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AERODYNAMIC DESIGN SENSITIVITIES ON AN UNSTRUCTURED MESH
USING THE NAVIER-STOKES EQUATIONS AND A DISCRETE ADJOINT

FORMULATION

Eric J. Nielsen

(ABSTRACT)

A discrete adjoint method is developed and demonstrated for aerodynamic design optimization on

unstructured grids. The governing equations are the three-dimensional Reynolds-averaged

Navier-Stokes equations coupled with a one-equation turbulence model. A discussion of the

numerical implementation of the flow and adjoint equations is presented. Both compressible and

incompressible solvers are differentiated, and the accuracy of the sensitivity derivatives is verified

by comparing with gradients obtained using finite differences and a complex-variable approach.

Several simplifying approximations to the complete linearization of the residual are also pre-

sented. A first-order approximation to the dependent variables is implemented in the adjoint and

design equations, and the effect of a “frozen” eddy viscosity and neglecting mesh sensitivity terms

is also examined. The resulting derivatives from these approximations are all shown to be inaccu-

rate and often of incorrect sign. However, a partially-converged adjoint solution is shown to be

sufficient for computing accurate sensitivity derivatives, yielding a potentially large cost savings

in the design process. The convergence rate of the adjoint solver is compared to that of the flow

solver. For inviscid adjoint solutions, the cost is roughly one to four times that of a flow solution,

whereas for turbulent computations, this ratio can reach as high as ten. Sample optimizations are

performed for inviscid and turbulent transonic flows over an ONERA M6 wing, and drag reduc-

tions are demonstrated.
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1Introduction

As computing capabilities have continued to advance in recent years, the field of computa-

tional fluid dynamics (CFD) has received an increasing amount of attention as an everyday tool.

Traditionally, CFD has served largely as an analysis tool during the design process. With the tre-

mendous growth in today’s computing power however, designers are looking for CFD to play a

larger role in the initial development of new concepts.

Early attempts at design using CFD were based on simplified physical models such as panel

methods and linear theory.1 Where gradient-based optimization algorithms were employed, aero-

dynamic sensitivity information was calculated using simple finite-difference techniques.1-3 This

method of computing design sensitivities requires virtually no modifications to the existing analy-

sis code.

Unfortunately, many flows that interest the designer contain complex flow physics not able to

be captured using such simplified models. For example, high-lift applications may contain highly

non-linear regions where more accurate models are required. To compound the problem, the

finite-difference technique becomes prohibitively expensive for solutions governed by the Euler

or Navier-Stokes equations on meshes containing large numbers of grid points. For a system

involving  design variables,  flow solutions are required to compute the sensitivity informa-

tion using a central-difference approach. The choice of the step size is an additional drawback. If

the step size is too large, truncation errors will degrade the accuracy of the derivatives. Alterna-

tively, if a step size is chosen that is excessively small, subtractive cancellation becomes an issue.

Chapter
ONE

n 2n
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A more efficient and accurate means of computing sensitivity information could prove very bene-

ficial for such applications.

Two methods that have recently been used by researchers to calculate aerodynamic sensitivi-

ties are known as the direct differentiation and adjoint approaches. In these methods, the govern-

ing equations are differentiated and the resulting equations are used to compute the required

gradients. Both techniques may be applied at either the continuous or discrete level. If the govern-

ing equations are differentiated prior to discretization, the method is termed a continuous formula-

tion. Here, the resulting derivatives are consistent within truncation error. In a discrete approach,

the governing equations are differentiated following the discretization process, and the resulting

derivatives are consistent with the flow solver regardless of the mesh size.

The direct differentiation method yields the largest amount of sensitivity information however

it requires the solution of a large linear system of equations for each design variable. The solution

of each system of equations yields the sensitivity of the flow field variables to the design variable

in question. Once these sensitivities are known, gradients of a specified cost function or constraint

may be determined with relatively little effort. Therefore, the direct differentiation approach is

appropriate when there are few design variables and many cost functions or constraints. Applica-

tions of this technique can be found in Refs. 4-10.

Another approach that yields the same sensitivity information as the direct differentiation

technique is based on the use of complex variables. This method was originally introduced in

Refs. 11 and 12 for a scalar function of a single variable, and resurfaced in a review by Squire and

Trapp.13 It has recently been applied to compute aerodynamic and aerostructural sensitivity deriv-

atives using inviscid flow14 and has also been extended for turbulent flows.15 The technique has

the advantage of being able to compute highly accurate derivative information without incurring

subtractive cancellation errors, nor requiring the differentiation of any source code. The technique

is a promising one, however because of extra memory requirements and computational time, fully

conclusive work remains to be done in order to assess the efficiency of this technique. Regardless

of the efficiency, this approach provides an excellent method for verifying linearizations.

For problems containing many design variables and a single (or few) cost function(s), it is

beneficial to employ an adjoint formulation. In this approach, an intermediate vector of Lagrange

multipliers, or costate variables, is introduced. These costate variables are determined through the

solution of a single linear system of equations. The desired design sensitivities may then be com-
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puted as a single matrix-vector product.

Some of the earliest applications of adjoint techniques to aerodynamic design problems can be

found in the work of Pironneau.16,17 In Ref. 16, optimality conditions are derived for a minimum-

drag two-dimensional body in a viscous-dominated flow. The method was further developed in

Ref. 17 to include flows at higher Reynolds numbers, and Glowinski and Pironneau verified com-

putationally in Ref. 18 that the method could indeed be used for aerodynamic design purposes.

Many researchers have since worked towards applying the adjoint approach to increasingly

more complex problems. Angrand uses a discrete adjoint technique in a finite element framework

to perform design examples for two-dimensional nozzle and airfoil flows governed by compress-

ible and incompressible potential flow.19 In Ref. 20, Jameson describes a continuous adjoint for-

mulation using coordinate mappings in two and three dimensions for flows governed by the

compressible potential and Euler equations. Frank and Shubin examine a one-dimensional Euler

flow through a nozzle in Ref. 21, where they compare a finite-difference approach with a discrete

adjoint method. Beux and Dervieux22 derive a continuous adjoint approach for internal two-

dimensional Euler-based problems, then treat the numerical problem using a discrete formulation.

Iollo and Salas23 solve similar problems using the continuous approach. Baysal and Eleshaky

examine a two-dimensional supersonic nozzle flow with discrete adjoint and direct methods based

on the Euler equations.4 In Ref. 24, Cabuk and Modi maximize the pressure rise through a dif-

fuser using a continuous adjoint technique for the two-dimensional incompressible laminar

Navier-Stokes equations on structured grids. Huan and Modi employ a similar formulation in an

effort to minimize drag on a two-dimensional body.25 In Ref. 26, Reutheret al describe the use of

a continuous adjoint method on multiblock structured grids to design the wing of a business jet.

Anderson and Bonhaus develop a discrete adjoint technique on unstructured meshes for two-

dimensional turbulent flows in Ref. 27. Elliott and Peraire also use a discrete adjoint formulation

for laminar problems in both two and three dimensions on unstructured meshes.28 In Ref. 29,

Jameson demonstrates a continuous adjoint approach on structured grids for turbulent flows in

three dimensions. Here, the eddy viscosity is considered constant and the turbulence model is not

differentiated. Soemarwoto has implemented a similar approach on structured grids for two-

dimensional applications.30

In recent years, software tools have been devised which greatly automate the development of

design codes. In these approaches, the existing analysis code is differentiated automatically in a
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line-by-line fashion to generate new source code which can be used for computing sensitivity

information. This technique can either be implemented in “forward” mode (analogous to the

direct differentiation technique), or in “reverse” mode (equivalent to an adjoint approach). Many

researchers have applied the “forward-mode” of automatic differentiation to design problems;

representative examples can be found in Refs. 7, 9, and 31. Refs. 32 and 33 describe implementa-

tions using a “reverse-mode” of automatic differentiation. Although the use of automatic differen-

tiation can reduce code development time by orders of magnitude, whether or not the resulting

code is as efficient or as understandable as hand-differentiated code is subject to debate. By using

a manual approach, the developer can employ knowledge of the analysis code and its solution pro-

cedure, enabling potential benefits in both CPU as well as memory utilization. However, the draw-

back to the manual approach is the considerable amount of time necessary to achieve accurate

linearizations.

