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Inverse Reinforcement Learning
and Routing Metric Discovery

Dmitry Shiraev

(ABSTRACT)

Uncovering the metrics and procedures employed by an autonomous networking system is an
important problem with applications in instrumentation, traffic engineering, and game-theoretic
studies of multi-agent environments. This thesis presents a method for utilizing inverse rein-
forcement learning (IRL) techniques for the purpose of discovering a composite metric used
by a dynamic routing algorithm on an Internet Protocol (IP) network. The network and routing
algorithm are modeled as a reinforcement learning (RL) agent and a Markov decision process
(MDP). The problem of routing metric discovery is then posed as a problem of recovering the
reward function, given observed optimal behavior. We show that this approach is empirically
suited for determining the relative contributions of factors that constitute a composite metric.
Experimental results for many classes of randomly generated networks are presented.
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Chapter 1

Introduction

Competing Internet Services Providers (ISPs) are secretive about the information they share
with their competitors. Thus, large networks or autonomous systems that need to route pack-
ets through other autonomous systems may not know how their neighbors route information
internally. If autonomous systems that belonged to different ISPs shared routing information,
each autonomous system would be able to take advantage of the information in constructing its
own routing tables. Thus, ISPs could offer their customers services based on that information.
For example, if an ISP knows that its neighbor is minimizing delay in its routing of packets,
it would be able to offer its customers services that take advantage of short delays, such as
streaming voice and video services. Thus it is advantageous to the customers of this ISP if the
ISP knew the details of the metric that is utilized by the autonomous systems of other compet-
ing ISPs. Because competing ISPs are reluctant to share this information, discovering it is a
valuable problem.

We will present a method for an autonomous system to discover the details of the metric
that is used by a neighboring autonomous system. This method utilizes inverse reinforcement
learning (IRL) techniques presented in [1]. We present a method for modeling routing in an
autonomous system on the Internet as a reinforcement learning (RL) problem. We will then
show how the IRL techniques can be used with this model to solve the problem of discovering
the details of the metric that is used by a particular autonomous system.

If ISPs utilize our method to discover the metric characteristics of the autonomous systems
of their competitors, this has interesting implications from a game-theoretic perspective. Au-
tonomous systems may develop methods that may block our techniques and the development of
new methods may be necessary. This may continue indefinitely, or it may end in autonomous
systems sharing their metric information. Our method is deeply involved with the type of
metrics that a network may use and insight gained from its development is beneficial from a
metric engineering viewpoint. Our model of the network routing problem that is utilized with
our method is useful from a modeling standpoint for the purpose of applying reinforcement
learning to network routing.

In this thesis we will first present background information about metrics and dynamic rout-
ing algorithms employed in practice. This will be discussed in Chapter 2, in which we will also
talk about network topology and link characteristic discovery techniques and tools available
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1. INTRODUCTION Dmitry E. Shiraev

today. In Chapter 3 we will present an overview of the IRL techniques presented in [1], and
how they can be applied to our problem. In Chapter 4 we will discuss how the network routing
problem may be modeled as an RL problem and show how to use the model with the IRL al-
gorithm. In Chapter 5, we will present the results for experiments performed using a simulated
network topology with specific composite metrics. In Chapter 6 we will talk about future work
that can be done in both IRL and network aspects of this problem.

2



Chapter 2

Overview of Routing Algorithms,
Metrics, and Network Discovery

In this chapter we present the major routing algorithms that are employed in practice and the
metrics they use. For modeling purposes, it is our goal to study routing algorithms from the
perspective of maximizing (or minimizing) certain metrics. It is also important to be aware
of how the routing algorithms function because this will provide us with information on how
much time we have between updates to the state of the network or, how quickly optimal paths
may change. This will be important for designing suitable instrumentation for network mea-
surement.

We will first present the terminology that will be used here, then we will go over the dif-
ferent types of metrics that can be and are commonly deployed in a network. Then we present
the set of routing algorithms commonly used on the Internet. These algorithms are divided into
two types: link-state and distance-vector algorithms. We explain the distinction and present the
algorithms that belong to either of these two sets. This chapter also surveys network discovery
approaches and associated software.

2.1 Terminology

We will use terms from graph theory as well as terms from networking to describe physical
objects being abstracted. In an attempt to make the presentation more intuitive, several terms
may be used to describe the same object at different times.

� Nodes, Edges, Graph – a graph is a nonempty finite set of vertices, or nodes, and
edges. An edge connects two vertices and may have a weight and direction.

� Router – a router is a computer that performs the task of forwarding packets on a
network. When talking about a computer network as a graph, a router corresponds to
a node in the graph.

� Link – a link is a physical connection between two routers. When talking about a
computer network as a graph, a link corresponds to an edge between two nodes (or

3
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routers) in the graph.

� Packet – a packet is an encapsulation of information sent across the network. Packets
are usually associated with a particular protocol and since the routing we are working
here takes place over IP, the packets we work with are IP packets.

� Port – a port in the networking world may be used to describe a number of entities.
Here it is used to enumerate a link from a given router’s point of view. When a router
sends a packet on a given port, that packet travels over the link that port represents.
This word may be used synonymously with interface.

� Routing Algorithm – a routing algorithm can have several meanings, including a set of
instructions that tell a router how to forward packets to their destination, or a particular
instance of a program running on a router. When we talk about a routing algorithm,
we will be considering an abstract entity that governs how the entire network behaves
with respect to forwarding packets. A more detailed explanation can be found in the
next section.

� Network – a network has a definition in the context of graph theory, as well as in the
context of a computer network. A computer network is a collection of computers that
can communicate by some common protocol. In our discussion, a network will be a set
of routers that communicate via IP, run the same routing protocol, and utilize the same
routing metric. This definition is akin to that of an autonomous system [13].

2.2 Metrics

A metric is a value assigned to a route (or path) or link that serves as a means of comparing that
link with others. A routing algorithm will pick the path between it and the destination that has
the smallest (or largest) value of the metric. The value assigned to a link is usually derived from
certain aspects of that link, such as delay and bandwidth, but can also be arbitrarily assigned
by the network administrator. The metric can also be determined by combining the values
for different attributes of a link. For example, the values for bandwidth and latency may be
additively combined to determine the overall value for the link. It is our goal to determine how
values for different attributes for a link combine together to form the metric that is used by the
network.

2.2.1 Simple Metrics

These metrics are covered in greater detail in [13].

Hop Count

The hop count metric treats every link in the network equally and favors the path that contains
the least number of links. Typically a value for a link is 1, but it can be any arbitrary non-
negative number, as long as that number is the same for every link in the network. It is usually
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easy to determine if a network is NOT using purely a hop count metric since if the path taken
by a packet goes through more links than the optimal path with respect to hop count, it becomes
obvious that hop count is not used. It should also be noted that hop count is generally not used
in a composite metric.

Bandwidth

The bandwidth metric is determined by the bandwidth of the link. However, exactly how it is
derived from the physical bandwidth is specific to each routing algorithm. Usually a certain
constant, such as 108 is divided by the physical bandwidth in kilobits/second to determine the
metric. This is done if the algorithm is trying to minimize the value for a path, since then the
bandwidth metric is lower for higher bandwidth links. The constant that is used may vary per
routing algorithm and between different networks run by the same type of algorithm. This is
because this method for determining the bandwidth metric creates a maximum bandwidth that
can be distinguished in a network (since if the bandwidth is higher than the constant, the result
will be less than 1 and will be rounded to 1). Thus, networks that contain links with higher
bandwidths will need a higher constant.

If a composite metric is used, scaling the physical bandwidth to the bandwidth metric
component becomes a very difficult problem with no clear solution. Most algorithms thus use
ad hoc methods to scale the bandwidth.

Delay (or Latency)

The value for the delay metric represents how long it takes for a packet to arrive at the next
router after being sent to a particular interface on the current router. Thus, when calculating
the delay metric, dynamic aspects such as the queuing delay and latency of the router sending
the packet may be included. However, the delay may also be a static value that represents the
propagation delay of the link. The value for delay is usually measured in microseconds or
milliseconds. If a routing algorithm uses delay as part of a composite metric, the value usually
undergoes some sort of scaling. Similar to the problem with scaling the bandwidth metric,
scaling latency in a meaningful way with respect to the other components of the composite
metric is a difficult problem. An example of how this is done in practice is CISCO’s IGRP and
EIGRP algorithms, where they consider the latency in microseconds and then divide it by 10.

Load

Load is a dynamic value for a link which represents the percentage of the bandwidth of the link
that is currently being used. How load is measured depends on the algorithm and hence how
the numeric value is used as a metric. IGRP and EIGRP represent it as a value between 0 and
255 where 0 is a link under 0% load, and 255 is a 100% loaded link. Load is difficult for us to
determine (or observe), but fortunately this metric is only used in IGRP and EIGRP [13] and
with the default setting it is disabled.

5
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Reliability

Reliability measures the chance that a given link will fail. The routing algorithm may determine
this value dynamically, from observed failures, or it may be set statically per link. Since most
Internet backbone links are very reliable, this metric is not very useful and is only used in IGRP
and EIGRP. Similar to load, it is also disabled under the default settings.

