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Leaf area is an important forest structural variable which serves as the primary means of mass and energy ex-
change within vegetated ecosystems. The objective of the current study was to determine if leaf area index
(LAI) could be estimated accurately and consistently in five intensively managed pine plantation forests using
two multiple-return airborne LiDAR datasets. Field measurements of LAI were made using the LiCOR LAI2000
and LAI2200 instruments within 116 plots were established of varying size and within a variety of stand condi-
tions (i.e. stand age, nutrient regime and stem density) in North Carolina and Virginia in 2008 and 2013. A num-
ber of common LiDAR return height and intensity distribution metrics were calculated (e.g. average return
height), in addition to ten indices, with two additional variants, utilized in the surrounding literature which
have been used to estimate LAI and fractional cover, were calculated from return heights and intensity, for
each plot extent. Each of the indices was assessed for correlation with each other, and was used as independent
variables in linear regression analysis with field LAI as the dependent variable. All LiDAR derived metrics were
also entered into a forward stepwise linear regression. The results from each of the indices varied from an R2

of 0.33 (S.E. 0.87) to 0.89 (S.E. 0.36). Those indices calculated using ratios of all returns produced the strongest
correlations, such as theAbove andBelowRatio Index (ABRI) and Laser Penetration Index 1 (LPI1). The regression
model produced froma combination of threemetrics did not improve correlations greatly (R2 0.90; S.E. 0.35). The
results indicate that LAI can be predicted over a range of intensively managed pine plantation forest environ-
ments accuratelywhen using different LiDAR sensor designs. Those indiceswhich incorporated counts of specific
return numbers (e.g. first returns) or return intensity correlated poorlywith fieldmeasurements. Therewere dis-
parities between the number of different types of returns and intensity values when comparing the results from
two LiDAR sensors, indicating that predictivemodels developed using suchmetrics are not transferable between
datasetswith different acquisition parameters. Each of the indiceswere significantly correlatedwith one another,
with one exception (LAI proxy), in particular those indices calculated fromall returns, which indicates similarities
in information content for those indices. It can then be argued that LiDAR indices have reached a similar stage in
development to those calculated from optical-spectral sensors, but which offer a number of advantages, such as
the reduction or removal of saturation issues in areas of high biomass.
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1. Introduction

The surface area of the foliated elements within the forest canopy is
the primary surface which controls the processes of canopy-gas ex-
change, such as photosynthesis (Duchemin et al., 2006), evaporation
(Cleugh, Leuning, Mu, & Running, 2007), transpiration (Chen, Chen, Ju,
& Geng, 2005), rainfall interception (Chen et al., 2005), and carbon
flux (Leuning, Cleugh, Zegelin, & Hughes, 2005). This biophysical pa-
rameter is typically assessed though leaf area index (LAI), which can
be defined as the ratio of half of the total leaf surface area per unit of
ground area, and for coniferous species which have cylindrical needles,
the projected or hemi-surface area of the needles per unit of ground
area (Chen & Black, 1992). As a result LAI varies with hydrological,
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biochemical, and biophysical processes, either due to natural stand de-
velopment of forest management practices (e.g. initial site treatment,
thinning, fertilization and vegetation control). Given the role of LAI in
determining many forest ecosystem processes, several techniques
have been developed to rapidly estimate LAI.

The most common methods used for estimating LAI across the
landscape-scale rely on the empirical relationships between LAI and
various manipulations of spectral information from airborne or space-
borne imagery. The estimates of LAI from such imagery can be compli-
cated by variation in the properties of the solar radiation reflected
from the earth's surface which can be attenuated by atmospheric attri-
butes (e.g. water vapor), and land cover properties (e.g. understory veg-
etation, senescent leaves, shadows) which can alter the spectral
signature of the surface type (Erikson, Eklundh, & Kuusk, 2006), in addi-
tion to themixing of signatures (Bioucas-Dias, Plaza, & Dobigeon, 2012).
A drawback of optical imagery is that it is that it is appropriate for exam-
ining horizontally distributed features only.

More recently, numerous methods have been developed for the anal-
ysis of datasets obtained through Light Detection and Ranging (LiDAR) to
estimate a suite of forest biophysical characteristics. Airborne small-
footprint LiDAR remote sensing, with high point densities, can character-
ize both horizontal and vertical structures within forested environments.
The use of LiDAR has rapidly come into prominence in estimating forest
characteristics, such as canopy height, basal area, timber volume, and bio-
mass (Evans, Hudak, Faux, & Smith, 2009), through the use of regression
methods using LiDAR derivedmetrics related to the return vertical distri-
bution and intensity of LiDAR returns over a range of scales and locations
(Anderson et al., 2008; Lefsky, Cohen, Parker, &Harding, 2002; Lim, Treitz,
Baldwin,Morrison, & Green, 2003a; Lim, Treitz,Wulder, St-Onge, & Flood,
2003b; Maltamo et al., 2005; Næsset, 2002). The derivation of individual
tree metrics is possible using small-footprint laser data with a sufficient
point density (e.g. Kaartinen et al., 2012).

There is an increasing body of research attempting to use the three-
dimensional structural information from LiDAR to estimate LAI based on
statistical methods. Many small footprint LiDAR systems are capable of
recording multiple discrete returns per laser pulse (e.g. between one
and five returns). Whilst LiDAR derived statistical models have found
similar relationships between dependent and independent variables
for many examples of forest inventory metrics, eachmodel is calibrated
and validated against local field data. Reliable models which can be
transferred to other locations are unfortunately lacking. In addition
many of the LiDAR derived predictors are often highly correlated,
which can bias model estimates (Field, 2013).

The majority of LAI ground measurements used for validation of re-
mote sensing data is based on indirect optical and non-destructivemea-
surements. Due to the methods in deriving LAI from such techniques, a
common variable used is effective LAI, which is related to gap fraction,
and differs from ‘true’ LAI because the leaves or needles are not random-
ly distributed within the canopy and can be clumped within shoots. Ef-
fective LAI also includes the areas of branches and stems (Stenberg,
1996). As in Solberg et al. (2009)According to Beer–Lambert law, the ef-
fective LAI might be derived for a given forest vertical position from the
number of LiDAR pulses to pass through that point, and expressed as:

LAIe ¼ β � ln P−1
� �

ð1Þ

where LAIe is the effective LAI, β is the slope parameter to be predicted,
and P is number of pulses. There are a number of examples of LiDAR de-
rived indices or ratios of first, last and single returns, intended to emu-
late Eq. (1), being produced in the related research (e.g. Morsdorf,
Kötz, Meier, Itten, & Allgöwer, 2006; Korhonen, Korpela, Heiskanen, &
Maltamo, 2011; Solberg et al., 2009; Zhao & Popescu, 2009), and
regressing them against effective LAI over a variety of forest types.

