers.
Results indicated that MFP might affect PAR cell prolifer-
ation via the secretion of paracrine stimulators such as
the stem cell growth factor precursor C-type lectin
domain family 11 member A (CLEC11A) and IGF-1.
Despite work conducted to date, there is still uncertainty

regarding how PAR and MFP tissues interact during
mammary development in prepubertal heifers prior to
weaning.

In the present study, mammary glands of pre-weaned
Holstein heifer calves were harvested at 65 d of age to
extract total RNA for microarray analysis. Extensive bio-
informatics analysis of microarray data was performed to
(1) characterize differences in transcript profiles between
mammary PAR and MFP, with the specific aim of uncov-
ering predominant transcriptomic signatures, and (2)
uncover predominant signaling molecules (e.g., cytokines
and growth factors) in one tissue relative to the other. The
latter would allow for the identification of potential tar-
gets among genes that are more highly expressed in the
other tissue in order to discover novel inter-tissue signal-
ing networks.

Results
Coverage of microarray elements in the IPA knowledge 
base
Over 10,000 oligonucleotides (ca. 76% of total) from the
microarray (see details in Additional file 1) were mapped
by Ingenuity Pathway Analysis® (IPA). Of these, > 7,500
genes were eligible for generating networks and >6,400
genes were associated with a function or pathway. Almost
90% of all annotated genes in our microarray were differ-
entially expressed between PAR and MFP (Table 1 and
Additional file 2). Of these, 16.3% had a difference
between tissues of > 1.5-fold, with 8.1% being more highly
expressed in PAR and 8.2% being more highly expressed
in MFP (Table 1 and Additional file 2). Among DEG, 0.6%
and 0.8% were 3-fold greater in PAR vs. MFP and MFP vs.
PAR, respectively. The data mining analysis was per-
formed on DEG exhibiting ≥1.5-fold difference between
tissues. Among DEG, ca. 500 were eligible for generating
networks in either PAR or MFP in IPA (Table 1).

Functional analysis of DEG between PAR and MFP
The IPA analysis results using all DEG with ≥1.5-fold
between PAR and MFP are reported in detail in Addi-
tional file 3. Briefly, cell movement, cell death, cell growth
and proliferation, cell-to-cell signaling and interaction,
and tissue development were the top 5 functions among
DEG with ≥1.5-fold expression difference. Among canon-
ical pathways, the top 9 were Aryl hydrocarbon receptor
signaling, metabolism of xenobiotics by cytochrome
P450, propanoate metabolism, pyruvate metabolism,
LPS/IL-1 inhibition of RXR function, xenobiotic metabo-
lism signaling, α-adrenergic signaling, p53 signaling, and
acute phase response signaling. Interestingly, all of the
mentioned pathways were primarily, if not completely,
enhanced by genes that were more highly-expressed in
MFP vs. PAR. The exception was p53 signaling, which
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was mostly enriched by genes more highly-expressed in
PAR vs. MFP (Additional file 3)

Results of the most-enriched biological processes from
the Gene Ontology (GO) analysis that considered all
DEG with ≥ 1.5-fold between the two tissues are reported
in Figure 1 and in more detail in Additiona file 1. Cell sig-
naling and development were among the most enriched
biological processes. Among signaling-associated GO
biological process categories (Figure 1) more highly
expressed among DEG in PAR relative to MFP, those
associated with the protein kinase cascade and cell acti-
vation were most predominant. The same types of mole-
cules were enriched in most of development-associated
categories. Other functions enriched among DEG with ≥
1.5-fold in PAR vs. MFP were associated with cell death,
cell organization and biogenesis, metabolism and homeo-
stasis, and localization and transport (prevalently protein
transport). Biological process categories enriched among
DEG ≥ 1.5-fold in MFP vs. PAR were related to wound
healing, catabolic processes, and regulation of localiza-
tion and transport.

Functions overrepresented in DEG ≥ 1.5-fold in PAR vs. MFP
The main results from the functional analysis with IPA
are reported in Table 2. Complete details of the analysis
and associated genes are reported in Additional file 3.
Among 21 significantly-enriched functions (Benjamini-
Hochberg FDR-corrected P ≤ 0.01), most pertained to
functions related to cell development and structure,
which became more evident when compared to the func-
tional analysis of DEG more highly expressed in MFP vs.
PAR (Table 3). For example, the most-enriched functions
among DEG more highly expressed in PAR vs. MFP (with
> 130 genes) were cell death, cell growth and prolifera-
tion, cellular development, cellular movement, and cell
morphology. Enrichment of these opposing processes
likely reflects the different cell types within PAR to
accommodate the remodeling. Detailed functional analy-

sis of DEG that were more highly-expressed in PAR vs.
MFP suggested a greater degree of apoptosis, prolifera-
tion/growth/development, movement and adhesion of
cells, and morphogenesis/shaping of cells in PAR vs. MFP
(Table 2). Overall, angiogenesis, DNA metabolism, and
survival of mammals functions were enriched (Table 2) in
PAR when compared to MFP. However, detailed analysis
of DEG did not indicate induction of gene expression
associated with these specific functions.

The most-enriched biological processes from GO anal-
ysis within DEG with ≥ 1.5-fold higher expression in PAR
vs. MFP were associated with cell organization (chiefly
chromosome/chromatin remodeling), development, dif-
ferentiation, cell cycle, negative regulation of nucleotide
metabolism, negative regulation of transcription,
response to DNA damage, and antigen presentation and
inhibition of immune system process (Figure 2). Among
molecular functions, the most enriched related to bind-
ing, particularly protein (i.e., cytoskeletal and enzyme)
and nucleotide binding (Additional file 4). Also, functions
related to transcription, and particularly repression of
transcription, zinc binding, kinases, and cytokine activity
were significantly enriched (Additional file 4). The most-
enriched cellular components in PAR were of cytosolic
origin, particularly components associated with cytoskel-
eton and intracellular non-membrane-bound organelles.
Components related to the nucleus, particularly chromo-
some allocation were also noted (Additional file 4).

Functions overrepresented in DEG with ≥ 1.5-fold 
expression in MFP vs. PAR
The most-abundant functions among DEG that were
more highly-expressed in MFP vs. PAR are reported in
Table 3. Complete details of the functional analysis and
associated genes are reported in the Additional file 3.
Metabolic functions related to transport and lipid synthe-
sis and oxidation were among the most significantly-
enriched. In addition, IPA analysis of genes more highly

Table 1: Number of overall differentially expressed genes (DEG, Benjamini-Hochberg FDR ≤ 0.05) and DEG with cut-off of 
1.5- and 3.0-fold difference in mRNA abundance between mammary parenchyma and fat pad from pre-weaned Holstein 
calves (ca. 65 d of age).

FD1 Number of DEG Network eligible Function eligible

Overall tissue effect < 1.5 9,092

1.5 1,478 1,098 986

Expression higher in parenchyma 1.5 736 575 517

3.0 59

Expression higher in fat pad 1.5 742 523 469

3.0 75

Reported also is the number of DEG eligible for network and function/pathway analysis in Ingenuity Pathway Analysis®.
1Fold-difference between tissues (no difference = 1.0)
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expressed in MFP vs. PAR suggested that MFP compared
with PAR had a greater degree of cell migration, carbohy-
drate metabolism, activation of cells, and a lower cellular
growth and proliferation (Table 3).

The GO analysis indicated that DEG more highly-
expressed in MFP vs. PAR enriched significantly metabo-
lism, particularly lipid biosynthesis, catabolism, and oxi-
dation (Figure 2). A more important role of signaling in
MFP compared with PAR was suggested by the signifi-
cant enrichment of signaling response-related genes, par-
ticularly for response to insulin and cytokines (Figure 2).
Among cellular functions, the overall analysis indicated a
large enrichment of enzyme activity and transport, with
the former related to phosphate metabolism and oxi-

doreductase activity and the latter related to ion (particu-
larly Mg, Fe, and K) and carbohydrate transport with a
large enrichment of passive transport-related molecules
(Additional file 4). The only significantly-enriched cellu-
lar component in MFP was the mitochondria and its
related membranes (Additional file 4).

Main canonical pathways overrepresented among DEG 
with ≥ 1.5-fold between PAR and MFP
In PAR, the main canonical pathway overrepresented was
actin cytoskeleton signaling. This pathway was signifi-
cantly enriched with an FDR ≤ 0.05 and appeared that it
was enhanced among DEG with > 1.5-fold expression in
PAR vs. MFP (Table 4). Other pathways appeared to be
enriched (Table 4) at a lower level of significance (i.e.,
FDR ≤ 0.12). Most of those are related to signaling (actin,
p53, Wnt/β-catenin, PI3K/AKT) and cell cycle (Table 4).
Detailed visualization of the pathways (Additional file 3)
suggested an autocrine effect on actin cytoskeleton sig-
naling elicited by FGF (fibroblast growth factor), PDGF
(platelet-derived growth factor), and FN1 (fibronectin 1),
all molecules that were more highly-expressed in PAR vs.
MFP (Additional file 2). Among the canonical pathways
enriched with a non-corrected P-value ≤ 0.01, a detailed
analysis of Wnt/β-catenin and PI3K/AKT signaling
revealed a potentially crucial role for these in increasing
cell cycle activity (e.g., mitosis, Table 2) and apoptosis as
well as increasing protein synthesis through mTOR
(Additional file 3).

