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Finding Succinct Representations For Clusters

Aparna Gupta

(ABSTRACT)

Improving the explainability of results from machine learning methods has become an im-

portant research goal. In this thesis, we studied the problem of making clusters more inter-

pretable using a recent approach by Davidson et al., and Sambaturu et al., based on succinct

representations of clusters. Given a set of objects S, a partition π of S (into clusters), and

a universe T of descriptors such that each element in S is associated with a subset of de-

scriptors, the goal is to find a representative set of descriptors for each cluster such that

those sets are pairwise-disjoint and the total size of all the representatives is at most a given

budget. Since this problem is NP-hard in general, Sambaturu et al. developed a suite of

approximation algorithms for the problem. In this thesis we have done empirical analysis

of the approximation algorithms developed by Sambaturu et al., and implemented various

rounding schemes for a comparative study. We also show applications to explain clusters of

genomic sequences that represent different threat levels



Finding Succinct Representations For Clusters

Aparna Gupta

(GENERAL AUDIENCE ABSTRACT)

Improving the explainability of results from machine learning methods has become an im-

portant research goal. Clustering is a commonly used Machine Learning technique which is

performed on a variety of datasets. In this thesis, we have studied the problem of making

clusters more interpretable; and have tried to answer whether it is possible to explain clusters

using a set of attributes which were not used while generating these clusters.
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Chapter 1

Introduction

1.1 Motivation

As AI and machine learning (ML) methods become pervasive across all domains from

healthcare to urban planning, there is an increasing need to make the results of such

methods more interpretable. Providing such explanations has now become a legal re-

quirement in some countries [GF16]. Many researchers are investigating this topic us-

ing the framework of supervised learning, particularly for methods in deep learning (see

e.g., [Pro17, Pro18]). Clustering is a commonly used unsupervised ML technique (see

e.g., [BGLL08, Bol13, For10, Tan18, HPK11, ZMJM14]) and is routinely performed on di-

verse kind of datasets to identify the inherent grouping in unlabeled data. In these tech-

niques, the data points are classified into multiple groups based on a similarity score. Since

the data is unlabeled, there is no specific criteria for a good clustering technique. It depends

solely on the user as to what criteria they use based on their dataset and needs. This can

often make clusters hard to interpret, especially in a post-hoc analysis. For instance, given a

set of points, with a notion of distance between them, the objective is to group these points

into some group of clusters so that, members of a cluster are close/similar to each other and

members of different clusters are dissimilar. A clustering algorithm will assign these points

into clusters based on a distance measure (Euclidean, Cosine, Jaccard, etc.) rather than the

associated attributes.

1
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Is distance the only measure to group these points into similar groups? What if additional

attributes are available for each data point? Can they be used as an additional source of

information? A question that follows is whether it is possible to explain a given set of clusters,

using additional attributes which, crucially, were not used in the clustering procedure.

A motivation for our work is to understand the threat levels of pathogens for which genomic

sequences are available in [JGK18, JK18, HF18, RW18]. Researchers have been able to

identify some genomic sequences as coming from harmful pathogens through lab experiments

and bioinformatics analysis. Understanding what attributes make some sequences harmful,

and distinguishing them from harmless sequences corresponds to the problem of interpreting

the clusters.

Once the clustering is done, supervised machine learning techniques can be used to interpret

the results of these clusters. One way is to convert the problem into a feature selection

problem. In this case, the question can be “What is the best way to describe a cluster?”

or “What distinguishes a cluster from all other clusters?” Another way is to apply Logistic

Regression to understand the structure of data and predict class labels. We analysed the

results of a Multinomial Logistic Regression model and observed that for a threat dataset

with “248 sequences” and “4636” attributes, “59” attributes were used to describe cluster 1

(with 75 sequences) and “70” attributes were used to describe cluster 2 (with 175 sequences).

Although Logistic Regression provided a reasonable set of descriptors to describe each clus-

ter, the attribute set for each cluster is quite large. Logistic Regression assigns weights

(called coefficients) to each feature. The higher the weight, the more important a feature

is. However, there can be situations (for instance in multinomial regression) where weights

associated with a feature are almost similar for each class label. A natural question that

arises here is which label does a particular feature explains better? This is when the process

of associating features with a class label becomes arduous. Also, the weights associated with
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a feature range from −∞ to ∞. How large should a feature weight be, to interpret its impor-

tance? Our objective is to overcome this shortcoming by selecting important attributes such

that: a minimum number of attributes selected provides high coverage and the disjointness

condition is met. Therefore, our objective is to select a minimum number of attributes such

that we have high coverage and the disjointness condition is met.

To achieve the above objectives, this thesis focuses on the formulation proposed by David-

son et al. [DGR18], in which they have presented the following formulation of the Cluster

Description Problem for explaining a given set of clusters. Let S = {s1, . . . , sn} be a set

of n objects. Let π = {C1, . . . , Ck} be a partition of S into k ≥ 2 clusters. Let T be the

universe of tags such that each object si ∈ S is associated with a subset ti ⊆ T of tags. A

descriptor Xℓ for a cluster Cℓ (1 ≤ ℓ ≤ k) is a subset of T . An object si in cluster Cℓ is

said to be covered by the descriptor Xℓ if at least one of the tags associated with si is in Dℓ.

The goal is to find k pairwise-disjoint descriptors (one per cluster) such that all the objects

in S are covered and the total number of tags used in all the descriptors (referred to as cost)

is minimized. Refer to example 2.1.3.

Davidson et al. [DGR18] show that even deciding whether there exists a feasible solution

is NP-hard. They use an Integer Linear Programming (ILP) method to solve the problem

(and various relaxed versions which provide useful descriptions even if there is no exact

feasible solution) on twitter datasets. They point out that this approach gives interesting

and representative descriptions for clusters.

1.2 Overview of the Thesis

Davidson et al. [DGR18] proposed an ILP version of the Cluster Description Problem [DGR18].

They observed that the size of the ILP is linear with respect to the number of instances, tags,
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and clusters. However, they found that sometimes the formulation gave inconsistent expla-

nations. Furthermore, they observed that solution often gave highly unbalanced coverage

i.e., one cluster gets covered well, but not the others.

Sambaturu et al., [SGD+19] extended the formulation by Davidson et al. [DGR18] to ad-

dress these issues of unbalanced coverage. They developed a suite of algorithms which give

rigorous approximation guarantees for the cluster description problem [DGR18]. They have

introduced the Minimum Constrained Cluster Description Problem (henceforth, referred to

as MinConCD) for cluster description, with simultaneous coverage guarantees on all the

clusters (defined formally in Section 2.1.1). Informally, given a requirement Mi ≤ |Ci| for

the number of objects to be covered in each cluster Ci, their goal is to find pairwise-disjoint

descriptors of minimum cost such that at least Mℓ objects are covered in Cℓ. However, this

problem is very difficult. Specifically, if the coverage constraints for each cluster must be

met, then unless P = NP, for any ρ ≥ 1, there is no polynomial time algorithm that can

approximate the cost within a factor of ρ. Therefore, they proposed a notion of (α, δ)–

approximate solution which is defined in the following manner: ensuring the coverage of

at least αMℓ objects in cluster Cℓ (1 ≤ ℓ ≤ k) using a cost of at most δB∗, where B∗ is

the minimum cost needed to satisfy the coverage requirements. An algorithm is a factor α

approximation for a problem if and only if for every instance of the problem it can find a

solution within a factor α of the optimal solution [GGU72, Joh74]. Often, an optimization

problem involves several parameters. A bicriteria approximation algorithm achieves a cer-

tain approximation ratio while violating some constraint by some bounded amount. For an

example of bicriteria approximation algorithm, see [MRS+98].

Sambaturu et al., [SGD+19] have also proposed a randomized algorithm, Round (formally

defined in Section 1), for MinConCD, which is based on rounding a linear programming

(LP) solution and provides a (1/8, 2)–approximation, with high probability. By definition,
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randomized algorithm is an algorithm which apart from the input takes a source of random

number and makes random choices during excecution. For an example, see [MR95].

