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Variables

	 ε	 =	 molar absorptivity or molar extinction coefficient = Beer-Lambert 
proportionality constant

	 λ	 =	 wavelength

	 ν	 =	 frequency

	 v 	 =	 wave number

	 A	 =	 absorbance

	 b	 =	 path length

	 c	 =	 speed of light (3 × 108 m s−1)

	 C	 =	 concentration

	 E	 =	 energy of photons of light
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	 h	 =	 Planck’s constant (6.6260693 × 10−34 J·s)

	 I	 =	 transmitted light intensity

	 I0	 =	 incident light intensity

	 RNIR	 =	 reflectance NIR

	 RR	 =	 reflectance in the red part of spectral range

	RSWIR	 =	 reflectance SWIR

	 T	 =	 transmittance

Introduction

Optical sensors are a broad class of devices for detecting light intensity. This can 
be a simple component for notifying when ambient light intensity rises above 
or falls below a prescribed level, or a highly sensitive device with the capacity 
to detect and quantify various properties of light such as intensity, frequency, 
wavelength, or polarization. Among these sensors, optical spectroscopic sen-
sors, where light interaction with a sample is measured at many different wave-
lengths, are popular tools for the characterization of biological resources, since 
they facilitate comprehensive, non-invasive, and non-destructive monitoring. 
Optical sensors are widely used in the control and characterization of various 
biological environments, including food processing, agriculture, organic waste 
sorting, and digestate control.

The theory of spectroscopy began in the 17th century. In 1666, Isaac Newton 
demonstrated that white light from the sun could be dispersed into a continu-
ous series of colors (Thomas, 1991), coining the word spectrum to describe this 
phenomenon. Many other researchers then contributed to the development 
of this technique by showing, for example, that the sun’s radiation was not 
limited to the visible portion of the electromagnetic spectrum. William Her-
schel (1800) and Johann Wilhelm Ritter (1801) showed that the sun’s radiation 
extended into the infrared and ultraviolet, respectively. A major contribution by 
Joseph Fraunhofer in 1814 laid the foundations for quantitative spectrometry. 
He extended Newton’s discovery by observing that the sun’s spectrum was 
crossed by a large number of fine dark lines now known as Fraunhofer lines. 
He also developed an essential element of future spectrum measurement tools 
(spectrometers) known as the diffraction grating, an array of slits that disperses 
light. Despite these major advances, Fraunhofer could not give an explanation 
as to the origin of the spectral lines he had observed. It was only later, in the 
1850s, that Gustav Kirchoff and Robert Bunsen showed that each atom and 
molecule has its own characteristic spectrum. Their achievements established 
spectroscopy as a scientific tool for probing atomic and molecular structure 
(Thomas, 1991; Bursey, 2017).

Many terms are used to describe the measurement of electromagnetic energy 
at different wavelengths, such as spectroscopy, spectrometry, and spectropho-
tometry. The word spectroscopy originates from the combination of spectro 
(from the Latin word specere, meaning “to look at”) with scopy (from the Greek 
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word skopia, meaning “to see”). Following the achievements of Newton, the term 
spectroscopy was first applied to describe the study of visible light dispersed 
by a prism as a function of its wavelength. The concept of spectroscopy was 
extended, during a lecture by Arthur Schuster in 1881 at the Royal Institution, to 
incorporate any interaction with radiative energy according to its wavelength 
or frequency (Schuster, 1911). Spectroscopy, then, can be summarized as the 
scientific study of the electromagnetic radiation emitted, absorbed, reflected, 
or scattered by atoms or molecules. Spectrometry or spectrophotometry is the 
quantitative measurement of the electromagnetic energy emitted, reflected, 
absorbed, or scattered by a material as a function of wavelength. The suffix 
“-photo” (originating from the Greek term phôs, meaning “light”) refers to visual 
observation, for example, printing on photographic film, projection on a screen, 
or the use of an observation scope, while the suffix “-metry” (from the Greek 
term metria, meaning the process of measuring) refers to the recording of a 
signal by a device (plotter or electronic recording).

Spectroscopic data are typically represented by a spectrum, a plot of the 
response of interest (e.g. reflectance, transmittance) as a function of wavelength 
or frequency. The instrument used to obtain a spectrum is called a spectrom-
eter or a spectrophotometer. The spectrum, representing the interaction of 
electromagnetic radiation with matter, can be analyzed to gain information on 
the identity, structure, and energy levels of atoms and molecules in a sample.

Two major types of spectroscopy have been defined, atomic and molecular. 
Atomic spectroscopy refers to the study of electromagnetic radiation absorbed 
or emitted by atoms, whereas molecular spectroscopy refers to the study of 
the light absorbed or emitted by molecules. Molecular spectroscopy provides 
information about chemical functions and structure of matter while atomic 
spectroscopy gives information about elemental composition of a sample. This 
chapter focuses on molecular spectroscopy, particularly in the visible-near 
infrared wavelength region due to its relevance in biosystems engineering.

Concepts
Light and Matter Interaction

Spectroscopy is based on the way electromagnetic energy interacts with mat-
ter. All light is classified as electromagnetic radiation consisting of alternat-
ing electric and magnetic fields and is described classically by a continuous 

Outcomes
After reading this chapter, you should be able to:

•	 Describe basic concepts of light and matter interaction, the electromagnetic spectrum, and the fundamental 
processes involved in absorption spectroscopy

•	 Use the Beer-Lambert law to predict the concentration of an unknown solution

•	 Calculate spectral indices from spectral imaging data
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sinusoidal wave-like motion of the electric 
and magnetic fields propagating transver-
sally in space and time. Wave motion can 
be described by its wavelength �  (nm), 
the distance between successive maxima 
or minima, or by its frequency ν (Hz), the 
number of oscillations of the field per 
second (figure 1). Wavelength is related 
to the frequency via the speed of light c  
(3 × 108 m s−1) according to the relationship 
given in equation 1.

