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(ABSTRACT)

The detection of cracks in structural components and the evaluation of
their sizes without the need of removing them from the machine in which
they are placed is very important for preventing failures. The objective
of this thesis is to study the effects of cracks on the dynamic behavior
of shafts under acceleration or deceleration, in order to find methods or

procedures capable of detecting the presence of cracks prior to failure.

The equations of motion for a simply supported Bernoulli-Euler shaft are
developed following Wauer’s formulation. Galerkin’s Method is used to
obtain five-term approximate solutions. The first two natural frequencies
are found for both the uncracked and cracked shaft. A computer program
is written to perform the numerical integration of the equations. The
shaft is subjected to several constant accelerations and decelerations.
Tables and figures showing the results are presented along with
discussions and comments related to the different runs made and the
results obtained. The effect of the initial position angle of the eccentrici-

ty is studied to find the influence of this parameter. The effects of crack



position and crack depth on the dynamic behavior of the shaft are also
included in this work. Time histories and summary graphs are presented

to make easier the interpretation of the results.

Final conclusions and future research proposals complete the work done

in this thesis.
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Chapter 1

Introduction

The presence of cracks in structures produces changes in their dynamic
behavior. Numerous studies have been made concerning those changes in

order to obtain methods to detect cracks and to estimate their sizes.

Many researchers studied rotating shafts with one or more cracks over
their lengths, producing many methods and solutions for almost all
possible cases. The presence of the cracks was modeled using different
approaches. In particular, a crack introduces non-linearity in the
structure in both the stiffness and damping terms. In general the struc-
tures are considered to be bilinear, but some a?thors assume the cracks

are always open. In the present study a bilinear approach formulated by

Wauer is used.

Despite. the various works on this topic, the influence of cracks on the
dynamic behavior of shafts under angular acceleration or deceleration was
not studied previously. Research has been limited to the case of constant

angular speed.



It is well known that for rotating structures, there are some angular
velocities that produce maximum transverse deflections. These angular
velocities are called critical speeds. Many machines, such as generators
and compressors, have rotors working above one of these critical speeds
at least. The transition from rest to the working rotating speed can
produce large-amplitude displacements. Dangerous effects can be the
result of this acceleration process. The same problems can arise during

deceleration.

It has been observed in experimental studies that the response of a
rotating shaft deviates considerably from the steady state during
speed-up and slow-down passing through a critical speed. The maximum
amplitude is usually found above the critical speed in acceleration and
at lower speeds during deceleration. The amplification in the transverse
deflection produced during both speed-up and slow-down usually
decreases if the acceleration or deceleration increases. Furthermore, the
amplitude is considerably larger if the shaft is under a steady critical

angular speed.

The presence of mass imbalance in the shaft may cause large deflections,
and whirling is very frequently observed. The whirl pattern is in general
elliptical considering the possibility of transverse non-symmetric stiffness
and damping. The orbits are then ellipses with their centers not

coinciding with the line connecting the supports due to gravity.



The objective of this thesis is to study the effects of cracks in shafts
under angular acceleration and deceleration. The fact that for uncracked
shafts the amplitudes of transverse deflection are larger when the
angular velocities are close to a critical speed point out the possibility
that the amplification can be larger for cracked shafts, making it easier
to detect the presence of one or more cracks over the length of the

shaft.

This thesis studies the dynamic behavior of a cracked shaft using the
mathematical formulation for a  Bernoulli-Euler shaft, with one crack

modeled following the previous work done by Wauer,

Galerkin’s Method is used to solve the differential equations given by
Wauer. This method consists of defining the solutions as a summation of
functions where each term is the product of an unknown function
depending only on time and a known predefined function depending only
on the spatial coordinate x. With some algebraic manipulations, a non-
dimensional system of differential equations depending only on time can

be obtained.

A computer program is developed to compute approximate values for the
amplitudes, the unknown functions of time, using the Adams-Moulton
numerical multi-step method. Then the amplitudes are multiplied by the
functions of the space coordinate and the complete solution is found for

the model.



Several runs of the mentioned program are made using different
parameters and different rates of acceleration and deceleration, in order
to obtain the relationships between the various system parameters. Graphs
and tables are presented to illustrate the relationships found. Some

conclusions and recommendations for further research are presented.

Literature Review

Several works dealing with the behavior of rotating shafts passing
through one critical speed have been published. Lewis (1932) published
a paper giving an exact solution of the problem of running a one-

degree—of-freedom, damped system through the first critical speed.

Although this ideal system was not a rotational shaft, the conclusions and
results presented in this paper can be considered an important anteced-
ent for the case of this thesis. Dornig (1959) studied the changes in the
vibrations of single-degree-of-freedom systems when they are stopped or
started with constant acceleration. He gave exact solutions and approxi-
mate formulas that include the inertial forces generated. One of the first
papers on rotating shafts was published by Baker (1939), in which the
author presented the results of his research on unbalanced rotors:
amplitudes for different rates of constant acceleration and deceleration
and the setup used to obtain these results on the differential analyzer

at the Massachusetts Institute of Technology. Capello (1967) studied the

4



influence of external viscous damping and elastic hysteresis on the
behavior of a rotor accelerated through a critical speed. Bodger (1967)
examined a single-degree-of-freedom rotor under slow deceleration
passing through a critical speed, giving closed form solutions. Aiba (1976)
investigated the vibration of rotating shafts passing through critical
speeds, including gyroscopic effects. Iwatsubo (1976) used the asymptotic
method developed by Kononenko to investigate the behavior of a rotor
with asymmetric shaft stiffness. Naveh and Brach (1977) considered
exponential transition through a critical speed instead of the constant
acceleration assumed by the previous researchers as a way to make more
realistic simulations. Ying (1987) wrote a paper dealing with the transient
whirling of a rotating shaft with an unbalanced disk with different levels
of damping, showing that with large damping the response increases with
the rate of acceleration. Hassenpflug, Flack and Gunter (1981) examined
the effect of angular acceleration on a Jeffcott rotor. Tsuchiya (1982)
studied a non-stationary oscillation of a rotor through a critical speed
based on the methods of multiple scales and matched asymptotic
expansions. Zobnin, Kelzon and Neigebauer (1987) worked on the influence
of gyroscopic effects on resonance avoidance during acceleration of

unbalanced flexible rotors.

The above mentioned studies have treated the problem of linear systems;
but since the presence of cracks introduces some kind of nonlinearity, a
brief review of some papers considering non-linear systems is presented.
Meuser and Weibel (1948) presented a generalized solution for the effect

5



of an accelerated sine-wave force on a spring-mass system with linear or
cubic stiffness and linear damping. Ishida, Ikeda and Yamamoto (1987)
studied the transient vibration of a rotating shaft with nonlinear spring
characteristic passing through a critical speed. In all the papers
mentioned so far, except in Ying (1987), the maximum amplitude decreases
with the rate of acceleration or deceleration. Ishida, Ikeda, Yamamoto and
Murakami (1989) investigated the response during constant acceleration
or deceleration passing through a critical speed of 1/2-order of a
subharmonic oscillation. Differently than in the previous papers, they
found that the maximum amplitude depends strongly not only on the rate

of acceleration but also on the initial angular position of the shaft.