As part of this thesis, we have explored the following variations of MinConCD:

• A bounded overlap version of the problem for k = 2, where cluster descriptors may

overlap. In this variation, given input parameters for Mℓ for ℓ ∈ [k] and overlap limit

Bo, the objective is to find a solution of minimum cost such that |Vℓ(X)| ≥ Mℓ for each

ℓ and
∑

ℓ̸=ℓ′ |Xℓ ∩Xℓ′ | ≤ Bo. The details are discussed in Section 2.3.1.

• A pair of tags version, where pair of tags are added to the attribute set. The set T of

tags is extended to Text by adding every pair (j, j′), where j, j′ ∈ T . The set Text is

then used for finding descriptors. The results are discussed in Section 2.5.

Furthermore, we have empirically evaluated and analyzed MinConCD and Round on various

real and synthetic datasets. To achieve this, we designed experiments based on the following

research questions:

1. Performance: Does Round give solutions with good approximation guarantee in prac-

tice? Does it scale to large real world datasets? How do the results of MinConCD

compare with that of [DGR18]?

• Observations: Our results indicated the following:

– The approximation solution of Round was close to the optimum solution and

significantly better than the worst-case theoretical guarantees.

– Round scaled well to instances which were over two orders of magnitude larger

than those considered in [DGR18].

• Extension: We explored variations in the suggested rounding scheme. Refer to

Sections 2.1.1, 1, 2.5.4 and [SGD+19] for details on formulation and rounding.
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2. Effects of parameters: What is the effect of cost and coverage parameters on solution

quality and feasibility?

• Observations:

– The spectrum of descriptors obtained by varying cost and coverage parame-

ters allowed a better understanding and exploration of the clusters.

– Our results confirmed that atleast Mℓ objects were covered in each cluster.

Additionally, our results indicated that solution quality and feasibility also

depends on the density of the dataset being considered.

3. Explanation of clusters: Do the solutions provide interpretable explanations of

clusters in real world datasets?

• Observations:

– Our results indicated that MinConCD gave insightful results for the Threat

dataset [2.4.1]. Refer to Table 2.3 for more details of the dataset. Our

results returned a small set of intuitive attributes which separated the harmful

sequences from the harmless ones. More details and results of the qualitative

analysis can be referred to from Table 2.15.

4. Pair of tags: Does pair of tags provide a more precise explanation of the clusters?

• Observations:

– Pair of tags increased the feasible regime for a few datasets. For a feasible

instance it was observed the solutions obtained using T and Text were quite

similar. However, Text sometimes provided more meaningful descriptions.

– Pair of tags increased the possibility of an object being covered.

– Fewer tags provided a reasonable explanation of the clusters.
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5. k-cluster: How do the results depend on k (i.e., when k = 2 vs k = 4) for Threat

dataset [2.4.1]?

• Observations:

– For Threat dataset [2.4.1], different tags got selected when k = 2 and k = 4.

Details of the Threat datasets can be referred to from Table 2.3. In terms of

coverage, k = 2 provided better overall coverage.

1.2.1 Why are we doing what we are doing?

There is a considerable amount of work currently being done for cluster summarization using

various techniques like Predictive clustering, Constrained clustering, Conceptual clustering,

and Conceptual clustering using constrained programming. Conceptual clustering [Fis87]

focuses on using a set of features to create the clusters and then uses the same set of features

to explain the generated clusters. More work is being done in the field of conceptual clustering

with constrained programming [MK10], however, these approaches again focus on explaining

the clusters while generating them. Predictive clustering [Lan96] on the other hand uses

both predictive modeling and conventional clustering technique to generate clusters and

perform predictions. All these techniques focus on explaining the clusters while generating

them.

Our objective is very different from all of the above approaches. We aim to explain the

clusters after clustering is done, without knowing about the technique that was used to

generate the clusters. Moreover, we aim to use the attributes which were not used in the

clustering technique to explain the results of the clustering.

Our approach works well for most of the real and synthetic datasets (refer to Section 2.5 for

details). However, the approach did not provide expected results for the following scenarios:
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• The dataset is extremely sparse. Since our rounding scheme is probabilistic it did not

work well for sparse datasets. We observed that cluster coverage dropped significantly

in this case.

• The approach did not return expected results when coverage requirement is not con-

stant times the number of objects present in a cluster.



Chapter 2

The Cluster Description Problem

2.1 Preliminaries

2.1.1 Notation and Definition

Let S = {s1, . . . , sn} be a set of n objects, and π = {C1, . . . , Ck} be a partition of S into

k ≥ 2 clusters. Let T be the universe of m tags such that each object si ∈ S is associated

with a subset ti ⊆ T of tags. A solution is a subset X ⊆ T , and will be represented as a

partition X = (X1, . . . , Xk), where Xℓ is the descriptor (i.e., subset of tags) used for cluster

Cℓ. si ∈ S is covered by a set X ⊆ T of tags if X ∩ ti ̸= ∅. Let E(j) = {si : j ∈ ti} be

the set of all objects that can be covered by the tag j ∈ T . Let η = maxj |E(j)| denote the

maximum number of objects covered by any tag in T . Let γ = maxi |ti| denote the maximum

number of tags associated with any object in S. Objects si, si′ ∈ S are said to be dependent

if ti ∩ ti′ ̸= ∅, i.e., if their tag sets overlap. Let ∆(i) = |{i′ : ti ∩ ti′ ̸= ∅}| denote the degree

of dependence of si, and let ∆ = maxi ∆(i) be the maximum dependence. Finally, for a

solution X = (X1, . . . , Xk), let Vℓ(X) = {si ∈ Cℓ : ti ∩Xℓ ̸= ϕ} be the subset of objects in

Cℓ covered by X, 1 ≤ ℓ ≤ k. For an integer k, we use [k] to denote the set {1, . . . , k}. The

Table 2.1 summarizes the above stated notations.

9
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Notation Definition
S A set of n objects
n Number of objects
π A set of k clusters
k Number of clusters
Cℓ Cluster (ℓ denotes cluster number)
T Universal set of tags
si An object (or, a data point)
X Solution set (X1, . . . , Xℓ)

E(j) A set of all objects covered by any tag j
η Maximum number of tags associated with any object
∆ Degree of dependence of an object.

Table 2.1: This table summarizes the notations and their definitions, as discussed in the
previous section.

2.1.2 Problem Statement

The objective is to find a solution X that simultaneously ensures high coverage Vℓ(X)

in each cluster Cℓ. An obvious choice would be to consider a max-min type of objective

X = argmax minℓ |Vℓ(X)| (see, e.g., [Udw18]). However, this doesn’t allow handling domain

specific requirements (e.g., higher coverage for the cluster of threat sequences in genomic

data). Therefore, a more general formulation is considered by Sambaturu et al. [SGD+19];

wherein they specify a coverage requirement for each cluster.

The Minimum Constrained Cluster Description (MinConCD) problem

Instance: A set S = {s1, . . . , sn} of objects, a partition π = {C1, . . . , Ck} into k ≥ 2 clusters,

a universe T of m tags, set ti for each object si, Mℓ for each cluster Cℓ.

Objective: To find a solution X = (X1, . . . , Xk) that minimizes the cost
∑k

ℓ=1 |Xℓ| satisfying

the following conditions:

1. The subsets in X are pairwise-disjoint,
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Figure 2.1: Pictorial representation of the toy dataset. There are 5 data-points in Cluster 1
& 3 data-points in Cluster 2. The tags are denoted by colors.

2. For each cluster Cℓ, |Vℓ(X)| ≥ Mℓ

2.1.3 Example: Toy Dataset

Table 2.2 describes the toy dataset and Figure 2.1 shows the pictorial representation of the

2 clusters. Re-iterating what’s been defined above:

Dataset |S| |T | |C1| |C2|
Toy 8 6 5 3

Table 2.2: Description of toy dataset

Let, S = {s1, . . . , sn}, n = 8 be the set of objects.

Let, π = {C1, . . . , Ck} be a partition of S into k = 2 clusters.

Let, T = {green, brown, yellow, blue, red, black} be the universe of m tags, where m = 6.

Each object si ∈ S is associated with a subset ti ⊆ T of tags and γ = maxi|ti|.

