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ABSTRACT

Real-time, virtual and mixed reality systems have diverse uses for real-world data visual-

ization, representation, and remote collaboration in distant learning settings, especially in

universities. Design of such systems involves challenges in mapping the real world data and

physical world structure accurately to digital form of physical space, also called as virtual

models. Researchers have created similar systems using multiple cameras, stereo cameras,

accelerometers, and motion detectors [1] [2] [3]. This report presents a platform to detect

and track real-time locations of people present in buildings and map their location informa-

tion into virtual models as avatars using omni-directional cameras installed in the physical

space. These models were created as part of the Mirror Worlds project [4]. The project

infrastructure is funded by National Science Foundation. This infrastructure enables users

to connect virtual and physical aspects of the environment through a coordinate-based data

networking system to enable interaction with the rest of the system including environment

objects and other users [4]. This is an interdisciplinary project where students from various

departments have worked on the development of virtual model of the Moss Art Center and

Torgersen Hall in Unity / X3D. Some students from the Department of Computer Science

have developed a coordinate-based data networking system. The prototype of a detection

and tracking algorithm to extract the location information was developed using background

subtraction in MATLAB.

The proposed approach was developed using the combination of background subtraction

[5] and neural networks [6] along with heuristics based on spatial information about the

physical space. The system was scaled to work across multiple buildings, extract the location

information of people present in the physical space, and map location information into

shared virtual space as an avatar. The concept of remote presence was extended to create

a collaborative object manipulation application using Leap Motion controller. Effects of

fidelity were evaluated to perform the collaborative object manipulation task in shared virtual



space based on user study conducted for this application.

Since no annotated people video dataset is publicly available with overhead view from omni-

directional cameras, three videos were annotated manually to test the performance of the

approach. The current approach almost works at near real-time rates. All three video

sequences were evaluated to compute frame based detection accuracy [7]. Precision and recall

obtained for the first video sequence of people detection is 93.85% and 95.06% respectively.
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GENERAL AUDIENCE ABSTRACT

Globalization and the advancements in the technological world pose the need for people

working across different geographical regions to communicate not just over video conferencing

but having remote presence which provides a stimuli to users’ senses to give the feeling of

being at other location. The common approach to create remote presence application is

by creating a real-time, virtual and mixed reality system. These mix reality systems have

diverse uses for real-world data visualization, representation, and remote collaboration in

distant learning settings, especially in universities. Design of such systems involves challenges

in mapping the real world data and physical world structure accurately to digital form of

physical space, also called as virtual models. Researchers have created similar systems using

multiple cameras, depth sensors, accelerometers, and motion detectors.

This work introduces a platform to detect and track real-time locations of people present in

buildings and map their location information into virtual models as avatars using cameras

installed in the physical space. The proposed solution uses combination of background

subtraction and neural networks with some heuristics based on spatial information about

the physical space. The system is scaled to work across multiple buildings. The concept of

remote presence was extended to create a collaborative object manipulation application.

Three videos were annotated manually to test the performance of the proposed approach.
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Chapter 1

Introduction

1.1 Motivation and Overview

Presence has been defined by Witmer and Singer (1998) as “the subjective experience of

being in one place or environment, even when one is physically situated in another.” This

definition explains the concept of remote presence through a virtual environment. The level

of presence can be extended to replace real face-to-face meetings with equally satisfying

distributed meetings [10] [11].

The conventional method for 2D telepresence is video conferencing, which has been signifi-

cantly improved over last few years with lower cost for enhanced network connectivity, good

quality camera sensors, smart devices, IoT devices, etc. The experience of video quality

and audio effect through these media has improved significantly. However, these approaches

have several drawbacks. Typically, applications like Skype, NetMeeting, Hangout or any

other 2D video conferencing application, present the remotely connected users in separate

windows or overlaid with content. This method provides low level of presence to users. The

immersiveness experience and collaboration productivity can be improved by conveying ges-

ture information and eye contact ([12], [13]), which are not possible with conventional video

conferencing technologies.

1
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DeFanti et al. [14] proposed a system where the geographically distributed users’ positions

were mapped to digital avatars in a shared virtual reality (VR) environment. By tak-

ing advantages of recent technologies like Google Glass, Atheer AiR Glasses and Microsoft

HoloLens, researchers have developed a platform where the digital representations can be

rendered over the real world to a create mixed reality experience [15].

Most systems [16] are only evaluated in a laboratory setting with limited users and ap-

plications. The situation becomes more complex and challenging for scaling it in arbitrary

environments such as classrooms, educational buildings or offices. Some of the challenges are

synchronization across data received through multiple devices, low-fidelity, low frame rate,

network delays due to large data packets, changes in environmental conditions and scala-

bility of the software. Also, installing multiple sensors for extracting position and gesture

information increases cost and complexity, and reduces the scalability.

The work done in this thesis was part of the Mirror World [4] project. The infrastructure for

the project was funded by National Science Foundation (NSF). This infrastructure enables

researchers to investigate a wide variety of topics such as parallels between behavior in

real and virtual spaces, the effects of fidelity in virtual environments on performance in

physical environments, crowd model simulation and evaluation, the relationship between

behavior and affect in a public venue, and computational models of energy-efficient buildings.

Virtual models of Moss Art Center and Torgersen Hall were developed by students from

engineering and architecture departments. In this work, a platform for real-time human

position detection and tracking was developed based on video feeds received from omni-

directional cameras embedded into the ceiling. The algorithm designed for this system was

a combined approach of using detection results from background subtraction [5] and neural

networks [6][17]. The detection results are also called ‘blobs’ (Fig. 1.1), which is a group

of connected foreground pixels in an image that share some common property (e.g. color,

texture, etc.). The rectangle enclosing the blob is known as a bounding box [18]. Detection

results were filtered based on spatial information about the physical space using heuristics.

The extracted positional data is sent to the central Fusality server [19] using json packet

over TCP/IP. As described by Polys et al. [19], the Fusality server translates the location
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Figure 1.1: Detected blobs with bounding boxes

information from camera coordinate system to global coordinate system of virtual space.

The translated data is broadcasted to all 3D Unity/ X3D clients. The location information

received on clients is represented as an avatar in a model. This Model is rendered on tablets

mounted on side walls displaying the mirrored view of the physical space near to the tablet.

The setup gives a real-time reflection of people present in the building as an avatar into

model(Fig. 1.2).

The proposed platform enabled participants from remote locations to be represented as dif-

ferent avatars (Fig. 1.3, red avatars) within the shared virtual environment to differentiate

from local participants (Fig. 1.3, blue avatars). The collaboration platform between people

from different geographic locations was developed using additional Leap Motion Controller

1.4. A user study was conducted to to evaluate the effect of fidelity in performing collabo-

rative object manipulation tasks.
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(a) Reflection with TV as mirror (b) Reflection with tablet on side wall as mirror

Figure 1.2: Mapping the real world positional data as avatar in virtual model

Figure 1.3: Telepresence application of Mirror World project [4]
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Figure 1.4: Two users collaboratively manipulating objects in shared environment

1.2 Contributions

The main contributions of the thesis are as follows:

1. Designed an algorithm to detect and track people moving in physical using a combined

approach of background subtraction [5] and neural network[6][17] with heuristics based

on spatial information about the physical space.

2. Scaled the detection and tracking system to support multiple omni-directional cameras

(28 across Moss Art Center and Torgersen Hall).

3. Developed a shared virtual place by mapping people from different geographical loca-

tion to the shared environment.

4. Created an application using Leap Motion Controller to perform collaborative object

manipulation tasks in a shared environment.

5. Conducted a user study to evaluate the effect of fidelity for collaborative object ma-

nipulation tasks.
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1.3 Outline of thesis

• Chapter 2 discusses existing work in blob detection, blob tracking, remote interactions,

and collaboration in shared virtual environments.

• Chapter 3 gives an overview about the Mirror World project’s system architecture and

design overview of application for remote presence, collaborative object manipulation

• Chapter 4 covers details of the combined approach using background subtraction[20][5]

and neural networks[6][17]. It also explains the modified data association algorithm [21]

based on heuristics. The evaluation subsection gives details about a platform created

to evaluate the performance with Frame Detection Accuracy (FDA) [7] followed by

results.

• Chapter 5 describes an application designed for collaborative object manipulation task

followed by findings from the user study.

• Chapter 6 summarizes results obtained from user study findings and proposed algo-

rithm.

• Chapter 7 discusses some of the future work related to improvement of design of the

algorithm and creating more immersive application using additional sensors.



Chapter 2

Related Work

In this section, we will go through the related work done in human position detection and

tracking algorithms, and design overview of applications developed in literature for remote

presence and collaborative object manipulation in virtual environment. It will be structured

as follows:

• Section 2.1, will overview human position detection techniques, such as background

subtraction, HOG detectors [8] and R-CNN [22] based detectors.

• Section 2.2 will discuss tracking methods using mainly focused on tracking-by-detection

and data association technique.

• Section 2.3, gives an overview about the other parallel systems based on “Mirror World”

[4] idea which map the real world event to virtual environment.

• Section 2.4, presents relevant the work done in the literature for collaborative object

manipulation in virtual reality using different input devices.

7
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2.1 Human Position Detection

The detection techniques will try to differentiate background from the foreground objects.

Background can be considered as a relatively static environment where environment changes

gradually over time due to illumination changes or wind etc. On the other hand, foreground

objects are treated as moving objects in the scene. There are 3 different approaches to

separate out the foreground objects from the background.

• Background subtraction/ modelling: In this method, a background model is created

to represent the environment. Each new input frame is compared to the background

model and if pixels are significantly different than the corresponding pixels in model

then it is claimed as foreground object.

• Histogram of oriented gradients with SVM classifiers: This approach uses the intensity

gradients to determine the shape of object. It decomposes entire image into different

cells and for each cell histogram gradients are computed in horizontal and vertical

direction. Once all the features are identified then SVM, adaboost classifiers are used

for identifying humans.

• Object detection with R-CNN [22]: The detection method is distributed in 3 primary

modules. First, generating independent category region proposals. Second, large con-

volutional neural network that extracts fixed length feature vector from each region.

Third, class specific linear SVMs to detect the object.

2.1.1 Background subtraction/ modelling

The conventional background subtraction method relies on single image reference as back-

ground. The foreground objects are determined by ( 2.1),

Iforeground = |Iinput − Ibackground| > T (2.1)

where, Iforeground is foreground object image, Iinput is input frame, Ibackground is background

image, and T is difference threshold. In this approach each input frame pixel is subtracted
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from the background image pixel value. If this difference is greater than some threshold T

then it is claimed as foreground pixel. This kind of approach works when the background is

not changing with respect to time.

However, this method creates lot of noise in the measurement. Hence,instead of considering

background reference as a single image, researchers developed a representation of the scene

called the background model. The deviation of each new frame is calculated from the model

to estimate the foreground objects. The frame differencing of temporally adjacent frames is

studied since late 70s [23]. To adopt the gradual changes in background, Wren et al. in [24]

proposed model for the color of each pixel of image. This model tries to fit Gaussian proba-

bility density function (pdf) on last n pixel’s values. A Gaussian distribution N(µs,t,
∑

s,t)

where µs,t and
∑

s,t represent average background color and covariance matrix at pixel s at

time t respectively. Pixel intensity distributions are not uniform across entire frame. Hence,

single Gaussian is not good for changing background [25].Grimson and Stauffer [26] proposed

the multimodal statistical models for representing the environment as a probabilistic view to

determine whether the object belongs to foreground or background. In this approach, they

are using Mixture of Gaussians (MOGs) to each and every pixel in background. Every pixel

in the input frame is compared against the background model by finding the deviation with

every Gaussian in the background model until a matching Gaussian is found. The proba-

bility of occurrence of a color at given pixel s is given by: P (Is,t) =
K∑
i=1

ωi,s,t.N(µi,s,t,
∑

i,s,t)

where N(µi,s,t,
∑

i,s,t) is the ith Gaussian model and ωi,s,t its weight. Stauffer and Grim-

son suggested that covariance matrix
∑

i,s,t can be assumed to be diagonal matrix given by∑
= σ2Id. Parameters for the matched component which is the nearest Gaussian for which

Is,t is within 2.5 standard deviations of its means are updated and parameters of unmatched

distributions remain the same with just weight update to achieve decay.