The influence of a crack in structures has been extensively studied in
recent years. The effects on the stiffness were considered as a nonlinear-
ity by Mayes and Davies (1980), and Rogers and Hollingshead (1988)
considered that the effects on damping may be important. Many other
researchers associate cracks in structures with bilinear oscillators due to
the changes in stiffness and damping produced by the presence of the

crack.

For cracked shafts it is important to mention Muszynska (1982), who
investigated cracked shafts with non-symmetric cross-sections. Schmied
and Krimer (1984) modeled the crack and the opening and closing
mechanism using continuous functions. Papadopoulos and Dimarogonas
(1988) represented the stiffness of the shaft at the crack position by a

6



cosine series. Gasch, Person and Weitz (1988) dealt with hollow shafts and
made a comparison between approximate crack models and exact models
based on thin-walled shell theory. Wauer (1990a) conducted a literature
survey on the dynamics of cracked shafts. Wauer (1990b) derived the
equations of motion for a cracked Timoshenko shaft. He considered forces
leading to reduced stiffness and damping and simulating the open crack.
A term for the closed crack was also included. Wauer also discussed a
Bernoulli-Euler beam. Collins, Plaut and Wauer (1991) investigated the
detection of cracks in rotating shafts using axial impulses. Finally, Rajab
and Al-Sabeeh (1991) studied the dynamic characteristics of a cracked
Timoshenko shaft, giving curves of natural frequencies with respect to

crack depth and crack position.



Chapter 2

Physical Model

The ideal model, shown in Figure 2.1, consists of a uniform non-circular
shaft with length L, rotating at an angular speed @, a function of time.
There is a crack located at a distance b from the end of the shaft,
where 0 £ b £ L. . The angle ¥y measures the slope between the x-axis
and a horizontal plane. It was included to consider all possible
orientations between the horizontal and the vertical. If y is 0, the x-axis
lies in a horizontal plane and the positive z-axis is in the direction of

gravity.

Two coordinate systems are defined for the modeling, one fixed (x,y,z) in
which the x axis coincides with the axial direction of the shaft, and the
other one (§,,{) rotating with the same angular speed as the shaft. In
the transverse section there are two axes of symmetry, 1 and 2, also
called the principal axes, with the 1-axis always parallel to the {-axis and
the 2-axis parallel to the n-axis, as shown in Figure 2.2. Two moments of
inertia, I, and I,, related to axes 1 and 2, respectively, define the
‘geometric characteristics of the shaft. The centroid of the transverse
section is assumed to be different from the mass center. The distance e
in Figure 2.2 is the eccentricity and 6 the location angle of the center

8



of mass. The coordinates of motion, V and W, are time- and
space-dependent and are measured in the (§,m,{) coordinate system. The
crack is defined by its depth, called a, and it has a straight edge
parallel to the 2-axis, This is supposedly the worst orientation
(Wauer,1990b; Muszynska, 1982). h, is the distance from the center of the
uncracked cross-section to the perimeter of the shaft measured in the 2
direction; and h, is the same measured in the 1 direction. In this study
it is assumed that the 2 direction has a smaller value of moment of inertia

than the 1 direction, or in other words, h, is less than h,.

Except for the crack, the shaft is assumed to be uniform with mass per
unit length n, Young'’s modulus E and moments of inertia I, and I, with

respect to axis 1 and 2, respectively.

Three types of damping are considered: external d, (viscous), internal
d; (viscoelastic), and damping at the crack d_. when it is closed. Only
transverse displacements (V and W) are taken into account in the
present study so the model follows the Euler-Bernoulli theory for elastic

beams. Gyroscopic effects are also included in the model.

The effect of the crack is represented by two generalized forces
(moments) F and f, see Figure 2.3, corresponding to the influence of the
crack on the stiffness of the shaft and on the damping, respectively.
Figure 2.3 shows these two forces and also the quantities b_ and b,

which will be defined in the next section. In general, it is supposed that
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Figure 2.1 Physical model of the cracked shaft.
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section

Figure 2.2 Coordinate systems and shaft transverse
at crack position.

parameters
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Figure 2.3 Generalized forces F and f.
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the crack produces a weakness in the shaft, so the stiffness is smaller

in the cracked shaft than in the uncracked one.

Mathematical Model

The governing equations are derived by Wauer (1990b) and therefore the
details are not discussed in this thesis. Some comments are presented

about this formulation:

» The effect of the crack is considered as a decrease of the

stiffness and an increase 6f the damping of the shaft.

+ The shaft is considered uniform along its whole length and
the discontinuities in stiffness and damping at the crack are
represented by generalized forces F and f, respectively, as
depicted in Figure 2.3. This idea was used before by other
authors such as Kirmser (1944), Thomson (1949), Petroski
(1981), Petroski and Glazik (1980) and Chang and Petroski

(1986).

* An Euler-Bernoulli bending shaft is assumed. The gyroscopic

effects are considered in the mathematical formulation.

The two following equations of motion used in this work follow those
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formulated by Wauer:

ELY o WY 200 W,-@’pV-9pW+d u(V,-o W)

+ELAY e +(1-Nd p (V- g W)3(x-b)

(2.1)
+A[8/(x-b,)-8'(x-b)}(M+m,)
= pgsin(8) +ep[p’cos(3)+ $eos(3)]
pErg
TELW,__+uW, +2¢pV,-@*pW+opV+d u(W,r@V)
sTELAW,__+(1-Nd,u(W+pV)8(x-b)
(2.2)

-A[8(x-b,)-8'(x-b ) )M, +m,)

= pgeos(6) +ep[@’sin(3)- pcos(3)]

The subscripts x and t represent derivatives with respect to x and t,
respectively. The crack width parameter € is used to define the

coordinates of the two faces of the open crack:

b,=b+(ef2) ; b_=b-(ef2) (2.3)

The open and closed states are handled by the variable A It can take

two values:

A=iliopen crack (2.4)
" D:closed crack
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The parameter I' is the ratio between the inertias I, and I,; 6 is the
rotational angle. ¢ and ¢ are the rotational velocity and acceleration,

respectively, and they are defined by

a

- -
*=at ‘¢

T (2.5)

Having defined the discontinuity produced by the crack in this way, the
equations are valid for the whole structure. So, solutions for uniform
shafts can be used to solve the cracked shaft.