The current work largely follows the efforts of Andersonet al.27,34 In Ref. 34, a continuous

adjoint formulation was used to compute sensitivity derivatives based on the two-dimensional

laminar Navier-Stokes equations. Since mesh sensitivity terms do not arise in this approach, the

method can lead to derivatives that are inconsistent with the flow solver for problems such as

translation and rotation of elements. In Ref. 27, a discrete formulation is applied that yields highly

accurate sensitivity information for turbulent flows in two dimensions.

The primary goal of the current work is to develop aerodynamic design optimization capabili-

ties for three-dimensional applications on unstructured meshes. More specifically, a discrete

adjoint approach will be described for computing aerodynamic sensitivity derivatives based on the

Reynolds-averaged Navier-Stokes equations, using both compressible and incompressible formu-

lations. A one-equation turbulence model is tightly coupled in the solution process to ensure fully

consistent derivatives. Linearizations are continuously verified using finite-differences and the

complex-variable approach mentioned above. The use of unstructured meshes coupled with an

efficient surface parameterization scheme will allow arbitrarily complex geometries to be handled

with relative ease. The motivation to implement the technique within both compressible and

incompressible frameworks stems from the desire to handle a number of wide-ranging applica-

tions outside the aerospace spectrum.
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2The Governing Equations

The governing flow equations used for the current study are the three-dimensional Reynolds-

averaged Navier-Stokes equations. To compute the eddy viscosity, a one-equation turbulence

model is used. The compressible form of these equations is presented in the following sections.

The derivation of the discrete adjoint and design equations is also shown. The solution of the

adjoint equation yields an intermediate vector of costate variables and the design equation gives

the sensitivity derivatives necessary for optimization.

2.1 The Navier-Stokes Equations

The three-dimensional Reynolds-averaged Navier-Stokes equations in non-dimensional form

are given as:35

(2.1)

where  is the outward-pointing normal of the control volume boundary and the vector of cell-

averaged conserved variables, , and inviscid and viscous flux vectors  and , are given by
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(2.2)

(2.3)

(2.4)

where

(2.5)

(2.6)

(2.7)

The shear stress and heat conduction terms are given by
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(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

Here, the governing equations have been reduced to non-dimensional form using the free-stream

values of density, speed of sound, temperature, thermal conductivity, laminar viscosity and a ref-

erence length . The equations are closed with the equation of state for a perfect gas

(2.17)

and the laminar viscosity is determined through Sutherland’s Law:35

(2.18)
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The incompressible solvers are based on an artificial compressibility formulation.36 In this

approach, a pseudo-time derivative of pressure is added to the continuity equation, which allows

the continuity equation to be advanced in a time-marching manner, much the same as the momen-

tum equations.37 The system of equations takes the same form as Eq. 2.1, with the conserved vari-

ables and fluxes redefined as

(2.19)

(2.20)

(2.21)

Here,  is the artificial compressibility parameter, and the shear stresses are defined as

(2.22)
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As can be seen, the form of the incompressible equations is very similar to that of the compress-

ible equations. This allows the time integration and solution of the linear system at each time step

to be performed in the same manner as described for the compressible flow solver.

2.2 Turbulence Model

For the current study, the turbulence model of Spalart and Allmaras38 is used, non-dimension-

alized using the same quantities employed above. This model has been chosen for several reasons.

Experience has shown it to be very robust and that it yields good results for transonic and high-lift

applications.38-41 The model is also representative of the form of typical convection-diffusion-

type multiequation turbulence models. The model is given as

(2.28)

where

(2.29)
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and

(2.33)
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(2.34)

where

(2.35)

and

(2.36)

The last term in Eq. 2.28 is used when specifying the transition location. Because the computa-

tions in the present work are all assumed to be fully turbulent, this term is not used. Therefore, the

definition of , which is associated with this term, is not given. After Eq. 2.28 is solved for ,

the eddy viscosity is computed as .

2.3 Derivation of the Discrete Adjoint and Design Equations

In a gradient-based approach to an optimization problem, one seeks to minimize some cost

function through a series of updates to a vector of design variables, subject to a set of constraints.

These updates rely on gradients of the cost function which are used to determine the search direc-

tion that will yield an improvement in the cost function. The ability to accurately compute gradi-

ents is therefore crucial to such an approach.

In the adjoint approach for design optimization, a cost function is defined and augmented with

the flow equations as constraints to form a Lagrangian given by

(2.37)
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vector of Lagrange multipliers (also known as costate variables) is denoted by , and  is the

residual of the discretized steady-state flow equations. The vector  contains the conserved vari-

ables and  represents the computational grid. Although not explicitly denoted in Eq. 2.37, both
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variation of the mesh points in the interior. Since it is required that the steady-state flow equations

be satisfied ( ), the addition of the residual does not change the cost function.

However, with the addition of this term, the derivatives reflect the fact that the flow constraint

must be satisfied.

Differentiating Eq. 2.37 with respect to the design variables yields

(2.38)

Because  is arbitrary, the terms multiplied by  may be eliminated using the following

equation

(2.39)

Equation 2.39 is a linear system which represents the discrete adjoint equation for the optimiza-

tion problem. After the flow equations have been solved for , the adjoint equation can be solved

for the unknown vector of Lagrange multipliers . The remaining terms in Eq. 2.38 can be used

to evaluate the sensitivity derivatives as follows:

(2.40)
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3Numerical Solution of the Governing Equations

In this section, the numerical solution of the governing equations is discussed and several rep-

resentative test cases are shown to establish the accuracy of the flow solvers in both two and three

dimensions. The solution procedure used to treat the adjoint and design equations is also pre-

sented.

3.1 Numerical Solution of the Flow Equations and Turbulence Model

The flow solvers used in the current work are described at length in Refs. 37, 42, and 43, and

are known as FUN2D/3D. These solvers have been chosen based on their ability to accurately

compute a wide range of flows, which will be demonstrated in a subsequent section. The codes

use an implicit, upwind, finite-volume discretization, in which the dependent variables are stored

at the mesh vertices. For both compressible and incompressible flows, the inviscid fluxes at cell

interfaces are computed using the upwind scheme of Roe.44 For compressible flows, the upwind

flux formulations of van Leer45 or Osher46 can also be utilized. Viscous fluxes are formed using

an approach equivalent to a central-difference Galerkin procedure. Temporal discretization is per-

formed using a backward-Euler time-stepping scheme, and multigrid acceleration can be used for

the two-dimensional codes.

The implicit scheme employed by the flow solver results in a linear system of equations at

each time step that takes the form :

Chapter
THREE

Ax b=
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(3.1)

where

(3.2)

The method used to solve this linear system of equations is a point-iterative scheme described in

Ref. 42. Here, the solution is obtained by a relaxation scheme in which  is obtained through

a sequence of iterates  which converge to . In this scheme, the grid points are updated so

that the odd- and even-numbered points are solved for alternately. In this way, a Gauss-Seidel type

of scheme is obtained which can be written as

(3.3)

where  is the most recent value of  and will be at subiteration level  or

depending on whether the current node being updated is even or odd, and  and  repre-

sent the diagonal and off-diagonal blocks, respectively, of the matrix .

The turbulence model is solved separately from the flow equations at each time step, using a

backward-Euler time-stepping scheme. The resulting linear system is solved using the same

point-iterative scheme employed for the flow equations. The turbulence model is integrated all the

way to the wall without the use of wall functions.

3.2 Some Representative Test Cases

The flow solvers have been utilized extensively for a number of test cases and are employed

by many groups in industry as well as academia. Some representative cases are included here for

demonstration purposes. First, the results for laminar flow over a flat plate computed using

FUN2D are compared with the Blasius solution. The flow past a three-element airfoil is also

examined using the compressible and incompressible versions of the two-dimensional code. To

demonstrate the accuracy of the compressible version of FUN3D, two turbulent flow fields around

an ONERA M6 wing are examined, in addition to the transonic flow over a configuration known

as Lockheed Wing C,47 which has separation across the outboard third of the wing. Finally, a

wing with a partial-span flap is examined using the incompressible code.

In each test case, the mesh size has been chosen based on both previous experience and the
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desire to limit turnaround time. For two-dimensional flows, mesh sizes are chosen based on exten-

sive experience for transonic as well as multielement airfoil computations. For example, in Ref.

39, grid convergence studies are shown for three-element airfoil configurations in which the

effects of the grid on pressures, velocity profiles, and Reynolds stresses are examined. In addition,

studies to determine the effects of the minimum wall spacing have been conducted over a wide

range of angles of attack. The meshes for three-dimensional computations are constructed using

experience gained from two-dimensional flow. However, the number of points has been decreased

in order to reduce turnaround time. As a result, the computations do not represent grid-converged

solutions.