Cost

Cost is an arbitrary value assigned to a link by the network administrator. This metric may be
used to make a certain link more or less preferable over others. Since it may not reflect any
physical characteristic of the network, networks that utilize arbitrary cost metrics are difficult
to analyze.

2.2.2 Composite Metrics

A composite metric is made of several of the simple metrics that are described above. These
metrics may be combined to form a composite metric in an arbitrary way. In this thesis, we
focus on composite metrics that are linear combinations of simple metrics:

Composite Metric � α1M1
� α2M2

�
� � �

� αnMn

where Mis are the simple metrics and αis are constants, normally scaled so that

α1
� α2

�
� � �

� αn � 1 � 0

It will be our goal to determine the αi. It should be noted that there will be cases when this is
not possible. This can be because of the nature of the network, such as if the network is trivial
and there is only one path between a source and a destination, or if one path is better than other
paths in every respect. It may also be that a custom metric is being used, such that it does not
match any combination of values of links. For example, if the network administrator wanted a
particular path to be utilized less, they can increase (or decrease) the value for that path. We
have no way of knowing that this is the case or perhaps there is a metric that penalizes certain
attributes of that path. However, even if custom metrics are used, we may still get useful results
from the analysis because if we determine that the network is, for example, trying to minimize
latency, but that happens to be just a coincidence that the custom metrics are favoring paths
with lower latency, there is no difference between the two policies from the perspective of how
packets get routed.

2.3 Routing Algorithms

In this section we will present the major interior routing algorithms that are employed in prac-
tice. These algorithms are divided into two categories: distance vector and link state. From a
modeling perspective, it does not really matter which category of algorithm is running on the
network. This is because both types of algorithms are responsible for routing packets on the
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network optimally at all times, but take different approaches to accomplishing that task. As
Chapter 3 shows, both algorithms are based on dynamic programming and differ only in the
pattern of information exchanges.

2.3.1 Distance Vector Algorithms

The set of distance vector algorithms is one of the two major categories of routing algo-
rithms [13]. In a distance vector algorithm, routers exchange information about routers they
can reach. This information is in the form of a vector that contains routers that can be reached,
a metric for how much it costs to reach them, and the router that will be used as the next hop.

ONMLHIJK2

3 � 1
��

��
��

��
�

5 � 7 ONMLHIJK4
4 � 2 ONMLHIJK5

ONMLHIJK1

11 � 2 >>
>>

>>
>>

>

ONMLHIJK3

1 � 0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1 � 2 :

�����
�

�
0 � 0 � 1 ��
3 � 1 � 2 ��

11 � 2 � 3 �
in f
in f

�
				
�

4 � 2 :

�����
�

in f�
5 � 7 � 2 ��
1 � 0 � 3 ��
0 � 0 � 4 ��
4 � 2 � 5 �

�
				
�

For example, in the network above, router 1 will send a vector to router 2 saying that it
knows how to get to 2 and 3 (and itself), how much it costs to get there, and which outgoing
interface it will take. Router 4 will also send a vector to 2 with its information, including how
to get to 5 and 3. Router 2, in turn, sends a vector to 1,

2 � 1 :

�����
�

�
3 � 1 � 1 ��
0 � 0 � 2 ��
6 � 7 � 4 ��
5 � 7 � 4 ��
9 � 9 � 5 �

�
				
�

causing, the routing table at router 1 to be updated to include a path to 5 and a shorter path to
3. In this example, routers that are unreachable from a particular router were given a value in f .
In a real implementation, this symbol will need to be given a numeric value. This value will
dictate the maximum length path in a network (which can be in f � ε where ε is the minimal
value a metric can have) and it is up to the designers of the particular algorithm to decide on
what that value should be. Vector exchange continues and eventually all routers will know the
optimal paths across the network.
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Routing Information Protocol (RIP)

The Routing Information Protocol is one of the oldest distance vector protocols still in use
today [13]. There are currently two versions in use and they differ in several ways, including
how they treat numerical representation of IP networks (v1 is classful, v2 is classless). RIP v2
also provides a means for additional security and authentication. Both versions of RIP use hop
count as their metric.

Although not as critical as the metric, it is also good to know the types of timers RIP uses.
There is a 30 second update timer which includes a certain amount of jitter, making the timer
activate ever 25 � 35 seconds. This is to ensure that routers do not synchronize their updates.
There is also a timeout timer for a link, which is set to 180 seconds. If a router receives no RIP
updates on a link for 180 seconds, the cost for that link is set to in f , which typically has the
value of 16. Thus the maximum radius for a network routed by RIP is 15 nodes.

Interior Gateway Routing Protocol (IGRP), and Enhanced Interior Gateway Routing
Protocol (EIGRP)

Both Interior Gateway Routing Protocol (IGRP) and Enhanced Interior Gateway Routing Pro-
tocol (EIGRP) are CISCO’s proprietary routing protocols. IGRP sends updates every 90 sec-
onds, with a 20% random jitter. EIGRP sends updates only when it detects the necessity to do
so, such as a link going up or down. EIGRP sends Hello packets to detect these changes every 5
seconds, except on links with link speeds of T1 or slower, then they are sent every 60 seconds.
EIGRP uses a timeout value equal to 3 times that of the timer used, so it will detect a link that
goes down in 15 seconds if updates are sent every 5 seconds and 180 seconds otherwise.

Both IGRP and EIGRP utilize a composite metric. The components of this metric include
bandwidth, delay, load, and reliability. Bandwidth and delay are first scaled before being used
in the metric. BWIGRP is calculated by dividing 107 by the link bandwidth, in kilobits. Thus

BWIGRP �
107

BWlink

The constant 107 limits the maximum distinguishable bandwidth of a link to 10 Gigabits, but
the constant may be changed by the network administrator to allow for higher bandwidth links.
The delay component, DLYIGRP is calculated by dividing the delay of the link in microseconds
by 10. Thus

DLYIGRP �
DLYlink

10
Both load and reliability of a link are expressed in terms of a percentage. That percentage is
stored as an unsigned 8 bit integer where 255 is 100% and 1 is 0%. The metric has 5 constants,
k1 � � � � � k5, that can be set by the network administrator. The metric is calculated for an entire
path as follows

metric �
�
k1 � BWIGRP � min �

� k2 � BWIGRP � min �
256 � LOAD

�
k3 � DLYIGRP � sum � � �

k5

RELIABILITY
�

k4

8
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The component DLYIGRP � sum � stands for the sum of the DLYIGRP values of all links along the
path to the destination. The component BWIGRP � min � stands for the BWIGRP value of the link
with the smallest bandwidth along the path to the destination. If we expand the metric, we get

metric � k1 � BWIGRP � min � �
k5

RELIABILITY
�

k4

� k2 � BWIGRP � min �
256 � LOAD �

k5

RELIABILITY
�

k4

�
k3 � DLYIGRP � sum � �

k5

RELIABILITY
�

k4

Since most links are very reliable, it is likely that reliability will be very close to 255 and affect
every link for a given router equally. Thus it becomes a constant multiplier that may be factored
out in terms of calculating the metric.

It should also be noted that by default, CISCO uses constants k1 � k3 � 1 and k2 � k4 �

k5 � 0, thus the default metric is

metric � BWIGRP � min �
�

DLYIGRP � sum �

2.3.2 Link State Algorithms

Link state algorithms are the second category of routing algorithms. They are based on Di-
jkstra’s shortest path algorithm [21]. Dijkstra’s algorithm requires knowledge of the network
topology, so the routing algorithm begins by ensuring that every router knows the entire net-
work topology. During this phase, every router sends out packets to every adjacent router that
contain information about what routers it is immediately adjacent to. The routers that receive
those packets forward them to adjacent routers. Eventually, every router on the network will
receive a packet from every other router, providing the information necessary to reconstruct an
accurate topology. Once a router has the entire topology, it runs Dijkstra’s algorithm, which
will determine the shortest path from that router to every other router on the network.

Open Shortest Path First (OSPF)

Open Shortest Path First (OSPF) is a link state algorithm that was developed by the Internet
Engineering Task Force (IETF) through a series of RFCs (1131, 1247, 2328) [18; 19; 20].
The metric OSPF uses is a cost metric, but the RFCs do not define what that cost should
represent. The value for the cost can range from 1 to 65535 (a 16-bit number). CISCO uses
bandwidth, by default, to represent the cost. The metric is calculated as 108

BWlink
, where BWlink

is the bandwidth of the physical link in bits/second. The 108 constant can be changed by the
network administrator. Some vendors leave the default cost set to 1 [13], reducing the metric
to a hop count metric. It is also feasible for a network administrator to change the cost metric
to reflect other attributes of the link [13]. OSPF uses a number of timers, including keep-alives
for links, but the one most important to us is the Link State Acknowledgment (LSA) packet
timer. The LSA packets contain adjacency information and are used by routers to create and
maintain their topology information. On CISCO routers, these packets are sent every every 10
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to 1800 seconds, with 240 seconds being the default. This number should vary per size of the
network; larger networks should have smaller timeouts while smaller networks can have larger
intervals.