The generalized forces F and f can be obtained by equating the following

expressions of the displacements:

V,(b,, t) -Vy(b_, t) =C EI, V. (b, t)

W(b,0)-W,(b_f=cssELW,(b.)

and

V. (b,1)-V,(b_d)=c ELdV, (b))

Wu(b 0)-W(b_t)=cs ElLd W, (b))
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where b can be either b, or b_, and C,, and C;; are the compliances
defined as the inverse of the stiffness coeficients k,, and kg;. The
compliances are functions of the ratio of the crack depthband the bar
diameter. The displacements also satisfy:

V(b O)-V.(b_ D= M,
x 4-’t X -’t _eEI1

M
W,.0-W(b_)=-e—1
EIZ

m

Vulb -V (b H=e—
1

m
W.'(b*,t)- Wa(b-!t)= -t d_'EFI;

Then, combining these equations,

e
EI(MC+mC)=C“EIl(Vn+diVu)L.5

e
EZ(M“ +m, )= —C”Elz(Wu+d,Wu)L ’
The final expressions for the generalized forces are

EI
(Mc+m¢>=c“¥<vn+dml
b

16



2
(My+m, ) =-Cgg (Eiz) (W +d s W)

x=b

The two equations of motion become

ELV__ +pV,-20pW,-0*uV-ppW+d,u(V,-oW)

SELAY o+ (1-N)d,u(V,- o )3 (x-b)

(2.6)
EI
+A[8/(x-b,)-8'(x-b))]c,, ( 81)2 -(Vn+d,Vm)]'_ .
=pgsin(8) +ep[o>cos(8)+ psin(8)]
TELW__+pW, +2¢uVabt-@ >y W+puV+d p(W,-oV)
+TELAW,_+(1-A)d_ (W +oV)3(x-b)
(2.7)

+A[8/(x-b,)-8'(x-b )]C”I'QEI—12 W_+d W"‘JL
- € xx i b

= pgeos(6) +ep(@sin(8)- pcos(3))

The crack is supposed to be either completely closed or open at a given
time. VThis means that the equations of motion are linear within each
period of time in which the crack remains open or closed. But they can
be different from one period of time to another, so that the system is no

longer linear but bilinear. The determination of the time when the crack
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passes from open to closed, and vice versa, can be of relative importance
in the behavior of the shaft. This process of changing the state of the
crack from open to closed and vice versa is called "breathing"”. The open
or closed condition can be expressed in mathematical terms as follows:

W1l = <0 for open crack
"“L-b- for closed crack

Solution

As was mentioned previously, the system of differential equations was
solved with the use of Galerkin’s method. It consists of predefining
approximate solutions satisfying the boundary conditions of the system.
Since the assumed solutions must satisfy the boundary conditions, these
must be defined previously. In this thesis it will be assumed that the
shaft is simply supported at its ends. Following is the mathematical

expression of the boundary conditions:

V(0,0)=W(0,0)=VL,H)=W(L)=0
ELV,_(0.)=ELW,_(0,=0 (2.8)

ELV_(L5)=ELW,_(L£)=0

The proposed approximate solutions, depending on time and on the spatial

coordinate x, are:
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Vix,0)= E V,,(t)sin
k=
: (2.9)

Wz)=Y. Wy(oein 22
k=1

where V, and W, are unknown functions of time and the sines are the

assumed space coordinate dependent functions. It is very simple to prove

that these approximate solutions satisfy the boundary conditions.

Once the assumed functions are selected, they are substituted into the

equations of motion, which are then made orthogonal to each of the sine

functions

equations

in the expansions. This leads to a system of differential

depending only on time. Substituting in the first equation:
12 4 —) sin—"= E me—-2vu2 W@m
-9 uE VenE- E“&ﬂin %.d, (2: VaintEE
-oY Wsink™y. py dE Vi oin
k=1 (2.10)

+(1-AM u(z Vsin 22 -q»E Wain2)3e-b)

o (kn¥ . knb
f {T)“‘“T’

= pgsin(6) +ep[p’cos(3)+ psin(3)]

-A[d/(x-b,)-8/(x-b)lc,, Chs
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By multiplying both sides by the sine functions (sin{nrx/L), n=1,...m) and
integrating over the whole domain, it is possible to obtain a set of

differential equations depending only on time:
L » ‘
kx
JiEnY v, 7) E ".sin——-ZWE W.sin—
'Y k=1

-® uE Vesin -WE W‘sin 2+d, ME V@m

-q;E Wksm—)+EI d, 1 —) sin F=%

+(1-A)d u(): vm_-¢z WsinF22)5z-b) (2:11)

1)2

~ALBG-B)-8(x-b e, A

+d,l"‘){ i )—)1sin£’£’£dx

L
-[ [ugsin(e)uu(v’oos(a)wdn(a»]sin”—fdx
0

Each integral is calculated separately for the n equations:

L Oif k#n
kn knx . nrx
ELV, (—-) sin—=sin——dx=
{ L L L El V"E ﬂ) if k=n
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0 if k»n

L
> ] 3 n“x
pV,sin—sin—dx={
{ L uV.—;i if k=n

0 if k»n
200W ——sinm .
f o L ZWW.%# k=n

L 0 if k»n
2 .. knx . nxx
o°u, sin—th- .
[ouran” oV, L if kon
2
0 if k¥n

¢pr—mﬂ¢
f L | ouw, 2 i ken

O if k»n

ol krnx . nnx
d,p.E Vksm——sin—dx- .
{ k=1 L L dp Vu% if k=n
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L 0if k#n
. kxx . nmx

d,peW,sin——sin——dx= L

'[ L L dpo W"E if k=n

(4

O if k»n

L
. (kx\. knx . nxx
‘[ L L L EI,d,V_E("—Z) if k=n

and since

b
[Ax)Bx-E)dx=RE)asE sb)

f(x) being a function defined in the interval (a,b)

L »
[X V,sinEZgin % g x_pyie=3" V,sin K0 in MTE
o k-1 L L =1 L L

L »
o k-1 L L =1 L L

and

r ELY & ko, kxb  nu
[AIF (-5 )-8'(c-b e, =Y (C-PVsin="sin"dx
s e -1 L L L

_ nn . nrben(kx\., . knb
Aeu '] [n P23 (| VT



7
/
/

g
4

L ;
[AIBGx-b)-8(x-b e, (LY
(1]

»n
4y (iz-)zv,m-k"—”sin"—;“‘dx
=1

st et

since

L
fal(x -b )mnﬂxdx—fﬁl(x—b_)ﬁn-’-‘LEh=lﬁ(x_b‘)sinn_:_x_lol‘
0

f 3(x-b, )ﬂ ﬂdx ~[3(x-b )mn"""‘]0 fa(x b) cos X dx

L
The first and third terms are 0; then
nnb nnb
fa'(x b)m"“‘dx fa'( b )smﬂdx--T[cos = -cos ’;'1

=- IR (DR gip WD)

2
nx, nxe . nxb, (nx esin nnb
L L L

On the right hand side
]
[1(gsind+e[67coss +Osin6])dn"—zxdr=p[gsine
(4

+e(@%cosd +6sin6)]—(1_(;l)l)—i—

since
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! - Oifnis even
fsm—L-dx= 3I‘-ifni.f»'odd
0 nn

Then the generic final n equation becomes

L L L
L +pV, -I-'-2wW =-o*uV,Z-puW,

ELV(EEyZ
II(L) l2 lz

+d,p(l?,—¢ W,)é

+EIdV("")4£+(1 Ny ’”‘"E(sm——-(v —oW))
(2.12)

2 .
_Ac (El, )‘(’"‘T nnby [L)(Vk+dil’b)sin%—b

=L1_-_£ﬂ Li[gsin6 +e(@?cosd + psind)]
Y13

The generic second n equation in the W direction is obtained following

the same procedure:

L L L. oL : L
W(—)‘—+uW LT At T At U AL A

+ELA W (L +(1-N)d i ""”E(sm—ﬁ(wa,)

