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Abstract

This thesis presents an initial investigation into Active Damage Control (ADC) using
Artificial Intelligence (AI). Al can alleviate the sometimes complicated task of modelling
the system and also provides an adaptable solution process. The two research areas of

ADC, damage identification and damage control, are studied in separate investigations.

An Al technique called "rule induction" is used for the damage identification study.
Velocity data from three plates (one without damage, one with damage at the center, and
one with damage at the edge) are acquired using a laser data acquisition system. A set
of rules is then induced from these data which accurately identifies which plates have
damage and where the damage is located. With regard to the damage control, a real-time,

machine-learning technique called "BOXES" is used to locally control the vibration of



various systems by identifying their vibrational patterns. Using this technique, it is shown
that the computer successfully learns an effective control law for various simulations
using its trials and failures as the only learning information. It is also seen that the
learning algorithm is somewhat less effective when experimentally applying this method
to a pin-pin, aluminum beam. A discussion of possible improvements are presented in

the future work section.
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Chapter 1

Introduction

Active Damage Control is a structural control process used for alleviating high strains in
structures by active control techniques. This method of structural control has relied on
the complicated, and sometimes undeterminable, modelling of the structure for successful
damage control. Artificial intelligence techniques for active damage control could both
alleviate the complicated task of modelling a system and also provide for a solution

process which can adapt to the problem of interest.

The concept of active damage control can be logically split into two main categories:
damage identification and damage control. Basic research issues in damage identification
consist of not only identifying whether the structure has damage, but also locating this
damage. With regard to damage control, the research question is to prevent more damage
by controlling the vibration of the entire structure or simply the local area where the

damage exists.

This theory of applying artificial intelligence to control tasks is not a new idea. For



decades, researchers and scientists have postulated for decades that there are many vital
advantages to having a computer "learn". Machine learning alleviates the sometimes
impossible mathematical task of modelling a complex system; e.g., time-varying systems,
combinatorial control problems, etc. (Pospelov and Pospelov, 1979). This method of
machine learning needs not define the system but only to identify it, and does this by way

of an empirical relationship between the inputs and outputs.

In this thesis, the artificial intelligence technique known as inductive learning is used as
a tool for active damage control. Inductive learning, also known as learning from
examples, uses a set of positive and negative samples to induce general concepts that
describe all of the positive examples and none of the negative examples. More formally,
a computer learning from examples uses sample data to generate an up-dated basis for

improved classification of subsequent data from the same source (Michie, 1992).

The purpose of this research is to prove or disprove the viability of using this theory of
inductive learning in active damage control. This will consist of not only identifying
structural damage, but determining the location of the damage. In addition, this method
of learning from examples is tested as a control mechanism for a vibrating structure. The
author feels that the successful use of this artificial intelligence technique in solving these
two separate but related problems will lead to future optimism in applying artificial

intelligence to active damage control.



The following sections contain a brief background of what has been done in the fields of
damage identification and damage control. Also, a brief overview of inductive learning

and artificial intelligence in general is presented.

1.1 Active Damage Control Literature Review

Scientists have been developing methods of damage control for many years. The most
notable of these methods are mechanical treatment of the structure, surface treatment of
the structure, adaptive damage control, and active damage control (Li, 1992). The focus

of this thesis is limited to the area of active damage control.

As mentioned before, active damage control is active control techniques used to alleviate
high stresses in structures (Rogers et al., 1991). This technique inherently contains two
distinct problems with two distinct backgrounds. The first is the problem of damage
identification and the second is the problem of damage control. For organizational

considerations, the literature reviews are discussed in separate sections.

1.1.1 Damage Identification Literature Review

Many techniques have been under investigation over the last few years to identify if and

where damage exists in a variety of different structures. Natural frequencies, mode
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shapes, damping ratios, and correlation coefficients are only a few of the methods
presently being used for identifying and quantifying damage in structures. The following
literature reviews are by no means supposed to be, or even intended to be, a complete
grouping of works on the subject. The select list of works described here is simply

intended to show the logical progression of the technology.

Methods of non-destructive testing for damage identification first began in the late
seventies.  Research dealt with the location of defects in structures using the
measurements of natural frequencies (Cawley and Adams, 1979). In this case, the authors
made measurements at a single point on an aluminum plate to not only detect and locate
damage but also to roughly quantify the damage. An unusual result from this research
states that symmetrical structure shapes cause some problems in locating the damage.
This characteristic not only identifies damage at the correct location but also
symmetrically across the major axis. On the other hand, if the structure is asymmetrical,
the damage site is uniquely defined at the correct location. It should be noted that this

research was performed theoretically using finite element analysis.

Wolff and Richardson (1989) performed a similar test on a plate experimentally using an
impact hammer. The purpose of this research was to identify the correlation between the
physical changes and modal parameter changes of a damaged structure. In this case,

frequency response functions were used to detect bolt tightness between a flat plate



structure and a rib stiffener. It should be noted that the modal frequencies themselves
were not enough to detect damage. The authors used curve fitters of the experimental
FRF data and super-imposed the plotted mode shapes. Again, the frequency response
function approach to modal testing sufficiently predicted structure damage and its

location.

The use of modal analysis for crack identification was performed in both a theoretical and
experimental capacity in 1990 (Gomes and Silva, 1990). The experimental procedure was
performed on a free-free steel beam for several crack locations and depths. Although the
method was successful, a very interesting result was identified. This result is that cracks
with a small depth tended to have little or no influence on the natural frequencies relative

to an uncracked beam behavior.

Similar to the testbed used for this thesis, Richardson and Mannan (1992) tested an
aluminum plate with a small saw cut at one edge acting as the damage. Once again, a
modal approach was taken to successfully identify and locate the damage in the structure.
The method used here was to locate the damage by comparing a set of modal data from
the undamaged structure and the frequencies of its modes after the damage was imposed.
Again in this paper the author admits that small amounts of damage in the structure may

not affect a structure’s dynamics, and therefore may not be detectable.



In an unpublished paper, the author and Liu showed that certain types of crack damage
to a plate can be detected using signal processing techniques (Kiel and Liu, 1992). A
correlation coefficient analysis was performed on three separate composite plates. One
contained no damage, one contained a crack in the center, and the third contained a crack
at the edge. Velocity data gathered using a laser beam was cross-correlated in an attempt
to distinguish which plates contained the damage. Results showed that there was a
noticeable difference between a plate with no damage and a plate with damage located
at the edge. On the other hand, less of a distinction was noticed when the crack was
located at the center of the plate. Again the symmetry of the damage with respect to the

plate played a large part in the contrasting results.

1.1.2 Damage Control Literature Review

The second, and just as important, problem to be addressed in the area of active damage
control is exactly how to control the damage. That is to say, once the damage has
occurred in a structure (whether it be a crack, delamination, etc.), how can the vibration
of this area be suppressed in order to control the damage from spreading. In the crudest
sense, there are basically only two ways to control damage in a structure: globally and
locally. Methods of globally controlling structural vibration, i.e., the entire structure, have
been around for many decades and are discussed in detail in any classical and modern

control systems book. The more direct method, and the topic of this thesis, is to control



the vibration to the structure at the damaged location only (local control).

One of the new and fast-developing fields is an exciting material concept known as
"intelligent material systems." An intelligent material system is a hybrid material system
with integrated sensors, control processors, and induced strain actuators used to provide
computational/control capabilities. This method combines sensors, actuators, and
computer technology to actively, and non-destructively, decrease the stress and strain field

at the crucial, damaged location (Rogers et. al., 1991).

Many techniques of using induced strain actuators have been investigated including Shape
Memory Alloys (SMAs) and piezoelectric, electrostrictive, and magnestrictive actuators
(Rogers, Liang, and Li, 1991). In the aforementioned paper, these techniques were shown
to successfully reduce stress and strain at a crack tip and to increase fatigue life span of

engineering structures.

Along these lines, smart material actuators have also been shown to control the growth
of delaminations in composite structures (Hanagud et. al.,, 1992). Delaminations are
essentially interlaminar ply separations and are some of the most commonly observed
damages. Piezoelectric sensors and actuators were used to reduce axial stresses in a

beam, thereby reducing the damage growth rate.



Modal control algorithms based on a Positive Position Feedback (PPF) strategy have also
been used for vibration control. This method was originally suggested by Caughey and
Goh (Caughey and Goh, 1987) as an alternative to the standard direct velocity feedback.
In short, this method feeds back generalized modal displacements to successfully
accomplish vibration suppression. The conventional modal controllers use negative
feedback from both the modal position and velocity. Second-order filters are used to feed

back the position signals.

Baz, Poh and Fedor have since used the Positive Position Feedback strategy to dampen
out multi-modes of vibration of a simple cantilevered beam (Baz et. al., 1989). Slight
variations in the method (such as first order filters instead of second order) enable a
simplification of the controller design and the prevention of any steady-state errors.
Results from the flexible cantilevered beam show that uniform damping can be achieved
for all the controlled modes. In addition, the structural vibration was effectively

suppressed using the PPF method.

A similar experiment using the PPF strategy has also been performed on a flexible box-
type structure analogous to large space structures (Poh and Baz, 1990). Again the
position signals were fed back through a first order filter. Once again, the results
indicated the effectiveness of using positive position feedback to suppress structural

vibration.



A final investigation which uses the PPF strategy for vibrational control was performed
by Fanson and Caughey (Fanson and Caughey, 1990). The experimental testbed was a
thin flexible beam made of aluminum. The first three modes were controlled to suppress
the vibration of the simply supported beam. Results show that the dynamic response of
all the controlled modes was "significantly reduced." It should be noted that one PPF

filter was needed for each modal suppression unless the modes are clustered.

Another method of local control which has been proven effective in vibration suppression
is called Power Flow or Wave Junction control. This method controls the vibration at a
damage location by using concepts of disturbance propagation and reflection. The
response of a flexible structure to a locally applied force is viewed as waves of a
travelling elastic disturbance. Conceptually, active controllers are designed as wave
absorbers to "shunt" energy to non-critical locations, away from the damage sites.
Various controllers or compensators have been tested to evaluate the energy absorbing
and reflecting characteristics (for example, see Aubrun, 1980, von Flotow, 1986,

Signorelli, 1988).

In one investigation by von Flotow (von Flotow and Schafer, 1986), wave-absorbing
controllers are used to absorb wave energy at the end of a flexible stainless steel beam.
The wave absorbers are applied to the free end of a hanging, clamped-free beam and local

deflections are fed back to control force and moment. In the study, various sensor and



actuator locations were studied to identify optimum locations. Both synthesized and ideal
compensators were compared with regard to effectiveness. In addition to realizing
dampened vibration at the targeted location, a connection was identified between power
flow and "velocity feedback schemes with frequency dependent gains." Some

compensators exhibited instabilities at low frequencies.

Various techniques for deriving compensators for wave absorbers have also been studied
(Miller et. al., 1989). In these cases, the objective was to actively "alter the wave
scattering properties of a junction" or, in our case, damage location. The various
compensating techniques were evaluated using a so-called frequency domain cost
function. The disturbance is measured and input to the actuators (located at the junction)
to eliminate outgoing waves. The compensator methods used were a noncausal control
method, a causal fixed-form parameter method, and a Wiener-Hopf solution method. All
these solution methods were tested using the free end of a dispersive, undamped
Bernoulli-Euler beam. All three methods were shown to either suppress or eliminate
resonance behavior. The investigation also found that effectiveness of this method can

change based on structural geometry.

1.2 Artificial Intelligence Literature Review

The ultimate goal of artificial intelligence (AI), and the common conception (or

10



misconception), is that computers will one day be able to mimic humans in all aspects.
These human capabilities include what are known as the external representations and the
internal representation (see Fig. 1.1). External representations which are represented by
input/output tasks include such Al research fields as Vision, Natural Language Processing,
Robotics, and Speech. The internal representation research fields include Deduction and
Search, Planning, Explanation, and the topic of this thesis, Machine Learning (Charniak

and McDermott, 1985).

We begin our discussion with the area of learning, otherwise known as Machine Learning.
The machine learning field of Artificial Intelligence is a very broad subject which ranges
from learning by rote (the trivial) to learning by discovery (essentially, the impossible).
As described in Michalski et. al. (1983), this broad topic of machine learning is normally
said to contain five main methods: rote learning, learning from instruction, learning from

examples, learning by analogy, and learning by discovery (all defined below).

rote learning: The simplest form of learning is by rote. This method
simply directly implants new knowledge into the computer whether it be
by programming or the memorization of given facts and data. No

inferences or extensions are drawn from the incoming information.

learning from instruction: A second method of machine learning is

11
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Figure 1.1: Faculties of Artificial Intelligence
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learning by being told or from instruction. In this case, the learning
device accepts information from a source and uses the information
effectively.  This background information is used to infer more

information about the source.

learning from examples: A computer learning from examples, or learning
inductively, consists of hypothesizing general rules from specific examples
of information provided to it from the environment. The sources of the
information can come from a teacher, the learning device itself, or the
external environment. This type of machine learning is the method used

in these investigations.

learning by analogy: This method of learning acquires new facts or skills by
transforming existing knowledge based on new problems which "resemble"
previously solved problems. The new facts or skills to be developed must

be analogous to other previously stored information.

learning by discovery: This method is by far the toughest of all learning
techniques. Learning by discovery involves observations or inferences
which span several concepts acquired to date. This form of unsupervised

learning requires the learner to infer various general concepts without the

13



use of a dictionary of information or particular instances (Michalski et. al.,

1983).

It was not until the late fifties that machine learning made a big impact in the artificial
intelligence community. One of the first and most famous uses of machine learning was
performed using the game of checkers. Samuel (1959) used machine rote-learning to
prove that a computer can learn to play a better game of checkers than the average person
in a "remarkably short period of time." General game playing techniques or heuristics
were used by the computer to search through possible moves and associate a value to
each board position. Each time the computer took a turn, it searched three ply from the
present board state and saved the information. Anytime a board situation was already
available in the dictionary the computer would use the additional time to extend the
search deeper thereby improving with time. In this way, the computer used dictionaries

to improve its playing performance; i.e., rote-learning.

The seventies was the period when learning from examples emerged as a legitimate
method for learning. Among others, Winston’s Learning Blocks World Concepts dealt
with rule induction for simple toy blocks (Winston, 1970). In addition, this method
developed maximally-specific conjunctive generalizations (MSC-Generalizations) of the
input examples. The input examples are provided by a teacher or source and the method

uses "near miss" negative examples to determine the generalized description of the

14



concept (Michalski et. al., 1983).

Hayes-Roth’s work on inductive learning was also instrumental to the emergence of
learning from examples. Hayes-Roth’s work at Carnegie-Melon University dealt with
finding these MSC-Generalizations from only a group of positive examples (see, for

example, Hayes-Roth, 1976 or Hayes-Roth and McDermott, 1977).

In 1977, Mitchell’s Version Spaces method to rule learning was introduced and went a
long way to effectively using knowledge-based systems (Mitchell, 1977). This method
is a candidate elimination approach to rule learning. The algorithm starts with a listing
of all plausible rule versions which applies to the list of instances (this is the version
space) and methodically eliminates rules which conflict with the training instances. These
training instances are classified in Boolean form to distinguish positive instances from
negative instances with regard to a given rule. For each remaining example, the rule of
interest is specialized if the example is negative or the rule is generalized if the rule is
positive. To specialize the rule, the program matches the model to the sample description
and identifies the most important difference. To generalize the rule, the program matches
the model to the sample description and determines the type of each difference. In this
way, the algorithm narrows down to the best rule which describes the data. Although this
method of learning was shown to be quite effective, it is only available for training

instances which can be classified in Boolean form.
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Now we turn our discussion to the artificial intelligence work which has been performed
in the control systems area. The "Boxes" technique of pattern formation, developed by
R.A. Chambers and Donald Michie in 1968, is one of the original Artificial Intelligence
involvements in control systems. This algorithm works by discretizing the states of a
given system and categorizing them into a matrix (boxes). "States" in this sense are the
minimum number of variables needed to describe the system completely using an
assumed equation of motion. For each box, different possible inputs to the system are
tested as a control and the outputs are stored along with a measure of the effectiveness.
Using all this information, the machine can "learn" or evaluate what the best inputs are

to the system for any combination of states.