Hence, t1 = {green, brown, yellow}, t2 = {green, brown}, t3 = {blue, red, black}, t4 =

{brown, black}, t5 = {green, red, yellow, brown}, t6 = {green, black, yellow}, t7 = {blue, black},

t8 = {blue, red, yellow}, γ = 4.

Let, E(j) be the set of all objects that can be covered by tag j ∈ T and η = maxj|E(j)|.

Hence, E(red) = {s3, s5, s8}, E(green) = {s1, s2, s5, s6}, E(yellow) = {s1, s5, s6, s8}, E(brown) =
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{s1, s2, s4, s5}, E(blue) = {s3, s7, s8}, E(black) = {s3, s4, s6, s7}, η = 4.

Let, ∆(i) = |{i′ : ti ∩ ti′ ̸= ∅}| denote the degree of dependence of si. Hence, ∆(1) = 5,

∆(2) = 3, ∆(3) = 5, ∆(4) = 6, ∆(5) = 6, ∆(6) = 6, ∆(7) = 5, ∆(8) = 4. Let, ∆ = maxi ∆(i)

be the maximum dependence. Hence, ∆ = 6.

A solution is a subset X = (X1, X2) where X ⊆ T . MinConCD gives: X1 = {brown, blue},

and X2 = {yellow, black}. Therefore, V1(X) = {s1, s2, s3, s4, s5}.

It can be observed that: t1 ∩ X1 ̸= ∅ and likewise for all si ∈ V1(X). Similarly, V2(X) =

{s6, s7, s8} and, for all si ∈ V2(X), ti ∩X2 ̸= ∅

2.2 Algorithm Round: Approximation using Linear Pro-

gramming and Rounding

Since MinConCD is NP-hard [DGR18], Sambaturu et al., explored approximation algo-

rithms [SGD+19]. They proposed that a solution X is an (α, δ)-approximation if: (1) for

each cluster Cℓ, |Vℓ(X)| ≥ αMℓ, and (2)
∑

ℓ |Xℓ| ≤ δB. Their approach for approximating

MinConCD is based on Linear Programming (LP) relaxation and rounding the fractional so-

lution. This is a common approach for many combinatorial optimization problems, including

the problems that have covering constraints (see, e.g., [WS11]). However, the disjointness

requirement for descriptors poses a challenge in terms of dependencies and requires a new

approach. They have described two cases, namely (1) when Mℓ = Θ(|Cℓ|) and (2) when Mℓ is

arbitrary. The rounding methods and analysis are different in these cases. Our experiments

for this thesis consider case (1).
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2.2.1 LP Relaxation.

For this problem if there exists an LP which can solve the problem then by definition P=NP.

Hence, we have formulated an ILP and then relaxed it to an LP. For each j ∈ T , ℓ ∈ [k],

xℓ(j) is an indicator variable, which is 1 if tag j ∈ Tℓ. There is an indicator variable z(i) for

si ∈ S, which is 1 if object si is covered. The following LP (P) is considered, in which all

variables are relaxed (from being binary) to be in [0, 1].

min
k∑

ℓ=1

∑
j

xℓ(j) s.t.

∀ℓ, ∀si ∈ Cℓ :
∑
j∈ti

xℓ(j) ≥ z(i)

∀ℓ :
∑
si∈Cℓ

z(i) ≥ Mℓ

∀j :
∑
ℓ

xℓ(j) ≤ 1

All variables ∈ [0, 1]

2.2.2 Rounding Algorithm

Algorithm 1 describes the steps of Round. The linear program P can be solved (Step 1) using

standard techniques in polynomial time, e.g., [KT06], a fractional solution to the variables

of P can be obtained efficiently whenever there is a feasible solution. We have analysed

the performance of algorithm Round in 2.5 by Theorem 2.2. The details of the theorem can

be referred to from [SGD+19]. The algorithm is defined to run for any number of clusters

where k is the total number of clusters. Notation ℓ represents cluster number. For instance,

if k = 2 (which means there are 2 clusters under consideration); for cluster 1, ℓ = 1 and

cluster 1 is denoted as C1. Similarly for cluster 2, ℓ = 2 and cluster 2 is denoted as C2.
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Algorithm 1: Algorithm Round
Input : S, n, π = {C1, . . . , Ck}, T , Mℓ for each ℓ = 1, . . . , k, niterations

Output: X = (X1, . . . , Xk)
1 Solve P . If it is not feasible, return “no feasible solution”. Else, let x∗, z∗ denote the

optimal fractional solution and B denote the associated cost.
2 For all j, and for all ℓ, set xℓ(j) = x∗

ℓ(j)/2, and for all si set z(i) = z∗(i)/2.
3 for niterations times do
4 for j ∈ T and ℓ = 1, . . . , k do
5 With probability xℓ(j), round Xℓ(j) = 1 and Xℓ′(j) = 0 for all ℓ′ ̸= ℓ.
6 With probability 1−

∑
ℓ xℓ(j), set Xℓ′(j) = 0 for all ℓ′.

7 end
8 for si ∈ S do
9 If Xℓ(j) = 1 for some j ∈ ti, define Z(i) = 1.

10 end
11 For each ℓ, define Zℓ =

∑
si∈Cℓ

Z(i).
12 If Zℓ ≥ Mℓ/8 for each ℓ, and

∑
ℓ

∑
j Xℓ(j) ≤ 2B, return X as the solution and stop.

13 end

2.3 Other Variations

The problem considered in [DGR18] was to maximize
∑

ℓ |Vℓ(X)|, i.e., the total number

of objects covered—referred to as the MCBC problem. Another variation referred to as

MinConCDO allows limited overlap between descriptors for different clusters. Given input

parameters Mℓ for ℓ ∈ [k], budget B and overlap limit Bo, the objective is to find a solution

X = (X1, . . . , Xk) such that for each ℓ, |Vℓ(X)| ≥ Mℓ,
∑

ℓ |Xℓ| ≤ B, and
∑

ℓ̸=ℓ′ |Xℓ ∩Xℓ′ | ≤

Bo.

2.3.1 Bounded Overlap Version

For this variant case where k = 2 is considered. The following changes are done to the LP

(P) as discussed in Section 2.2:

• For each j ∈ T , there is an indicator variable y(j), which is 1 if j is common to the
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descriptors X1 and X2.

• For each j, constraint x1(j) + x2(j) ≤ 1 is replaced by x1(j) + x2(j) ≤ 1 + y(j).

• An additional constraint
∑

j y(j) ≤ Bo has been added.

This rounding is a modification of Step 3 of algorithm Round.

• Let x, y, z be the fractional solution obtained by scaling down the optimal solution by

a factor of 2 (as in Step 2).

• Replace Step 3(a) with the following steps:

– With probability y(j): X1(j) = 1, X2(j) = 1

– With probability x1(j)− y(j): X1(j) = 1, X2(j) = 0

– With probability x2(j)− y(j): X1(j) = 0, X2(j) = 1

– With probability 1− x1(j)− x2(j) + y(j): X1(j) = X2(j) = 0

• Let Z(i) and Zℓ be as defined in Step 3(b). The algorithm ends if the following

conditions hold: Zℓ ≥ Mℓ/8 for ℓ = 1, 2, |X1|+ |X2| ≤ 3B, and |X1 ∩X2| ≤ 3Bo.

Explanation: Round

In this section, Round which is a dependent rounding scheme is explained using an example:

Let k = 2

• For each tag j:

– With probability x1(j), round X1 = 1 and X2 = 0.

– With probability x2(j), round X1 = 0 and X2 = 1.



16 Chapter 2. The Cluster Description Problem

– With probability 1− x1(j)− x2(j), round X1 = 0 and X2 = 0.

• The object si is covered (i.e., Z(i) = 1) if atleast one tag from ti is selected.

• If atleast Mℓ/8 objects are covered and not more than 2B tags are selected, the algo-

rithm stops.

Limitation: Algorithm Round might not return a feasible solution in 1 iteration.

Rounding Detailed Steps: Let k = 2

• For each tag j:

– Calculate cumulative probabilities for tag j.

– Generate random number r ∈ [0, 1).

– Find an interval for r from cumulative probability and assign cluster.

Example:

• Let the fractional solutions be [0.2 0.3].

• Then, the cumulative probabilities will be [0.2 0.5 1.0].

• Generate random number r.

