Technical Report CS74023-R

Principle of Optimal Page Replacement

and the LRU Stack Model1

Felix L. Lam2

Domenico Ferrari3

Work reported herein was supported in part by the U, S. Navy under
Grant (NESC) N00039-71-C-0255.

Department of Computer Science, Virginia Polytechnic Institute and.
State University, Blacksburg, Virginia 24061,

Computer Science Division, Department of Electrical Engineering and
Computer Science, University of California, Berkeley, California 94720,

gt e 2 [

Abstract

Program reference strings generated by the LRU stack model are
considered, and expressions for the expected times to next reference for all
pages occupying different LRU stack positions are derived. Using these
expressions, necessary and.sufficient conditions as well as sufficient conditions
on the distance distribution are obtained which guarantee implementation by
the LRU replacement algorithm of the "informal principle of optimality" for
page replacements. The sufficient conditions are found to be the same as those
under which ﬁhe LRU replacement algorithm is shown to be optimal. Relaxed
conditions are also obtained for special cases where the number of page frames

is fixed.

Key Words and Phrases : replacement algorithms, program models, program

behavior, virtual memory, dynamic storage allocation.

CR Categories : 4+3

I. Introduction

One criterion that measures the performance of page replacement algorithms
is the pumber of page faults, and therefore the cost, a replacement algorithm
induges in précessing a program reference string. The principle of optimality
underlying the MIN replacement algorithm propesed by Belady [1] states that,
to achieve a minimum pumber of page faults, the page with the lpngest time until
its next reference shoyld be replaced, The MIN replacement algorithms has been
showﬁ to be optimal by'variqug authoré [2, 3]. Ciearly, the MIN replacement
algcrithm requires exact knowledge.about future references in a program reference
string. and is therefore unrealizable. In caseg'wﬁer-e advance knowledge of
program references is upknown and where only staftistical statements can be made,
a heuristic "informal principle of pptimality" [4] has been used in designing
realizaﬁle replacement algorifhms which states that the page to be replaced is
the éne with the longest exp getegl time until its next reference, " The appiication
af this heyriétia p;incipie is sﬁpposed to lead tg a minimum expgctE§ numbher
of page faults. Under general assqmptions about program behavior, however, this
is not always true as is shown in a counter-example in [5].

To détérmine the expected number of page faults, a few models for program
reference string generation have been studied. The simplest of these models
is kndwn to be the independent reference mo&el and a replacement algorithm
(denoted by Ao) which implements the "informal principle of optimality"” has been
shown to be optimal (in the sense of inducing a minimum expected number of page
faults) for reference strings generated by this model [4,6,7]. A second model
that is often studied is called the LRU (Least Recéntly Usedj stack model which

has been found tq be a better model for real program reference strings [6,8,91.

Moreover, the well-known LRU replacement algorithm has been proven optimal for
reference strings generated by the LRU stack model provided that some conditions
are imposed upom' the distance distribution for the model. But it has not

been detprmined whether the LRU replacement algorithm impléments tpe "informal
principle of optimality" in such cases,

To answer this question, we derive in the following the expected time until
next'referénée for all pages occupying different LRU stack positions. Necessary
and sufficient conditions on the distance distributipon are found under which
the LRU replacemeﬁt algorithm is shown to implement the "infofmal principle
of optimality". Furthermore, the same sufficient conditions that make the LRU
reglacement'algorithm qptimal afe also shown to be sufficient for.the

implemeﬁtation of the "informal principle of optimality".

I1. The LRU stack model [6,9]

et N = {},2,.,.,n3- be a set of pages and let R = T1T2eesTieseTp
denote a program reference string of lemgth £, where rtéﬁ. For all ¢, 1 =t = £,
the LRU stack S(t) = (Sl(t) . sz(t),,..sn(t)) is a vector, the ith component of
which, si(t)é N, is the ith most recently referenced page in the reference string
up to and including time t [3]. Cleérly, sq(t) = Te. Thus, the LRU stack is
a list that orders pages in a program aceording to their recency of reference,

with the most recently referenced page on top of the stack. Furthermore, for

1A

all time t(1 = t = {) during a program’s execiution, the topmost m pages in the
LRU stack with 1 =m < n are exactly those kept in a memory of m page frames

when the LRD replacement algorithm is used.