Elfammal and Davis [27], proposed a kernel density based approach to create background

model per pixel. In the matching process the pixel is not just matched with the corresponding

pixel in the background model but also matched to neighborhood pixels to eliminate the

distortions due to camera movements or small jitters in background. In 1999, Toyama et

al. [28], proposed a method based on not just pixel based background model but it involves
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Figure 2.1: Overview of feature extraction and object detection chain suing HOG [8]

the complete frame and region information. At pixel level they used Wiener filter to make

probabilistic predictions, region based information is collected by finding the homogeneous

colors in the images. If most of the pixel in the background are changed then it is assumed

that environment is changed and previous model reinitialized based on new values.

2.1.2 Histogram of oriented gradients based methods

These methods are based on selecting the feature sets for human detection based on locally

normalized Histogram of Oriented Gradient (HOG) descriptor. Dalal and Bill proposed

that HOGs feature sets performs better relative to other feature sets including wavelets

[29][30]. This method uses the normalized histograms of image gradient orientations. There

are similar approaches for human detection task based on these features [31][32] [33]. The

work-flow for Dalal and Bill method can be represented in Fig. ( 2.1).

In this approach, entire input image is divided in small grid cells and for each such cell

histogram of gradient directions or edge orientations is computed. The combination of all

these histograms forms a representation and to enhance the quality of this representation is

contrasted and normalized to local responses before it can be used further. This normalized

descriptor is known as Histogram of Oriented Gradient (HOG).

Felzenszwalb and Girshick, proposed object detection with discriminatively trained part-
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based models (DPM) [34]. In their approach, they used histogram of gradient (HOG) [8]

features variants, where the feature size is reduced such that there is no loss in performance.

They used PCA to convert the higher dimensional features into lower dimensions [35]. Using

this approach 36-dimensional feature vector represented in [8] reduced to 13-dimensional

feature set that captures essentially the same information. This low dimensional data is

then augmented to 31-dimensional feature set to include contrast sensitive and contrast

insensitive information. The lower dimensional feature sets lead to speed up the detection

process. These feature maps are used with linear filters F . This filter F is a rectangular

template (w × h) defined by an array of d-dimensional weight vectors. The response of the

filter F at position (x, y) in feature map G is the “dot product” of the filter and sub window

of feature map G, with top left corner at(x, y) :

score(p) =
∑
x′,y′

F [x′, y′] . G[x+ x′, y + y′] (2.2)

where score(p) is score received at position (x, y). This score is defined at different positions

by using feature pyramid. If H is feature pyramid and p = (x, y, l) specifies position (x, y)

in the lth level of pyramid. Precisely score of F at p is computed by ( 2.3),

F ′ . φ(H, p, w, h) (2.3)

where F ′ is concatenating the weight vectors in F , φ(H, p, x, y) is obtained by concatenating

feature vectors in w × h subwindow of H with top left corner at p. The idea of deformable

parts model consist of one root filter F0 along with part filters (p1, p2, ..., pn) that covers

smaller parts of the object generally with higher resolution feature space. Hence complete

n parts deformable model can be represented by an (n + 2)-tuple (F0, P1, ..., Pn). Each

part is defined by (Fi, vi, di) where Fi is filter for ith part, vi is vector denoting the relative

position from the root filter location, di vector denotes the deformation cost for each possible

placement of part relative to root position. To detect the object in an image, overall score

for each cell location is computed according to best possible placements of parts:

score(p0) = max
p1,...,pn

score(p1, ...., pn) (2.4)

where, score is given by the difference between scores of each filter at their respective locations

and deformation cost that depends on the relative position of each part with respect to root
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location with bias given by equation ( 2.5),

score(p0, ..., pn) =
n∑
i=0

F
′

i . φ(H, pi, w, h) −
n∑
i=1

di . φd(dxi, dyi) + b (2.5)

where,

(dxi, dyi) = (xi, yi) − (2(x0, y0) + vi) (2.6)

gives displacement of ith part relative to its root position. Hence to locate the object location

in whole image, the sliding window approach is used to determine best location for root

position. The time complexity of the method is O(nk) after filter responses are computed,

where n is number of parts in the model and k is total number of locations in the feature

pyramid.

2.1.3 Object detection with Convolutional Neural Networks

The design of convolutional neural networks is typically the extension of the feed forward

neural networks with multiple layers. The network consists of input layer, hidden layers, and

an output layer. The nodes in these hidden layers and output layers acts as neurons with a

suitable activation function. The output of these neurons can be given as ( 2.7),

output = f(−→x ,
−→
θ ) (2.7)

where, the f in Fig.2.2 represents the activation function, −→x is input vector and
−→
θ is weights

vector. The complete network can be represented by Fig.2.2. The activation function can be

represented as binary step function (Perceptron), log-sigmoid, linear, tanH etc. For example,

if the activation function used is sigmoid then can be computed by [36],

f(b+
∑
i

wixi) =
1

1 + e−(b+
∑

i wixi)
(2.8)

In the network, Fig.2.2 consider the input as an image. In this case each pixel can be treated

as separate input. Hence, the input size scales quadratically with the resolution image [36].

The solution of this problem is to connect each hidden unit to small patch of the input image
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Figure 2.2: Feed forward neural network

and share the weight across hidden units. This will help to scale the neural network solution

to images with larger resolution. This concept is known as convolutional neural network

[37].

Krizhevsky et al. [38] proposed the use of convolutional neural networks for object clas-

sification. The training was done on ImageNet Large Scale Visual Recognition Challenge

(ILSVRC)[38][39]. The network designed for this task was based on eight layers which in-

cludes five convolutional and three fully connected layers. They used rectified linear units

(ReLUs) as activation functions for neurons. The extension of classification results on Ima-

geNet [40] is proposed by Girshick et al. [22] 2014, which was based on region based convo-

lutional neural networks (R-CNN) for object detection on PASCAL VOC [41].

The detection requires localizing the object within image, while classification task does not

aim for localization. The localization task can be done by considering as regression problem,

which was proposed by Szegedu et al. [42] whereas in this paper [22] the localization problem

is tackled by operating within the recognition using regions paradigm. The requirement of
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large CNN is to have a labeled data source. The problem of insufficiency of the data is

handled by adopting unsupervised pre-training, followed by supervised fine tuning [43].

Region based convolutional neural network (R-CNN) detection algorithm [22] is based on

3 modules. The first module is region proposals. Region proposals in this detector are

based on selective search [44] to enable a controlled comparison with prior detection work

[44] [45]. The second module is about feature extraction where Girshick et al. [22] used

Caffe [46] implementation of CNN described by Krizhevsky et al. [40]. They extracted

4096 dimensions feature vector from each region proposal. These extracted features are

initially passed through the network to get good quality features and using class specific

SVM classifier score is computed for each feature per class. Then a greedy non-maximum

suppression is applied to these scores spread over the regions. If the intersection-over-union

(IOU) overlap with higher scoring selected region is greater than learned threshold then that

region is rejected.

2.2 Position tracking methods

Human position tracking involves not only localizing human presence in the scene but also

involves detecting same target across multiple frames with consistent detection identity.

The problem of tracking multiple targets through a complex scene involves challenges such as

object location uncertainty, clutter, measurement noise, changing background and significant

occlusions. Generally, tracking methods need an input from object detection ( section 2.1)

process or input from motion model. Based on the input type tracking can be categorized

in 2 parts:

• First is tracking by detections,where system assumes a reliable detector (robust detec-

tion algorithm) and also assumes that these detections are well spaced in images. In

order to resolves the difficulties involved in tracking task, researchers have preferred

tracking-by-detection approaches [47] [48] [49] [50].

• Second is tracking by flow, where the system assumes unknown appearance but do-
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main, parametric flow models are known [51] [52] [53]. These methods select the best

parameters from the flow models that aligns object in one frame to object in next

multiple frames.

In this work, tracking based on detection approach is used to track human position. The

tracking algorithms based on data association are based on linking detection responses to

generated trajectories (Tracks) by global optimization based on position, size, and appear-

ance similarity [54], [55], [56], [57], [58], [59].

Breitenstein et al. in 2009 proposed tracking-by-detection using detector confidence particle

filter. The key contribution of this paper was to present an algorithm to automatically detect

and track multiple targets in complex scenes using monocular cameras. Primary contribu-

tions of this paper are: Design of probabilistic tracking-by-detection in Particle Filtering

framework, use the confidence of filter and integrate it with the observation model, and

solve unrealistic detections using online trained classifiers along with input data. The opti-

mal data association can be achieved using Hungarian algorithm [60] but authors discovered

that an greedy algorithm achieves similar result at lower cost. In this algorithm, score matrix

S is computed for each pair (tr, d) of tracker tr and detection d. All associated detections

with matching score above threshold are used, ensuring that a selected detection actually is

a good match to a target where the score is estimated based on equation ( 2.9). The greedy

algorithm used in this method can described in Algorithm. 1,

S(tr, d) = g(tr, d) .

(
ctr(d) + α .

N∑
p∈tr

pN(d− p)

)
(2.9)

where, pN(d − p) ˜ N(posd − posp; 0, σ2) denotes the normal distribution evaluated for the

distance between the position of detection d and a particle p , and g(tr, d) is a gating function.

This gaiting function depends on 2 normal distribution. First that measures the agreement

between the bounding box height of target and detection and follows the intuition that fast-

moving objects cannot change their course abruptly because of inertia. Hence this term
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Algorithm 1 Greedy data association

T : set of all trackers

D : set of all detections

S(tr, d) : scores for each tracker-detection pair,Equation ( 2.9)

A(tr, d) = 0 : final associations of detection d to tracker tr

Require: ∀tr ∈ T :
∑

iA(tr, i) ≤ 1

Require: ∀d ∈ D :
∑

j A(j, d) ≤ 1

while T 6= φ ∧ D 6= φ do

(tr∗, d∗) = arg maxtr ∈ T,d∈DS(tr, d)

if S(tr∗, d∗) ≥ τ then

A(tr∗, d∗) = 1

end if

T = {T \ tr∗}
D = {D \ tr∗}

end while

depends on the velocity of target. The gaiting function g(tr, d) is given by ( 2.10),

g(tr, d) = p(sized|tr)p(posd|tr)

=

pN
(
sizetr−sized

sizetr

)
. pN(|d− tr|), if |vtr| < τv

pN

(
sizetr−sized

sizetr

)
. pN(dist(d, vtr)), otherwise

(2.10)

where, vtr = (u, v)is given by position of tracker and direction component of the velocity.

2.3 Remote presence application

In the literature many authors define the presence in variety of ways. Seminal authors

Short, Williams & Christie (1976) defined it as “the degree of salience of the other person in

a mediated communication, and the consequent salience of their interpersonal interactions”

(p. 65). In general terms, it can summarized as a feeling that someone exist around for an

interaction. Social presence is affected by variety of other factors that contribute to feelings
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of social presence. Some of the factors could be “immediacy”, initially said by Wiener &

Mehrabian (1968), and “intimacy”, as was described by Argyle & Dean (1965) are two factors

that define a presence in literature.

The presence can be experienced through virtual environment where the interaction are not

just limited to specific physical location and specific virtual worlds but it also enables people

located elsewhere to connect and represent themselves in the shared virtual world as avatars.

Hence participant connecting from different location become part of the virtually rendered

spaces that more closely emulated to the physical spaces.

Gelernter [61] proposed that Mirror worlds are distinguished from other virtual representa-

tions of the real world by providing real-time mapping from real-world objects to software

equivalents. It is also described as as dual reality or cross reality as realized in the mirror

world built of the MIT Media Lab [62]. Mix reality systems can be designed using Physi-

cal/digital integration systems such as Phidgets and Arduino, which will act as a source of

information, sensor/actuator for mixed reality [63].