This method of discretizing the states of a system into subspaces was originally performed
on a cart and pole system by Widrow & Smith (1964). The system contains a rigid pole
which is hinged to a cart with wheels. The pole is only allowed to swing in one
dimension similar to the movement ability of the cart on the track. The controller can
apply either a full force left or full force right input. A failure is obtained when either

the pole falls or when the cart is moved a specified distance from the starting location.

Then in 1972, this system was adopted by Michie & Chambers (1972) to perform an
experiment in adaptive control using "Boxes". At any given state-situation "box" the

computer would begin by randomly applying a left or right (L or R) full force response

16



and recording the time until failure. Each successive time the simulation would hit that
state, the computer would determine the previous response which averaged the longest
time until failure, apply that response, and then reaverage the results. At the end of the
simulation, each box was associated with the input (L or R) that averaged the longest

result. In this way, the program learned on its own as opposed to being "taught".

Neural Networks have also been extensively used in an effort to solve difficult learning
control problems. A crude definition of an Artificial Neural System or Neural Network
is a mathematical model which attempts to mimic the human brain. More specifically,
Neural Networks consist of many simple nodes connected together by weights of different
strengths. These neuron-like adaptive elements were used by Barto, Sutton, and Anderson
to control the pole and cart system similar to the one described above (Barto et. al,,
1983). The authors assumed there was no accurate model of the system and the only
feedback evaluating performance was a failure signal which occurred when the pole fell
over. In this case, the learning system consisted of an associative search element (ASE)
and an adaptive critic element (ACE). The ASE constructed the input/output associations
and the ACE constructed the more informed evaluation function. Many other Neural
Network studies using adaptive element have been performed (see Rosenblatt, 1962 and

Widrow and Smith, 1964) but they are not as instrumental for our development.

1.3 Scope and Objectives

17



The focus of this thesis is to show the viability of using artificial intelligence, specifically
rule induction, for the purpose of active damage control. The intention of this method
is to overcome some of the problems associated with other techniques as described in the

literature reviews.

The purpose of this thesis is to separately investigate the two basic tasks associated with
active damage control. The first is to use artificial intelligence to identify damage in a
composite plate with a sawcut. The second focus of this thesis is to use artificial

intelligence to locally control or suppress the movement of a vibrating system.

As stated above, the first task is to investigate the viability of damage identification using
artificial intelligence. Specifically, rule induction is used to analyze laser data acquired
from both damaged and non-damaged composite plates. The data from these plates are
analyzed using a software package called KnowledgeSEEKER. The package, created by
Firstmark Technologies, LTD, allows its users to extract decision-making information

from a database in the form of decision or regression trees.

The viability of damage control using artificial intelligence is investigated in a different
manner. The control of a point on a beam is performed experimentally using a rule-
induction method developed by Michie and Chambers called "Boxes" (Michie and

Chambers, 1968). Once again, vibrational information from the structure is used to

18



develop the optimum local control for a specified point on the beam.

It is expected that this method of rule induction within the field of Artificial Intelligence
will perform well enough to promote optimistic ideas for future research into applying

Artificial Intelligence to recent technological research areas.

1.4 Outline of the Thesis

The first chapter of this thesis discusses the related works in both the field of artificial
intelligence and active damage control. Chapter 2 contains the investigation of using rule
induction for the purpose of damage identification. This includes a detailed description
of the data gathering process from the plates, a complete theoretical description of the
KnowledgeSEEKER software package, and the results of this part of the thesis. Chapter
3 contains the investigation of using rule induction, specifically "BOXES", for local
vibration control. This includes a theoretical discussion of the "BOXES" method of rule
induction, a series of theoretical simulations ensuring the effectiveness of this technique,
a detailed description of the experimental testbed, and the results of this part of the thesis.
Finally, chapter 4 discusses the results found in the previous two chapters and ties them

together. This chapter also includes some recommendations for future work.
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Chapter 2

Study of Damage Identification
Using Rule Induction

"The distinct aim of machine intelligence within the general field of computer
science is artfully to encroach on this [computer science] preserve, annexing to the
machine’s domain more and more of the human’s elusive aptitudes...to construct general
rules from particular instances and to define concepts via examples."

D. Michie (1967)
Introduction
Machine Intelligence 1

The following is an initial investigation into the use of artificial intelligence for damage
identification. The method of learning from examples is performed on a set of
pregathered plate velocities in an attempt to distinguish which plates have damage and
which do not. The motivation behind the investigation is not only to use artificial
intelligence in the determination of whether or not damage is present in structures, but

also to use these techniques to evaluate where the damage has occurred.

In general terms, the investigation consists of gathering velocity data over three composite
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plates using a laser beam. The three carbon composite plates are 0.3 m (12 in.) by
0.3 m (12 in.) and consist of one plate with no damage, one plate with damage at the
center, and one plate with damage at the edge (see Fig. 2.1). Damage, in this case, is a

thin razor cut four inches long.

Using knowledgeSEEKER, a statistical rule generation package, the velocity data is
transformed into a logical set of rule descriptions. The rules should then correctly
identify subsequent recorded velocity from the same sources and correctly predict if it
came from a plate with damage, and if so, where the damage occurred (i.e., at the center
or at the edge). Of secondary interest, is the number of rules required to correctly
describe the data. For practical applications it is important to minimize the loss of

"transparency." Transparency is the ability to interpret this rule set information.

In the end, the success of this investigation relies upon what percent of the cases the rule
set correctly describes and how large a rule set is required for this accuracy. In addition,
this technique is used to analyze the information for "critical" or "sensitive" areas on the
plate where distinct differences in the data result in accurate damage detection. It is the
author’s hope that these techniques, if successful, can be extended to other composite

materials and structures for damage identification and location.

2.1 Experimental Setup and Data Acquisition
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Plate 1 Plate 2 Plate 3

12in, [

No Damage Damage at Center Damage at Left

. *—12in. ——»

Figure 2.1: Plate Definitions and Dimensions
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As mentioned, velocity data from three plates are analyzed in an attempt to distinguish
which data sets are associated with the damaged plates and which data sets are associated
with the undamaged plate. The three thin 0.3 m (12 in.) by 0.3 m (12 in.) plates are all
made of the same composite material. The plates are hung from the ceiling using fishing

wire to simulate free-free boundary conditions.

The dynamic response of the plates (i.e., the real and imaginary parts of the vibration
velocities) are measured using a laser scanning sensor system. The plates are driven at
a single frequency and the data is gathered using the Omitron 9000 series laser system.
The scanning area of the plates is divided into a thirty-point by thirty-point matrix. This
results in a total of 900 scanning points for each of the three plates to be analyzed by the
software package. The order in which the points are scanned by the laser is shown in

Fig. 2.2.

Each scanning point in the data file contains the following information:

1) Point location -- theta x

2) Point location -- theta y

3) Point velocity -- real

4) Point velocity -- imaginary
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30 Pts

| Y N i

Figure 2.2: Plate and Associated Data Point Numbering System
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The data file is then modified to include which points are associated with either no
damage, center damage, or edge damage. This investigation uses the aforementioned

attributes or predictor variables to accurately "break down" the database. The damage
status (none, center, or edge) is to be defined as the dependent variable while the other
five attributes (thetax, thetay, real velocity, and imaginary velocity) are to be defined as

the independent variables.

Before deciding at which frequency to excite the plates, the frequency response functions
were analyzed (Liu, 1993). The FRFs for the composite plates of interest are shown in
Figs. 2.3, 2.4, and 2.5. Since the lower modes are more prominent, we will use one of
the lower, more distinct modal frequencies to excite the plates. In short, the 208 Hz

mode is chosen because it is associated with a low, clean natural frequency.

The resonances associated with this mode vary slightly from plate to plate. The author
makes the assumption that these slight frequency differences (of about 5 Hz) are
associated with material inconsistencies in the plates. Therefore, the comparison of the
modes or resonances is used rather than comparing exact frequencies. Graphical displays
of the mode shapes for plates one, two, and three as produced by the laser system are

shown in Figs. 2.6, 2.7, and 2.8 respectively.

A flow diagram of the data acquisition process is shown in Fig. 2.9. The plates are
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(X Mirror) T T(Y Mirror)
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(Computer
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Figure 2.9: Flow Diagram of Data Acquisition System
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excited with a force equivalent to 600 millivolts using a shaker located at the bottom,
right-hand corner of each plate. The excitation force is monitored using a piezoelectric

force transducer connected to the shaker.

The next important part of the investigation is to analyze the data using
KnowledgeSEEKER; but, before this is discussed, it is important to understand the

theoretical aspects of KnowledgeSEEKER.

2.2 KnowledgeSEEKER

The pregathered velocity data is then analyzed using the software package
KnowledgeSEEKER. KnowledgeSEEKER is a software program created by Firstmark
Technologies, LTD that allows its users to extract decision-making information from a
database in the form of decision or regression trees. A set of primitive attributes of the
damage are used by the program’s statistical problem-solving algorithms to break down
the data into rules. Theoretically, KnowledgeSEEKER is a computer model based on

Kass’ recursive partitioning algorithm, CHAID (Kass, 1980).

Classification and regression tree techniques have been used successfully to extract
decision-making structures from large multivariate data sets. The main technique used

is the recursive partitioning of a data set into mutually exclusive, exhaustive subsets that
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best describe the dependent variable. The information set developed from the plate
velocity information in this study is most suitable for the application of the recursive

partitioning technique.

2.2.1 KnowledgeSEEKER Background

The first technique of this structure, Automatic Interaction Detection (AID), was
developed by Morgan and Sonquest (1963). AID uses an interval-scaled dependent
variable to maximize the between-group sum-of-squares (F-statistic) at each bisection or
split. Kass refined the process by using a nominal scaled dependent variable, and
maximized the significance of a chi-squared statistic at each partition. Using this
significance testing and an exhaustive search for the highest chi-squared, the partitioning

locates the multi-way splits.

Kass classified the predictor variables into three types: Monotonic, Free, and Floating.
Monotonic variables have a purely ordinal scale (i.e, they have known or unknown
numeric values associated with their categories), thus only contiguous categories may be
grouped together. Free predictors have purely nominal categories (i.e., differing in kind
rather than degree) and any grouping of categories is permissible. For Floating predictors,
all categories are on an ordinal scale but one. This either does not belong with the other

categories or contains an unknown position. This type of variable allows the data set to
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contain missing values. The floating category may be grouped with any other category
or group of categories, or by itself. The remaining categories may only be grouped

contiguously.

A search method is employed to determine the optimum classes of interest. The first step
in the process is to determine the best partition for each attribute, or predictor. Each
attribute is compared and the most significant one is selected. The data is then partitioned
based on this attribute. This process is repeated until no more significant partitioning is

possible. Kass’ algorithm is as follows:

Step 1. For each predictor in turn, cross-tabulate the categories of the
predictor with the categories of the dependent variable and do

steps 2 and 3.

Step 2. Find the pair of categories of the predictor (only considering

allowable pairs as determined by the type of predictor).

Step 3. For each compound category consisting of three or more of
the original categories, find the most significant binary split
(constrained by the type of the predictor) into which the

merger may be resolved. If the significance is beyond a
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critical value, implement the split and return to Step 2.

Step 4. Calculate the significance of each optimally merged predictor and
isolate the most significant one. If this significance is greater than
a preselected criterion value, subdivide the data according to the

(merged) categories of the chosen predictor.

Step 5. For each partition of the data that has not yet been analyzed, return

to Step 1.

This form of recursive partitioning, as described by Kass, is used in KnowledgeSEEKER.
KnowlegeSEEKER also uses the same three classifications of categories (monotonic, free,
and floating) that Kass describes in the CHAID model. The one difference between Kass’
CHAID and KnowledgeSEEKER is the statistical measuring tool. KnowledgeSEEKER’s
k-nearest neighbor measuring tool avoids the strict assumption of normal probability

density functions (Friedman, 1977).

The algorithm used in software program to search for the best k-way split is described

by Biggs, DeVille, and Suen (1991) and shown below.

Step 1. Select the pair of categories of the predictor variable that is most
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Step 2.

Step 3.

similar using an F or chi-square significance test considering only
pairs that can be merged given this type of predictor variable. Set
the resulting grouping of categories as possible split number i+1

(1 for the first iteration). Repeat this step until only two groupsea

left, say with possible split number i=n*.

Calculate the significance (probability p) of each of the n* sets of
groupings of categories using the F or chi-squared test. The
grouping with the lowest probability p is taken to be the ’best’ split

of the node for that predictor variable.

Determine if this ’best’ split is significant.

The test of significance is based on the grouping of categories with the highest level of

significance using chi-squared. Because of this, a control needs to be used to reduce the

probability of type 1 error, otherwise known as finding a split significant when no

relationship exists between response and predictor variables. The method employed by

KnowledgeSEEKER and proposed by Kass is the Bonferroni adjustment factor. Biggs

et. al. (1991) show that the Bonferroni inequality allows for the setting of the significance

level to keep the type 1 error rate below a preset level; i.e., minimize the discovery of

chance relationships.
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2.2.2 KnowledgeSEEKER Specifications

Having discussed the theoretical background, the specifications chosen for the rule-
generation process are now presented. The Bonferroni adjustment, as described above,
is used to minimize the discovery of chance relationships. Increasing the size of the
adjustment increases the level of conservatism. For this reason, the adjustment is set to

a level of 1.0.

One specification of interest is the growth method to be used by KnowledgeSEEKER.
The choices are limited to either cluster or exhaustive. For this purpose, the exhaustive
method, although more inefficient, is better since it maximizes the statistical significance

and displays the strongest relationships.

The filtering method is the final specification to be defined. The options are 1) decision
support; 2) prediction; or 3) exploration. The prediction support option is chosen and is
associated with a 95% certainty rating. This setting confirms that the displayed
relationships are valid with only a 0.05 filter setting. Using the prediction setting, it is

highly unlikely that one will produce any misleading or chance results.

Before proceeding, it should be noted that many of the aforementioned specifications have

been chosen during the data analysis progression but the present settings are identified as
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producing the "best" results as defined in the following section.

2.3 Resulting Rules and Evaluation

The results of this initial damage identification study using KnowledgeSEEKER are
shown in the six-page connected figure (Figs. 2.10, 2.11, 2.12, 2.13, 2.14, and 2.15). The
connected figure presents 71 separate rules in the form of a decision tree and represent
the most significant decision splits as found by KnowledgeSEEKER. The rules, typed

out in generic form, are shown in appendix A as a reference.

Each box contains four pieces of information showing the damage breakdown of that rule.
The number in the lowest part of the box indicates the total number of cases which are
described by the present breakdown. The three percentages in the top part of each box
rebresent the breakdown of cases related to the type of damage. The first percentage
corresponds to center damage, the second to edge damage, and the third to no damage.
The ideal case occurs when a final box in a branch contains a set of cases which all
belong to the same damage classification; i.e., one group is 100% while the other two

correspond to 0%.

For example, rule number one states that if, for any given piece of velocity data, the real

part of the velocity is between -3.779 and -1.761 meters per second, and the imaginary
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part of the velocity is between -3.609 and -2.263 meters per second, then there is a 100%
chance that the damage occurs in the center of the plate for the 65 cases that apply.
Similarly, rule two states that if the real part of the velocity is between -3.779 and -1.761
meters per second, and the imaginary part of the velocity is between -2.263 and -1.435
meters per second, then there is a 28.6% chance that the damage occurs in the center;
there is a 71.4% chance the damage occurs at the edge; and there is a 0% chance that

there is no damage for the 7 cases that apply.