A number of challenges related to the differences in LiDAR sensor
design and acquisition parameters exist. As pulse penetration properties
and return frequency distribution can differ between LiDAR acquisitions
(Naesset, 2009; Hopkinson, 2006), the proportions offirst-of-many, sin-
gle and last returns will differ when comparing systems capable of de-
tecting differing types of returns. Another issue prevalent in discrete
return LiDAR, is the ‘blind spot’ following each detected return (up to
1.2–5 m), during which nothing can be detected (Reitberger, Krzystek,
& Stilla, 2008). The usage of LiDAR intensity remains a contested issue
due to the proprietary methods that commercial sensors use to report
return intensity which can change in flight, making it impossible to di-
rectly compare two discrete returns (Lim et al., 2003a). These issues
may be symptomatic of locational or data acquisition specific differ-
ences pose problems to the transferability of LiDAR based LAI models.

A number of studies have attempted to assess multiple LiDAR de-
rived indices or statistical predictive models against one another. One
such example is Richardson,Moskal, and Kim (2009), where four previ-
ously published LAI predictive models were assessed for prediction ac-
curacy for a number of locations within Washington State, USA. The
results varied in terms of R2 values from 0.49–0.66, which was lower
than in the original studies. The differences in estimates were ascribed
to differences in vegetation types, LAI ranges and LiDAR acquisition pa-
rameterswithin each of the studies. The research outlined in Hopkinson
and Chasmer (2009) assessed four LiDAR derived indices of fractional
cover across seven study areas within Canada, with acquisitions from
two generations of Optech airborne laser scanning systems. The authors
report R2 values for predictions between 0.70–0.78, with the highest
correlations existing for indices produced from the sum of intensity
values from both the ground or canopy vertical elements relative to
the total for all study sites.

The aim of the current studywas to test a number approaches for es-
timating LAI in homogenous coniferous forest with various manage-
ment treatments and understory vegetation conditions, covering a
wide range of LAI values. The specific objectives were to: (1) estimate
LAI over multiple locations and sensor designs/acquisition parameters
through a number ofmodeling approaches, and (2) evaluate themodel-
ing approaches for estimating LAI from airborne discrete return LiDAR.

2. Materials and methods

2.1. Study sites

A total offive study siteswere visitedwhich are locatedwithinNorth
Carolina and Virginia, USA, were used for the current research project.
The initial three sites were established in 2008 and maintained in sup-
port of research studies investigating the role of intensive management
in optimizing Loblolly pine (Pinus taeda L.) production. These studies
were a joint effort between the Forest Productivity Cooperative (FPC)
(http://forestproductivitycoop.net/), academic institutions, the USDA
Forest service, the Virginia Department of Forestry and private industry.

Thefirst of these siteswas theRW195501 trial (RW19),which is part
of a regionwide study examining the effects fertilization and thinning in
mid-rotation stands. This trial is located in the Piedmont of Virginia in
Appomattox County at 37° 26′ 32″ N and 78° 39′ 43″ W. A total of 32
plotswere installed in a 13 year old stand. The plots vary in size fromap-
proximately 400 to 1280 m2 and could be of a square or rectangular
shape. At the time of the LiDAR acquisition in summer 2008, only
plots had been established and no additional silvicultural techniques
had been applied besides the traditional forest operational practices
used in the area.

The second site in Virginia, was the RW180601 (RW18), which was
also part of a region wide study designed with the objective of under-
standing the optimal rates and frequencies of nutrient additions for
rapid growth in young stands. The trial was located in the Piedmont
site of Virginia, Brunswick County at 36° 40′ 51″ N and 77° 59′ 13″ W.
A total of 40 plots were installed in 1999 in a 6 year old planted stand.
These plots had complete weed control and five nutrient treatments,
as follows: 0, 67, 134, 201, and 269 kg/ha nitrogen (N) applied with
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phosphorous (0.1 × N). Nutrient application frequencies were at 1, 2, 4
and 6 year intervals. Thirty plots were thinned in 2008. Plot size varied
from approximately 400 to 470 m2, and again could be of a square or
rectangular shape.

The third site was the Southeast Tree Research and Education Site
(SETRES), and was located in sand hills of North Carolina, in Scotland
County, at 34° 54′ 17″ N and 79° 29′ W. This trial was established in
1992 in an 8 year old plantation. The goal of the study was to quantify
the effects of nutrient andwater availability on above and below ground
productivity and growth efficiency in Loblolly pine. Treatments
consisted of nutrient additions (nitrogen, phosphorus, potassium, calci-
umandmagnesium), and irrigation. See Albaughet al. (1998) for a com-
plete description of site and treatment. Plot size was 900 m2

(30 × 30 m), 4 blocks and 4 plots per block, for a total of 16 plots.
Two final study sites were located in North Carolina, USA, and enu-

merated in 2013. Both sites are managed in support of research studies
for the production of Loblolly pine. The first of the sites was established
at Parker Tract (Parker) (35° 48′N, 76° 40′W) is managed by the USDA
forest service for research on climate response, water availability and
ecosystem stress (more information can be found at: http://www.nrs.
fs.fed.us/data/lcms/tpt/). Understory vegetation was not managed and
was present in high density across the whole site. The site was planted
in 1992 and thinned in 2009 removing approximately 50 to 60% of the
pine biomass. The total site extent was approximately 1.4 × 0.9 km.
Eight field plots were installed throughout the site with a plot size of
15 × 15 m (225 m2).

The second study sitewas established at the Loblolly pine plantation
areas located in Duke Research Forest (Duke) (35° 57′ N 79° 05′
W)which is managed for research and teaching purposes by Duke Uni-
versity. The Duke Forest site is composed of a mix of coniferous and de-
ciduous stands. The site ismanaged to provide a diversity of stand types
and age-class distributions over a variety of soils and topographic condi-
tions. Silvicultural practices can include may include prescribed burn-
ing, disking, pre-commercial and commercial thinning, various
regeneration and harvest systems, planting, herbicide application, and
fertilization. The sites visited varied in planting date from 1981 to
2005, and covered an extent of 3.3 × 2.0 km (more information can be
found at: http://dukeforest.duke.edu/). The understory in pure stands
is often sparse, but in mixed or old stands, it is dominated by native
hardwoods. A total of twenty field plots were installed throughout the
location with a plot size of 15 × 15 m (225 m2).
2.2. Field estimates of leaf area index

LAI data was collected using the LiCOR LAI-2000 Plant Canopy Ana-
lyzer on each plot during later summer (September 7–19, 2008) with
the exception of the RW19 trial, which was measured in January 2009.
Above canopy readings were recorded remotely every 15 s by placing
the instrument in an open field adjacent to the stand during the same
data and time that measurements were taken inside the stand. All with-
in standmeasurementsweremade at a height of 1m above ground, and
facing upwards regardless of the presence of understory or mid-story
vegetation. Due to the instruments design all measurements were re-
corded under diffuse sky conditions at dawnandduskperiods, to ensure
the sensor only recorded indirect light. The above and below canopy in-
struments always faced north with a 90° view cap, with the sensor di-
rected upwards. Sampling points were distributed equally along a
transect. Two transects were recorded for each plot, one close to the
edge of the plot and the other in the middle of the plot, with a total of
14–25 readings being taken based on plot dimensions.