Back Maribeth et al. [1] developed a real world mixed reality system for industrial col-

laboration and control. The industry was a start up whose focus was creating “high-tech

chocolate” by applying new technologies. The purpose of this design of mixed reality envi-

ronment was not just replicating the factory into virtual world, but to create an electronic

infrastructure that can captured data from many of the companys processes, and visualize

all this information for in virtual world. The access level is decided on the people designation

and role. The system was using multi-camera video streams input from network cameras and

text data as input source. The data recorded from sensors and machines logs were parsed

via XML. This parsed data is distributed into the Virtual Factory world as floating text

against a transparent color cloud, called a “Data Spot.” These Data Spots are animated

to visualize sensor data such as hot water temperature, chocolate temperature, or machine

state. In addition to this, the virtual tour for the factory is designed such that avatar in the

model gives users a complete your of factory by going to each machine.

Kimber et al. in 2011, proposed a mirror world system at FXPAL which mirrors a physical

space of the research lab into cyberspace to provide people with augmented awareness of



Sachin Bharambe Chapter 2 Related Work 18

space. They even claim that in this system people present in one part of a building can

get a sense of the activities in the rest of the building, who is present in their office. The

idea behind creating this mirrored space as ‘community level perceptual system’ to support

activities and awareness of the people involved [61]. The key elements of their system was

models, maps and representations of the layout, sensor network and viewer applications.

The system was dependent on 20 surveillance cameras which were used to track the people’s

movement in the environment. They have mentioned that the accuracy of tracking by these

plain camera sensor was not good. They used additional two TYZX stereo cameras [64]

to track the people movements accurately. They also integrated the MyUnity awareness

system which collects the data from bluetooth devices, keyboard activity, calendars and

cameras across 20 office regions to count the number of people present in those areas. The

viewer application designed for this project is compatible with portable devices, windows

application or can even run on web page.

2.4 Collaborative object manipulation applications

Extensive research in this field has been carried out with the intention of evaluating 3D

input devices in terms of 3D interaction techniques and its relation to user performance. As

a result of constant development of interaction devices and rendering systems, research in

this field is still a common practice.

A study by Joann et al. [65] on Pointing Task Evaluation of Leap Motion Controller in

3D Virtual Environment provides a good evaluation of 3D pointing tasks using Leap Mo-

tion sensor to support 3D object manipulation. In this paper three controlled experiments

were performed in the study, exposing test subjects to pointing task evaluations and object

deformation, measuring the time taken to perform mesh extrusion and object translation.

Qualitative data was gathered using the System Usability Scale questionnaire. Their data

reveals a strong correlation between input device and performance time suggesting a domi-

nance of the Leap Motion gestural interface over mouse interactions. Based on their results

from the experiments, they concluded that presented 3D input device, leap motion outper-
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formed mouse interaction only in single target situations, showing that 3D translation is less

cumbersome when the z axis is provided as input based on real-life movement mapping.

Raj, Creem-Regehr et al. [66] proposed Kinect Based 3D Object Manipulation on a Desktop

Display. The system presents a controlled experimental evaluation of the use of Microsoft

Kinect to support a 3D object manipulation task. Users were asked to match the orientation

of objects with a manipulation interface that displayed either a self-avatar hand and arm or

a sphere, both corresponding to users arm gestures and wrist rotation. Their results showed

that while there was no overall difference in performance between the different avatars but

there were clear differences in the two visual display conditions as a function of gender and

video-game experience.

Research performed by Scheggi et al. [67], on Touch the virtual reality: using the Leap

Motion controller for hand tracking and wearable tactile devices for immersive haptic ren-

dering, the authors of this research presented a novel haptic system for immersive virtual

reality interaction. In their research users were asked to wear five tactile devices on one

hand and interact with different virtual objects while their hand pose was tracked using the

Leap Motion controller. A virtual hand mimicked the users hand pose. Every time the hand

came in contact with a virtual object, the tactile devices applied a suitable amount of force

to the users fingertips, providing them with the compelling sensation of touching the virtual

environment.

Otmar Hilliges et al., proposed system on HoloDesk: Direct 3D Interactions with a Situated

See-Through Display [68]. The authors presented a novel device called as HoloDesk which

has the ability to capture user gestures which would in turn be translated to actual object

manipulation that could be viewed in a see-through screen incorporated as a part of the

device. The system employs Kinect sensors to record user gestures. The paper then describes

various techniques and gestures involved in that process.



Chapter 3

System Overview

This chapter will give explain the system architecture of Mirror Worlds project followed by

design overview of application for remote presence and collaboration. It will be structured

as follows:

• Section 3.1, explains data processing unit and its functionality.

• Section 3.2, will discuss different aspects of the Fusality server’s [19] and it’s role in

Mirror World project.

• Section 3.3, gives functional overview of 3D clients (unity /X3D) as virtual environ-

ments.

• Section 3.4, describes the tele-presence application through Mirror Worlds platform.

• Section 3.5, gives details about the setup for collaborative object manipulation task as

an extension of Mirror Worlds using additional sensor.

The Fig. 3.1 shows the system overview of the Mirror Worlds project.

The input was taken from network fish-eye cameras and Leap Motion controllers. The data

acquisition and processing was done on local client using OpenCV (for computer vision)

and Unity (for Leap gesture recognition). The outputs of data processing units i.e. spatial

20
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Figure 3.1: System Overview of Mirror Worlds project

co-ordinates for blob tracking and recognized gestural information was sent through central

Fusality server [19] over network to the 3D Unity/ X3D clients (mirrors), which render virtual

3D models of the physical world.

3.1 Data acquisition and processing unit

This unit has an important role in building a base setup for Mirror Worlds project. The

processing unit acquires the video feed from network Omni-directional cameras.

3.1.1 Input Devices

3.1.1.1 Network cameras

The network cameras (On-Cam / Vivotek), can transmit the 3 simultaneous H.264 and mjpeg

video streams, with resolutions varying from 528 480 (1/4 MP) to 2144 1944 (4MP). This
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Figure 3.2: Frame rate analysis for different resolution

transmission occurs at maximum 15 fps with fish-eye view and 30FPS with normal video

view. It is clear from the Fig. 3.2 that as video resolution increases the processing speed of

the system reduces significantly. In this system, omni-directional camera was used to cover

a larger physical area. Transmitted image resolution was set to 1056 960 (1 Megapixel) to

balance the processing speed and information details. All network cameras were configured

to work in private network. The configuration setup was done through the IW2 software for

Vivotek cameras [69] and Camera Configuration tool [70] for On-Cam cameras. The detailed

procedure is in listed in [71]. About 28 of these network cameras are installed in the Moss

Art Center, and eight are installed in Torgersen Hall. As all cameras configured over private

network with password, raw video feed is not available publicly. It can be only accessed via

data acquisition and processing unit in the building.

3.1.1.2 Leap Motion controller

The Leap Motion controller is an usb peripheral device which can be interfaced with the PC

or laptop. It is also possible to mount the device on VR headsets. In this work, Leap Motion

controller V2 was used for experiments. The sensor is made up of two monochromatic IR

cameras and three IR LEDs. The functional zone of the device is approximately one meter

radius hemisphere from the center of the device. In the system, Leap Motion controller

was interfaced with Unity software on windows platform. The gestures performed within

the functional cone of sensor were used for interaction with virtual objects. The proposed
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Figure 3.3: Architecture of the collaborative system

system detects pinch, drop actions and these actions are then replicated into the virtual

model. Based on the actions performed by user, the virtual objects (Cubes) in this system

were manipulated in shared 3D environment. The setup is shown in Fig. 3.3

3.1.1.3 Camera configuration

The data acquisition and processing unit must connect to the camera with secure access to

get video feed from the camera. To correlate the extracted blob data with the actual physical

space, it is required to associate the blob data with its camera id which will be unique and

will be assigned at the time of installation of the device. Hence the association of this unique

camera id with the blob data helps blob manager on the server to transform these coordinates

to match the physical space with the virtual 3D model. Hence, while initializing each camera

in the processing unit, the camera id information is collected along with its location name and

cropping co-ordinates. As there are two types of cameras installed in the Moss Art Center

and Torgersen hall, camera class information is included along with the Camera id because

the connection url for these two different class of cameras are different. All the configuration

related data is listed in the configuration file in yml format. The configuration file content is

summarized in Fig. 3.4. The server url (dev.mirrorworlds.icat.vt.edu: Development Server,

mw.icat.vt.edu: Production Server) and port number (9999) are used to establish a secure

connection with the server. The development server is used to test the new algorithm and

change in system architecture while the production server is mainly used for running stable

version of application.
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Figure 3.4: Camera Configuration Data format

3.1.2 Extracted data format and transmission process

This data processing unit acquires the raw video frames and extracts the person location

information from the background using computer vision algorithms. The detected person

in the input frame is called foreground object. This object is represented as contour in our

system (OpenCV), based on which the area information is extracted from bounding box for

detected blob. All this data is extracted and reformatted in blob structure format shown in

Fig.3.5. The Camera id field for the Blob structure is obtained from the configuration file

and rest of the information is obtained through detections and tracing algorithm running on

the processing units. This blob data is then transmitted to server on port number 9999. The

module will establish a secure tcp/ip connection with the server and all this information then

reformatted in json format is sent to the server. On the overview level this whole system

can be summarized in Fig. 3.6.
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Figure 3.5: Blob Data Structure

Figure 3.6: Data Processing Unit
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3.2 Server setup

This project has a Fusality server [19] as a bi-directional communication medium between

the data processing unit and 3D display client. The server has 2 parts as described in by

Polys et al.,

• Producers: These units are generators of information to Fusality. All these are

as unidirectional clients, they connect to the server to contribute information about

entities such as position and motion like computer vision client for processing video

data obtained from the network cameras.

• Consumers: They use information in Fusality to create platforms between virtual

and physical spaces. Consumer are not used to provide any information to Fusality.

• Design: Fusality server is designed to establish a shared layer for Mirror Worlds

project. It is built based on W3C api and fully-duplex tcp protocol of web sockets. The

server back-end is written on top of node.js (https://nodejs.org/). The communication

link can support 174 communication over port 80 through Socket.IO (http://socket.io/)

library. The server receives messages from the connections it holds, which are in the

form of json strings. It not only receives and transmits the information, but also

runs a blob manager who plays an important role to modify the received information.

This blob manager transforms the received information from the physical environment

captured by producers to easily immerse into virtual environment at consumer level.

3.2.1 Producer to server communication

Server receives data from tcp/ip connections and Socket.IO library. The data received from

both the methods is same. After reception of this data, server goes through validation. This

validation process checks that this blob has a correct id, camera id, and age so that it can

properly be distinguished from other blobs. All this information communication is in json

format to match with the earlier listed blob specification Fig. 3.5.
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3.2.1.1 Computer Vision data processing unit TCP module

The TCP socket connects to http://dev.mirrorworlds.icat.vt.edu on port 9999. This com-

munication is one way. While sending this blob data from computer vision processing unit,

after each blob the delimitator ‘&’ is used so that each blob can be interpreted separately.

Socket.io: The communication link subscribes the client as a listener so that it can receive

information from other blob senders as well. To connect to the server over this socket.io

link one should connect to “dev.mirrorworlds.icat.vt.edu/ mw.icat.vt.edu” on port 9999. To

begin a connection the sender should sent a start event to the server. There are 3 types of

connections that can be established with the server by following API:

socket.emit(‘start’, connectionType: ‘TYPE’);

where, ‘TYPE’= {‘TWOWAY’, ‘DATASOURCE’, ‘LISTENER’}. ‘TWOWAY’ connections

allow client to send and receive data from server, ‘DATASOURCE’ types clients can only

send the data to server and ‘LISTENER’ clients will only listen the information broadcasted

by the server.

3.2.1.2 Blob updating process

The producers connected to server with ‘DATASOURCE’ or ‘TWOWAY’ can send the blob

information to server. As this data is validated by server incorrect packets will be rejected

if those are not consistent with the structure shown in Fig. 3.5 . The producers update the

blob data with following API:

socket.emit(‘EVENT’, blob);

ID and age filed on the blob should match to ‘NEW’ to validate the event. The ‘update’

event is for updating previously generated blob and should have age filed as ‘OLD’, while

‘remove’ blob is to remove the preexisting blob from the world as it is no longer found by

the data processing unit and will age field will be updated by ‘LOST’. The life cycle of blob

should start with ‘new’ event, then ‘update’ for updating its location information and finally
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‘remove’ to remove the blob from world. If the life cycle does not match with this then blob

data will be rejected by the server.

