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Acoustic Boundary Condition Estimation in a 

Near-Scale Gas-Turbine Combustor 

by 

Andrew D. Wright 

J. Robert Mahan, Chairman 

Mechanical Engineering 

(ABSTRACT) 

A method for determining the specific acoustic admittance of the inlet and outlet 

ports of a combustion chamber is presented. Parameter estimation techniques of Gauss 

linearization and genetic algorithms are employed to recover the acoustic boundary 

conditions. These techniques are used with a combination of two resources: dynamic 

pressure measurements obtained during combustor operation, and a finite element 

method-based model of the combustion chamber. 

Results of a theoretical analysis are presented which show that the method is 

capable of accomplishing its mission. An observation of particular significance is the lack 

of sensitivity of the pressure mode shape to relatively large changes in the acoustic 

boundary conditions.
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1.0 Introduction 

1.1 Introduction 

Recognition of the harmful effects of some industrial combustion by-products has 

caused increasingly restrictive standards to be placed on CO and NOx emissions. 

Traditional approaches to meeting the requirements include water injection and emission 

scrubbers. These methods, however, can be very costly to implement. One relatively 

recent method of meeting the standards for industrial gas turbine engines is the use of 

lean, premixed combustion systems. Lean combustion systems operate at relatively low 

temperatures, discouraging the production of CO and NOx pollutants. Unfortunately, 

though, these systems have been found to be somewhat susceptible to fuel-feed 

instability. 

Fuel-feed instability is a form of combustion instability that is caused by pressure 

fluctuations which accompany turbulent combustion. Under certain conditions these 

fluctuations can become sufficiently strong to actually modulate the equivalence ratio of 

the fuel-oxidizer mixture arriving at the flame front. When this occurs at a dangerous 

frequency (usually a resonant frequency of the burner), a fuel-feed instability may occur.



This instability, when present, results in excessive vibration and noise levels, which can 

lead to problems such as accelerated wear of seals and bearings, fatigue failure of sheet- 

metal components such as combustion liners and transition ducts, and even harmful 

physiological effects. In extreme cases the fuel-feed instability can lead to catastrophic 

failure of the combustion system. 

Therefore it is desirable to eliminate the problem of fuel-feed instability in lean 

premixed combustion systems. One approach to accomplishing this is to investigate the 

dynamic behavior of combustion systems using mathematical models, and then to use 

this information, along with existing design standards, to design new combustors. By 

addressing the problem in the design stage, the need for costly prototypes and post- 

production modifications would be largely eliminated. 

Existing combustion system dynamic models are difficult to apply, however, 

because of their dependence on knowledge of the acoustic boundary conditions of the 

combustion system. For practical combustion systems the acoustic boundary conditions 

are difficult, if not impossible, to determine theoretically. Therefore discovery of a 

method for determining the acoustic boundary conditions would signify a large step 

toward solving the problem of fuel-feed instability. Such a method could be used to 

study how impedance conditions of various practical combustors vary with frequency, 

and this knowledge could then be used in the design of combustion systems. 

The objective of the current study is to develop a method for determining the 

acoustic boundary conditions of a combustion chamber using a mathematical model



based on the finite element method (FEM) with experimentally obtained dynamic 

pressure measurements. Introductory theory pertaining to combustion instability, 

acoustic boundary conditions, finite element modeling, and parameter estimation are first 

presented. Then an extensive discussion of the final method and sample results are 

given. 

The current study lays the groundwork for future work in the prediction and 

elimination of fuel-feed instability. The method could be employed to produce scaling 

laws for the acoustic boundary conditions of various types of combustors. Accurate 

estimates of the boundary conditions obtained from such laws could then be utilized by 

designers, improving the reliability of mathematical simulations. 

1.2 Literature Review 

The following is a review of literature pertinent to the study. Areas of interest 

include combustion instability, acoustic boundary conditions, and parameter estimation 

techniques. 