The DEG more highly-expressed in MFP vs. PAR had a
significant (FDR ≤ 0.05) enrichment of 23 canonical path-
ways with a large presence of metabolic pathways (11 out
of 23 enriched pathways; Table 4). Most of the signifi-
cantly-enriched canonical pathways were involved in
energy utilization, especially utilization of glucose, fatty
acids, and several amino acids as sources of energy.
Among signaling pathways, most pertained to immune
response (e.g., LPS/IL-1 mediated inhibition of RXR
function, acute phase response signaling, Complement
system) and stress/catabolic response (e.g., mitochondrial
dysfunction, NRF2-mediated oxidative stress response, β-
adrenergic signaling, cAMP-mediated signaling, aryl
hydrocarbon receptor signaling [AHR], xenobiotic
metabolism signaling). The overall analysis of canonical
pathways suggested an increase in oxidation of organic
compounds as also suggested by functional IPA and GO
analyses (Table 3 and Figures 1 and 2). The canonical
pathway analysis also indicated an inherently-greater pre-
disposition of MFP to mount an immune response com-
pared with PAR.

One noteworthy canonical pathway highlighted by the
analysis was IGF-1 signaling, which was enriched at an
uncorrected P-value ≤ 0.01 (Table 4). The lack of signifi-
cant enrichment potentially suggests a lower importance

Figure 1 GO analysis of DEG. Biological processes significantly-en-
riched with a Benjamini-Hochberg corrected-P-value ≤ 0.05 among all 
differentially expressed genes (DEG) with ≥ 1.5-fold expression be-
tween parenchyma (PAR) and mammary fat pad (MFP). Reported are 
the Biological processes clustered in pre-selected categories (left col-
umn) by the authors to simplify interpretation of the data, the number 
of DEG for each process (middle column), and main tissue affected by 
the function (right column): dark blue denotes high enrichment in 
PAR, orange denotes high enrichment in MFP, and light green denotes 
same magnitude of enrichment between tissues (see Additional Mate-
rials and Methods for explanation). Additional Biological processes and 
other GO categories (including also Cellular component and Molecular 
function) are available in Additional file 4.

Biological�process #�DEG
Tissue�
affected

GO:0048518~positive�regulation�of�biological�process 275 1

GO:0048519~negative�regulation�of�biological�process 207 0

GO:0048522~positive�regulation�of�cellular�process 243 0

GO:0048523~negative�regulation�of�cellular�process 188 -1

GO:0065009~regulation�of�molecular�function 81 -1

GO:0050896~response�to�stimulus 339 0

GO:0010033~response�to�organic�substance 117 1

GO:0009611~response�to�wounding 74 0

GO:0010647~positive�regulation�of�cell�communication 46 0

GO:0048545~response�to�steroid�hormone�stimulus 34 0

GO:0030155~regulation�of�cell�adhesion 32 0

GO:0010627~regulation�of�protein�kinase�cascade 26 -1

GO:0001775~cell�activation 25 -1

GO:0008219~cell�death 39 -1

GO:0012501~programmed�cell�death 36 0

GO:0043068~positive�regulation�of�programmed�cell�death 35 0

GO:0042060~wound�healing 34 1

GO:0048856~anatomical�structure�development 352 -1

GO:0048731~system�development 332 -1

GO:0048513~organ�development 285 -1

GO:0010926~anatomical�structure�formation 140 -1

GO:0035295~tube�development 52 0

GO:0014706~striated�muscle�tissue�development 39 -1

GO:0008284~positive�regulation�of�cell�proliferation 48 0

GO:0044085~cellular�component�biogenesis 93 -1

GO:0022607~cellular�component�assembly 89 -1

GO:0006461~protein�complex�assembly 54 -1

GO:0006996~organelle�organization 119 -1

GO:0007010~cytoskeleton�organization 65 -1

GO:0051128~regulation�of�cellular�component�organization 58 0

GO:0030029~actin�filament�based�process 40 -1

GO:0030036~actin�cytoskeleton�organization 40 -1

GO:0009056~catabolic�process 94 1

GO:0051336~regulation�of�hydrolase�activity 26 -1

GO:0042592~homeostatic�process 82 0

GO:0055082~cellular�chemical�homeostasis 34 -1

GO:0055080~cation�homeostasis 24 -1

GO:0051179~localization 307 1

GO:0032879~regulation�of�localization 87 1

GO:0008104~protein�localization 71 -1

GO:0051049~regulation�of�transport 56 1

GO:0015031~protein�transport 51 -1

GO:0046907~intracellular�transport 44 -1
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Table 2: Significantly (Benjamini-Hochberg FDR ≤ 0.01) enriched functions among differentially expressed genes (DEG) 
highly-expressed in parenchyma relative to fat pad using Ingenuity Pathways Analysis® (IPA).

IPA function P-value # DEG Main effect on function1 Associated functions

Cell Death 3E-13 203 ⇑ Apoptosis

Cellular Growth and Proliferation 2E-11 237 ⇑ Proliferation, ⇑ Growth Tissue Morphology

Cellular Movement 3E-11 137 ⇑ Movement of eukaryotic cells

Cell-To-Cell Signaling and Interaction 2E-09 118 ⇑ Adhesion of cells Tissue Development

Cellular Development 2E-06 146 ⇑ Development of eukaryotic cells, 
lymphatic cells, and blood cells

Cell Morphology 3E-06 130 ⇑ Morphogenesis and shaping of cells

Cell Cycle 1E-05 107 ⇑ Mitosis

Gene Expression 2E-05 119 ⇑ Transcription

Cardiovascular Sys. Dev. and Funct. 3E-05 57 ⇑ Angiogenesis Organismal Development

Cellular Assembly and Organization 5E-05 116 ⇑ Formation of plasma membrane 
projection

Hematological Sys. Dev. and Funct. 1E-04 102 ⇑ Proliferation of immune cells 
(leukocytes)

Immune and Lymphatic 
Sys. Dev. and Funct., 
Immune response

Nervous Sys. Dev. and Funct. 2E-04 69 ⇑ Growth of neurites; ⇑ Migration of 
Neurons

Organ Development 2E-04 84 N/A2

Cellular Function and Maintenance 1E-03 21 ⇑ Cytoskeleton organization; ⇑ Release of 
Intracellular Store

Connective Tissue Dev. and Funct. 2E-03 46 ⇑ Proliferation and Movement of 
fibroblasts

Cell Signaling 2E-03 36 ⇑ Quantity of intracellular Ca2+ Molecular Transport, 
Vitamin and mineral 
metabolism

DNA Replication, Recombination, and 
Repair

3E-03 76 ⇑ DNA synthesis and metabolism; ⇑ 
Chromatin remodeling

Hair and Skin Dev. and Funct. 3E-03 25 ⇑ Growth of epithelial cells

Organismal Survival 3E-03 81 ⇑ Death and survival of mammalia

Skeletal/Muscular Sys. Dev. and Funct. 5E-03 14 ⇑ Differentiation of bone cells

RNA Post-Transcriptional Modification 7E-03 5 ⇑ Binding of RNA

Reported also are the number of genes per function (# DEG), the main effect of those genes within functions (annotation of function 
from IPA) with the direction of the effect, and other significantly-associated functions (based on effect on function). Details of the 
analysis are reported in Additional file 2.
1 Major (increase ? or decrease ?) or minor (increase � or decrease �) effects on function are obtained by the IPA "effect on function" and was 
considered major if the number of DEG in the specific effect on function denoted as increase/decrease is >10% compared to those DEG that 
decrease/increase. When no evident direction of the function could be envisaged a ? is reported.
2 No effect on function provided by IPA.

of this pathway, but due to the known importance of IGF-
1 in mammary development and the likely existence of
crosstalk between PAR and MFP [6,13,17,18] we have
reported details related to this pathway. Detailed analysis
revealed an enrichment of several genes that are down-
stream (insulin receptor substrate 2 [IRS2], v-akt murine
thymoma viral oncogene homolog 1 and 2 [AKT1 and 2],
protein kinases, Ras) effectors of IGF-1 and its signaling,
which overall seems to suggest an increase in cell growth

and survival (Additional file 3). However, a number of
upstream effectors (e.g., IGFBP1, 3, 5, 6) also were
enriched in MFP. The above agree with results from Dan-
iels et al. [10] using the same tissues as in the present
study. Due to the indication by the functional analysis
(Table 3) of an apparent decrease in overall cell prolifera-
tion, it could be possible that the IGFBPs exerted some
level of control on IGF-1 availability to MFP in these ani-
mals



Piantoni et al. BMC Genomics 2010, 11:331
http://www.biomedcentral.com/1471-2164/11/331

Page 6 of 23
Transcription factors potentially controlling DEG with ≥ 1.5-
fold expression between PAR and MFP
Long-term transcriptomic adaptations of tissues are
driven by transcription factors (TF), which sense external
stimuli and allow cellular functions to adapt to the spe-
cific stimulus. Among DEG more highly-expressed in
PAR vs. MFP, IPA identified 76 transcriptional regulators
and 2 ligand-dependent nuclear receptors (ESR1 and
nuclear receptor subfamily 2 group F member 2 [NR2F2],
Additional file 3). Twenty-nine TF are potentially able to
affect the expression of the other 126 DEG more highly
expressed in PAR vs. MFP, based on the IPA knowledge
base (Figure 3). Most of the genes in the transcriptional
networks (Figure 3) are involved in cell cycle and prolifer-
ation (e.g., DEG affected by v-myc myelocytomatosis viral
oncogene homolog (avian) [MYC] and TP53). Interest-
ingly, several genes encoding cytokines and growth fac-
tors (e.g., IL7, SPP1, CXCL10; see description in Table 5)
were present in the transcriptional networks, particularly
as potential targets of MYC, TP53, and catenin beta 1
(CTNNB1) (Figure 3).