Integrated Intermediate System to Intermediate System (IS-IS)

Integrated Intermediate System to Intermediate System (IS-IS) is a link state protocol similar to
OSPF. IS-IS uses Hello packets to discover neighboring routers and Link State Packets (LSPs)
to determine the entire network topology for every router. LSPs are sent as updates every 15
minutes, with a random jitter of up to 25%. ISO 10589 (the standard for IS-IS) defined four
metrics that can be used by IS-IS: default, delay, expense, and error. Each metric is an unsigned
6 bit integer. The default metric is required and must be set manually for each link. CISCO sets
it to 10 by default. The last three metrics are optional. Delay refers to the latency of the link,
cost to a monetary cost of using the link, and error to the error probability of the link. CISCO
only supports the default metric and under the default setting this reduces the metric to a hop
count metric.

2.4 Network Discovery

From a modeling perspective, network discovery is an important aspect of capturing the es-
sentials of a routing context. We need to have as close to a complete and accurate view of the
network as possible in order to situate the operation of specific policies. Specifically, it will be
important to capture the location of routers participating in the dynamic routing algorithm and
the characteristics of links in the network.

2.4.1 Topology Discovery

[5] present several algorithms for discovering the topology of an IP network. The basic tools
they use are ping, broadcast ping, traceroute [16], and Domain Name System (DNS) zone
transfers. ping sends a ICMP echo request to an address and uses a response to determine if the
hose is active. This may be unreliable with desktop hosts running personal firewalls or networks
protected by firewalls at their bounds, since they may not respond to pings. However, routers
should still respond to pings, otherwise it will make network administration more cumbersome.

Directed broadcast pings ping an entire subnet of a network, rather than a single machine.
Since this technique is also responsible for denial of service attacks (“smurf attacks”) [22],
security conscious network administrators will disable broadcast pings. Thus, they are not a
reliable means of gathering information, except on poorly administered networks.

traceroute is the famous algorithm by Van Jacobson [16] that sends packets with increas-
ing values in the Time to Live (TTL) field in the IP header and records the TTL-expired ICMP
messages. When a router receives a packet with a TTL of 1 it should drop the packet and send
an ICMP message back to the source of the packet, saying that the TTL for the packet has ex-
pired. This behavior is defined in [17]. However, some routers may be configured to not abide
by the RFC, or firewalls may be configured to drop these packets at the network boundary. This
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should not be the default behavior for large autonomous systems, since this makes investigating
and diagnosing network problems more difficult. DNS zone transfers involve querying a DNS
server for the mapping of every hostname to IP address on the network it is responsible for.
From a security standpoint, it is a bad idea to allow zone transfers from outside of the network,
thus only the most poorly maintained networks will be vulnerable to this.

[5] present the results of running four algorithms on the cornell.edu domain. One of the
algorithms is the Simple Network Management Protocol (SNMP), and two require the use of
DNS zone transfers, and thus are not of very much use to us (both should be blocked at the
network boundary). The fourth uses a combination of pings and traceroute, and although it has
the worst results of the four, it still boasts a 90% accuarcy rate and discovers 144 of 155 routers
on the network.

2.4.2 Link Attribute Discovery

Following the discovery of the network topology, we would like to ascertain more information
about the links used in the network. It is important to study the influence of links on the
preferential selection of paths, especially their contributions to metrics. Instrumentation for
capturing metrics such as delay and link bandwidth are most common. Delay of a link may
be determined using traceroute [16]. Determining the bandwidth of a links on a network is
the subject of a lot of research. Many methods exist for determining the bottleneck bandwidth
of a particular path [6]. However, we are interested in determining the bandwidth of every
link in the network. There is a tool by Van Jacobson called pathchar [11]that can be used
to accomplish this task. Unfortunately, there are conditions under which it performs poorly.
These are discussed in detail in [10].

The load metric causes some amount of trouble. We are not able to reliably discover the
value for a load for a particular link. However, the usefulness of the load component may be
questioned. It is used as the divisor of BWIGRP � min � in CISCOs IGRP and EIGRP algorithms.
Consider the terms that use BWIGRP � min �

k1 � BWIGRP � min �
� k2 � BWIGRP � min �

256 � LOAD
�

�
k1 �

�
256 � LOAD � � BWIGRP � min �

�
k2 � BWIGRP � min �

256 � LOAD

�
k1 � 256 � k1 � LOAD

�
k2

256 � LOAD � BWIGRP � min �

We see that load and constants k1 and k2 determine how much the minimum bandwidth affects
the overall metric. However, the load of the link connected directly to the router may have no
relation to the BWIGRP � min � value of the path. For example, if the directly connected 1 Gigabit
link is 90% loaded, it still has more available bandwidth than a 10 Megabit link that may be the
minimum link along the path. Thus, if everything else is equal, the router may choose to route
along another path, that may have a 10% loaded 10 Megabit link, instead of the 90% loaded 1
Gigabit link, which is not the desired behavior. Therefore, the usefulness of the load metric in
the composite metric may be in question.
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Chapter 3

Overview of Inverse Reinforcement
Learning

With a view toward routing metric discovery, this chapter presents the Inverse Reinforcement
Learning (IRL) techniques described in [1]. We will first present the notation used by Russell
and Ng, since similar notation will be used here. We will go over the main theorem in [1] and
their suggestions as to how to apply it to solve IRL problems.

3.1 Definitions

Inverse Reinforcement Learning (IRL) is easier to understand by first studying Reinforcement
Learning (RL) – the problem of an agent using experience to improve its behavior in a given
environment. A Reinforcement Learning problem requires an environment – a set of states the
agent can be in, and actions that the agent can take. A state transition matrix provides details
on the outcome of specific actions in a given state. The environment should also provide
the agent with some sort of feedback when the agent takes a certain action in a certain state.
This feedback is called the reward and it is the goal of the agent to maximize the cumulative
(possibly discounted) sum of the rewards it earns. The environment is said to have the Markov
property if how it responds to a particular action taken by the agent is only based on the state
the agent is in and not on any previous state or an outside influence. An environment that
satisfies the Markov property is a Markov Decision Process (MDP). If the number of actions
and states is finite, it is a finite MDP, or Markov Decision Process.

3.1.1 Notation

Russell and Ng define a finite MDP as a tuple
�
S � A ��� Psa � � γ � R � , where

� S is a finite set of N states

� A ��� a1 � � � � � ak � is a set of k actions

� Psa
��� � are the state transition probabilities upon taking action a in state s

12
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� γ � �
0 � 1 � is the discount factor

� R : S ��� is the reinforcement function, bounded in absolute value by Rmax

There are also several functions defined as part of the reinforcement learning setting. A policy
is a mapping π : S � A; it defines what action the reinforcement learning agent should take in
each state s � S. Notice that a policy is a property of the agent, hence different agents can use
different policies in a given environment. A value function for a policy π, when evaluated in
state s1, is

V π �
s1 � � E

�
R

�
s1 � � γR

�
s2 � � γ2R

�
s3 � �

� � ��� π �
where

�
s1 � s2 � � � � � is the sequence of states passed through when following the policy π. There

is also the action-value function, or Q-function, defined as

Qπ �
s � a � � R

�
s � � γEs � � Psa �
	 �

�
V π �

s � ���
The Q function gives the value of taking action a in state s while following the policy π. The
notation s �� Psa

��� � means the expectation with respect to s � is distributed according to Psa
��� � .

Two more functions are defined, the optimal value function,

V � �
s � � supπV π �

s �
and the optimal Q-function, as

Q � �
s � a � � supπQπ �

s � a �
For finite MDPs, it is well known that V � and Q � are independent of policy (unlike V π and Qπ).

It is suggested that for discrete finite spaces (if we have a finite number of states and ac-
tions), functions V π and R can be represented as vectors, indexed by a particular enumeration
of the state space. Since � S � � N, these vectors will be N-dimensional. Thus, R becomes an
N-dimensional vector R, whose ith value is the reward received at state i and the ith value in
Vπ is the value function evaluated at state i. Also, we can represent state transitions Psa

��� � as
matrices Pa, indexed by actions a � A. The element in position

�
i � j � in Pa is the probability of

the state transitioning to state j when action a is taken in state i. Russell and Ng also define �
and � as strict and non-strict vector inequalities, such that x � y iff for � i � x i � yi. There are
also two important theorems concerning MDPs that are presented in the paper.

Theorem 3.1 (Bellman Equations from Ng and Russell [1]) Let an MDP
M �

�
S � A ��� Psa � � γ � R � and a policy π : S � A be given. Then, for all s � S � a � A � V π and Qπ

satisfy

V π �
s � � R

�
s � � γ∑

s �
Psπ � s �

�
s � � V π �

s � � (3.1)

Qπ �
s � a � � R

�
s � � γ∑

s �
Psa

�
s � � V π �

s � � (3.2)
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Notice that in equation 3.1 there is an implicit marginalization over the space of actions im-
posed by policy π.