1.2.1 Combustion Instability 

Combustion oscillations are characterized by a closed-loop cause-and-effect 

relationship between pressure and heat release oscillations in a combustion chamber. 

Lord Rayleigh [1] first recognized and qualitatively described this relationship in the 

nineteenth century. Since then combustion oscillations, and the possible subsequent



instabilities, have become recognized as a persistent problem in a variety of combustion 

apnlications, ranging from liquid-fueled rockets to gas turbines. Putnam [2] quantified 

Rayleigh’s Criterion in 1971, and his approach has been the basis of many analyses of 

combustion instability. 

Proposed methods for preventing combustion oscillations range from design 

criteria presented by Baade [3], to active control by cyclic fuel injection proposed by 

Richards et al. [4]. However, as Richards et al. state, “practical solutions to instability 

problems are often clouded by uncertainties over the specific mechanisms driving a given 

oscillation.” Although the acoustic boundary conditions are not a direct driving 

mechanism, they do contribute indirectly by providing an environment in which 

instabilities can occur. 

1.2.2 Acoustic Boundary Conditions 

The acoustic boundary condition is a significant phenomenon which occurs at any 

place where a traveling acoustic wave encounters a change in transmission medium. 

Such conditions play practical roles in systems including the flanged, open-ended ducts 

of musical instruments, the closed-ended ducts of organ pipes, and the sound deadening 

walls of an anechoic chamber. 

Study of the acoustic boundary conditions of open-ended ducts has been of 

continuing interest for over a century. Interest stems from the many practical 

applications of ducted systems, ranging from industrial gas-turbine combustors to



residential ventilating systems. Open-ended ducts represent an important special case, 

and by studying open-ended duct impedance, much can be learned about the acoustic 

behavior of other duct terminations. The initial contribution to the field came in 1948 

when Levine and Schwinger [5] presented their classic analytical treatment of open- 

ended duct terminating impedance. They addressed a system of plane-wave propagation 

in an open-ended circular duct of negligible wall thickness with no mean flow and in the 

absence of temperature gradients. 

The first extension of this inaugural work came from Carrier [6] in 1956. He 

considered the same open-ended duct but introduced mean flow inside and outside of the 

duct. A major conclusion was that flow exiting the duct at low Mach numbers ( < 0.3 ) 

has little effect on radiated sound from the duct. 

The effect of finite wall thickness on impedance was treated by Ando [7] in 1969. 

He, like Levine and Schwinger, assumed plane wave propagation with no mean flow and 

no temperature gradients. Ando’s results indicate a significant influence on the acoustic 

impedance due to wall thickness ratio, and are in good agreement with experimental 

results. 

Johnson and Ogimoto [7,8] present results concerning the effects of mean flow 

and frequency in 1980. As in reference 6, it was found that low Mach number flow has 

little or no impact. Frequency, on the other hand, was shown to have a strong influence 

on terminating impedance.



AS systems of interest became less idealized (i.e. nonisentropic, elevated 

temperatures), strict analytical treatment gave way to experimental analyses. The first 

experimental study of the effects of heated flow on radiation impedance is given by 

Cummings [10] in 1977. In measuring the terminating impedance of an open-ended 

circular duct at elevated temperatures with low air flow, he showed that resistance (the 

real component of impedance) changes with temperature while reactance (the imaginary 

component) does not. Mahan, Cline, and Jones [11] substantiate this finding, and present 

a correlation for the resistance based upon the temperature difference between the duct 

exit plane and the ambient. Cline [12] goes on to experimentally show that the duct 

terminating impedance is dominated by the reactance at low frequencies, but tends 

toward a resistance domination at higher frequencies. 

Many experimental analyses, of which references 10 through 12 are examples, 

use the standing wave tube technique to determine the normal acoustic impedance. This 

method is based on a mapping of the pressure maxima and minima in the standing wave 

pattern, and is well documented in Chapter 9 of Kinsler and Frey [13]. The newer two- 

microphone approach has been proven to be just as accurate as, and much faster than, the 

standing wave tube method in determining duct terminating impedance. 