3.2.2 Blob manager

Along with just reception and transmission of the information the server also performs a

blob management task. The blob information sent from producers is extracted on the server

and new blob structure is created on server which has very similar blob schema as described

in Fig. 3.5 with some additional fields shown in Fig. 3.7. The structure in Fig. 3.7

has update and create time stamp information which can be used to log the data. This

information is helpful to perform the qualitative analysis on the capture blob information.

We can extract the engagement of the user with environment by evaluating the time spent

by the users at different location while moving in the building, similarly it will be helpful

to approximate population map in the building at any time which will be useful to discover

some interesting patterns with the population flow in the building. The blob manager is part

of the server. Blob manager constructor is called whenever there is send event on the server.

The purpose of the blob manager to coexist with the main server is to preform CPU intensive

tasks. Once this blob has been sent to the manager it is no longer the responsibility of the

calling class. Blob manager will then transform each blob coordinates from the perspective

of each individual camera in the physical space to a global coordinate system in virtual

model that does not require each client to be knowledgeable of the specific locations and

orientations of each camera, and makes the computation must happen only once instead of

on every individual client. Each camera has an x, y, z, width, height, and theta associated

with it. These are all determined by physically measuring the respective qualities from a

predetermined origin. To aid in the addition of new cameras and more easily keep the server

able to support all cameras, the data is read in from a csv file containing all the relevant

information. The use of these global coordinates allows the easier mapping of movements of

blobs without having to worry about the properties of each individual camera.
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Figure 3.7: Server blob structure
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3.3 3D Models

The Mirror World can be visualized as 3D model. There are many tools available to develop

these 3D models. The common tools used for browser friendly 3D model development like

Virtual Reality Modeling Language (VRML) [72], and its successor the Extensible 3D (X3D)

[73] format. Similarly, the 3D game engines like unity and Maya can be used to design the

models for various platforms including web, android, windows and MAC. These game engines

provide excellent UI for designing the models and additionally softwares like Blender and

Rhinoceros are compatible with Unity. The export option available in these software to fbx

or obj, can be imported in Unity software. Hence, we developed our Moss Art Centers and

Torgersen Hall models in Unity. Also, we exported these Unity models to fbx format and

developed X3D compatible models which servers as online X3D clients for Mirror World.

3.3.1 Unity clients

The whole building model for Moss Art Center is then exported for Android platform to

install on tablets. These tablets will act as mirrored view of the physical space and hence

the corresponding camera in the model must be placed at the same location and height as

the “mirror” tablets that are installed in building space. The origin of the model is very

important to define global coordinate system for entire building. The blob manager on the

server transforms the coordinates received from producers to incorporate them into virtual

models global coordinate system. The model also has first-person camera and corresponding

controllers. This is a mobile camera which can be controlled using the mouse and the arrow

keys.

3.3.2 X3D clients

The X3D client are have similar model structure as it is present in Unity clients. We export

Unity models to .fbx format which can be imported by Blender and Rhinoceros and after

some minor modification it is then exported to X3D scene graph. There are ways to combine
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the openness of X3D with the ubiquity of web technologies X3DOM [74]. X3DOM combines

the X3D scene graph format with HTML Document Object Model [75] . This is done by

leveraging WebGL, an emerging standard for embedding 3D content into webpages. WebGL

is currently supported by development versions of all major browsers except for Internet

Explorer. These include Opera, Firefox, Google Chrome, and Safari. Consequently, it will

soon be available to many web users without the use of plugins at all. Hence these clients are

open platform to involve into the Virtual environment and interact with real people present

in the building into a virtual model.

3.3.3 Data reception on client side

In all the unity clients SocketIO library is used by communicate with the server. A Sock-

etIO component is created in the model and attached to networking script. Using the

instance of this component, the web-socket connection is established to the development

server (dev.mirrorworlds.icat.vt.edu) or production server (mw.icat.vt.edu) on port 8888.

The server is broadcasting all the blob data on this port. After obtaining the SocketIO

component instance, “instanceSocketIO”, different callback functions are associated with

different SocketIOEvent object. The callback function is called by,

instanceSocketIO.on(‘EVENT OBJECT’, function f);

where function f, is different for all the possible ‘EVENT OBJECTS’, and ‘EVENT OBJECT’

= { ‘connect’, ‘newBlob’, ‘updateBlob’, ‘removeBlob’, ‘disconnect’}. For our project, we de-

cided these 5 events to create, destroy and update the new avatars in the virtual space. The

‘newBlob’ callback is called whenever the new blob is detected by producers (OpenCV /

MATLAB client). A signal is given to create a blob, new GameObject in the virtual model.

This signal instantiates clone of prefab avatar associated with “personMarker” GameObject.

The ‘updateBlob’ is to update the motion of existing avatar object, ‘removeBlob’ is to delete

the existing avatar from the virtual model once the age for the blob is marked as ‘LOST’ by

the producer. These call callback functions have access to the SocketIOEvent object, which

is passed as an argument to the function by SocketIO library. For each blob a separate Sock-



Sachin Bharambe Chapter 3 System Overview 32

etIOEvent is generated and “data” field in this object is extracted which represents a json

object containing relevant information about the event such as camera id, blob id, and blob

position. This received information is stored in dictionary object as key-value pair where

value is the information about the blob and key is a unique integer identifier for the blob,

which is a hash computed by combining the blob id and the camera id of the event. The

hash is computed by doing a left bit shift on the camera id and bitwise ORing that value

with the blob id. This hash operation generates a unique identifier which allows for roughly

1,000 different camera ids and over 4,000,000 blobs for each camera. We decided this hash

function as the preferred option because it is less expensive and either limit is doubtful in

the near future for this project. A simple solution for future expansion would be to use a

long for the key to allow more bits for both values.

3.4 Creating shared space between remote locations

The motivation behind the project is to create a shared platform where people from different

geographical location can come together. The idea of extending this project to set a platform

for distance learning can be achieved by creating shared place between two remote buildings.

As a prototype for this concept, about 28 network cameras are installed in Moss Art Center

and Torgersen Hall class 1100, at Virginia Tech campus. The similar physical space is

created at two different location to prototype this application, first is at observation room at

Moss Art Center and second is Class 1100 at Torgersen Hall. The detected blob at physical

space in Torgersen hall are projected to Observation Room, Moss Art Center in the virtual

model. Fig. 3.8 shows two different avatars in the virtual model, where the blue ones are the

avatars from people physically present in the observation room Fig.3.8(a) and red avatars

are the people who are remotely present in the virtual model at Torgersen Hall Fig.3.8(b).

This coordinate transformation is managed by the Blob manager on the server. The detail

experiment about this application is covered in scenario three, evaluation section 4.4, chapter

4.
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(a) Detection at Moss Art Center (b) Detection at Torgson -Class 1100

(c) Shared Virtual environment

Figure 3.8: Remote presence applicaiton
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3.5 Setup for collaborative object manipulation exper-

iment

Installed cameras in the building can only be used to extract location information about the

person present in the physical space. The experience of remote presence can be enhanced

by extracting additional information like orientation, gesture performed by users. This

information can be achieved by additional sensors like Kinect, Leap Motion controller, or

motion tracking system (Cube, Moss Art Center). The collaborative object manipulation

platform was created using additional sensor, Leap Motion controller. A study was conducted

using to evaluate the effect of fidelity in collaborative object manipulation task. The setup

for this study is shown in Fig. 3.3. The study detailed information and results for this study

are covered in chapter 5



Chapter 4

Computer Vision Tracking

This chapter will mainly cover computer vision methodology used in Mirror Worlds project

to extract the location information and also gives an overview about evaluation platform

developed to compute detection accuracy. It will be structured as follows:

• Section 4.2, explains the proposed algorithm for human position detection based on

the combination of detection results from background subtraction and convolutional

neural network detector with some knowledge about the physical space (heuristics).

Additionally, it describes the baseline algorithm developed in this project.

• Section 4.3, describes data association approach for human position tracking.

• Section 4.4, explains the evaluation strategy to compute the frame based detection

accuracy measurement and sequential frame detection accuracy measurement [7] by

comparing the results with ground truth data obtained from VATIC annotation tool.

• Section 4.5, describes the obtained results for three different scenarios. The sections

also gives results for two baseline approaches and compares them to results obtained

from proposed algorithm.

35
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Figure 4.1: Flowchart of detection and tracking system

4.1 Introduction

The main objective of this task was to detect the moving people in the scene. The detection

is very important step in recognition and tracking system. The flowchart shown in Fig. 4.1

elaborates the principle components of people detection and tracking.

4.2 Object Detection

4.2.1 Background subtraction for human position detection

Initially, the prototype of detection algorithm was developed in MATLAB [21] based on

mixture of Gaussians [20]. This adaptive approach helps to eliminate the problem caused by

static background models which is proposed to detect shadows by Prati [76]. The prototype

was developed based on adaptive GMM implementation described in [77] [26]. The decision

whether the pixel is part of background of part of foreground is depend on the following

ratio in equation 4.1,

p(BG|−→x (t)
)

p(FG|−→x (t)
)

=
p(−→x (t)|BG)p(BG)

p(−→x (t)|FG)p(FG)
(4.1)

z where the BG and FG represents background and foreground respectively. If the above

ratio in equation 4.1 is greater than 1 then the pixel is part of background and vice versa.

As we cannot determine anything about the foreground object, p(FG|−→x (t)
) is considered as

uniform distribution and the decision is made by p(BG|−→x (t)
).

p(−→x (t)|BG) > cthr(= p(−→x (t)|FG)p(FG)/p(BG)) (4.2)

In equation 4.2, cthr is threshold value and p(−→x |BG) is background model. The background

model is estimated on the training set of points represented by X. To adapt the changes in
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light, weather conditions or changes in the scene, it is necessary to update the training set

points by adding new samples and discarding old ones to estimate the dynamic background

model. A suitable time T is selected for updates and hence at any point t will have XT =

{x(t), x(t−1), ......., x(t−T )}. The collected samples will have foreground objects as well as some

background objects, hence the estimated of these models is denoted by p(−→x (t)|XT , BG+FG).

These estimate is represented by GMM with M components given in equation 4.3,

p(−→x (t)|XT , BG+ FG) =
M∑
j=1

ωj,t ∗ η(Xt|µj,t,
∑

j,t
) (4.3)

where ωj,t: weight of jth Gaussian in the mixture at time t , µj,t is the mean value of the

jth Gaussian in the mixture at time t,
∑

j,t is the covariance matrix of jthGaussian in the

mixture at time t, and η is Gaussian probability density function. In general M value is

determined by the available computational memory and power, and commonly it is set to

three or five. Similarly to expedite the computation the covariance matrix is set by equation

4.4 to consider the red, blue, and green to be independent and same variance in RGB image.∑
j,t

= σj
2I (4.4)

The M distributions are ordered based on the fitness value ωj/σjbecause the model with

highest weight ωj and lowest variance is most stable to represent the background. First K

distributions are used as a background model. This value of Kvariable is determined by

equation 4.5.

K = arg min
k

(
k∑
j=1

wj > T ) (4.5)

The threshold value T indicates the minimum prior probability the scene content background.

Generally new pixel is determined whether it is part of background or foreground involves

some important steps:

1. Check if new pixel xt matches with any of the existing Gaussian models based on the

distance

2. If match the pixel matches any of the ith model then that model is adjusted to include

this new data. The updates in the parameters are done by following equations:

µt = (1− ρ)µt−1 + ρXt (4.6)
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σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)T (Xt − µt) (4.7)

where ρ is learning, rate given evaluated by equation 4.8.

ρ = αη(Xt|µk, σk) (4.8)

In above equation 4.8, 1/α ∝ update rate of the model. All the other parameters for

the unmatched models remains same.

3. If the new pixel is not matched with any of the models then it is considered as fore-

ground pixel. The mixture model is adjusted by replacing the least probable distribu-

tion with new model with Xt as mean, initialized to high variance, and low priority.

The prior weights of M distributions at time t are updated by equation 4.9.

ωj,t = (1− α)ωj,t−1 + α(Mj,t) (4.9)

where Mj,t is 1 for the matched models and 0 for the remaining ones. We implemented

this algorithm and evaluated with package provided by MATLAB [21]. For our ex-

periment, the M was set to 5 (default value) which signifies the support of different

background modes.