3.2.1 Laminar Flow Over a Flat Plate

The two-dimensional incompressible version of the code is used to compute the laminar flow

over a flat plate. The mesh contains 16,641 nodes (with 64 points on the surface) with a uniform

spacing at the wall of 0.0017 of the length of the plate and has been formed from a stretched rect-

angular mesh by cutting across the diagonals. A comparison of the computed skin friction with

the Blasius solution35 is shown in Fig. 3.1. The agreement is seen to be very good except in the

immediate vicinity of the leading edge singularity. Profiles of the u- and v-velocity components

are also included in Fig. 3.1. These profiles have been obtained at a location on the plate where the

Reynolds number is approximately 1500. With the spacing at the wall given above, there are

about 15 points in the boundary layer. The results for a Blasius profile are also shown, and it can

be seen that the agreement is excellent.

3.2.2 Flow Past a Three-Element Airfoil

In Ref. 37 the flow over an Advanced Energy Efficient Transport three-element airfoil has

been examined at freestream Mach numbers of 0.15 and 0.26, and a Reynolds number of 9 mil-

lion. Several representative test cases are shown here to demonstrate the applicability of the codes

to these types of flows. The mesh used for these computations is shown in Fig. 3.2 and has been

generated using the method of Ref. 37. The mesh contains 70,686 nodes, with 472, 768, and 288

points on the slat, main element, and flap, respectively. The minimum spacing at the wall is

 based on a reference chord of the airfoil with the elements retracted, and the stretching

factor used to generate the volume mesh is 1.15. The geometry is shown in Fig. 3.3, along with

2 10 6–×
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the pressure distributions calculated using the compressible version of FUN2D at , , and

 angle of attack. The experimental data from Ref. 48 for the three cases is also shown. It can

be seen from the figure that as the angle of attack is increased, compressibility effects begin to

appear, particularly in the nose regions of the slat and main element. The computations success-

fully predict these trends, and generally exhibit good agreement for each of the cases. Although

not shown, the pressure distributions computed using the incompressible solver agree very closely

with the solutions obtained with the compressible code at . Fig. 3.4 shows the lift

coefficient as a function of angle of attack for the computations and the experiment. Here, results

from the incompressible version of FUN2D are plotted along with results using the compressible

version at the higher Mach number. The experiment shows an increase in lift for the main element

as the Mach number is increased, and the computations exhibit the same feature. At a  angle

of attack, the flow at the higher Mach number has exceeded maximum lift, and the computations

successfully predict this trend as well. Finally, Fig. 3.5 shows a plot ofu+ versusy+ for four chord-

wise stations along the upper surface of the main element. It can be seen that at each station the

computed boundary layer in the near-wall region all collapse to a single curve which closely fol-

lows the analytical prediction of Spalding given in Ref. 35, with  and  as sug-

gested in Ref. 49.

3.2.3 ONERA M6 in Subsonic Flow

The results shown are for flow over an ONERA M6 configuration with only small regions of

supersonic flow near the leading edge. The unstructured surface mesh is shown in Fig. 3.6, and

contains 9,129 nodes on the wing surface. The entire mesh consists of 359,536 nodes and

2,074,955 tetrahedra with a minimum spacing at the wall of  of the mean aerodynamic

chord, and has been generated using the method of Ref. 50. The flow conditions are a Mach num-

ber of 0.699, a  angle of attack, and a Reynolds number of 11.78 million based on the mean

aerodynamic chord. These conditions correspond to those used in the experiments discussed in

Ref. 51. Computed pressure distributions at various spanwise locations are shown in Fig. 3.7,

along with the experimental results. Also shown are the results obtained from a widely-used struc-

tured grid code, CFL3D.52 The structured grid is 193 x 49 x 33, and contains 312,081 points. As

can be seen, the agreement between the two codes and the experiment is generally good, with

some slight discrepancies in the suction peak region at the outboard stations. However, a close
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inspection of the nose regions of each surface mesh reveals that the two geometries are slightly

inconsistent, as shown in Fig. 3.8. The source of this inconsistency is unknown. The convergence

history for the computation is included as Fig. 3.9, along with the histories of two additional cases

discussed in subsequent sections. As seen, the residual is reduced three orders of magnitude and

the final lift value is obtained in 300 iterations.

3.2.4 ONERA M6 in Transonic Flow

The next computation is for transonic flow over the same geometry using the mesh described

above. In this case, the free-stream Mach number is 0.84, the angle of attack is , and the

Reynolds number is 11.78 million. This case has a shock emanating from the leading edge as well

as a normal shock further aft. These shocks coalesce into a single shock at approximately the

 spanwise station. Figure 3.9 shows the convergence history, while pressure distribu-

tions are plotted in Fig. 3.10 for the experiment as well as for FUN3D and CFL3D. The computed

results agree well with experiment as well as with each other, although the shocks at the outboard

stations are slightly sharper with CFL3D than with FUN3D due to higher resolution.

3.2.5 Lockheed Wing C Configuration

For this case, flow over the Lockheed Wing C configuration47 is examined. This is a transonic

case with separation occurring aft of the shock over the outboard third of the wing. The mesh for

this computation consists of 523,785 nodes and 3,097,641 tetrahedra and a spacing at the wall of

 of the mean aerodynamic chord. The surface mesh is shown in Fig. 3.11, and contains

9,730 nodes on the wing surface. This mesh has been generated using the technique described in

Ref. 53. Note that although the wing is a no-slip surface, the symmetry plane does not include the

spacing at the wall necessary for viscous computations. The transition from the viscous surface to

the symmetry plane is done over the last inboard cell and should not affect the overall solution.

The free-stream Mach number is 0.8833 and the angle of attack is . The Reynolds number

based on the mean aerodynamic chord is 10 million. The convergence of the solution is included

in Fig. 3.9, and the pressure distributions for the converged solution at various spanwise locations

are shown in Fig. 3.12. Also shown are results obtained through the use of CFL3D on a mesh con-

taining 578,641 points. As in the previous example, the computations are in fairly good agreement

with experiment and agree quite well with one another.
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3.2.6 Incompressible Flow Over a Wing with a Partial-Span Flap

In order to demonstrate results obtained using the three-dimensional incompressible code,

results are shown from Ref. 37. For this case, flow over a wing with a partial-span flap is exam-

ined. Here, the angle of attack is  and the Reynolds number is 3.7 million. The experimental

results are described in Ref. 54, and were obtained at a Mach number of 0.2. The surface mesh

containing 14,924 points on both wing surfaces is shown in Fig. 3.13, and the computed pressure

distribution is compared with the experimental results in Fig 3.14. Results obtained using CFL3D

are also shown. The unstructured mesh for this computation has been generated using the method

of Ref. 50 and consists of 549,176 nodes, whereas the structured mesh contains approximately

2.25 million nodes. The agreement is generally good, although the suction peaks are slightly

underpredicted in the FUN3D computations. As noted in Ref. 37, grid refinement and accounting

for compressibility effects in the leading edge region may resolve these discrepancies.

3.3 Numerical Solution of the Adjoint Equation

The adjoint equation given in Eq. 2.39 represents a linear set of equations for the costate vari-

ables . To solve this system of equations, a technique known as the Generalized Minimal Resid-

ual (GMRES) method55 is employed. This solver has been chosen based on its ability to handle

large linear systems in a robust manner. The basic outline of the structure of the GMRES algo-

rithm is shown below and is taken directly from Ref. 55:

To solve the system :

1. Start: Choose an initial guess, , for the solution of the linear system and compute

 and .

2.  Iterate: For  until satisfied do:
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and .

3.  Form the approximate solution , where  minimizes the functional

.

The symbol  represents the first column of the  identity matrix, and  is

an upper-Hessenberg matrix with an additional row whose only nonzero element is  in the

 position. The value of  is simply the norm of the initial residual . The current

implementation is adapted from Ref. 56.

Although the adjoint system of equations can be solved directly using GMRES as outlined

above, a time-like derivative is added and the solution is obtained by marching in time, much like

the flow solver:

(3.4)

where

(3.5)

The time term can be used to increase the diagonal dominance for cases in which GMRES alone

would tend to stall. With the addition of the time term, the solution is obtained through a sequence

of linear systems where the right hand side is continuously changed. It has been found through

numerical experiments that this ultimately results in a more robust adjoint solver.