The two-microphone method is an empirical approach that allows for very rapid 

determination of acoustic impedance by application of Fast Fourier Transform analysis. 

Seybert and Ross [14] published the pioneering paper on the subject in 1977. Chung and 

Blaser [15,16] furthered the work by adding a third microphone to enhance the results of



low-coherence cases. Howard [17] uses the method to examine the impedance resulting 

from high-temperature flow in a circular duct. In addition to comparisons to the standing 

wave tube method, reference 17 contains extensive results of experimentally determined 

impedances. 

The author knows of no previous attempt to estimate the acoustic boundary 

conditions of a combustion chamber using a finite element model in conjunction with 

dynamic pressure measurements. 

1.2.3 Parameter Estimation 

According to Beck and Arnold [18], formal discussions of parameter estimation 

were first presented by Legendre [19] and Gauss [20] in 1806 and 1809, respectively. In 

his work, Gauss described a least-squares method which he used to determine the orbits 

of planets about the sun. The method of least-squares is based on the minimization of an 

error function. Typically, the error function is the sum-of-squares of differences between 

experimentally determined and mathematically predicted values. By minimizing such a 

function, one can determine estimates of the unknown constants in the mathematical 

model. A general sum-of-squares function is given by Beck and Arnold [18] as 

S=))(¥,-7,)’. (1) 
i=] 

In this expression Y is an experimental observation, 1 is a corresponding predicted value, 

m is the number of observations, and S is the error function to be minimized.



Beck and Arnold go on to describe various methods of parameter estimation, 

including the Gauss linearization method. This method attempts to minimize the sum-of- 

squares function, S, by differentiating it with respect to the unknown parameters and then 

equating the result to zero. Modifications to the Gauss method proposed by Box and 

Kanemasu [21] and Bard [22] are also described by Beck and Arnold. Box and 

Kanemasu suggest a quadratic instead of linear local approximation of S, while Bard 

suggests that S should always decrease from one iteration to the next. 

More recently, evolutionary algorithms, of which genetic algorithms are a 

subgroup, have been used for parameter estimation. Heitkoetter et al. [23] define 

evolutionary algorithms as “computer-based problem solving systems which use 

computational models of some of the known mechanisms of evolution as key elements in 

their design and implementation.” Heitkoetter goes on to give concise explanations of the 

background, theory, and common usage of the major evolutionary algorithms, including 

genetic algorithms, evolutionary programming, evolution strategies, classifier systems, 

and genetic programming. 

The development and pioneering work in genetic algorithms was started by John 

Holland in the early 1960s at the University of Michigan. Holland’s three works in 1962 

[24,25,26] represent the dawn of genetic algorithms in the United States. The next major 

breakthroughs for genetic algorithms came in 1975. Holland published his Adaptation in 

Natural and Artificial Systems [27], which is recognized as the pioneering textbook in



the field. Also, in his doctoral dissertation [28] at the University of Michigan, DeJong 

established the efficiency of using genetic algorithms for optimizing functions. 

Today, numerous texts and technical papers may be found which describe 

methods for implementing genetic algorithms. Books by Goldberg [29] and Davis [30] 

present excellent explanations of the theory and application of genetic algorithms, as well 

as extensive reviews of the literature.



2.0 Theoretical Background 

In this chapter theoretical ideas that are fundamental to the study are introduced. 

These ideas include: combustion instability, acoustic boundary conditions, parameter 

estimation techniques, and FEM-based numerical modeling. 

2.1 Combustion Instability 

A standard for predicting fuel-feed instability has been derived by Mahan [31], 

and the discussion presented here closely follows his development. 