	 � � c
v

	 (1)

Sometimes it is convenient to describe light in terms of units called “wave-
numbers,” where the wavenumber is the number of waves in one centimeter. 
Thus, wavenumbers are frequently used to characterize infrared radiation. 
The wavenumber, ,�  is formally defined as the inverse of the wavelength, ,�  
expressed in centimeters:

	
1

 
�

�
� 	 (2)

The wavenumber is therefore directly proportional to frequency, ν:

	 ��v c 	 (3)

leading to the following conversion relationships:

	 � �
7
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�
�
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The propagation of light is described by the theory of electromagnetic waves 
proposed by Christian Huygens in 1878 (Huygens, 1912). However, the interaction 
of light with matter (emission or absorption) also leads to the particle nature 

of light and electromagnetic waves as proposed 
by Planck and Einstein in the early 1900s. In this 
theory, light is considered to consist of particles 
called photons, moving at the speed c. Photons 
are “packets” of elementary energy, or quanta, 
that are exchanged during the absorption or 
emission of light by matter.

The energy of photons of light is directly 
proportional to its frequency, as described by 
the fundamental Planck relation (equation 6). 

Reminder: 1 nanometer 
= 10−7 cm

Figure 1. Schematic of a sinusoidal wave described by its wavelength �  
and its amplitude A.

Table 1. Conversion relationships between �  and  � .

Wavelength
�

Wavenumber
� Relation

Unit

cm cm−1
1 

 
�

�
�

nm cm−1 	 �
�

���
�



Visible and Near Infrared Optical Spectroscopic Sensors for Biosystems Engineering  •  5

Thus, high energy radiation (such as X-rays) has high frequencies and short 
wavelengths and, inversely, low energy radiation (such as radio waves) has low  
frequencies and long wavelengths.

	
hcE h hc� �
�

� � � 	 (6)

	where E =	energy of photons of light (J)
	 h =	Plank’s constant = 6.62607004 × 10−34 J·s
	 ν =	frequency (Hz)
	 c =	speed of light (3 ×108 m s−1)
	 �  =	wavelength (m)

The electromagnetic spectrum is the division of electromagnetic radiation 
according to its different components in terms of frequency, photon energy 
or associated wavelengths, as shown in figure 2. The highest energy radiation 
corresponds to the γ-ray region of the spectrum. At the other end of the elec-
tromagnetic spectrum, radio frequencies have very low energy (Pavia et al., 
2008). The visible region only makes up a small part of the electromagnetic 
spectrum and ranges from 400 to about 750 nm. The infrared (IR) spectral 
region is adjacent to the visible spectral region and extends from about 750 nm 
to about 5 × 106 nm. It can be further subdivided into the near-infrared region 
(NIR) from about 750 nm to 2,500 nm which contains the short wave-infrared 
(SWIR) from 1100–2500 nm, the mid-infrared (MIR) region from 2,500 nm to  
5 × 104 nm, and the far-infrared (FIR) region from 5 × 104 nm to 5 × 106 nm 
(Osborne et al., 1993).

When electromagnetic 
radiation collides with a 
molecule, the molecule’s 
electronic configuration is 
modified. This modifica-
tion is related to the wave-
length of the radiation and 
consequently to its energy. 
The interaction of a wave 
with matter, whatever its 
energy, is governed by the 
Bohr atomic model and 
derivative laws established 
by Bohr, Einstein, Planck, 
and De Broglie (Bohr, 1913; 
De  Broguie, 1925). Atoms 
and molecules can only 
exist in certain quantified 
energy states. The energy 
exchanges between mat-
ter and radiation can, 
therefore, only be done by Figure 2. Electromagnetic spectrum.
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specific amounts of energy 
or quanta E h�� � . These 
energy exchanges can be 
carried out in three main 
ways (figure 3): absorption, 
emission, or diffusion.

In absorption spectros-
copy, a photon is absorbed 
by a molecule, which under-
goes  a transition from a 
lower-energy state Ei to 
a  higher energy or excited 
state Ej such that Ej – Ei = 
hν. In emission spectros-
copy, a photon can be 
emitted by a molecule that 
undergoes a transition from 
a higher energy state Ej 

to a lower energy state Ei such that Ej – Ei = hν. In diffusion or scattering 
spectroscopy, a part of the radiation interacting with matter is scattered 
in many directions by the particles of the sample. If, after an interaction, 
the photon energy is not modified, the interaction is known as elas-
tic. This corresponds to Rayleigh or elastic scattering, which maintains  
the frequency of the incident wave. When the photon takes or gives energy  
to the matter and undergoes a change in energy, the interaction is called inelas-
tic, corresponding, respectively, to Stokes or anti-Stokes Raman scattering. 
Transitions between energy states are referred to as absorption or emission 
lines for absorption and emission spectroscopy, respectively.

Absorption Spectrometry

In absorption spectrometry, transitions between energy states are referred 
to as absorption lines. These absorption lines are typically classified by the 
nature of the electronic configuration change induced in the molecule (Sun, 
2009):

•	 Rotation lines occur when the rotational state of a molecule is changed. 
They are typically found in the microwave spectral region ranging 
between 100 μm and 1 cm.

•	 Vibrational lines occur when the vibrational state of the molecule  
is changed. They are typically found in the IR, i.e., in the spectral  
range between 780 and 25,000 nm. Overtones and combinations  
of the fundamental vibrations in the IR are found in the NIR range 
(figure 2).

•	 Electronic lines correspond to a change in the electronic state of a 
molecule (transitions of the energetic levels of valence orbitals). They  
are typically found in the ultraviolet (approx. 200–400 nm) and visible 

Figure 3. Simplified energy diagram showing (a) absorption, (b) emission of a photon by a 
molecule, (c) diffusion process.
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region (approx. 200–400 nm). In the visible region (350–800 nm), mol-
ecules such as carotenoids and chlorophylls absorb light due to their 
molecular structure. This visible spectral range is also used to evaluate 
color (for instance, of food or vegetation). In the ultraviolet spectral 
range, fluorescence and phosphorescence can be observed. While 
fluorescence and phosphorescence are both spontaneous emission of 
electromagnetic radiation, they differ in the way the excited molecule 
loses its energy after it has been irradiated. The glow of fluorescence 
stops right after the source of excitatory radiation is switched off, 
whereas for phosphorescence, an afterglow can last from fractions of a 
second to hours.