Due to the large amount of code resulting from the linearization of the viscous terms and the

turbulence model, these contributions are stored in the present implementation. Because the sten-

cil for the inviscid contributions is larger, the linearization of these terms is recomputed at each

step to avoid the need for extra storage and data structure.

To precondition the linear system, an incomplete LU decomposition of the matrix obtained

from a first-order accurate discretization is used. The preconditioning is applied on the left and no

fill-in is allowed (ILU[0]).57 (Right preconditioning has also been implemented with no notice-

able differences.) Numerical experiments using this preconditioner have shown that some cases
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are slow to converge. An alternate means of preconditioning that has often been found useful is to

employ a point-iterative scheme similar to that used for the flow equations. This technique allows

for continual improvement in preconditioning the first-order system but is only effective when the

time step is small and the matrix is diagonally dominant.

In the present work, the differentiation of both the flow equations and the turbulence model is

accomplished by “hand differentiating” the code, and individual sections are continuously verified

using finite differences and a complex-variable approach. As mentioned earlier, automated tools

for performing code differentiation have recently been developed; however, these techniques are

considered to be in their infancy and the efficiency of the resulting code is questionable. This is

the primary motivation for pursuing a development based on hand differentiation of the flow solv-

ers.

For obtaining the solution of the adjoint equations, the turbulence model is tightly coupled

during the solution process, whereas it is solved separately during the flow analysis. During devel-

opment, various treatments of the turbulence model have been studied and it has been found that

the close coupling of the turbulence model is required in order to obtain sensitivity derivatives

consistent with those obtained using finite differences. This will be illustrated in a subsequent sec-

tion.
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4Grid Generation and Mesh Movement Strategy

For all of the two-dimensional computations to be shown, the meshes have been generated

using the method described in Ref. 53. In three dimensions, the methods of Refs. 50 and 53 are

utilized. Both techniques employ an advancing front type of methodology and generate good

quality grids for both inviscid and viscous calculations.

4.1 Surface Parameterization

The technique used to parameterize the surface geometry relies on a scheme recently intro-

duced by Samareh.58 The method utilizes a free-form deformation technique similar to that used

in the motion picture industry for animating digital images. Here, a B-spline net is used to

describe the changes in the geometry, rather than the geometry itself. The net is placed around the

baseline mesh and the changes at each point on the surface are obtained by interpolation from the

changes in the B-spline net. The control points in the net may be used directly as the design vari-

ables, or they may be further grouped into design variables such as camber, thickness, and twist.

This parameterization technique has been chosen for its ability to handle arbitrary geometries and

because the mesh generation process does not depend on a prior parameterization of the geometry.

This allows meshes which have been previously generated solely for analysis to be utilized for

design purposes.
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4.2 Mesh Movement Procedure

When the design process requires modifications to the surface geometry, the computational

mesh must be deformed to reflect the changes. For inviscid flows, the mesh movement strategy is

based on the spring analogy described in Ref. 59. The edges of the mesh are treated as tension-

springs, and the following equation is solved using a Jacobi iteration process:

(4.1)

Here  and  represent the change in the coordinates of nodes  and  from the initial

mesh to the desired mesh. The spring constants  are assumed to be , where  is the length

of the edge connecting node  to node . Since this technique may result in crossed grid lines, the

required shift of the surface coordinates is decomposed into a series of smaller movements (usu-

ally around 10), and Eq. 4.1 is relaxed for each change in the surface. This strategy has been found

to work well for Euler-based designs, provided the initial mesh does not contain stretched or

deformed cells.

For viscous meshes, the method described above is not adequate and can easily lead to cross-

ing mesh lines and negative volumes. For these cases, the nodes near viscous surfaces are shifted

by interpolating the changes in the coordinates at the boundaries of the nearest surface triangle or

edge. For a graphical illustration of this process, see Fig. 4.1. As surface points  and  are relo-

cated to positions  and , respectively, field point  is shifted to position  such that segment

 is equal and parallel to . This technique is blended with a smoothing procedure so that

away from the highly stretched cells near the surface, the mesh movement reverts to that of the

procedure described above for inviscid meshes. Further details can be found in Ref. 34.

As the surface is deformed during the design process, the procedure described above yields a

corresponding change in the interior mesh points as well. The effect of the changing grid is

reflected through the mesh sensitivity terms given by  in Eq. 2.40. The computation of

these terms is achieved by differentiating the mesh movement process described above.

4.3 Some Observations

For most two-dimensional applications, the procedure described provides a very robust mesh
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movement algorithm. Large deformations of the surface geometry can be accommodated while

still maintaining high-quality meshing within the interior of the domain. To illustrate this effect, a

test is performed where a viscous grid for a NACA 0012 airfoil as shown in Fig. 4.2 is examined.

The surface is described parametrically using a third-order B-spline with 29 control points,27 and

several control points around the airfoil are perturbed in the vertical direction as shown in Fig. 4.3

so as to significantly alter the surface geometry. The mesh movement process is applied, and the

resulting mesh is shown in Fig. 4.4, with a close-up of the nose region shown in Fig. 4.5. It can be

seen that the procedure yields a valid mesh even in the boundary layer region, where the highly

stretched cells have been modified successfully.

One instance in which this process suffers, however, is in the presence of multi-element con-

figurations such as the one depicted in Fig. 4.6. There is a tendency to open “gaps” in the mesh

between elements when the elements are allowed to translate away from one another. A related

problem occurs when the elements move closer together in which case there is a “jamming”

together of mesh points. These difficulties are simply due to the fact that no additional mesh

points are inserted or removed during the process so that as elements shift in relation to one

another, voids can be created. This has not had a detrimental effect on the flow solver and can be

remedied by periodically regenerating the mesh.

In three dimensions, the current mesh movement procedure is inadequate when large changes

in the geometry are required. In these cases, negative cell volumes have been observed to occur

around the edges of the planform. Therefore, in this work, changes in the geometric design vari-

ables have been limited to only a few percent of the chord. Further research is required to develop

a more reliable methodology for large geometric changes in three dimensions.
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5Consistency of Linearization

During code development, great care has been taken at each step to ensure that the derivatives

are consistent with those obtained using finite differences. In this section, the accuracy of the

resulting derivatives is verified for both compressible and incompressible flow. Comparisons are

made between derivatives computed using finite differences with those obtained using the adjoint

method. When computing derivatives using finite differences, central-difference formulas are

used with a step size of , and the flow solver is converged to machine accuracy. Deriva-

tives computed with the adjoint approach are also compared with results from a relatively new

complex-variable approach. All of the results shown below are for turbulent flows although the

consistency of derivatives has been verified for inviscid and laminar flows as well. Though not the

focus of the current work, the accuracy of the two-dimensional compressible linearizations is

included here for use in a subsequent discussion.

5.1 Methods Used to Verify Linearization

Two different methods are used to verify the hand-differentiated codes. The first is the com-

monly-used finite-difference technique. In addition to this approach, an alternative method for

computing sensitivity derivatives based on the use of complex variables is employed. The com-

plex-variable approach was originally suggested in Refs. 11 and 12 for determining derivatives of

complicated non-linear functions of a single variable, and has recently been reviewed in Ref. 13.
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An in-depth study of the method as applied to aerodynamic simulation codes is not presented

here; for such investigations, the reader is referred to Refs. 14 and 15.

Consider the central-difference approximation  to the derivative of a function :

(5.1)

This expression for  is widely used to verify linearizations. Eq. 5.1 has a truncation error of

, and it has been well documented that such approximations to  may be dependent on the

choice of the step size  for highly non-linear functions. A small step size is usually desired in

order to keep the truncation error low. However, as  gets smaller in magnitude, subtractive can-

cellation tends to dominate the computation because the function is only evaluated to machine

precision. Thus the expression in Eq. 5.1 can often yield approximations for  that are highly

dependent on the step size and may even be highly inaccurate.

Alternatively, the derivative of a real-valued function may be obtained through the simple use

of complex variables as discussed in Ref. 13. Consider the Taylor series expansion of  using a

complex step size :

(5.2)

Solving for the derivative of  yields

(5.3)

Note that this expression has a truncation error of , just as Eq. 5.1. However, the subtrac-

tion of two quantities has been eliminated, therefore the issue of subtractive cancellation error

need not be of concern when employing Eq. 5.3, and true second-order accuracy can be obtained.