A specific type of combustion instability, known as fuel-feed instability, is 

brought about by periodic combustion oscillations. Combustion oscillations are 

characterized by two separate but interrelated phenomena: the unsteady component of 

the burning rate of the flame, and the oscillation of pressure at the flame front. In certain 

circumstances, these two phenomena may be tied together in a closed-loop cause-and- 

effect relationship in which the pressure oscillations are both the cause of and are caused 

by the flame oscillations. 

10



In the nineteenth century, Lord Rayleigh [1] recognized that periodic pressure 

oscillations could be encouraged by periodic heat release at the same frequency. This is 

due to the fact that heat release at constant volume leads to an increase in pressure. 

Furthermore, Rayleigh pointed out that the heat release in combustion chambers often 

tends to be periodic, or at least have a periodic component. Since the time of Rayleigh, it 

has been shown that this periodic heat release occurs at a broad range of frequencies in 

turbulent combustion. Depending on the geometry and temperature distribution of the 

burner, one of these frequencies may be picked out for amplification according to 

Rayleigh’s observation. 

The phase relationship between the pressure and heat release oscillations is 

critical to self-excited combustion oscillations. If the heat release occurs out of phase 

with the pressure wave (i.e. the heat release oscillation is in its positive half-cycle while 

the pressure oscillation is in its negative half-cycle) then energy is removed from the 

pressure wave. If, however, the heat release is in phase with the pressure wave (i.e. both 

are in their positive half-cycle during more than half of the cycle) then energy will be 

added to the pressure wave. These two conditions are illustrated in Figure 1. In the 

latter situation, the amplitude of the pressure oscillation will grow until a limit cycle is 

reached where further gains are negated by losses and nonlinearities. 

In some cases the amplitude of the pressure fluctuations can become sufficiently 

large to actually modulate the fuel and/or air flow into the chamber, causing the mixture 

flow arriving at the flame front to oscillate between leaner and richer mixtures. If the 

1]
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timing of this mixture oscillation provides a slightly richer mixture at the flame front in 

phase with the pressure oscillation, then the pressure amplitude is driven even higher at 

that frequency and the combustor is said to be unstable. It should be noted that the 

amplitude of the fluctuation in equivalence ratio can be as small as one-millionth or less 

of the steady value and still provoke an instability. It should also be emphasized that 

turbulent combustion provides a wide band of uncorrelated “noise” concentrated in the 

frequency band between 20 and 600 Hz, a frequency range that often includes the 

resonant modes of practical combustion chambers. 

Rayleigh’s criterion can be quantified in the form of the integral 

T Ip = [ p(tyq(t + t)dt, (2) 

where p(t) represents the harmonic pressure oscillation, q(t) the harmonic heat release, T 

the common period of both, and 7 the time delay between the maximum of q(t) and the 

minimum of p(t). In general, a combustion system becomes more unstable as the value 

of the integral becomes more positive. Therefore, a burner is inherently unstable when 7 

= T/2 (the value of I, is maximized in the positive sense) and inherently stable when Tt = 

T (the value of I, is maximized in the negative sense.) 

For the most part, practical combustion chambers have the property that an 

instability is most likely to occur at the lowest acoustic mode. In long, can-type 

combustors, the lowest mode is usually the first axial mode. This case is presented here 

as an illustrative example, although the fundamental ideas apply equally well to more 

practical combustors and to radial and circumferential modes. The lowest axial mode for 

13



a combustor which is “closed” at the head end and “open” at the exhaust end is the 

quarter-wave mode, for which 

] 
Li =—A, 3 0 = (3) 

where L,, is the length of the combustion chamber and A is the wavelength of the 

standing pressure wave. This condition is depicted in Figure 2. From elementary 

physics, the frequency, f, is 

Cc Cc f=—=——_, 4 
n AL. “) 

where c is the speed of sound in the burner. Then the period of the oscillation, T, can be 

expressed as 

Tat= Ss, (5) 