The most statistically significant split for the data set is the real part of the velocity. The
data inherently splits into ten subgroups using this attribute. For each of these subgroups,
the most accurate rule splits all turn out to be based on the imaginary part of the velocity.
From there, the subgroups (or leaves) contain more definite significant splits using the

location of the data point; i.e., theta x or theta y.

As mentioned earlier, the result is 71 independent rules needed to accurately classify the
data gathered by the laser system. This results in a 77.4% accurate classification of the
data. The accuracy is measured by accounting for the total percentage of cases which are
not described by the majority in any given box. For example, in rule two 71.4% or 5 of
the 7 cases have a damage classification of edge damage. This is the majority. Thus, the
other 2 cases are inaccurate and defined as such. In this way one can generalize the

accuracy of the entire rule set.
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There are some other interesting points to note when evaluating the data. Among all the
rules which contain some type of dispute, the center damage versus no damage dispute
occurs 68% of the time. This clearly shows that it is much harder to distinguish damage
in the center of the plate than damage at the edge of the plate when analyzing velocity
information. This is consistent with the symmetry issue as discussed in Section 1.1.1,

pages 4 and 6.

Another decision tree derived from the data is seen in the other three-page connected
figure (Figs. 2.16, 2.17, and 2.18). In this case, the velocity data is forcibly split, first
at theta x and then at theta y. KnowledgeSEEKER then continued branching the data

with respect to the imaginary and real velocities.

When the data is split in this manner, we can see where the critical or sensitive areas are
on the plate. That is to say, this connected figure shows what areas of the plate have
distinct velocity information when compared to damaged and undamaged plates. In

addition, this rule set is much smaller and hence more easily understood.

The six most sensitive areas (or rules) which most accurately identify the three plates are
indicated on the connected figure with arrows. To more easily identify where these
"sensitive" areas occur, a graphic depiction of the plate and critical areas is shown in Fig.

2.19. In each of the six locations, the plate with no damage has the smallest velocities,
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the plate with center damage has the medium velocities, and the plate with edge damage
has the largest velocities. A priori, this seems to make sense the plates with damage have
more flexibility and movement than the plate without damage. The rules typed out in

generic form are shown in appendix B.

It has been shown that rule induction within the realm of Artificial Intelligence can be a
very powerful method for damage identification. It is not only important to note how this
machine learning technique can identify obscure patterns in the plate, but also that this
technique can be applied to any type of vibrating structure for identifying damage. This
non-destructive damage identification method could prove very useful in the many

applicable and practical situations.
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Chapter 3

Study of Damage Control
Using Rule Induction

"’Trial and Error’ was an archetype of what the knowledge engineering industry
sees today as a design platitude: top-down decomposition into subproblems, with a rule-
structured solution for each individual subproblem. This is the platitude, or in modern

*H

jargon the paradigm, of ’rule-based programming’.
D. Michie (1986)

Introduction, Section 1
On Machine Intelligence

The second, and equally important, focus of this thesis is the use of artificial intelligence
to locally control the vibration of a beam. The control of a point on a beam is performed
using a rule-induction method called "Boxes" developed by Michie and Chambers (Michie
and Chambers, 1968). Once again, vibrational information from the structure is used to

identify the optimum local control in real time for a specified point on the beam.

In general terms, the investigation first consists of applying the "BOXES" method to a

few simple mass-spring systems by way of a simulation. One-mass and two-mass
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systems are investigated to theoretically evaluate the technique. The second part of the
investigation consists of identifying the optimum input to a predetermined location on an
aluminum beam. The beam is a 0.94 m (37 in.) by 76 mm (3 in.) by 3.0 mm (1/8 in.)
aluminum beam which is simply supported on an interchangeable holding assembly. The
excitation is performed using a piezoelectric actuator and the resulting measurements are

recorded using strain gage sensors.

Using "Boxes," a real-time machine learning technique, several possible input voltages
are evaluated to see which optimize the control at any given time. As developed by
Michie and Chambers, "Boxes" originally worked using the discretized states of the
system and categorizing them into a matrix (boxes). For each box, different possible
inputs to the system are tested as a control and the outputs are used to calculate the
effectiveness. Using all this information, the machine can "learn" or evaluate what the
best inputs are to the system for any combination of states. Because measuring all the
states is very difficult in practice, this investigation utilizes the displacement state at three
time steps as the axes for the "BOXES" matrix. The following development shows that

these measurements are, in fact, states of the system.

For example, one can begin by describing any second order, multi-degree-of-freedom

system as
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3.1
M#+Kr=BU
y=or

where r is a generalized coordinate, M is the mass matrix, K is the stiffness matrix, B is
the control matrix, phi is a constant non-singular matrix, and y is the strain output to

controlled. These equations can then be put into state space form resulting in

X=AX+BU (3.2)
Y=CX
where the matrices
r 0 I 0 3.3)
X=||, A= , B= , C=[o 0
r -MK 0 M™B

Assuming a zero order hold on the input(s), this can be transformed into a discrete-time

system and obtain

X,.=®X +TU (3.4)
y.=CX,
Now, using a z-transform, the system looks like
X(2)= (2 - ©)'Tu(2)
Y(2)= CX(2) (3.5)

2
Y(z)= C(zl - ®)'Tu(2)

which for a single-input, single-output is
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Y—
T

- B@
o (3.6)

Performing a change of basis on equation 3.3 to observable canonical form, the set of

equations look like

-a, 1 0 -0 -b,
-a, 01 ~ 0
IS 0 =~ 0, + |t |U, (3.7
-a,_, 0 - 01
-a, 0~ 00 -b,
Y,=[ 1 0- - 0O

Where the a; are coefficients of the A(z) polynomial and b, are coefficients of the B(z)
polynomial. Thus, one notices that the transformed state vector Z(k) contains delayed

values of Y(k) as shown below.

Y, %

3.8
Yool = |2 (3-8)
Y, Zpn

Therefore, it has been shown that these measurements are states of the system.

The motivation behind this initial study of vibration mitigation is to show the viability of
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this method of control. Once this method is successful, this theory of using "Boxes" as
a learning technique can be extended to higher order systems. For example, a successful
control of a two-dimensional beam gives some experimental cornerstone for applying the
method to a three-dimensional plate. These types of higher-order systems are extremely

difficult to model and , hence, very difficult to control using classical control techniques.

In the end, the success of this investigation relies upon not only the accurate identification
of control inputs to suppress the vibration of the structure but also the ability to perform

this damage control in a practical setting.

3.1 ’BOXES’ Technique

As mentioned above, the '7BOXES’ method of optimization is used to control the vibration
for a point on the beam, thus controlling the damage. This techniques works by
discretizing the time displacement at times (t), (t-1), and (t-2) and categorizing them into
a matrix or boxes. For each box, different possible discretized inputs to the system are
tested as a control in a trial and failure format and a resulting measure of effectiveness
is stored. Using this information, the computer learns over time what the best inputs are

to the system for any combination of displacements.

3.1.1 "BOXES" Background
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This method of discretizing the system into subproblems was originally performed on a
cart and pole system by Widrow and Smith (1964). This system shown in Fig. 3.1 was
then adopted by Michie and Chambers (1968) to perform an experiment in artificial
intelligence control. This experiment consisted of having a machine learn from a teacher.
More specifically, a human practiced in the art of balancing the pole on the cart
(simulation) would perform this task and the computer would record the states (cart
displacement, cart velocity, pole angle, and pole angular velocity) with an indication of
’O.K.” or ’Fail.” If the input resulted in a failure (i.e., the pole fell past a certain angle
or the cart moves a specified distance away from the starting point), it would be labeled
with a ’Fail’ otherwise it was labeled ’O.K.”. From this technique of quantizing the
inputs, the computer could induce thresholds for the boxes and associate the boxes with
"L" if the appropriate next move is left or "R" if the appropriate next move is right. In

this way, the computer learned the appropriate response to any given situation or box.

Then in 1972, the same pole and cart system was adopted by Michie and Chambers
(1972) to perform an experiment with "BOXES" using a slightly different idea. At any
given state-situation "box" the computer would begin by randomly applying a left or right
(L or R) full force response and recording the time until failure. Each successive time
the simulation would hit that state combination, the computer would determine the
previous response which averaged the longest time until failure, apply that response, and

then reaverage the results. At the end of the simulation, each box was associated with
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L R

Figure 3.1: Pole and Cart System Used in Original "BOXES"
Experiment (Michie and Chambers, 1972)
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the input (L or R) that averaged the longest result. In this way, the program learned on
its own in real time. Figure 3.2, taken from Chambers and Michie’s "’Boxes’ as a Model
of Pattern Formation," shows that state space representation of the box and the "humanoid
slave" who determines which option is the better response. The latter method of having

the computer learn on its own is used in this initial study of damage control.

3.1.2 "BOXES" Extensions

There are a few extensions of the original "BOXES" which allow this technique to be
applied to the task of vibration mitigation. First, the original experiment performed on
the pole and cart by Michie and Chambers only compared two possible inputs: full force
left or full force right. In this thesis, the input voltage to the piezoelectric actuator is
discretized into nine possible states rather then only two in order to find the optimum

input.

Secondly, the vibration systems to be controlled are discretized using only the
displacement state at the previous time steps as opposed to present state values. It is
rather difficult to directly measure all the states experimentally (as noted by the extensive
research being performed on this task alone). Therefore, the author has chosen to use the
last three displacement values at any given time t (i.e., X(k), X(k-1), and X(k-2)) to

discretize the system. As shown in the development of equation 3.8, the displacement
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Figure 3.2: The State Space (for Clarity Omitting the 6 dimension)
divided into "BOXES" with an independent automaton in each box
and a 'leader’ supervising (Michie and Chamber, 1972)
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values at different time steps can be thought of as "states". In addition, the displacement

changes or velocity will inherently be taken into account by the learning mechanism.

Thirdly, the performance index used in this experiment is a bit more extensive. In the
original "BOXES" experiment performed on the pole and cart system, any given control
input had an effectiveness based on the time until failure. In this thesis, the performance
is judged on the minimum average displacement for the next three time steps. In other

words, the performance index (P.I.) can be described as in the following equation:

PU. = Ave[abs(X(k+1)) + abs(X(k+2)) + abs(X(k+3))] (-9)

This method not only identifies the optimum input for the present state, but it helps to

prevent any "quick fixes" which may hinder the controlling process at a later time step.

A fourth extension exists in the intelligence of the program. Different ideas are
introduced to ensure the machine learning program has the best opportunity to learn the
optimum input to mitigate the vibrations. To be sure that all the input possibilities are
attempted at least once, the performance index is initialized at an extremely low value of

0.001 meters for each input within each box. Another idea which is implemented is a
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technique used to avoid "control lock-in." Every so often, the averages used for the
performance indices are re-initialized thereby giving each subsequent P.I. index more of

an impact on the learning process.

Fifth, the original experiment was only performed on a pole and cart simulation not on
an experimental testbed. To the author’s knowledge, this is the first time the "BOXES"

technique is also applied in an experimental fashion.

3.1.3 Discretization Thresholds

As described above, the three displacements used to identify the movement of the beam
are X(k), X(k-1), and X(k-2). The input is a measure of voltage sent to the piezoelectric
patch. A crucial task in this investigation is the process of discretizing or quantizing the
displacements and identifying appropriate thresholds. To do this, an uncontrolled time
response for the problem of interest is obtained from the system in hopes of inferring the
most logical places to split the subspaces. The time response indicates where the
maximum discretizations should occur. The splits used are not necessarily linear. In
point of fact, the discretizations closest to the vibration goal (i.e., zero vibration) are more

concentrated to maximize the vibration control.

It should be noted that these thresholds are the only aspect of this technique which require
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human expertise and prevent the machine from truly discovering on its own, albeit

learning nonetheless.

Section 3.2 describes the machine learning algorithm used for both the theoretical and

experimental investigations.

3.2 Machine Learning Algorithm

The machine learning code and the simulation used in the theoretical investigation are
written in Matlab. Matlab is a high-performance interactive software package for
scientific and engineering numeric computation created by The MathWorks, Inc. The
machine learning code which is used in the experimental investigation is written in C.
C is a powerful programming and compiler language available from Borland International,

Inc.

Although these experiments use different programming languages, the algorithm is rather
similar. The algorithm used for the learning exercises is an intricate loop which
continually updates and optimizes the "BOXES". The basic loop consists of performing

the following at each time step:

1) Identify the "Box" associated with the present time step by
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identifying the appropriate discretized segments for X(k), X(k-1), and

X(k-2).

2) Identify which of the discretized control inputs is presently the optimum

for this "Box".

3) Apply the control input.

4) Update the "Box" by averaging in the subsequent performance index.

This cycle or updating process continues until the optimum values have been locked in

and stay unchanged.

Although the actual program of the separate experiments vary based on the order of the
system being controlled or if the technique is being applied theoretically or
experimentally, the aforementioned steps are consistent. Some of the variables which
change are the threshold values, the number of boxes required for effective control, and

the actual control values.

3.3 Matlab Simulations
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This technique of "BOXES" rule induction is first performed theoretically to examine how
well the method works on ideal systems. The machine learning technique is applied
theoretically to one- and two-mass, undamped systems with a impulse, step, and
sinusoidal disturbances. This corresponds to six different simulations which are evaluated
using Matlab software package. Visuals of the two different systems under investigation

are shown in Fig. 3.3.

The following section describes the techniques used to simulate the systems and learning

algorithms in Matlab.

3.3.1 Solution Structure

For all the simulations used to evaluate the learning mechanism, the systems are defined
with a unit mass and unit spring constants. The simulation is performed in Matlab using
a continuous-to-discrete time conversion. This enables the computer to update the
learning mechanism after each time step. For convenience the time step, T, is set equal

to one second.

Each of the six simulations use the same "BOXES" matrix. A visualization of this is
shown in Fig. 3.4. To avoid a combinatorial explosion, we will limit the number of

discretizations to nine mass displacements at time k, nine mass displacements at time (k-
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Disturbance Control

Disturbance

Control

M,

Sensor

Figure 3.3: Spring-Mass-Damper Systems Modelled for Theoretical
Investigation: a) 1-Mass Simulation (Damper on Sinusoidal

Disturbance), b) 2-Mass Simulation (Dampers on Sinusoidal
Disturbance)
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Figure 3.4: Visualization of "BOXES" Matrix Used in Simulations
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1), and nine mass displacements at time (k-2). Then, as seen in Fig. 3.4, each of these
boxes keep track of nine possible inputs and their average performance index. The
Matlab limitation of 8188 elements per matrix prevents us from increasing the definition
of the "BOXES" system. The input which results in the lowest average displacement over

the next three time steps is considered to be the optimum for that box.

The next step in obtaining a solution is to establish the nine thresholds for the
displacements. An uncontrolled response is obtained from the Matlab simulation in hopes
of inferring the most logical places to split the subspaces. After examining the response,
one notices that to effectively control the vibration, there should be more emphasis on the
values occurring around the zero value. The decision on splitting the subspaces in this
manner is quite important for effective and accurate rule-induction. If too wide a box is
used, states which typically would use a certain optimum input may be lumped with

another group.

Having said this, an example of the thresholds to be used for the single degree-of-freedom

learning process is shown below:

X1 <-10.0; cm
-10.0 < X2 < -5.0;
S.0< X3 < -3.0;
3.0< X4 < -1.05
-1.0< X5 < 1.0
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1.0< X6 < 3.0;

30< X7 < 5.0

50< X8 < 10.0;

10.0 < X9
The nine possible control inputs are integers centered about zero. These values are
chosen for simplicity and to avoid high energy inputs needed to the system. More
specifically: Ul =-4 N, U2=-3N,U3=-2N,U4=-1N,US=0N,U6=1N, U7
=2 N, U8 =3 N, and U9 = 4 N. In all, there are nine displacement groupings for the

three past time steps or 729 "BOXES", each keeping track of nine possible inputs.