Among DEG highly-expressed in MFP vs. PAR, we
uncovered 40 TF and 5 ligand-dependent nuclear recep-
tors (peroxisome proliferator-activated receptor γ
[PPARG], nuclear receptor subfamily 1 group D member
1 [NR1D1], progesterone receptor membrane component
2 [PGRMC2], and retinoid × receptor beta [RXRB] and
gamma [RXRG]; Additional file 3). RXRG (7.6-fold) and

PPARG (2.8-fold) had the largest differences in expres-
sion in MFP vs. PAR (Additional file 3). IPA transcrip-
tional networks indicated that 14 of those TF could
potentially affect the expression of 77 more highly
expressed genes in MFP vs. PAR (Figure 4). PPARG,
hepatic nuclear factor 4 alpha [HNF4A], Kruppel-like fac-
tor 2 (lung) [KLF2], early growth response 2 [EGR2], and
v-fos FBJ murine osteosarcoma viral oncogene homolog
[FOS] had potentially larger effects on transcription of
genes with greater expression in MFP vs. PAR (Figure 4).
PPARG controls the expression of several enzymes
involved in triacylglycerol synthesis and also expression
of adipokines, such as adiponectin [ADIPOQ] and leptin
[LEP]. The major functions of the transcriptional net-
works among more highly expressed DEG in MFP vs.
PAR were lipid metabolism (synthesis and transport,
mainly) and cellular movement.

Cytokines and growth factors among DEG with ≥ 1.5-fold 
expression between PAR and MFP
A total of 9 genes classified as growth factors and 10
genes classified as cytokines had ≥ 1.5-fold greater
expression in PAR vs. MFP (Table 5). Among these were
osteopontin [SPP1] and chemokine (C-X-C motif ) ligand
10 [CXCL10], which were 22- and 3.5-fold greater in PAR
vs. MFP (Table 5). There were 8 genes classified as
growth factors and 7 classified as cytokines with greater
expression in MFP vs. PAR (Table 5). Among these were

Table 3: Significantly (Benjamini-Hochberg FDR ≤ 0.01) enriched functions among differentially expressed genes (DEG) 
highly-expressed in fat pad relative to parenchyma tissue using Ingenuity Pathways Analysis® (IPA).

IPA function P-value # DEG Main effect on function1 Associated functions

Lipid Metabolism 5E-11 95 ⇑ Synthesis of lipid, ? Oxidation of lipid Small Molecule Biochemistry

Molecular Transport 5E-08 67 ⇑ Transport of lipid (mostly fatty acids)

Organismal Development 1E-06 79 ⇑ Vessel development, ? mass of mammalia

Cellular Movement 2E-04 114 ⇑ Migration of eukaryotic cells, ? Invasion of cells

Tissue Development 2E-04 120 ⇑ Adhesion of cells and remodeling of tissue

Carbohydrate Metabolism 2E-04 63 ⇑ Quantity and metabolism of carbohydrates

Connective Tissue Dev. and Funct. 1E-03 46 ⇑ Mass of connective tissue Tissue Morphology

Cellular Growth and Proliferation 3E-03 164 ⇑ Growth and proliferation of cells

Cell-To-Cell Signaling and Interaction 4E-03 112 ⇑ Activation of cell, ? adhesion of cells

Skeletal/Muscular Sys. Dev. and Funct. 6E-03 34 ⇑ Proliferation of smooth muscle cells

Nucleic Acid Metabolism 6E-03 24 ⇑ Synthesis of Acyl-CoA and cyclic AMP

Organismal Functions 7E-02 32 ⇑ Locomotion of rodents

Reported are the number of genes per function (# DEG), the main effect of those genes in functions (annotation of function from IPA) 
with the direction of the effect, and other significantly-associated functions (based on effect on function). Details of the analysis are 
reported in Additional file 2.
1 Major (? or ?) or minor (� or �) effects on function are obtained by the IPA "effect on function" and was considered major if the number of DEG 
in the specific effect on function denoted as increase/decrease was greater > 10% compare to those DEG that decrease/increase. When no 
evident direction of the function was envisaged a ? is reported.
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ADIPOQ and FGF2, which were 42- and 3.5-fold greater
in MFP vs. PAR.

Gene network analysis revealed that most of the signal-
ing molecules identified can potentially elicit effects on
1.5-fold DEG between PAR and MFP (Table 5; Figure 5
and 6). Among these is interleukin 1 beta [IL1B], which
had greater expression in PAR vs. MFP in qPCR analysis
(Table S4 in Additional file 1), and had the largest number
of connections with DEG that were highly-expressed in
MFP vs. PAR (Figure 5). Among the various actions of
IL1B, it can affect the expression of several TF, some of
which were highly expressed in MFP vs. PAR: PPARG and
THRSP expression, crucial for lipid synthesis, is inhibited
by IL1B, whereas endothelial PAS domain protein 1
[EPAS1] and NR1D1 expression is increased by the same
cytokine (Figure 5). IL1B also appears to control the
expression of several cytokines and growth factors poten-
tially more actively secreted by MFP compared with PAR
(i.e., ≥ 1.5-fold more expressed in MFP vs. PAR), includ-
ing inhibition of LEP and FGF2, and activation of IL1A
(Figure 5).

Other signaling molecules that are likely secreted in
greater amounts by PAR than MFP include FGF7 and
neuregulin 1 [NRG1]. Based on IPA annotations, FGF7
decreases the expression of stearoyl-CoA desaturase
[SCD] while it increases the expression of fatty acid syn-
thase [FASN]; whereas, NRG1 appears to regulate the
expression of several TF such as FOS and EGR2 (Figure
5). These two molecules could potentially control the
expression of several genes that were more highly-
expressed in MFP vs. PAR (Figure 4). In addition, IL7 and
chemokine (C-C motif ) ligand 2 [CCL2], potentially
released by PAR, may have determined the greater
expression of IL13 in MFP vs. PAR (Additional file 2).

Among cytokines and growth factors potentially
released to a greater extent from MFP compared with
PAR, IL13, FGF2, IL1A, and LEP had the largest number
of potential interactions with DEG that had greater
expression in PAR vs. MFP (Figure 6). FGF2 may affect a
number of biological events through increasing the
expression of IL1B and PDGFA, decreasing the expres-
sion of CCL2, and decreasing the activation of TP53 in
PAR. The transcription factor TP53 might control the
expression of many genes in PAR (Figure 3). IL13 also
might control the expression of several of the same cytok-
ines and growth factors controlled by FGF2 (Figure 6).
LEP might increase expression of several enzymes
involved in metabolism (e.g., aconitase 1 [ACO1], carni-
tine O-octanoyltransferase [CROT]) as well as decrease
the expression of ESR1, which seems to have a central
role in regulating expression of several other transcrip-
tion factors (e.g., CTNN1B, FOXA1, MYC) as well as the
prolactin receptor (PRLR) in PAR (Figure 3). Lastly, it is
noteworthy to highlight the cytokine IL1A for its effects
on increasing expression of MYC, one of the most studied
cytokines with a demonstrated role in many functions,
chiefly growth and development [19](Figure 3).

Integrative model of potential interactions between MFP 
and PAR
Results from the functional and gene networks analyses
of microarray data were used to develop an integrative
model of putative interactions between MFP and PAR
(Figure 7). The model highlights growth factors and
cytokines that seem to be preferentially expressed in one
tissue versus the other. Based on our analysis, which
relied on data within the IPA knowledge base, it appears
that many of these molecules could interact with genes
preferentially expressed in the other tissue and affect a
wide range of molecular and cellular functions (Figure 7).

Microarray data verification through qPCR
Twenty-four out of 25 genes selected were verified via
qPCR (Tables S3 and S4 in Additional file 1). These genes
were chosen based on their level of expression between

Figure 2 Comparison of GO enrichment between tissues. Biologi-
cal processes significantly-enriched with a Benjamini-Hochberg cor-
rected-P-value ≤ 0.05 and uniquely present in differentially expressed 
genes (DEG) with ≥ 1.5-fold expression in parenchyma (PAR) or mam-
mary fat pad (MFP) relative to the other tissue. Reported are the Biolog-
ical processes (center column) clustered in pre-selected categories by 
the authors to simplify interpretation of the data, and the number of 
DEG for each process (right column). Additional Biological processes 
and other GO categories (including also Cellular component and Mo-
lecular function) are available in Additional file 4 for the same analysis.

Category #�DEG

Parenchyma
GO:0007049~cell�cycle 45
GO:0048869~cellular�developmental�process 135
GO:0055002~striated�muscle�cell�development 9
GO:0030154~cell�differentiation 129
GO:0030855~epithelial�cell�differentiation 16
GO:0051146~striated�muscle�cell�differentiation 14
GO:0016043~cellular�component�organization 147
GO:0051276~chromosome�organization 27
GO:0034622~cellular�macromolecular�complex�assembly 19
GO:0006325~chromatin�organization 18
GO:0051172~negative�regulation�of�nitrogen�compound�metabolic�process 33
GO:0051253~negative�regulation�of�RNA�metabolic�process 28
GO:0000122~negative�regulation�of�transcription�from�RNA�polymerase�II�promoter 19
GO:0006974~response�to�DNA�damage�stimulus 22
GO:0019882~antigen�processing�and�presentation 18
GO:0002683~negative�regulation�of�immune�system�process 10
GO:0030098~lymphocyte�differentiation 10

Fat�Pad
GO:0006629~lipid�metabolic�process 63
GO:0055114~oxidation�reduction 59
GO:0006082~organic�acid�metabolic�process 48
GO:0044248~cellular�catabolic�process 43
GO:0006091~generation�of�precursor�metabolites�and�energy 27
GO:0051186~cofactor�metabolic�process 18
GO:0018904~organic�ether�metabolic�process 13
GO:0006639~acylglycerol�metabolic�process 11
GO:0042221~response�to�chemical�stimulus 104
GO:0009719~response�to�endogenous�stimulus 48
GO:0032868~response�to�insulin�stimulus 19
GO:0034097~response�to�cytokine�stimulus 11
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Table 4: Top canonical metabolic and signaling (in bold font) pathways uncovered by Ingenuity Pathway Analysis® 

(Benjamini-Hochberg FDR ≤ 0.05) within differentially expressed genes (DEG) with > 1.5-fold mRNA abundance between 
parenchyma and fat pad in mammary gland from pre-weaned Holstein heifers.