• Find interval for r from the cumulative probability.

– If 0 ≤ r < 0.2; then tag will get assigned to cluster C1.

– If 0.2 ≤ r < 0.5; then tag will get assigned to cluster C2.

– If 0.5 ≤ r < 1.0, then tag will not be assigned to any cluster.

• The algorithm may not converge in 1 iteration hence, execute all above steps many

times.



2.3. Other Variations 17

• The object si is covered (i.e., Z(i) = 1) if atleast one tag from ti is selected.

• If atleast Mℓ/8 objects are covered and not more than 2B tags are selected, the algo-

rithm returns the solution.

Lemma 2.1. For each ℓ ∈ [k], the expected number of objects covered in cluster Cℓ by a

solution X in any round of Step 4 of algorithm Round is at least Mℓ/4 [SGD+19].

Theorem 2.2. Suppose an instance of MinConCD satisfies the following conditions: (1)

Mℓ ≥ a|Cℓ| for all ℓ ∈ [k], and for some constant a ∈ (0, 1], and (2) (∆ + 1) ≤ minℓ
d|Cℓ|
logn

and d ≤ a2

576
, and (3) k ≤ n/4. If the LP relaxation (P) is feasible, then with probability

at least 1 − 1
n
, algorithm Round successfully returns a solution X, which is a (1/8, 2)–

approximation [SGD+19].

Since we have used theorem 2.2 for empirical analysis of Round, I am re-iterating it intuitively.

Assume,

1. Coverage requirement is atleast constant times the number of objects in the cluster.

2. (∆ + 1) ≤ minℓ
d|Cℓ|
logn

and d ≤ a2

576
, where ∆ is the maximum degree of dependence.

3. the number of clusters is at most n/4 where, n is total numbers of objects.

Suppose all of the above assumptions are satisfied and if LP relaxation is feasible the algo-

rithm Round returns a solution with high probability, which is a (1/8, 2)-approximation.

Proof of correctness: Round

The formal proof of the algorithm Round can be referred to from [SGD+19]. This section

re-iterates the proof:
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The objective of Minimum Constrained Cluster Description (MinConCD problem):

(1) The subsets in X are pairwise-disjoint, and

(2) for each cluster Cℓ, |Vℓ(X)| ≥ Mℓ

To assert objective (1), algorithm Round uses probabilistic rounding. For example, when

k = 2, X1 and X2 are the two solutions and the objective is to ensure X1 and X2 are

pairwise-disjoint.

In each iteration of Round, for each tag and for each cluster, with probability xl(j) we set

X1 = 1 and X2 = 0, and with probability x2(j) we set X2 = 1 and X1 = 0.

With probability 1− x1(j)− x2(j) set X1 = 0 and X2 = 0.

This approach ensures that the solution obtained after rounding scheme (X1 and X2) are

pairwise-disjoint.

The second objective of MinConCD is to ensure for each cluster |Vℓ(X)| ≥ Mℓ. The cor-

rectness of this objective follows from Theorem 2.2 which states that Round gives (1/8, 2)-

approximation. To ensure this, Round satisfies that |Vℓ(X)| is atleast ≥ Mℓ/8 and violates

the budget constraint by 2 by allowing B to be at most 2B.

Implementation Details

We have used Gurobi solver in Python to implement “MinConCD” and “Round”. Gurobi

solver is a commercial Mathematical Programming solver which is used to run LP and ILP

models. For complex models when constrains and decision variables grow in size, Gurobi

solver facilitates parallel computation and output generation within the available time. The

experiments were run in parallel on high performance computing clusters with maximum

cores per job: 16, maximum memory per core: 62 Gb and maximum memory per node
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per Job: 975 Gb. The gurobi code can be referred to from “https://github.com/Aparna-

Gupta/thesis_code_AparnaGupta”.

2.4 Experiments

2.4.1 Datasets

Table 2.3 provides a summary of all the datasets being used for experiments and analysis.

Dataset |S| |T | |C1| |C2|
Genome (Threat) 248 4632 73 175

Uniref90 21537 2193 13406 8131
Flickr 2454 175 1052 1402

Philosophers 240 14000 102 138
Synthetic 1 (p = 0.05) 100 100 48 52
Synthetic 2 (p = 0.2) 100 100 58 42
Synthetic 3 (p = 0.05) 1000 1000 502 498
Synthetic 4 (p = 0.1) 1000 1000 478 522
Synthetic 5 (p = 0.15) 1000 1000 479 521
Synthetic 6 (p = 0.2) 1000 1000 497 503

Table 2.3: Description of real-world and synthetic datasets used for experiments. |S| denotes
the total number of objects. |T | is the tagset. |C1| is the total number of objects in cluster
1 and |C2| is the total number of objects in cluster 2.

FunGCAT Dataset

An increasing number of nucleotide and amino acid sequences and their associated attributes

that specify their interaction with other biological entities are now available in modern

biological databases. The notion of what classifies a “threat” is context-dependent. A

gene may be a toxin, a target for antibiotic resistance, an effector, or simply come from a

pathogen of concern. As part of IARPA’s FunGCAT initiative, threat bins were established
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using expert manual curation of selected genes. Sequences were selected and annotated

to represent a spectrum of perceived threat on an increasing scale of 1-4. The Threat

and Uniref90 datasets [JK18, RW18] contain genome sequences and information that may

indicate a given gene’s threat potential. Uniref90 is the complete version of the Threat

dataset. The clusters for these datasets correspond to gene sequences that are harmful or

harmless.

Other Datasets

Flickr Dataset

The Flickr dataset [YML13] consists of images as nodes and relationships between images as

edges. A relationship could correspond to images being submitted from the same location,

belonging to the same group, or sharing common tags, etc. We use the Louvain algorithm in

Networkx [HSSC08] to generate communities of images, and pick the two largest communities

as clusters. User defined tags, such as “dog,” “person,” “car,” etc., are provided for each

image.

Philosophers Dataset

The Philosophers dataset [YML13] consists of Wikipedia articles on various philosophers.

The tags corresponding to each object are the non-philosopher Wikipedia articles to which

there is an outlink from the philosopher article. The clusters in the Philosopher dataset are

generated by grouping communities that share a common keyword as a single cluster.

Synthetic Dataset

In the synthetic datasets, an object is associated with a descriptor with probability p. A

high probability indicates dense matrix.
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2.4.2 Experimental Setup

Coverage Range of B values
90% 5, 10, 15, 20, 25, 30
80% 5, 10, 15, 20, 25, 30
70% 5, 10, 15, 20, 25, 30
60% 5, 10, 15, 20, 25, 30
50% 5, 10, 15, 20, 25, 30

Table 2.4: Basic experimental setup used in all research questions. Mℓ/Cℓ is the coverage
percentage per cluster and B is the cost. Every experiment uses Mℓ and each B as a
parameter.

Table 2.4 explains the experimental setup used for most of the experiments. Column coverage

explains the various coverage requirement values that are used throughout the experiments.

In our experiments, coverage requirement and cost are the two independent variables and

LP/ILP solution is the dependent variable.

Every research question uses this setup as a base along with modifications (either in datasets

or in parameter space).

2.4.3 Research Questions

Dataset |S| Coverage
Genome (Threat) 248 216

Uniref90 21537 15845
Flickr 2454 NA

Philosophers 249 NA

Table 2.5: Coverage for a fixed cost (B = 5) and fixed coverage percentage (90%). The
algorithm did not return a feasible solution for a few datasets.

As part of this thesis we have studied the following research questions:

1. Effects of parameters:



22 Chapter 2. The Cluster Description Problem

• Table 2.5 shows coverage across various real-world datasets for a fixed cost (B = 5)

and fixed coverage requirement (Mℓ = 0.9|C1| and Mℓ = 0.9|C2| ).

• For a few datasets, lowering the cost did not return a feasible solution. This lead

to the following questions:

– What are the effects of cost and coverage requirements on solution quality

and feasibility?

• How does MinConCD compare with the algorithm given in [DGR18].

• What happens if a minimum tag overlap is allowed (Bounded Overlap version)?