The spectral ranges selected for measurement and analysis depend on the 
application and the materials to be characterized. Absorption spectroscopy in  
the visible and NIR is commonly used for the characterization of biological 
systems due to the many advantages associated with this wavelength range, 
including rapidity, non-invasivity, non-destructive measurement, and signifi-
cant incident wave penetration. Moreover, the NIR range enables probing of 
molecules containing C-H, N-H, S-H, and O-H bonds, which are of particular 
interest for characterization of biological samples (Pasquini, 2018; 2003). In 
addition to the chemical characterization of materials, it is possible to quantify 
the concentration of certain molecules using the Beer-Lambert law, described 
in detail below.

Beer-Lambert Law

Incident radiation passing through a medium undergoes several changes, 
the extent of which depends on the physical and chemical properties of the 
medium. Typically, part of the incident beam is reflected, another part is 
absorbed and transformed into heat by interaction with the material, and 
the rest passes through the medium. Transmittance is defined as the ratio 
of the transmitted light intensity to the incident light intensity (equation 7). 
Absorbance is defined as the logarithm of the inverse of the transmittance 
(equation 8). Absorbance is a positive value, without units. Due to the inverse 
relationship between them, absorbance is greater when the transmitted light 
is low.

	
0

IT
I

� 	 (7)

	 01log log IA
T I

� �� �� �� � � �
� � � �

	 (8)

	where T =	transmittance
	 I =	transmitted light intensity
	 I0 =	incident light intensity
	 A =	absorbance (unitless)

Fundamental 
vibrations, 

overtones, and 
combinations

Several vibrational modes 
could occur linked to a 
specific functional group 
of atoms: a characteristic 
frequency named the 
fundamental vibration, 
which usually occurs in the 
IR, as well as overtones 
and combinations of these 
fundamental frequencies. 
Overtone frequencies 
occur at integer multiples 
of the fundamental. For 
example, given a 
fundamental frequency 
at 1000 cm−1, the first 
overtone would occur at 
2000 cm−1 and the second 
overtone at 3000 cm−1. 
Given two fundamental 
frequencies at 1500 cm−1 
and 1000 cm−1, their 
combination frequency 
would be 2500 cm−1.
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The Beer-Lambert law (equation 9) describes the linear 
relationship between absorbance and concentration of an 
absorbing species. At a given wavelength λ, absorbance A  
of a solution is directly proportional to its concentration (C)  
and to the length of the optical path (b), i.e., the distance 
over which light passes through the solution (figure 4, equa-
tion 9). When the concentration is expressed in moles per liter  
(mol L−1), the length of the optical path in centimeters (cm), 
the molar absorptivity or the molar extinction coefficient ε is 
expressed in L mol−1 cm−1.

Molar absorptivity is a measure of the probability of the 
electronic transition and depends on the wavelength but also on the solute 
responsible for absorption, the temperature and, to a lesser extent, the 
pressure.

	 A bC�� 	 (9)

	where A =	absorbance (unitless)
	 ε =	molar absorptivity or molar extinction coefficient = Beer-Lambert 

proportionality constant (L mol−1 cm−1)
	 b =	path length of the sample (cm)
	 C =	concentration (mol L−1)

Beer-Lambert Law Limitations
Under certain circumstances, the linear relationship between the absorbance, 
the concentration, and the path length of light can break down due to chemical 
and instrumental factors. Causes of nonlinearity include the following:

•	 Deviation of absorptivity coefficient: The Beer-Lambert law is capable  
of describing the behavior of a solution containing a low concentration of  
an analyte. When analyte concentration is too high (typically >10 mM), 
electrostatic interactions between molecules close to each other result in 
deviations in absorptivity coefficients.

•	 High analyte concentrations can also alter the refractive index of the 
solution which in turn could affect the absorbance obtained.

•	 Scattering: Particulates in the sample can induce scattering of light.
•	 Fluorescence or phosphorescence of the sample.
•	 Non-monochromatic radiation due to instrumentation used.

Non-linearity can be detected as deviations from linearity when the absorbance 
is plotted as a function of concentration (see example 1). This is usually overcome 
by reducing analyte concentration through sample dilution.

Figure 4. Absorption of light by a sample.
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Spectroscopic Measurements

Spectrometers are optical instruments that 
detect and measure the intensity of light at dif-
ferent wavelengths. Different measurement 
modes are available, including transmission, 
reflection, and diffuse reflection (figure 5). In 
transmission mode, the spectrometer cap-
tures the light transmitted through a sample, 
while in reflectance mode, the spectrometer 
captures the light reflected by the sample. 
In some situations, e.g., for light-diffusing 
samples such as powders, reflected light does 
not come solely from the front surface of the 
object; radiation that penetrates the material 
can reappear after scattering of reflection 
within the sample. These radiations are called diffuse reflection.

Spectrometers share several common basic components, including a source 
of light energy, a means for isolating a narrow range of wavelengths (typically 
a dispersive element), and a detector. The dispersive element must allow light 
of different wavelengths to be separated (figure 6).

The light source is arguably the most important component of any spectro-
photometer. The ideal source is a continuous one that contains radiation of 
uniform intensity over a large range of wavelengths. Other desirable properties 
are stability over time, long service life, and low cost. Quartz-tungsten halogen 
lamps are commonly used as light sources for the visible (Vis) and NIR regions, 
and deuterium lamps or high-powered light emitting diodes may be used for 
the ultraviolet region.