In RL, we are given S, A and provided access to Psa and R (either directly or through
interactions). The goal of the agent is to find a policy π that maximizes Vπ (or Qπ). In IRL,
we are given S, A, and a policy that presumably optimizes some value function. The goal is to
determine the value function (which is dependent on γ, Psa, and R). Traditionally the goal is
posed as one of estimating R, given γ and Psa.

3.2 Characterizing IRL Solutions

The main theorem Russell and Ng present defines the set of solutions that the reward vector R
can belong to, while keeping the current policy optimal.

Theorem 3.2 (Ng and Russell) Let a finite state space S, a set of actions A � � a1 � � � � � ak � ,
transition probability matrices � Pa � , and a discount factor γ � �

0 � 1 � be given. Then the policy
π given by π

�
s ��� a1 is optimal if and only if, for all a � a2 � � � � � ak, the reward R satisfies�

Pa1 � Pa � �
I � γPa1 � � 1R

�
0

Ng and Russell point out that if
�

is replaced with � , then π
�
s ��� a1 is the unique optimal

policy. They also point out several deficiencies of this characterization. One is that a the zero
vector is always a solution, since then every policy is optimal. Ng and Russell also mention that
for a given MDP, there may be many reward vectors R that make a particular policy optimal.
Thus they suggest placing additional requirements on R. Their suggestion is to select solutions
which maximize the difference between the best action and the second best action. Thus they
want to maximize

∑
s � S

�
Qπ �

s � a1 � � max
a � A � a1

Qπ �
s � a � �

They also add a weight, � λ � R � 1, so that solutions with smaller rewards are preferred.
There are different ways to characterize or restrict the space of reward functions. The

‘shaping’ literature [4] is filled with may ideas. See also Ng, Harada, and Russell [7] for a
characterization using reward transformation based on potential functions.

3.3 Algorithm when MDP is known

The final formulation becomes

maximize
N

∑
i � 1

min
a � A � a1

� �
Pa1

�
i � � Pa

�
i � � �

I � γPa1 � � 1R � � λ � R � 1

such that
�
Pa1 � Pa � �

I � γPa1 � � 1R 	 0 � � a � A 
 a1

�Ri � � Rmax � i � 1 � � � � � N
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where Pa
�
i � is the ith row of Pa. This is then posed as a linear program in order to find the R

vector:
maximize c

�
R such that MR

�
b

for a matrix M and vectors c and b. But it becomes difficult to factor out R from the min
function,

min
a � A � a1

� Pa1

�
i � � Pa

�
i � � �

I � γPa1 � � 1R �
since the value of R determines the result of that function. This problem originates from
wanting to maximize

∑
s � S

�
Qπ �

s � a1 � � max
a � A � a1

Qπ �
s � a � �

We have no way of evaluating the maximum Qπ �
s � a � for a � A 
 a1, unless we already have R

or are able to see what the second-best policy is by having it performed by the agent. Since our
agent is the routing protocol (see Chapter 4), we have no way of making it run sub-optimally,
thus we cannot use the criteria suggested by Ng and Russell. Hence we adopt a different
function, also stated by Ng and Russell:

maximize ∑
s � S

∑
a � A � a1

Qπ �
s � a1 � � Qπ �

s � a � (3.3)

Since π
�
s ��� a1, equation 3.1 maybe written in vector notation as

Vπ
� R

� γPa1Vπ

Vπ � γPa1Vπ
� R�

I � γPa1 � Vπ
� R

Vπ
�

�
I � γPa1Vπ � � 1R

and equation 3.2 can be written as

Qπ �
s � a � � Rs

� γPa
�
s � Vπ

Then the equation 3.3 may be written as

∑
s � S

∑
a � A � a1

�
Qπ �

s � a1 � � Qπ �
s � a � � �

N

∑
i � 1

k

∑
j � 2

�
Qπ �

i � a1 � � Qπ �
i � a j � �

�

N

∑
i � 1

k

∑
j � 2

�
Ri

� γPa1

�
i � Vπ � Ri � γPa j

�
i � Vπ �

�

N

∑
i � 1

k

∑
j � 2

γ
�
Pa1

�
i � � Pa j

�
i � � Vπ

� γ
N

∑
i � 1

k

∑
j � 2

� �
Pa1

�
i � � Pa j

�
i � � �

I � γPa1 � � 1R
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Since the γ outside the summations is a constant, it can be ignored in a maximization problem.
Thus our problem becomes

maximize
N

∑
i � 1

k

∑
j � 2

� �
Pa1

�
i � � Pa j

�
i � � �

I � γPa1 � � 1R � � λ � R � 1

such that
�
Pa1 � Pa � �

I � γPa1 � � 1R 	 0 � � a � A 
 a1 �
�Ri � � Rmax � i � 1 � � � � � N

This will be the formulation adopted in this thesis.

3.4 Algorithm when MDP is not known

Russell and Ng also present techniques to be used when the entire MDP is not known. This
would be useful, since we would not need to know the entire topology and link characteristics
of the network. Unfortunately, their techniques rely on the ability to generate trajectories (se-
quences of state transitions) under the optimal policy, which we can do, and under any policy
of our choice, which we can not do. This is because we have no way of coercing the routing
algorithm into routing sub-optimally. Thus the technique for IRL from sample trajectories does
not apply.
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Chapter 4

Using Inverse Reinforcement Learning
for Network Metric Discovery

In this chapter we will develop a model for the network and routing algorithm such that the
routing problem is posed as a Reinforcement Learning problem. We will then use the IRL
techniques presented in the previous chapter with the developed model.

4.1 Modeling the Network and Routing Algorithm as a Reinforce-
ment Learning Problem

In this section we will demonstrate our approach to modeling the IP network and the routing
algorithm that is run on each router as a reinforcement learning problem. For an overview of
reinforcement learning as a feasible and preferable approach to network routing see [8]. We
describe a similar approach and show how it can be used with IRL techniques. We will first
show how to think of the classical algorithm for finding minimal distance between pairs of
nodes on a graph as solving a reinforcement learning problem. We will then present how to set
up the final reinforcement learning problem so that it could be used with the IRL algorithm.

4.1.1 Modeling the IP Network as a Graph

A network of routers can be viewed as a directed or undirected weighted graph. The routers
are the nodes and the physical links between the routers are the edges. The metric the routing
algorithm assigns each link is the weight of the edge. If the link characteristics, such as delay
and bandwidth, are symmetric in both directions, then the graph is undirected; otherwise the
graph becomes a directed multi-graph, with each physical link represented as two edges going
in opposite directions, with different weights for each edge. It will be assumed that the links
considered here are symmetric, thus the network is modeled as an undirected weighted graph.

In order to apply the inverse reinforcement learning algorithm, we must conceptualize a
reinforcement learning agent and an environment within which it is trying to optimize a given
reward function. There are several ways of representing the reinforcement learning agent.
One approach is to think of a single router as the agent and thus the routers in the network
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will communicate information they learn with each other so as to arrive at an optimal routing
policy [2; 3]. This gives rise to a multi-agent reinforcement learning framework. We will
take a different approach and think of the same routing algorithm that is run on every router
on the network as the agent. This is possible if we think of the network as the environment
and every router as implementing the routing algorithm in order to optimally interact in the
environment. Thus the routing algorithm is viewed as a single network-wide entity, with each
router doing a small part and its actions contributing to the whole result. From the point of
view of a single packet being forwarded along in the network, a router makes the decision of
which of its interfaces to send the packet along, but that decision is determined by the same
algorithm that runs on every other router on the network. Thus, in a sense, there is a single
algorithm that governs the whole network according to a particular policy. It is this algorithm
that should be considered the reinforcement learning agent. This viewpoint leads to a single-
agent reinforcement learning formulation.

Now we need to identify the environment, or the set of states that the agent can be in and
the actions the agent may take. The set of states should include everything that can influence
the decision of the routing algorithm and also be accessible to the algorithm (observable). It
is clear that the physical network is the environment that the agent operates in, but the set of
states still needs to be identified, as is the set of actions that the agent can take. It is natural to
think of the physical links as being the actions, since the routing algorithm chooses which link
to send a packet on so as to minimize the overall cost, for a particular metric. This approach is
also taken by [2; 3]. Thus it remains to determine the set of states the agent can be in.

In order to determine the states in the environment, consider the example of a packet trav-
eling through the network on its way from its source to its destination. At a given router, the
routing algorithm computes (or has already pre-computed) the minimal path to take to the des-
tination. It then chooses the interface that lies on that path and forwards the packet to the router
that is connected by that link. In the case of a single packet, the state of the environment should
include the location of the packet, or, which router the packet is currently at. It should also be
noted that a router will send a packet along a certain path when it is going to a certain desti-
nation, but may forward it along a different path, if it is going to a different destination. Thus,
the destination of the packet should also be part of the state, because it influences the action
a router takes. Therefore, the state so far includes the current location of the packet and the
destination of the packet. There is a third component of the state, but its necessity is dictated
by the formulation of the IRL algorithm and will be covered later.