Pathway P-value FDR # DEG

DEG highly-expressed in parenchyma vs. fat pad

Cell Cycle: G2/M DNA Damage Checkpoint Regulation 0.0025 0.114 7

Nitric Oxide Signaling in the Cardiovascular System 0.0028 0.114 9

Actin Cytoskeleton Signaling 0.0001 0.014 22

p53 Signaling 0.0014 0.114 11

Wnt/β-catenin Signaling 0.0071 0.193 15

PI3K/AKT Signaling 0.0071 0.193 13

DEG highly-expressed in fat pad vs. parenchyma1

Propanoate Metabolism 0.0000 0.000 12

Metabolism of Xenobiotics by Cytochrome P450 0.0000 0.001 11

Valine, Leucine and Isoleucine Degradation 0.0000 0.001 11

Butanoate Metabolism 0.0001 0.002 10

Glutathione Metabolism 0.0001 0.002 9

Pyruvate Metabolism 0.0001 0.002 11

Fatty Acid Metabolism 0.0003 0.004 12

Citrate Cycle 0.0003 0.004 7

Glycolysis/Gluconeogenesis 0.0009 0.009 11

Synthesis and Degradation of Ketone Bodies 0.0020 0.016 4

Fatty Acid Elongation in Mitochondria 0.0030 0.022 4

Oxidative Phosphorylation 0.0085 0.055 13

Tryptophan Metabolism 0.0087 0.055 9

Pentose Phosphate Pathway 0.0098 0.056 5

Mitochondrial Dysfunction 0.0000 0.000 19

LPS/IL-1 Mediated Inhibition of RXR Function 0.0000 0.000 20

Xenobiotic Metabolism Signaling 0.0000 0.001 23

Aryl Hydrocarbon Receptor Signaling 0.0001 0.001 17

Acute Phase Response Signaling 0.0003 0.004 19

LXR/RXR Activation 0.0004 0.005 10

Complement System 0.0004 0.005 7

TR/RXR Activation 0.0013 0.012 11

α-Adrenergic Signaling 0.0013 0.012 12

NRF2-mediated Oxidative Stress Response 0.0014 0.012 18

Cardiac β-Adrenergic Signaling 0.0014 0.012 13

cAMP-mediated Signaling 0.0055 0.038 13

IL-8 Signaling 0.0081 0.055 16

IGF-1 Signaling 0.0098 0.118 11
1Reported also are the pathways with Benjamini-Hochberg FDR ≤ 0.12.
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tissues as well as their associated biological function. In
contrast with microarray data, IL1B had greater expres-
sion in PAR vs. MFP which was probably due to presence
of unspecific binding of the labeled cDNA probe to the
oligo on the microarray. Genes confirmed to have greater
expression in PAR vs. MFP were LTF, TNC, SPP1, PRLR,
CSN3, ESR1, A2M, ACTB, CDH1, MYC, CTNNB1, and
TP53 (Additional file 1, Table S3 and S4).

Discussion
General considerations
The potential crosstalk between MFP and PAR during
bovine mammary development has been recognized for
some time (e.g., [2,11,12]). In addition to ovarian steroids
[1] and other mammogenic hormones [4], it is believed
that various proteins secreted by the MFP (e.g., cytokines,
growth factors) act as local regulators of mammary gland
growth and morphogenesis [2,11]. In this regard, greater
expression of IGF1 in MFP and ESR1 in PAR tissue has
been associated with greater rates of cell proliferation in
mammary gland of early prepubertal animals (body
weight = 100 kg) than older animals (body weight >100
kg) [13]. In support of this, regardless of nutritional man-
agement during the pre-weaning period, Ellis and Capuco
[20] demonstrated that there was more epithelial cell pro-
liferation at 2 mo than at 5 or 8 mo age. Those data indi-
cated that mammary gland development and growth is
substantial during the pre-weaning period.

Despite the large volume of research regarding devel-
opment of mammary gland, the functional characteriza-
tion of mammary PAR and MFP including the underlying
gene networks and pathways, as well as putative interac-
tions between both tissues during early development
remain to be fully elucidated. The use of transcriptomics
analysis via microarrays in combination with bioinfor-
matics analysis can lead to an explosion of biological find-
ings and help uncover potential crosstalk between the
PAR and MFP which might affect long-term development
of the mammary gland. Only a few studies have
attempted to use transcriptomics to study PAR and MFP.
For example, Li and colleagues [16] have characterized
the transcriptome of MFP and PAR tissue in 5 mo old
ovariectomized dairy heifers treated with estrogen and
they indentified several genes, most novel, thought to be
regulated by estrogen in MFP and PAR, underscoring a
crucial role for estrogen in mammary development at this
post-weaning stage. We are not aware of similar tran-
scriptomics characterizations in pre-weaned heifers.

In the present study, we have attempted to provide a
molecular signature of PAR and MFP using microarrays
to uncover genes more highly expressed in one tissue vs.
the other. We have corroborated those data through bio-
informatics analysis in order to uncover potential mole-
cules involved in the putative crosstalk between PAR and

MFP in pre-weaned heifers. Our approach is novel but
has the "limitation" common to most bioinformatics
tools, as well as transcript annotation, in that the results
are based on human and rodent data, as opposed to
bovine. However, the large evolutionary similarity
between mammalian species (including bovine; [21]) pro-
vides reasonable confidence that most of the results in
the present study will be suitable for future hypothesis-
driven molecular biology experiments.

Mechanisms of tissue development inferred from 
functional genomics and pathway analysis
The majority of genes that could be classified as preferen-
tially-expressed in MFP or PAR were associated with cel-
lular growth and proliferation, cellular or tissue
development, metabolism, and cellular movement
(Tables 2 and 3 and Additional file 3). It was evident from
IPA analysis, however, that functional findings encom-
passed cells other than epithelial cells or adipocytes, e.g.,
immune and blood/endothelial cells, and fibroblasts
(Additional file 3). These responses are not entirely unex-
pected given our tissue collection protocol, i.e., non-
homogeneous cell types within PAR and MFP.

Overall, it was noteworthy that DEG more highly
expressed in PAR vs. MFP were enriched significantly and
in a greater number (e.g. >230 DEG in cellular growth
and proliferation) in the above categories. Furthermore,
proliferation and cell cycle were enriched in GO analysis
of DEG that were more highly-expressed in PAR vs. MFP
(Figure 1 and 2). The evidently larger growth and prolifer-
ation of PAR relative to MFP uncovered by transcriptom-
ics agrees with findings by Meyer and colleagues [22] who
showed that PAR DNA (mg) was affected more by age
than weight of the animal; whereas, the MFP was more
affected by nutrition than age. In addition, even though it
was not discussed by those authors, calculation of data
reported by Meyer and colleagues [22] indicated a greater
relative increase (>2-fold from 50 to 350 kg of body
weight) in PAR than MFP weight and also greater relative
increase in mg PAR DNA than MFP DNA.

In support of greater relative growth in PAR vs. MFP,
which is by definition an increase in size or number, the
top signaling pathways in DEG more highly expressed in
PAR vs. MFP (Table 4; even though considered non-sig-
nificant at an FDR ≤ 0.05) were all related to cell cycle
progression (Table 2). Among those, calcium signaling
through PI3K has been associated with cell proliferation
and stimulation of quiescent cells to re-enter the cell
cycle, thus, initiating mitosis [23]. In addition, the Wnt/β-
catenin signaling pathway has been related to control of
cell proliferation and differentiation [24,25]. Besides cell
growth and proliferation, significantly-enriched func-
tions among the genes with greater expression in PAR vs.
MFP were related to apoptosis, cell adhesion, cell organi-
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zation and biogenesis, and development (Figure 1 and 2,
Table 2, and Additional file 3). Those data clearly indi-
cated that besides growth in number and dimension of
cells, the mammary PAR underwent a larger degree of re-
organization, both within each cell and between cells to
form a highly-organized tissue compared to MFP, which
is consistent with greater differentiation in PAR com-
pared to MFP (Table 2). The larger degree of organization
to support growth in PAR vs. MFP also is supported by

the significant enrichment and, apparently, induced Actin
Cytoskeleton Signaling (Table 2).

The DEG more highly expressed in MFP vs. PAR indi-
cated that MFP had a more predominant "metabolism-
associated" DEG profile compared with PAR, i.e., lipid
metabolism, molecular transport (includes lipids and
fatty acids), and carbohydrate metabolism were among
the most-enriched functions (Table 3, Figure 2). Further-
more, LXR/RXR and TR/RXR activation were among

Figure 3 Regulatory network expression in mammary parenchyma. Network analysis using differentially expressed genes (DEG) largely ex-
pressed (≥ 1.5-fold) in parenchyma (PAR) vs. mammary fat pad (MFP). The interactions shown involve the effect on expression (E), transcription (T), 
and protein-DNA interactions (PD) between transcription factors (blue background, white font) and other DEG largely expressed (≥ 1.5-fold) in PAR 
vs. MFP. Molecule types have their background highlighted as follows: enzymes, yellow; cytokines, red; growth factors, dark-green; membrane recep-
tors, black (white font); kinases and phosphatases, gray; transporters, light-blue. The legend for the shape of the objects is reported in the figure. The 
intensity of the color in the object is proportional to the fold-difference in PAR vs. MFP.
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Table 5: Parenchyma and fat pad cytokines and growth factors among DEG between tissues (1.5-fold difference in mRNA 
abundance).