The initial prototype was developed in MATLAB, which was difficult to scale for multiple

buildings across campus. The scalable solution for this system was developed in OpenCV on

linux platform. The algorithm was based on the background modeling algorithm to k-Nearest

neighborhood classification algorithm [5]. The k − NN model for background subtraction

relies on the kernel density estimation. The density estimation starts by counting the k

number of samples from fixed set of frames dataset XT which lie within the volume V where

T is amount of frames that need to considered in order to estimate the background. The

volume V is hypersphere with diameter D. In our case, we decided T to keep as 50. The

density estimation is given by

p̂non−parametric(
−→x |XT , BG+FG) =

1

TV

t∑
m=t−T

K(
||−→x (m) −−→x ||

D
) =

k

TV
(4.10)
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In equation 4.10, K(u) = 1, if u < 1/2 and 0 in other case. This kernel function can

be selected based on the application. Some of the implementations have considered the

smoother kernel functions where they have used Gaussian profile as kernel function [27].

Although the choice of kernel function is not as critical as compared to the choice of D [78].

In k −NN based background subtraction the kernel estimation is adapts the kernel size at

each estimation of point −→x . In the approach the width D of the kernel changes for each new

estimate. The estimator is known as balloon estimator [5]. There are other estimators [79]

available for this but balloon estimator is preferred most of the time because it is related

k − NN classification. In both, fixed kernel, and the balloon estimation of −→x is made if

there are more than k points in volume V. The only difference is selection of cthr from 4.2.

In case of uniform kernel k is discrete and the estimates we get from it are discontinues

whereas in case balloon estimator [5] k is fixed and volume V is the variable parameter.

To differentiate the foreground objects from the background pixels indicators are added to

equation 4.10,

p̂non−parametric(
−→x |XT , BG) ≈ 1

TV

t∑
m=t−T

b(m)K(
||−→x (m) −−→x ||

D
) =

k

TV
(4.11)

where b(m)=1 if it is classified as part of the background and 0 if it is classified as foreground

object. These indicators are generated for all the points in the dataset XT . Hence, the

model estimated using this approach adapts the gradual changes in illumination, addition,

and removal of some objects in the scene.

4.2.1.1 Pre-processing on the input frame

As mentioned in the section 3.1, configuration file has cropping coordinates listed for each

camera. Whenever frame is received by the video capture object in OpenCV, it is cropped

based on the cropping coordinates mentioned in the configuration file. This is done to reduce

the overlapping regions between the 2 nearby cameras which will unnecessarily produce

noise in the measurements. After the received frame is cropped, it is then passed to the

background estimation model, BackgroundSubtractorKNN [77] to estimate the mask image.
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The smoothing operation is a simple and frequently used for image preprocessing. The

median filter with 3×3 size window runs through an image and replace each pixel with the

median of its neighboring pixels. The square neighborhood around the pixel is considered to

compute the median value at for single pixel. This square window size is known as kernel size.

Further some morphological operations are performed to improve the quality of the obtained

mask by performing dilate operation using the structuring element defined by 14×14 pixel

size window.

4.2.1.2 Find contour form masked Image

After preprocessing the mask image obtain from backsubtractor, the contour is computed.

The contour is curve joining all continuous points, having same color intensity. Detected

contour can be visualized in Fig. 1.1. The contour detection algorithm [80] is applied on the

mask image obtained from background subtractor. These detected contours are stored as

vector of points. Each contour k, from the detected contours, has many elements such as hi-

erarchy[k][0], hierarchy[k][1], hierarchy[k][2], and hierarchy[k][3]. All these are set to 0-based

indices in contours of the next and previous contours at the same hierarchical level, the first

child contour and the parent contour respectively. If there are no other contours found near

kthcontour then hierarchy[k] will be negative. In our system, we are using retrieval algorithm

which only retrieves extreme contours, it is denoted by RETR EXTERNAL enumeration

in OpenCV API. It sets hierarchy[k][2] = hierarchy[k][3] = -1 for all the contours. For

representing these detected contours, we are using an algorithm that compresses horizon-

tal, vertical, and diagonal segments and only extracts the end points. This is represented

as CHAIN APPROX SIMPLE enumeration in find contour [80] algorithm in OpenCV.

This detected contour vector is then passed to a filter function in our algorithm where the

contour with area >= contourMinThresh and area < contourMaxThresh are considered

as valid detection and other contours are erased from the vector.
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4.2.1.3 Combining blobs with Nearest neighbor

In addition to background subtraction, an algorithm was added to aggregate the small blob

together to form a big blob [81] [82]. The common algorithm to for finding nearest-neighbors

is kd-tree [83] which works well with low dimensional data but its performance degrades

with higher dimensional data. The Flann [82] algorithm is based on randomized kd-tree and

hierarchical k-means tree algorithm. Randomized kd-tree maintained a priority queue across

all randomized tree to order the search by increasing distance to each bin boundary. While,

hierarchical k-means tree does single traversal through the tree and adds priority queue for

all unexplored branches. The Flann algorithm is used to combine all the small contours to a

bigger contour in proximity. The algorithm can be summarized in Fig. 4.2, After detecting

all the blobs, kd-tree of all the centroids for these contours locations is generated. A copy

of all the centroid locations is created in another vector and it is sorted based on the area

detected for that contour. Then query contour is the contour with largest radius. The

number of neighbors searched are < nnMaxContours. The algorithm will loop through

nearest neighbors results to combine them based on the distance of contour from the query

point. The decision can be made by equation 4.12,

distance <= maxDistThresh (4.12)

where, maxDistThresh can be computed by equation 4.13,

maxDistThresh = queryRadii + currNbrRadii + searchRadii (4.13)

where, currNbrRadii is the radius of the processing contour radius from the nearest neighbor

search result, and searchRadii is maximum distance set for a search space around the query

contour location. Once all valid contours which are ready for combining with the query point

are collected, convex hull algorithm [84] is applied to combine these small contours.

4.2.2 Detection with neural networks

The conventional background subtraction algorithm mentioned in the above section tradi-

tionally works on background modelling with color, intensity, or gradient s for each pixel
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Figure 4.2: Combine small contours flowchart
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using k-nearest neighbor method [77], mixture of Gaussians [20] to become slightly invariant

to illumination changes. As the algorithm depends on the environmental aspects the ac-

curacy with independent conventional background subtraction approach is not satisfactory.

Hence, the state-of-the-art deep learning perception algorithms and specially convolutional

neural network (CNN) based detectors [85] [86] were explored, which has improved the object

detection task significantly over last decade [6] [22] [87] [88].

4.2.2.1 Convolutional neural networks

The training is done for detecting the predefined object types and for each object type large

data set is required. The objective of our system was to detect the human in the frame

obtained from the input camera. The human perception obtained through the camera is not

static its dynamic with the changing background. Hence, the issues like occlusions, faster

movements, dynamic posture makes it hard problem for detections. The YOLO (You Only

Look Once) framework [6] [17] based on convolutional neural network was used in proposed

system as person detector.

Most of the current classification systems use classifiers to perform detections. The common

workflow for detection is to detect object, then use the classifier for that object and evaluate

it various locations in the image and scale in it test image. In comparison with deformable

parts models (DPM) [34], where a sliding window approach is with classifier run over evenly

spaced locations in entire image, YOLO detects objects with much faster. Similarly, it

outperforms the R-CNN based detectors [22] in speed for detections. R-CNN based detectors

first create bounding boxes for potential detections and then classifier is executed on these

proposed boxes. After this classification is over, the bounding boxes are refined by removing

the duplicate detections and rescore the bounding boxes based on the other objects in the

scene. In DPM [34] and R-CNN [22], complex pipeline is involved in classifying the objects

and hence, it is difficult to optimize because each individual component must be trained

separately. The 3 important aspects because we selected YOLO over other approaches, first,

it is extremely fast. Second, it sees the entire image during train and test time, which helps

to get a better perspective about the object and full contextual information about the classes



Sachin Bharambe Chapter 4 Computer Vision Tracking 44

and their appearance. Third, it is generalizable. In our system, we needed something real-

time, and can adapt the various posture of human body with dynamic background. Hence,

explored this state-of-the-art detection algorithm, YOLO [6].

4.2.2.2 Network Design

YOLO [6] predicts all the bounding boxes for all the classes simultaneously because it uses

features from entire image for training as well as for testing. This design enables complete

training and real-time speeds while better average precision in detection. In this algorithm,

image is divided into N×N grid and B bounding boxes with confidence scores are computed

for each cell in this grid. These confidence scores reflect how confident the model is that

the box contains an object and how accurate it thinks the box is that it predicts. At test

time, class specific confidence is computed by equation 4.14, multiplying conditional class

probabilities and individual confidence predictions.

Pr(Classk|Object) ∗ Pr(Object) ∗ IOU truth
pred = Pr(Classk) ∗ IOU truth

pred (4.14)

where, IOU truth
pred is intersection between predicted bounding box and ground truth,

Pr(Classk|Object) represents the conditional class probabilities for each cell (C for each

cell).

The network architecture for YOLO is inspired from GoogLeNet model for image classifi-

cation [42]. In our system, we are using 24 layer convolutional neural layers followed by 2

fully connected layers. These layers are trained on ImageNet 1000-class competition dataset

[89]. This model is then converted for detection task, by adding 4 convolutional layer and

two fully connected layers with randomly initialized weights to this network to enhance the

detection performance [90]. The network uses 448×448 resolution for detection. The final

layer in the network is used for predicting the class probabilities and bounding box location

information. All other layers in the network uses leaky rectified linear activation function

given by equation 4.15,
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φ(x) =

 x,

0.1x,

if x > 0

otherwise
(4.15)

In this training sum squared error is used for optimization purpose to keep it simple. If

cell does not contain any object then the confidence score is set to zero for that cell, this

generates a large contrast for cell containing objects which leads to instability of the model.

To counter this issue, the more weightage is given to loss due to bounding box coordinate

predictions and less weightage to confidence predictions for bounding boxes that does not

contain any objects. The use of λcoord and λnoobjto achieve this improvement. During the

training of this network, the loss function is used is given by equation 4.16,

λcoord
N2∑
i=0

B∑
j=0

Iobji,j [(xi − x̂i)2 + (yi − ŷi)2]

+λcoord
N2∑
i=0

B∑
j=0

Iobji,j [(
√
wi −

√
ŵi)

2
+ (
√
hi −

√
ĥi)

2

]

+
N2∑
i=0

B∑
j=0

Iobji,j (Ci − Ĉi)
2

+λnoobj
N2∑
i=0

B∑
j=0

Iobji,j (Ci − Ĉi)
2

+
N2∑
i=0

Iobji,j
∑

c∈classes
(pi(c)− p̂i(c))2

(4.16)

where, Iobji indicates if there is any object in the cell i and Iobji,j indicates the jth bounding

box predictor in the cell i is responsible for prediction. This loss function penalizes the

classification error from the object in the grid cell and penalizes bounding box coordinates

if predictor is responsible for ground truth detection.

4.2.3 Combine approach based on background subtraction and

Neural Network

The procedure to combine the background subtraction and convolutional neural network

method is depicted in Fig. 4.3,
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Figure 4.3: Combine workflow for detection in MirrorWorld

As shown in Fig. 4.3, input frames are pre-processed using morphological operations. This

processed output was given as input to detect block. The proposed method considers detec-

tion results obtained from both the approaches. If there detections obtained using neural

networks then results from background subtraction were combined with YOLO detector

output. While combining these results obtained from both approaches, more preference was

given to result obtained YOLO detector. For example, in Fig.4.4, consider that blob id

one is detected using background subtraction and YOLO detector both approaches while

blob id two is detected only using background subtraction. In this scenario, more preference

was given to bounding box results obtained from convolutional neural network detection ap-

proach for blob id one and the detection given by background subtraction method for blob

id one was discarded. All doubly detected blobs were filtered based on the overlap threshold

criteria and then remaining results from background subtraction were combined with the

filtered output. On the other hand, if there are zero detection found in YOLO detector then

algorithm only considers the background subtraction results for tracking.