2. Pair of tags:

Research Question 1 focuses on the effect of parameters (coverage requirement and

cost) on the solution feasibility. A natural question which arises here is, if these are the

only factors which affect the solution feasibility? Can an increase in the number

of tags increases the likelihood of getting a feasible solution?

To answer the above question we extended the set of tags T to add pair of tags which

increased the tag set for each cluster and thereby increased the possibility of an ele-

ment si getting hit. Refer Table 2.6 for new tagset details. The objective here is to

understand whether a pair of tags can provide a cleaner and more precise explanation

of real-world datasets.

Dataset |S| |T | |Text|
Threat (Genome) 248 4632 1579754

Flickr 2452 175 10010
Philosophers 240 14000 193483

Table 2.6: |Text| is the number of tags in the new tagset for real-world datasets. We extend
the set of tags T to Text by adding every pair (j, j′), where j, j′ ∈ T , and use Text for finding
descriptions.

Hence, the question that we are looking to answer here is: Does a pair of tags
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provide a more precise explanation of the clusters?

3. k-cluster Analysis:

The two research questions discussed above focus on finding answers with k = 2. In this

section we aim to understand and compare results when k ≥ 2. However, due to lack

of datasets with objects evenly distributed across multiple clusters, the experiments in

this section are focused on k = 4 for Threat dataset. The question that we seek to

answer here is: Are results comparable when k = 2 vs k = 4?

4. Performance:

So far we ran experiments to analyze the output of algorithm Round. This research

question will focus on understanding the performance of algorithm, Round, on various

real-world & synthetic datasets. We will analyze the performance comparison between

ILP & LP in terms of runtime. Hence, the research questions that we will focus on

are:

• Does Round give solutions with good approximation guarantees in prac-

tice?

• Scalability: does it scale to large real world datasets?

5. Explanation of clusters: This research question presents a qualitative analysis of

the results. Once the results are obtained, a detailed analysis is done after consulting

the experts. Hence, the research question that we will focus on is:

• Do the solutions provide interpretable explanations of clusters in real

world datasets?
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2.5 Results

2.5.1 Effects of parameters

Experimental setup: Since the objective of the formulation by Sambaturu et al., [SGD+19]

is to minimize the tagset selected and simultaneously maximize the coverage in each cluster,

we have used the experimental setup from Table 2.4 to study the effect of various parameters

on algorithm Round:

Initial Analysis: To analyze the effect of parameters on algorithm Round, we initially ran

experiments on full datasets. Full datasets correspond to all objects and descriptors in the

dataset. It was observed that there were a few tags which covered 80-90% of all the objects

and hence for any selected parameter space, same tags were being returned. This made it

harder to understand which tags were significant to explain each of the clusters. To overcome

this issue, the tags which covered more than 2 objects were kept and the rest were removed

from the tagset. This approach resulted in a reduced tagset for large datasets.

Figure 2.2: Fraction of objects covered (y-axis) vs cost (x-axis) for different datasets (90%
fixed coverage). Higher is better. The synthetic datasets increase in density as their number
increases. The curves plateau out (indicating the maximum objects that can be covered),
with the curves for real datasets growing much faster.

Observations: Figure 2.2 shows that as cost is increased, the chances of finding a feasi-
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Coverage 5 10 15 20 25 30 35 40
80% NA NA NA NA 527 529 627 612
70% NA NA NA NA 496 549 554 568
60% NA NA NA 492 487 569 572 573
50% NA NA 337 454 516 560 666 635

Table 2.7: Table showing the effect of varying coverage requirement over various cost. It is
observed that as coverage requirement is relaxed, the dataset becomes easier to cover. This
Table is generated for Synthetic3 (extremely sparse) dataset.

ble solution also increased. It shows the fraction of objects covered as a function of the

cost. An increase in cost did increase solution feasibility. As more tags got picked,

the probability of more objects getting hit also increased, thereby increasing the solution

feasibility.

To further investigate the effects of parameters on solution feasibility we ran multiple exper-

iments on datasets with sparse and dense data matrices. The dataset description for such

datasets can be referred to from Table 2.3 and 2.4.1. For synthetic datasets, as den-

sity increases, they become easier to cover. As density increases, the number of tags

associated with an object also increase, thereby increasing the chance of an object getting

hit.

As density increases, number of tags associated with an object also increases. Furthermore,

increasing the chances of an object getting hit. Hence, we can say that for datasets with

dense data matrices LP returned a feasible solution even at a lower cost.

Table 2.17 supports our claim that as coverage requirement is relaxed, an extremely sparse

dataset becomes easy to cover. The results are not specific to a particular parameter space

instead depend on the dataset (how dense or sparse it is) under consideration. For example,

when B = 10 and 90% fixed coverage is required, synthetic dataset 3 (Synthetic 3) does

not return a feasible solution whereas synthetic dataset 6 (Synthetic 6 ) return a feasible

solution. If the coverage requirement is relaxed from 90% to 60%, at B = 10, Synthetic 3
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returns a feasible solution.

Comparison of algorithm Round with [DGR18]: The exact coverage formulation of

[DGR18] (which corresponds to Mℓ = |Cℓ| for all ℓ) is infeasible for some of the datasets we

consider. Instead, we examine the cluster descriptions computed using the cover-or-forget

formulation of [DGR18], which maximizes the total number of objects covered. Figure 2.3

Figure 2.3: Coverage % in each cluster (y-axis) vs cost (x-axis) [Threat dataset] for the
formulation by [DGR18]. The plot shows that coverage in 2 clusters (C1 & C2) is highly
imbalanced. This plot was generated for Uniref90 threat dataset.

show the coverage percent for each cluster, i.e., (|Vℓ(X)|/Mℓ) × 100%, (y-axis) versus the

cost of the solution (x-axis), for the threat dataset. It shows that the coverage is highly

imbalanced. For instance, with 4 tags, almost 75% of elements in cluster C2 are covered,

whereas only 10% of elements in cluster C1 are covered. This is a limitation of the cover-or-

forget approach. The cluster specific coverage requirements in MinConCD can help alleviate

this problem. Figure 2.4 shows the result of MinConCD. We can observe that both clusters

have balanced coverage.

The above experiments strictly follow the disjointness condition. We conducted a similar set

of experiments for bounded overlap variant of the problem by varying Bo from 1 to 3 for

lower B and 5 for higher B. It was observed that the number of tags being picked dropped
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Figure 2.4: Coverage % in each cluster (y-axis) vs cost (x-axis) [Threat dataset] for the
formulation by Sambaturu et al. The plot shows that the approach (MinConCD) suggested
by Sambaturu et al., [SGD+19] overcomes the cluster imbalance issue.

significantly and very few tags could explain both clusters reasonably well. The variant gave

a feasible solution for lower B.

2.5.2 Pair of Tags

Experimental Setup: For pair of tags we have used the experimental setup defined in

Table 2.4. The datasets used for these experiments are specified in Table 2.6. Also, for these

experiments the extended tagset (Text) has been used instead of the base tagset (T ). Here,

we discuss the impact of adding a pair of tags to the set of attributes. A pair of tags (j, j′)

is considered as an attribute that covers only those objects covered by both the tag j and j′.

Initial Analysis: In this section we will talk about initial results for the flickr dataset. The

tagset size increased from 175 to 10100. The pairs which covered atleast 2 objects were kept

and the remaining were dropped. This reduced the extended tagset size considerably. Next

section gives an overview of our findings and presents a qualitative analysis of the results

obtained from flickr dataset.

Observations and Discussions: We ran rounding algorithm 1 on extended tagset and no-
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Single attributes Pairs of tags
“tree” “tree, night”

“night” “clouds, night”
“river” “Neutral Illumination”

“clouds” “Motion Blur”
“male”

“Outdoor”
“Neutral Illumination”

Table 2.8: Flickr dataset: Tags selected for cluster one (C1) when single tags and extended
tagset was used. The column on the left gives a brief overview of the commonly selected
single tags for cluster 1 and, the column on the right gives a brief overview of the commonly
selected tag for cluster 1 from extended tagset.