Name Description Biological functions/process1 Type2 FD3

DEG highly-expressed in parenchyma vs. fat pad

SPP1 secreted phosphoprotein 1 (osteopontin) Protein binding Cyt 22.1

CXCL10 chemokine (C-X-C motif) ligand 10 Chemokine activity, chemotaxis Cyt 3.5

PDGFA platelet-derived growth factor alpha polypeptide Actin cytoskeleton organization GrF 2.2

DKK1 dickkopf homolog 1 (Xenopus laevis) Inhibition of Wnt signaling GrF 2.1

NRG1 neuregulin 1 Cell-cell communication, murine mammary 
development

GrF 2.0

BDNF brain-derived neurotrophic factor Anti-apoptosis, axon guidance GrF 1.8

NTF4 neurotrophin 4 Regulation of synaptic plasticity GrF 1.7

ANGPT1 angiopoietin 1 Angiogenesis, signal transduction GrF 1.6

IL7 interleukin 7 Anti-apoptosis, cell-cell signalling Cyt 1.6

FGF7 fibroblast growth factor 7 (keratinocyte growth 
factor)

Positive regulation of epithelial cell 
proliferation, signal transduction

GrF 1.6

LTA lymphotoxin alpha (TNF superfamily, member 1) TNF receptor binding, immune response Cyt 1.6

IL1B interleukin 1, beta Immune response, chemotaxis, anti/pro-
apoptosis

Cyt 1.6

CCL2 chemokine (C-C motif) ligand 2 Chemotaxis, immune response, endothelial 
cell proliferation

Cyt 1.5

CXCL14 chemokine (C-X-C motif) ligand 14 Chemotaxis, immune response Cyt 4.4

CXCL9 chemokine (C-X-C motif) ligand 9 Chemotaxis, immune response Cyt 2.3

VAV3 vav 3 guanine nucleotide exchange factor Metal ion binding, protein binding Cyt 2.2

HDGF hepatoma-derived growth factor Cell proliferation, regulation of transcription, 
DNA-dependent

GrF 1.9

CXCL6 chemokine (C-X-C motif) ligand 6 Chemotaxis, immune response Cyt 1.9

MDK midkine (neurite growth-promoting factor 2) Cell differentiation/proliferation, nervous system 
development

GrF 1.7

DEG highly-expressed in fat pad vs. parenchyma

ADIPOQ adiponectin, C1Q and collagen domain containing Negative regulation of I-kappaB kinase/NF-
kappaB cascade, negative regulation of 
inflammation

GrF 24.1

FGF2 fibroblast growth factor 2 (basic) Chemotaxis, positive regulation of 
angiogenesis and epithelial cell proliferation

GrF 3.5

GRP gastrin-releasing peptide Signal transduction, hormone activity, 
neuropeptide signaling

GrF 2.9

NOV nephroblastoma overexpressed gene Insulin-like growth factor binding, regulation 
of cell growth

GrF 2.5

FGF8 fibroblast growth factor 8 (androgen-induced) Cell proliferation, signal transduction, 
induced by androgens in breast cancer cells

GrF 1.9

LEP Leptin Hormone activity, regulation of metabolic 
process

GrF 1.9

IL13 interleukin 13 Cell motion, cell-cell signaling, immune 
response

Cyt 1.7

JAG1 jagged 1 (Alagille syndrome) Angiogenesis, cell fate determination, 
regulation of cell proliferation, activation of 
Notch signaling pathway

GrF 1.6
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IL1A interleukin 1, alpha Immune response, positive regulation of 
cytokine secretion, pro-angiogenesis

Cyt 1.6

CCL14 chemokine (C-C motif) ligand 14 Cellular calcium homeostasis, immune response, 
positive regulation of cell proliferation

Cyt 1.9

OGN Osteoglycin Protein binding GrF 1.8

EDA ectodysplasin A Cell differentiation, immune response, positive 
regulation of NF-kappaB transcription

Cyt 1.7

CCL24 chemokine (C-C motif) ligand 24 Chemotaxis, immune response, cell-cell signaling Cyt 1.7

CXCL2 chemokine (C-X-C motif) ligand 2 Chemotaxis, immune response Cyt 1.6

CCL20 chemokine (C-C motif) ligand 20 Chemotaxis, immune response, cell-cell 
signalling

Cyt 1.5

Reported in bold font are cytokines and growth factors differentially expressed in one of the two tissues which can potentially interact 
with highly-expressed DEG in the other tissue as shown in networks reported in Figure 5 and 6.
1 NCBI GO annotation
2 Cytokines (Cyt) and growth factor (GrF)
2 Fold difference (FD) in gene expression between tissues

Table 5: Parenchyma and fat pad cytokines and growth factors among DEG between tissues (1.5-fold difference in mRNA 
abundance). (Continued)

enriched signaling pathways (Table 4). To some extent tion and also the MFP composition data reported by

these findings are not unexpected and could partly be
explained by the fact that this tissue is mainly composed
of adipocytes, a feature reflected by the higher level of
expression of RXRG (ca. 8-fold vs. PAR), PPARG (ca. 3-
fold), NR1D1 (ca. 2-fold), and KLF4 (ca. 2.5-fold) all of
which belong to classical pro-adipogenic pathways (Addi-
tional file 2) [26,27].

When we considered the effect on function among
DEG more highly expressed in MFP vs. PAR, the large
enrichment of tissue development (including connective
tissue; Table 3) indicated morphological remodeling.
Although the same analysis appeared to suggest that
overall cellular growth and proliferation was lower in
MFP vs. PAR, it should be noted that several pro-adipo-
genic factors (e.g., PPARG, NR1D1, and KLF4) were sub-
stantially enriched in MFP vs. PAR, some of those known
to be associated with continued/sustained mitotic clonal
expansion (e.g., NR1D1, KLF4) of committed pre-adipo-
cytes as well as terminal differentiation, maturation, and
hypertrophy of adipocytes (e.g., PPARG, ADIPOQ) [27].
Because this entire process also is regulated by hormones
such as insulin, it is likely that nutritional intervention at
this early age leading to altered insulin profiles over the
long-term could alter the extent of adipogenesis. This
point also is supported by the significant enrichment of
response to insulin stimulus in the GO analysis of DEG
more highly expressed in MFP vs. PAR (Figure 2).

The enrichment of morphological remodeling in DEG
more highly expressed in MFP over PAR was probably
due to the increase in size of the cells by accumulation of
triacylglycerol, as suggested both by the enrichment of
functions related to synthesis and transport of lipid as
well as synthesis of acyl-CoA and carbohydrate utiliza-

Daniels et al. for the same heifers [10] (Table 3, Figure 1
and 2). In the present experiment, the weight of MFP of
the selected heifers at slaughter averaged 193 g and repre-
sented ca. 95% of total mammary gland weight [10], thus,
indicating that a large proportion of the mammary tissue
in these animals was fat pad. Sinha and Tucker [28]
reported a considerable enlargement of the MFP during
the pre-weaning phase (birth to 2-3 mo age), and more
recent work showed similar results [22,29]. More
recently, Meyer and colleagues [22] reported that the
increase in MFP weight was more related to enhanced
hypertrophy than proliferation, as also evidenced by ratio
g of tissue/mg DNA from 50 to 350 kg body weight which
was very similar for PAR but increased ca. 3-fold in MFP
between 50 kg and 350 kg heifers. Our results suggesting
that MFP development was partly related to adipocyte
hypertrophy and remodeling appear to be supported by
previous findings.

More highly-expressed genes in MFP vs. PAR were
preferentially associated with cellular movement (e.g.,
migration and invasion of cells) and cell-to-cell signaling
(e.g., activation and adhesion of cells), functions that are
closely related to the immune system (Table 3, Additional
file 3). In addition, top signaling pathways among DEG
more highly expressed in MFP vs. PAR were primarily
related to response to stimuli, e.g., acute phase response,
complement system, LPS/IL-1 mediated inhibition of
RXR function, IL-8 signaling, and oxidative stress
response (Table 4). These data suggest that a significant
amount of the DEG more highly expressed in MFP vs.
PAR are immune-related genes or that the MFP vs. PAR
compartment is more enriched with immune cells (e.g.,
macrophages) as it has been observed previously in adi-
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pose tissue from rodents and humans [30]. Our network
analysis (see section below), and previous heifer mam-
mary proteomics data [31], provide evidence that these
immune-related pathways in MFP vs. PAR might be bio-
logically relevant in the context of mammary gland devel-
opment.

We observed a more significant enrichment of IGF-1
signaling among DEG more highly expressed in MFP vs.
PAR than vice versa (Table 4 and Additional file 3). This
pathway was previously related to estrogen and its recep-
tor in 5 mo-old heifers, where increased IGF1 expression
was observed after estrogen treatment [5]. In heifers and
rodents [32], circulating estrogen seems to act through its
receptor and induces MFP cells to secrete IGF-1, which
will then act in a paracrine fashion on PAR cells. At least
in mice, such a mitogenic effect is observed in spite of low
plasma levels of IGF-1 [33]. Our findings, however, do
not support an induction of IGF-1 via stimulation of
estrogen in MFP compared with PAR. Instead, data sug-
gest that PAR was probably more sensitive to estrogen
due to the greater mRNA abundance of ESR1 which
agrees with a previous study [5] where mRNA expression
of ESR1 was more predominant (ca. 3-fold greater) in
PAR than MFP. Furthermore, no difference in IGF1
expression was detected by the microarray analysis or
qPCR [10] between the two tissues.