As LAI measurements for the RW19 location were measured in Jan-
uary 2009, a regression model was produced to generate approximate
summer 2008 values. The model was developed using effective LAI
LiCORmeasurements made in summer (August) 2005 andwinter (Feb-
ruary) 2006 from 17 plots (100 × 100 m) established in 7 and 10 year
old Loblolly pine stands. See Peduzzi, Wynne, Thomas, et al. (2012a
and 2012b) for more information.

The 2013 field plots were visited between the 23rd and 27th of Oc-
tober. Field LAIwas assessedusing the LiCOR LAI-2200 Plant CanopyAn-
alyzer on each plot. Above and below canopy readingswere recorded as
stated previously. Measurements were made at 1.25 m above ground
height. Two transects were used, one along the tree row at the center
of the plot and the second in the gap between rows. Measurements
were taken every systematically along the transect, with 30 readings
being taken per plot.

The calculation of effective LAI per plot was produced through the
LiCOR FV-2000 or FV-2200 software, for data acquired in 2008–9, and
2013, respectively. Plot-level readings were averaged, where ring num-
ber 5 measurements were masked to reduce error introduced by the
stem and branches of the coniferous trees. Records with transmittance
values N1 were skipped in order to avoid bad readings that can alter
mean values per plot. The above and below canopy readings were
matched by time (Welles & Norman, 1991). Estimates of effective LAI
were calculated, with no clumping corrections applied, i.e. assuming a
random distribution of the components within the canopy. The LAI
values for each site are summarized in Table 1.

2.3. LiDAR data

Small footprint discrete-return LiDAR was acquired for each of the
three study areas in 2008. The systems were an Optech ALTM 3100.
The systemcould recordmultiple returns (1–4)with a sampling density
of 5 pulses per meter square. The flying altitude was approximately
1200 mwith a pulse repetition frequency of 70 kHz. The laser operated
at 1064 nm with a beam divergence of approximately 0.3 mrad. The
scan angle was less than 15°. Instrument vertical accuracy over bare
ground was 15 cm and horizontal accuracy is 0.5 m. The LiDAR return
intensity was not calibrated and was recorded as integer values be-
tween 0 and 255.

Small-footprint discrete-return LiDAR data were acquired for both
2013 study sites coincident with field data capture. The data was pro-
vided by the NASA G-LiHT team (further information can be found in
Cook et al. (2013)). The scanning LiDAR system was a Riegl VQ-480.
The flying altitudewas approximately 610mwith a pulse repetition fre-
quencyof 150kHz, recordingup to 6 returnsper pulse. The approximate
pulse density was 6 per meter-square. The laser operated at 1550 nm
with a beam divergence of 0.3 mrad. The scan angle was less than 10°.
The instruments accuracy over bare groundwas 0.25 cm. The LiDAR re-
turn intensity was not calibrated and was recorded as an integer value
between 0 and 65,535.

Preprocessing steps were required before metrics could be derived
from the LiDAR data for analysis. Each of these steps was performed
using the RSC Lastools software (Armston, 2014). Ground elevation
returns were classified through a progressive morphological filter as
outlined in Zhang et al. (2003). LiDAR return above ground heights
were calculated by subtracting the corresponding ground point heights,
interpolated into a surface (nearest neighbormethod), from the original
(unclassified) dataset.

All LiDAR returns which intersected within field plot horizontal ex-
tents were clipped from the datasets, and metrics generated utilizing
the R statistical software (version 3.1.1.) (http://www.r-project.org/).
A suite of LiDAR metrics were calculated based on the distribution of
all points and vegetation points (i.e. N0.2 m). Ground points were de-
fined as those returns ≤0.2 m above ground height. The following met-
rics were generated for both all and canopy returns: the mean, median,
standard deviation, variance, coefficient of variation, skewness and kur-
tosis (as in: Falkowski, Evans, Martinuzzi, Gessler, & Hudak, 2009;
Hudak, Crookston, Evans, Hall, & Falkowski, 2008). Percentiles were cal-
culated for all returns at 5% increments (5, 10…90, 95%) for the propor-
tion of returns.Metrics related to LiDAR return intensitywere computed
from a single flight line for each plot. Theflight line providing the largest
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Table 1
A summary of the LAI values recorded for the five study sites.

Study site Number of field plots LAI measurement height (m) LAI mean LAI standard deviation LAI minimum LAI maximum

RW18 (2008) 40 1.0 1.56 1.30 0.45 4.85
RW19 (2008) 32 1.0 2.56 0.27 1.93 3.05
SETRES (2008) 16 1.0 2.52 0.47 1.55 3.27
Duke (2013) 20 1.25 3.88 1.09 2.24 5.39
Parker Tract (2013) 8 1.25 3.20 0.63 2.24 4.11
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number of returns incident within the plot extent was selected and
metrics were calculated for the coefficient of variation, skewness and
kurtosis for all returns and canopy returns. Canopy density slices,
using a modified approach outlined in Peduzzi et al. (2012b), were
also computed. These metrics were computed above and below the
mode of vegetation returns. Ten 1 m sections were (5 above and 5
below the mode based upon the maximum value of a histogram of the
number of returns against height)were classified andmetrics generated
from the slices corresponding to the proportion of total returns, average
height of returns, standard deviation, variance, coefficient of variation,
skewness and kurtosis. All of these metrics are summarized in Table 2.

In addition to these point cloud summary statistics, other related re-
search studies have examined the use of LiDAR for obtaining estimates
of LAI or fractional cover by directly inferring it from a pulse return
ratio or the number of canopy-to-total returns (e.g. Barilotti, Turco,
Napolitano, & Bressan, 2005; Hopkinson & Chasmer, 2009; Morsdorf
et al., 2006; Solberg et al., 2009). These indices can be related to the
principles used by field instruments to indirectly measure LAI on the
ground (measuring the solar light transmission or reflectance through
the vegetation). The main difference between the canopy interaction
of solar and airborne LiDAR laser pulse radiation is geometric. Solar ra-
diation can be incident across a wide range of zenith angles if its tempo-
ral and latitudinal distribution is considered, while LiDAR pulses are
typically incident at near overhead (0–30°) angles. Any direct LiDAR
sampling will be biased towards overhead for a path length close to
the height of the canopy, which implies LiDAR estimatesmaybe directly
related to leaf area index.

Each of these indices is based on the frequency or cumulative return
intensity of contact of laser pulse returns fromwithin the forest vegeta-
tion. These indices use a vertical stratification to define ‘ground’ and
producing a ratio of returns form the remaining or complete vertical
profile or a ratio of different return types or sumof intensity. The ground
Table 2
A summary of LiDAR point cloud return height and intensity distribution metrics for each
plot level area.