The light produced by the light source 
is then focused and directed to the mono-
chromater by an entrance slit. A grating 
diffraction element is then used to split 
the white light from the lamp into its com-
ponents. The distance between the lines 
on gratings (“grating pitch”) is of the same 
order of magnitude as the wavelength of 
the light to be analyzed. The separated 
wavelengths then propagate towards the 
sample compartment through the exit slit.

Depending on the technology used for 
the detector, the sample can be positioned 
before or after the monochromater. For 
simplicity, this chapter describes a posi-
tioning of the sample after the monochro-
mater; the entire operation described 
above is valid regardless of the positioning 
of the sample. Figure 6. Spectrometer configuration: transmission diffraction grating.

Figure 5. Schematic diagram showing the path of light for different modes of 
light measurement, i.e. (a) transmission, (b) reflection, and (c) diffuse reflection.
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In some spectrometers, an interferometer (e.g. Fabry-Pérot or Fourier-
transform interferometer for UV and IR spectral range, respectively) is used 
instead of a diffraction grating to obtain spectral measurements. In this case, 
the initial beam light is split into two beams with different optical paths by using 
mirror arrangements. These two beams are then recombined before arriving at 
the detector. If the optical path lengths of the two beams do not differ by too 
much, an interference pattern is produced. A mathematical operation (Fourier 
transform) is then applied to the obtained interference pattern (interferogram) 
to produce a spectrum.

Once the light beams have passed through the samples, they will continue to 
the detector or photodetector. A photodetector absorbs the optical energy and 
converts it into electrical energy. A photodetector is a multichannel detector 
and can be a photodiode array, a charge coupled device (CCD), or a comple-
mentary metal oxide semiconductor (CMOS) sensor. While photodetectors can 
be characterized in many different ways, the most important differentiator is 
the detector material. The two most common semiconductor materials used 
in Vis-NIR spectrometers are silicon (Si) and indium gallium arsenide (InGaAs).

Spectral Imaging

Spectral imaging is a technique that integrates conventional imaging and 
spectroscopy to obtain both spatial and spectral information from an object. 
Multispectral imaging usually refers to spectral images in which <10 spectral 
bands are collected, while hyperspectral imaging is the term used when >100 
contiguous spectral bands are collected. The term spectral imaging is more 
general. Spectral images can be represented as three-dimensional blocks of 
data, comprising two spatial and one wavelength dimension.

Two sensing modes are commonly used to acquire hyperspectral images,  
i.e., reflectance and transmission modes (figure 7). The use of these modes 
depends on the objects to be characterized (e.g., transparent or opaque) and the 
properties to be determined (e.g. size, shape, chemical composition, presence of 

defects). In reflectance mode, the hyperspectral 
sensor and light are located on the same side 
of the object and the imaging system acquires  
the light reflected by the object. In this mode, the 
lighting system should be designed to avoid any 
specular reflection. Specular reflection occurs 
when a light source can be seen as a direct reflec-
tion on the surface of an object. It is character-
ized by an angle of reflection being equal to the 
angle of incidence of the incoming light source on 
the sample. Specular reflection appears as bright 
saturated spots on acquired images impacting 
their quality. In transmittance mode, the detector 
is located in the opposite side of the light source 
and captures the transmitted light through the 
sample.

Figure 7. Hyperspectral imaging sensing mode: (a) reflectance 
mode, (b) transmission mode.
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Applications
Vegetation Monitoring in Agriculture

The propagation of light through plant leaves is governed primarily by absorption 
and scattering interactions and is related to chemical and structural composi-
tion of the leaves. Spectral characteristics of radiation reflected, transmitted, or 
absorbed by leaves can thus provide a more thorough understanding of physi-
ological responses to growth conditions and plant adaptations to the environment. 
Indeed, the biochemical components and physical structure of vegetation are 
related to its state of growth and health. For example, foliar pigments includ-
ing chlorophyll a and b, carotenoids, and 
anthocyanins are strong absorbers in the 
Vis region and are abundant in healthy veg-
etation, causing plant reflectance spectra 
to be low in the Vis relative to NIR wave-
length range (Asner, 1998; Ollinger, 2011) 
(figure  8). Chlorophyll pigments absorb 
violet-blue and red light for photosynthe-
sis, the process by which plants use sun-
light to synthesize organic matter. Green 
light is not absorbed by photosynthesis 
and reflectance spectra of green vegetation 
in the visible range are maximum around  
550 nm. This is why healthy leaves appear 
to be green. The red edge refers to the 
area of the sudden increase in the reflec-
tance of green vegetation between 670 and 
780 nm. The reflectance in the NIR plateau 
(800–1100 nm) is a region where biochemi-
cal absorptions are limited and is affected by the scattering of light within the leaf, 
the extent of which is related to the leaf’s internal structure. Reflectance in the 
short wave-IR (1100–2500 nm) is characterized by strong water absorption and 
minor absorptions of other foliar biochemical contents such as lignin, cellulose, 
starch, protein, and cellulose.

Stress conditions on plants, such as drought and pathogens, will induce 
changes in reflectance in the Vis and NIR spectral domain due to degradation 
of the leaf structure and the change of the chemical composition of certain tis-
sues. Consequently, by measuring crop reflectance in the Vis and NIR regions 
of the spectrum, spectrometric sensors are able to monitor and estimate crop 
yield and crop water requirements and to detect biotic or abiotic stresses 
on vegetation. Vegetation indices (VI), which are combinations of reflectance 
images at two or more wavelengths designed to highlight a particular property 
of vegetation, can then be calculated over these images to monitor vegetation 
changes or properties at different spatial scales.