Pathway analysis underscored a more prominent role of
IGF-1 signaling in MFP than PAR, which suggests greater
sensitivity of MFP to IGF-1 signaling. This is supported
by the detailed visualization of the pathway (Additional
file 3) which indicates that several key factors in the IGF-
1 signaling cascade had greater expression in MFP com-
pared with PAR (e.g., AKT, IRS1, Ras). Because both
IGFBP5 and 6 were more abundant in MFP vs. PAR
(Additional files 2 and 3), it could be possible that IGF1
activity was reduced [34]. A similar result was found for
IGFBP5 and 6 via qPCR in the study of Daniels et al. [10].
As mentioned above, PAR is thought to be affected by
local stimulators (e.g., IGF-1) derived from MFP but in
our study it appeared that IGF-1 was not a major player in
this tissue as it was not among the significantly-enriched
pathways (Table 4). Our findings leave open the possibil-
ity that other paracrine factors secreted by PAR cells,
which can be released in response to circulating estrogen
[1], or by the MFP can play a more prominent role during
this stage of development in bovine mammary gland.

Transcriptional network analysis reveals a central role for 
several transcription regulators in PAR and MFP 
development
Mammary parenchyma
Gene network analysis among DEG that were more
highly-expressed in PAR vs. MFP (Figure 3) revealed that
the transcription regulators MYC (oncogene) and TP53

(tumor suppressor) could play central roles. MYC has
been detected in prepubertal [35] and lactating bovine
mammary tissue [36]. Expression of MYC mRNA is
increased by IGF-1 [37], and a primary response of MYC
is to enhance epithelial cell proliferation. Recent evidence
showed that MYC is essential in mediating Wnt-signaling
and subsequent cell proliferation and growth and it also
appears to control protein expression through mRNA
translation [38,39], all of which can be considered impor-
tant in PAR development.

TP53 can induce cell apoptosis or cell cycle arrest in
response to different types of stress, i.e., it is considered
to be a central control point of cell transformation and
tumorigenesis [40,41]. TP53 activation can induce a tran-
sient (cell cycle arrest) or a permanent block of cell prolif-
eration (senescence), or can induce the activation of cell
death pathways in response to genotoxic stress [42]. A
classical feature of TP53 activation in response to physio-
logical stress (e.g., oxidative stress) leading to DNA dam-
age is the activation of signaling cascades leading to DNA
repair, recombination, and the control of DNA replica-
tion ultimately protecting cells from endogenous DNA
damage [42]. Therefore, on one hand our functional anal-
ysis (Figures 1 and 2 and Tables 2 and 4) does not support
low cell cycle activity in PAR but, rather, a larger cell cycle
activity compared with MFP. On the other hand the more
highly expressed DEG in PAR vs. MFP were enriched sig-
nificantly in functions associated with DNA replication,
recombination, and repair (Table 2 and Figure 2). In addi-
tion to MYC and TP53, CTNNB1 also may have poten-
tially controlled expression of several genes that were
more highly expressed in PAR vs. MFP (Figure 3). The
biological significance of CTNNB1 in the present experi-
ment is not apparent, but this protein is known to have a
pivotal role in alveologenesis during pubertal mammary
development in mice [43].
Mammary fat pad
Transcriptional gene networks generated among DEG
with ≥ 1.5-fold expression in MFP vs. PAR (Figure 4)
encompassed a large number of metabolism-related
genes, revealing a pattern that would be expected in a
classical adipocyte network [26], i.e., several stages of adi-
pogenesis were revealed by some of the overexpressed
genes. For example, expression (Figure 4) of NR1D1 and
KLF4 was suggestive of pre-adipocytes undergoing
mitotic clonal expansion; whereas, expression of PPARG
and its putative targets FASN, acetyl-Coenzyme A car-
boxylase alpha [ACACA], mitochondrial glycerol-3-phos-
phate acyltransferase [GPAM], elongation of very long
chain fatty acids-like 6 [ELOVL6], LPL, CD36 molecule
(thrombospondin receptor) [CD36], FABP4, acyl-CoA
synthetase long-chain family member 1 [ACSL1], and
SCD was indicative of lipid filling that is more character-
istic of a mature adipocyte [27]. Not surprisingly, network
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analysis showed that PPARG is a central transcription
factor among genes more highly expressed in MFP vs.
PAR, and its expression at this stage of development
could be essential for adipogenesis and lipid filling in
MFP compared with PAR [44] but also for the production
of adipokines such as ADIPOQ and LEP both of which
could exert control over tissue inflammation (e.g.,
through regulation of prostaglandin-endoperoxide syn-
thase 2 [PTGS2]).

PPARG interacts closely with RXRG, RXRB, and poten-
tially with lipin 1 (LPIN1) [45]. RXR transcription factors
participate in the regulation of cholesterol and fatty acid
metabolism by interacting with other transcription regu-
lators such as PPARG (i.e., via protein-protein interac-
tions not shown in Figure 4) [44]. LPIN1 is one of 3
isoforms that is associated with triacylglycerol synthesis
in rodent adipose tissue [46] and fatty acid oxidation in
rodent liver [45]. All lipin isoforms were more expressed
in MFP vs. PAR (Additional file 2), with LPIN1 being the
only one having >1.5-fold larger mRNA abundance in
MFP vs. PAR. Several other genes in addition to those
discussed are considered to play central roles in adipose
tissue, including DGAT2 (>11-fold higher expressed in
MFP vs. PAR). Although not present in the network
shown in Figure 4, DGAT2 is considered to be a PPARG-
target gene in non-ruminants and is related to triglycer-
ide synthesis [44]. THRSP (potential RXRB target gene;
Figure 4) is a lipogenic transcription factor and it is syn-
ergistically regulated by thyroid hormone and insulin
[47,48] as well as long-term via the transcription regula-
tor carbohydrate responsive element binding protein
(MLXIPL or ChREBP).

Other central transcription factors uncovered by IPA
analysis among genes more highly-expressed in MFP vs.
PAR were FOS, HNF4A, EPAS1, KLF2, and EGR2 (Figure
4, Additional file 2). FOS has been previously associated
with eukaryotic cell proliferation and differentiation
[49,50]. However, the overall transcriptomics functional
analysis of DEG more expressed in MFP vs. PAR indi-
cated a lower degree of proliferation/differentiation in
MFP vs. PAR (Figures 1 and 2 and Table 3). Transcription
of FOS is induced with different potency by epidermal
growth factor, PDGF, transforming growth factor beta
[TGFB], tumor necrosis factor, FGF, IL-1, cAMP, estro-
gen, and other growth factors that have diverse roles in
the cell [49,50]. Thus, in developing bovine mammary tis-
sue this transcription regulator might be essential for
MFP development and would provide a functional link
with PAR-derived cytokines/growth factors such as IL1B
(Figure 5, discussed below). A recent study in mouse
mammary cells showed that TGFB regulates the expres-
sion of HNF4A, which in turn could control cell prolifera-
tion [51]. Interestingly, MFP expressed greater mRNA of
TGFB1 compared with PAR (Additional file 2), which

might indicate that, at the moment of harvesting, the
influence of PAR-derived TGFB was not relevant for
MFP. KLF2, was among the TF which potentially could
have controlled expression of several DEG more
expressed in MFP vs. PAR (Figure 4). The KLF2 protein is
an embryonic stem cell-related factor which appears to
control pluripotency driven by MYC [52].

Also noteworthy was the higher expression of EPAS1 in
MFP vs. PAR. EPAS1 is preferentially expressed in vascu-
lar endothelial cells and plays a pivotal role in the forma-
tion of mature vascular tissue [53]. As indicated by
functional analysis, angiogenesis was highly-enriched
among DEG with ≥ 1.5-fold greater expression in MFP vs.
PAR (Table 4); however, the functional analysis did not
indicate a greater degree of angiogenesis in MFP com-
pared with PAR. The MFP is essential for ductal morpho-
genesis in developing mammary tissue, but also it is
subject to marked angiogenesis upon stimulation by
some factors released from PAR [54]. To our knowledge,
EGR2 has not been studied in the context of mammary
gland development. Our results suggest that this protein
influenced the expression of several genes more highly-
expressed in MFP vs. PAR (Figure 4). Among those puta-
tive targets, EGR2 could have control over the expression
of growth hormone receptor [GHR] (Figure 4). The
greater expression of GHR in MFP vs. PAR agrees with
qPCR data from Daniels and colleagues [10].

Bidirectional crosstalk between tissues inferred from 
network analysis
The potential effects of MFP-derived growth factors on
the developing mammary PAR have been previously
studied by several groups with different species
[11,55,56]. Similarly, an effect of paracrine factors from
PAR on MFP has been suggested from studies of normal
mammary epithelial cells [12] and breast tumor epithelial
cells [57]. These types of interactions could occur in pre-
pubertal mammary tissue, for example, through growth
factors and cytokines such as molecules from the EGF
and FGF families [11], which if secreted by either tissue
could then act in a paracrine fashion. Thus, to uncover
additional factors that could play a role in PAR and MFP
development, we evaluated the presence of cytokines and
growth factors that might be secreted preferentially by
one tissue or the other. The criteria for this analysis was
implemented using IPA and was based on the principle
that the cytokines and growth factors more highly-
expressed in one tissue and, very likely, secreted by it,
could potentially affect those DEG that are more highly-
expressed in the other tissue (i.e., higher sensitivity to the
cytokine or growth factor release in greater amounts by
the other tissue) via effects at the level of mRNA expres-
sion, functional activation, protein modification, protein-
protein interaction, protein-RNA interaction, protein
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phosphorylation, and protein translocation (see legends
in Figure 5 and 6). The multitude of relationships, mostly
from rodent and human studies, underscores the impor-
tance of these molecules on mammary development.