4.1.2 All Node Pairs Shortest Paths

The dynamic programming algorithm for finding the shortest path between every pair of nodes,
such as the algorithm presented in [12], is really solving a reinforcement learning problem. We
can rewrite the result obtained by the algorithm in reinforcement learning terms. This is akin
to how George Cybenko shows the use of dynamic programming to solve the shortest path
problem between a given pair pair of nodes [23].

Figure 4.1 presents the algorithm. Here, Weight
�
i � j � represents the cost for getting between

node i and node j. If our state is written in terms of location � destination nodes, we can
write the state where the current location is i and the destination is j as s i � j . If we assume that

18



4. USING INVERSE REINFORCEMENT LEARNING FOR NETWORK METRIC
DISCOVERY Dmitry E. Shiraev

Input: Weight – an n � n adjacency matrix representing a weighted graph.
Output: Weight, containing the lengths of the shortest paths.

begin
for m := 1 to n do

for x := 1 to n do
for y := 1 to n do

if Weight[x,m] + Weight[m,y] < Weight[x,y] then
Weight[x,y] := Weight[x,m] + Weight[m,y]

end

Figure 4.1: All Node Pairs Shortest Paths Algorithm (from [12]

Weight reflects the knowledge of the reinforcement learning agent, then the value function for
its policy π is

V π �
si � j � � Weight

�
i � j �

From this, we may recover the policy π, for getting between every node to every destination.
We define π as

π
�
sloc � dst � � a such that V π �

sloc � dst � � cost
�
a � � V π �

sloc � � dst � � � a � � �
sloc � dst �

where loc � is the node connected to loc by the edge represented by the action a. To relate
actions to edges,

� �
sloc � dst �  � eloc � loc � � � loc � adjacent to loc � , so the set of actions in state

sloc � dst is the set of edges that link to loc. After the algorithm in Figure 4.1 is completed, it is
clear that π will correspond to π � , or the optimal policy for reaching a destination node from
any other node.

4.1.3 Model used with IRL

Before our model of the environment can be used with the inverse reinforcement learning al-
gorithm, we need to add another component to the set of states in our environment. This
component is necessary because we wish to associate rewards with links, or actions. In rein-
forcement learning, rewards may be associated with states, or arriving in a particular state, or
the rewards may be associated with taking a particular action in a given state. Russell and Ng
take the former approach in [1], and we will take the latter approach here.

To demonstrate the necessity of this third component, the following example is considered.
Figure 4.2 depicts a four node subgraph of a network. Each edge has a negative weight that
represents the reward for taking that link, thus if the routing algorithm is trying to maximize
the reward for a path, it will pick the edges with the highest values. Each edge is also labeled
with two values which represent the port numbers for the link from the perspective of a router.

Consider that an optimal path from node 1 to a certain destination lies through node 4. Then
the optimal path to node 4 is 1 � 2 � 3 � 4. The reward for this sequence of actions is � 3,
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Figure 4.2: Example Network, Action-Value function gives Rewards for Links

as opposed to � 10, for taking the direct route 1 � 4. The problem lies in that the notation in
the inverse reinforcement learning algorithm associates rewards with states. Thus, assuming a
single desination, then when the packet reaches node 4, there is no way of determining whether
the reward for taking link 1 at node 3 is � 1 or � 10 because all is known is that the packet
is now at node 4 and it received either a � 1 or � 10 as the reward. Therefore, the link that
the packet arrives from should be included as part of the state. In that case, assuming a single
destination, when the packet reaches node 4, there can be two possible states: 1) packet is at
node 4 and came on interface 2, or 2) packet is at node 4 and came on interface 3 (assume that
the packet will not come on interface 1). The reward for the former is � 1 and for the latter
is � 10. Thus the inverse reinforcement learning algorithm will be able to distinguish between
the two cases and assign rewards correctly.

Thus, finally, our definition of state includes three components: the router the packet is cur-
rently at, the destination router for the packet, and the port number on the router that the packet
came on. Effectively, we “amplify” the definition of state to provide sufficient addressability.
The actions are the ports that a router can pick from, and the reinforcement learning agent is
the routing algorithm that is running on the network. Since the reward that the agent receives
is related to the metric weight of each link, it can be seen that the Markov property holds for
this environment. We now have everything we need to be able to utilize the IRL techniques to
attempt to recover the reward (metric) used by the algorithm.

4.2 Using Inverse Reinforcement Learning with the Network Model

In this section we will use the model of the network developed in the previous section with the
IRL algorithm presented in chapter 3. We will first present an example of how IRL can apply
to our model. Then we will present a way for using IRL to recover the structure of a composite
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metric.

4.2.1 IRL Without Composite Metric

We will first demonstrate how IRL techniques may be applied to the network model, with-
out attempting to determine the composite metric. This technique cannot ascertain the actual
rewards being optimized, since we can only observe the optimal policy and have no way of
determining how the suboptimal paths relate to each other, or how much worse one suboptimal
path is than another. However, this should give us insight into why and how IRL techniques
can determine the relationship between the components in a composite metric.

Setup

We will use, as an example, the topology in Figure 4.3. There are 8 nodes (routers), and each
node has 5 edges (links). Each edge has one weight and two ports, one at each end, where
it connects to a node. We will designate nodes 7 and 8 as possible destinations. Each node
has at least one “unconnected” link. These links serve two purposes. One, for simplicity of
notation and construction of the IRL procedure, we would like the same number of actions
to be available in every state, and thus every node needs to have the same number of ports.
When taken, the unconnected ports lead “back” to the node, with a negative reward, and thus
would be avoided by the RL agent (routing algorithm). Also, each node needs at least one
unconnected port, to represent it being a potential source for packets. If a node is a source,
there is no previous node that a packet came on, thus an unconnected port is used to model a
packet being generated at a node. In this example, every node is a potential source.

Now we need to create the state transition matrices (P matrices) for each action. There will
be 5 P matrices and each P matrix is 80 � 80 in dimension (8 nodes � 2 destinations � 5 ports

� 80 states), are too large to present their contents here. The process for constructing them
is simple, since the state transition probabilities for every action are either 100% for nodes
connected by a link and 0% for nodes not connected by that link (if a router sends a packet
on a link, it will end up at the router at the other end of the link and not another router). So,
first we come up with a scheme for enumerating the states. This can be arbitrary and we use
the following procedure. First, divide the 80 states into two blocks of 40 states, one block per
destination (first for node 7, second for node 8). Then each block of 40 states is subdivided into
8 sub-blocks of 5 states. Each sub-block represents the node the packet is currently at. Each
of the 5 states in a sub-block represents the port a packet came on. Thus state 12 means the
packet is going to node 7, is located at node 3 and it came on port 2.

There is one subtlety when creating the P matrices. For ease of notation, we would like the
optimal action to be action 1. In our example, for nodes 1 � 2 � 3 � 4 and 6, this is true. However,
nodes 5 � 7 � 8 need to have their ports renumbered, with respect to which of the P matrices the
transition probabilities for ports 1 and 2 will go to. This is because, if the destination is 7, the
optimal path from node 5 is to take port 1, but if the destination is 8, then it must take port
2. The case is similar for nodes 7 and 8, if they are their own destination, they need to be a
terminal state, and if not, they need to send the packet on port 1. Thus, to reflect this situation,
the transition probabilities need to be modified.
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Figure 4.3: Example Network

IRL and Linear Programming

Now that we have the transition probability matrices for each action, we use the IRL method
to set up a linear programming problem. Since the values for our rewards need to be negative
(or else the network will find a loop and cycle the packet on it to accumulate rewards, which
is obviously not the desired behavior), we will want to solve the dual problem of the linear
programming problem. This is because as stated, the solution to a linear programming problem
cannot have negative values [24]. We will want to set up our problem to find a vector x such
that

bx is maximized with respect to Mx
�

c

Then we can find the dual solution [24], which is the reward vector we are looking for:

R � b � Mx
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Our b vector will be derived from

bR �

N

∑
i � 1

k

∑
j � 2

� �
Pa1

�
i � � Pa j

�
i � � �

I � γPa1 � � 1R � � λ � R � 1

�
� N

∑
i � 1

k

∑
j � 2

� �
Pa1

�
i � � Pa j

�
i � � �

I � γPa1 � � 1 � � λ � R
Thus

b �

N

∑
i � 1

k

∑
j � 2

� �
Pa1

�
i � � Pa j

�
i � � �

I � γPa1 � � 1R � � λ

We then construct our M matrix, which represents the conditions�
Pa1 � Pa � �

I � γPa1 � � 1R 	 0 � � a � A � a1 �
�Ri � � Rmax � i � 1 � � � � � N

Since there are 4 actions in the set A � a1, and each
�
Pa1 � Pa � �

I � γPa1 � � 1 is an 80 � 80 matrix,
the M matrix will become a 320 � 80 matrix. Notice that the c vector at this point is a 320
element 0-vector. Now, we need to satisfy the second condition, �Ri � � Rmax � i � 1 � � � � � N. We
will satisfy it by appending an 80 � 80 identity matrix, which is multiplied by � 1 to M, and a
vector of 80 elements, each equal to Rmax to c. Thus, our final M matrix and c vector will be
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M R 	 c

����������������������������������������������
�

�����
� �

Pa1 � Pa2 � �
I � γPa1 � � 1

�
				
�

�����
� �

Pa1 � Pa3 � �
I � γPa1 � � 1

�
				
�

�����
� �

Pa1 � Pa4 � �
I � γPa1 � � 1

�
				
�

�����
� �

Pa1 � Pa5 � �
I � γPa1 � � 1

�
				
�

�����
� � I

�
				
�

�
																																													
�

�����
� R

�
				
� 	

���������������������������������������������
�

0
...