The significance of Eq. 5.3 lies in the fact that very little coding effort is required to imple-

ment the complex variable strategy – not a single line of code needs to be differentiated. To incor-

porate the complex-variable approach into an existing flow solver, all that is required is that the

floating point variables be declared as complex and a complex perturbation is given to the design

variable of interest. The resulting flow solver is then run and the derivatives of any function

dependent on the flow solution is determined by examining the complex part divided by the step

size (see Eq. 5.3). The primary drawback is that roughly twice the amount of memory is required,

and numerical experiments have shown that the CPU time needed for a function evaluation is
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increased approximately by a factor of three.

5.2 Linearization of Two-Dimensional Compressible Solver

The two-dimensional compressible version of the flow solver has been previously differenti-

ated as described in Ref. 27. The results are repeated here to support a discussion to be presented

in an upcoming section.

For demonstrating the consistency of the derivatives obtained using the adjoint formulation

with those obtained using finite differences, two test cases are considered. The first case is a 2-ele-

ment airfoil at a free-stream Mach number of 0.25, an angle of attack of , and a Reynolds num-

ber of 9 million based on the chord of the airfoil. The geometry has been chosen arbitrarily and is

that given in Ref. 60.

The mesh used for this test has 4,901 nodes and is shown in Fig. 5.1. The geometry of each

airfoil is described with a third-order B-spline. The derivatives of the lift and drag coefficients

with respect to the vertical and horizontal positions of four shape design variables have been

obtained. The locations of the design variables are indicated by the solid circles shown in Fig. 5.2.

As seen in the figure, two of these design variables are located on the main airfoil and two are

located on the flap. For each element, one design variable is located on the upper surface near the

nose of the airfoil and one is located near the rear. A comparison of derivatives of the lift and drag

coefficients with respect to changes in the vertical position of these design variables is shown in

Tables 5.1 and 5.2, while Tables 5.3 and 5.4 compare the derivatives of the lift and drag coefficient

with respect to x- and y-translation of the flap. Note that this required two solutions of the adjoint

equation — one for lift and one for drag.   As seen, the derivatives obtained with the adjoint

approach are in very good agreement with the finite-difference derivatives for all cases. Although

not shown, similar accuracy is obtained for the derivatives with respect to horizontal changes in

the control points.

In order to further demonstrate the accuracy of the differentiation, a case containing transonic

flow is examined. An RAE 2822 airfoil is used at an angle of attack of , a Mach number of

, and a Reynolds number of  million. The mesh contains 14,127 nodes and the spacing at

the wall is . The computed pressure distribution is shown in Fig. 5.3 along with the cor-

responding experimental data.61 For this case, a strong shock is present on the upper surface
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which separates the flow immediately downstream. The locations of the three design variables are

shown by the filled circles in Fig. 5.4. The corresponding sensitivity derivatives for the lift coeffi-

cient with respect to a vertical movement of the control points are listed in Table 5.5 along with

those for Mach number and angle of attack. The agreement with finite differences is very good.

Numerical experiments using different step sizes for the point downstream of the shock have

shown that finite differences for this control point are somewhat sensitive to the perturbation level.

For example, step sizes of  and  result in finite-difference derivatives of

and  respectively. The complex-variable approach yields a derivative of 1.9219, which

agrees with the adjoint result to five significant digits.

5.3 Linearization of Three-Dimensional Compressible Solver

To verify the accuracy of the derivatives in three dimensions, a similar experiment is con-

ducted. For this case, an ONERA M6 wing51 has been parameterized using 46 design variables

describing the planform, twist, shear, thickness, and camber. The design variables are depicted in

Fig. 5.5 where twist (about the quarter-chord) and wing shear have been parameterized at five

spanwise locations. The thickness and camber have also been parameterized using the six loca-

tions shown in the figure. The design variables describing the planform are not shown in the figure

nor are thickness and camber design variables along the leading and trailing edges. The mesh used

for these tests contains 16,391 nodes and 90,892 tetrahedra and is shown in Fig. 5.6. The flow

conditions are an angle of attack of , a Reynolds number of  million based on the mean aero-

dynamic chord, and a Mach number of . In this test, the cost function is a linear combination

of the lift and drag coefficients so that only one adjoint solution is required. The derivatives of the

cost with respect to the angle of attack and the Mach number as well as the derivatives with

respect to four of the shape parameterization variables are shown in Table 5.6. As can be seen, the

consistency between the derivatives obtained with the adjoint formulation and finite differences is

excellent. Additional derivatives for the design variables depicted in Fig. 5.5 have also been veri-

fied with comparable accuracy.

Derivatives obtained using the linearization of the compressible version of FUN3D are now

compared with results from the complex-variable approach. For this test, derivatives of the lift

coefficient for turbulent flow are computed on the same ONERA M6 mesh as described above,
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using the same free-stream conditions. Results for this experiment are shown in Table 5.7, where

the design variables correspond to those shown in Fig. 5.5. Note that the adjoint and complex-

variable results exhibit excellent agreement, yielding identical derivatives for several of the design

variables and differing at most in the sixth decimal place. However, the finite-difference results

show some discrepancies attributable to subtractive cancellation error.

5.4 Linearization of Three-Dimensional Incompressible Solver

The accuracy of the incompressible linearizations is verified in a similar fashion using the

same mesh as above. The flow conditions are an angle of attack of  and a Reynolds number of

 million. The shape design variables are the same as those used in verifying the sensitivity deriv-

atives for the compressible solver. Results are presented in Table 5.8, and the linearizations are

shown to be highly accurate.
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6Linearization Approximations

Due to the complexity in achieving accurate linearizations for use in Eqs. 2.39 and 2.40, one

may consider the use of simplifying assumptions. Clearly, a great deal of effort can be avoided if

certain terms may be neglected or replaced with simpler approximations without seriously com-

promising the accuracy of the results. The previous sections have established the accuracy of the

derivatives obtained from the adjoint formulation using a consistent linearization of the flow solv-

ers. This section will examine the accuracy of the derivatives obtained using several natural

approximations. These numerical experiments are conducted in two dimensions using the test

case and flow conditions used for Table 5.1. A discussion of each of the approximations is given

below and some representative derivatives for vertical changes in the design variables are shown

in Table 6.1.

6.1 First-Order Adjoint Solution

For second-order accurate schemes, the complete linearization of the inviscid contribution to

the residual requires information from mesh points beyond the immediately adjacent nodes. This

requirement arises from having to form gradients of the dependent variables at the nodes in order

to extrapolate them to the faces of each control volume. This large stencil makes an exact linear-

ization quite tedious. However, if the fluxes are formed using only nearest-neighbor information,

the amount of coding involved is drastically reduced, as differentiation of the gradient terms are
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no longer required. This corresponds to using a first-order accurate scheme for the convective

terms and results in a linear system that is easier to solve when using the ILU(0) preconditioner,

since the bandwidth of the coefficient matrix is reduced significantly.

In Table 6.1, derivatives obtained using a first-order linearization of the convective terms are

compared with those obtained from the linearization of the higher order residual. For these

results, the first-order approximation is made in evaluating both Eqns. 2.39 and 2.40. Using this

approximation, the derivative of the lift with respect to a vertical shift of the design variable

towards the rear of the flap is within 8% of the correct value. However, the derivatives obtained by

ignoring the higher order terms are generally highly inaccurate and several are of incorrect sign.

The derivatives of incorrect sign would most certainly have an adverse effect on an optimization

process, especially near a minimum.

6.2 “Frozen” Turbulence Model

 An accurate linearization of the turbulence model can be difficult to obtain. As seen from the

equations given in Section 2.2, there are many terms and additional functions that must be prop-

erly differentiated. These terms exhibit complex dependency on both the flow variables as well as

mesh-dependent quantities such as the distance to the wall. By assuming that the turbulence

model is “frozen”, a significant reduction in the required level of effort may be obtained. This

approach has been previously used in Refs. 29 and 30 for structured grid applications to airfoils

and wings. In these references, successful optimizations have been performed although the accu-

racy of the derivatives has not been explicitly demonstrated. To implement this approach in the

current framework, the adjoint and design equations are solved as in a laminar calculation, but

with the eddy viscosity included as .

Results obtained by making the assumption of a constant eddy viscosity are listed in Table 6.1

for derivatives with respect to vertical shifts in the control point locations. While the computed

sensitivities show a large amount of error when compared to finite differences, the current results

all exhibit the correct sign. However, for derivatives associated with horizontal changes in these

same design variables, several are of incorrect sign. For example, the finite-difference derivative

obtained by perturbing point A in the horizontal direction is -0.18060 whereas the current approx-

imations to the linearizations yield 0.30328. For this same design variable, use of the complete
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linearization yields a derivative of -0.18052 which is less than 0.05 percent different from the

finite-difference result.