The symbol t in Equation 2 represents the so-called “critical time delay,” which is the 

amount of time it takes an element of fuel mixture to be convected from the head end of 

the mixing chamber to the flame front. This time delay can then be expressed in terms of 

the effective mixing chamber length, L,, and the mean mixture convective velocity, U,., 

as 

  T= (6) 
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Combining the Equations 5 and 6 and the discussion of Equation 2, there results 

  Ime }_© |-4 for stable operation, and (7) 
L.. Van 

L Cc . 
—m |——|=2 for unstable operation. (8) 
L,, Vin 

A “stability map” can be constructed from these relations, and is shown in Figure 

3. The abscissa represents the axial distance traveled from the head end of the mixing 

chamber, with the flame front (x,,) represented as a vertical line. The ordinate represents 

a nondimensional time (L,,c)/(L,U,,). The curves labeled with t(x) represent the time 

required by a fuel element to be convected from the head end of the mixing chamber to a 

given axial location, x. The stability map shows that three curves, the vertical line 

representing the flame front, the horizontal line representing odd-integer multiples of the 

first mode half-period, and the time-delay curve, must intersect to trigger a fuel-feed 

instability. This suggests that it is possible to avoid an instability by altering one or more 

of the curves. 

The location of the flame front is determined by the convective velocity of the 

flame and the velocity of the fuel mixture; it is where these two quantities are equal, as 

seen in Figure 4. As the fuel mixture enters the combustion chamber (exits the mixing 

chamber), it decelerates to a point where its velocity is equal to that of the flame itself. 

As a result, the vertical line at x, on the stability map can be moved by changing either of 

these velocities. 
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L,. = axial length of combustion chamber 

L.. = axial length of mixing chamber 

c = thermodynamic speed of sound 

U,, = mean velocity of fuel mixture 

X = axial distance 

X,, = axial distance form fuel injector to flame front 

t(x) = time for fuel mixture to travel axial distance x 

Figure 3. Stability Map for Premixed, Can-Type Combustors.



    

  

Figure 4. Location of the Flame Front Due to Velocity Conditions 

The flame speed is a function of the fuel and the fuel temperature, and can 

therefore be modified by changing the fuel temperature. The velocity of the fuel mixture 

can be altered in a number of ways. One way is to modify the geometry of the 

combustion chamber to control the velocity of the fuel during its deceleration. Another 

is to change the velocity of the fuel before its deceleration. The velocity of the fuel 

mixture, U,., can be expressed as m/(pA,) where m is the time averaged constant mass 

flow rate of the mix, p is the mean mass density, and A, is the cross-section area of the 

mixing chamber. This suggest that one can alter the velocity of the fuel arriving at the 

flame front by changing any of these quantities. 

The time delay curves represent another avenue for modifying the stability map, 

and can be changed in a number of ways. Since these curves represent the time it takes 

for the fuel mixture to travel from the injector to the flame front, it follows that their 

18



shape is dependent upon the average velocity of the mixture and the length of the mixing 

chamber. Another approach concerning the time delay curves is to “spread” the fuel that 

is arriving at the flame front. This can be accomplished by releasing fuel at different 

locations, different times, or in different directions in the mixing chamber, and has the 

effect of “broadening” the width of the curves on the stability map. 

Lastly, the stability map can be adjusted by changing the acoustics of the 

combustion chamber. The horizontal lines on the map represent integer multiples of the 

first longitudinal pressure mode half-period, and can be modified by altering this mode. 

One way of achieving this is to change the acoustic boundary conditions of the 

combustion chamber. 

From the above discussion, it is seen that a number of parameters are available 

for controlling the stability of premixed combustors. These include (but may not be 

limited to): the length and diameter of the mixing chamber, the temperature of the fuel 

mixture, the injection conditions of the fuel, the geometry of the mouth of the mixing 

chamber, and the acoustics of the combustion chamber. 

The above discussion can also be developed for circumferential and radial modes, 

and for annular-type combustors, by substituting the appropriate values. 