...
0

Rmax
...

Rmax

�
																																												
�

Now we can solve for x and use it to get U. Our result vector for U, organized by router, is

� � 6 � 05 � 0 � � � 1 � 05 � � 1 � 05 � � 1 � 05 � � � 6 � 05 � 0 � � � 1 � 05 � � 1 � 05 � � 1 � 05 �� � 6 � 05 � � 6 � 05 � � 1 � 05 � � 1 � 05 � � 1 � 05 � � � 6 � 05 � � 6 � 05 � � 1 � 05 � � 1 � 05 � � 1 � 05 �� � 6 � 05 � � 6 � 05 � 0 � � � 1 � 05 � � 1 � 05 � � � 6 � 05 � � 6 � 05 � 0 � � � 1 � 05 � � 1 � 05 �� � 6 � 05 � 0 � � � 6 � 05 � � 1 � 05 � � 1 � 05 � � � 6 � 05 � 0 � � � 6 � 05 � � 1 � 05 � � 1 � 05 �� � 1 � 05 � 0 � � 0 � � � 6 � 05 � � 1 � 05 � � 0 � � � 1 � 05 � 0 � � � 6 � 05 � � 1 � 05 �� � 6 � 05 � � 1 � 05 � � 6 � 05 � 0 � � � 1 � 05 � � � 6 � 05 � � 6 � 05 � � 1 � 05 � 0 � � � 1 � 05 �� 0 � � � 6 � 05 � � 1 � 05 � � 1 � 05 � � 1 � 05 � � � 6 � 05 � � 6 � 05 � � 1 � 05 � � 1 � 05 � � 1 � 05 �� � 6 � 05 � � 6 � 05 � � 1 � 05 � � 1 � 05 � � 1 � 05 � � 0 � � � 6 � 05 � � 1 � 05 � � 1 � 05 � � 1 � 05 �
Now, if we overlay these values on the network topology, we can observe the two sets of

rewards determined by the algorithm. Figure 4.4 shows the two graphs and we can see that
the algorithm correctly identifies the optimal paths for each destination. However, this is of
very limited use, since the values assigned are 0 for the optimal path and a negative number
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Figure 4.4: Results of IRL Algorithm with Example Network

for non-optimal links. Notice that the negative values can really be assigned arbitrarily. This
is not a fault of the IRL algorithm though, since it has no information that would allow it to
assign values for suboptimal links because it has no way of rating one suboptimal path against
another.

4.2.2 IRL to Determine the Composite Metric

We will now show how to use the IRL techniques to perform the more useful task of discovering
the relationships between the components of a composite metric. The IRL formulation sets up
an optimization problem that can be solved using linear programming. Given a finite MDP, the
optimization problem becomes
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maximize ∑
s � S

∑
a � A � a1

Qπ �
s � a1 � � Qπ �

s � a �
such that

�
Pa1 � Pa � �

I � γPa1 � � 1R 	 0 � � a � A � a1

Using the vector notation, this can be written as

maximize
N

∑
i � 1

k

∑
j � 2

� Pa1

�
i � � Pa j

�
i � � �

I � γPa1 � � 1R � � λ � R � 1

such that
�
Pa1 � Pa � �

I � γPa1 � � 1R 	 0 � � a � A � a1 �
�Ri � � Rmax � i � 1 � � � � � N

The structure of the reward function R
�
s � is known and can be written as the linear com-

bination R
�
s � � α1R1

�
s � � α2R2

�
s � �

� � � αmRm
�
s � where Ri are the known components of the

reward function and αi are the unknown coefficients that need to be learned. Note that the val-
ues of Ri are determined by the state s, while the coefficients αi remain constant. This function
R may be used to model any composite metric that is determined by a linear combination of
the attributes of a physical link.

If restricted to metrics that use bandwidth (BW) and latency (Lat), the metric for a link l i

is a function m
�
li � � α1BW

�
li � � α2Lat

�
li � . Note that although when calculating the metric m,

αi can be arbitrary, they can always be scaled such that ∑αi � 1. Then αis will represent the
percentage of the contribution each component of the metric makes to the total value. Now, the
metric m can be used as a reward function R. Since the state s has in it implicitly the link that
was used to get to it, reward received at state s may be modeled as R

�
s � � α1BW

�
li � � α2Lat

�
li �

where li was the link that was used to get to s. Thus in this case, R1
�
s � � BW

�
li � and R2

�
s � �

Lat
�
li � . If the vector notation for functions is used, R

�
s � can be written as����

�
R11 R12

R21 R22
...

...
Rn1 Rn2

�
			
�

�
α1

α2 � � R

Now, the optimization problem can be written as

maximize
N

∑
i � 1

k

∑
j � 2

� Pa1

�
i � � Pa j

�
i � � �

I � γPa1 � � 1

����
�

R11 R12

R21 R22
...

...
Rn1 Rn2

�
			
�

�
α1

α2 � �
� λ �

����
�

R11 R12

R21 R22
...

...
Rn1 Rn2

�
			
�

�
α1

α2 � � 1
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such that
�
Pa1 � Pa � �

I � γPa1 � � 1

����
�

R11 R12

R21 R22
...

...
Rn1 Rn2

�
			
�

�
α1

α2 � 	 0 � � a � A � a1 �
α1

� α2 � 1

Note that the bounding condition �Ri � � Rmax � i � 1 � � � � � N is no longer necessary since it has
been replaced with α1

� α2 � 1.
This formulation is a novel view of inverse reinforcement learning. The components of the

rewards are given, and we are finding their respective contributions, as opposed to finding the
rewards themselves.
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Chapter 5

Experimental Results

In this chapter we will present the experiments conducted and results gathered. First, we will
present the procedure used to set up the experiments. The experiments will be set up to model
a situation that might occur in practice. We will then present the results from the experiments.

5.1 Procedure

We now go over the steps to run a particular metric experiment.

1. First the network that will be used is generated by BRITE. We employ a random net-
work topology generator to conduct our experiments. The particular network generator
is BRITE [9] developed by a group at the Computer Science Department at Boston Uni-
versity. BRITE is capable of generating a various large of different topologies of very
large sizes. There are parameters for the distribution of nodes and links, as well as the
characteristics of the links. BRITE can provide bandwidth and latency attributes for each
link. When describing the procedure, we will discuss how BRITE will be used to gen-
erate the topology. A configuration file, such as the one in Figure 5.1 is used to provide
BRITE with the specifications for the network.

Using BRITE with this input file will create a BRITE output file that contains a randomly
generated topology. Figure 5.2 contains an excerpt from a sample output file. The output
file is structured into three parts. The first part is two lines that contain information about
the file, such as the number of nodes and edges. The next part includes information about
nodes, which is not relevant to this procedure. The next part contains information about
the links, which includes bandwidth and latency. Latency is the fifth parameter on a line,
and bandwidth follows it. For example in Figure 5.2, the bandwidth for the first link is
46 � 037586 and the latency is 4 � 891037. The bandwidth is interpreted as megabits/second
and the latency is in milliseconds.

2. The topology is generated from the output file. The topology is a three dimensional
array. The first two dimensions are the matrix representation of a graph (both dimensions
indexed by nodes), the third is the two values for a link (bandwidth and latency) between
two routes. This can be viewed as two matrices, one for bandwidth and one for latency.
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#This config file was generated by the GUI.