The normalized difference vegetation index (NDVI) (Rouse et al., 1974) is the 
ratio of the difference between NIR and red reflectance, divided by the sum of 
the two:

Figure 8. A green vegetation spectrum.
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NIR R

NIR R

NDVI R R
R R

�
�

� 	 (10)

where RNIR = reflectance in the NIR spectral region (one wavelength selected 
over the 750–870 nm spectral range) and RR = reflectance in the red spectral 
region (one wavelength selected over 580–650 nm spectral range). Dividing 
by the sum of the two bands reduces variations in light over the field of view 
of the image. Thus, NDVI maintains a relatively constant value regardless of 
the overall illumination, unlike the simple difference which is very sensitive to 
changes in illumination. NDVI values can range between −1 and +1, with nega-
tive values corresponding to surfaces other than plant cover, such as snow 
or water, for which the red reflectance is higher than that in the NIR. Bare  
soils, which have red and NIR reflectance about the same order of magnitude, 
NDVI values are close to 0. Vegetation canopies have positive NDVI values, 
generally in the range of 0.1 to 0.7, with the highest values corresponding to 
the densest vegetation coverage.

NDVI can be correlated with many plant properties. It has been, and still is, 
used to characterize plant health status, identify phenological changes, estimate 
green biomass and yields, and in many other applications. However, NDVI also has 
some weaknesses. Atmospheric conditions and thin cloud layers can influence the 
calculation of NDVI from satellite data. When vegetation cover is low, everything 
under the canopy influences the reflectance signal that will be recorded. This 
can be bare soil, plant litter, or other vegetation. Each of these types of ground 
cover will have its own spectral signature, different from that of the vegetation 
being studied. Other indices to correct NDVI defects or to estimate other vegeta-
tion parameters have been proposed, such as the normalized difference water 
index or NDWI (Gao, 1996), which uses two wavelengths located respectively in 
the NIR and the SWIR regions (750–2500 nm) to track changes in plant moisture 
content and water stress (eq. 11). Both wavelengths are located in a high reflec-
tance plateau (fig. 8) where the vegetation scattering properties are expected 
to be about the same. The SWIR reflectance is affected by the water content of 
the vegetation. The combination of the NIR and the SWIR wavelength is thus not  
sensitive to the internal structure of the leaf but is affected by vegetation water 
content. The normalized difference water index is:

	
NIR SWIR

NIR SWIR

NDWI R R
R R

�
�

� 	 (11)

where RNIR is the reflectance in the NIR spectral region (one wavelength selected 
over the 750–870 nm spectral range) and RSWIR is the reflectance in the SWIR 
spectral region around 1240 nm (water absorption band). Gao (1996) proposed 
using RNIR equal to reflectance at 860 nm and RSWIR at 1240 nm.

Absorption spectroscopy is widely used for monitoring and characterizing 
vegetation at different spatial, spectral, and temporal scales. Sensors are avail-
able mainly for broad-band multispectral or narrow-band hyperspectral data 
acquisition. Platforms are space-borne for satellite-based sensors, airborne for 
sensors on manned and unmanned airplanes, and ground-based for field and 
laboratory-based sensors.
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Satellites have been used for remote sensing imagery in agriculture since 
the early 1970s (Bauer and Cipra, 1973; Doraiswamy et al., 2003) when Landsat 1  
(originally known as Earth Resources Technology Satellite 1) was launched. 
Equipped with a multispectral scanner with four wavelength channels (one 
green, one red and two IR bands), this satellite was able to acquire multi-
spectral images with 80 m spatial resolution and 18-day revisit time (Mulla 
2013). Today, numerous multispectral satellite sensors are available and pro-
vide observations useful for assessing vegetation properties far better than 
Landsat 1. Landsat 8, for example, launched in 2013, offers nine spectral bands 
in the Vis to short-wave IR spectral range (i.e., 400–2500 nm) with a spatial 
resolution of 15–30 m and a 16-day revisit time. Sentinel-2A and Sentinel-
2B sensors launched in 2015 and 2017, respectively, have 13 spectral bands 
(400–2500 nm) and offer 10–30 m multi-spectral global coverage and a revisit 
time of less than 10 days. Hyperspectral sensors, however, are still poorly 
available on satellites due to their cost and their relatively short operating 
life. Among them, Hyperion (EO-1 platform) has 220 spectral bands over 
the 400–2500 nm spectral range, a spatial resolution of 30 m, and a spec-
tral resolution of 10 nm. The next generation, such as PRISMA (PRecursore 
IperSpettrale della Missione Applicativa) with a 30 m spatial resolution and 
a wavelength range of 400–2505 nm and the EnMAP (Environmental Map-
ping and Analysis Program) with a 30 m spatial resolution and a wavelength 
range of 400–2500 nm (Transon et al., 2018), indicate the future for this  
technology.

Some companies now use satellite images to provide a service to help 
farmers manage agricultural plots. Farmstar (http://​www​.myfarmstar​
.com/​web/​en) and Oenoview (https://​www​.icv​.fr/​en/​viticulture​-oenology​
-consulting/​oenoview), for example, support management of inputs and 
husbandry in cereal and vine crops, respectively. However, satellite-based 
sensors often have an inadequate spatial resolution for precision agriculture 
applications. Some farm management decisions, such as weed detection 
and management, require images with a spatial resolution in the order of 
one centimeter and, for emergent situations (such as to monitor nutrient 
stress and disease), a temporal resolution of less than 24 hours (Zhang and  
Kovacs, 2012).

Airborne sensors are today able to produce data from multispectral to 
hyperspectral sensors with wavelengths ranging from Vis to MIR, with spatial 
resolutions ranging from sub-meter to kilometers and with temporal frequen-
cies ranging from 30 min to weeks or months. Significant advancements in 
unmanned aerial vehicle (UAV) technology as well as in hyperspectral and 
multispectral sensors (in terms of both weight and image acquisition modes) 
allow for the combination of these tools to be used routinely for precision 
agricultural applications. The flexibility of these sensors, their availability and  
the high achievable spatial resolutions (cm) make them an alternative to 
satellite sensors. Multispectral sensors embedded on UAV platforms have 
been used in various agricultural studies, for example, to detect diseases 
in citrus trees (Garcia-Ruiz et al., 2013), grain yield in rice (Zhou et al., 2017) 
and for mapping vineyard vigor (Primicerio et al., 2012). UAV systems with 



14  •  Visible and Near Infrared Optical Spectroscopic Sensors for Biosystems Engineering

multispectral imaging capability are used routinely by companies to estimate 
the nitrogen needs of plants. This information, given in near real-time to farm-
ers, helps them to make decisions about management. Information extracted 
from airborne images are also used for precision farming to enhance plan-
ning of agricultural interventions or management of agricultural production 
at the scale of farm fields.