A similar technique that can be used to simplify the implementation is to neglect the contribu-

tions from the turbulence model in Eq. 2.40. This assumption would eliminate the need to linear-

ize the turbulence model with respect to the design variables and is primarily motivated from

numerical experiments in which it has been observed that the costate variable associated with the

turbulence model is much smaller than the others and decays very rapidly away from the body. To

illustrate this effect, the variation of the five costate variables with the distance from the wall at

 is plotted in Fig. 6.1. It can be seen that the first four variables are considerably larger

in magnitude than the fifth costate variable, which corresponds to the turbulence model. Although

not shown, numerical experiments using this approximation indicate that the resulting accuracy of

the derivatives is poor with many derivatives of incorrect sign. This is due to the relatively large

magnitude of the  term multiplying the costate variable corresponding to the turbulence

model.

6.3 Extent of Mesh Sensitivities

For each design variable, the evaluation of Eq. 2.40 requires the same amount of work as a

matrix-vector product of the costate variables with the linearization of the residual with respect to

the design variables. This also includes computation of the mesh sensitivities for each design vari-

able. For large numbers of design variables and mesh points, this can potentially represent a sig-

nificant expense due to the complicated linearization of the residual.   Also, mesh sensitivities can

be expensive to compute because the mesh movement process must essentially be repeated for

each design variable. If the mesh is analytically defined and moved, this computation may be neg-

ligible. However, when the mesh movement procedure is expensive, the cost of the adjoint

approach is not independent of the number of design variables.

Because nodes further away from the body are subjected to more moderate changes than those

in the immediate vicinity of the surface, it may be possible to neglect terms in Eq. 2.40 that are

sufficiently far from the body. This could help to reduce the cost of evaluating Eq. 2.40 by avoid-

ing the need to include terms from every mesh point in the field.

To investigate the effects of neglecting terms farther from the surface, a region around the sur-
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faces of the airfoil is defined by first “tagging” the nodes on the surface and then identifying nodes

that lie within a set number of grid layers adjacent to the surface. Figure 6.2 shows an example

where three grid layers have been tagged. Outside of this region, the mesh sensitivities are set to

zero to emulate the effect of neglecting all the contributions outside of the tagged region.

The sensitivity derivatives for the lift coefficient with respect to vertical and horizontal transla-

tions of the flap are computed for a varying number of grid layers and the results are shown in Fig.

6.3. Here,  is the ratio of the approximate derivative to the derivative obtained by including

the mesh sensitivities at every grid point in the domain. In this figure, the curve labeled  is

the ratio of the number of nodes where mesh sensitivities are employed to the total number of

nodes in the mesh. It should be noted that examining a single derivative may not be representative

of the behavior of the rest of the derivatives and an accurate computation of this derivative does

not guarantee accuracy for the remaining derivatives. However, inaccuracy of this derivative dem-

onstrates that neglecting the full effects of the mesh sensitivities may have an adverse effect on

other derivatives as well.

As seen in the figure, the influence of the mesh sensitivities gradually decays away from the

surface. Accurate results are obtained when the number of mesh layers is greater than approxi-

mately 15. At this point, about half the total number of points in the mesh are included in the lay-

ers so that a factor of two savings could be realized when evaluating Eq. 2.40. When many design

variables are present, neglecting some of the mesh sensitivities could lead to a substantial savings

in computer time. However, for the present study, the computer time required for evaluating Eq.

2.40 does not dominate the overall optimization process so this strategy is not used.

6.4 Level of Convergence Required for the Adjoint Solution

Here, the level of convergence required of the adjoint solution in order to achieve acceptable

accuracy in the results is examined. All of the results shown to this point have been obtained using

an adjoint solution converged to machine accuracy. If it is possible to obtain sufficient precision

through a partially-converged adjoint solution, a substantial CPU savings may be realized.

For this test, the flow solver is converged to machine accuracy and the derivatives presented

for the multielement airfoil in Section 5.2 are recomputed using partially-converged solutions of

the adjoint system. Figure 6.4 shows the percent error in each of the derivatives as the adjoint

Cltrans
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solution is converged towards machine accuracy. The error is a measure of the difference between

the approximate result and the results that are listed in Tables 5.1 and 5.3 for the adjoint method.

It can be seen that after a two order-of-magnitude decrease in the residual of the adjoint system,

the derivatives are all within 1% of their final values. After three orders of magnitude, the results

are generally on the order of 0.01% in error. However, even with only a one order-of-magnitude

reduction, all of the derivatives are within 6% of their final values. Note that the curve correspond-

ing to point D appears flat initially because this derivative does not require a drop in the residual

of the adjoint system in order to obtain a result within 0.01% of its final value. Based on this sim-

ple test, it appears that for practical design purposes it may be possible to employ sensitivities

computed using partially-converged adjoint solutions. This could have a significant impact on the

amount of time spent in evaluating sensitivity information.
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7Relative Efficiency of the Adjoint Solver

Timing results are presented for the compressible flow and adjoint solvers for inviscid and tur-

bulent flow on several meshes with varying levels of refinement. For both inviscid and viscous

flows, results are shown for subsonic and transonic Mach numbers. The flow conditions for the

subsonic results are a Mach number of 0.5 and a  angle of attack. For the transonic results, a

Mach number of 0.84 and an angle of attack of  are used. The Reynolds number is 5 million

based on the mean aerodynamic chord for each of the viscous runs. All of the calculations are run

using Roe’s scheme for the convective terms. The flow solver is run using the point-iterative

scheme described in Section 3.1, while the adjoint solver utilizes GMRES with 45 search direc-

tions and the ILU(0) preconditioner as discussed in Section 3.3. The CFL number for the flow

solver is ramped linearly from 10 to 200 over 50 iterations, while the adjoint solver employs a

constant CFL number of 10,000. If a computation of the adjoint fails to successfully converge,

these values are lowered appropriately. For the inviscid computations, mesh sizes of 22,677,

53,963, and 357,900 nodes are used. These meshes contain 3,856, 9,872, and 39,588 nodes,

respectively, on the wing surface. Meshes containing 62,360, 129,541, and 359,536 nodes are uti-

lized for the viscous runs. The number of points on the wing surface for each of these meshes is

3,396, 4,142, and 9,129, respectively. For each of the computations, a single 250 MHz R10000

processor is used.
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7.1 Subsonic Inviscid Flow

The convergence history as a function of CPU time is shown in Fig. 7.1 for the coarse mesh. It

can be seen that the adjoint solution converges at a rate of roughly one-third that of the flow solver

for this case. Similar results are shown in Fig. 7.2 for the medium mesh, where the adjoint solver

converges at approximately the same rate as the flow solver after overcoming a slight initial

increase in the residual. After the residual is reduced six orders of magnitude from its initial value,

the convergence exhibits an oscillatory behavior. The reason for this is unclear, and it has been

observed in other cases as well. Fig. 7.3 shows results for the same flow conditions on the fine

mesh. Here, the adjoint solution converges slightly faster than the flow solver for the first six

orders of magnitude of reduction in the residual. However, at this point in the convergence history,

the solution stalls prior to achieving machine accuracy.

7.2 Transonic Inviscid Flow

Results are shown in Fig. 7.4 for the coarse mesh, where the adjoint solver is shown to con-

verge at a rate of roughly one-fourth that of the flow solver. Fig. 7.5 shows results for the same

conditions on the medium mesh, where the convergence rate of the adjoint solver can be seen to

be just slightly slower than that of the flow solver. For this case, the adjoint solver exhibits an

oscillation in the latter stages of convergence. As in the subsonic results, it is unknown why this

occurs. Finally, this computation is also performed on the fine mesh, and results are presented in

Fig. 7.6. Although the convergence rate of the adjoint solver appears to be marginally faster than

that of the flow solver, the residual for the adjoint system stalls after converging six orders of mag-

nitude.

7.3 Subsonic Turbulent Flow

Similar convergence histories are now examined for viscous flow. Fig. 7.7 shows the results

for the flow and adjoint solvers on the coarse mesh. Both solvers converge at approximately the

same rate. However, the adjoint solution shows a tendency to oscillate after reducing the residual

by five orders of magnitude. Results for the medium mesh are shown in Fig. 7.8. For this mesh,

the adjoint solution requires two to three times longer than the flow solution to converge two

orders of magnitude and appears to stall at this level. Finally, convergence histories for the fine
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mesh are plotted in Fig. 7.9. The adjoint solution exhibits a convergence rate similar to that of the

flow solver in the initial stages, but eventually slows down after two orders of magnitude.