For any LRU staﬁt §jt), if Lepy = sk(t), §jt+l) is formed as follows:

sq (t+l) = s (t)
81 (t+1) = 55 1 (¢) l<i=xk
and 85 (£+1) = s4 (k) k<is=snqg (IT.1)

At the same time, an LRU stack distance at time t+1 is defiped to be d =k,

t+1

Note that (IT.1) for updating the LRU stack characterizes actions of the LRU
replacement algorithm, Hence for any 1n1t1al LRU stan 8(0) and for any
progranm reference string R, there corresponds a unique LRU distance string
D = dld2'°‘dt"'d£ On the other hand, given an 1n1t1al LRU stack S(O)
and any LRU distance string D, a program. referenge string R can be uniguely
defined as follows. If dt+1—k, 1 =%k <n, then rt+l=sk(t) and S(t+1) is obtained
according to (II.1),

The LRﬁ stack model for program reference string generation assﬁmes (1)
an initial LRU stack §(0) and (2) the LRU distance string D=d1d2...d "'d£
to be 5 Sequence of independent and 1dantleally distributed random variables
such that, for all ¢ and k with 1 5 ¢ < ¢ aqd l=%k=n, pPr [dy = k] = Pk and

n .
2 P =1, Consequently, any realization of the LRU distance string according

=1

to this distance distribution Pj defines a progran refarence string R as
discussed in the last paragraph. Tt is obvipus that, without any loss of
generality, we can let §(O)=(l,2,..,,n). It should also be pointed out that
 the LRU stack model described here is the same as that presented in [6,9} but

1s somewhat simpler than that used in [87. Finally, it is very important to
note that the sequence of LRU stacks (§(0),§fl),.,.x§CE)) used in the generation

of reference string R:rlrz...rt...:g is precisely the same sequence of LRU stacks

resulting from processing this same reference string. 1In the following, we

shall denote program reference strings generated by this model the LRY reference

strlngs D

ITI. Derivation of expected times

To compute the expected times to next reference for all pages occupying
different staek positions jin the LRU stack, we assume that the reference string
R=rlr2.,.rt..,r£, and hence the distance string D, is infinitely long, i.e.,
£=0.

Supppse that, for écme t = 0, the LRU stack,§(t);(sl(t),...,sn(t)) is
known. Let T(k) he the random #ariable denoting the time from time t to the
time wheﬁ the page sk(t).is rafgrgnced_again. We compute E[T(k)], the expected
value of T(k), by copditioning on the next stack distance dyyy. For 1 < k < n,

I o
T(k) =q 14T (k) if dgg < k - - (III.1)
W' (RHDAE dyyp > K |
Expressions in (;Ii,l).ﬁeflect the LRU.stgck updating pracedure discugsed in
Sectjon II and the randem variables T'(k) and T'(k+l) are respectively counterparts
of T(k) and T(k+l) at time t+1. §incg, accdr&ing to the LRU gtack model for
reference string generation, the disténée string D=d1d2...dt.., is a sequence
of independent and identically distributed random variables, it is clear that
the distance string process probabilistically restarts itself at every point
in time, in particular, at time t+l. Thus it follows that E[T(k)]=E[T'(k)] and
E[T(k+1) I5E[T" (k+1)]. Taking expectations, (III.1) becomes:

1

Ll

E[T(k) | deqr=k]

1+ E[T(k)]

[}

E[T(k) | dpyq<k]

E[T&) | dppg>k] = 1 + E[T(kH1)].
Then

. . k-1 : : n
E[T(k)]= {1%E[T(k)]} .jél Py + Py + £1+E[T(,k+l)]} e B

or

o -1 n
E[T(k)] = j(kaj) °{E[T(k+l)] -jg._kHPj + l} (111.2)

We have also to take care of two boundary conditions: k=l and k=n. Following

similar developments, since

1 if dt+ =1
T(1) = L
4T (2) if dt+l > 1
then
n '
E[T(1)] = B[T(2)]1* 2 Py + 1 (I11.3)
: . j=2
Similarly, since '
T(n) = ' k
I+F'(n) if deg] < 1
then
E[T(n)] = =& (I11,4)
. pn. .

Since (III.4) gives an explicit expression for E[T(n)], back substitution into

(ITT.2) and (IIIL.3) yieldé; for 1<k=n,

E[T(k)] = Rktl

2 P (I11.5)
3=k 3

Thus, for LRU reference strings, (11I.5) gives the expected time since time t

to its next reference of a page at the kth LRU stack position in terms of the

distance distribution. It should be obvious that (ITI.5) is walid for all &=0,

1V. TImplementation of the "informal principle of optimality"

Since the organization and the updating procedure of the LRU stack completely

characterize the LRU replacement algorithm, the question of whether (or under

what conditions) the LRU replacement algorithm implements the "informal
principle of optimality" in processing LRU reference strings can be answered
by examining (IIT.5). Suppose that the LRU replacement algorithm is used
to manage a memory of m page frames (m=n) and that the LRU stack at time t,
S(t), is known, then in order that the "informal principle of optimality"
be implemented, it is necesSari that the page oeccupying the nth LR stack
position'has a longer expected time to next reference than any other page
occcupying a smaller stack position, i,e.,

E[T(k}] = E[T(m)] for Il<k<m-1 ' (IV.1)
In (1Iv.1), it is assumed that m is fixed., But if the LRU replacement algorithm
1s to implement the "informal principle of optimality", (IV.1) has to hold
for all values of m, 1=m=p. This leads us to the following requirement:

E[T(L)] < E[T(2)] = ...= ElT(n-1)] = E[T(n)] (IVv.2)

Now for LRU reference strings, let us examine E[T(k)] and E[T(k+1)] for some
ky, 1 <k < n.