4.3 Human Position tracking

In the previous section, different human position detection methods like conventional back-

ground subtraction, YOLO detector [17] and a combined approach of YOLO detector and
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Figure 4.4:

background subtraction are discussed. The detection only involves verifying the presence

of human in any single frame, while tracking involves monitoring the temporal and spatial

changes in throughout the video sequence, which includes presence, position, and size related

information. This is done by matching the target region through the sequence of images in

video [91].

4.3.1 Data Association

The process of matching current observed objects information with previously observed ob-

jects. These algorithm tries to find matches that optimize certain match criteria. Hence

it can be formulated as solving a constrained optimization problem. To match the current

measurement, we should keep record of the previous detected locations of the object. The

element which keeps track of temporal history of certain object is known as track. This

track element can be used to get the information about objects last known location and its

current velocity. In our system, this track object is designed to keep track of track id, age

,visibility count, invisible age, visible flag, bounding box, contour, and prediction infor-

mation. The track object can be represented as following structure shown in Fig.4.5,
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Figure 4.5: Track object structure

The next step is to match this detected current blob measurement spatial information to the

previously generated tracks and the prediction value in the track object. The assignment

decision is done through Track assignment workflow given in Fig. 4.6. This is decided based

on the cost to assign the blob to certain task and the cost is determined by degree of overlap

function. Some unrealistic detection is ignored by the upper threshold on the cost to assign

blobs to track. The cost is computed by equation 4.17.

cost =

√
(blob.x− prediciton.x)2 + (blob.y − prediciton.y)2 (4.17)

4.3.2 Track Management

The track management is an important aspect of this algorithm, which was based on the

few attributes of the track object. The track management process can be represented by

flowchart given in Fig. 4.7 The value of visibility count is incremented in every frame if the

detection algorithm finds human blob in the frame and it is assigned to one of the existing
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Figure 4.6: Track assignment flowchart
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Figure 4.7: Track management flowchart

track. The blob is assigned to certain track if and only if, the cost computed for to assign

certain blob to a track satisfies condition given by equation 4.18 and the workflow for track

assignment process is given in Fig. 4.6

cost > noAssignmentCost (4.18)

There are three different scenarios for updating the track parameters,

• Number of detected blobs = Number of tracks present and both 6= 0

In this case, as det ectedBlobsSize > 0 and algorithm will try to assign these blobs to

existing tracks in the current state. If a certain track is assigned to a detected blob

after satisfying (4.18), then the track object parameters are updated with resetting the

invisible age value to 0 and incrementing the visibility count.

• Number of detected blobs > Number of tracks present and both 6= 0

In this case also, det dectedBlobsSize > 0 and algorithm will still try to assign these



Sachin Bharambe Chapter 4 Computer Vision Tracking 51

blobs to existing tracks in the current state. For all the tracks, satisfying (4.18), are up-

dated with resetting the invisible age value to 0 and incrementing the visibility count.

But as there are more number of blobs detected in the frame, some blobs will remain

unassigned after the track assignment operation completed. New tracks will be gener-

ated for all such blobs with new Contour objects.

• Number of detected blobs < Number of tracks present and both 6= 0

From the vector of detected blobs, algorithm tries to assign these blobs to existing

tracks in the current state. For all the tracks, satisfying (4.18), are updated with reset-

ting the invisible age value to 0 and incrementing the visibility count. But as there

are more number of track present, hence some tracks will remain unassigned to any of

the detections. In this, track parameters are updated by incrementing invisible age

and age values.

These updates are very important track management. Each time before track assignment op-

eration is called on the detected contours, the tracks are deleted based on the visible percent

and invisible age. The conditions can be represented by equation 4.19.

visible precent = visibility count
age

visible precent > visible threshold

or

invisible age > invisible max

(4.19)

When the conditions in equation 4.19 are satisfied for certain track, then that track is marked

as “LOST” and it will deleted from the track vector.

4.3.3 Prediction

Initially in this system, the prediction value was estimated same as the previous location

value, that means that detected blob will be stationary or it will have very less movements

between the frames. However, smoother tracking for multiple objects can be achieved by
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estimating blob future location based on the velocity and current measurement parameters.

The Kalman Filter [92] algorithm was used for state prediction in this system. The algorithm

tries to solve the state estimation problem of a discrete-time controlled process which is

governed by the differential equations given by 4.20,4.21

X
t

= AtX t−1 +BtU t + εt (4.20)

Z
t

= CtX t−1 + δt (4.21)

where X
t

and X t−1 is current and previous state vectors, U t is control input, and current

measurement is denoted by Zt. ε
tand δt are random vectors representing the uncertainty in

the measurement. Given the previous state,X t−1 ∝ N(µt,
∑

t−1), current state X t can be

estimated through prediction and correction term mentioned in 4.22,

µt = Atµt−1 +BtU t∑t = At
∑t−1(At)T +Rt

Kt =
∑t

(Ct)T (Ct
∑t

(Ct)T +Qt)−1

µt = µt +K(Zt − Ctµt)∑t = (I −KtCt)
∑t

(4.22)

In our system, Zt, measurement is done by detecting the contour location and calculating

the centroid of the contour using moments feature. These moments can be obtained by 4.23,

Mi,j =
∑
x

∑
y

xiyiI(x, y) (4.23)

where, i, j = 0, 1, 2, 3.. and I(x, y) are pixel intensities and centroid {x, y}is computed by

4.24,

{x, y} = {M10/M00,M01/M00} (4.24)

4.3.4 Combined heuristics based tracking algorithm

The proposed track management algorithm was modified some heuristics about the physical

space knowledge. The system uses detection results obtained from combine approach dis-

cussed in section 4.2.3. There are 3 important heuristics that were added to the system to

improve the performance.
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(a) Spawn area in observation room (MAC) (b) Spawn areas in hallway

Figure 4.8: Heuristics based on Spawn area, region marked with blue rectangles

• Include a spawn area for each camera to generate the new tracks

• Delete the track if there are no detection in coming frames over certain threshold

• Boost the neural network detection class for humans based the track of number of

blobs present in the certain region

4.3.4.1 Spawning Area heuristics

The tracking system discussed in section 4.3.2 generates new tracks if there are unmatched

contours after the track assignment task. Due the constraint environment, in this system,

the possible entry and exit locations for the participants was fixed. This indicates that a

new track ideally cannot be generated anywhere else than the entry and exit locations. The

tracking algorithm was modified with these constraints. New tracks were only generated if

the detected location of blob lies within the spawn area.

The spawn region was given as input to system as rectangular coordinates in configuration

file for each camera. The spawn region is shown in Fig. 4.8. The change in track management

process can be summarized in Fig. 4.9,

Now the new track can only be generated in if the detected blob origin lies within the
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Figure 4.9: Heuristics based track management
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rectangular spawning region. Similarly, the track can be deleted if track prediction for the

track object lies in rectangular spawning region and it is masked as “LOST” by satisfying

the conditions in 4.19.

4.3.4.2 Delete track on No detections found

The person entered in the camera region can only exit through the known exit points. Hence,

tracks were deleted only if the track prediction lies in spawn area and it is marked “LOST”.

The “LOST” condition is true if the parameters of track objects satisfy 4.19.

4.3.4.3 Boosting Neural Network Detection

In previous section 4.2.3, the combined approach for human detections based on background

subtraction and YOLO [17] detector was used for detecting foreground objects. The spawn-

ing area heuristics is used to set and reset the blobExistF lag to indicate the presence of the

human in certain camera region. This flag is passed as input to the detector function. This

detector function returns probable object class which has maximum confidence score within

frame. With heuristics, if there is presence detected, then confidence score for person class

is increased by certain fraction to increase probable location given by YOLO detector [17].

4.4 Evaluation

Mirror Worlds infrastructure supports future studies related to computer vision, Virtual

reality, remote collaboration, learning science, etc. Hence, the system should be reliable,

robust, and real-time. The implemetation of algorithm was done in C++ on Intel Xeon(R)

CPU E5-2687W v3 @ 3.10GHz 20 processor with Quadro M4000/PCIe/SSE2 graphic card.

The video of 1M (1056× 960) is given as an input to this system at 15fps Since no anno-

tated people video dataset was publicly available with overhead view from omni-directional

cameras, the proposed system was evaluated with three recorded video sequences. These

videos were annotated manually to test the performance of the approach. As, Mirror Worlds
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project provides platform for variety of applications and possible cases, the measurement of

the performance was done with 3 main scenarios to cover these areas.

• Constraint environment: single camera and two people in Observation Room (MAC)

• Indoor but less constraint environments: single camera, people moving in corridor

• Remote presence scenario: two cameras at different geographic location, people moving

in shared Virtual place

The performance evaluation metrics was developed to perform the quantitative analysis

of detection algorithms. The system is mainly evaluated on two metrics. First is Frame

Detection Accuracy (FDA) and second is Sequential Frame Detection Accuracy (SFDA).

The evaluation was done by comparing the detection results with ground truth bounding

boxes data obtained for each frame.

4.4.1 Extracting the Ground Truth Data

The ground truth data was obtained by using VATIC (Video Annotation Tool from Irvine,

California) [93] [94] tool. Most of the tools include computer vision and machine learning

methods that support human annotations [95] [38] [96] [97]. VATIC was developed based

on the idea of Sorokin and Forsyth [98], where they proposed the image labeling task can

be crowdsourced at low cost from Amazon Mechanical Turk (MTurk). It provides the open

platform monetarized crowdsource video labeling where interpolation is done by nonlinear

least-cost paths with efficient dynamic programming algorithms based on image data and

user annotated endpoints. The platform really fits the requirement and future prospects of

enabling the other researcher outside to explore and use the Mirror World infrastructure to

conduct the research in virtual reality and computer vision domain. VATIC uses MTurk

platform to find the people who can annotate the video. The user interface (UI) for the tool

is interactive browser video player that helps user to label objects in throughout the video

sequence. The interface is developed using javascript language. The work-flow for performing

video annotation task can be summarized as Fig. 4.10, In the above work-flow, all the frames
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Figure 4.10: VATIC video annotation flowchart for our system

are extracted in separate jpeg encoded files. Then this extracted file system should be loaded

to VATIC tool with unique identifier. As the interface for the tool is based on flash codec and

implemented in Javascript language, enables it to perform smoother and quicker annotation

process. The annotation process is having ability to interpolate between the sparse set of

annotations. The user is asked to annotate every T frames and tool interpolates the path

for marked object between these frames. The bounding box coordinates are represented as

vector,

btk = [x1, x2, y1, y2] (4.25)

where, btk is kth bounding box coordinate at time t . If user has marked every T frame in the

video then tool interpolates the bk for all frames between t and t+ T by linear interpolation

method given by equation 4.26.

bt,link = (
t

T
)b0k + (

T − t
T

)bT (4.26)

It is also important to extract the visual model of the tracked object to interpolate the

object accurately. The system uses discriminative classifier trained to produce high scores
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Figure 4.11: VATIC annotation result structure

on positive bounding boxes and low scores on the negatives. For each of the marked blob

by the user, feature descriptor is computed for each bk object which is combination of HOF

and color histogram features represented as,

φk(bk) =

 HOG

RGB

 (4.27)

with these features and labelled data yk ∈ {−1, 1}, a linear SVM is classifier is trained

to predict the location of the unannotated frames. Once the annotation process for entire

video frames is complete, all bounding box information is dumped to text file, which can be

used as an input to in evaluation platform. The process is explained in section 4.4.2. The

extracted information has following structure shown in Fig.4.11.

From this result, lost, occluded, and generated flags are used to determine the valid detections

or presence of the human in the rectangular window, frame number is used to compare the

results, and bounding box coordinates to find match or spatial accuracy of our detections.
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4.4.2 Detection Measurement

The goal of developing the performance measure tool was to give importance to both, the

overall detection accuracy, and goodness of the detection. The accuracy of the detection is

indicated by number of objects detected, missed detects, false positives, and false negatives,

whereas the goodness of the accuracy is measured by calculating the spatial overlap of the

detection with the ground truth data. Hence, an evaluating platform was developed, which

will give us Frame Detection Accuracy (FDA) and Sequence Frame Detection Accuracy

(SFDA) [7]. The SFDA value signifies a frame level measure to evaluate spatial alignment

match of the detections with the ground truth data, along with missed objects, false alarms

count. The Frame Detection Accuracy (FDA) is measured for each frame in the video by

calculating the spatial overlap between the ground truth and output of detected human

position as a ratio of the spatial intersection between the two objects and the spatial union

of them. All overlaps are summed and normalized over the average of total detected objects

and ground truth objects.