2.2 Acoustic Boundary Conditions 

A traveling acoustic wave that encounters a change in transmission medium must 

satisfy certain conservation laws at the interface of the two media. These laws are 
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continuity of pressure (the pressures on both sides of the interface are equal) and 

continuity of normal velocity (each component of the particle velocity at the interface 

must 

add up to zero). Information governing how the wave will satisfy both continuity 

requirements, by reflecting some of its energy and transmitting the rest, is contained in a 

quantity known as the acoustic boundary condition. Precise values of boundary 

conditions depend on the source characteristics, geometry of the enclosure, and the 

external pressure field. The limiting cases of such boundary conditions depend upon the 

particular type of acoustic wave. For a standing wave, the limiting cases of the boundary 

conditions are a “hard” wall, a blocked condition which allows no transmission (u’=0), 

and a “pressure release,” which allows complete transmission (p’=0). For a traveling 

wave, the hard wall condition is the same, and its counterpart is a “matched” boundary. 

Acoustic boundary conditions are complex-valued functions that are most 

commonly expressed as acoustic impedance, which is the complex ratio of complex 

pressure to complex particle velocity, 

Z= Pe (9) 
u 

The inverse of impedance, termed admittance, can also be used. Often times, acoustic 

impedance is normalized by what is known as the characteristic impedance. This 

characteristic impedance is the product of the mass density and the thermodynamic speed 

of sound of the medium, p,c, and is analogous to the index of refraction for light waves. 

The normalized impedance can be expressed as 
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carers (10) Z 

where r is the reflection coefficient calculated in the conventional standing wave tube 

technique, or in terms of the normalized radiation resistance and reactance, R and X, 

Z=R + xX. (11) 

As stated, the majority of acoustic boundary condition analyses report their results in the 

form of normalized impedance, either by reporting the reflection coefficient or the 

resistance and reactance. The current study, however, deals with the specific acoustic 

admittance. The specific admittance is the complex reciprocal of the specific impedance, 

and can be expressed in terms of R and X as 

RR. x 
y p.c(R? +X?) p,c(R? +X?) 
  (12) 

Expressing the real part as @ and the imaginary part as w gives y = a - jw. (The symbol 

y used here represents acoustic admittance, and should not be confused with the target 

parameter vector Y used later.) Physically, o& represents the dissipation of acoustic 

energy, and must be non-negative. The quantity y represents the storage of acoustic 

energy, and can be any real value. In the current study, a method for measuring a and y 

is sought. 
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2.3 Parameter Estimation 

Often times, one can create a numerical model of a physical process, but still not 

be able to evaluate that model because of a lack of required information. This 

information generally takes the form of parameters and/or boundary conditions. 

Parameter estimation is a process in which values of unknown constants that appear in 

mathematical models are evaluated. The parameter estimation, or function optimization, 

problem is a type of value-based problem in which the task is to find the set(s) of 

parameters that maximize (or minimize) a function. In general, the parameter estimation 

problem can be approached in a number of ways. One may elect to search for a solution 

using an analytic method, a brute-force method, a calculus-based (gradient) strategy, an 

evolutionary strategy, or any combination of these. 

For many practical problems of moderate complexity and parameter domain, 

analytic and brute-force methods can be quickly discarded as plausible solution 

techniques. Analytic techniques require extensive knowledge of the system and also 

require the objective function to be smooth and differentiable. Neither of these 

requirements are, for the most part, met by practical problems. Brute-force methods, 

such as enumerative or random searches, cannot efficiently cope with even a moderately 

sized search space. It simply takes too long to evaluate every possible solution. 

This leaves the problem solver with two tools: gradient techniques and 

evolutionary computation. Gradient strategies are well suited for finding local extrema 

in an objective function, such as a sum-of-squares error function. These methods employ 
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the first partial derivatives of the objective function to “climb” (or “descend’’) a nearby 

“peak” (or “valley.”’) The benefit of such strategies is rapid convergence upon a local 

extreme. 