Model of putative tissue interactions
Gene network and pathway analysis using IPA allowed us
to develop a putative model that would allow both mam-
mary compartments to interact and elicit large-scale
changes in the transcriptome and, potentially, tissue
function via the synthesis of cytokines and growth fac-
tors, many of which have not been studied previously in
the context of bovine mammary development. Although
our study deals with mRNA expression only, it is assumed

that higher expression of cytokines and growth factors in
one tissue likely results in greater amount of protein syn-
thesized and very likely more protein secreted. The effect
of those signaling molecules can be both at the paracrine,
autocrine, as well as endocrine levels. The molecules
uncovered by our analysis as being preferentially
expressed in PAR compared with MFP or vice versa could
represent paracrine factors which allow for crosstalk
between the two tissues and play important roles in pro-
liferation and development of both epithelial and MFP
cells (Figure 7). More importantly, these could be consid-
ered an important starting point for future detailed
molecular studies of the interaction between PAR and
MFP.

Figure 4 Regulatory network expression in mammary fat pad. Network analysis using differentially expressed genes (DEG) largely expressed (≥ 
1.5-fold) in mammary fat pad (MFP) vs. parenchyma (PAR). The interactions shown involve the effect on expression (E), transcription (T), and protein-
DNA interactions (PD) between transcription factors (blue background, white font) and other DEG largely expressed (≥ 1.5-fold) in MFP vs. PAR. Mol-
ecule types have their background highlighted as follows: enzymes, yellow; cytokines, red; growth factors, dark-green; membrane receptor, orange. 
Highlighted in dark-blue is THRSP, which is considered a key lipogenic transcription factor but IPA did not recognize it as such. The legend for the 
shape of the objects is reported in the figure. The intensity of the color in the object is proportional to the fold-difference in MFP vs. PAR.
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Signaling molecules likely released in greater amounts
by PAR compared with MFP, through more mRNA abun-
dance in MFP vs. PAR and vice versa, and potentially act-
ing on MFP appear to affect, in both tissues, similar
functions including cell movement, development, growth
and proliferation, cell-mediated immune response, and
cell-to-cell signaling and interactions. However, those
signaling molecules likely released in greater amounts by
PAR compared with MFP can potentially affect cell death
in MFP cells; whereas, those released in greater amounts
by MFP compared with PAR can potentially affect DNA
metabolism in PAR (Figure 7). The potential effects of

cytokines and growth factors on cellular growth, develop-
ment, proliferation, and cell signaling in mammary tissue
have been reported for both tissues in a recent review of
the literature [4].

Four signaling pathways could have been potentially
stimulated reciprocally between the two tissues (Figure
7). Among those were signaling pathways related to acute
phase response, axonal guidance, glucocorticoid receptor,
and IGF-1 response. The biological significance of the
first two is not apparent. Also for the glucocorticod
receptor signaling a biological significance is not appar-
ent in our study, nonetheless this pathway has been previ-

Figure 5 Cytokine and growth factor enrichment in mammary parenchyma. Interaction of cytokines and growth factors highly expressed in pa-
renchyma (PAR) relative to mammary fat pad (MFP) with DEG highly expressed in MFP vs. PAR. Objects for cytokines and growth factors largely ex-
pressed in PAR vs. MFP are denoted by blue-filled objects. Objects for DEG largely expressed in MFP vs. PAR are depicted in shades of orange. The 
intensity of the color relates to the fold difference in PAR vs. MFP (blues) of MFP vs. PAR (orange). Molecule types have their background highlighted 
as follows: enzymes, yellow; cytokines and growth factors potentially secreted by PAR, red; cytokines and growth factors highly-expressed in MFP vs. 
PAR, green; membrane and G-coupled receptors, black (white font); phosphatase and kinases, gray; transcription factors and nuclear-dependent tran-
scription regulators, dark-pink. All other molecules have white background. The intensity of the shaded color in the object relates to the fold-difference 
in MFP vs. PAR (orange) or PAR vs. MFP (blue). Red arrows denote effects on gene expression, purple arrows denote activation, dark-violet arrows de-
note phosphorylation, and green arrows denote protein-protein interactions. Arrow edges are expression (E), activation (A), modification (m), protein-
protein interaction (PP), protein-RNA interaction (PR), phosphorylation (P), and translocation (TR). Legend for the shape of the objects is reported in 
the figure.
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ously associated with mammary development. In fact,
glucocorticoid receptor signaling was associated with the
normal development of the virgin mouse mammary
gland through stimulation of ductal epithelial cell prolif-
eration [58] and with regulating lobuloalveolar develop-
ment during pregnancy [59].

The importance of IGF-1 signaling in PAR and MFP
development has been discussed above and in previous
papers/reviews (e.g., [4,60]). Interestingly, our data sug-
gested that MFP likely affected IGF-1 signaling in PAR
not through higher synthesis of IGF-1 but rather by mod-
ulating the down-stream signaling. More importantly,
our data suggested an active role of PAR in affecting IGF-
1 signaling in MFP and based on the number of genes
affected and the fact that IGF1 signaling was more signif-
icantly enriched in DEG with greater expression in MFP
vs. PAR, the stimulation of this pathway appears to be as
strong or stronger in MFP than PAR (Table 4 and Figure
7).

Several canonical pathways were uniquely affected in
one tissue by signaling molecules released in greater
amounts from the other tissue (Figure 7). The cytokines
and growth factors preferentially released from PAR
compared with MFP seem to influence several nuclear
receptors related to lipid metabolism (FXR/RXR, LXR/
RXR/PPAR, and VDR/RXR activation), but also mainte-
nance of pluripotency and immune-related pathways
(NRF2-mediated oxidative stress) in MFP. The signaling
molecules preferentially released from MFP vs. PAR seem
to influence PAR signaling pathways with distinctive roles
during this stage of development, e.g., actin cytoskeletal
signaling (Table 5).

Additional pathways not found to be highly-significant
when all DEG were analyzed (Table 4) also seemed to be
affected by signaling molecules likely released in greater
amounts by MFP compared with PAR, including ERK/
MAPK signaling, FGF signaling, and PDGF signaling
(Figure 7). ERK/MAPK signaling is related to a broad

Figure 6 Cytokine and growth factor enrichment in mammary fat pad. Interaction of cytokines and growth factors highly expressed in mammary 
fat pad (MFP) relative to parenchyma (PAR) with differentially expressed genes (DEG) highly expressed in PAR vs. MFP. Objects for cytokines and 
growth factors largely expressed in MFP vs. PAR have an orange shade. DEG largely expressed in PAR vs. MFP are depicted in blue shades. The intensity 
of the shaded color in the object relates to the fold-difference in MFP vs. PAR (orange) or PAR vs. MFP (blue). Molecule types have their background 
highlighted as follows: enzymes, yellow; cytokines and growth factors potentially secreted by MFP, red; cytokines and growth factors highly expressed 
in PAR vs. MFP light-green; membrane and G-coupled receptors, black (white font); phosphatase and kinases, gray; transcription factors and nuclear-
dependent transcription regulators, dark-pink. All other molecules have white background. Red arrows denote effects on gene expression, purple ar-
rows denote activation, dark-violet arrows denote phosphorylation, and green arrows denote protein-protein interaction. Arrow edges are expression 
(E), activation (A), modification (m), protein-protein interaction (PP), protein-RNA interaction (PR), phosphorylation (P), and translocation (TR). Legend 
for the shape of the objects is reported in the figure.
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Figure 7 Model of inter-tissue crosstalk. Summary of potential effects of cytokines and growth factors predominantly secreted by parenchyma 
(PAR) or mammary fat pad (MFP) tissue on molecular and cellular functions and signaling pathways suggested by differentially expressed genes (DEG) 
of the MFP or PAR. The model is based on results from the current study and functions and pathways reported are relative to the functional analysis 
performed by Ingenuity Pathway Analysis® of interactive networks shown in Figure 5 and 6. See discussion for description of the model.
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range of intracellular functions [61] and its role in devel-
oping mammary gland is not apparent. FGF signaling is
related to the induction of potent mitogenic and angio-
genic cellular processes and it is involved in embryonic
[62] and postnatal mammary development [63] as well as
with tumors of diverse origin, including mammary
tumors [64]. PDGF signaling promotes mammary cancer
progression and can induce apoptosis of human and
murine mammary carcinoma cells when inhibited [65],
suggesting a fundamental role in normal mammary dif-
ferentiation and development. In this regard, Orr
Urtreger and Lonai [66] revealed a possible interaction
during organogenesis between epithelial and mesenchy-
mal tissue in mice, i.e., PDGFA was expressed in mam-
mary epithelial tissue and its receptor in the surrounding
mesenchymal tissue. We are not aware of research in the
prepubertal mammary gland of heifer calves that studied
these signaling pathways.

Conclusions
We uncovered specific transcriptomic signatures charac-
terizing genes with large difference in expression between
MFP and PAR tissues. Not surprisingly, most of the genes
that were more highly expressed in MFP vs. PAR were
characteristic of adipose tissue, and those more expressed
in PAR vs. MFP were characteristic of an epithelial tissue
undergoing expansion and remodeling. Overall, our anal-
yses suggested a large degree of interaction between the
two tissues and allowed envisaging a reciprocal influence
between the two tissues during this stage of development.
This was indicated by the potential effect that the signal-
ing molecules preferentially expressed in PAR vs. MFP
and, likely released, have on lipid metabolism-related
functions/pathways, which from our data was what dis-
tinguished the most those genes more highly expressed in
MFP compared with PAR. Similarly, the cytokines and
growth factors more highly expressed in MFP compared
with PAR potentially affected the functions/pathways
related to cell cycle, development, and proliferation in
PAR, which our data highlighted as the main functions
represented among the genes more highly-expressed in
PAR vs. MFP.