(2.13)
L =

_Ac,s(EI,)z( r by (%)A(Wfdiﬁ’,)sin—k%b

=£-f:1_)”lzp[gwse+¢(¢=¢osa-¢sina)1
¥/

With the following definitions it is possible to get a set of non-dimension-

al equations:
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V.=VJL ; W,=W,JL

_f-ﬂL ; EsblL
Y
L*N »

2 [E
g‘=12 —d,
A (2.14)

, —
L | Ly,

=2\ El
d=2L | Lg

n2\ El
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Plugging in (2.12) and (2.13)

L&V, dw, . . 4V,
ntv + d:; -2Q -QZV,-nW;d,(E-—QWH)
dav - dy, -

% +(1-A)d siny Y siny (—=-QW,)
dz k=1 dt

= _dV
~2Aé nsiny Y P(Vpd,—zf)siny .
k=1 T

T

n'd,

(2.15)
=E'_(;M[ﬁsh:9+é'(ﬂzoosb+ﬁsin6)]

_ W, av L _dW,
M

+I'n*d, w, +(1-A)d siny Y sin6 ( il +Qv)
dt k=1 dt =
LIS | 7
~2%AE nsiny Y k(W +d,
k=1

Ey .
Sin'
d‘t) Y

=Ei;m[ﬁoos6+é‘(ﬂzsinb—ﬁcos6)]

(2.16)

Then, solving this system of differential equations in time, or in other
words, getting functions for the V ’'s and W,'s , the complete solution can
be obtained by multiplying these functions by sin (nwx/L) and combining

terms.

Unfortunately, the complexity of the system makes it difficult to find
closed form solutions for the Vn’s and W, ’s, so numerical integration is

used in this thesis. Therefore, approximate values of the time-dependent
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functions V_  and W, are obtained.

In order to solve the system of differential equations, a FORTRAN

computer program is written. The main features of the program are:

* The numerical integration of the system of differential
equations is carried out by the subroutine DIVPAG from IMSL
(International Mathematics and Statistical Libraries). This
subroutine implements for the computer the multi-step Adams-

Moulton predictor-corrector method.

*+ Determination of the transition point between open and
closed conditions using the criterion previously mentioned. A
tolerance provided by the user is admitted by the program. In

this thesis the value 10~° is used.

- The program includes different rates of rotational accelera-

tion and deceleration.

+ For acceleration, the program has the possibility of defining
a period of steady angular rotation after the process of

acceleration.

+ For deceleration, the program looks for a steady state
before it initiates the deceleration process. For testing if the
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steady state is achieved, the program compares the values of
two consecutive peaks; if the difference between the peaks is
less than a given tolerance, the steady state is assumed. In

this work the tolerance is 1%.

» For both cases, acceleration and deceleration, the program
gives values of displacements referred to the rotating system
for every time step. The maximum value of the displacement
in the Z direction and the time when it is produced are also

given by the program.

The system to be solved in this thesis has the following general form:

v, dv, dw, _ _ _
A +B—2+C,—2+D V +E W,+G =F (6,Q,0)
dr? dt dz

W, 4w, dv,
+ +C +Dan+Ean+Gw=FW(B,Q,ﬁ)

A w w
dt? dt dt

w

The DIVPAG subroutine works only with first-order systems. In order to
get a first-order system equivalent to the second order system used in
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this work, the following definitions are made:

) av,
Yul= Vn s L50 =-_d1.'— =Y:+h+l

-~

_ . dW,
Y=W, YJ+2=—E;=Yuh+2

av, dv,

- R, - 1]
Yuhﬂ-?‘t— ’ Yuh-&l- d‘tz

Then the equivalent system used in the program is

Yn1=Yu2-*l

) ) AP

34+, 3+,

A ’;:n?au 1 +B st+2n+l + Cvr;+2m+2+D vY:-r 1 +EvY.r+2+ GV=F ,(9,0,0)

v

Awi:umuz +B, w 342&02*' wY.uz.m +D wY ,.2+Ew’:,1 +GW=F ,,(O,Q,Q)

where s=2(n-1); m is the highest mode considered and n, the number of
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the mode corresponding to the equation, ranges between 1 and m.
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CHAPTER 3

SHAFT PARAMETERS

The shaft parameters used in this thesis are defined in terms of non-
dimensional quantities, in order to make them comparable with previous
and future research.

Some values are defined as a function of the ratio L/R, R being the
radius for a circular cross section or h, for elliptical shafts. A set of
parameters is defined as a standard case and some variations over this
set are made in the next sections. For the standard case the following

parameters are used:

L=10/
R=1/
b=0.4
&=0.0016
8=0.75n
a/D=0.2

where a is the crack depth and D is the shaft diameter. For a circular

cross section the values of damping (see expressions 2.14) are chosen as
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The compliances depend on the ratios a/D and L/R. Table 3.1 (a) shows
the adopted expressions for the compliances. These values are based on

Papadopoulos and Dimarogonas (1988).

The gravity parameter is given by the expression

fi= 2.99x1077 L?
2x%? R?
Then for L/R=10

d,=0.32
d;=0.031

f=1.5x10%

and the values of compliances for each a/D are presented in

Table 3.1 (b). Five terms are used in the expansions (2.9), so that m=5.
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Table 3.1 Compliances: (a) expressions; (b) values for

L/R=10.
a/D
Compliances
0.1 0.2 0.3
6“ 0.02275R/L 0.0475R/L 0.17225R/L
Ess 0.09625R/L 0.6375R/L 1.7225R/L
(a)
a/D
Compliances
0.1 0.2 0.3
é“ 0.0023 0.0048 0.0172
és 0.0096 0.0638 0.1723
| ———— — e —— —

(b)




Natural Frequencies

Since the behavior of the shaft changes when it is under angular
rotating speeds close to the critical angular velocity, it seems interesting
to know the values of these critical speeds. To achieve this goal, an
uncracked , undamped shaft is analyzed. Because the natural frequencies
do not depend on the loads, the gravity and eccentricity are also set to
zero. Since we are interested in the behavior under a determined rotating
speed, the angular acceleration is also taken as zero. These conditions in

mathematical terms are

d;=0 ; d,=0 ; d =0 ; &=0

(3.1)
d20

i

fi=0 ; A=0 ;

Under these assumptions the equations of motion for mode n become

d2v, daw o
4 n_ n_N2\7 =
n‘v,+—=2-20 Q3v =0

. d?W avy, .
Tn*i.+ dt;*+zn dt“-n W.=0

or
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2y
Y, (n*-Q2%) V,-20Q dn, =0
de

dt
(3.2)
d?w, dav,
=t (F'n*-Q3) W +20Q dt" =0

There are as many pairs of equations like this as modes are considered.

To get the first critical speed let n=1 and assume as solutions

f___Vie.iot ; W"'___Wle.iut

Then, using these in (3.2) and considering a circular cross section (I'=1},

-V, 02ei®"+ (1-Q2) V,ei*-2QW, inei®*=0

-W,0?ei®%+ (1-Q%) W,ei*+2QV,iwel® =0
In matrix form
((1-((02*'02) ~-20w1 ) . Vl - o (3.3)
2Qwi (1- (02+023)) W) {©

To get a solution different from zero, the determinant of the matrix must

be zero. So, the characteristic equation is found:

[1- (02+02) ]2+4Q20212=0

or
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Q4-202 (1+032) + (1-w3)2=0 (3.4)

From this equation it is possible to get Q? (angular frequency squared)

as a function of @2 ( natural frequency squared):

Q2=1+0%120

Figure 3.1 shows this relation.