Ground-based spectroscopic sensors have also been developed for agricul-
tural purposes. They collect reflectance data from short distances and can be 
mounted on tractors or held by hand. For example, the Dualex Force A hand-
tool leaf clip (https://www.force-a.com/fr/produits/dualex) is adapted to 
determine the optical absorbance of the epidermis of a leaf in the ultraviolet 
(UV) optical range through the differential measurement of the fluorescence of 
chlorophyll as well as the chlorophyll content of the leaf using different wave-
lengths in the red and NIR ranges. Using internal model calibration, this tool 
calculates leaf chlorophyll content, epidermal UV-absorbance and a nitrogen 
balance index (NBI). This information could then be used to obtain valuable 
indicators of nitrogen fertilization, plant senescence, or pathogen susceptibility. 
Other examples are the nitrogen sensors developed by Yara (https://​www​.yara​
.fr/​fertilisation/​outils​-et​-services/​n​-sensor/) that enable adjustment of the 
nitrogen application rate in real time and at any point of the field, according 
to the crop’s needs.

Food-Related Applications

Conventional, non-imaging, spectroscopic methods are widely used for rou-
tine analysis and process control in the agri-food industry. For example, NIR 
spectroscopy is commonly used in the prediction of protein, moisture, and fat 
content in a wide range of raw materials and processed products, such as liquids, 
gels, and powders (Porep et al., 2015). Ultraviolet-Vis (UV-Vis) spectroscopy is a 
valuable tool in monitoring bioprocesses, such as the development of colored 
phenolic compounds during fermentation of grapes in the process of winemak-
ing (Aleixandre-Tudo et al., 2017). The Beer-Lambert law (equation 9) can be 
used to predict the concentration of a given compound given its absorbance 
at a specific wavelength.

While conventional spectroscopic methods are useful for characterizing 
homogeneous products, the lack of spatial resolution leads to an incomplete 
assessment of heterogeneous products, such as many foodstuffs. This is par-
ticularly problematic in the case of surface contamination, where information 
on the location, extent, and distribution of contaminants over a food sample is 
required. Applications of Vis-NIR spectral imaging for food quality and safety 
are widespread in the scientific literature and are emerging in the commercial 
food industry. The heightened interest in this technique is driven mainly by 
the non-destructive and rapid nature of spectral imaging, and the potential to 
replace current labor- and time-intensive analytical methods in the produc-
tion process.

This section provides a brief overview of the range and scope of such applica-
tions. For a more comprehensive description of these and related applications, 
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several informative reviews have been published describing advances in hyper-
spectral imaging for contaminant detection (Vejarano et al., 2017), food authenti-
cation (Roberts et al., 2018), and food quality control (Gowen et al. 2007; Baiano, 
2017).

Contaminant Detection

The ability of spectral imaging to detect spatial variations over a field of 
view, combined with chemical sensitivity, makes it a promising tool for con-
taminant detection. The main contaminants that can be detected in the food 
chain using Vis-NIR include polymers, paper, insects, soil, bones, stones, and 
fecal matter. Diffuse reflectance is by far the most common mode of spec-
tral imaging utilized for this purpose, meaning that primarily only surface or 
peripheral contamination can be detected. Of concern in the food industry is 
the growth of spoilage and pathogenic microorganisms at both pre-harvest 
and post-harvest processing stages, since these result in economic losses and 
potentially result in risks to human health. Vis-NIR spectral imaging methods 
have been demonstrated for pre-harvest detection of viral infection and fungal 
growth on plants, such as corn (maize) and wheat. For instance, decreases in 
the absorption of light in wavebands related to chlorophyll were found to be 
related to the destruction of chloroplasts in corn ears due to Fusarium infec-
tion (Bauriegel et al., 2011). Fecal contamination acts as a favorable environ-
ment for microbial growth, thus many studies have focused on the detection 
of such contamination over a wide variety of foods, including fresh produce, 
meat, and poultry surfaces. For example, both fluorescence and reflectance 
modalities have been shown to be capable of detecting fecal contamination 
on apples with high accuracy levels (Kim et al., 2007). Recent studies have 
utilized spectral imaging transmittance imaging for insect detection within 
fruits and vegetables, resulting in high detection levels (>80% correct clas-
sification) (Vejarano et al., 2017).

Food Authentication

Food ingredient authentication is necessary for the ever expanding global 
supply chain to ensure compliance with labeling, legislation, and consumer 
demand. Due to the sensitivity of vibrational spectroscopy to molecular 
structure and the development of advanced multivariate data analysis tech-
niques such as chemometrics, NIR and MIR spectroscopy have been used 
successfully in authentication of the purity and geographical origin of many 
foodstuffs, including honey, wine, cheese, and olive oil. Spectral imaging, hav-
ing the added spatial dimension, has been used to analyze non-homogeneous 
samples, where spatial variation could improve information on the authen-
tication or prior processing of the food product, for example, in the detec-
tion of fresh and frozen-thawed meat or in adulteration of flours (Roberts  
et al., 2018).
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Food Quality Control

Vis-NIR spectral imaging has been applied in a wide range of food quality control 
issues, such as bruise detection in mushrooms, apples, and strawberries, and 
in the prediction of the distribution of water, protein, or fat content in hetero-
geneous products such as meat, fish, cheese, and bread (Liu et al., 2017). The 
dominant feature in the NIR spectrum of high moisture foods is the oxygen-
hydrogen (OH) bond-related peak centered around 1450 nm. The shape and 
intensity of this peak is sensitive to the local environment of the food matrix, 
and can provide information on changes in the water present in food products. 
This is useful since many deteriorative biochemical processes, such as microbial 
growth and non-enzymatic browning, rely on the availability of free water in 
foods. Vis-NIR spectral imaging has also been applied to quality assessment 
of semi-solid foods, as reviewed by Baiano (2017). For instance, transmittance 
spectral imaging has been used to non-destructively assess the interior qual-
ity of eggs (Zhang et al., 2015), while diffuse reflectance spectral imaging has 
been used to study the microstructure of yogurt (Skytte et al., 2015) and milk 
products (Abildgaard et al., 2015).