Single attributes Pairs of tags
“people” “female, people”

“small group” “river, people”
“No blur” “road, people”

“road” “nighttime, bridge”
“female”
“animal”

Table 2.9: Flickr dataset: Tags selected for cluster two (C2) when single tags and extended
tagset was used. The column on the left gives a brief overview of the commonly selected
single tags for cluster 2 and, the column on the right gives a brief overview of the commonly
selected tag for cluster 2 from extended tagset.

ticed that in some cases, for a smaller budget, extended tagset returned a feasible

solution while it was infeasible with just the base set of attributes. This is due

to an increase in the number of tags for the algorithm to pick from for explain-

ing the clusters. In most other cases, the number of tags picked when extended tagset

was used as input is close to that used with the base set of attributes. The pair of tags

in spite of not reducing the description cost seems to provide more meaningful

descriptions. The reason why description cost did not increase is that every pair of the

tag selected is charged a cost of 1 instead of 2.

For instance, experiments on Flickr dataset with a similar setting (like that of single tagset)

produced similar results. The pair of tags which got picked were mostly the combination of
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single tags. For example, (“tree” , “night” ,“river”, “clouds”, “male”, “Outdoor”, “Neutral

Illumination”) are some of the tags which explain the images in cluster 1 and (“tree, night”

, “clouds, night”, “Neutral Illumination”, “Motion Blur”) are the corresponding pair of tags

picked. Therefore, we can say that with the pair of tags a lesser number of tags could

provide a reasonable explanation of the cluster.

This is a stricter setting since only the presence of a combination of tags determine a tag’s

presence. The advantage of using this approach is that we did not have to make changes in

our LP formulation and the code was run as it is. Future work for this formulation can

be to charge every pair of tags selected as two instead of one (as stated above) and either

single tag or a pair of tags (containing that single tag) gets selected.

2.5.3 k-cluster Analysis

Experimental Setup: For k-cluster analysis we have used Genome (Threat) and Uniref90

datasets. Table 2.10 shows the number of objects per cluster (when k = 4). The type of

experiments run can be referred to from Section 2.4. Threat level (referred to as threat bin

1−4) were used to partition the dataset into clusters. For k = 4, threat bins [1−4] are used

as individual clusters.

Dataset |S| |C1| |C2| |C3| |C4|
Genome (Threat) 248 35 38 65 110

Uniref90 21537 494 12912 7776 355

Table 2.10: The Table shows the number of objects per cluster for Genome (Threat) &
Uniref90 dataset. This Table was used to analyze the number of objects covered per cluster
when experiments were run for k = 4. The qualitative analysis is done for Genome dataset,
the results of which are discussed in the Qualitative Analysis section.

Initial Analysis: Due to lack of datasets with high density per cluster, we analysed this
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approach on Threat dataset. As described above, Threat dataset contains four threat levels

where 1 is no threat to 4 being the highest threat. For this experiment we considered each

threat label as a cluster. Thus resulting in 4 clusters. Now, we discuss the comparison of

results when k = 2 vs k = 4 for Threat dataset. It is observed that with k = 4 most

of the tags picked were different from tags when k = 2. Figure 2.5 below shows the

comparison of total coverage when k = 2 vs k = 4 for Threat dataset.

Figure 2.5: Coverage (y-axis) vs budget (x-axis) for k = 2 & k = 4, where k denotes the
number of clusters. This plot was generated using Threat (Genome) dataset. Coverage is
higher when the number of clusters selected is 2.

Qualitative Analysis:

This section presents a qualitative analysis of the results obtained when experiments were

run for k = 2 and k = 4 clusters.

Cluster Explanation (k = 2):

• Results for Cluster C1:

– GO:0003824 (“catalytic activity”), GO:0065007 (“biological regulation”), GO:0005623

(“cell”), GO:0044237 (“cellular metabolic process”).

• Results for Cluster C2:
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– KW-0800 (toxin), 155864.Z3344 (“Shiga toxin 1”), IPR011050 (“Pectin lyase

fold/virulence”), and IPR015217 (“invasin domain”), KW-0732 (“signal peptide”),

KW-0614 (“plasmid”), KW-0964 (“secreted”), and GO:0050896 (“response to

stimulus”).

Cluster Explanation (k = 4):

• Results for Cluster C1:

– GO:0009058 (“chemical reactions and pathways resulting in formation of sub-

stances”), GO:0042895 (“antibiotic transmembrane transporter activity”), IPR016129.

• Results for Cluster C2:

– IPR000734 (“Triacylglycerol lipase family”), GO:0000041 (“The directed move-

ment of transition metal ions into, out of or within a cell, or between cells”)

• Results for Cluster C3:

– IPR019553 (“toxin”), UPI0000136BBC (“Sea anenome toxin”), IPR015917 (“cas-

pase. Involved in apoptosis. Possibly a minor threat”), KW-1222 (“toxin”).

• Results for Cluster C4:

– GO:0090729 (“good indicator of toxin”), ENOG410XQE6 (“Intimin/invasin”),

UPI00001700A1 (“Shiga-like toxin”), GO:0046931 (“partial indicator of threat”),

UPI0000520D62 (“toxin”), COG3210 (“A virulence factor”).

2.5.4 Performance

Experimental Setup:
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To measure the performance of algorithm Round we ran experiments based on the exper-

imental setup explained in Section 2.4. The optimal solution is obtained from ILP and

the approximate solution is obtained by dividing the solution obtained from Round by the

Optimal solution.

Observations: First, we consider the approximation guarantee of Round in practice.

Optimal Solution Cost Round Approximation ratio
232 5 216 0.93
247 10 217 0.87
248 15 207 0.83
248 20 232 0.93
248 25 214 0.86
248 30 227 0.91
248 35 221 0.89
248 40 229 0.92

Table 2.11: Optimal Solution (ILP) and approximate Solution for various costs. Genome
(Threat) dataset. 90% fixed coverage. The approximation ratio is calculated using the
formula Round/Optimal Solution.

Figure 2.6: Approximation ratio of Round (y-axis) vs cost (B) (x-axis) for different real-world
datasets (higher is better). As the cost is increased, datasets become easier to cover.

Figure 2.6 shows the approximation ratios (i.e., the ratio of the number of objects covered by

the solution computed using Round, to that of an optimum solution) for different datasets.

The analysis in Theorem 2.2 only guarantees a small constant factor, but plot shows that
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the approximation factors is always more than 0.8, and more than 0.9 in most cases. This

suggests that Round gave solutions which were very close to the optimal. Note that the

curves are non-monotone—this is due to the stochastic nature of Round.

Experimental Setup and Observations for Variations in Rounding:

• We did not scale down x1(j), x2(j) and zi by a factor of 2 as mentioned in Round. It

was observed that not scaling down the fractional values by 2 provided good coverage

for each cluster.

• In this variation we did not scale down x1(j), x2(j) and zi by a factor of 2 and deter-

ministically rounded fractional values which were large i.e., tags with fractional values

≥ 0.5 were rounded to 1.

For empirical analysis we ran experiments on variations of rounding where we tried following

variations. We observed that for higher budget Round gave higher overall as well as cluster-

wise coverage. Refer to figure 2.7.

Figure 2.7: Coverage (x-axis) vs B (y-axis) with variations in Rounding for Threat dataset.
90% fixed coverage. Round is the proposed algorithm. In no scaling down, LP fractional
solution is not scaled down by 2. In deterministic rounding scheme, the values greater than
0.5 are rounded to 1 and less than 0.5 are rounded to 0.
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Experimental Setup: Tradeoffs between α and δ:

We varied the values of α and δ to empirically analyze the tradeoffs between them. Following

is the experimental setup for Philosophers dataset:

1. For 90% fixed coverage and α = 2: set δ values to 1
4
, 1

2
, 1

3
.

2. For 90% fixed coverage and δ = 1
8
: set α values to 3, 4, 5.

3. For 90% fixed coverage: set α = 3 and δ = 1
4
.

Observations: For point 1 as the coverage requirement got stricter, overall coverage got

reduced. For point 2 as the cost requirement was relaxed keeping coverage requirement as 1
8

of Mℓ, the overall coverage didn’t increase. Refer to Table 2.12 for more details.

α δ Coverage
2 1/4 178
2 1/2 150
2 1/3 178
3 1/8 184
4 1/8 184
5 1/8 184
3 1/4 176

Table 2.12: Theoretical proofs give a (1/8, 2) approximation guarantee. This Table shows
the tradeoffs between α and δ for Philosophers dataset. The values of α were varied keeping
δ fixed and vice versa.