For a cracked shaft, considering the crack always open and a one-mode

analysis, the equations are
-V,0%ei%+ (1-Q%) V01 -2QW, iv e -26,,8in%$, V0147 =0

-W,03el%%+ (1-Q2%) W, e 4" +2QV, iv e %-2&,,8in%P, W,01**=0

where ¢,=nb/L. The matrix form is

(1- (w2+Q3?) -2, ,8in?%¢, -2Qwi )

v [o
2Qei 1- (@?+0?)-28&,8in2¢,) W) |O]

and the characteristic equation is
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(1-w2-Q2-28,,8in%}) (1-w2-Q2-2&,,5in%¢) -4Q%w?=0 (3.5)

Calling
a,=1-w?*-28&,,sin%p,

the equation becomes

(a,-0?) (a,-w?) -4Q%w?=0

or
Q¢-Q2 (a,+a,+4w?) +a,a,=0
If
b,=a,+a,+4w?=2+2w?-2s8in?¢, (& + &)
then

Q2= blt\/blidalaz

2

Figures 3.2 show this relation graphically.

To find the natural frequency let 2=0 in the expression (3.5):

(3.6)
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w2=1-2&,,8in’*xb

w2=1-2&sin*nb

and two values of the natural frequency can be obtained

If

=1/2 ; &,,=0.0048 ; &,=0.0638

=0.9904 = w=0.995
w2
=0.8736 = w=0.9347

Then the lowest natural frequency for the cracked shaft is 0.9347 or 6%

lower than the natural frequency for the uncracked shaft. This result

agrees with those given by Rajab and Al-Sabeeh (1991).

To determine the second natural frequency, the value of m must be 2 at

least. Considering a two-mode approximation with the first two modes, the

system of equtions is (from equations 2.15 and 2.16)

7+ L% 209 02y _26,8in(xB) [V;sin(xB) +aVsin (x5) ] =0

T de? dt 174C81nin 181in(w 281N{RD) | =
. -

W+ d*H, +20 av, _Q2ﬁl-2¢ysssin(u,5') [Wlsimt.5'+4l'z‘,81n (=b)]1=0

dt? dt



4V 0.9 oy v v
3 -ZOT_ ,-8&,,81n(2n6) [V,sin(nb) +4V;sin(2xb)) =0

16 V,+

d*W, _ _ dv.

16 H,+ o +20?’-02ﬁ,-865551n(2n5) [W,sin(nb) +4H,sin(2nb)) =0

Let
!7"1=V1ei"” : W‘“l:ﬁleiot : ‘}'2=Vzeiut : ;72=er10$

Plugging into the equations and eliminating e®% the following expressions

are obtained:
V,-0%V,-2QieW,-Q?V,-2&,,8in? (xbT V,) -8&,,8in (x5) sin (2xnb) V,=0
W,-03W,+2Qi0V,-Q%W,-2&,,8in? (xB) W,-8&,8in (nb) sin (2x5) W,=0
16 V,~0?V,-2QiwN,-Q?Vv,-8&,,8in (2x5) sin (xb) V,-32&,,8in? (2x5) V,=0

16 W,-0*W,+2Q i V,-Q*W,-8&;,8in (2x5) sin (xb) W,-32&,8in? (2n5) W,=0

Using the following definitions
a,,;=1-26&,8in’*nb-0? ; a,,=-8&,,sinwbsin2nb
2,,=1-20858in*nb-w? ; a,,=-88;sinnbsin2nb
a,,=-88,,sinnbsin2xb ; a,;=16-32&,sin’*nb-0?

a,,=-88sinnbsin2xb ; a,,=16-326&,sin’2nb-w?
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the system becomes

a,,-02 -2Qwi

a,, 0

o

|

> =4

o)

(3.8)

Again, in order to get non-trivial solutions, the determinant of this matrix

must be zero. It is possible to find relations between the values of 9% and

@? such that non-zero solutions are obtained, expanding the determinant

of the matrix and finding its roots. The characteristic equation is

AQ%+BQS+CN4+DQ2+E=0

where:

A=1

-— 2
B==(a,,+a;,+a;,+a,,+80*)

C=a,,8,,%85;38,,+@3,85,+8,,8,,+8,,85,%8,8,,

2 ¢
~8,,83-8,38,,+40% (8;,+8,,+8;,+8,,) +16®
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D=-(8,1853844+853833844+81185,@33+8,, 85,8y,
2
+40% (8;,8,,+85,8,+85,8,4+8,38,,) +8,,8,,3,,

+8,,8,,8,,+8,385,8,,+8,,85,8,,)

E=a,,8,,8338,478,,8,4847833" 81383, 85,8,4%8,385,8,,8,,

A computer program to find the roots of this equation was written using
the IMSL subroutine DZPLRC, which determines the roots of a polynomial
with real coeficients., Numerous runs using the standard parameters were
made for different values of ® and the results are shown in Figures 3.3

and 3.4 for the uncracked and cracked shafts, respectively.

The angular velocities 2 corresponding to angular frequencies @ =0 are
the critical speeds. In Figure 3.3 ( uncracked shaft) there is one value
of @ for each mode giving ®w=0. For cracked shafts there are more than
one as seen in Figure 3.4. Furthermore, for the current shaft parameters
there is not a large difference in the critical speeds and consequently in
natural frequencies between the cracked and uncracked shaft.

Table 3.2 presents the critical speeds for the uncracked and cracked
shaft for the first and second modes using m equal to 1 and 2, for the

standard case (5 =0.4, a/D=0.2)
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Table 3.2 Critical

Uncracked shaft;

speeds and natural
(b) Cracked sahft.

frequencies:

(a)

UNCRACKED
m=1 m=2
0Z=0 0Z=0
n? a 02 a
Mode 1 1 1 1 1
Mode 2 - - 16 4
(a)
CRACKED
=1 m=2
w=0 wZ=0
a? a a? Q
T
0.8846 0.9405 0.8790 0.9375
Mode 1
0.9913 0.9956 0.9913 0.9956
- - 15.3019 3.9118
Mode 2
- - 15.9454 3.9932
(b)
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[Enlarged below
40.4
20.

0 [10 20 30 4 50 60 70 80 90 100
Natural Frequency Squared

(a)

0

(3]

b

Angular Velocity Squared
n

-t
i

0 1 2 3 4 5
Natural Frequency Squared
(b)
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Chapter 4

Results

Several runs of the program are made in order to determine the influence
of the different parameters of the equations of motion on the response of
the system.

The first set of processes is intended to study the influence of the rate
of acceleration and deceleration on the maximum transverse displacement
of the shaft.

For all the cases mentioned, time histories of displacements Z are
presented. For selected cases, time histories for Y, V and W displacements
are included as well as the orbits followed by the shaft during the
motion. Summary figures and tables are also included.

The second set of runs focuses on the importance of the location angle
of the center of mass, 8§, on the behavior of the shaft; very interesting
results are found on this topic.