7.4 Transonic Turbulent Flow

The final set of results is for transonic turbulent flow. The convergence histories for the coarse

mesh are shown in Fig. 7.10. Here, the adjoint solution converges similar to the flow solver, but

begins to oscillate in the latter stages of convergence. Fig. 7.11 shows the convergence rates for

the medium mesh. As for the subsonic results on this mesh, the rate of convergence of the adjoint

system is sluggish – approximately eight to ten times slower than the flow solver. For the fine

mesh results depicted in Fig. 7.12, the adjoint solver converges at a rate of approximately six

times that of the flow solver.

7.5 Some Observations

As has been shown, an inviscid adjoint solution can require as much as four times the cost of a

flow solution under the same conditions. This ratio can reach as high as eight to ten for turbulent

flows. The adjoint solver has also shown a tendency to stall or oscillate prior to achieving machine

accuracy in some cases. However, in all cases where oscillations occur, the residual has been

decreased to near machine zero. Based on results from Section 6.4, the resulting derivatives

should still be highly accurate.
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8Sample Optimizations

In this section, the optimization framework is described, and sample optimizations are pre-

sented. These cases serve to demonstrate the functionality of the design methodology and are not

intended to be realistic studies.

8.1 Cost Functions

For the current study, the cost function is composed of a linear combination of the lift and drag

coefficients:

(8.1)

The drag can be minimized while maintaining a specified lift by adjusting the weights associated

with each term in Eq. 8.1 so that neither term dominates the other. The current method for choos-

ing the initial weights is to simply set the ratio of  to  to be equal to the ratio of the lift to

the drag:

(8.2)

During the design process, these weights may require adjustment. However, this avoids the need

to solve separate adjoint equations for lift and drag. Since the optimizer requires the gradients of

any constraints on the design, an explicit lift constraint would necessitate an additional adjoint
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solution to determine its gradient.

8.2 Design Variables

For both incompressible and compressible flows, the angle of attack can be utilized as a

design variable. For compressible flows, the free-stream Mach number can also be specified as a

design parameter. The Mach number and angle of attack are useful as design variables in such

problems as correlating wind tunnel data with computations. When the shape is evolving, the sur-

face is parameterized using the technique implemented by Samareh58 and discussed in Section

4.1.

8.3 Optimization Technique

The optimization technique used in all of the results to follow is the quasi-Newton method of

Davidon-Fletcher-Powell.62,63 The current implementation of this technique, referred to as

KSOPT, allows for multipoint optimization as well as both equality and inequality constraints.64

For the present work, the multipoint capability is not utilized although this is an obvious future

requirement.

8.4 Inviscid Drag Reduction for ONERA M6 Wing

An example optimization is conducted for inviscid flow over the ONERA M6 wing.51 The

free-stream Mach number for this case is 0.84 and the angle of attack is . The mesh used for

this computation consists of 53,961 nodes and 287,962 tetrahedra. This mesh is extremely coarse

and is not adequate for accurate computations; it serves merely as an initial demonstration for

evaluating the methodology. The contours for the initial and final density distribution on the sur-

face of the wing are shown in Fig. 8.1 with the corresponding pressure distributions shown in Fig.

8.2. The objective of the optimization is to reduce the drag while maintaining a specified lift. For

this design, the angle of attack is allowed to change in addition to ten shape design variables (four

twist, four camber, and two thickness). The twist variables are located at the four outboard sta-

tions in Fig. 5.5 and are allowed to increase or decrease by . The thickness and camber vari-

ables at positions 3 and 4 are also design variables as is the camber at positions 5 and 6. Each of

these is allowed to change by 2 percent of the span. After ten design cycles, none of the design

3.06°

1°
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variables have reached their limits, and the drag has been reduced from 0.0182 to 0.0167 while

the lift has been maintained. Exact timings for optimizations are not available, but an estimate of

three days on a Silicon Graphics Origin 2000 with R10000/250MHz processors can be made. (It

should be noted that the flow solver utilizes four processors although the parallelization is

achieved through compiler directives which yields only about fifty percent scalability for the cur-

rent computations. The adjoint solver currently utilizes only a single processor.) The pressure dis-

tribution shown in Fig. 8.2 indicates that the shock has weakened at all of the spanwise stations.

As can be seen from the geometric cross-sections in Fig. 8.3, the optimizer has reduced the wing

thickness at the inboard stations, and the forward portion of the lower surface has been modified

to help achieve the lift constraint. In addition, the camber near the wing tip has been increased

substantially.

8.5 Turbulent ONERA M6 Wing Redesign

A transonic wing design has been conducted using an ONERA M6 mesh consisting of 62,360

nodes and 355,814 tetrahedra. As in the previous example, the mesh size has been chosen solely

to enable a demonstration of the implementation. The flow is assumed to be fully turbulent at a

Mach number of 0.84, an angle of attack of , and a Reynolds number of 5 million. Density

contours for the initial flow field are shown in the top portion of Fig. 8.4. The weakness of the nor-

mal shock is in large part due to the coarseness of the mesh; further refinement would yield a

shock structure similar to that shown in the initial flow field in Fig. 8.1.

The objective of the design is to reduce the drag while holding the lift constant.   For this case,

thickness and camber have been allowed to vary at two chordwise stations located at the mid-span

of the wing. These design variables have been allowed to change up to 1 percent of the span of the

wing. The angle of attack is also allowed to vary in order to maintain the original lift coefficient,

giving a total of five design variables for this test case.

 After ten design cycles, none of the design variables are against their bounds, and the drag

coefficient is reduced from 0.0200 to 0.0184. As in the previous case, an exact timing for the com-

putations is not known, although approximately six days were required. Clearly, efficient parallel

implementations of both the flow and adjoint solvers would reduce this time significantly. For

example, using only six processors, the time could be reduced to a single day. Density contours

3.06°
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for the final design are shown in the lower portion of Fig. 8.4. It is apparent from the increased

spacing between the contours that the strength of the shock at the midchord location is somewhat

weaker for the final design which accounts for the lower drag. This can be seen in Fig. 8.5, where

the pressure distribution is shown for the initial and final geometries. As stated above, the shock is

not well-resolved due to the coarseness of the mesh (see e.g. Fig. 3.10), however the optimizer has

successfully altered the configuration. Geometric cross-sections are shown in Fig. 8.6, where it

can be seen that the optimizer has induced changes similar to the inviscid design case discussed in

the preceding section. The wing thickness at each spanwise location has been reduced, and the

lower surface has been modified in the leading edge region.
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9Summary and Concluding Remarks

Compressible and incompressible versions of a three-dimensional unstructured mesh Rey-

nolds-averaged Navier-Stokes flow solver have been differentiated and the resulting derivatives

have been verified by comparisons with finite differences and a complex-variable approach. In

this implementation, the turbulence model is fully coupled with the flow equations in order to

achieve this consistency. The accuracy demonstrated in the current work represents the first time

that such an approach has been successfully implemented.

The accuracy of a number of simplifying approximations to the linearizations of the residual

have been examined. A first-order approximation to the dependent variables in both the adjoint

and design equations has been investigated. The effects of a “frozen” eddy viscosity and the rami-

fications of neglecting some mesh sensitivity terms were also examined. It has been found that

none of the approximations yielded derivatives of acceptable accuracy and were often of incorrect

sign. However, numerical experiments indicate that an incomplete convergence of the adjoint sys-

tem often yields sufficiently accurate derivatives, thereby significantly lowering the time required

for computing sensitivity information.

The convergence rate of the adjoint solver relative to the flow solver has been examined. Invis-

cid adjoint solutions typically require one to four times the cost of a flow solution, while for turbu-

lent adjoint computations, this ratio can reach as high as eight to ten. Numerical experiments have

shown that the adjoint solver can stall before converging the solution to machine accuracy, partic-

ularly for viscous cases. A possible remedy for this phenomenon would be to include the com-
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plete higher-order linearization in the preconditioning step, or to employ a simple form of mesh

sequencing to obtain better approximations to the solution through the use of coarser meshes.