Examples
Example 1: Using the Beer-Lambert law to predict the 
concentration of an unknown solution

Problem:
Data were obtained from a UV-Vis optical absorption instrument, as shown in 
table 2. Light absorbance was measured at 520 nm for different concentrations 
of a compound that has a red color. The path length was 1 cm. The goal is to 
use the Beer-Lambert law to calculate the molar absorptivity coefficient and 
determine the concentration of an unknown solution that has an absorbance 
of 1.52.

Solution:
The first step required in calculating the molar absorptivity coefficient is to plot 
a graph of absorbance as a function of concentration, as shown in figure 9. The 
data follow a linear trend, indicating that the assumptions of the Beer-Lambert 
law are satisfied.

Table 2. Concentration (mol L−1) and corresponding 
absorbance at 520 nm for a red colored compound.

Concentration (mol L−1) Absorbance at 520 nm

0.001 0.21

0.002 0.39

0.005 1.01

0.01 2.02
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To calculate the molar absorptivity 
coefficient, it is first necessary to cal-
culate the line of best linear fit to the 
data. This is achieved here using the “add 
trendline” function in Excel. The resultant 
line of best fit is shown in figure 10. The 
equation of this line is y = 201.85x.

Compare this equation to the Beer-
Lambert law (equation 9):

	 A bc�� 	 (9)

	where A =	absorbance (unitless)
	 ε =	molar absorptivity or molar extinction coefficient = Beer-Lambert 

proportionality constant (L mol−1 cm−1)
	 b =	path length of the sample (cm)
	 C =	concentration (mol L−1)

In this example, ε b = 201.85, where b is the path length, defined in the prob-
lem as 1 cm. Consequently, ε = 201.85 (L mol−1 cm−1). To calculate the concen-
tration of the unknown solution, substitute the absorbance of the unknown 
solution (1.52) into the equation of best 
linear fit, resulting in a concentration of 
0.0075 mol L−1.

This type of calculation can be used 
for process or quality control in the food 
industry or for environmental monitoring 
such as water quality assessment.

Example 2: Calculation of 
vegetation indices from a 
spectral image

Problem:
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) developed by the 
National Aeronautics and Space Administration (NASA) is one of the foremost 
spectral imaging instruments for Earth remote sensing (NASA, n. d.). An agricul-
tural scene was gathered by flying over the Indian Pines test site in northwestern 
Indiana (U.S.) and consists of 145 × 145 pixels and 224 spectral reflectance bands 
in the wavelength range 400–2500 nm. The Indian Pines scene (freely available 
at https://​doi​.org/​10​.4231/​R7RX991C; Baumgardner et al., 2015) contains two-
thirds agricultural land and one-third forest or other natural perennial vegetation. 
There are also two major dual lane highways and a rail line, as well as some low-
density housing, other structures, and smaller roads present in the scene. The 
ground truth image shows the designation of various plots and regions in  
the scene, and is designated into sixteen classes, as shown in figure 11. The aver-
age radiance spectrum of four classes of land cover in the scene is plotted in 

Figure 9. Plot of absorbance at 520 nm as a function of concentration.

Figure 10. Plot of absorbance at 520 nm as a function of concentration 
showing line and equation of best linear fit to the data.
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figure 12. Table 3 shows the data corresponding to the plots shown in figure 11. 
Using the mean radiance values, calculate the NDVI and NDWI for each class of 
land cover. Please note: In this example, the mean radiance values are being used 
for illustration purposes. This simplification is based on the assumption that the 
radiation receipt is constant across all wavebands so radiance is assumed to be 
linearly proportional to reflectance (ratio of reflected to total incoming energy). 
Typically, vegetation indices are calculated from pixel-level reflectance spectra.

Solution:
The NDVI (calculated using NIR wavelength = 764 nm and red wavelength = 
647 nm) and NDWI (calculated using NIR wavelengths 860 nm and 1244 nm) were 
calculated from the Indian Pines image by selecting the appropriate wavebands 
and calculating their normalized differences as described in equations 10 and 11:

	 NIR R

NIR R

NDVI R R
R R

�
�

�
 = 764 647

764 647

R R
R R

�
�

	 (10)

where RNIR = R764 = radiance in the NIR spectral 
region at 764 nm in this example.

RR = R647 = radiance in the red spectral region 
(one wavelength selected over the 580–650 nm 
spectral range) and at 647 nm in this example.

	 NIR SWIR 860 1244

NIR SWIR 860 1244

NDWI R R R R
R R R R

� �
� �

� �
	 (11)

where RNIR = R860 = radiance in the NIR 
spectral region (at 860 nm in this example)

RSWIR = R1244 = radiance at in the SWIR spectral 
region (at 1244 nm in this example)

Using the radiance values given in 
table  3 for the grass-pasture category, 
equation 11 becomes

114 38 NDWI 0.5
114 38

�
� �

�

The results are shown in table 4. The 
grassland classes have a positive NDVI 
value, with grass-pasture having the high-
est NDVI among the selected classes, while 
the stone-steel towers class has a negative 
NDVI.

Radiance
Radiance is the flux of light 
that reaches a measure-
ment system per unit 
of area and unit of solid 
angle perpendicular to the 
surface of the detector. It is 
expressed in W sr -1 m-2.

Figure 11. Indian Pines ground truth image showing various plots and regions 
in the scene, designated into sixteen classes (Baumgardner et al., 2015).