As mentioned earlier, the three different disturbances (impulse, step, and sinusoidal) are
applied to the one and two degree-of-freedom systems. For the impulse and step
disturbances, there is a unit spring constant and there is no damping. The reason the
damping term is left out is to ensure that the total vibration control is due to the learning
technique and not simply due to damping in the structure. On the other hand, for the
sinusoidal input, the damping is included and both the spring constant and damping

constant are 1.0. A unit mass is used for all the simulations.

The first three simulations are performed on a one mass, single degree-of-freedom system.
As seen in Fig. 3.3, the disturbance, control input, and sensor are all collocated at the
mass. The "BOXES" rule induction technique is first applied to an impulse disturbance

of 50 Newton-Seconds, then to a step disturbance of 10 Newtons, and finally to a
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sinusoidal disturbance of amplitude 10 and period of 10 seconds. With regard to the step
disturbance, it is more realistic to control the vibration to the steady state value of the
system. For this reason, the learning mechanism is modified to guide the vibrational

pattern to its steady-state value (in this case, a 50 mm displacement).

The other three simulations are performed on a two mass, two degree-of-freedom system.
Here the disturbance force is located on mass 1 while the control input and sensor are
collocated on mass 2. Once again, the learning mechanism is first applied to an impulse
disturbance of 50 Newton-seconds, then to a step disturbance of 10 Newtons, and finally
to a sinusoidal disturbance of amplitude 10 and period 10 seconds. Similarly to the one
mass system, the mass is driven to the state displacement during the step disturbance

excitation.

As a reference, appendix C contains the six programs which are used to simulate, control,

and graph the response of each test.

The next section contains the results of the aforementioned simulations and a brief

discussion.

3.3.2 Simulation Results and Evaluation
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Figure 3.5: "BOXES" Controlled Response for 1-Mass System
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Figures 3.5, 3.6, and 3.7 show the results of applying the "BOXES" learning technique
to the single degree-of-freedom system. Figure 3.5 is associated with the impulse
disturbance, Fig. 3.6 is associated with the step disturbance, and Fig. 3.7 show the
responses from the sinusoidal disturbance. In each figure, the first graph coincides with
the uncontrolled response of the single mass system to the disturbance. The second graph
shows the response of the controlled system using the "BOXES" algorithm. The final
graph is time response of the controller inputs. The sinusoidal disturbances are shown

in a separate graph for those simulations.

Similarly, Figs. 3.8, 3.9 and 3.10 show the results of applying this rule induction
technique to the two degree of freedom system. Once again, Fig. 3.8 displays an
uncontrolled response, a controlled response, and a controller input time response of the
two mass system with an impulse disturbance. Figure 3.9 has the same pattern but relates
to a step disturbance. Finally, figure 3.10 adds the sinusoidal disturbance as a special

graph along with the other three graphs.

It can be seen from Figs. 3.5, 3.6, and 3.7 that the "BOXES" learning technique
successfully controls a single degree-of-freedom system. For the impulse disturbance, the
uncontrolled response oscillates from -0.3 to 0.3 m whereas the controlled response
oscillates from -0.01 to 0.01 m. This corresponds to a vibration reduction of almost 97%.

Likewise, the simulation with the step disturbance produces an uncontrolled oscillation
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ranging from about 0 m to 0.10 m (about the steady state value of 0.05 m) and the
controlled system only oscillates from 0.045 m to 0.055 m (+ 5 mm from the steady state

value of 0.05 m). This results in a vibration reduction of 90%.

The learning technique does not work quite as well when the system is excited by a
sinusoidal disturbance. In the case of the one mass system, the vibration reduces from
+0.17 m to a 0.0 m to 70 mm oscillation. This results in a vibration reduction of almost
80%. Although this is a very distinct reduction, one would expect the learning system
exactly cancel the sinusoidal input with an equivalent input force 180 degrees out of
phase. The reason this did not occur is twofold. First, the lack of input discretizations
does not allow the controller to exactly "fit" the disturbance to cancel it. Secondly, It is
assumed that the optimum values are affected by subsequent trials. That is to say,
although one value may be optimum at time t, if the control value at (k+1) is an
extremely poor choice then the "correct" value which was applied at t will have a poor

performance index associated with it.

On applying the "BOXES" technique to the two degree-of-freedom system, a substantial
vibration reduction again occurs (see Figs. 3.8, 3.9, and 3.10). The impulse response
reduces from a vibration oscillation of + 0.4 m to + 0.02 m (a vibration reduction of
95%). This method is not as effective when applied to the step disturbance. Here the

vibration is reduced by about 60%. Again, the sinusoidal disturbance is not controlled
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as well as expected. "BOXES" again seems to have a problem "homing-in" on the exact,
optimum control value even though the vibration is noticeably suppressed. The vibration

reduction is about 80%.

It is evident from this investigation that the learning mechanism, as applied here, is less
effective for more complex disturbances. The vibrational patterns in for higher order
systems and more complex disturbances are harder to identify, and hence tougher for the

"BOXES" rule induction technique to control.

Some modifications could be added to the learning algorithm to increase the effectiveness
of the learning process. First, more discretizations for each time displacement could be
added, thereby increasing the definition of the matrix and allowing the learning
mechanism to identify more complex vibrational patterns. Also, increasing the number
of possible control values allows the machine to identify the most accurate input for the
present situation. Other options are to increase the "dimension" of the boxes system and
take into account another time displacement at (t-4) or to use weights when defining the

performance index.

3.4 Beam Experiment

Having shown that the "BOXES" technique of rule induction can mitigate vibration
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relatively well for ideal systems, the next logical step is to apply the method to an
experimental system. Using this same "BOXES" technique, the optimum input to control
the vibration of an aluminum beam is learned. The motivation in this part of the thesis
is to show that this machine learning technique can implicitly identify the vibrational

patterns of a practical system thereby controlling the vibration of a beam in real time.

In general terms, the experiment consists of exciting an aluminum beam using a
piezoelectric actuator located three-fourths of the way along a beam. A strain gage and
a piezoelectric control patch are collocated at the possible "damage" site which in this
case is taken to be one-third of the way down the beam. These locations are chosen to
ensure the observability of the first five plate vibration modes by avoiding a node. The
beam is a 0.94 m (37 in.) by 76.0 mm (3 in.) by 3 mm (1/8 in.) aluminum beam which

is situated in a simply-supported manner on an interchangeable holding assembly.

A schematic of the experimental setup is shown in Fig. 3.11. The output voltages from
the strain gages are routed through a strain-gage amplifier and a low-pass filter to amplify
the response signal. This signal is then accepted by a 386/387 computer using an
interface box. This computer contains the most vital part of the data acquisition process -
the transputer-based data acquisition board (TransDAC) (Ellis, 1990). The control
system architecture of the TransDAC is shown in Fig. 3.12. The T222 transputer

performs the data acquisition and control output while the T800 transputer performs the
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control law calculations. These two processes are performed in parallel and only
communicate when the control law (located in the T800) needs an input or when it is
ready to send the control voltage. In addition, the T222 transputer controls the analog-to-
digital (A/D) conversions for the input voltages from the strain gage and digital-to-analog
(D/A) conversions for the output voltages to the control patch (Rubenstein, 1991). The
"BOXES" control law contained in the T800 transputer code is discussed in the next

section.

Once the output signal from the control law is "DACed" out via the T222 transputer, it
is again run through the interface box. From there the signal is sent through a smoothing
filter to avoid damaging the piezoelectric patch from large voltage jumps. As shown in
Fig. 3.11, the control voltage is amplified using a standard, constant-gain amplifier and

a transformer. The signal is then sent to the control patch.
The final part of the experimental setup is the disturbance input. The disturbance is a
sinusoidal wave of amplitude 650 millivolts and frequency 34.7 Hz. This frequency

corresponds to the first visible mode of the beam. This signal is also run through the

amplifier and transformer before being sent to the disturbance patch.

The next section explains the solution structure of the experimental tests.
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3.4.1 Solution Structure

Although the same "BOXES" technique performed on the simulation is used in this
experimental investigation, there are quite a few details which need to be addressed before
the method can be applied. In addition, the solution structure of the experimental
investigation is different from the theoretical investigation because the control law is
implemented in a different programming language. The control technique for this
investigation is performed in Turbo C. C is a powerful programming and compiler

language available from Borland International, Inc.

One difference between this study and the simulation is the value to be discretized. In
the case of the beam, the strain gage sensors produce a voltage which is proportional to
the displacement. Instead of converting this value to a displacement and back again for
the control we use the voltage itself by which to define "BOXES" matrix. The theory
being that once the voltage from the sensor is controlled, the displacement is also
controlled. The number of discretizations for the voltage are still limited to nine (as seen
in Fig. 3.4). This time each of the boxes keep track of 15 possible inputs and their
average performance indexes. The number of inputs is increased here to allow for more

accurate controls while the learning algorithm is searching for the optimum.

Another important aspect of the solution structure is the definition of the performance
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index. This investigation uses the same performance index as the simulations (the

displacement over three subsequent time steps). That is to say, the performance index

P.I. = Ave[abs(X(k)) + abs(X(k+1)) + abs (X(k+2)) ] (3.10)

This performance index allows the evaluation of a possible control over a period time.

As in the simulations, the nine sensory thresholds are inferred by examining an
uncontrolled response of the beam from the aforementioned 650 millivolt, 34.7 Hz
disturbance. To more effectively control the beam, more quantizations occur about the
zero voltage value. Also, to ensure a high concentration of quantizations near the zero-

value strain voltage, the maximum thresholds value will be kept to + 1.0 volts.

The actual discretizations used in the experiment are shown below:

V1< -1.0; Volts
-1.0< V2 <-0.5;
-0.5< V3 <-0.3;

03 < V4 <-0.1;
0.1< V5 < 0.1;

0.1< V6 < 0.3;
0.3< V7 < 0.5;
0.5< V8 < 1.0;
1.0 < V9
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The 15 possible control inputs are also centered about zero. These values range in equal
intervals from about -1.5 volts to +1.5 volts and, after being stepped up by the amplifier

and transformer, become a control input of + 90 volts to the beam.

In order for the algorithm to successfully learn the vibration patterns, each control
calculation must take the same amount of time each time. Otherwise, different control
inputs might have different performance indexes. This problem might occur when the
voltages are discretized with the If-Then rules (see program contained in Appendix D).
To avoid this problem, a dummy-loop is created to "stall" the program so that each loop

takes exactly the same amount of time.

Finally, the C program contains two output vectors which are stored as Matlab data files.
The first is the strain vector and the second is the control vector. The program proceeds
through 5,000 loops to locally control the vibration and every fifth point voltage input and
voltage control is saved to the output file. This allowed for a graphic display of how well
the program is learning over time. Special care is taken to ensure there is no aliasing

during the data acquisition.

As a reference, Appendix D contains the T800 code written in C (which contains the
"BOXES" control program) and the T222 code written in C (which contains the input and

output commands from the computer to the system).
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The next section presents the results of this study along with some comments.

3.4.2 Experimental Results and Evaluation

Figures 3.13 shows the results of applying the "BOXES" learning technique to the beam
excited at 34.7 Hz with a magnitude of 650 millivolts. The system runs at about 1900
cycles per second and takes about 2.6 seconds to complete the learning process. The x-
axis on the figure corresponds to the time at which the 1000 strain samples were taken.

The y-axis corresponds to the strain in volts.

As seen in Fig. 3.13, three separate test runs were performed for the same specifications.
Multiple runs were tested to ensure a true pattern of learning and not simply a "fluke"
occurence. The first graph shows the uncontrolled response while the other three

correspond to three separate learning tests.

The strain from the uncontrolled response oscillates between +2.1 and -2.3 volts. On the
other hand, the controlled responses only oscillate to + 1.5 volts. This corresponds to a
32% reduction in vibration. Although the program successfully learned to reduce the
vibration, it is not effective enough for a legitimate control law. Several modifications
were performed on the learning program in hopes of finding a "simple" modification

which would make a considerable improvement in the results.
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One possible improvement may be the elimination of time variations in the testbed. As
it stands, the beam is situated with pinned-pinned boundary conditions where the nature

of the clamps allows shifts during testing.

With regard to improving the actual learning process, each of the variables associated
with the "BOXES" algorithm could be individually optimized for this particular
experiment. This would include the number of quantizations, the range of possible
control inputs, and the performance index. All of these factors have unlimited

possibilities and optimizing each would further decrease the beam vibration.

In addition, the dependence of the control inputs could be eliminated. For example, if
one voltage value is used as a control, the next three voltages over time (which are used
to calculate the performance index) have an impact on the original control. Therefore,
a control input at one time step may be adversely affected by a control input at the next

time step.

The conclusions and future work sections contain some other possible theories on what

sorts of work would be required to better control the vibration of this system in real time.
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Chapter 4

Conclusions and Recommendations
for Future Work

The stated objective of this thesis is to investigate the viability of using Artificial
Intelligence or, more specifically, machine learning for active damage control. On a
lower level, the purpose is to investigate the use of Artificial Intelligence in successfully
accomplishing the two major tasks associated with this broad field of active damage

control, i.e., damage identification and damage (vibration) control.

The following sections separately evaluate the success of these initial studies and reveal
some ideas for further investigation within each preserve. Finally, some conclusions are

made on whole about using this theory of Artificial Intelligence for active damage control.
4.1 Damage Identification

The first part in this two-part initial study was to investigate the viability of identifying

damage using an Artificial Intelligence method called rule induction. A set of velocity
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data was acquired from three plates: one with no damage, one with damage at the center,
and one with damage at the edge. A set of rules were then induced from these data by
recursively partitioning the data into mutually exclusive, exhaustive subsets that best

describe the dependent variable (damage).

This first study successfully developed a set of rules that describes the data. In addition,
it was showed that rules can be induced which identify "sensitive" areas on the plates

which show obvious distinctions based on damage location.

From a more general perspective, we have developed a cornerstone for believing that this
rule induction method, given information about an undamaged structure and a damaged
structure, can be used to identify "critical" areas on the structure. These areas can be kept
as a reference for test locations during future non-destructive damage testing thereby

identifying existence and/or location of damage.

There is one drawback, however, to the idea of implementing this technique of damage
identification in practical situations. The fact is one can only identify damage in as many
locations as there are reference data. That is to say, a set of applicable reference data is
required for every damage location for which prediction is desired. It is possible that
there are locations on structures which are consistently affected independent of the

damage location. In this case, the technique would be invaluable for standard
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maintenance inspections.

There are some areas that require further investigation to ensure this method is accurately
predicting structural differences which solely result from damage. This investigation
applied the rule induction technique to one data set. Although this technique successfully
developed a rule set describing the data set, the actual rules themselves have little
statistical significance. Future experiments should be performed in a similar fashion using
several data sets. This will avoid two rather critical problems. First, from a mathematical
standpoint, it will increase the statistical significance of the rules. The more data sets
used the more significant the rules will be. Second, using several data sets will ensure
that the velocity changes solely result from the damage and not from variations inherent
in different set-ups (e.g., temperature changes, slight boundary condition changes, external
acoustical effects, etc.). It should be noted that the changes in dynamic response due to
set-up variations are on the same order of magnitude as the changes due to damage. The

following paragraph outlines an experiment which might remedy these possible problems.

For example, during the data acquisition process, the grid on the three plates could be
reduced from a 30 x 30 point data grid to a 10 x 10 matrix. Then, nine data sets could
be used in the rule induction process without increasing the memory requirement. In
other words, the laser data acquisition process would be performed nine times for each

plate. After the rules are induced from the data, another subsequent set of data could be
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recorded to test the accuracy of the rules. These should be the first steps in future

research endeavors.

Secondly, an in-depth study can be performed on how different frequencies affect the
"sensitive" areas as defined by this initial study. Is it of more importance to compare the
same frequency of two different structures or the same mode? Also, experiments can be
performed at different shaker forces to identify it the relationship between force and

velocity is linear.

Thirdly, this method of damage identification should also be applied to a single plate: first
without damage and then to the same plate after inflicting damage. This would ensure
vibrational changes in the structure are caused solely by the damage and not by material

inconsistencies inherent in different structures.