The influence of crack position and the effect of the crack depth
complete the work done in this thesis.

As was mentioned previously, a standard case of parameters is always
used unless different values for any of them are specifically stated.

In all the cases presented the expressions for Z and Y are

Y=V(X,t) cos0-W(X, <) 8ind
(4.1)

Z=V(%,t) sin®+W (%2, t) coso
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For most of the cases, three kinds of runs are made: without a crack,
with a crack always open and with a crack including the breathing
process. The second case is not a realistic case, but it is included to
have an idea of how the crack can influence the behavior of the shaft.
The first and the last cases are, actually, the real situations and
consequently those of interest. For the cracked shaft, the more the crack
is open during the motion, the more the results are close to the always-
open case, and the more the crack is closed, the more the displacements
resemble those obtained with the no-crack parameters. As a first
impression, the first and second cases should be the upper and lower
limits and between them should be the third one, that is, the cracked
shaft. But this is not true in all the cases, as the results of this work
will show in the next sections. Another predictable result, that is, if the
shaft has more stiffness the displacement will be larger, is not absolutely
true for all the cases. This will also be seen in the results to be

presented.

Influence of acceleration and deceleration

The influence of rate of acceleration is handled by putting a shaft with
the standard parameters under a linear acceleration until the angular
speed reaches the value of 2 rad/sec; then this steady rotating velocity
is held during a period of time long enough so that steady motion is
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achieved. The expressions for the angular velocity are

Q=At - OStst1
(4.2)

Q

2 =

where t, is the time when Q reaches the value 2. Note that the critical
angular speed for the first mode of the uncracked shaft is Q=1. Figure
4.1 shows graphically these expressions for the different values of A

used.

Figures 4.2 to 4.16 show time histories of the Z displacement measured at
%=0.7, for A=0.01, A=0.02, A=0.03, A=0.04 and A=0.05 for the three cases
mentioned: no crack, always open crack and breathing. For A=0.02, time
histories of Y, V and W displacements and the orbits followed by the
shaft during the motion are also presented in Figures 4.17 - 4.19 for the
uncracked shaft case, Figures 4.20 - 4.22 for the always open crack case,
and Figures 4.23 - 4.25 for the breathing case. In all the cases the initial
condition is rest or, in other words, all the initial displacements and
velocities equal zero.

The value t_,;, is defined as the time when the shaft reaches the critical

cri
angular speed. So, for the uncracked shaft under angular acceleration,
it is the time when Q=1, and for the always open crack it is when

2=0.9374 (see section 3.6). For the deceleration case, Tori¢ 16 the same for

the uncracked shaft and occurs when 2=0.995 for the always open crack.
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Tpax 15 the time when the maximum displacement, positive or negative,

occurs. As the time histories show, t_.;, is smaller than t_,, in all the

cases and as the rate of acceleration increases, t_.;, and t, .  become
closer. The solid lines in the graphs mean closed crack or no crack and
the dashed lines represent an open crack. This convention is used in all
the time history graphs except in those showing the V and W displace-

ments, where the solid lines are V and the dashed represent W.

An inspection of these figures shows that the uncracked shaft has tm’s
larger than the cracked shaft as a direct result of the difference in their

respective t t’s. Also, it is noted that for the breathing case, the crack

cri
is open until the maximum displacement occurs, and when the steady
motion is reached the crack remains closed. This situation produces very

close values of the maximum displacement for both cases of always open

crack and breathing.

A view of the V and W displacements shows that both have maximum
values at times close to the already mentioned t_,,, but once the steady
motion is reached there is no longer an important oscillatory motion with
positive and negative values, but a small oscillation about the equilibrium
point,. relatively negligible if it is compared with the Z and Y displace-
ments. This means that the whirling motion is the most important when
the angular velocity becomes a constant.

Tables 4.1 and 4.2 present a summary of the results shown in the
previous figures. They show the maximum values of the vertical displace-

50



ment Z found for each case: no crack, crack always open and crack with

breathing.

The observation of these tables and figures makes clear that for the
cracked shaft, changes in the rate of acceleration produce changes in the
maximum displacement Z, usually making it smaller as the value of A
increases. The opposite happens for the uncracked shaft; usually the
maximum Z displacement increases with the rate of acceleration. Almost the
same effect is obtained in both values of Z: at %=0.7 and the maximum
over the whole length. The irregularities in the values are caused by the
numerical method used for the computation of Z. It should be noted that
there is an appreciable difference between cracked and uncracked shafts,
resulting in a possible means for detecting the presence of cracks.
Figures 4.26 and 4.27 show graphically the same results presented in

Tables 4.1 and 4.2.

For the deceleration case, it seems important to find a steady state of
motion and then start the deceleration. For this reason, a modification in
the computer program is made in order to get the time when two
successive peaks in the displacement Z differ from each other by less
than a given tolerance. For the runs made for this work, this tolerance

is 0.0001.

Once the steady state is achieved, the deceleration process is started and
it follows the rule
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Q=2-A1 (4.3)

Figure 4.28 shows Q as a function of t for the values of A used in the

time histories.

As was done in the acceleration case, time histories are presented for
some values of A in Figures 4.29 to 4.43, and for A=0.02, time histories of
Y, V and W displacements and the orbits followed by the shaft are also
shown in Figures 4.44 - 4.46 for an uncracked shaft, in Figures 4.47 -
4,49 for an always open crack , and in Figures 4.50 - 4,52 for a

breathing crack.

The effect of the crack seems to be more predictable in deceleration than
in acceleration. An observation of the time history graphs shows that the
response is larger with smaller stiffness of the shaft. So, the more the
crack is open, the greater is the response. There is also a very clear
decrease in the maximum amplitude with an increase in the value A or
rate of deceleration. Another highlight is the fact that as the shaft leaves
the steady condition, the breathing crack passes from closed to open, as
seen in Figures 4.39 - 4.43.

Figures 4.53 and 4.54 present graphically Z_, at %¥=0.7 (the maximum 2

displacement at X¥=0.7) and Zpax (the maximum Z displacement over the

X
whole shaft) as a function of A. As was mentioned in the previous para-

graph, in deceleration, as the value of A increases, the response
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decreases and, differently than in acceleration, this is wvalid for all the
cases, with and without crack. The cause for this behavior may be the
fact that in acceleration the force applied to the system increases with
A, producing larger displacements that equilibrate the decrease due to
the larger acceleration. So, as Figures 4.26 and 4.27 show, the final
change in the response is not important. But in deceleration, as the
rotating velocity decreases, the force decreases and this, added to the

lower time for building up the resonance phenomenon, produces a bigger

difference than in acceleration.

The similarity between the values for breathing and always- open cracks
is due to the fact that the shaft is always open until the maximum
displacement is reached, as the time histories show. In the next section
it will be shown that for other wvalues of 8, the results for breathing

differ from those obtained for the crack always open.

The time histories show that there is not a process of breathing but a
change in the state of the crack from open to closed or vice versa. The
reason for this may be the fact that all the processes were started from

rest and with values of damping different from zero.
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Figure 4.22 Orbits Open crack, acceleration: (a) before 7. ;
(b) after 7.
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Figure 4.25 Orbits Breathing crack, acceleration: (a) before

Toax'! (P) after 7.
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Table 4.1 Effect of acceleration on Z displacement at %=0.7.