LiDAR metrics Symbols

All returns Allmax, Allmean, Allmedian, Allstdev, Allcv, Allskew,

Allkurt, All5th…All95th.
Vegetation returns Vegmax, Vegmin, Vegmean, Vegmedian, Vegstdev,

Vegcv, Vegskew, Vegkurt, Veg5th…Veg95th.
Number of laser pulses Grdpulses, Vegpulses, Allpulses.
Proportion of returns Ri = total number of i returns/RAll

i = first, last, single and intermediate returns
Crown density slices around
mode of vegetation returns

CDi, CDimean, CDistdev, CDiCV, CDiskew, CDikurt
CDi = [number of returns in i divided by all
returns]
(i=+1, +2, +3, +4, +5, 0,−1,−2,−3,−4,
−5)
i = +1… + 5 at i meters above vegetation
mode
i = mode of vegetation returns
i = −1…−5 at i meters below vegetation
mode

Intensity value summary from
all returns

I.ALLCV, I.ALLskew, I.ALLkurt

Intensity value summary from
vegetation returns

I.VegCV, I.Vegskew, I.Vegkurt
return threshold was set to the same as the height which LAI measure-
ments were taken in the field, i.e. 1.0 m above ground for 2008 data and
1.25 m for 2013, as the measurement height was found to be of impor-
tance in Sumnall et al. (2016). As before, indices calculated from LiDAR
intensitywere derived froma singleflight line (i.e. theflight line provid-
ing the largest number of returns incident within the plot extent). In-
tensity inputs for these indices correspond to the sum of intensity
values from all returns. A summary of each of the indices is provided
in Table 3. Two additional indices were constructed, the first was
based upon the Above and BelowRatio Index (ABRI) which used the cu-
mulative intensity of returns above and below the ‘ground’ return
threshold (ABRIint). And the second is a modification of the Light Pene-
tration Index presented in (Barilotti et al., 2005), which uses the sum of
intensity of returns below the ground return threshold divided by the
sum of intensity from all returns. This index is referred to as LPI3int.all.

2.4. Statistical analysis

A dataset of combining all 116 field plot LiDAR summary metrics
were computed and combined with field based LAI measurements. Sta-
tistical analyses were conducted in R. Each of the thirteen indices was
tested in bivariate regression againstfield estimates of LAI in order to as-
sess the predictive power of each. Multiple stepwise regression analysis
was performed between the field measurements of effective LAI and all
of the LiDAR derived indices and those metrics summarized in Table 2.
This was to determine if supplementary data could improve the univar-
iate LAI estimation models, or provide a better correlation using differ-
ent metrics.

Several criteria were used to examine potential models including R2

and adjusted R2. Once a potential model was produced a more rigorous
assessment was applied, that included individual covariate significance
(Type III error t tests, p ≤ 0.05); absence ofmulticollinearity (i.e. variance
inflation factor ≤ 1, Bowerman & O'Connell, 1990) and residual homo-
scedasticity. Each of the model covariates were examined for contribu-
tion to R2 value, significance, individual standard error and variance
inflation factor values, and removed as necessary and the stepwise pro-
cedure re-implemented. Model validity inmultiple linear regression re-
lies partly on the number of observation and covariates. Adjusted R2 is
more conservative that R2, thusmodels where the twowere showed lit-
tle changewere sought. Thosemodelswhich exhibited a combination of
the lowest changes of R2 to adjusted R2 and lowest overall dataset stan-
dard error, whilst still satisfying individual covariate criteria, was pre-
served as the final model.

A bivariate correlation matrix was produced in order to determine
which of the indices, listed in Table 3, are linearly related to each other.
Pearson correlation coefficients were produced for each of the bivariate
comparisons. A specific directional relationship between the variables is
unknown, therefore two-tailed significance tests were applied.

3. Results

3.1. Testing the individual LiDAR indices

The best fit regression results comparing the rings 1–4 LAI 2000/
2200 measurements for each of the field plot locations are summarized
in Table 4, which summarizes R2, standard error and regression



Table 3
Computation of LiDAR indices.Where Rgrd is the number of returns below the ground threshold (e.g. 1m). Rveg is the number of return above the ‘ground’ threshold. RAll is the total number
of returns. Where R…first is the number of first of many returns (e.g Rgrd.first is the sum of ground first returns), R…last is the number of last returns, R…single is the number of single returns,
and R…pulses is the total number of number of pulses. Int denotes the sumof return intensities from LiDAR returns, e.g. Intall is the sum of intensity of all returns, Intgrd is the sumof intensity
for returns below the ground threshold, whereas Intveg is the sum of intensity. Int…inter is the sum of intensity from intermediate returns (i.e. between first and last).

Index LAI range Forest types Calculation

LAI proxy (LAIPROXY) (Morsdorf et al., 2006) 0.1–1.9 Mountain pine (Pinus mugo subsp. uncinata) and stone
pine (Pinus cembra)

LAIproxy ¼ RVeg:First
RVeg:lastþRVeg:single

Laser penetration index 1 (LPI1) (Barilotti et al., 2005 as cited in
Peduzzi et al., 2012b)

0.79–4.47 Loblolly pine LPI1 ¼ Rgrd

Rall

Laser penetration Index 2 (LPI2) (Solberg et al., 2009) 0.58–5.13 Norway spruce (Picea abies) LPI2 ¼ Rgrd:singleþ0:5ðRgrd:firstþRgrd:last Þ
Rgrdþ0:5ðRfirstþRlast Þ

First echo Cover Index (FCI) and Last echo Cover Index (LCI)
(Korhonen et al., 2011)

0.15–4.61 Norway spruce and Scots pine (Pinus sylvestris) FCI ¼ Rveg:singleþRveg:first

RAll:singleþRAll:first

LCI ¼ Rveg:singleþRveg:last

RAll:singleþRAll:last

Above and Below Ratio Index (ABRI) (Sumnall et al., 2016) 1.39–5.42 Loblolly pine ABRI ¼ Rveg
Rgrd

Fractional cover (multiple) (Hopkinson & Chasmer, 2009) 0.18–4.2 Thirteen coniferous and deciduous species FC1all ¼ Rveg

Rall

FC2Int:first ¼ Intveg:first
Intall:first

FC3Int:all ¼ Intveg
Intall

FC4Beerslaw ¼ 1−ð
ðIntgrd:singleIntall

Þþ
ffiffiffiffiffiffiffiffiffiffiffiffi
Intgrd:last

Intall

q

ðIntfirstþIntsingle
Intall

Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IntinterþIntlast

Intall

q Þ

ABRI changed to use the sum of return intensity (ABRIint) ABRIInt ¼ Intveg
Intgrd

A modified Light Penetration Index (LPI3int.all) to use the sum of return intensity from below ground threshold LPI3Int:all ¼ Intgrd
Intall
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equation constant and coefficient values. Four of the regression analyses
were found to contain non-linear relationships. Thus, a quadratic trans-
form was applied to FC1all, square root transforms were applied to the
LPI1 and LPI2 and a log10 transform to ABRI variables.