The major drawback of gradient techniques is the inherently local scope of the 

search. These algorithms are extremely sensitive to starting positions, and will usually 

stop when anticipated improvements no longer occur. Random restart is often employed 

in an attempt to overcome this problem, but a large search space may cause this 

procedure to be inefficient or even ineffective. 

Gradient techniques also depend upon the existence of derivatives. Practical 

optimization problems generally do not lend themselves to this notion of a smooth, 

differentiable objective function. Instead, users often locally linearize the model with a 

type of numerical approximation and differentiation, which necessarily introduces error 

and uncertainty into the method. And even if derivatives can be obtained, there is the 

possibility that the objective function may be poorly defined, or “flat,” which leads to 

convergence problems. 

Evolutionary computation methods (or evolutionary algorithms), on the other 

hand, are well suited to optimization problems of a complex nature and sizable search 

space. Evolutionary algorithms achieve their robustness (balance between efficiency and 

effectiveness) by using search algorithms based on the mechanics of natural selection. 

More precisely, evolutionary algorithms maintain a population of individual structures 

that are allowed to evolve to an optimum state according to certain rules. 
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Evolutionary algorithms differ from traditional (analytical, enumerative, calculus- 

based) techniques in that they: (1) maintain and search from a population of points 

instead of a single point, (2) use objective function values (fitness) to guide the search 

instead of derivatives or other auxiliary knowledge, and (3) use probabilistic, rather than 

deterministic, transition rules. A key point that warrants emphasis is the fact that 

evolutionary algorithms do not rely on the existence partial derivatives to complete their 

search. It should also be noted that evolutionary algorithms are not a random search for a 

solution. Randomized techniques are used, but the end result is distinctly nonrandom. 

Benefits of evolutionary algorithms include computational simplicity and a very 

powerful, robust search tool. The prominent shortcoming is a sacrifice of peak 

performance for specific problems in exchange for relatively high performance 

throughout a large spectrum of problems. These algorithms are poorly suited for 

problems where efficient solution methods are already known to exist. As a result, 

evolutionary algorithms are generally used when all else fails. 

A reasonable conclusion from these explanations of solution methods would be to 

use an evolutionary algorithm to determine the locale of the global minimum, and then 

use a gradient technique to zero in on it. 

2.3.1 The Gauss Method 

Numerous techniques can be employed in the minimization of the objective 

function, S. One of the simplest and most effective is a gradient-based technique known 
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as the Gauss linearization, or just Gauss, method. For nonlinear models, the Gauss 

method is an iterative process that modifies an estimated parameter vector by specifying 

direction and size of corrections to that vector in each step. Redefining the sum-of- 

squares error function in Equation | yields 

m 

S=[Y-P@)'TY - P= d[y, -P,6)] 
i=] 

2 

; (13) 

where Y and P are vectors of observed and predicted values, respectively. In the current 

study, these values are dynamic pressure. For example, Y, is the real component of the 

dynamic pressure observed at the first pressure probe, Y, is the imaginary component of 

the pressure from the same probe, Y, is the real component of the pressure from the 

second probe, and so on. Similarly, P. represents the mathematically predicted value of 

Y,. The B term is a vector of the unknown parameters upon which P is dependent. In the 

current research, B is a vector of the four acoustic boundary conditions: 

B, = Rely], 

B, =Im[y?], 
(14) 

B, = Rely"), 

B, = Im[ys"]. 

In the Gauss method, the minimization of S is achieved by setting the matrix 

derivative of S with respect to B equal to zero, and then finding B' = B which best 

satisfies the resulting expression, 

V,S = 2[-X(BYILY - PB’) = 0. (15) 
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In this expression, X(B') is called the sensitivity matrix, and is defined as 

X(B’) = [V,P*)T'. (16) 

The sensitivity matrix is the matrix first derivative of the pressure vector with respect to 

the parameters being estimated. It represents the amount of change experienced by P due 

to slight perturbations in the parameter values. Individual elements of X are obtained 

using numerical differentiation, such as the forward difference technique, 

  

oP. 
X.. =——, 17a i 3B. (17a) 

or 

P.(b,,...,b, + 6b,,...,b,) -—P.(b,,...,b,,...,b 
xX, = ( 1 J J m) ( 1 J nm) (17b) 

db, 
J 

The Gauss method requires that the sensitivity matrix be linearly independent, and a 

check must be included to verify that det[X"X] # 0. 