X 2, at x=0.7

No crack Open crack Breathing
0.005 0.0Q8§5 0.01023 0.01023
0.006 0.608;2 0.01017 0.01017
0.007 0.00876 0.01019 0.01019
0.008 0.00879 0.01022 0.01022
0.009 0;00885 0.01023 0.01023
0.010 Q;09887 0.01018 0.01018
0.020 0.908?8 0.00999 0.00999
0.030 0.0091d 0.00992 0.00993
0.040 0.00903 0.00987 0.00987
0.050 0.09921 0.00955 0.00955

DN
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Table 4.2 Effect of acceleration on the maximum Z displacement
over the whole length.

- (Whole length)

’ No crack open crack Breathing
0.005 0.01070 0.01284 0.01284
0.006 0.01078 0.01277 0.01277
0.007 0.01083 0.01271 0.01271
0.008 0.01087 0.01279 0.01279
0.009 0.01094 0.01278 0.01278
0.010 0.01098 0.01273 0.01273
0.020 0.01112 0.01245 0.01245
0.030 0.01127 0.01231 0.01229
0.040 0.01191 0.01224 0.01224
0.050 0.01142 0.01185 0.01189




0.01
INFLUENCE OF RATE OF ACCELERATION
Zmax atx=0.7
o] S
oot 0 T T
B -
g | Breathing and open crack / \\\\\ N
0.008+
N_O—CHACK
SI;_EN CRACK
..E..
>\ BREATHING
0.008 , _
0.005 0.020 0.035 0.050

Figure 4.26 Effect of acceleration on 2 displacement at %=0.7.
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0.014

INFLUENCE OF RATE OF ACCELERATION
Zmax (whole length)

~——
~——n
~——
-

Breathing and open crack

0.0114 NO CRACK

OPEN CRACK
-3
BREATHING

0010 T T
0.0

Figure 4.27 Effect of acceleration on the maximum Z displace-
cent over the whole length.



0 ANGULAR VELOCITIES

Figure 4.28 Rates of deceleration.
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Figure 4.49 Orbits Open crack, deceleration: (a) before 7 .;
(b) after 7.
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Figure 4.52 Orbits Breathing crack, deceleration: (a) before

Taax? (D) after 7.
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Table 4.3 Effect of deceleration on Z displacement at %=0.7.

N Z,. at ¥=0.7
No crack Open crack Breathing
0.005 0.00775 0.00923 0.00923
0.006 0.00766 0.00908 0.00907
0.007 0.00758 0.00894 0.00894
0.008 0.00749 0.00880 0.00880
0.009 0.00737 0.00864 0.00864
0.010 0.00732 0.00852 0.00852
0.020 0.00663 0.00749 0.00748
0.030 0.00609 0.00683 0.00681
0.040 0.00563 0.00629 0.00630
0.050 0.00513 0.00570 0.00569
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Table 4.4 Effect of deceleration on the maximum Zz displacement
over the whole length.

2. (Whole length) |
’ No crack open crack Breathing
0.005 0.00958 0.01172 0.01172
0.006 0.00947 0.01157 0.01157
0.007 0.00937 0.01137 0.01137
0.008 0.00925 0.01125 0.01125
0.009 0.00911 0.01097 0.01097
0.010 0.00905 0.01093 0.01093
0.020 0.00819 0.00952 0.00951
0.030 0.00752 0.00872 0.00871
0.040 0.00696 0.00808 0.00806
0.050 0.00634 0.00741 0.00739
S
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Figure 4.53 Effect of deceleration on Z displacement at -
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Influence of angle &

Running the program using the standard case parameters and different
values of 8§ in the range 0-2r, several interesting results are found. The
runs are made for both cases: acceleration and deceleration with A=0.02.
Table 4.5 and Figures 4.55 to 4.60 contain results for an accelerated
rotating shaft including the three conditions uncracked, crack always
open and breathing. Z at X¥=0.7 and Zmax were defined previously and the

value R, is defined as

R__-max{yZ?+Y?} along + (4.4)

Table 4.6 and Figures 4.61 to 4.66 also present Z at X=0.7, Zpaxs @nd R,
but for a decelerated shaft. Similarly as before, an assumed steady motion
is achieved before the deceleration starts, using the same criterion as
previously.

It is interesting to note that two values of 6 geometrically symmetric,
like 6=0 and 6=n, do not produce the same result. The possible cause is
the direction of the rotating wvelocity.

Figures 4.58 to 4.60 and 4.64 to 4.66 make clear the fact that an always-
open crack and no crack are not always the upper and lower limits of the
response, respectively. Note that for 8=n/2, the response given by the

breathing case is larger than the response given by the always—-open
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crack and no crack. This situation is the opposite to that found for
8=3n/2.

These results are very interesting because they are contrary to the
primary assumption that the more stiffness the shaft has, the smaller the
displacements are. But a quick analysis of a very simple case shows that
the results are possible. Let us take the uncracked shaft with constant
angular velocity and without damping and eccentricity, and consider just

a one-term approximate solution. From equations (2.15) and (2.16):

V,+V,-2QW,-Q%, = 2{isiny,
(4.5)
W,+W,+2QV,-Q*W, = 2jicosy,

The time histories show that if the shaft reaches a steady state it is

possible to assume

V,=V,=W,=W,=0 (4.6)

Then

(4.7)
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Now defining a as a coefficient of stiffness in order to make the stiffness

of the shaft variable, the two equations are

V,-02V,=2{isiny,

«W,-Q?W,=2{icosy,

and the solutions are

Ve 2jisiny,

' (a-09
(4.8)
) 2jicosy,

' (e-0)

Then the amplitudes of displacements V, and W, depend on the

value of (a—SZz) and not just on a, so an increase in the stiffness can

produce a decrease in amplitude.

Influence of crack position

Since not only the detection of the crack but also its probable position

are of interest, a study of the effect of the crack position is done.
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Several runs of the program are made using the standard parameters and
making B a variable with values ranging between 0 and 1, and A=0.02 for
acceleration and deceleration. The results are presented in Table 4.7 and
Figure 4.67 for acceleration, and Table 4.8 and Figure 4.68 for
deceleration. As is shown in the figures, there is symmetry in the
position of the crack with respect to the maximum displacement 2Z
produced over the whole length. There is no difference between an
always-open crack and the more realistic case of breathing. The symmetry
is no longer true if the wvalues of the displacement are taken at a
particular point, with the exception if that point is in the middle of the
shaft. The maximum displacement Z occurs when the crack is in the middle

of the shaft.

Influence of crack depth

In order to get an idea of the influence of the depth of the crack on the
dynamic response, some runs with different values of the ratio a/D are
made. Table 4.9 presents the values of a/D used and the Z displacements
obtained for each of them and Figure 4.69 shows the same values
graphically for acceleration and Table 4.10 and Figure 6.70 present the
same values for deceleration. It is clear that the response changes
dramatically with the crack depth, corresponding to an increase in the Z
displacement with a/D. It should be noted that the change in the crack

depth is modeled as a change in the &,, and &;; parameters and the

115



values used for each ratio a/D are presented in Tables 4.9 and 4.10.
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Table 4.5 Influence of § with acceleration.
Crack always open,

(c) Breathing crack.