BriteConfig

BeginModel
Name = 1 #Router Waxman=2, AS Waxman =3
N = 20 #Number of nodes in graph
HS = 10000 #Size of main plane (number of squares)
LS = 1000 #Size of inner planes (number of squares)
NodePlacement = 2 #Random = 1, Heavy Tailed = 2
GrowthType = 1 #Incremental = 1, All = 2
m = 2 #Number of neighboring node each new node connects to.
alpha = 0.15 #Waxman Parameter
beta = 0.2 #Waxman Parameter
BWDist = 3 #Constant = 1, Uniform =2, HeavyTailed = 3, Exponential =4
BWMin = 10.0
BWMax = 1024.0
EndModel

BeginOutput
BRITE = 1 #1=output in BRITE format, 0=do not output in BRITE format
OTTER = 0 #1=Enable visualization in otter, 0=no visualization
EndOutput

Figure 5.1: Example BRITE Input File

Topology: ( 20 Nodes, 40 Edges )
Model (1 - RTWaxman): 20 10000 1000 2 2 0.15 0.2 1 3 10.0 1024.0

Nodes: ( 20 )
0 127 168 2 2 -1 RT_NONE
1 888 329 2 2 -1 RT_NONE
2 725 563 3 3 -1 RT_NONE
3 397 320 7 7 -1 RT_NONE
4 1447 372 6 6 -1 RT_NONE
5 2627 677 3 3 -1 RT_NONE
.
.
.
19 6325 186 8 8 -1 RT_NONE

Edges: ( 40 )
0 19 15 1466.296 4.891037 46.037586 -1 -1 E_RT_BACKBONE U
1 19 4 4881.545 16.283081 11.12164 -1 -1 E_RT_BACKBONE U
2 8 19 3483.5168 11.619761 33.808617 -1 -1 E_RT_BACKBONE U
3 8 15 2171.7966 7.2443337 234.85246 -1 -1 E_RT_BACKBONE U
4 11 8 1085.6892 3.6214695 46.754265 -1 -1 E_RT_BACKBONE U
5 11 4 2478.6792 8.267984 10.590906 -1 -1 E_RT_BACKBONE U
6 16 11 504.7237 1.6835771 19.077143 -1 -1 E_RT_BACKBONE U
7 16 19 2341.129 7.8091655 30.948912 -1 -1 E_RT_BACKBONE U
.
.
.
39 4 16 2623.9885 8.752684 16.476728 -1 -1 E_RT_BACKBONE U

Figure 5.2: Example BRITE Output File (Excerpt)
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3. The source and destination nodes are chosen at random, such that they are not adjacent.
These nodes represent the routers that are used to send and receive packets on the net-
work. In a real network, they would represent routers that are connected to the networks
that are under our control.

4. Now we need to find the minimum distances between every pair of nodes. This informa-
tion is stored in the routing table, which is a three-dimensional array. The first dimension
is indexed by nodes, it represents which node a particular instance of the routing table
belongs to. The second dimension is also indexed by nodes, represents the destination
that a node can send packets to. The third dimension is a pair of values, the first is the
cost to the destination and the second is the node that is the previous node before the
destination along the optimal path to it. The optimal path can be recovered using the
previous node information.

5. Next, each link for each node is assigned a port number with respect to that node. For
a given node, the link that leads to the next node along the optimal path is assigned port
number 0. Then the rest of the links are assigned port numbers 1 to number of edges for
that node. This can be done arbitrarily.

6. The P matrices are built. The Pai matrices are the state transition matrices. When the
agent takes action ai in state r, the position in row r column q gives the probability of the
agent going to state q. For us ai are the ports. The state of the environment is created from
the point of view of a packet being forwarded along from its source to its destination.
This state is made up of several parts (this is described in more detail in Chapter 3).

The first part is the current location of the packet, or the router the packet is at. Second,
since the destination of the packet influences which path it takes, the destination should
be part of the state as well. However, since currently only one destination is considered at
a time, this component of the state is ignored. The third component is the port on which
the packet arrived on at the current router. This is necessary because the IRL algorithm
assigns rewards to states, not state-action pairs. This allows us to distinguish between
optimal and sub-optimal links. This means there are maxports P matrices and each P
matrix is nodes � maxports in dimension.

7. The linear programming problem is set up. Since our reward function R is

R
�
sl � � α1BW

�
sl � � α2DLY

�
sl �

where BW
�
sl � and DLY

�
sl � are the bandwidth and delay of the link used to get to node

s, we can write the reward vector R as��
� BW

�
11 � DLY

�
11 �

...
...

BW
�
nk � DLY

�
nk �

�
	
� �

α1

α2 � � R
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Thus our optimization problem becomes

maximize

N

∑
i � 1

k

∑
j � 1

� �
Pa0

�
i � � Pa j

�
i � � �

I � γPa0 � � 1

��
� BW

�
11 � DLY

�
11 �

...
...

BW
�
nk � DLY

�
nk �

�
	
� �

α1

α2 � �
� λ �

��
� BW

�
11 � DLY

�
11 �

...
...

BW
�
nk � DLY

�
nk �

�
	
� �

α1

α2 � � 1
such that

�
Pa0 � Pa � �

I � γPa0 � � 1

��
� BW

�
11 � DLY

�
11 �

...
...

BW
�
nk � DLY

�
nk �

�
	
� �

α1

α2 � 	 0 � � a � A � a1 �
α1

� α2 � 1

Thus, we calculate the vector b, such that

b �
� N

∑
i � 1

k

∑
j � 1

� �
Pa0

�
i � � Pa j

�
i � � �

I � γPa0 � � 1 � λ �
��
� BW

�
11 � DLY

�
11 �

...
...

BW
�
nk � DLY

�
nk �

�
	
�

So our goal is find the values
�
α1 � α2 � that maximize

b

�
α1

α2 �
Next we calculate the matrix

M �
�
Pa0 � Pa � �

I � γPa0 � � 1

��
� BW

�
11 � DLY

�
11 �

...
...

BW
�
nk � DLY

�
nk �

�
	
�

such that

M

�
α1

α2 � 	 0 � � a in A � a1

and add a row to it such that
α1

� α2 � 1

8. Now, the information calculated above is output to a file in lp solve [25] format. An
excerpt from such a file is shown if Figure 5.3. After running lp solve, the output is the
values for α1 and α2.
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34568.588299 x1 + 69846.960655 x2;
c1: 0.000000 x1 + 0.000000 x2 <= 0.000000;
c2: 0.000000 x1 + 0.000000 x2 <= 0.000000;
c3: 0.000000 x1 + 0.000000 x2 <= 0.000000;
c4: 0.000000 x1 + 0.000000 x2 <= 0.000000;
c5: 0.000000 x1 + 0.000000 x2 <= 0.000000;
c6: 0.000000 x1 + 0.000000 x2 <= 0.000000;
c7: 0.000000 x1 + 0.000000 x2 <= 0.000000;
c8: -42.085111 x1 + -39.624028 x2 <= 0.000000;
c9: -42.085111 x1 + -39.624028 x2 <= 0.000000;
c10: -42.085111 x1 + -39.624028 x2 <= 0.000000;
c11: -42.085111 x1 + -39.624028 x2 <= 0.000000;
c12: -42.085111 x1 + -39.624028 x2 <= 0.000000;
c13: -42.085111 x1 + -39.624028 x2 <= 0.000000;
c14: -42.085111 x1 + -39.624028 x2 <= 0.000000;
c15: -4.750728 x1 + -6.353558 x2 <= 0.000000;
c16: -4.750728 x1 + -6.353558 x2 <= 0.000000;
c17: -4.750728 x1 + -6.353558 x2 <= 0.000000;
c18: -4.750728 x1 + -6.353558 x2 <= 0.000000;
.
.
.
c882: -61.829256 x1 + -156.002754 x2 <= 0.000000;
c882: 1.0 x1 + 1.0 x2 = 1.0;

Figure 5.3: Example lp solve input file
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5.2 Experiments

The experiments are meant to model the most probable case in a real network. If this technique
is used to analyze the network of an ISP, we would have access to only a few machines at
the border to the ISP’s network. Here, we assume that we only have two machines, one we
will use as a source and another as a destination. We will randomly pick non-adjacent nodes
on the network and perform our procedure for determining the composite metric. The results
for running the procedure several times on a network will represent what is likely to be the
outcome in a real situation.

5.2.1 30 Node Networks

For this experiment, we use BRITE to generate 9 random 30 node networks, then pick 10 pairs
of routers at random as a source and a destination. We then run the IRL algorithm to set up the
linear programming problem, which we solve with lp solve. For each set of 9 networks, we
use specific α1 and α2’s. We ran the experiments with 3 pairs of α1 and α2. The values used
were � 0 � 5 � 0 � 5 � , � 0 � 7 � 0 � 3 � and � 1 � 0 � 0 � 0 � . Each trial is a different randomly generated 30 node
network, using the BRITE configuration file presented in Figure 5.4.

Table 5.1 contains the averages for α1 and α2 for each of the 9 different networks. It is
desirable to have the values for the averages to be as close to the actual values of the α’s as
possible. Most of the values for the discovered α1’s when α1 � 0 � 5 and α2 � 0 � 5 are consis-
tently lower than those of the discovered α2s (except for trials 1 and 7). This may be because
the actual values for bandwidths and latencies are distributed according to different distribu-
tions (bandwidths are heavy tailed while latencies are linear, as per physical distance between
nodes). Thus, it is tough to normalize them such that one unit of bandwidth, such as bit per
second is equal to one unit of latency, such as microsecond. These imbalances may affect the
perceived percentages of contributions from each of the two components. We observe a similar
situation when α1 � 0 � 7 and α2 � 0 � 3, where every discovered average α1 is lower than 0 � 7,
except in trials 2 and 9.