Although the above 2 variations also provided good coverage for lower budgets. Round

provided better coverage consistently across all budget (cost) values. The scaling was used

only for empirical analysis.

Scalability Study: In this section, we will analyze the scalability of Round.

Experimental Setup: For scalability study we used synthetic datasets (refer from 2.3) to

analyse the scalability of Round.
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Dataset Round Deterministic Round (no scaling) B
Genome (Threat) 216 220 234 5
Genome (Threat) 217 225 246 10
Genome (Threat) 192 207 248 15
Genome (Threat) 232 199 248 20
Genome (Threat) 214 235 248 25

Flickr NA NA NA 5
Flickr 2165 1920 1911 10
Flickr 2178 2291 2170 15
Flickr 2235 2318 2200 20
Flickr 2095 1759 2195 25

Table 2.13: Coverage per rounding scheme for various datasets. 90% fixed coverage. The
cost parameter varies from 5, 10, 15, 20, 25.

Observations: We observed that Round is quite scalable. The running time is dominated

by the time needed to solve the LP. We use Gurobi solver, which is able to run successfully

on datasets whose data matrix (i.e., the matrix of objects and tags) has up to 108 entries.

In contrast, the ILP does not scale beyond datasets with more than 106 entries.

Dataset |S| |T | ILP Round
Genome (Threat) 248 4632 00:02:22 00:01:36

Uniref90 21537 2193 08:56:49 07:30:33
Synthetic 1 (p = 0.05) 100 100 00:01:30 00:01:10
Synthetic 2 (p = 0.2) 100 100 00:00:48 00:00:40
Synthetic 3 (p = 0.05) 1000 1000 00:02:05 00:01:47
Synthetic 4 (p = 0.1) 1000 1000 00:02:17 00:01:42
Synthetic 5 (p = 0.15) 1000 1000 00:02:72 00:02:16
Synthetic 6 (p = 0.2) 1000 1000 00:04:25 00:03:05
Synthetic 7 (p = 0.05) 10000 10000 NA 02:39:05
Synthetic 8 (p = 0.05) 1000 10000 NA 00:25:32

Table 2.14: ILP & Round run-times for various datasets. The Table shows that ILP did not
scale beyond datasets with more than 106 entries. LP on the other hand ran successfully for
datasets whose data matrices have upto 108 entries.

From Table 2.14 we can observe that ILP ran successfully for Uniref90 dataset. However,

it did not run for Synthetic 7 dataset. The reason being the data matrix for Uniref90 is

comparatively denser than the data matrix for Synthetic 7 and a single tag in Uniref90
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was able to explain many rows as compared to that of Synthetic 7 dataset. To verify this

scenario we created synthetic datasets (similar to those of Uniref90) and observed that ILP

ran successfully.

2.5.5 Explanation of Clusters

Threat Dataset

Our method chose 13 tags for the harmful cluster. Upon expert review of our results, we

found that certain tags served as indicators that genes found within the harmful cluster

can intrinsically be viewed as harmful, while others may need to act in concert, be viewed

in combination with other tags, or be representative of selection bias. Of the 13 tags se-

lected, 4 indicate an intrinsic capability of being harmful: KW-0800 (toxin), 155864.Z3344

(Shiga toxin 1), IPR011050 (Pectin lyase fold/virulence), and IPR015217 (invasin domain).

Another 4 tags are suggestive that the genes implicated are involved in processes or loca-

tions commonly associated with the threat: KW-0732 (signal peptide), KW-0614 (plasmid),

KW-0964 (secreted), and GO:0050896 (response to stimulus). Other tags associated with

the threat partition such as KW-0002 (3-D structure) indicate a limited amount of data

and perhaps bias in the research literature for the clusters analyzed. Table 2.15 provides

definitions of some of these tags.

2.6 Results Summary

This section gives a high level overview of the research questions and answers obtained.

The table below describes various rounding schemes implemented. These rounding schemes

were implemented to understand and present a comparative study of various rounding
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String Keyword Definition
KW-0800 Toxin “Naturally-produced poisonous protein that damages or kills

other cells, or the producing cells themselves in some cases in
bacteria. Toxins are produced by venomous and poisonous an-
imals, some plants, some fungi, and some pathogenic bacte-
ria. Animal toxins (mostly from snakes, scorpions, spiders, sea
anemones and cone snails) are generally secreted in the venom
of the animal”.

GO:0050896 response
to
stimulus

“Any process that results in a change in state or activity of a
cell or an organism (in terms of movement, secretion, enzyme
production, gene expression, etc.) as a result of a stimulus. The
process begins with detection of the stimulus and ends with a
change in state or activity or the cell or organism”.

KW-0964 secreted “Protein secreted into the cell surroundings”.
GO:0050794 regulation

of cellular
process

“Any process that modulates the frequency, rate or extent of a
cellular process, any of those that are carried out at the cellu-
lar level, but are not necessarily restricted to a single cell. For
example, cell communication occurs among more than one cell
but occurs at the cellular level”.

GO:0016787 hydrolase
activity

“Catalysis of the hydrolysis of various bonds, e.g. C-O, C-N, C-
C, phosphoric anhydride bonds, etc. Hydrolase is the systematic
name for any enzyme of EC class 3”.

IPR011050 Pectin_lyase-
fold/
virulence

“Microbial pectin and pectate lyases are virulence factors that
degrade the pectic components of the plant cell wall”.

IPR015217 Invasin_
dom_3

“It forms part of the extracellular region of the protein, which
can be expressed as a soluble protein (Inv497) that binds inte-
grins and promotes subsequent uptake by cells when attached to
bacteria”.

KW-0732 Signal “Protein which has a signal sequence, a peptide usually present
at the N-terminus of proteins and which is destined to be either
secreted or part of membrane components”.

GO:0034248 regulation
of cellu-
lar amide
metabolic
process

“Any process that modulates the frequency, rate or extent of the
chemical reactions and pathways involving amides”.

KW-0614 Plasmid “Protein encoded on a plasmid, a self-replicating circular DNA
that is found in a variety of bacterial, archaeal, fungal, algal
and plant species, and can be transferred from one organism
to another. Plasmids often carry antibiotic-resistant genes and
are widely used in molecular biology as vectors of genes and in
cloning”.

KW-1015 Disulfide
bond

“Protein which is modified by the formation of a bond between
the thiol groups of two peptidyl-cysteine residues”.

KW-0002 3-D structure
(KW-0002)

“P+A1:C14 or part of a protein, whose three-dimensional struc-
ture has been resolved experimentally (for example by X-ray
crystallography or NMR spectroscopy) and whose coordinates
are available in the PDB database”.

Table 2.15: Tags selected by our algorithm for the harmful cluster in the Threat dataset. Red is
an intrinsic threat. Blue is suggestive. Black is due to a lack of sufficient background.

schemes; and analyze the performance Round. This implementation was done as an ex-

tension to the performance research question.
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S.No Research
Question

Results Summary

1 Effects of
Parameters
(Cost and
Coverage)
on solution
quality and
feasibility

An increase in cost increased the solution feasibility; decrease in
coverage requirement increased the solution quality for datasets
with sparse matrices; Round overcame the unbalanced coverage
issue algorithm stated by Davidson et al., [DGR18]. The exper-
iment were run for k = 2 (base case) and coverage requirement
varied from 90%, 80%, 70%, 60% .

2 Pair of tags The pair of tags when used as an additional attribute set in-
creased the solution feasibility for a smaller budget. A qualita-
tive analysis of the results was also done and can be referred to
from the section above. The experiments were run for k = 2
(base case).

3 k-cluster
Analysis

Here we focused on analyzing results when k = 2 vs k = 4 for
same dataset. Due to lack of high density dataset, this exper-
iment was run on Threat dataset. We observed that different
set of attributes got picked when k = 2 vs k = 4. We did not
observe an increase in solution feasibility or quality.

4 Performance Round gave solutions close to the optimal solution; the approx-
imation factors were always more than 0.8 (much higher than
theoretical guarantee); Round is quite scalable, LP ran success-
fully for datasets whose data matrix has up to 108 entries. The
experiments were run for k = 2.