4.2 Damage Control

The second part of this initial study of active damage control investigated the viability of
using rule induction for damage control. A machine learning technique called "BOXES"
was performed on various theoretical and experimental systems. In these investigations,
"BOXES" is used as a rule induction technique aimed at controlling structures by

identifying their vibrational patterns.
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At first, the technique was applied to ideal systems by way of a simulation. One and two
degree-of-freedom systems were successfully controlled after having been excited by
impulse and step disturbances. Admittedly these are rather simple systems but the idea
here is that the algorithm learned an effective control law using its trials and failures as

the only information from which to organize this stimulus-response pattern.

In addition, this machine learning method satisfactorily suppressed the steady-state
vibration of both the one and two degree-of-freedom systems when excited by a

sinusoidal disturbance.

On the other hand, using "BOXES" in an experimental setting was a bit less effective.
This method was applied to a vibrating beam which was excited at its first visible mode.
It is easy to hypothesize why this method did not work as effectively when applied in an
experimental fashion, but there is probably no one explanation. In fact, an entire study
could be performed specifically addressing the idea of optimizing the technique. As
discussed in section 3.4.2, the possibilities include: noise to the system, the time-varying

system, "control dependency”, or a sub-optimum performance index definition.

In addition, it has not been shown that the learning mechanism can find the optimum
solution exactly. Theoretically, this method learns sufficient control laws to suppress

vibration in excited structures (as seen by the simulations) but is unable to consistently
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"nail" the optimum control. In other words, the technique is capable of finding the "local
minimum" but not necessarily the optimal solution. The most logical reasoning for this

"

is this theory of "control dependency." That is, the performance index of the optimum
control for any given state situation can be adversely affected by the next trial control.

Hence, what should be the optimal control at a particular time has become a "poor"

choice.

As would be expected, there are innumerable possibilities for future research in applying
"BOXES" to suppressing vibration. For one, a detailed study should be performed on the
performance index and its implications to the learning process. This performance index
is the "brains" in the machine learning technique and defining the best equation to use for

different tasks will go a long way toward successfully controlling damage.

A second idea for future investigation would be to apply "BOXES" to a simulation of a
vibrating beam. Understanding how well this technique can be applied to an ideal system
for different disturbances may shed some light on how the time variations of the

experimental investigation affect the learning process.

In short, rule induction and artificial intelligence in general are very powerful methods

for problem solving and their uses will no doubt continue to grow in the future.
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APPENDIX A

% This set of generic rules corresponds to the decision tree in Figures

% 11-13. There are 71 rules listed here which accurately describe 77.4%
% of the data. The "interesting" rules are the ones which yield correct-
% ly predicted data 100% of the time.

RULE _1 IF
Vel(Re) = [-3.779,-1.761)
Vel(Im) = [-3.609,-2.263)
THEN
Damage = Center 100.0%

RULE_2 IF
Vel(Re) = [-3.779,-1.761)
Vel(Im) = [-2.263,-1.435)
THEN
Damage = Center 28.6%
Damage = Edge 71.4%

RULE_3 IF
Vel(Re) = [-3.779,-1.761)
Vel(Im) = [-1.435,-0.785)
THEN
Damage = Edge 100.0%

RULE_4 IF
Vel(Re) = [-3.779,-1.761)
Vel(Im) = [-0.785,-0.276)
THEN
Damage = Edge 100.0%
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RULE S IF
Vel(Re) = [-3.779,-1.761)
Vel(Im) = [-0.276,0.086)
THEN
Damage = Edge 100.0%

RULE_6 IF
Vel(Re) = [-3.779,-1.761)
Vel(Im) = [0.086,0.487)
THEN
Damage = Edge 100.0%

RULE_7 IF
Vel(Re) = [-3.779,-1.761)
Vel(Im) = [0.487,0.883)
THEN
Damage = Edge 100.0%

RULE_8 IF
Vel(Re) = [-3.779,-1.761)
Vel(Im) = [0.883,1.63)
THEN
Damage = Edge 100.0%

RULE_9 IF
Vel(Re) = [-1.761,-1.345)
Vel(Im) = [-3.609,-2.263)
THEN
Damage = Center 32.9%
Damage = None  67.1%

RULE_10 IF
Vel(Re) = [-1.761,-1.345)
Vel(Im) = [-2.263,-1.435)
Thetax = [-2.506,-1.998)
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THEN
Damage = Center 50.0%
Damage = Edge  50.0%

RULE_11 IF
Vel(Re) = [-1.761,-1.345)
Vel(Im) = [-2.263,-1.435)
Thetax = [-1.998,2.069)
THEN
Damage = Center 98.1%
Damage = Edge 1.9%

RULE_12 IF
Vel(Re) = [-1.761,-1.345)
Vel(Im) = [-2.263,-1.435)
Thetax = [2.069,2.4]
THEN
Damage = Center 50.0%
Damage = Edge  50.0%

RULE_13 IF
Vel(Re) = [-1.761,-1.345)
Vel(Im) = [-1.435,-0.785)
Thetax = [-2.506,-0.981)
THEN
Damage = Edge 100.0%

RULE_14 IF
Vel(Re) = [-1.761,-1.345)
Vel(Im) = [-1.435,-0.785)
Thetax = [-0.473,0.035)
THEN
Damage = Center 100.0%

RULE_15 IF
Vel(Re) = [-1.761,-1.345)
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Vel(Im) = [-1.435,-0.785)

Thetax = [0.544,2.4]
THEN

Damage = Edge 100.0%

RULE_16 IF
Vel(Re) = [-1.761,-1.345)
Vel(Im) = [-0.785,-0.276)
THEN
Damage = Edge 100.0%

RULE_17 IF
Vel(Re) = [-1.761,-1.345)
Vel(Im) = [-0.276,0.086)
THEN
Damage = Edge 100.0%

RULE_18 IF
Vel(Re) = [-1.761,-1.345)
Vel(Im) = [0.086,0.487)
THEN
Damage = Edge 100.0%

RULE_19 IF
Vel(Re) = [-1.345,-0.857)
Vel(Im) = [-3.609,-2.263)
THEN
Damage = Center 6.4%
Damage = Edge 2.1%
Damage = None  91.5%

RULE_20 IF
Vel(Re) = [-1.345,-0.857)
Vel(Im) = [-2.263,-1.435)
THEN
Damage = Center 46.0%
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Damage = Edge 3.3%
Damage = None  50.7%

RULE_21 IF
Vel(Re) = [-1.345,-0.857)
Vel(Im) = [-1.435,-0.785)
THEN
Damage = Center 67.6%
Damage = Edge  32.4%

RULE_22 IF
Vel(Re) = [-1.345,-0.857)
Vel(Im) = [-0.785,-0.276)
THEN
Damage = Edge 100.0%

RULE_23 IF
Vel(Re) = [-1.345,-0.857)
Vel(Im) = [-0.276,0.086)
THEN
Damage = Edge 100.0%

RULE_24 IF
Vel(Re) = [-0.857,-0.374)
Vel(Im) = [-2.263,-1.435)
Thetax = [-2.506,-1.998)
THEN
Damage = Center 9.1%
Damage = Edge  63.6%
Damage = None  27.3%

RULE_25 IF
Vel(Re) = [-0.857,-0.374)
Vel(Im) = [-2.263,-1.435)
Thetax = [-1.998,2.4]
THEN
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Damage = Center 14.6%
Damage = Edge 2.4%
Damage = None  82.9%

RULE_26 IF
Vel(Re) = [-0.857,-0.374)
Vel(Im) = [-1.435,-0.785)
Thetax = [-2.506,2.069)

THEN
Damage = Center 49.6%
Damage = Edge 0.8%
Damage = None  49.6%
RULE_27 IF

Vel(Re) = [-0.857,-0.374)

Vel(Im) = [-1.435,-0.785)

Thetax = [2.069,2.4]
THEN

Damage = Center 52.9%

Damage = Edge 17.6%

Damage = None  29.4%

RULE_28 IF
Vel(Re) = [-0.857,-0.374)
Vel(Im) = [-0.785,-0.276)
THEN
Damage = Center 42.4%
Damage = Edge  36.4%
Damage = None  21.2%

RULE 29 IF
Vel(Re) = [-0.857,-0.374)
Vel(Im) = [-0.276,0.086)
THEN

Damage = Edge 100.0%
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RULE_30 IF
Vel(Re) = [-0.374,0.119)
Vel(Im) = [-2.263,-0.785)
Thetax = [-2.506,-1.998)
THEN
Damage = Center 100.0%

RULE_31 IF
Vel(Re) = [-0.374,0.119)
Vel(Im) = [-2.263,-0.785)
Thetax = [0.544,1.561)
THEN
Damage = None 100.0%

RULE 32 IF
Vel(Re) = [-0.374,0.119)
Vel(Im) = [-2.263,-0.785)
Thetax = [1.561,2.069)
THEN
Damage = Center 100.0%

RULE_33 IF
Vel(Re) = [-0.374,0.119)
Vel(Im) = [-2.263,-0.785)
Thetax = [2.069,2.4]
THEN
Damage = Center 20.0%
Damage = Edge  80.0%

RULE_34 IF
Vel(Re) = [-0.374,0.119)
Vel(Im) = [-0.785,-0.276)
Thetay = [-2.497,-1.965)
THEN
Damage = Center 20.0%
Damage = Edge  30.0%
Damage = None  50.0%
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RULE_35 IF
Vel(Re) = [-0.374,0.119)
Vel(Im) = [-0.785,-0.276)
Thetay = [-1.965,-1.421)
THEN
Damage = Center 22.2%
Damage = None  77.8%

RULE_36 IF
Vel(Re) = [-0.374,0.119)
Vel(Im) = [-0.785,-0.276)
Thetay = [-1.421,1.804)
THEN
Damage = Center 62.0%
Damage = None  38.0%

RULE_37 IF
Vel(Re) = [-0.374,0.119)
Vel(Im) = [-0.785,-0.276)
Thetay = [1.804,2.707]
THEN
Damage = Center 26.1%
Damage = None  73.9%

RULE_38 IF
Vel(Re) = [-0.374,0.119)
Vel(Im) = [-0.276,0.086)
THEN
Damage = Center 31.3%
Damage = Edge  33.6%
Damage = None  35.1%

RULE_39 IF
Vel(Re) = [-0.374,0.119)
Vel(Im) = [0.086,0.487)
THEN
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Damage = Center 35.3%
Damage = None  64.7%

RULE_40 IF
Vel(Re) = [-0.374,0.119)
Vel(Im) = [0.487,0.883)
THEN
Damage = Edge 100.0%

RULE 41 IF
Vel(Re) = [0.119,0.677)
Vel(Im) = [-0.785,0.086)
Thetay = [-2.497,-1.965)
THEN
Damage = Center 50.0%
Damage = Edge  25.0%
Damage = None  25.0%

RULE 42 TF
Vel(Re) = [0.119,0.677)
Vel(Im) = [-0.785,0.086)
Thetay = [-1.965,2.707]
THEN
Damage = Edge 100.0%

RULE_43 IF
Vel(Re) = [0.119,0.677)
Vel(Im) = [0.086,0.487)
THEN
Damage = Center 33.0%
Damage = Edge  28.2%
Damage = None  38.8%

RULE_44 IF
Vel(Re) = [0.119,0.677)
Vel(Im) = [0.487,0.883)
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THEN
Damage = Center 47.4%
Damage = Edge 1.3%
Damage = None  51.3%

RULE_45 IF
Vel(Re) = [0.119,0.677)
Vel(Im) = [0.883,2.28)
Thetax = [-2.506,-1.998)

THEN
Damage = Center 40.0%
Damage = Edge  20.0%
Damage = None  40.0%
RULE_46 IF

Vel(Re) = [0.119,0.677)

Vel(Im) = [0.883,2.28)

Thetax = [-1.998,2.4]
THEN

Damage = Center 2.0%

Damage = None  98.0%

RULE 47 IF
Vel(Re) = [0.677,1.131)
Vel(Im) = [-0.276,0.086)
THEN
Damage = Center 50.0%
Damage = Edge  50.0%

RULE_48 IF
Vel(Re) = [0.677,1.131)
Vel(Im) = [0.086,0.487)
Thetay = [-2.497,-1.965)
THEN
Damage = Center 40.0%
Damage = Edge  40.0%
Damage = None  20.0%
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RULE_49 IF
Vel(Re) = [0.677,1.131)
Vel(Im) = [0.086,0.487)
Thetay = [-1.965,2.707]
THEN
Damage = Edge 100.0%

RULE_50 IF
Vel(Re) = [0.677,1.131)
Vel(Im) = [0.487,0.883)
THEN
Damage = Center 33.3%
Damage = Edge  22.2%
Damage = None  44.4%

RULE_51 IF
Vel(Re) = [0.677,1.131)
Vel(Im) = [0.883,1.63)
THEN
Damage = Center 60.3%
Damage = Edge 0.9%
Damage = None  38.8%

RULE_52 IF
Vel(Re) = [0.677,1.131)
Vel(Im) = [1.63,2.28)
Thetay = [-1.965,2.348)
THEN
Damage = Center 1.1%
Damage = None  98.9%

RULE_53 IF
Vel(Re) = [0.677,1.131)
Vel(Im) = [1.63,2.28)
Thetay = [2.348,2.707]

THEN
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Damage = Center 25.0%
Damage = Edge 8.3%
Damage = None  66.7%

RULE_54 IF
Vel(Re) = [1.131,1.508)
Vel(Im) = [0.086,0.487)
THEN
Damage = Edge 100.0%

RULE _55 TF
Vel(Re) = [1.131,1.508)
Vel(Im) = [0.487,0.883)
THEN
Damage = Center 11.1%
Damage = Edge  88.9%

RULE 56 IF
Vel(Re) = [1.131,1.508)
Vel(Im) = [0.883,1.63)
THEN
Damage = Center 100.0%

RULE_57 IF
Vel(Re) = [1.131,1.508)
Vel(Im) = [1.63,2.28)
Thetay = [-2.497,0.729)
THEN
Damage = Center 56.8%
Damage = None  43.2%

RULE_58 IF
Vel(Re) = [1.131,1.508)
Vel(Im) = [1.63,2.28)
Thetay = [0.729,2.707]
THEN
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Damage = Center 88.1%
Damage = None  11.9%

RULE_59 IF
Vel(Re) = [1.131,1.508)
Vel(Im) = [2.28,3.481]
THEN
Damage = None  100.0%

RULE_60 IF
Vel(Re) = [1.508,2.15)
Vel(Im) = [-0.785,0.487)
THEN
Damage = Edge 100.0%

RULE_61 IF
Vel(Re) = [1.508,2.15)
Vel(Im) = [0.487,0.883)
THEN
Damage = Edge 100.0%

RULE 62 IF
Vel(Re) = [1.508,2.15)
Vel(Im) = [0.883,1.63)
THEN
Damage = Edge 100.0%

RULE_63 IF
Vel(Re) = [1.508,2.15)
Vel(Im) = [1.63,2.28)
Thetax = [-2.506,-1.998)
THEN
Damage = Center 50.0%
Damage = Edge  50.0%
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RULE_64 IF
Vel(Re) = [1.508,2.15)
Vel(Im) = [1.63,2.28)
Thetax = [-1.998,2.4]
THEN
Damage = Center 100.0%

RULE_65 IF
Vel(Re) = [1.508,2.15)
Vel(Im) = [2.28,3.481]
Thetax = [-2.506,2.069)
THEN
Damage = Center 90.4%
Damage = None 9.6%

RULE_66 IF
Vel(Re) = [1.508,2.15)
Vel(Im) = [2.28,3.481]
Thetax = [2.069,2.4]
THEN
Damage = Center 60.0%
Damage = None  40.0%

RULE_67 IF
Vel(Re) = [2.15,3.561]
Vel(Im) = [-0.785,0.086)
THEN
Damage = Edge 100.0%

RULE_68 IF
Vel(Re) = [2.15,3.561]
Vel(Im) = [0.086,0.487)
THEN
Damage = Edge 100.0%

RULE _69 IF
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Vel(Re) = [2.15,3.561]

Vel(Im) = [0.487,0.883)
THEN

Damage = Edge 100.0%

RULE_70 IF
Vel(Re) = [2.15,3.561]
Vel(Im) = [0.883,2.28)
THEN
Damage = Edge 100.0%

RULE_71 IF
Vel(Re) = [2.15,3.561]
Vel(Im) = [2.28,3.481]
THEN
Damage = Center 100.0%
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APPENDIX B

% This set of generic rules corresponds to the decision tree in Figures
% 14-17. Although there are 49 rules listed here, only 6 of them are
% considered to be "interesting." These represent the "sensitive" areas
% on the plates where damage detection is prominent.