α1 � 0 � 5 � α2 � 0 � 5
Trial α1 α2

1 0.587332 0.412668
2 0.453211 0.546789
3 0.345047 0.654953
4 0.418328 0.581672
5 0.440796 0.559204
6 0.672151 0.327849
7 0.436770 0.563230
8 0.409529 0.590471
9 0.417369 0.582631

α1 � 0 � 7 � α2 � 0 � 3
Trial α1 α2

1 0.657521 0.342479
2 0.721728 0.278272
3 0.624799 0.375201
4 0.617874 0.382126
5 0.646169 0.353831
6 0.589311 0.410689
7 0.659454 0.340546
8 0.752809 0.247191
9 0.589177 0.410823

α1 � 1 � 0 � α2 � 0 � 0
Trial α1 α2

1 0.952694 0.047306
2 1.000000 0.000000
3 0.946939 0.053061
4 0.967559 0.032441
5 0.952913 0.047086
6 1.000000 0.000000
7 1.000000 0.000000
8 0.969895 0.030105
9 0.959484 0.040516

Table 5.1: Averages of 10 samples from 9 random networks (trials), 30 nodes per network
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We can also observe in Table 5.1 that for some trials, such as for trials 2 and 3 when
α1 � 0 � 5 and α2 � 0 � 5, the results are not impressive, with the averages for α1 being close to
0 � 3, or trial 7, where the average is close to 0 � 7, instead of 0 � 5. A similar situation exists for
networks with α1 � 0 � 7 and α2 � 0 � 3. However, we will observe that these results will improve
drastically when the size of the network increases from 30 nodes to 40, and then 50.

#This config file was generated by the GUI.

BriteConfig

BeginModel
Name = 1 #Router Waxman=2, AS Waxman =3
N = 30 #Number of nodes in graph
HS = 10000 #Size of main plane (number of squares)
LS = 1000 #Size of inner planes (number of squares)
NodePlacement = 2 #Random = 1, Heavy Tailed = 2
GrowthType = 1 #Incremental = 1, All = 2
m = 2 #Number of neighboring node each new node connects to.
alpha = 0.15 #Waxman Parameter
beta = 0.2 #Waxman Parameter
BWDist = 3 #Constant=1, Uniform=2, HeavyTailed=3, Exponential=4
BWMin = 10.0
BWMax = 1024.0
EndModel

BeginOutput
BRITE = 1 #1=output in BRITE format, 0=do not output in BRITE format
OTTER = 0 #1=Enable visualization in otter, 0=no visualization
EndOutput

Figure 5.4: Example BRITE Input File
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For each of the three sets of networks, we will present boxplots for the discovered values of
α1 (the values for α2 are symmetrical since α2 � 1 � α1). Figure 5.5 contains the boxplot for
the nine random networks networks routed with α1 and α2 set to 0 � 5. The top and bottom of
each of the boxes in the plot represent the first and third quartile values for the ten discovered
α’s. The error bars represent the adjacent values, or data points that are closest to the points f1

and f3 where

f1 � q1 � 1 � 5
�
q3 � q1 �

f3 � q1
�

1 � 5
�
q3 � q1 �

Thus, the middle of each box is centered over the average values from Table 5.1. Figures 5.5,
5.6, and 5.7 contain the plots for the three sets of networks with different α1 and α2 values.

From Figures 5.5 and 5.6 we can see that the discovered values for α1 often miss their
goals and their variance can differ greatly. This should be compared to the discovered values
in Figures 5.8 and 5.9, when the number of nodes in each network is increased to 40 and an
improvement in accuracy can be observed.
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Figure 5.5: Plot of discovered α1 for 9 random 30 node networks, actual α1 used was 0 � 5
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Figure 5.6: Plot of discovered α1 for 9 random 30 node networks, actual α1 used was 0 � 7
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Figure 5.7: Plot of discovered α1 for 9 random 30 node networks, actual α1 used was 1 � 0
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5.2.2 40 Node Networks

Results for the networks with 40 nodes were collected in exactly the same way as the results
from the previous section. Nine different networks were randomly generated for each pair of
α’s, and ten random pairs of nodes were chosen as a source and destination for each random
network. Table 5.2 contains the results for the average discovered values for the α’s for the
ten pairs of nodes for each network. Although the values for α1 are still consistently lower for
α1 � 0 � 5 and α1 � 0 � 7, they are much closer to the actual values used in the networks. This
can also be observed in Figures 5.8 and 5.9, where the boxplots show that the range of the
discovered values is smaller and closer to the correct values. This improves further when the
number of nodes is increased to 50, as can be seen in the next section.

α1 � 0 � 5 � α2 � 0 � 5
Trial α1 α2

1 0.543630 0.456369
2 0.458908 0.541092
3 0.421309 0.578691
4 0.470915 0.529085
5 0.482138 0.517862
6 0.474102 0.525898
7 0.549825 0.450175
8 0.460848 0.539152
9 0.424842 0.575158

α1 � 0 � 7 � α2 � 0 � 3
Trial α1 α2

1 0.655922 0.344078
2 0.652258 0.347742
3 0.644822 0.355178
4 0.671142 0.328858
5 0.671900 0.328100
6 0.664189 0.335811
7 0.639451 0.360549
8 0.686381 0.313619
9 0.773649 0.226351

α1 � 1 � 0 � α2 � 0 � 0
Trial α1 α2

1 0.975437 0.024564
2 1.000000 0.000000
3 1.000000 0.000000
4 1.000000 0.000000
5 0.985091 0.014909
6 0.967836 0.032164
7 1.000000 0.000000
8 0.992320 0.007680
9 0.980055 0.019945

Table 5.2: Averages of 10 samples from 9 random networks (trials), 40 nodes per network
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Figure 5.8: Plot of discovered α1 for 9 random 40 node networks, actual α1 used was 0 � 5
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Figure 5.9: Plot of discovered α1 for 9 random 40 node networks, actual α1 used was 0 � 7
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Figure 5.10: Plot of discovered α1 for 9 random 40 node networks, actual α1 used was 1 � 0

5.2.3 50 Node Networks

Here we present the results collected from networks of 50 nodes, set up exactly like the previous
two sections. The improvement in the values for the α1 and α2 is not as drastic as between
networks of 30 nodes and 40 nodes, and the results are comparable to those of the 40 node
networks. As can be seen in Table 5.3, the averages of the discovered values are close to the
actual values. Figures 5.11, 5.12, and 5.13 show that the ranges over which the values vary are
very small.

5.3 Discussion

Our results show that given perfect knowledge of the network, our method is able to reliably
determine the values of the coefficients (αi) of two metric components that are linearly com-
bined to form a composite metric. The random networks used were generated such that they
represent actual autonomous systems on the Internet in terms of router and link distributions.
The reliability of our method increases with the number of routers present in the autonomous
system.
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α1 � 0 � 5 � α2 � 0 � 5
Trial α1 α2

1 0.478874 0.521126
2 0.468416 0.531584
3 0.457299 0.542701
4 0.466051 0.533949
5 0.478386 0.521614
6 0.454899 0.545101
7 0.533983 0.466017
8 0.538486 0.461514
9 0.469512 0.530488

α1 � 0 � 7 � α2 � 0 � 3
Trial α1 α2

1 0.666068 0.333932
2 0.624115 0.375885
3 0.660928 0.339072
4 0.669098 0.330902
5 0.680861 0.319139
6 0.666791 0.333209
7 0.688993 0.311006
8 0.682842 0.317158
9 0.662795 0.337205

α1 � 1 � 0 � α2 � 0 � 0
Trial α1 α2

1 0.975020 0.024980
2 0.991583 0.008417
3 0.982289 0.017711
4 1.000000 0.000000
5 0.996175 0.003825
6 0.977311 0.022689
7 0.999988 0.000012
8 1.000000 0.000000
9 0.988685 0.011315

Table 5.3: Averages of 10 samples from 9 random networks (trials), 50 nodes per network
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Figure 5.11: Plot of discovered α1 for 9 random 50 node networks, actual α1 used was 0 � 5
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Figure 5.12: Plot of discovered α1 for 9 random 50 node networks, actual α1 used was 0 � 7
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Figure 5.13: Plot of discovered α1 for 9 random 50 node networks, actual α1 used was 1 � 0
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have presented a method for using IRL techniques to discover the details of a linear com-
posite metric used by a routing protocol. This method includes a specific way of modeling a
network and the routing problem as a finite Markov decision process. We have also set up a
reinforcement learning agent such that, when it operates optimally, we may recover the linear
composite metric it is optimizing. We accomplish this by utilizing inverse reinforcement learn-
ing techniques presented by Ng and Russell. We presented results collected when our technique
was applied to randomly generated networks (that simulate a real Internet autonomous system).

If applied in practice, our method has the potential of allowing Internet service providers
to analyze the networks of their competitors and discover the metrics they use.

6.2 Future Work
� Non-Linear Composite Metrics

We can currently only discover linear composite metrics. This requirement eliminates
metrics that multiply their components together, or perform another nonlinear operation,
such as taking the minimum of a metric along a path. CISCO’s IGRP and EIGRP metrics
employ both strategies. Thus, that metric cannot be represented as a reward vector.
Further research is necessary to determine if IRL can be used to recover such non-linear
metrics.

� Partially Known Environments
Our method for discovering the details of a composite metric relies on accurate knowl-
edge of the network we wish to analyze. This may not be always possible in a real
network, thus developing a method that can be used with partially known environments
may be better applicable to real life situations.

� Network and Link Discovery
Since knowing the network topology and link attributes is important for our techniques,
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new tools and methods for discovering them can be used to improve the results of our
IRL approach.
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