5 Explanation
of clusters

This sections provided a qualitative analysis of our findings. Our
method chose 13 tags. Upon expert review of our results, we
found certain tags served as indicators that genes found within
the harmful cluster can intrinsically be viewed as harmful.

Table 2.16: The table gives a high level overview of the research questions and the results
obtained. The details of the results can be referred to from the previous section.

Rounding
scheme

Definition Result Summary

Round Algorithm
as defined in
Section 1.

Round gave high overall and cluster wise coverage.

Round: No
scaling down

Fractional
solution was
not scaled
down by a
factor of 2.

This rounding scheme also provided high coverage as cost was
increased. For the Threat dataset, as cost was increased the
approximate ratio became equal to the optimal solution.

Round: Deter-
ministic

Deterministic
rounding of
fractional
values i.e.,
values ≥ 0.5
were rounded
to 1 and
values < 0.5
were rounded
to 0

The rounding scheme did not always provided high coverage.

Table 2.17: High level summary of various rounding schemes and the results obtained. These
results are an extension of the Performance section of the research questions described above.
All experiments were run for k = 2 (base case). The Threat and Flickr datasets were
considered for these experiments. Cost parameter varied from 5, 10, 15, 20 and 25.
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Related Work

The topic of “Explainable AI” [Gun17] has recently attracted a lot of attention especially in

the context of supervised learning. In particular, many researchers have studied the topic in

conjunction with methods in deep learning [Pro17, Pro18, DBH18, Mil18, MIN17, ZMLC18,

ZC18]. To our knowledge, not much work has been done in the context of interpreting

results from clustering. In [KRV+17], the authors consider the use of human judgement

to interpret a given clustering as well as providing suggestions for improving the results.

Their goal was to improve the clustering quality through human guidance and they used

constraint programming techniques to obtain improvements. Other methods for improving

a given clustering were considered in [DB10, QD09]. The notion of “descriptive clustering”

studied in [TBHDKCV] is different from our work; their idea is to allow the clustering algo-

rithm to use both the features of the objects to be clustered and the descriptive information

for each object. They present methods that for constructing the Pareto frontier based on

two objectives, one based on features and the other based on the descriptive information.

Like [DGR18], the focus of our work is not on generating a clustering; instead, the goal is to

explain the results of clustering algorithms.

Since there is not much literature available which is in line with our approach, we have

studied various clustering techniques to get an understanding of the methods which are

being used by the researchers and how different they are from our approach. Below are the

clustering methods and techniques that are being used currently:

39



40 Chapter 3. Related Work

Predictive clustering: A technique [ŽDS05, SRW19, ZMZ+19] of performing classification

which finds clusters in the input attributes and homogeneity in the class labels at the same

time. Earlier work [Langley, 1996] [Lan96] viewed decision trees as a predictive clustering

where each leaf is a “cluster” with a homogeneous class label and some attributes (those on

its path). More recent work by [Zenko et al., 2005] proposed learning predictive clustering

rules.

Conceptual clustering: This technique [Jo19, RBK19] focuses on using a set of features to

create the clusters and then uses the same set of features to explain the generated clusters.

Gennari et al., 1989; Fisher, 1987 [GLF89, Fis87] tries to put objects into classes where each

class is defined by a concept expressed in a given description language. The same set of

features are used to form and describe the clusters. More work is being done in the field

of conceptual clustering with constrained programming [MK10], however, these approaches

again focus on explaining the clusters while generating them.

Data Clustering: A review by [JMF99, ZLM15] gives an overview of pattern clustering meth-

ods from a statistical pattern recognition perspective, with a goal of providing useful advice

and references to fundamental concepts accessible to the broad community of clustering

practitioners. According to Jain et al., 1999 following are the ways to analyze and cluster

datasets:

Partitional clustering: A technique [XW05, HNE19, MAG19] to directly decompose the

dataset into a set of disjoint clusters. More specifically, they attempt to determine an

integer number of partitions that optimise a certain criterion function. The criterion function

may emphasize the local or global structure of the data and its optimization is an iterative

procedure. Hierarchical clustering proceeds successively by either merging smaller clusters

into larger ones, or by splitting larger clusters. The result of the algorithm is a tree of clusters,

called dendrogram, which shows how the clusters are related. By cutting the dendrogram at
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a desired level, a clustering of the data items into disjoint groups is obtained.

Density-based clustering: The key idea of this type of clustering is to group neighbouring

objects of a data set into clusters based on density conditions [KKSZ11].

Grid-based clustering: This type of algorithms is mainly proposed for spatial data mining.

Their main characteristic is that they quantize the space into a finite number of cells and

then they do all operations on the quantized space [BJS19, BAL+19, CWB18].

There are many different algorithms [XT15] for finding clusters for the above mentioned

categories. Thus, the datasets can be categorized into the following groups.

Statistical: which are based on statistical analysis concepts. They use similarity measures

to partition objects and they are limited to numeric data.

Conceptual: which are used to cluster categorical data. They cluster objects according to the

concepts they carry. Another classification criterion is the way clustering handles uncertainty

in terms of cluster overlapping.

Fuzzy clustering: which uses fuzzy techniques to cluster data and they consider that an

object can be classified to more than one clusters. This type of algorithms leads to clustering

schemes that are compatible with everyday life experience as they handle the uncertainty of

real data. The most important fuzzy clustering algorithm is Fuzzy C-Means (Bezdeck et al.,

1984) [BEF84, T+16].

Crisp clustering, considers non-overlapping partitions meaning that a data point either be-

longs to a class or not. Most of the clustering algorithms result in crisp clusters, and thus

can be categorized in crisp clustering.

All of these techniques either focus on explaining the clusters while generating them or

generating the clusters. Our objective is very different from all of the above approaches.
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We aim to explain the clusters after clustering is done without knowing about the technique

that was used to generate the clusters. Moreover, we aim to use the attributes which were

not used in the clustering technique to explain the results of the clustering.
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Conclusions

We evaluated the formulation proposed by Davidson et al., [DGR18] and Sambaturu et

al., [SGD+19]. Our results show that Round performed very well in practice. Although

theoretical results guarantee a coverage factor of 1/8, the empirical results show that Round

performs much better and in most cases the performance guarantee is between 0.8 and 0.9.

This suggests that Round gives solutions which are very close to the optimal. Round also

scaled well for datasets whose data matrix had up to 108 entries. However, the ILP did not

scale beyond datasets with more than 106 entries. To further empirically analyze Round, we

implemented different rounding schemes and compared the results. We observed that Round

performed better than the others. Although the other approaches gave very high coverage

at lower costs, the coverage decreased as the cost increased.

Using different parameters such as coverage level, cost, and overlap, we obtained a range

of solutions from which a practitioner can choose appropriate descriptors. Computational

experiments suggest that Round performs much better in terms of per cluster coverage com-

pared to the approach proposed by Davidson et al., [DGR18]. For instances, where the

solution was infeasible for a lower cost, we filled the gap using “Bounded Overlap” and “Pair

of tags” versions of MinConCD. It was observed that implementing these versions provided

feasibility when the solution was infeasible. By allowing a minimum overlap of descriptors

between the 2 clusters, we could ensure a feasible solution by still minimizing the number of

descriptors selected and maximizing the number of objects covered.
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Although Round has good performance in most cases, it has a few limitations as well. The

algorithm does not perform as expected for datasets with an extremely sparse data matrix

(a dataset where each object has very few descriptors associated with it). It also does not

perform as expected in cases where coverage is not a constant factor of the number of objects

in each cluster.

4.1 Future Work

This section talks about the future work and extensions of MinConCD and Round. Following

are a few suggestions:

• What will be the impact on solution quality if a pair of tags is charged two instead of

one?

In the previous Section (add reference) we observed that pair of tags picked did provide

a better explanation of the clusters without increasing the overall cost. However, in

these results every pair of tag is charged as one. The next steps can be to understand

the impact on solution quality if a pair of tag is charged two instead of one.

• How will Round perform if coverage requirement is arbitrary?

So far we have considered the coverage requirement to be a constant factor. The

next steps can be to understand the performance of Round if coverahe requirement is

arbitrary for some or all of the clusters.
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