FDAt =
Overlap Ratio

[NG
t+ND

t

2
]

(4.28)

where, NG
t is number of ground truth objects, ND

t is number of detected objects in frame

t, and overlap ratio is defined in equation 4.29,

Overlap ratio =

Nt
mapped∑
i=1

|Gt
i ∩Dt

i |
|Gt

i ∪Dt
i |

(4.29)

where, Gt
i denotes the ith ground object in tth frame, Dt

i denotes the ith ground object in

tth frame, N t
mapped is number of mapped ground truth objects and detected objects in frame

t. In order to measure performance for the whole video sequence, FDA value is calculated

for all the frames. For normalizing only the frames with which has the objects either in

ground truth or in detected objects. This measure considers the false alarms as well as

missed objects. Hence, Sequence Frame Detection Accuracy (SFDA) can be denoted by (

4.30),

SFDA =

∑t=Nframes

t=1 FDAt∑t=Nframes

t=1 ∃(N t
G OR N t

D)
(4.30)
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where, Nframes is total number of frames in the video sequence. The ground truth annotation

process is done manually. Hence, the correctness of bounding box value will depend on the

accuracy in detections. To compassionate annotation error, thresholding approach for spatial

accuracy measurement [7] was adapted in evaluation method. The detected object can be

classified as correctly detected even if it is partially overlapped with ground truth object.

For this system, Ovlap Thresh is kept as 50% in equation 4.32. The computation of this

partial spatial accuracy can be given by equation 4.31,

Overlap Ratio Thresholded =

Nt
mapped∑
k=1

Ovr Thresh(Gt
i, D

t
i)

|Gt
i ∪Dt

i |
(4.31)

and,

Ovr Thresh(Gt
i, D

t
i) =


|Gt

i ∪Dt
i |, if

|Gt
i∩Dt

i |
|Gt

i|

>= Ovlap thresh

|Gt
i ∩ Dt

i |, Otherwise

(4.32)

4.5 Results

This sections explains, the strategy for evaluating the proposed algorithm. Three differ-

ent scenarios were collected to evaluate the proposed algorithm. Each scenario video was

approximately 3minute in length containing total of average 4000 frames. These scenarios

were evaluated with conventional background subtraction algorithm, background subtraction

with heuristics and combined algorithm based on background subtraction and Yolo detec-

tor. The evaluation platform computes FDA, and SFDA [7] value for all frames and video

sequences respectively. Precision and recall values were also calculated based on the values

of false positives, false negatives, and true positives. These values can be represented can be

represented as confusion matrix, Table 4.1. Precision value was computed by equation 4.33,

Precision = TP/(TP + FP ) (4.33)

where, TP is true positives, FP is false positives.



Sachin Bharambe Chapter 4 Computer Vision Tracking 61

Table 4.1: Confusion Matrix

Ground truth

Blob exists at (x, y)

Ground truth

Blob does not exist at (x,y)

Algorithm A

detects as Blob at (x, y)
TP FP

Algorithm A

does not detect a Blob
FN TN

Figure 4.12: Comparison of 3 approaches - Frame Rate vs Time

The obtained values for TP, FP, FN were used to calculate False positive rate (FPR), False

Negative Rate (FNR) for this proposed algorithm. The rate can be computed by equation

4.34,

FPR = FP/(FP + TN)

FNR = FN/(TP + FN)
(4.34)

Along with accuracy measure it was important to see how this algorithm performs over

other baseline approaches. The frames per second (fps) values were recorded for 2975

for baseline line approaches background subtraction (BSub), background subtraction with

heuristics (BsubHeuristics) and proposed combine algorithm (NNHeuristics). The analysis

result for for video sequence of 2975 frames is shown in Fig.4.12.

Selected three scenarios includes four different video sequences. Table 4.2, shows some from
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collected video sequences. These frames were selected such that it will give an approximate

idea about the performance of algorithms over entire video sequence.

In this Table. 4.2, column a, is for scenario I. In this scenario, the video was collected with

2 people moving in the constraint environment. One participant was sitting at the center,

while other participant was moving around the room. This scenario mainly illustrates the

challenges faced in background subtraction based algorithms and how it can be eliminated by

proposed solution. Column b, contains frames extracted from video sequence II. This video

sequence was recorded for less constraints environment (corridor in building) where people

motion was not restricted and environment was dynamic with occlusions between different

participants. This scenario mainly covers the challenges involved in human position detection

in overhead fish eye lens. The overhead view obtained from the fish eye lens makes difficult

to detect the people near the corners and edges of the image. Column c, has frames extracted

from 2 different video sequences. Both video sequences are again in constraint physical spaces

but at different location. This scenario demonstrates the application of proposed algorithm

for remote presence. The detected human position at two different physical location was

mapped to a shared virtual environment.

These recorded video sequences were annotated using VATIC tool to obtain the ground truth

data. This ground truth labeled data was used to evaluate the performance of algorithms

over entire video sequence.

4.5.1 Scenario I

Experimental results for all three approaches on video sequence in constraint environment

is given in Table.4.3.

Background subtraction method (Table.4.2.1, Approach (A)), fails in detecting the target

if the target is stationary for longer time. The background model adapts to foreground

object’s pixel intensity values over time and it becomes part of the the background model

(Table.4.6, column (a), 4th frame). The first frame in each column corresponds to frame after

background learning process is completed. The false positives in this case can be avoided
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Figure 4.13: SFDA vs Spatial Overlap Ratio threshold (Ovlap thresh)

with addition of heuristics. The heuristics also helps to eliminate other false blobs which

might arise due to environmental changes. In column b, 4th frame, detected blob has very

less spatial overlap with the actual human position. In this case, target is not detected by

background subtraction but added heuristics in this approach keeps track of target previous

location. The 3rd column has experimental results for combined approach of background

subtraction and YOLO detector with heuristics for target detection. The results listed this

column (c) indicates that the proposed solution was able to detect stationary target with

maximum possible overlap with target position and area.

The FDA and SFDA values were computed for entire video sequence. The results shown in

Table.4.4 were obtained by keeping intersection over union (IOU) threshold value in equation

4.32 to 50%.

The combined approach based on neural network and background subtraction with heuristics

performed better in term of spatial accuracy value across complete video sequence. The value

of SFDA is computed by equation 4.30.

The effect of variation of Ovlap thresh in equation 4.32 on SFDA value can be illustrated

with Fig.4.13.
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4.5.2 Scenario II

Experimental results for all three approaches on recorded video sequence in less constraint

environment is given in Table.4.6. In this scenario, three users are simply walking through

the corridor. The recorded video has target entering into the camera frame with occlusion.

Overall this scenario covers challenges involved in detection and tracking of fast walking

people in dynamic environment.

In this scenario, baseline approach (A) performed slightly better than the proposed solution

and baseline approach (B). In this case, multiple targets entered into the camera frame

simultaneously with one occluding the other. Hence, heuristics based approaches sometimes

failed to detect all present participants. Overall, the performance of all three approaches

was comparable, with approach (A) performing slightly better than others.

4.5.3 Scenario III

This case demonstrates the application of our system. Table.4.7, two images in first row,

have detection results obtained from evaluating the combined algorithm based on background

subtraction and neural network, the results were evaluated over two video sequences recorded

at two different location in the campus (Moss Art Center (Room I) and Torgersen Hall (Room

II)). Second row in image, displays 3D shared virtual environment. In this task, the detected

human position was mapped to an avatar (blue and red blobs) in the virtual model. The blue

avatar is a representation of human position detected in room I at Moss Art Center, while

red avatar is representation of detected position in room II at Torgersen Hall. These two

video sequences were separately evaluated for frame based detection accuracy measurement.

Table.4.8, shows the measurement values obtained for video sequence in Table.4.7, column

(a), while Table.4.9, shows measurements for video sequence in Table.4.7, column (b).
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Figure 4.14: Overview of the entire Moss Art Center 3D model with avatars displaying

real-time position of people present in the building

4.5.4 Scaled system

The developed algorithm was extended to entire building in Moss Art Center and Torgersen

Hall to support all the installed cameras in the buildings. The Fig.4.14 shows scaled version

of the system with 28 working cameras in Moss Art Center tracking the real-time population

and mapping these positional information in the 3D environment.



Sachin Bharambe Chapter 4 Computer Vision Tracking 66

Table 4.2: Frames for different scenarios

column (a) column (b) column (c)
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Table 4.3: Experimental results for scenario I

column (a) column (b) column (c)
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Table 4.4: Evaluation results for Scenario I

Background

Subtraction

Heuristics

+

A

Neural Networks

+

B

(A) (B) (C)

True Positives 1807 2346 3618

False Positives 931 1607 237

False Negatives 2062 1517 188

Total frames with DT or GT valid 2076 2076 2076

Total GT Detections 3995 3995 3995

Precision <TP/TP+FP > 0.659971 0.593473 0.938521

Recall <TP/TP+FN> 0.467046 0.6073 0.950604

False Negative Rate

<FN/FN+TP>
0.532954 0.3927 0.0493957

F- Measure

<2*precision*recall/ precision + recall>
0.546996 0.600307 0.944524

SFDA normalized Value 0.760869 0.683145 0.971712

Accuracy

<TP + TN / TP+FP+FN+TN>
0.3764583333 0.4288848263 0.8948800396



Sachin Bharambe Chapter 4 Computer Vision Tracking 70

Table 4.5: Experimental result for scenario II

column (a) column (b) column (c)
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Table 4.6: Evaluation Result for Scenario II

Background

Subtraction

Heuristics

+

A

Neural Networks

+

B

(A) (B) (C)

True Positives 1630 1240 1257

False Positives 202 113 689

False Negatives 490 668 950

Total frames with DT or GT valid 1126 1126 1126

Total GT Detections 2493 2493 2493

Precision <TP/TP+FP > 0.889738 0.916482 0.64594

Recall <TP/TP+FN> 0.768868 0.649895 0.569551

False Negative Rate

<FN/FN+TP>
0.231132 0.350105 0.430449

F- Measure

<2*precision*recall/ precision + recall>
0.824899 0.760503 0.605345

SFDA normalized Value 0.812964 0.907487 0.847501

Accuracy

<TP + TN / TP+FP+FN+TN>
0.70198105 0.61355764 0.43404696
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Table 4.7: Experimental result for scenario III
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Table 4.8: Evaluation Result for Moss Art Center video sequence - Table.4.7, Room I

Background

Subtraction

Heuristics

+

A

Neural Networks

+

B

(A) (B) (C)

True Positives 1542 2154 3533

False Positives 327 3245 1979

False Negatives 3414 3107 1729

Total frames with DT or GT valid 2765 2765 2765

Total GT Detections 5365 5365 5365

Precision <TP/TP+FP > 0.82504 0.398963 0.640965

Recall <TP/TP+FN> 0.311138 0.409428 0.671418

False Negative Rate

<FN/FN+TP>
0.688862 0.590572 0.328582

F- Measure

<2*precision*recall/ precision + recall>
0.451868 0.404128 0.655838

SFDA normalized Value 0.388985 0.4619 0.723857

Accuracy

<TP + TN / TP+FP+FN+TN>
0.2918796139 0.253233012 0.4879160337
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Table 4.9: Evaluation Result for Torgersen Hall video sequence - Table. (4.7), Room II

Background

Subtraction

Heuristics

+

A

Neural Networks

+

B

(A) (B) (C)

True Positives 707 3837 3948

False Positives 315 2607 3059

False Negatives 5229 2116 2128

Total frames with DT or GT valid 3118 3118 3118

Total GT Detections 6258 6258 6258

Precision <TP/TP+FP > 0.691781 0.595438 0.563437

Recall <TP/TP+FN> 0.119104 0.644549 0.64977

False Negative Rate

<FN/FN+TP>
0.880896 0.355451 0.35023

F- Measure

<2*precision*recall/ precision + recall>
0.203219 0.619021 0.603531

SFDA normalized Value 0.180347 0.731508 0.76649

Accuracy

<TP + TN / TP+FP+FN+TN>
0.1131019 0.44824766 0.43218391



Chapter 5

Collaborative Object Manipulation

In the previous chapters, we have covered how the robust combined approach based on

background subtraction and YOLO [17] is useful to create a shared platform for remote

presence application. This chapter covers another application of Mirror World project based

on the second input device shown in Fig. 3.1. In this chapter, we will go through details

about the design of collaborative object manipulation application, user study conducted to

evaluate the effect of fidelity in performing collaborative object manipulation task and some

of the interesting findings from this user study.