In terms of the index metrics generated from the sum of LiDAR re-
turn numbers, five of eight models produced high R2 values (N0.75).
The regression analysis applied to the LAIPROXY calculation produced
very lowR2 values (i.e. b0.1) indicating there is very little if any correla-
tion between the index and LAI within this context. The FCImodel pro-
duced a relatively low R2 value of 0.432 and RMSE of 0.796, nearly
double that of the five remaining models. These five models produced
similar R2 and standard error values overall, and were all significant
(p b 0.05), which the exception of the FCI1all constant (or intercept)
term within the regression model was not significant when assessed
with the student's t test (i.e. p N 0.05).

The graphs of predicted LAI against measured LAI for those models
derived from the number of returns are presented in Fig. 1, excluding
LAIPROXY. The graphs for sqrt(LPI1) and sqrt(LPI2) both depict a linear
trendwell. It should be noted, however, that LAI values at the upper ex-
tents of the LAI range, (approximately N4) are underestimated for LPI2.
The values for the FCI poorly estimate LAI values beyond the average 2–
Table 4
Regression statistics for each of the LiDAR derived indices tested. Note that the ‘*’ denotes
the Students t-test result was significant (i.e. p b 0.05).

Model Non-linear
transform
(y/n)

R2 Standard
error

Constant Coefficient

LiDAR return frequency
LAIPROXY n 0.066 1.033 3.384* −1.803
sqrt(LPI1) y 0.885 0.362 8.159* −9.276
sqrt(LPI2) y 0.858 0.403 7.084* −7.789
FCI n 0.432 0.805 −1.049* 4.388
LCI n 0.811 0.464 0.146 5.258
Log10
(ABRI)

y 0.886 0.360 1.641* 3.861

(FC1all)2 y 0.882 0.367 −0.029 6.374

LiDAR intensity
FC2int.first n 0.331 0.874 0.655 * 2.882
FC3int.all n 0.447 0.795 0.234 4.372
FC4beerslaw n 0.475 0.774 0.127 5.656
ABRIint n 0.435 0.803 1.416 * 0.810
LPI3int.all n 0.449 0.793 0.587 * 6.041
3 LAI value. It is possible to observe a number of groupings within the
graph which correspond to the records from individual study sites, for
example records for the RW19 and SETRES study sites appear separate
from the rest. Elements of which also appear to link with those from
Duke and Parker Tract, whichmay indicate other potential populations.
The graph for the LCI predictions depict an overall linear trend, and as
before poorly represent LAI estimates at the minimum and maximum
of the range. It should also benoted, however, that there is also a relative
increase in values for records derived from2013 data (Duke and Parker)
in comparison to those from 2008. The remaining two indices
log10(ABRI) produced a linear trendwell and produced the lowest stan-
dard error value (slightly lower than sqrt(LPI1)). The FC1all2 model, when
compared to those derived from the LPI1 and ABRI does not predict LAI
values at the extents of the LAI range encountered here, i.e. where LAI is
b1 and N5.

The regression models calculated from the sum of return intensity
values were all poor when compared to those described above
(R2 b 0.5) with higher RMSE values. For both FC3int.all and FC4beerslaw
the constant (or intercept) terms within the regression model were
not significant when assessed with the student's t test (i.e. p N 0.05).
The graphical representations of these models are presented in Fig. 2.
LAI values which occupy the extremities on the range of 0–6 are not
well predicted in all cases. The predictions presented in Fig. 2 show sim-
ilar distributions to that of the FCI in Fig. 1, where the RW19 and SETRES
datasets collected in 2008 are separate from the other records. The re-
cords presented for ABRIint may indicate two separate non-linear
distributions.
3.2. Consideration of plot area

Plot size varied a great deal between the five study sites, it was
therefore necessary to explore how this affected the modeled values
of LAI. The LAI estimates were organized by field plot area, and separat-
ed into similar groups, thesewere: (i) 225m2 (n=28) and 300–399m2

(n=3); (ii) 400–499m2 (n=45); (iii) 600–699m2 (n=8); (iv) 700–
799 m2 (n = 8); (v) 900 m2 (n = 16); (vi) 1200–1299 m2 (n = 8).
RMSE was calculated for each group, the results of which are presented
in Fig. 3. The five indices, LPI1, LPI2, LCI, ABRI and FCall, appear relatively
stable for all six area size classes. The LAIPROXY, FCI and all intensity indi-
ces show a similar pattern of higher error relative to the other five indi-
ces, but also larger error when plot size is smaller.



Fig. 1. LiDAR return frequency based indices predicted LAI vs. field measured LAI. Color codes represent the observations from each of the five study sites.
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3.3. Combining LiDAR metrics in a single model

When combining all the LiDAR derived indices including the return
height and intensity distribution summary statistics the log10
transformed ABRI was combined with the coefficient of variation for
the C4 crown density bin (LiDAR returns within the 3.5–4.5 m bin
above return frequency mode height) (C4cv) and the skewness of vege-
tation return intensity (Intveg.skew). The regression equation was as



Fig. 2. LiDAR return intensity sum based indices predicted LAI vs. field measured LAI. Color codes represent the observations from each of the five study sites.
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follows:

LAIpred ¼ 1:738þ 3:539� log10 ABRIð Þ−0:158� C4cv þ 0:275
� Intveg:skew ð2Þ
where LAIpred is predicted LAI. The model produced an R2 value of 0.898
(adj. R2 0.894) with a standard error of 0.345, (see Fig. 4). The R2 value
for the three predictor model produced a slightly higher R2 and lower
standard error value when compared with the single predictor model



Fig. 3. RMSE values from LiDAR index models calculated for groups of plot sizes (1–6).
These groups were: (1) 225–399 m2; (2) 400–499 m2; (3) 600–699 m2; (4) 700–
799 m2; (5) 900 m2 and (6) 1200–1299 m2.
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including the log10 transformed ABRI, where R2 varied by 0.012 and
standard error varied by 0.015.

3.4. Index bivariate correlation analysis

A matrix of the bivariate Pearson correlation relationships are sum-
marized in Table 5. Overall, with the exception of the LAIPROXY index, all
Fig. 4.Graph of fieldmeasured LAI against LAI predicted from three LiDAR derivedmetrics
(see Eq. (2)).
bivariate relationships are significantly correlated (p b 0.01). The
poorest correlations existed for the LAIPROXY index, with a number of
non-significant (p N 0.05) relationships between ABRIint and LPI2, in ad-
dition to three lower significance relationships (p b 0.05)with FCI1, LPI1
and ABRI. Higher correlations for the LAIPROXY were observed for those
indices derived from intensity (except ABRIint) and two return frequen-
cy based indices (FCI and LCI).