E[T(k)] = E[T(k+1)]

@ n-—k+l< o~k
7 T on

ik T 381417

n
(n ~-k) - ¢ Ps +
S | j=kt1 T g
I
é::@ jék-!-le =~ k) Py (1v.3)

Clearly, (IV.3) gives necessary and suffigient conditions that are to be

=

It g
W
"o

ij(n-—k)

k+1 1=K

satisfied by the probability mass distribution {?j} on the LRU stack distances
in order for the LRU replacement algorithm to implement the "informal principle

of optimality" in processing IRU reference strings, However, if

Py 2Py 2.2 P ;2P (IV.4)
it is clear that (IV.2) and (IV,3) will be satisfied. Thus, (IV.4) gives
sufficient conditions.

Tt is very interesting to observe that sufficient conditions shown in
(IV.4) are exactly the same sufficient conditions under which the LRU replacement
algorithm is shown to be optimal (in terms of a minimum expected number of page
faults) in prpcessing LRU reference strings [9,10]. 1In other words, for the
class of LRU reference strings satisfying Py = PZ Z.s..2 Py, the LRU replacement
algorithm that replaces the page with the longest expected time until its next
reference (i.e., the least recently used page) is optimal,

For a fixed value of m, however, conditions in (IV.3) and (IV.4) can be
relaxed. To see this, we examine (IV.l), For 1 = k < m-1,

E[Tm)] = E[T(k)]
n-m+1l . n-k+1
> T *n

Z Py Z P
jmm ? ek

n

n T
x____..__} (n-mtl) 2 By = (o-mkD) (2 Pj + (nek) 2 Py

m=1

1
T . 2 {me , Pl iv.5
@5 (n mi-l)jék PyZ (m k)jéij ()

(Iv,5) has to be satisfied for all k, 1<k<m=1, and again gives necessary and

sufficient conditions for implementation of the "informal principle of optimality"

by the LRU replacement algorithm for a fixed value of m. A sufficient condition

for (IV.3) is
win {Pjg > max {Pi% (IV.6)

I=j=m-1 m=j=<n

It is also interesting to observe that (IV.6) is slightly different from
the sufficient condition required for optimality in a similar case (i.e.,

for a fixed value of m) [9,10].

V. Conclusion

For LRU reference strings, the expected times to next reference for all
pages in the LRU stack are derived. Using these expected values, necessary
and sufficient conditions as well as sufficient conditions on the distance
distribution are obtained which guarantee the implementation by the LRU
replacement algorithm of the "informal prineiple optimality™., It is observed
that these sufficient conditions are identical to those under whieh the LRU
replacement algorithm is proven Lo be optimal. Through these exercises, the
LRU replacement algovithm (when processing a restricted class of LRU reference
strings) is shown to be another algorithm besides the replacement algorithm
Ao which not oply implements the "informal principle of optimality" but also

is optimal. Of course, the only truly optimal] replacement algorithm remains

to be MIN whose optimality does not depend on any program model,

Acknowledgment
The authors wish to thank Professor 4. J. Thomasian of the Department of
Electrical Engineering and Computer Sciences, University of California, Berkeley,

for his helpful discussions.

References:
1. Belady, L. A, A study of replacement algorithms for a virtual-storage
computer, I1BM Syst, Jo 5, 2(1966), 78-101,

2. Horwitz, L, P., Karp, R, M., Miller, R. E., and Winograd, S. Index
register allocation. J. ACM 13, 1 {(Jan. 1966), 43~61,

3. Mattson, R, L., Gesei, 7J,, Slutz, D, R., and Traiger, 1. L. Evaluation
techniques for storage hierachies., TBM Syst. J. 9, 2(1970), 78-117,

4, Aho, A, V., Denning, P. J., and Ullman, J. D, "Principles of optimal
page replacement., J. ACM 18, 1(Jan. 1971), 80-93,

5. Coffman, E, G., and Denning, P. J. Operating Systems Theory. Prentice-
Hall, Fnglewood Cliffs, N. J., 1973, pp. 249-250.

6. Spirn, J. R., and Denmning, P, J, Experiments with program locality,
Proc. AFIPS 1972 FJCC, AFIPS Press, Montvale, N. J., pp. 611-621,

7. Coffman, E, G., and Denning, P, J, Operating Systems Theory. Prentice-
Hall, Fnglewood Cliffs, N, Joy 1973, pp. 268-275,

8. Shedler, G, 5., and Tung, C, Locality in page reference strings, SIAM
J. Comput, 1, 3(Sept. 1972), 218-241,

9. Coffman, E, G., and Denningg, P. J, Operating Systems Theory, Prentice-
Hall, Englewood Cliffs, N, J., 1973, pp. 275v278.

10. Dennings, P, J., Savage, J. E,, and Spirn, J. R, Models for locality in
Program behavior, Dept, of Elect, Eng., Princeton Univ., Princeton, N, Jay
Computer Science Report TR-107 (April 1972),