5.1 Introduction

Remote collaboration is a useful and challenging research topic, with many researches trying

to innovate effective ways to create such platform. The need for remote collaboration arises

due to the globalization with designers located in distant geographical locations and the

multinational corporations diverse team culture. While simple audio or video conferencing

technology such as Skype or Google Plus Hangout might be sufficient for communicating

with families, these tools do not provide professionals with a shared task space where they

can collaborate on more complex tasks, e.g. an architectural design meeting in which these

experts must be able to visualize digital content at various level of details and modify the

75
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content [99]. In addition, many of these remote collaboration tasks need an effective platform

to data visualization to observe the virtual content in 3D world.

This is when Mirror World platforms comes to the aid. The concept of having Fusality be-

tween this project not only allow seamless interaction between the physical space and virtual

space, but also it allows helps in delivery of spatial and gestural cues of remote collaborators

in ways never thought possible, making it a suitable system for remote collaboration. The

recent advancements in VR have taken significant strides with respect to the growth of the

display technologies, especially head mounted displays (HMDs) and rifts. Various display

and sensor technology are today available both to the academic community and the public,

allowing researchers to focus on the interaction aspect of designing a VR-based user interface

instead of reinventing the tracking capability or display technology.

The goal of our object manipulation task was to build the tallest possible tower with the

virtual cubes in given time limit. For our trial studies, we assigned the task of assembling

a tower of maximum height within a fixed time limit and evaluated participants based on

the metrics of time, accuracy and satisfaction. Two (can be extended to more) people

present in a virtual workbench would collaborate to achieve this common goal. We vary

independent variables such as field of regard (Oculus Rift vs Screen display), complexity of

target assembly (using shadow effects), and presence of physics in the virtual environment

and evaluate the effectiveness of the system based on the metrics of time, accuracy, and

satisfaction to replicate the target assembly.

5.2 System architecture

The overall system is made up of multiple components.

• Server side instance, with unity client running on a computer connected with Leap

Motion controller.

• Client side instance on a computer connected to Leap Motion controller.
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Figure 5.1: User interface for object modelling task

• Server

• Oculus Rift

The setup is shown in Fig.5.1.

5.2.1 Hardware Module Working

Initially the application is started on the two computers with one selected to act as server and

other as client. The cube objects are then spawned in client and server. The Leap Motion

controller client captures the hand motion over it and sends the data to unity interface which

accepts the data and then translates the hand motion into virtual hand motion and in turn
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moves the cube. The position of the cubes is then is transferred to the server, which in turn

forwards the coordinates of to the other instance of the program over the network. This act

synchronizes the position of the cubes between the instances, leading to real time update and

hence the collaboration. The users can also add oculus to their computers, which will enable

them to view the virtual world in 3-dimensional fashion thus offering a 3-d perspective which

could facilitate a better interaction with the objects in the virtual world.

5.2.2 Software Module Working

5.2.2.1 Platform

We used the same Mirror World model as shared workplace. In addition to these models,

the users were classified in 2 teams based on the color of the objects. This selection was

prior to starting the interaction task. The virtual cubes were generated in the MirrorWorld

model, at Learning Lab at Moss Art Center which was selected as collaborative shared space

between these users because it has more interaction space and multiple users can navigate

in the environment conveniently.

The project involved,

• Creation of these virtual cubes based on the user input

• Adding the physics of interaction with the other objects like collision detection, rigid

body etc.

• Adding the physics of gravity, which determines the nature of interaction and behavior

of the object in the virtual world.

• Controlling the object with respect to Leap Motion controller’s input.

5.2.2.2 Network & connectivity

Real-time collaboration between two users is a key component in this project. This in-

volved establishing a connection between two users (systems) over the network using Web
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Socket, which uses an underlying TCP connection to communicate between the server and

the clients. In this project, we have created a central server component using Tornado server

in Python. The Tornado server is a Python based Web framework and asynchronous library

for networking that employs non-blocking network I/O and provides the framework essential

for establishing a Web Socket. This server is responsible for communicating the state of

objects between the collaborating user systems. The server acts as a bridge between the two

users, by acquiring the state (position) of the cubes from each user environment and then

communicating it to the other user. This helps in synchronizing the position of the object

positions in real-time across the two users, achieving a seamless collaboration effect with

changes to model getting reflected in real time.

5.3 User Study Description

We conducted a user study to test the usability and effectiveness of the system as a gestural

remote collaboration system on virtual content. Subjects (13 males, 7 females) were invited

to participate in a formal user test in a controlled environment in which they must perform

specific tasks in pairs and provide feedback to structured questions. Each user was given

20 minutes to complete the task. Users were given a reference assembly model and asked

to mimic its assembly in the virtual collaborative environment. The users were asked to

use different tools for each test case and the time required to complete the task in each

case was used as a performance metric. Different target models were built, varying the

presence of physics and shadows. In this test case, we analyzed the response time in different

work models. By employing concepts of physics, and imparting shadows to the macros in

the assembling objects the difficulty level and thrill is further enhanced. Post the system

interaction, the participants were then asked to fill out a post experiment survey in which

they had to give ratings to the overall system performance based on different metrics. The

detailed questionnaire was then used to analyze the overall system performance.
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Figure 5.2: User study without Oculus

Figure 5.3: User study with Oculus
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5.4 Results of the study

5.4.1 Quantitative results

In this study, we discovered the correlation between different parameters like users experience

with playing games, interacting with 3D devices, 3D Design software, and Purdue Spatial

Visualization Test [9] scores with their over-all performance in object manipulation task is

calculated using the pearson product moment correlation coefficient in equation 5.1.

r =

∑
(x− x)(y − y)√∑

(x− x)2
∑

(y − y)2
(5.1)

where, x and y are the sample means of the 2 arrays of values. The strong correlation is

indicated by R value close to +1 and negative correlation is indicated by value close to -1.

From the figures, it can be inferred that there is quite a strong correlation (R = 0.587)

between the users Purdue Spatial Visualization test score and the rating given by the users

for the overall experience with our system Fig. 5.1. The correlation between the users

experience with 3D software or video games and the overall rating given by them is not very

strong, but is still positive hence significant (Fig. 5.5, Fig. 5.6, 5.7).

Users were asked to rate their ease with using the Leap Motion controller on a scale of 1 to

7. The mean is 4.2 and standard deviation is 1.66 shown in Fig. 5.8. User ratings for the

preference of Oculus for the task of assembling objects have a mean of 5.19 and standard

deviation of 0.95 sown in Fig.5.9. User ratings for the preference of physics for completion

of the task have a mean of 5.8 and standard deviation of 1.12 shown in Fig. 5.10. User

ratings for the value of shadows for completion of the task have a mean of 4.95 and standard

deviation of 0.97 shown in Fig. 5.11.

In this study, we also recorded the number of cubes assembled by the user and time taken

by each user for this task. A two-by-two ANOVA was performed for cube manipulations

per minute with/without Oculus and with/without Physics. The results indicate that the

effect of HMD device like Oculus is significant with a p value of 0.015 and F value of

3.966. Similarly effect of physics is also statistically significant with p value of 4.186E-16

and F value of 3.966. However, the interaction between two is not statistically significant.
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Figure 5.4: Correlation between Purdue Spatial Visualization Test [9] Score and Overall

rating by User R = 0.587

Figure 5.5: Correlation between users experience with video games and overall rating by

user R = 0.148
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Figure 5.6: Correlation between users experience with 3D software and overall rating by user

R = 0.218

Figure 5.7: Correlation between users experience with 3D interaction devices and overall

rating by user R = 0.086
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Figure 5.8: Evaluation of Leap Motion Controller

Figure 5.9: Evaluation of Oculus
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Figure 5.10: Evaluation of presence of physics

Figure 5.11: Evaluation of effect of shadows
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Table 5.1: Performance analysis for tasks without Oculus

With Oculus

With shadows 0.346 cubes/min

Without shadows 0.275 cubes/min

With Physics 0.402 cubes/min

Without physics 0.051 cubes/min

Table 5.2: Performance analysis for tasks without Oculus

With Oculus

With shadows 0.346 cubes/min

Without shadows 0.275 cubes/min

With Physics 0.402 cubes/min

Without physics 0.051 cubes/min

Another ANOVA was evaluated over cube manipulations per minute with/without Oculus

and with/without Shadows. In this result, Oculus is statistically significant with a p value

of 0.002 and F value of 3.966. But the effect of shadows and the interaction between the

2 conditions is not statistically significant. We have summarized average number of cube

manipulations per minute in Table. 5.1 and 5.2.



Chapter 6

Conclusions

This thesis analyzes the various issues and challenges involved in detecting the human posi-

tion data using omni-directional cameras with an overhead view. There are many algorithms

for detecting foreground objects based on background subtraction [20][5], HOG detectors

[8], and R-CNNs [22] [88]. Some of them suffers through getting accurate results from the

overhead view whereas CNN, R-CNN based detectors lags in real-time performance. The

proposed system detect and track people present in building using combined approach of

background subtraction and YOLO detector based on convolutional neural network [17]

with heuristics based on spatial information about the physical space. The issue of sta-

tionary target was solved by detecting person using neural network detector and heuristics.

An algorithm and compared against our baseline algorithms: First background subtrac-

tion (A), and second background subtraction with heuristics. Sequential Frame Detection

Accuracy (SFDA [7]) for proposed algorithm in case scenario I is 97.17% with 89.48 %

accuracy which is approximately 50% greater than baseline algorithms (A) and (B) Table

4.4. However, scenarios with moving targets (scenario II), baseline algorithms performance

was comparable and plain background subtraction method performed slightly better than

proposed algorithm. The algorithm was scaled to support network cameras installed across

multiple buildings to create remote presence application.

Different systems were studied to overview about the applications designed for telepresence
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and remote collaboration. Most of systems were using stereo cameras, Kinect sensors, net-

work cameras etc. These systems are limits the user space over constraint environment

like laboratory, classroom or offices. The proposed system uses omni-directional cameras

installed in the building to create a telepresence application. People moving in building

can see their reflection as an avatar in the tablets mounted on the side-walls. Users in one

physical space (Moss Art Center) can interact with the remote participant (Torgersen Hall)

as different avatar in the virtual model. Remote participants can present in virtual model

through parallel system installed in Torgersen Hall or they can connect to the virtual model

over web X3D clients.

Thesis also presents the collaborative object manipulation platform designed using Leap

Motion controller. The proposed system uses Oculus Rift as a display device and gesture

input using Leap Motion controller. In alternative approach, the Kinect device was used as

the hand gesture recognition tool but the large space requirement of the Kinect made Leap

Motion controller a better choice for this task. The qualitative results showed overall user

satisfaction and ease of handling and working with the system. The quantitative results

exhibited positive correlation between Purdue spatial visualization test [9] score and overall

performance which implies that user with good 3D spatial sense performed better in assem-

bling the target model. The other observation was that gender bias did not affect the user

performance but experience with 3D software, gaming does seem to correlate with superior

user performance.



Chapter 7

Future Work

To improve the performance of the system, as a future work, system can be improved in four

primary aspects of the Mirror Worlds project [4] as follows:

• Current system uses neural network trained on ImageNet [89] and MS COCO [100]

datasets. The performance of the detector can be improved by training on dataset

collected for this system [4].

• Tracking algorithm currently relies on detection results. It can be improved by using

feature based tracking algorithms [101]

• The avatars representing people presence in building can animate the actions performed

by users. Actions like walking, orientation, change in position information can be

extracted based on additional heuristics and blob data

• Collaborative object manipulation application can be designed using HoloLens device

to create mix reality experience.
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