An efficient surface parameterization based on a free-form deformation technique has been

utilized and the resulting codes have been integrated with an optimization package. Lastly, sample

optimizations have been shown for inviscid and turbulent flow over an ONERA M6 wing. Drag

reductions have been demonstrated by reducing shock strengths across the span of the wing.

In order for large scale optimization to become routine, the benefits of parallel architectures

should be exploited. Although the flow solver has been parallelized using compiler directives, the

parallel efficiency is under 50 percent. Clearly, parallel versions of the codes will have an immedi-

ate impact on the ability to design realistic configurations on fine meshes, and this effort is cur-

rently underway (see e.g. Ref. 65).

Further development of mesh movement strategies which enable large changes in the geome-

try are needed. Finally, another area that requires future work is the incorporation of multipoint

optimization capability for designing geometries that perform well at off-design conditions.
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Tables

Table 5.1.  Accuracy of two-dimensional derivatives for lift coefficient

Finite Difference Adjoint % Diff.

0.30965 0.30962 -0.010

0.12285 0.12282 -0.024

 Point A -1.0952 -1.0952 0.000

Point B 0.57480 0.57480 0.000

Point C -2.1368 -2.1366 -0.009

Point D 0.76215 0.76215 0.000

M∞

α
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Table 5.2.  Accuracy of two-dimensional derivatives for drag coefficient

Finite Difference Adjoint % Diff.

-0.05029 -0.05029 0.000

0.00843 0.00843 0.000

Point A 0.21925 0.21925 0.000

Point B -0.03489 -0.03489 0.000

Point C 0.17007 0.17007 0.000

Point D 0.06447 0.06448 0.016

M∞

α
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Table 5.3.  Accuracy of two-dimensional derivatives of lift coefficient for flap translation

Finite Difference Adjoint % Diff.

x-translation 1.4226 1.4232 0.042

y-translation -6.8991 -6.8990 -0.001
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Table 5.4.  Accuracy of two-dimensional derivatives of drag coefficient for flap translation

Finite Difference Adjoint % Diff.

x-translation 0.02710 0.02716 0.221

y-translation -0.24164 -0.24163 -0.004
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Table 5.5.  Sensitivity derivatives for lift coefficient for RAE 2822 airfoil

Finite Difference Adjoint % Diff.

-3.0546 -3.0546 0.000

5.7614 5.7615 0.002

Point A 7.9826 7.9814 -0.015

Point B 1.9247 1.9219 -0.145

Point C 1.3283 1.3283 0.000

M∞

α
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Table 5.6.  Three-dimensional compressible derivatives

Finite Difference Adjoint % Diff.

Mach Number 0.00960 0.00959 -0.104

-0.03243 -0.03243 0.000

Twist #3 0.00965 0.00965 0.000

Shear #3 -0.04275 -0.04277 0.047

Thickness #3 -0.04011 -0.04012 0.025

Camber #4 -1.3174 -1.3174 0.000

α
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Table 5.7.  Derivatives of lift coefficient computed using various methods

Design Variable
Finite

Difference
Adjoint

Complex
Variables

Camber #4 1.409643 1.409592 1.409592

Thickness #3 0.041174 0.041195 0.041194

Twist #3 -0.010392 -0.010372 -0.010372

Shear #3 0.045804 0.045844 0.045844
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Table 5.8.  Three-dimensional incompressible derivatives

Finite Difference Adjoint % Diff.

-0.00307 -0.00307 0.000

Twist #3 0.00922 0.00922 0.000

Shear #3 -0.02648 -0.02648 0.000

Thickness #3 -0.04399 -0.04400 0.023

Camber #4 -1.2594 -1.2594 0.000

α
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Table 6.1.  Sensitivity derivatives for lift coefficient using various approximations (see Fig. 5.2)

Finite Difference Adjoint % Diff.

Exact Linearization
Point A
Point B
Point C
Point D
x-translation (flap)
y-translation (flap)

-1.0952
0.57480
-2.1368
0.76215
1.4226
-6.8991

-1.0952
0.57480
-2.1366
0.76215
1.4232
-6.8990

0.000
0.000
-0.009
0.000
0.042
-0.001

First-Order Adjoint
Point A
Point B
Point C
Point D
x-translation (flap)
y-translation (flap)

-1.0952
0.57480
-2.1368
0.76215
1.4226
-6.8991

0.34633
0.47104
-0.10590
0.70373
-0.68201
0.14801

-132
-18.1
-95.0
-7.67
-148
-102

Constant
Point A
Point B
Point C
Point D
x-translation (flap)
y-translation (flap)

-1.0952
0.57480
-2.1368
0.76215
1.4226
-6.8991

-1.6844
0.37262
-2.2888
0.57459
1.1909
-7.6163

53.8
-35.2
7.11
-24.6
-16.3
10.4

µt
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Figure 3.1.  Comparison of skin friction and velocity profiles for flat plate.
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Figure 3.2.  Grid used for AEET airfoil computations.
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Figure 3.3.  Pressure distributions for AEET airfoil.
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Figure 3.4.  Lift versus angle of attack for computations and experiment.
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Figure 3.5.u+ vsy+ for the AEET airfoil.
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Figure 3.6.  View of unstructured surface mesh used for ONERA M6 test case.
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Figure 3.7.  Pressure coefficient at various spanwise locations for subsonic flow.
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Figure 3.8.  Geometric discrepancies for the structured and unstructured meshes.
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Figure 3.9.  Convergence histories for the ONERA M6 and Lockheed Wing C cases.
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Figure 3.10.  Pressure coefficient at various spanwise locations for transonic flow.
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Figure 3.11.  Surface mesh for the Lockheed Wing C configuration.
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Figure 3.12.  Pressure distributions for the Lockheed Wing C configuration.
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Figure 3.13.  Surface mesh for partial-span flap computation.
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Figure 3.14.  Partial-span flap results.
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Figure 4.1.  Illustration of viscous mesh movement procedure in the boundary layer region.
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Figure 4.2.  Baseline viscous mesh for NACA 0012 airfoil.
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Figure 4.3.  Control point locations for NACA 0012 airfoil before and after perturbations.
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Figure 4.4.  Perturbed viscous mesh for NACA 0012 airfoil.
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Figure 4.5.  Close-up of nose region for perturbed mesh.
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Figure 4.6.  Region between elements where “gaps” in mesh can occur during translation.
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Figure 5.1.  Mesh used in assessment of two-dimensional design sensitivities.
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Figure 5.2.  Location of design variables for 2-element airfoil.
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Figure 5.3.  Pressure distribution for transonic RAE 2822 airfoil.
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Figure 5.4.  Location of design variables for RAE 2822 airfoil.
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Figure 5.5.  Location of design variables for ONERA M6 wing.
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Figure 5.6.  Grid used for assessment of three-dimensional design sensitivities.
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Figure 6.1.  Variations of the costate variables with distance from the surface ( ).
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Figure 6.2.  Example of three “tagged” grid layers.
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Figure 6.3.  Extent of mesh sensitivity terms required for translation sensitivity accuracy.
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Figure 6.4.  Convergence level of the adjoint solution necessary for derivative accuracy.
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Figure 7.1.  Convergence histories for subsonic inviscid flow on coarse mesh.
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Figure 7.2.  Convergence histories for subsonic inviscid flow on medium mesh.
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Figure 7.3.  Convergence histories for subsonic inviscid flow on fine mesh.
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Figure 7.4.  Convergence histories for transonic inviscid flow on coarse mesh.
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Figure 7.5.  Convergence histories for transonic inviscid flow on medium mesh.
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Figure 7.6.  Convergence histories for transonic inviscid flow on fine mesh.
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Figure 7.7.  Convergence histories for subsonic turbulent flow on coarse mesh.
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Figure 7.8.  Convergence histories for subsonic turbulent flow on medium mesh.
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Figure 7.9.  Convergence histories for subsonic turbulent flow on fine mesh.
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Figure 7.10.  Convergence histories for transonic turbulent flow on coarse mesh.
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Figure 7.11.  Convergence histories for transonic turbulent flow on medium mesh.
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Figure 7.12.  Convergence histories for transonic turbulent flow on fine mesh.
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Figure 8.1.  Initial and final density contours for inviscid wing design.
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Figure 8.2.  Initial and final pressure distributions for inviscid wing design.
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Figure 8.3.  Initial and final geometries for inviscid wing design.
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Figure 8.4.  Initial and final density contours for turbulent wing design.
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Figure 8.5.  Initial and final pressure distributions for turbulent wing design.
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Figure 8.6.  Initial and final geometries for turbulent wing design.
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