RULE_1 IF
Thetax = [-2.506,-1.998)
Thetay = [-1.965,-1.421)
Vel(Re) = [0.677,1.508)
THEN
Damage = Center 11.1%
Damage = None  88.9%

RULE 2 IF
Thetax = [-2.506,-1.998)
Thetay = [-1.965,-1.421)
Vel(Re) = [1.508,2.15)
THEN
Damage = Center 88.9%
Damage = None 11.1%

RULE_3 IF
Thetax = [-2.506,-1.998)
Thetay = [-1.965,-1.421)
Vel(Re) = [2.15,3.561]
THEN
Damage = Edge 100.0%

RULE_4 IF
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Thetax = [-2.506,-1.998)

Thetay = [-1.421,-0.89)

Vel(Im) = [0.883,1.63)
THEN

Damage = Edge 100.0%

RULE_S IF
Thetax = [-2.506,-1.998)
Thetay = [-1.421,-0.89)
Vel(Im) = [1.63,3.481]
Vel(Re) = [1.131,1.508)
THEN
Damage = None 100.0%

RULE_6 IF
Thetax = [-2.506,-1.998)
Thetay = [-1.421,-0.89)
Vel(Im) = [1.63,3.481]
Vel(Re) = [1.508,3.561]
THEN
Damage = Center 81.8%
Damage = None  18.2%

RULE_7IF
Thetax = [-1.998,-1.49)
Thetay = [-1.421,-0.89)
Vel(Re) = [0.677,1.508)
THEN
Damage = None 100.0%

RULE_8 IF
Thetax = [-1.998,-1.49)
Thetay = [-1.421,-0.89)
Vel(Re) = [1.508,2.15)
THEN
Damage = Center 100.0%
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RULE 9 IF
Thetax = [-1.998,-1.49)
Thetay = [-1.421,-0.89)
Vel(Re) = [2.15,3.561]

THEN

Damage = Center 10.0%

Damage = Edge  90.0%
RULE_10 IF

Thetax = [-1.49,-0.981)

Thetay = [-1.421,-0.89)

Vel(Re) = [0.677,1.508)
THEN

Damage = None 100.0%
RULE_11 IF

Thetax = [-1.49,-0.981)

Thetay = [-1.421,-0.89)

Vel(Re) = [1.508,2.15)
THEN

Damage = Center 100.0%
RULE_12 IF

Thetax = [-1.49,-0.981)

Thetay = [-1.421,-0.89)

Vel(Re) = [2.15,3.561]
THEN

Damage = Center 10.0%

Damage = Edge  90.0%
RULE_13 IF

Thetax = [-0.981,-0.473)
THEN

Damage = Center 33.3%

Damage = Edge  33.3%

Damage = None  33.3%
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RULE_14 IF
Thetax = [-0.473,0.035)
Thetay = [-0.346,0.185)
Vel(Re) = [0.677,1.508)
THEN
Damage = Center 10.0%
Damage = None  90.0%

RULE_15 IF
Thetax = [-0.473,0.035)
Thetay = [-0.346,0.185)
Vel(Re) = [1.508,2.15)
THEN
Damage = Center 100.0%

RULE_16 IF
Thetax = [-0.473,0.035)
Thetay = [-0.346,0.185)
Vel(Re) = [2.15,3.561]
THEN
Damage = Edge 100.0%

RULE_17 IF
Thetax = [-0.473,0.035)
Thetay = [0.185,0.729)
Vel(Re) = [0.119,1.508)
THEN
Damage = Center 25.0%
Damage = None  75.0%

RULE_18 IF
Thetax = [-0.473,0.035)
Thetay = [0.185,0.729)
Vel(Re) = [1.508,2.15)
THEN
Damage = Center 100.0%
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RULE_19 IF
Thetax = [-0.473,0.035)
Thetay = [0.185,0.729)
Vel(Re) = [2.15,3.561]
THEN
Damage = Edge 100.0%

RULE_20 IF
Thetax = [0.035,0.544)
Thetay = [-1.421,-0.89)
Vel(Re) = [0.119,0.677)
THEN
Damage = None 100.0%

RULE_21 IF
Thetax = [0.035,0.544)
Thetay = [-1.421,-0.89)
Vel(Re) = [0.677,2.15)
Vel(Im) = [0.086,0.883)
THEN
Damage = Edge 100.0%

RULE_22 IF
Thetax = [0.035,0.544)
Thetay = [-1.421,-0.89)
Vel(Re) = [0.677,2.15)
Vel(Im) = [0.883,3.481]
THEN
Damage = Center 64.3%
Damage = None  35.7%

RULE_23 IF
Thetax = [0.035,0.544)
Thetay = [-1.421,-0.89)
Vel(Re) = [2.15,3.561]
THEN
Damage = Edge 100.0%

120



RULE_24 IF
Thetax = [0.035,0.544)
Thetay = [-0.346,0.185)
Vel(Re) = [0.677,1.508)
THEN
Damage = None 100.0%

RULE_25 IF
Thetax = [0.035,0.544)
Thetay = [-0.346,0.185)
Vel(Re) = [1.508,2.15)
THEN
Damage = Center 100.0%

RULE_26 IF
Thetax = [0.035,0.544)
Thetay = [-0.346,0.185)
Vel(Re) = [2.15,3.561]
THEN
Damage = Edge 100.0%

RULE_27 IF
Thetax = [0.035,0.544)
Thetay = [0.185,0.729)
Vel(Re) = [0.677,1.508)
THEN
Damage = Center 10.0%
Damage = None  90.0%

RULE_28 IF
Thetax = [0.035,0.544)
Thetay = [0.185,0.729)
Vel(Re) = [1.508,2.15)
THEN
Damage = Center 100.0%
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RULE_29 IF
Thetax = [0.035,0.544)
Thetay = [0.185,0.729)
Vel(Re) = [2.15,3.561]
THEN
Damage = Edge 100.0%

RULE_30 IF
Thetax = [0.544,1.052)
Thetay = [0.185,0.729)
Vel(Re) =[0.119,1.131)
THEN
Damage = None 100.0%

RULE_31 IF
Thetax = [0.544,1.052)
Thetay = [0.185,0.729)
Vel(Re) = [1.131,2.15)
Vel(Im) = [0.487,0.883)
THEN
Damage = Edge 100.0%

RULE_32 IF
Thetax = [0.544,1.052)
Thetay = [0.185,0.729)
Vel(Re) = [1.131,2.15)
Vel(Im) = [1.63,3.481]
THEN
Damage = Center 81.8%
Damage = None  18.2%

RULE_33 IF
Thetax = [0.544,1.052)
Thetay = [0.185,0.729)
Vel(Re) = [2.15,3.561]
THEN
Damage = Edge 100.0%
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RULE_34 IF
Thetax = [0.544,1.052)
Thetay = [0.729,1.261)
Vel(Re) = [0.677,1.131)
THEN
Damage = None 100.0%

RULE_35 IF
Thetax = [0.544,1.052)
Thetay = [0.729,1.261)
Vel(Re) = [1.131,1.508)
THEN
Damage = Center 81.8%
Damage = None  18.2%

RULE_36 IF
Thetax = [0.544,1.052)
Thetay = [0.729,1.261)
Vel(Re) = [2.15,3.561]
THEN
Damage = Edge 100.0%

RULE_37 IF
Thetax = [1.052,1.561)
Thetay = [0.729,1.261)
Vel(Re) = [0.677,1.131)
THEN
Damage = None 100.0%

RULE _38 IF
Thetax = [1.052,1.561)
Thetay = [0.729,1.261)
Vel(Re) = [1.131,1.508)
Vel(Im) = [1.63,2.28)
THEN
Damage = Center 81.8%
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Damage = None  18.2%

RULE_39 IF
Thetax = [1.052,1.561)
Thetay = [0.729,1.261)
Vel(Re) = [1.131,1.508)
Vel(Im) = [2.28,3.481]
THEN
Damage = None 100.0%

RULE _40 IF
Thetax = [1.052,1.561)
Thetay = [0.729,1.261)
Vel(Re) = [1.508,3.561]
THEN
Damage = Edge 100.0%

RULE 41 IF
Thetax = [1.561,2.069)
Thetay = [-0.89,-0.346)
Vel(Im) = [-3.609,-2.263)
THEN
Damage = Center 25.0%
Damage = None  75.0%

RULE_42 TF
Thetax = [1.561,2.069)
Thetay = [-0.89,-0.346)
Vel(Im) = [-2.263,-1.435)
THEN
Damage = Center 100.0%

RULE 43 IF
Thetax = [1.561,2.069)
Thetay = [-0.89,-0.346)
Vel(Im) = [-0.276,0.487)
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THEN
Damage = Edge 100.0%

RULE 44 IF
Thetax = [1.561,2.069)
Thetay = [1.261,1.804)
Vel(Re) = [1.131,1.508)
THEN
Damage = Center 12.5%
Damage = None  87.5%

RULE_45 IF
Thetax = [1.561,2.069)
Thetay = [1.261,1.804)
Vel(Re) = [1.508,2.15)
THEN
Damage = Center 80.0%
Damage = None  20.0%

RULE_46 IF
Thetax = [1.561,2.069)
Thetay = [1.261,1.804)
Vel(Re) = [2.15,3.561]
THEN
Damage = Edge 100.0%

RULE_47 IF
Thetax = [2.069,2.4]
Thetay = [1.261,1.804)
Vel(Im) = [0.086,1.63)
THEN
Damage = Edge 100.0%

RULE_48 IF
Thetax = [2.069,2.4]
Thetay = [1.261,1.804)
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Vel(Im) = [1.63,2.28)
THEN
Damage = Center 100.0%

RULE_49 IF
Thetax = [2.069,2.4]
Thetay = [1.261,1.804)
Vel(Im) = [2.28,3.481]
THEN
Damage = Center 30.8%
Damage = None  69.2%
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APPENDIX C

% learnli.m

% This program will use BOXES to optimize inputs to control vibration of a
% 1 mass, single degree-of-freedom system. The mass is controlled in this
% simulation in real time. There are 9 discretizations of disp and U.

% Excitation is an impulse disturbance.

clear;

!del learnli.met

% Define the 3-mass system and discretize.

A=[01;-20}

B2 =[01]; % disturbance input
B1 =[017]; % control input
C=[00];

D = [0];

T=1;

[phi,gam1] = c2d(A,B1,T);
[phi,gam2] = c2d(A,B2,T);

% Initialize variables

for f = 1:1000

Xt =5; % analogous to initial disp of 0.0
Xtl = 5;

Xt2 = 5;

XtnU = 41;

XtnU3 = 41;

XtnU2 = 41;

XtnU1 = 41;

XtInXt2 = 41;
Xt1nXt21 = 41;
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Xt1nXt22 = 41;

Xt1nXt23 = 41;

k=0

D = 50; % set impulse disturbance.
u=35; % analogous to U=0 or input of 0.
U=0;

X(1,:) = [0 OJ;

R(1,:) = [0 0];

res(1,1)=0;

cont(1,1)=0;

disp = 0;

displ = 0;

disp2 = 0;

disp3 = 0;

totx = O;

%load avex; load n;
%addx = n;

%load opt;

load uiavex; load uin;
load uiaddx;

load uiopt;

% Perform simulation
for k = 1:100

X(2,)) = (phi*X(1,:)’ + gam1*U + gam2*D)’;
R(k+1,:) = (phi*R(k,:)’ + gam2*D)’;

D=0;

X(1,)) = X(2,5);

disp3 = disp2;

disp2 = displ;

displ = disp;

disp = X(2,1);

res(k+1,1) = disp; % evaluator (this should converge to zero).
cont(k+1,1) = U;

% Update learning matrices

totx = abs(disp) + abs(displ) + abs(disp2) + abs(disp3);
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n(XtnU3,Xt1nXt23) = n(XtnU3,Xt1nXt23) + 1;
addx(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23) + totx;
avex(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23)/n(XtnU3,Xt1nXt23);

% Identify box associated with last run

Xt2 = Xtl;

Xtl = Xt;

if disp < -10.0 Xt = 1;
elseif disp >= -10.0 & disp < -5.0 Xt = 2;
elseif disp >= -5.0 & disp < -3.0 Xt = 3;
elseif disp >= -3.0 & disp < -1.0 Xt = 4;
elseif disp >= -1.0 & disp < 1.0 Xt = 5;
elseif disp >= 1.0 & disp < 3.0 Xt = 6;
elseif disp >= 3.0 & disp < 5.0 Xt = 7;
elseif disp >= 5.0 & disp < 10.0 Xt = 8;
elseif disp >= 10.0 Xt = 9;

end

% Choose subsequent optimum input from BOXES

XtnU3 = XtnU2;
XtnU2 = XtnU1;
XtnU1 = XtnU;
Xt1nXt23 = Xt1nXt22;
Xt1nXt22 = XtInXt21;
Xt1nXt21 = Xt1nXt2;
Xt1nXt2 = (Xt2-1)*9 + Xtl;
XtnUa = (Xt-1)*9 + 1;
XtnUb = XtnUa + §;
for 1 = XtnUa:XtnUb
if avex(l,Xt1nXt2)==min(avex((XtnUa:XtnUb),Xt1nXt2))
u=l+1-XtnUa;
U=(u-5);
end
end
XtnU = (Xt-1)*9 + u;

% Save the most recent optimum input to BOXES matrix

opt(Xt,Xt1nXt2)=U;
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end

save uln n;

save uladdx addx;
save ulavex avex;
save ulopt opt;

clg;

!del learnli.met
t=(0:.01:k/100);

axis([0 1 -4 4])
subplot(224), plot(t,cont)
xlabel("'Time, sec.”)
ylabel(’Force’)
title(’Controller Input’)
axis([0 1 -40 40])
subplot(221), plot(t,R(:,1))
xlabel(’Time, sec.”)
ylabel(’Disp’)
title("Uncontrolled Response’)
axis([0 1 -40 40])
subplot(222), plot(t,res)
xlabel(’Time, sec.’)
ylabel(’Disp’)
title(’Controlled Response”)
meta learnli

end

% Learn1CS.m

% This program will use BOXES to optimize inputs to control vibration of a
% 1 mass, single degree-of-freedom system. The mass is controlled in this
% simulation in real time. There are 9 discretizations of disp and U.