(a) No crack,

(b)

3 zat X=0.7 Zmax Rmax
0 0.00852 0.01055 0.01065
n/2 0.00919 0.01137 0.01138
m 0.00867 0.01073 0.01074
3nr/2 0.00935 0.01157 0.01157
(a)
3l
J Zat X=0.7 Zmax Rmax
0 0.00874 0.01111 0.01112
n/2 0.00914 0.01140 0.01140
T 0.00857 0.01089 0.01094
3r/2 0.00897 0.01118 0.01119
(b)
s Zat X=0.7 Zmax Rmax
0 0.00853 0.01055 0.01065
/2 0.00947 0.01172 0.01180
m 0.00857 0.01089 0.01094
3wr/2 0.00852 0.01070 0.01082

(c)
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Figure 4.55 Influence of §;

acceleration, no crack.
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Figure 4.56 Influence of §; acceleration, open crack.
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Figure 4.57 Influence of §; acceleration, breathing crack.
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Figure 4.58 Influence of §; acceleration, 2 at % =0.7.
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Figure 4.60 Influence of §; acceleration, R_..

123



Table 4.6 Influence of § with deceleration.
Crack always open,

(c) Breathing crack.

(a) No crack,

(b)

3 Zat %=0.7 Zmax Rmax
(] 0.00845 0.01050 0.01476
n/2 0.00694 0.00865 0.00904
4 0.00709 0.00876 0.00876
3nr/2 0.00759 0.00945 0.01241 |
—
(a)
3 zat x=0.7 Zmax Rmax
o 0.00869 0.01065 0.01541
/2 0.00645 0.00854 0.00904
w 0.00729 0.00947 0.00948
3n/2 0.00665 0.00915 0.01305
(b)
s Zat x=0.7 zmax Rmax
0 0.00845 0.01050 0.01476
n/2 0.00694 0.00865 0.00904
T 0.00729 0.00947 0.00948
3r/2 0.00682 0.00918 0.01243

(c)
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Figure 4.61 Influence of §; deceleration, no crack.
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Figure 4.62 Influence of §; deceleration, open crack.
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Figure 4.63 Influence of §; deceleration, breathing crack.
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Table 4.7 Influence of crack.position. aceleration: (a) Always

open crack;

(b) Breathing.

b 2. at ¥=0.7 2, (overlength)
0 0.00898 0.01112
0.25 0.00949 0.01175
0.5 0.01035 0.01287
0.75 0.00953 0.01175
1. 0.00898 0.01112
(a)
b mx 2t ¥=0.7 2. (over length)
0 0.00898 0.01112
0.25 0.00949 0.01175
0.5 0.01035 0.01287
0.75 0.00953 0.01175
1. 0.00898 0.01112
(b)
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Figure 4.67 Influence of crack position, acceleration.
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Table 4.8 Influence of crack position;
(b) Breathing.

Always open crack:;

deceleration:

(a)

b Z,, at x=0.7 Z_.(over length)
0o 0.00663 0.00819
0.25 0.00711 0.00889
0.5 0.00780 0.00996
0.75 0.00745 0.00889
1. 0.00663 0.00819
(a)
b 2. 3t ¥=0.7 Z . (over length)
0 0.00663 0.00819
0.25 0.00711 0.00888
0.5 0.00780 0.00995
0.75 0.00744 0.00888
l. 0.00663 0.00819
(b)
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Figure 4.68 Influence of crack position, deceleration.
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Table 4.10 Influence of crack depth; acceleration.

a/D - . Z,.. at ¥=0.7
0.1 0.0023 0.0096 0.0090
0.2 0.0048 0.0638 0.0100
0.25 0.0096 0.1100 0.0120
0.3 0.0172 0.1723 0.0369
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Influence of Crack Depth
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0.013,

]

a/D

Figure 4.69 Influence of crack depth; acceleration
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Table 4.10 Influence of crack depth; decceleration.

a/D 0 &g z,, at ¥=0.7
0.1 0.0023 0.0096 0.0070
0.2 0.0048 0.0638 0.0075
0.25 0.0096 0.1100 0.0096
0.3 0.0172 0.1723 0.0364
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Influence of Crack Depth
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Figure 4.70 Influence of crack depth; decceleration

138



Chapter 5

Conclusions

The main objective of this thesis has been to find pieces of evidence
indicating the presence of cracks in a shaft and methods to evaluate
their importance without the need to remove the shaft from the machine

or device in which it is placed.

The idea that if the shaft is accelerated or decelerated through a critical
angular speed, this may produce appreciable differences in the response
if the shaft has a crack or not, was investigated in this work. For that
reason, the shaft was subjected to a range of linear accelerations and
decelerations, to determine if there was clear evidence of the existence
of the crack. Uncracked and always-open cracked shafts were considered
as a way to obtain values to be compared against those given by the

breathing crack cases.

The results obtained do not provide enough evidence in order to
formulate decisive criteria to detect cracks in the shaft. However there
are some encouraging findings like the noticeable difference between no
crack and breathing crack responses for some cases, as in slow
deceleration. But this is counterbalanced by the fact that this result may
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not be true for different values of the eccentricity angle 6, as Figures

3.60 - 3.62 and 3.66 - 3.68 show.

Another interesting conclusion is that, since a cracked shaft has a smaller
stiffness than an uncracked shaft, the critical speed is slower and then,
the maximum amplitude occurs earlier for acceleration and later for
deceleration in the cracked shaft than in the uncracked one. But the
differences found are not always large enough to be considered

encouraging.

The crack position also has influence on the dynamic response of the
shaft. The middle of the shaft is the worst, i.e., the position that

produces the largest displacements.

The last topic studied was the influence of crack depth. As in Collins
(1989), a non-linear relation between crack depth and maximum response
was found. This means that a very large shaft displacement can occur as

the crack depth increases.

Future Research

Many aspects of the problem still remain to be studied. Among them

should be mentioned the following:

Using the mathematical model presented here, many other
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combinations of shaft parameters can be investigated. For
example: other wvalues of compliances; new acceleration or
deceleration functions, like exponential; more than one crack;
different values of damping; damping in the crack (note that
the damping in the crack, d_, was considered in the mathemat-
ical formulation but for the calculations it was made 0); non-
symmetric transverse sections, i.e., I'#1; other eccentricities
and different ratios L/R (L=length of the shaft, R=radius of

the transverse section).

Other forcing systems instead of gravity and unbalance can be

modeled with slight modifications of the model.

The shaft modeled in this thesis follows the Euler-Bernoulli
theory , so that the shear deformation was not considered. It
might prove interesting to develop the equations of motion of
the shaft following the Timoshenko theory including angular
acceleration or deceleration. Note that this was not done
before and for some cases, with small ratio L/R, the results
can differ appreciably from those obtained with the model

used in this work.

Other boundary conditions can give different results from
those obtained in this thesis, where a simply supported shaft

was considered. A change in the boundary conditions requires
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a definition of a new assumed solution and therefore a change

in the final equations of motion.
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