High correlations were observed in-between those indices derived
from intensity information producing high Pearson coefficient values
(r N 0.84). Intensity indices correlated with return frequency indices
typically in the range of r = 0.63 to 0.76. Two indices, however, the
FCI and LPI2 produced r values between0.75 and 0.95. The LCI correlated
relatively poorly with the intensity indices with r values in the range of
0.43 to 0.58. Those indices computed from the frequency of LiDAR
returns were very highly correlated with one another, and with the ex-
ception of the FCI and LAIPROXY, Pearson correlation (r) values ranged
from 0.9 to 1.0.

4. Discussion

4.1. Testing of predictive models

The current study has tested a number of LiDAR derived indices used
to predict LAI for forested environments after calibration of the regres-
sion models with field data of variable plot size. Overall the prediction
results for the majority of the models utilizing all-return frequencies
are in line with the theory and results presented in previous studies
(e.g. Morsdorf et al., 2006; Solberg et al., 2009). A number of these
LiDAR indices failed or produced a poor relationship with field mea-
sured LAI however.

The group of indices which produced the highest correlation with
field measured LAI were based upon the frequency of LiDAR returns
within different portions of the forest vertical profile. The highest corre-
lationswere calculated from those indices which used all returns. Those
indices which stratified between single, first, and last returns produced
poorer results (i.e. LAIPROXY, FCI and LCI). Morsdorf et al. (2006) reported
an R2 for their implementation of LAIPROXY as 0.69, which is substantially
different to that reported within the current project (R2 0.07). It should
be noted that Morsdorf et al. (2006) developed the index for study sites
containing forest species and located within geographic locations not
encountered within the current project, in addition to using different
data acquisition parameters. Korhonen et al. (2011) reported lower
standard error for LAI estimates derived through FCI (0.56) when com-
pared to the results presented here (0.81). The authors also present a
standard error of 0.45 for estimates using the LCI, which was compara-
ble to results of the current study (0.46).With the exception of LAIPROXY,
which failed to produce a correlation, the FCI and LCI exhibited distribu-
tions, when plotted, which are indicative of multiple populations (see
Fig. 1). These groups seem to separate by study site, where SETRES
and RW19 (2008 acquisition) differ from similar LAI values recorded
for Duke and Parker (2013) datasets.

Non-linear relationships were identified in the remaining four return
frequency based indices. Barilotti et al. (2005) reported an R2 value of
0.89 when employing the LPI1 in linear regression modeling against LAI
values within a range of 3 and 6. A similar level of correlation was ob-
served in the current study (R2 0.89), however a non-linear transforma-
tion was required within the regression model. Solberg et al. (2009)
reported R2 values of 0.93 for the LPI2 over a similar range of LAI values
to the current study for sites in the Østmarka forest, Norway, dominated
by Norway spruce. The implementation of LPI2 here returned a similar
R2 value of 0.86. Estimates using the LPI2 within the study by Korhonen
et al. (2011) report a standard error of 0.38, which are again comparable
with 0.40 here. However, as described above, the transformed LPI2
underestimated LAI values in the upper portions of the LAI range ob-
served (i.e. N4). The regression model for the log10 transformed ABRI
returned an R2 value of 0.89 which was higher than that presented in



Table 5
Pearson correlationmatric of LiDAR LAI related indices. Pearson coefficients (Pearson) and two-tailed significance (sig.) are listed for each bivariate correlation. ‘*’ indicate a significance of
b0.05, and ‘**’ indicate a significance of b0.01.

FC2.in.first FC3.int.all LPI3.int.all FC4.beerslaw ABRI.int FCI LCI LAIPROXY (FC1.all)2 sqrt(LPI1) sqrt(LPI2) log10(ABRI)

FC2.in.first Pearson 1 .972** .955** .962** .842** .954** .434** .533** .630** −.638** −.721** .645**
FC3.int.all Pearson 1 .997** .998** .928** .917** .559** .368** .728** −.733** −.801** .738**
LPI3.int.all Pearson 1 .997** .955** .890** .564** .334** .728** −.733** −.798** .737**
FC4.beerslaw Pearson 1 .938** .911** .584** .338** .747** −.752** −.816** .757**
ABRI.int Pearson 1 .753** .568** .188 .706** −.710** −.758** .714**
FCI Pearson 1 .540** .474** .714** −.723** −.797** .732**
LCI Pearson 1 −.477** .961** −.957** −.930** .952**
LAIPROXY Pearson 1 −.257* .243* .142 −.229*
FC1.all.sq Pearson 1 −1.00** −.990** .998**
sqrt(LPI1) Pearson 1 .991** −1.00**
sqrt(LPI2) Pearson 1 −.992**
log10(ABRI) Pearson 1
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Sumnall et al. (2016) (R2 of 0.74–0.77) which employed the 2013 dataset
used within the current study. The increased correlation coefficient value
no doubt corresponds to the increased number of samples employed
within the model (Strunk, Temesgen, Andersen, Flewelling, & Madsen,
2012) covering awider range of LAI values. The FC1all index has been cor-
related in previous studies with fractional cover rather than LAI, however
there are parallels between the twodescriptive site values as theyboth in-
corporate the Beer–Lambert law of light attenuation (Hopkinson &
Chasmer, 2009). The transformed version of the FC1all index within this
study produced a strong linear correlation with LAI of R2 0.88, but
under- or over-estimates LAI values less than one or greater than four, re-
spectively. Part of the FC1all model, the constant/intercept was not signif-
icant, indicating that if the index value is zero, that the predicted LAI value
will not significantly differ from zero.

The models utilizing the sum of intensity all produced poor results
overall in terms of R2 (0.33–0.48) and standard error value (0.77–
0.87), especially when compared to an all-return based index. The
models developed consistently underestimated LAI values. Whilst not
a direct comparison, Hopkinson and Chasmer (2009) incorporated
LiDAR intensitywithin a number of indices in order to estimate fraction-
al cover (see Table 3) for seven study sites in Canada and including a
number of different species types. The authors reported the intensity
based models produced the highest correlations (R2 0.75–0.78), when
compared to indices based upon the frequency of LiDAR returns (R2

0.70–0.74).

Themulti-predictormodel incorporating the log10 transformedABRI, can-
opy density slice and skewness of intensity values did not increase the R2

value (+0.012) or decrease standard error value (−0.015) a great deal
when considering the single predictor model. There appears to be little
benefit to including such additional predictor metrics.