% Excitation is an constant disturbance. The vibration is controlled to the
% steady-state value of the system, i.e., 5.

clear;

!del learnlcs.met

% Define the 1-mass system and discretize.
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A=[01; 20

B2 = [0 1]} % disturbance input
Bl =[01]; % control input
C=1[00j;

D = [0];

T =2;

[phi,gam1] = c2d(A,B1,T);
[phi,gam2] = c2d(A,B2,T);

% Initialize variables
for f = 1:1000

Xt =3; % analogous to initial disp of 0.0
Xtl = 3;

Xt2 = 3;

XtnU = 23;

XtnU3 = 23;

XtnU2 = 23;

XtnUl = 23;

Xt1nXt2 = 21;

Xt1nXt21 = 21;

Xt1nXt22 = 21;

Xt1nXt23 = 21;

k=0

D = 10; % set constant disturbance.
u=235; % analogous to U=0 or input of 0.
U =0;

X(1,1) = [0 0];

R(1,:) = [0 Of;

res(1,1)=0;

cont(1,1)=0;

disp = 0;

displ = 0;

disp2 = 0;

disp3 = 0;

totx = 0;

%load avex; load n;

%addx = n;

%load opt;

load ucsavex; load ucsn;
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load ucsaddx;
load ucsopt;

%if f ==
%addx = avex; load n;
%end;

% Perform simulation
for k = 1:100

X(2,:) = (phi*X(1,:)’ + gam1*U + gam2*D)’;
R(k+1,:) = (phi*R(k,:)’ + gam2*D)’;

D = 10;

X(1,:) = X(2,2);

disp3 = disp2;

disp2 = displ;

displ = disp;

disp = X(2,1);

res(k+1,1) = disp; % evaluator (this should converge to zero).
cont(k+1,1) = U;

% Update matrices

totx = abs(abs(disp)-5) + abs(abs(disp1)-5) + abs(abs(disp2)-5) + abs(abs(disp3)-5);
n(XtnU3,Xt1nXt23) = n(XtnU3,Xt1nXt23) + 1;

addx(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23) + totx;

avex(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23)/n(XtnU3,Xt1nXt23);

% Identify box associated with last run

Xt2 = Xtl;

Xtl = Xt;

if disp < -5.0 Xt = 1;
elseif disp >= -5.0 & disp < 0.0 Xt = 2;
elseif disp >= 0.0 & disp < 2.0 Xt = 3;
elseif disp >= 2.0 & disp < 4.0 Xt = 4;
elseif disp >= 4.0 & disp < 6.0 Xt = 5;
elseif disp >= 6.0 & disp < 8.0 Xt = 6;
elseif disp >= 8.0 & disp < 10.0 Xt = 7;
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elseif disp >= 10.0 & disp < 15.0 Xt = §;
elseif disp >= 15.0 Xt = 9;
end

% Choose subsequent optimum input from BOXES

XtnU3 = XtnU2;
XtnU2 = XtnU1,;
XtnU1 = XtnU;
Xt1nXt23 = Xt1nXt22;
Xt1nXt22 = Xt1nXt21;
Xt1nXt21 = Xt1nXt2;
Xt1nXt2 = (Xt2-1)*9 + Xtl;
XtnUa = (Xt-1)*9 + 1;
XtnUb = XtnUa + §;
for 1 = XtnUa:XtnUb
if avex(1,Xt1nXt2)==min(avex((XtnUa:XtnUb),Xt1nXt2))
u=1+1-XtnUa;
U=(u-5);
end
end
XtnU = (Xt-1)*9 + u;

% Save the most recent optimum input to BOXES matrix
opt(Xt,Xt1nXt2)=U;
end

save ucsn n;

save ucsaddx addx;
save ucsavex avex;
save ucsopt opt;

clg;

!del learnlcs.met
t=(0:.01:k/100);

axis([0 1 -4 4])
subplot(224), plot(t,cont)
xlabel(’Time”)
ylabel(’Force”)
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title(’Controller Input’)
axis([0 1 -5 15])
subplot(221), plot(t,R(:,1))
xlabel("Time’)
ylabel(’Disp”)
title("Uncontrolled Response’)
axis([0 1 -5 15])
subplot(222), plot(t,res)
xlabel("Time’)
ylabel(’Disp’)
title("Controlled Response’)
meta learnlcs

end

% Learn110.m

% This program will use BOXES to optimize inputs to control vibration of a
% 1 mass, single degree-of-freedom system. The mass is controlled in this
% simulation in real time. There are 9 discretizations of disp and U.

% Excitation is an sinusoidal disturbance.

clear;

!del learn1iO.met

% Define the 1-mass system and discretize.

A=[01;-1-1];

B2 =[01]; % disturbance input
B1 =[01]; % control input
C=[00];

D = [0];

T=1;

[phi,gam1] = c2d(A,B1,T);
[phi,gam2] = c2d(A,B2,T);

% Initialize variables
for f = 1:1000

Xt =35; % analogous to initial disp of 0.0

134



Xtl = 5;

Xt2 = 5;
XtnU = 41;
XtnU3 = 41;
XtnU2 = 41;
XtnU1 = 41;

Xt1nXt2 = 41;

XtInXt21 = 41;
Xt1nXt22 = 41;
Xt1nXt23 = 41;

k=0
D = 0; % set initial disturbance.
ul = 5;

u=35; % analogous to U=0 or input of 0.
U=0;

X(1,%) = [0 O}

R(1,:) = [0 0];
res(1,1)=0;
cont(1,1)=0;

Din(1,1) = 0;

disp = 0;

displ = 0; disp2 = 0;
disp3 = 0; disp4 = 0;
disp5 = 0; disp6 = 0;
totx = 0;

%load avex; load n;
%addx = n;

%load opt;

load uiOavex; load uiOn;
load uiOaddx;

load uiOopt;

%addx = avex;
%load n;

%n = n(:,:) + 1;

% Perform simulation

for k = 1:200

D = 15*sin(2*pi/10*k);

X(2,:) = (phi*X(1,:)’ + gam1*U + gam2*D)’;
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R(k+1,:) = (phi*R(k,:)’ + gam2*D)’;
X(1,:) = X(2,:);

disp6 = dispS;

disp5 = disp4;

disp4 = disp3;

disp3 = disp2;

disp2 = displ;

displ = disp;

disp = X(2,1);

res(k+1,1) = disp; % evaluator (this should converge to zero).
cont(k+1,1) = U;
Din(k+1,1) = 10*sin(2*pi/10*(k+1));

% Update learning matrices

totx = abs(disp) + abs(displ) + abs(disp2) + abs(disp3) + abs(disp4) + abs(dispS) +
abs(disp6);

n(XtnU3,Xt1nXt23) = n(XtnU3,Xt1nXt23) + 1;

addx(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23) + totx;

avex(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23)/n(XtnU3,Xt1nXt23);

% ldentify box associated with last run

Xt2 = Xtl;

Xtl = Xt;

if disp < -10.0 Xt = 1;
elseif disp >= -10.0 & disp < -5.0 Xt = 2;
elseif disp >= -5.0 & disp < -3.0 Xt = 3;
elseif disp >= -3.0 & disp < -1.0 Xt = 4;
elseif disp >= -1.0 & disp < 1.0 Xt = §;
elseif disp >= 1.0 & disp < 3.0 Xt = 6;
elseif disp >= 3.0 & disp < 5.0 Xt = 7;
elseif disp >= 5.0 & disp < 10.0 Xt = §;
elseif disp >= 10.0 Xt = 9;

end

% Choose subsequent optimum input from BOXES
ul = u;

XtnU3 = XtnU2;
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XtnU2 = XtnU1;
XtnU1 = XtnU;
Xt1nXt23 = Xt1nXt22;
Xt1nXt22 = Xt1nXt21;
Xt1nXt21 = Xt1nXt2;
Xt1nXt2 = (Xt2-1)*9 + Xtl;
XtnUa = (Xt-1)*9 + 1;
XtnUb = XtnUa + §;
for 1 = XtnUa:XtnUb
if avex(1,Xt1nXt2)==min(avex((XtnUa:XtnUb),Xt1nXt2))
u=l+1-XtnUa;
U=(u-5)*5;
end
end

XtnU = (Xt-1)*9 + u;
% A smoothing filter of sorts

%if u ~= (ul | (ul-1) | (ul+1))
% addx(XtnU1,Xt1nXt21) = addx(XtnU1,Xt1nXt21) + 100;
%0end

% Save the most recent optimum input to BOXES matrix

opt(Xt,Xt1nXt2)=U;

end

save ulOn n;

save ulOaddx addx;
save ulOavex avex;
save ulOopt opt;

clg;

!del learn1iO.met

t=(0:k);

axis([0 200 -12 12])
subplot(223), plot(t,Din(:,1))
xlabel(’Time, sec.’)
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ylabel(’Force’)
title(’Disturbance’)

axis([0 200 -20 20])
subplot(224), plot(t,cont)
xlabel("Time, sec.”)
ylabel(’Force’)
title(’Controller Input’)
axis([0 200 -20 20])
subplot(221), plot(t,R(:,1))
xlabel("Time, sec.’)
ylabel(’Disp’)
title("Uncontrolled Response’)
axis([0 200 -20 20])
subplot(222), plot(t,res)
xlabel("Time, sec.”)
ylabel(’Disp’)
title(’Controlled Response’)
meta learn1iO

end

% Learn2l.m

% This program will use BOXES to optimize inputs to control vibration of a
% 2 mass, two degree-of-freedom system. The mass is controlled in this

% simulation in real time. There are 9 discretizations of disp and U.

% Excitation is an impulse disturbance.

clear;

!del learn2i.met

% Define the 2-mass system and discretize.

A=[0010;0001;-4200;1-100];

B2=[00017]; % disturbance input
B1=[0001]; % control input
C=[0000];

D = [0];

T=1;

[phi,gam1] = c2d(A,B1,T);
[phi,gam2] = c2d(A,B2,T);
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% lInitialize variables
for f = 1:1000

Xt =5; % analogous to initial disp of 0.0
Xtl = 5;

Xt2 =5;
XtnU = 41;
XtnU3 = 41;
XtnU2 = 41;
XtnU1 = 41;

Xt1nXt2 = 41;
Xt1nXt21 = 41;
Xt1nXt22 = 41;
Xt1nXt23 = 41;
k=0

D = 50; % set impulse disturbance.
u =35; % analogous to U=0 or input of 0.
U=0;
X(1,:)=[000 0];
R(1,:)) =[0 0 0 0];
res(1,1)=0;
cont(1,1)=0;

disp = 0;

displ = 0;

disp2 = 0;

disp3 = 0;

totx = 0;

%load avex; load n;
%addx = n;

%load opt;

load uiavex; load uin;
load uiaddx;

load uiopt;

if f==
addx = avex; load n;

end

% Perform simulation
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for k = 1:100

X(2,:) = (phi*X(1,:)’ + gam1*U + gam2*D)’;
R(k+1,:) = (phi*R(k,:)’ + gam2*D)’;

D=0

X(1,:) = X(2,);

disp3 = disp2;

disp2 = displ;

displ = disp;

disp = X(2,2);

res(k+1,1) = disp; % evaluator (this should converge to zero).
cont(k+1,1) = U;

% Update matrices

totx = abs(disp) + abs(displ) + abs(disp2) + abs(disp3);
n(XtnU3,Xt1nXt23) = n(XtnU3,Xt1nXt23) + 1;
addx(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23) + totx;
avex(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23)/n(XtnU3,Xt1nXt23);

% Identify box associated with last run

Xt2 = Xtl;

Xtl = Xt;

if disp < -10.0 Xt = 1;
elseif disp >= -10.0 & disp < -5.0 Xt = 2;
elseif disp >= -5.0 & disp < -3.0 Xt = 3;
elseif disp >= -3.0 & disp < -1.0 Xt = 4;
elseif disp >= -1.0 & disp < 1.0 Xt = §;
elseif disp >= 1.0 & disp < 3.0 Xt = 6;
elseif disp >= 3.0 & disp < 5.0 Xt = 7;
elseif disp >= 5.0 & disp < 10.0 Xt = 8;
elseif disp >= 10.0 Xt = 9;

end

% Choose subsequent optimum input from BOXES
XtnU3 = XtnU2;

XtnU2 = XtnU1;
XtnU1 = XtnU;
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Xt1nXt23 = Xt1nX122;
Xt1nXt22 = Xt1nXt21;
Xt1nXt21 = Xt1nXt2;
XtlnXt2 = (Xt2-1)*9 + Xtl;
XtnUa = (Xt-1)*9 + 1;
XtnUb = XtnUa + 8;
for 1 = XtnUa:XtnUb
if avex(1,Xt1nXt2)==min(avex((XtnUa:XtnUb),Xt1nXt2))
u=l+1-XtnUa;
U=(u-5);
end
end
XtnU = (Xt-1)*9 + u;

% Save the most recent optimum input to BOXES matrix
opt(Xt,Xt1nXt2)=U;
end

save uln n;

save uladdx addx;
save ulavex avex;
save ulopt opt;

clg;

!del learn2i.met
t=(0:.01:k/100);

axis([0 1 -4 4])
subplot(224), plot(t,cont)
xlabel("Time, sec.”)
ylabel(’Force”)

title(’ Controller Input’)
axis([0 1 -50 50])
subplot(221), plot(t,R(:,1))
xlabel("Time, sec.”)
ylabel(’Disp’)

title(’ Uncontrolled Response”)
axis([0 1 -50 50])
subplot(222), plot(t,res)
xlabel("Time, sec.”)
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ylabel(’Disp’)
title("Controlled Response’)
meta learn2i

end

% Learn2CS.m

% This program will use BOXES to optimize inputs to control vibration of a
% 2 mass, two degree-of-freedom system. The mass is controlled in this

% simulation in real time. There are 9 discretizations of disp and U.

% Excitation is an constant disturbance. The vibration is controlled to

% the steady state value, i.e., 5.

clear;

!del learn2cs.met

% Define the 2-mass system and discretize.

A=[0010,0001;-4200;1-100};

B2=[00107]; % disturbance input
B1=[0001]; % control input
C=[0000];

D = [0];

T=1;

[phi,gam1] = c2d(A,B1,T);
[phi,gam2] = c2d(A,B2,T);

% Initialize variables

for f = 1:1000

Xt = 2; % analogous to initial disp of 0.0
Xtl = 2;

Xt2 = 2;

XtnU = 14;

XtnU3 = 14;

XtnU2 = 14;

XtnU1 = 14;
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XtInXt2 = 11;

Xt1nXt21 = 11;
Xt1nXt22 = 11;

XtlnXt23 = 11;

k=0

D =10; % set constant disturbance.
u=35; % analogous to U=0 or input of 0.
U=0

X(1,:)=[000 0};

R(1,:) =[0 0 0 O};
res(1,1)=0;

cont(1,1)=0;

disp = 0;

displ = 0;

disp2 = 0;

disp3 = 0;

totx = 0;

%load avex;

%load n;

%addx = n; load opt;
load ucsavex; load ucsopt;
load ucsn;

load ucsaddx;

if f ==
addx = avex; load n;
end;

% Perform simulation
for k = 1:100

X(2,:) = (phi*X(1,:)’ + gam1*U + gam2*D)’;
R(k+1,:) = (phi*R(k,:)’ + gam2*D)’;

D =10;

X(1,2) = X(2,2);

disp3 = disp2;

disp2 = displ;

displ = disp;

disp = X(2,2);
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res(k+1,1) = disp; % evaluator (this should converge to zero).
cont(k+1,1) = U;

% Update matrices

totx = abs(abs(disp)-5) + abs(abs(disp1)-5) + abs(abs(disp2)-5) + abs(abs(disp3)-5);
n(XtnU3,Xt1nXt23) = n(XtnU3,Xt1nXt23) + 1;

addx(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23) + totx;

avex(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23)/n(XtnU3,Xt1nXt23);

% Identify box associated with last run

Xt2 = Xtl;

Xtl = Xt;

if disp < -5.0 Xt = 1;
elseif disp >= -5.0 & disp < 0.0 Xt = 2;
elseif disp >= 0.0 & disp < 2.0 Xt = 3;
elseif disp >= 2.0 & disp < 4.0 Xt = 4;
elseif disp >= 4.0 & disp < 6.0 Xt = 5;
elseif disp >= 6.0 & disp < 8.0 Xt = 6;
elseif disp >= 8.0 & disp < 10.0 Xt = 7;
elseif disp >= 10.0 & disp < 15.0 Xt = §;
elseif disp >= 15.0 Xt = 9;

end

% Choose subsequent optimum input from BOXES

XtnU3 = XtnU2;
XtnU2 = XtnU1;
XtnU1 = XtnU;
Xt1nXt23 = Xt1nXt22;
Xt1nXt22 = Xt1nXt21;
XtInXt21 = XtInXt2;
XtInXt2 = (Xt2-1)*9 + Xtl;
XtnUa = (Xt-1)*9 + 1;
XtnUb = XtnUa + 8§;
for 1 = XtnUa:XtnUb
if avex(1,Xt1nXt2)==min(avex((XtnUa:XtnUb),Xt1nXt2))
u=1+1-XtnUa;
U=(u-5);
end
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end
XtnU = (Xt-1)*9 + u;

% Save the most recent optimum input to BOXES matrix
opt(Xt,Xt1nXt2)=U;
end

save ucsn n;
save ucsaddx addx;
save ucsavex avex;
save ucsopt opt;

clg;

!del learn2cs.met
t=(0:.01:k/100);

axis([0 1 -4 4])
subplot(224), plot(t,cont)
xlabel(’Time’)
ylabel(’Force”)

title(’ Controller Input’)
axis([0 1 -5 15])
subplot(221), plot(t,R(:,2))
xlabel(’Time”)
ylabel(’Disp’)
title(CUncontrolled Response’)
axis([0 1 -5 15])
subplot(222), plot(t,res)
xlabel("Time’)
ylabel(’Disp”)
title(’Controlled Response’)
meta learn2cs

end

% Learn2IO.m
% This program will use BOXES to optimize inputs to control vibration of a
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% 2 mass, two degree-of-freedom system. The mass is controlled in this
% simulation in real time. There are 9 discretizations of disp and U.