Recent efforts have largely focused on MFP as a source
of paracrine factors but our study clearly showed that
PAR cells could play the same role. Based on the current
analysis, the number of cytokines and growth factors that
potentially are secreted in greater amounts by each tissue
and affect molecules in the other underscores the concept
of crosstalk already postulated by several investigators
[11,16,67]. Ultimately, these bidirectional interactions
might be required to coordinate mammary tissue devel-
opment under normal circumstances or in response to
environmental stimuli, such as nutrition.

Overall, the model generated based on the results from
the present experiment predicts a large degree of cross-
talk between MFP and PAR with a reciprocal regulation.
The main factors at play appear to encompass several
cytokines and growth factors preferentially released by
PAR including SPP1, CXCL10, PDGFA, DFF1, and NRG1
which are probably slowing down the proliferation of
MFP and increasing its lipid accumulation. Concomi-
tantly, cytokines and growth factors released preferen-
tially by MFP such as ADIPOQ, FGF2, GRP, and NOV are
probably inducing major re-organization and prolifera-
tion of the PAR.

Methods
Animals and sampling
Samples used in this study were a subset obtained from a
larger experiment [10,68,69]. All animal procedures were
conducted under protocols approved by the Virginia Tech
Institutional Animal Care and Use Committee. Specific
details on feeding, management, and sample collection
have been reported previously [10,68,69]. For the current
experiment, 19 PAR and 21 MFP samples from 21 Hol-
stein heifer calves (65 d-old; 77.5 ± 2.6 kg BW) represent-
ing animals on all diets reported in [10,68,69] were used.
Additionally, samples were used to conduct a direct tran-
scriptomics comparison between parenchyma and fat
pad. For the present experiment, MFP tissue was har-
vested from the mammary fat adjacent to the body wall,
while PAR tissue was harvested from the macroscopic
epithelial portion of the gland. Subsamples of PAR and
MFP were snap-frozen in liquid- N2, shipped overnight to
the University of Illinois, then stored in liquid- N2 until
use.

Extraction of RNA, cDNA synthesis, microarrays, and real-
time PCR
Details of these procedures are reported in Additional file
1, particularly in Tables S1-S4 and Figure S1. Briefly, PAR
and MFP tissues were weighed (~0.5 g) and total RNA
extracted using ice-cold Trizol (Invitrogen, Carlsbad,
CA). The purity of RNA (A260/A280) was above 1.9.
RNA quality was assessed using a 2100 Bioanalyzer (Agi-
lent Technologies, Santa Clara, CA). Samples had a
median RNA integrity (RIN) value of 7.7 ± 0.7. cDNA
synthesis for microarrays was carried out with a total of
10 μg of RNA (~1 μg/μL). Methods for cleanup and amin-
oallyl-labeling of cDNA were described previously [70].
Briefly, the aminoallyl-labeled cDNA sample was dried
using a speed-vac (Eppendorf Vacufuge® Concentrator,
Eppendorf, Westbury, NY) for ~1 h and then resus-
pended in 4.5 μl 0.1 M sodium carbonate buffer (pH =
9.0). Four and a half microliters of the appropriate Cy dye
ester (Cy3 or Cy5; Amersham, Piscataway, NJ) was added
to couple the aa-cDNA and incubated for at least 1 h at
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room temperature. Removal of uncoupled dye was done
using the Qiagen PCR Purification Kit.

A bovine oligonucleotide microarray developed at the
University of Illinois [71] with > 13,000 bovine oligonu-
cleotides (70-mers) was used to identify large-scale
changes in gene expression. Details on the development,
annotation, hybridization protocol, and scanning of
arrays have been reported previously [71]. In order to
increase reliability of data, the following filtering criteria
were applied: only slides with ≥ 20,000 (out of > 27,000)
spots with a median signal intensity ≥ 3 SD above back-
ground in both Cy3 and Cy5 channels and a mean inten-
sity ≥ 400 relative fluorescent units in both Cy3 and Cy5
channels were used. The microarray data have been
deposited in NCBI's Gene Expression Omnibus [72] and
are accessible through GEO Series accession number
GSE20363 http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE20363.

cDNA to be used in qPCR was synthesized starting
from 100 ng total RNA mixed with 1 μg dT18 (Operon
Biotechnologies, Huntsville, AL), 1 μL 10 mmol/L dNTP
mix (Invitrogen, Carlsbad, CA), 1 μL Random Primers (3
μg/μL, Invitrogen, Carlsbad, CA), and 7 μL DNase/RNase
free water. A total of 9 μL of Master Mix composed of 4.5
μL 5× First-Strand Buffer (Invitrogen, Carlsbad, CA), 1 μL
0.1 M DTT (Invitrogen, Carlsbad, CA), 0.25 μL (100 U) of
SuperScript™ III RT (Invitrogen, Carlsbad, CA), 0.25 μL
of RNase Inhibitor (Promega, Madison WI), 3 μL DNase/
RNase free water was added. The reaction was performed
in an Eppendorf Mastercycler® Gradient (Eppendorf,
Westbury, NY) using the following temperature program:
25°C for 5 min, 50°C for 60 min and 70°C for 15 min.
cDNA was then diluted 1:3 with DNase/RNase free water.
Four μL of diluted cDNA mixed with 5 μL of SYBR green
(Applied Biosystems, Foster City, CA), 0.4 μL of each 10
μM primers, and 0.1 mL of DNase/RNase free water. For
real-time RT-PCR each sample was run in triplicate to
control reproducibility of the essay and a 4 point relative
standard curve (4-fold dilution of cDNA originate from a
pool RNA of all samples) plus the non-template control
were used. The reactions were performed in an ABI
Prism 7900 HT SDS instrument (Applied Biosystems,
Foster City, CA) using the following conditions: 2 min at
50°C, 10 min at 95°C, 40 cycles of 15 s at 95°C, and 1 min
at 60°C. PPP1R11, MTG1, RPS15A were used as internal
control genes to normalize qPCR data [73]. Additional
details are reported in Additional file 1.

Data analyses
Data from a total of 82 microarrays (38 PAR and 44 MFP;
41 samples from 19 animals contributing both PAR and
MFP and 3 animals contributing only MFP) were normal-
ized for dye and array effects (i.e., Lowess normalization
and array centering) and used for statistical analysis. All

data were analyzed using the Proc MIXED procedure of
SAS (SAS, SAS Inst. Inc., Cary, NC). To determine differ-
ences in mRNA expression between PAR and MFP, the
statistical analysis had to be conducted with both PAR
and MFP data together, i.e., fixed effects in the model
were tissue and dye while random effects included calf
and microarray. Raw P values for the tissue effect were
adjusted using Benjamini and Hochberg's FDR [74]. Dif-
ferences in relative expression between PAR and MFP
were considered significant at an FDR-adjusted P = 0.05
for tissue. For a more stringent characterization between
the two tissues, a ≥ 1.5-fold difference in mRNA expres-
sion was set as threshold among the DEG. Data from
qPCR were analyzed using the same statistical model
described above. Differences were considered significant
at P ≤ 0.05. The complete statistical output of the
microarray analysis is available in Additional file 2.

Data mining
Data mining was performed using IPA (Ingenuity Sys-
tems, Inc., http://www.ingenuity.com) after uploading
into the system the entire microarray and qPCR data set
with associated FDR and fold differences between PAR
and MFP. In IPA, thresholds of FDR = 0.05 and a ≥ 1.5-
fold difference were applied to filter significantly affected
genes for function, pathway, and network analyses effects.
The significance of the association between the dataset
filtered by these thresholds and the IPA functions was
calculated by IPA using a Benjamini-Hochberg's FDR ≤
0.01 using the mapped genes on our microarray as back-
ground. For canonical pathway analysis we used FDR ≤
0.05 because the 1.5-fold DEG in PAR vs. MFP did not
enrich any pathways at an FDR ≤ 0.01. For a full interpre-
tation of the data generated by the functional analysis in
IPA we used the "effect on function" feature in IPA, which
allowed determining among those significantly-enriched
functions, which specific sub-function/s, tissue, or cellu-
lar component/s affected the function and in which
direction (i.e., increase/decrease the function). Details of
the analysis are reported in Additional file 3 and a sum-
mary in Tables 2 and 3.

The gene ontology (GO) analysis was performed using
DAVID [75] following the criteria suggested [76]. A Ben-
jamini-Hochberg FDR correction of P-value ≤ 0.05 was
set as significant for all categories and all GO terms. The
GO analysis was performed in both combined and sepa-
rate lists of DEG with ≥ 1.5-fold difference between the
two tissues. Each separate list of genes with ≥ 1.5-fold dif-
ference between the two tissues was used for interpreta-
tion of all DEG list using Excel software. Details of the
methods are reported in Additional File 1 and full results
are reported in Additional file 4 and main findings in Fig-
ures 1 and 2.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20363
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20363
http://www.ingenuity.com
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Network analyses
Transcriptional networks among transcription factors
and DEG with ≥ 1.5-fold difference between PAR and
MFP and molecular relationships between cytokines and
growth factors preferentially expressed in one tissue vs.
the other with DEG more highly expressed in the other
tissue were uncovered/built using IPA features and
knowledge base.

Additional material
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