4.2. Consideration of sensor and survey construction differences

The size of the area in which to estimate LAI is also of significance.
There are a number of examples in the literature providing experiential
evidence about the importance of plot size (e.g. Zhao & Popescu, 2009;
Morsdorf et al., 2006; Richardson et al., 2009). Plot size within the cur-
rent project was not consistent and varied from 225 m2 to 1280 m2.
The standard error and plot area classified RMSE appears consistent in
a number of models (LPI1, LPI2, ABRI and FC1all) which provided the
highest correlation, for all study sites and datasets, indicating that the
influence of plot size was relatively low within the current context.
The other indices tested, however, namely the FCI and all intensity
based indices appear to be sensitive to plot size (see Fig. 3), where
RMSE is largest in small plot sizes and decreases for larger areas and is
more variable between groups, whilst all RMSE values are still inferior
to the all-return based indices. It should be considered, however, the
smallest plot sizes (class 1) were from the 2013 acquisition, whilst the
remainder was from 2008, where the trends observed may be related
to the two populations observed in Fig. 2, and the number of plots in
each area classification varied from 8 to 45, both of which represent a
possible source of bias. The results, however, imply the position that
all-return based indices are less limited in terms of transferability to
other study designs.

Setting an appropriate height threshold for the separation of ground
and vegetation returns was found to be optimal as the set up height of
the LAI 2200 instrument in the study presented in Sumnall et al.
(2016). Zhao and Popescu (2009) report, however, that this may not
be optimal if using hemispherical photographs.

The initial field estimation of LAI is subject to a number of uncer-
tainties (Dewey, Roberts, & Hartley, 2006), due to the assumptions
within the algorithm applied to model LAI relating to the separation of
leaves from woody objects and consideration of foliage clustering. Fur-
ther considerations arise from field based estimates of LAI from optical
instruments, which operate upon measurements from an angular field
of view from a point (Varhola, Frazier, Teti, & Coops, 2012), which are
often recorded and averaged for an area, which is in contrast to the
downward vertical sampling of foliage from airborne LiDAR. No infor-
mation is available to define how far andwhat an optical sensor can de-
tect when taking measurements for the indirect estimation of LAI. For
example within the current study the LiCOR 2200 was used with a 90°
view cap, effectively removing information from other directions. Such
a devicewill also “see” further inmore open canopies and a shorter dis-
tance in in thicker canopies of high LAI (Zhao & Popescu, 2009), a situa-
tion whichmay be further complicated in more structurally complex or
heterogeneous stands.

The current study has tested a number of indices cited in the related
literature as having the potential to predict LAI for forested environ-
ments once calibrated. A number of trends are evident from the analysis
presented here, where the models which were most highly correlated
with field recorded LAI were calculated from the sum of all LiDAR
returns. Those models which produced low correlations or exhibited
patterns where there were distinct groups when viewed graphically
were constructed using combinations of first, last or single returns, or
used the sum of return intensity. In reference to Fig. 1, the FCI exhibits
at least two non-linear populations in addition to a cluster of lower
values corresponding to those records fromRW18. The graphical output
for the LCI appears to show two populations corresponding to the
datasets from 2008 for lower values of LAI and 2013 for higher values.
The index LPI2 utilizes single, first and last returnswithin its calculation,
but does not exhibit patterns within the predicted values, it does how-
ever underestimate higher values of LAI, i.e. those encountered in the
sites recorded in 2013. This implies that there is a disparity between
the proportions of first, last or single returns recorded by the two differ-
ent sensors in the separate 2008 and 2013 acquisitions, therefore,
methods based on such approaches cannot be transferred to other
sites or acquisition parameters.
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These two distinct sensors will have a different sensitivity to the de-
tection ofmultiple features per pulse (Naesset, 2009; Hopkinson, 2006),
thus the proportions of first-of-many, single and last returns will differ
when comparing systems capable of detecting differing types of returns.
The Optech ALTM 3100 system could record up to four returns per
pulse, whereas the Riegl VQ-480 could record up to six. The sensor
pulse frequency also differs between the two acquisitions (70 kHz and
150 kHz). Hopkinson and Chasmer (2009) investigated the differences
in sampling density and reported that models constructed from return
frequency ratios (e.g. FC1all) could produce comparatively higher esti-
mates of fractional cover at lower frequencies. Thus, a lower frequency
of sampling would result in a systematically higher number of returns
recordedwithin the upper forest canopy than for a higher sampling fre-
quency. It should be noted that the investigation in Hopkinson and
Chasmer (2009) was applied to a single study site, the observations
may not be applicable across all other potential sites and acquisitions.
There were no appreciable differences in estimates between the two
datasets which utilized all the LiDAR returns within this current project
when LAI ranges overlapped (e.g. ABRI and LPI1). Indices using first
returns, such as the FCI, express similarities to thephenomenadescribed
above, especially for the SETRES and RW19 sites. These issues appear
symptomatic of locational or data acquisition specific differences
which may pose problems to the transferability of LiDAR based LAI
models, in particular those employing the ratios of different return
types. Future studies should test thosemodels identifiedwithin the cur-
rent study for their validity in different forest types and geographical
locations.

Hopkinson and Chasmer (2009) also stated that indices calculated
from intensity were not affected by the frequency of the sampling or
pulse power. Within the current project, however, indices calculated
from intensity performed poorly and when plotted revealed the pres-
ence of two populations with linear or non-linear appearance for the
SETRES and RW19 sites (from 2008) and the Duke and Parker sites
(from 2013) over a similar range of LAI values. It should also be noted
that the two systems used a different wavelength for the laser pulse
within the current study,where differences in laser reflection properties
resulting in ‘brighter’ returns at differentwavelengths could account for
some differences (Li et al., 2013). The storage of the recorded intensity
values also differed between the 2008 and 2013 datasets, resulting in
the latter having a lower resolution dataset. The usage of LiDAR intensi-
ty remains a contested issue due to the proprietary methods that com-
mercial sensors use to report return intensity which can change in
flight, making it impossible to directly compare two returns, such as
the reflectivity of the target and the amount of the pulse interacting
with the target (Lim et al., 2003a). Unless some technique of calibrating
intensity values is applied to the data acquired from different acquisi-
tions, the transferability of such models does not appear to be possible.

4.3. Implications and considerations

The LiDAR sensor emits numerous near-infrared pulses, where some
will be reflected from the canopy and somewill reach the ground. Fun-
damentally, the ratio of howmany returns are from the ground andhow
many are returned from on or within the canopy has shown to be di-
rectly related to plant area and therefore leaf area.

Each of the LiDAR indices used within the current project share sim-
ilarities in terms of their calculation, where the number or sumof inten-
sity values of ground, canopy and all returns are ratioed against one
another. The similarity in terms of information content is further exem-
plified when considering the bivariate correlation matrix presented in
Table 5, where significant (p b 0.01) relationships existed for all the in-
dices, with the exception of LAIPROXY. High correlations were found be-
tween intensity based indices and the FCI, which was calculated from
the ratio of first returns, which is unsurprising given the similarity in
the pattern of values (see Figs. 1 and 2). High correlation values existed
for many of the bivariate relationships, which was especially evident
between those indices using return frequency. Those highest correla-
tionswere recorded for ABRI, FC1all, LPI1, and even LCIwhen considering
the issuesmentioned previously. Each of these indices also provided the
highest correlation with field LAI. Where each of these indices ratio dif-
ferent components (ground, canopy and all returns) and work for all
practical purposes, and thus equate to the same thing.