% Excitation is an sinusoidal disturbance.

clear;

!del learn2iO.met

% Define the 2-mass system and discretize.

A=[0010;0001;-21-21;1-11-1];

B2=[0010]; % disturbance input
B1=[0001}; % control input
C=[0000];

D = [0];

T=1;

[phi,gam1] = c2d(A,B1,T);
[phi,gam2] = c2d(A,B2,T);

% Initialize variables
for f = 1:1000

Xt =5; % analogous to initial disp of 0.0

Xtl = 5;
Xt2 =5;
XtnU = 41;
XtnU3 = 41;
XtnU2 = 41;
XtnU1 = 41;

XtlnXt2 = 41;

Xt1nXt21 = 41;

Xt1nXt22 = 41;

Xt1nXt23 = 41;

k=0;

D = 0; % set initial disturbance.
ul = 5;

u=35; % analogous to U=0 or input of 0.
U =0;

X(1,:))=[0000];
R(1,:)=[0000];

res(1,1)=0;

cont(1,1)=0;
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Din(1,1) = 0;

disp = 0;

displ = 0; disp2 = 0;
disp3 = 0; disp4 = 0;
dispS = 0; disp6 = 0;
totx = 0;

load avex; load n;
addx = n;

load opt;

%load uiOavex; load uiOn;
%load uiOaddx;
%load uiOopt;
%addx = avex;
%load n;

%n = n(:,:) + 1;

% Perform simulation
for k = 1:200

D = 15*sin(2*pi/10*k);

X(2,:) = (phi*X(1,:)’ + gam1*U + gam2*D)’;
R(k+1,:) = (phi*R(k,:)’ + gam2*D)’;
X(1,2) = X(2,);

disp6 = dispS;

dispS = disp4;

disp4 = disp3;

disp3 = disp2;

disp2 = displ;

displ = disp;

disp = X(2,2);

res(k+1,1) = disp; % evaluator (this should converge to zero).

cont(k+1,1) = U;

Din(k+1,1) = 15*sin(2*pi/10*(k+1));

% Update learning matrices

totx = abs(disp) + abs(displ) + abs(disp2) + abs(disp3) + abs(disp4) + abs(dispS5) +

abs(disp6);
n(XtnU3,Xt1nXt23) = n(XtnU3,Xt1nXt23) + 1;
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addx(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23) + totx;
avex(XtnU3,Xt1nXt23) = addx(XtnU3,Xt1nXt23)/n(XtnU3,Xt1nXt23);

% Identify box associated with last run

Xt2 = Xtl;

Xtl = Xt;

if disp < -10.0 Xt = 1;
elseif disp >= -10.0 & disp < -5.0 Xt = 2;
elseif disp >= -5.0 & disp < -3.0 Xt = 3;
elseif disp >= -3.0 & disp < -1.0 Xt = 4;
elseif disp >= -1.0 & disp < 1.0 Xt = 5;
elseif disp >= 1.0 & disp < 3.0 Xt = 6;
elseif disp >= 3.0 & disp < 5.0 Xt = 7;
elseif disp >= 5.0 & disp < 10.0 Xt = 8;
elseif disp >= 10.0 Xt = 9;

end

% Choose subsequent optimum input from BOXES

ul =u;
XtnU3 = XtnU2;
XtnU2 = XtnU1;
XtnU1 = XtnU;
Xt1nXt23 = Xt1nXt22;
Xt1nXt22 = Xt1nXt21;
XtInXt21 = Xt1nXt2;
Xt1nXt2 = (Xt2-1)*9 + Xtl;
XtnUa = (Xt-1)*9 + 1;
XtnUb = XtnUa + 8;
for 1 = XtnUa:XtnUb
if avex(l,Xt1nXt2)==min(avex((XtnUa:XtnUb),Xt1nXt2))
u=1+1-XtnUa;
U=(u-5)*5;
end
end
XtnU = (Xt-1)*9 + u;

% A smoothing filter of sorts

%if u ~= (ul | (ul-1) | (ul+1))
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% addx(XtnU1,Xt1nXt21) = addx(XtnU1,Xt1nXt21) + 100;
%end

% Save the most recent optimum input to BOXES matrix
opt(Xt,Xt1nXt2)=U;
end

save ulOn n;

save ulOaddx addx;
save ulOavex avex;
save ulOopt opt;

clg;

!del learn2iO.met

t=(0:k);

axis([0 200 -20 20])
subplot(223), plot(t,Din(:,1))
xlabel("Time, sec.’)
ylabel("Force’)
title(’Disturbance’)

axis([0 200 -20 20])
subplot(224), plot(t,cont)
xlabel(’Time, sec.”)
ylabel("Force”)
title(’Controller Input’)
%axis([0 200 -20 20])
subplot(221), plot(t,R(:,2))
xlabel(’Time, sec.”)
ylabel(’Disp’)
title("Uncontrolled Response’)
axis([0 200 -20 20])
subplot(222), plot(t,res)
xlabel("Time, sec.”)
ylabel(’Disp’)
title(’Controlled Response’)
meta learn2iO

end
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APPENDIX D

JEEFERRRRR AR AR Ak ok ok ok oo Kk KR kK kR Kk

*  Box_t8.C "BOXES" controller code for a clamped-clamped
* beam (Gary’s Beam).

%k

* This code is derived from SISO_S5M.c.

* The code writes the following binary files:

%

* strain.mat Measure strain voltages from beam.
* U_cont.mat Output control voltages to beam.
*

*

* Original Code written

* 3/18/92

* GKE

* "BOXES modifications

* 4/15/93

* DHK

%

3% 3k ok 3k 3 3k 3k ok 3k sk ok sk 3k ok ok ok sk ok 3k ok sk sk sk 3k sk 3k e ok 35 sk ok sk ok ok 3k 3k 3k 3k ok 3k 3k sk 3k ok k 3k vk 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k ok 3K ok 3k sk ok 3k sk ok ok k ok %k

*/

/* To Communicate with the T2 data acquisition node, use LINK3
*

* NOTE: T8 integers are 32 bits, T2 integers are 16 bits

*/

#include <stdio.h>
#include <math.h>
#include <conc.h>
#include "pzt_cal.h"
#include "savemat.c"

#define ADCGAIN 3.005f /* board amplifier gain */

#define AD_SCALE (4096.0f/(20.0//ADCGAIN))
#define CAL 1.0f/AD_SCALE  /* 1.624896006655574e-3 */

150



#define NLOOPS 5000 /* number of control loops to perform */

#define UTOINT16(x) ((x)*204.7f + 2047)
#define INT16TOVOLT(x, mean) (((x)-(mean)) * CAL)

int savemat(FILE *fp, int type, char *pname, int mrows, int ncols, int imagf,
double *preal, double *pimag);
int control(void);

float Yout[1000];
float U_cont[1000];
double dummy[1000]; /* scratch space for MATLAB data output */

void main(void)

{
inti, r;
int start_time, stop_time;
float freq;

FILE *dataoutl;
FILE *dataout2;

r = NLOOPS;

dataoutl = fopen("strain.mat","wb");
dataout2 = fopen("U_cont.mat","wb");

start_time = control();
stop_time = Time();

printf("Number of Low-Pri ticks = %d\n", stop_time - start_time);
printf(" k = %d\n",r);

freq = r/((stop_time - start_time)*64e-6);

printf("Frequency %4.1f Hz\n", freq);

printf("Writing Data File....\n");

for (i=0;i<1000;i++) {
dummy[i] = (double) Yout[i];

} _
savemat(dataoutl, 0, "y", 1000, 1, 0, (double *) dummy, (double *) 0);
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for (i=0;i<1000;i++) {
dummy(i] = (double) U_cont[i];

}
savemat(dataout2, 0, "u", 1000, 1, O, (double *) dummy, (double *) 0);
fcloseall();
}
A control I0op ...cccevveveennee */

#pragma asm
MOD 1
#pragma endasm

int control(void)

{
int ul6[1l]; /* Control voltage in correct DAC format */
int y[1]; /* Integer accelerometer data from T2
float y1; /* Real, calibrated strain voltages */
float U; /* Control output */
int u; /* Discretized control values */

inta, b, c,d,s,p;

int S, S1, S2, Sa, Sb, Sc, S1a, S1b, Slc, S2a, S2b, S2c;
float str, strl, str2;

int nloops, j, k, indx;

int start_time, pause_time, new_time;

float totx, MOMMA;

int N[9][9][9][15]; /* Learning count variable */
float ADDX][9][9][9][15]; /* Learning sum variable */
float AVEX[9][9][9][15]; /* Learning average variable */

/* Initialize variables */
u=0;s=0,d=0;p=0;
Yout[0] = 0.0f;

U_cont[0] = 0.0f;

S=58S1=5;S2=5;S1a=5;S1b=5;Slc=35;
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S2a = 5; S2b = 5; S2¢ = 5;
str = 0.0f; strl = 0.0f; str2 = 0.0f; str3 = 0.0f;
totx = 0.0f;

/* Send the number of control loops to the data acquisiton T2 */
nloops = NLOOPS;
ChanOut(LINK3OUT, (char *) &nloops, 2); /* send 2 bytes to T2

printf("Press any key to start\n");

getch();
/*
MAIN LOOP
*/
k=-1; /* set loop counter */

start_time = Time();
while (NLOOPS > k++)

{

new_time = Time();
/* Read in the acceleration values from the T2 */
/* We are reading this in as two non-zero bytes, and */
/* then 2 zero bytes to simplify the code on this */

/* transputer. We expect a LSB -> MSB transfer */
ChanIn(LINK3IN, (char *) y, sizeof(y));

/* convert the integer value to voltage */
yl = INT16TOVOLT(y[0], ADCO_MEAN);

/* Evaluators */
s=s+1;
p=p+1
if (s <= 5000) {

if (p==295){
p=0;
d=d+ 1;
Yout[d] = y1;
U_cont[d] = U;
}
}
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/* Update voltage (strain) ouput values */
str3 = str2; str2 = strl; strl = str; str = yl;

/* Update learning arrays */
totx = fabs(str) + fabs(strl) + fabs(str2);
N[Sc][S1c][S2c]fuc] = N[S][S1][S2][u] + 1;
ADDX]Sc][S1c][S2c][uc] = ADDX][Sc][S1c][S2c][uc] + totx;
AVEX|[Sc][S1c][S2c][uc] = ADDX[Sc][S1c][S2¢c][uc]/N[Sc][S1c][S2c][uc];

/* Identify box associated with last loop */

S2c = S2b; S2b = S2a; S2a = S2;

Sic = S1b; S1b = Sla; Sla = S1;

Sc = Sb; Sb = Sa; Sa = S;

S2 = S1;

S1=S§;

if (str < -0.5) S = 1;
else if (str >= -0.5 & str < -0.3) S = 2;
else if (str >= -0.3 & str < -0.2) S = 3;
else if (str >= -0.2 & str < -0.1) S = 4;
else if (str >= -0.1 & str< 0.1) S = 5;
else if (str >= 0.1 & str< 0.2) S = 6;
else if (str >= 0.2 &str< 03)S=7;
else if (str >= 0.3 & str< 0.5) S =8§;
else if (str >= 0.5)S = 9;

/* Calculate control associated with optimum input to date */
MOMMA = AVEX][S][S1][S2][1];
indx = 1;
for (j = 2; j <= 15; j++) {
if (AVEX[S][S1][S2][j] <= MOMMA) {
MOMMA = AVEX]S][S1][S2][j];
indx = j;
}
}
u = indx;
U = (u-8.0)*0.15;

/* send control voltage to T2. Note, upnt points to ul6. */
ul6[0] = UTOINT16(U);
pause_time = Time();

/* printf("%d\n",pause_time-new_time); */
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while (pause_time-new_time < 4) { /* Wait to avoid time variations */
pause_time = Time();

}
ChanOut(LINK3OUT, (char *) &ul6[0], 2); /* send 2 bytes */

} /* end control loop */

return(start_time);

}

/************************************************************************

box_t2.c
Data Acquitsion code for "BOXES" controller

Programmed By:
GKE

12/27/90

BOXES update By:
DHK

4/24/93

*OR ¥ X X X ¥ X K X ¥ *

33k g ok ok ok 3k ok 3k ok e ok sk ok sk ok kol ok o skoske ok ok sk sk stk ke ok ok sk o sk sk ok ok sk ok skokok sk ok s kol sk sk sk sk ok sk ok sk ok sk ok ok sk ok ok ok sk sk kk ok

*/

#include <conc.h>
#include <inline.h>

#define HEAP 1024

#define DELAY

#define ADC 0x6000

#define SH 0x6100

#define MUX 0x6200

#define DAC 0x6828

#define ADCMASK 0xOfff /* Since we have a 12-bit converter */
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inp(Process *);
outp(Process *, int);

void main(void)

{

}

int nloops;
Process *ain, *dout;

/* mask off the high nibble. */

/* read in the number of control loops from the root transputer
nloops = ChanlnInt(_boot_chan_in);

/* allocate the processes */
ain = ProcAlloc(inp, HEAP, NULL);
dout = ProcAlloc(outp, 256, 1, nloops+1);

ProcPriPar(ain, dout);

inp(Process *p)

{

int i;
int *adc, *sh, *mux;
int outdat[2];

/* Hardware addresses

/* we need 8 bytes to pad each word with
/* 2 zero bytes to make it look like

/* 32-bit ints we are sending back to

/* control node.

/* zero out the outdat[2i] */

for(i=0; i<sizeof(outdat)/sizeof(int); i++) {

outdat[i] = 0;

}

*sh = 0;

adc = (int *) ADC;
sh = (int *) SH;
mux = (int *) MUX;

/* track mode */
/* assign the hardware pointers */
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while(1) {

*mux = 0; /* channel 0 */

*sh = 1; /* hold the data */

ProcWait(1);

*adc = 0; /* start the conversion, channel 0 */
ChanInInt(EVENT); /* are we done? */

outdat[0] = *adc & ADCMASK; /* save the data */

ChanOut(_boot_chan_out, (char *) outdat, sizeof(outdat));

*sh = 0; /* track */
ProcWait(2);
}
}
outp(Process *p, int nloops)
{
int data;
int *dac;

dac = (int *) DAC;
*dac = 2047, /* zero the output */

/* control the number of loops in this routine */

while(nloops--) {
/* while(1) { */
data = ChanlInlInt(_boot_chan_in);
*dac = data;

}
*dac = 2047,
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