Figure 12. Indian Pines average radiance spectrum of four classes of land 
cover in the scene shown in figure 11.



Visible and Near Infrared Optical Spectroscopic Sensors for Biosystems Engineering  •  19

Table 3. Mean radiance values for selected classes of land cover from the Indian Pines dataset (Baumgardner 
et al., 2015).

Radiance (W sr−1 m−2)

Wavelength (nm) Grass-Pasture Grass-Trees
Grass-Pasture-

Mowed Hay-Windrowed
Stone-Steel 

Towers

647 35 39 56 50 94

657 34 37 54 43 91

667 34 37 54 44 94

677 34 36 53 43 93

687 31 34 40 42 84

697 35 40 57 55 86

687 31 34 39 42 83

697 35 40 59 55 86

706 50 52 69 68 90

716 61 62 71 71 84

725 72 70 71 71 79

735 97 88 84 85 88

745 116 101 93 94 94

754 118 100 92 92 92

764 77 64 59 60 56

774 123 103 95 95 90

783 127 105 97 98 93

793 120 99 93 94 87

803 119 98 92 93 85

812 109 90 84 86 78

822 98 80 76 78 70

831 105 86 82 84 75

841 115 95 91 93 82

851 114 93 90 92 80

860 114 93 90 93 79

870 112 92 89 92 78

880 113 92 90 93 78

889 110 90 89 92 76

899 86 71 70 73 59

908 81 67 66 69 53

918 79 65 64 67 50

928 67 52 55 58 43

937 31 26 26 28 23

947 35 29 29 31 25

956 39 33 34 37 29

966 53 41 38 50 40

976 70 59 63 66 46

(continued)
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Radiance (W sr−1 m−2)

Wavelength (nm) Grass-Pasture Grass-Trees
Grass-Pasture-

Mowed Hay-Windrowed
Stone-Steel 

Towers

985 81 69 73 77 59

995 88 74 78 83 64

1004 86 73 77 81 62

1014 87 73 77 81 61

1024 86 72 76 80 59

1033 86 72 75 80 59

1043 86 72 74 79 57

1052 85 71 73 78 55

1062 82 68 71 75 52

1072 80 67 69 74 49

1081 78 65 67 72 48

1091 74 61 64 68 44

1100 61 45 54 58 40

1110 39 39 40 42 32

1120 18 15 16 17 13

1129 14 12 12 14 10

1139 20 17 18 20 15

1148 17 15 17 18 14

1158 27 25 28 30 23

1168 39 35 40 42 33

1177 41 38 43 41 34

1187 41 37 42 41 34

1196 42 39 44 39 35

1206 41 39 43 40 35

1216 43 40 43 38 36

1225 42 41 34 40 37

1235 38 42 35 46 39

1244 38 42 34 45 38

1254 43 41 38 38 36

Table 3. Mean radiance values for selected classes of land cover from the Indian Pines dataset (continued).
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By applying the calculation to each 
pixel spectrum in the image, it is possible 
to create images of the NDVI and NDWI, 
as shown in figure 13. The NDVI highlights 
regions of vegetation in red, regions of 
crop growth and soil in light green-blue, 
and regions of stone in darker blue. The 
NDWI, sensitive to changes in water con-
tent of vegetation canopies, shows regions 
of high water content in red, irregularly 
distributed in the wooded regions.

Image Credits

Figure 1. Gorretta, N. (CC By 4.0). (2020). Schematic of a sinusoidal wave described by its 
wavelength.

Figure 2. Gorretta, N. (CC By 4.0). (2020). Electromagnetic spectrum.
Figure 3. Gorretta, N. (CC By 4.0). (2020). Simplified energy diagram showing (a) absorption, 

(b) emission of a photon by a molecule, (c) diffusion process.
Figure 4. Gorretta, N. (CC By 4.0). (2020). Absorption of light by a sample.
Figure 5. Gorretta, N. (CC By 4.0). (2020). Schematic diagram showing the path of light for 

different modes of light measurement, i.e. (a) transmission, (b) reflection, and (c) diffuse 
reflection.

Figure 6. Gorretta, N. (CC By 4.0). (2020). Spectrometer configuration: transmission diffrac-
tion grating.

Figure 7. Gorretta, N. (CC By 4.0). (2020). Hyperspectral imaging sensing mode: (a) reflectance 
mode, (b) transmission mode.

Figure 8. Gorretta, N. (CC By 4.0). (2020). A green vegetation spectrum.
Figure 9. Gowen, A. A. (CC By 4.0). (2020). Plot of absorbance at 520 nm as a function of 

concentration.
Figure 10. Gowen, A. A. (CC By 4.0). (2020). Plot of absorbance at 520 nm as a function of 

concentration showing line and equation of best linear fit to the data.
Figure 11. Gowen, A. A. (CC By 3.0). (2015). Indian Pines ground truth image showing various 

plots and regions in the scene, designated into sixteen classes. Citation might be: Baum-
gardner, M. F., L. L. Biehl, and D. A. Landgrebe. 2015. “220 Band AVIRIS Hyperspectral Image 
Data Set: June 12, 1992 Indian Pine Test Site 3.” Purdue University Research Repository. 
doi:10.4231/R7RX991C. This item is licensed CC BY 3.0.

Figure 12. Gowen, A. A. (CC By 4.0). (2020). Indian Pines average reflectance spectrum of four 
classes of land cover in the scene shown in figure 11.

Figure 13. Gowen, A. A. (CC BY 4.0). (2020). NDVI and NDWI calculation of Indian Pines images.

Figure 13. NDVI and NDWI calculation on Indian Pines images.

Table 4. NDVI and NDWI calculated from mean radiance of selected classes of land cover from the Indian 
Pines dataset.

Grass-Pasture Grass-Trees
Grass-Pasture-

Mowed Hay-Windrowed
Stone-Steel 

Towers

NDVI 0.38 0.24 0.03 0.09 −0.25

NDWI 0.5 0.38 0.45 0.35 0.35
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