The results of the current study illustrate the differences in LiDAR
sensors and the issues relating to the methods each system uses to re-
cord data for analysis. The differences encountered between the propor-
tions of return types (e.g. first, last) and intensity values imply that
methods using this data are critically limited in terms of their transfer-
ability to other LiDAR acquisitions. The use of indices calculated from
all-returns, however, appears compatible with different LIDAR sensor
datasets, and therefore are potentially transferable, at least for Loblolly
pine forest.

Parallels can be drawn to themodel development of optical-spectral
indices which are often used to estimate LAI, where many indices are
calculated from a ratio or difference between different portions of the
reflected spectrum of electromagnetic radiation (Bannaria, Morina,
Bonna, & Hueteb, 1995), for example the red edge and the chlorophyll
trough, with one such example being the Normalized Difference Vege-
tation Index (NDVI). For homogenous closed stand conditions, it
makes little difference which vegetation index used to estimate LAI be-
cause they are all fundamentally linked to the same thing (Broge &
Leblanc, 2001). Thus, the argument can be made that a similar level of
maturity has been achieved with respect to the estimation of LAI using
the LiDAR return frequency based indices (all returns) as with spectral
vegetation indices, such as the NDVI and its variants.

Overall, techniques such as the use of spectral indices can approxi-
mate LAI for canopies with LAI in the range of 3–5 (Chen & Chilar,
1996, Turner, Cohen, Kennedy, Fassnacht, & Briggs, 1999). Issues arise
for values above this LAI threshold, as many indices saturate causing
LAI estimates for high biomass to be incorrectly estimated. The spatial
resolution of satellite imagery, especially, can lead to themixture of sur-
face cover types into a single value, for example thinned and open plot
understory and ground reflectance can adversely affect estimates of LAI.
While the saturation of LiDAR derived indices is possible, the results
presented in the current study suggest LiDAR estimates of LAI are not
as limited by saturation effects and can estimate LAI values over a
range between zero to in excess of five, at relatively small spatial reso-
lutions, which are also less sensitive to understory presence and are
less subject to the increases error associated with thinned and open
areas within a forest context. In addition, the link between field LAI
measurement height and the threshold of what defined ‘ground’ and
‘canopy’within LiDAR returns, as suggested in Sumnall et al. (2016), im-
plies that estimates of the vertical distribution of LAI vertically through
the canopy is possible.

In densely vegetated forest environments there is the possibility that
no LiDAR laser pulseswill penetrate and return from the depth required
for the computation of the index, which would result in inaccurately
predicting the LAI value. A parallel can bedrawn fromvegetation indices
developed for multispectral data, such as the NDVI which saturate at
higher LAI values (Wang, Adiku, Tenhunen, & Granier, 2005). The inclu-
sion of the scanning angle of each laser pulse could be incorporated in
the model construction, as at larger scanning angles the laser pulse
may penetrate through gaps which would not be possible at near-
nadir angles (Richardson et al., 2009), although additional concerns re-
lating to scan length, pulse energy and light attenuation would need to
be addressed. The likelihood of increasing the number of returns from
the lower portions of the LiDAR vertical profile potentially increases
with larger plot size. Advances in small-footprint LiDAR technologies,
such as full-waveform retrieval, could potentially provide a greater
number of returns per pulse (Chauve et al., 2007) and reduce an issue
prevalent in discrete return LiDAR, where there is a ‘blind spot’ follow-
ing each detected return (up to 1.2–5 m), during which nothing can
be detected (Reitberger et al., 2008).
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The current study included a range of Loblolly pine stands with dif-
fering management types applied, some of which included understory
control. A number of these stands, in particular Duke or Parker Tract, in-
cluded a number of multiple vertical layers, where both coniferous and
deciduous species were present in the shrub, understory andmid-story
layers beneath the dominant canopy. The presence and absence of veg-
etation within these layers will influence the total LAI of a given area,
and will alter throughout the year in temperate regions. Given LiDARs
ability to penetrate the canopy and estimate the presence of sub-
canopy features (e.g. Hill & Broughton, 2009), future work could at-
tempt to estimate the presence of these layers and the potential influ-
ence upon area-total LAI they have.
5. Conclusions

The application of airborne LiDAR for estimating LAI can provide a
number of benefits in comparison to the analysis of opticalmultispectral
data in terms of accuracy and scale, particularly in areas of medium to
high biomass and were forest canopy cover is not uniform over large
areas. The current study demonstrates the usefulness of a number of
LiDAR derived indices calculated from the ratio of returns fromdifferent
portions of the vertical return information provided, for predicting LAI
frommultiple datasets from Loblolly pine dominated forest of homoge-
neous canopy types. The investigated predictors included a variety of
laser-penetration indices using either frequency of return or the sum
of return intensity over a variety of stand ages, forest management con-
ditions and geographical locations.

The non-linear transformed log10 ABRI and square root transformed
LPI1 have demonstrated the strongest correlations with field estimates
of LAI, by LAI 2000/LAI 2200. The addition of other LiDAR derived return
frequency or intensity distribution did not improve prediction accuracy
to any great degree. These indices are capable of predicting LAI across
two disparate sensor or data acquisition configurations, and offer the
potential of a transferable model, at least for managed Loblolly pine
sites. Those indices derived from single, first-of-many and last returns
or the sum of return intensities consistently produced inferior correla-
tions and exhibited a number of differences in terms of value distribu-
tion which indicates separate populations corresponding to the data
from the two separate LiDAR acquisitions, in addition to concerns over
sensitivity to plot size. This implies that indices developed using such
data from disparate LiDAR sensor or data acquisition configurations
are not transferable. Alternatively, it suggests that such indices should
be calibrated independently for each change in survey configuration.

Many of the LiDAR derived indices were highly correlated with one
another. Those indices derived from the frequency of all LiDAR returns
in particular (e.g. LPI1 and ABRI), all used ratios of returns fromdifferent
vertical parts of the canopy, but ultimately produced very similar results
in terms of predicted LAI. This indicates a similar level of development
to multispectral indices for the estimation of LAI.

The results of the current study offer the potential to estimate LAI ro-
bustly from airborne LiDAR data consistently when employingmultiple
sensor or data acquisition configurations for managed Loblolly pine
stands at various field-plot scales. Thismay hold the potential for reduc-
ing the need to calibrate LiDAR data againstfieldmeasured LAI in the fu-
ture. There is a great deal of disparity within the current literature
regarding the estimation of LAI from LiDAR however, with the metrics
used in many studies which are site specific (Zhao & Popescu, 2009).
At this stage it may be premature to state that there is one ‘ideal’
model for estimating LAI, thus future work should place an emphasis
on assessing the transferability of publishedmethods tonewgeographic
contexts, sensor types and survey characteristics. In addition given Li-
DARs ability to penetrate through the dominant canopy and identify
sub-canopy features it may be possible to estimate how LAI changes
throughout the vertical profile, and what the data requirements of this
might be.
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