Two approximations are used to solve for B’. First, X(B') is replaced by X(b), 

where b is an estimate of B'. Second, P(B’) is represented using the first two terms of a 

Taylor series expansion for P(B') about b. The resulting equation from these 

approximations, 

X"(b)LY - P(b) - X(b)(B’-b)] = 0, (18) 

is linear in B', and can rearranged to yield 

B’ = b + [X*(b)X(b)][X"(b)(¥ - P(b))]. (19) 
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Theoretically, the above expression should give a new parameter vector, f', that is a 

better approximation than the previous vector, b, to the solution of Equation 15. A more 

compact notation facilitates the iterative process, and results in the Gauss linearization 

equation 

b™? = p® + [X™x%y cx™y 7 P®”)), (20) 

where k is the iteration number, b™ is the k" parameter estimate vector, b“*” is the (k+1)" 

parameter estimate vector, X” = X(b™) is the sensitivity matrix corresponding to b™, Y is 

the experimentally observed pressure vector, and P® = P(b™) is the pressure vector 

corresponding to b”. 

An initial estimate of the parameter vector, designated as b”, is needed to begin 

the iterative process. Once started, the process continues until a predetermined number 

of iterations is reached, or until any component of b undergoes a negligible change from 

one estimate to the next. Beck and Arnold give a criterion for the latter as 

[ber _ b™| 

“p45, < 5, fori= 1,2,...,m, (21) 

where 5 = 1x10" and 8, = 1x10". 

The Gauss method is effective for both linear and nonlinear problems where the 

global minimum is well defined and the initial estimates are in the neighborhood of that 

minimum. Serious problems, i.e. nonconvergence, can be encountered, however, if 

these conditions are not met. 
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2.3.2 Genetic Algorithms 

As stated earlier, evolutionary algorithms are search methods based on the 

mechanics of natural selection; a survival-of-the-fittest event in which parameters 

compete in the search space. Before embarking on a detailed theoretical explanation of 

genetic algorithms, it might be helpful to define certain terms that will be used, and how 

they relate to the current study. A chromosome is a single parameter, a single component 

of aB vector. An individuafis a set of four chromosomes, a complete B vector. A 

population is a group of individuals; and a generation is a specific iteration step of the 

population. Parents are individuals in the current generation that reproduce to create a 

child, which is a new individual in the next generation. 

In their basic form, evolutionary algorithms maintain a population of individuals 

and allow this population to evolve to an optimal state. An individual represents one 

possible solution to the problem, a set of parameters in the domain. Individuals are often 

represented using a “character string,” such as a binary number. Each individual has 

associated with it a “fitness,” which is a measure of the individual's ability to solve the 

problem. The evolution of the population is guided by rules called “search,” or 

“reproduction,” operators. These operators are designed with the knowledge that some 

individuals of a population have a better fitness than others, and that these better 

individuals should be more likely to survive and propagate their attractive qualities. In 

this way, evolutionary algorithms attempt to mimic the natural selection processes of 

biological systems. 
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The evolutionary algorithm used in the current study is a version of a genetic 

algorithm. Simple genetic algorithms influence the evolution of the population using 

three operators: reproduction, crossover, and mutation. Fitness-proportionate 

reproduction is a probabilistic selection process for parents of offspring in the next 

generation. It is based on the fitness of individuals in the parent generation, and ensures 

that more highly fit individuals have a higher number of offspring in the succeeding 

generation. Crossover is a process in which two selected parents exchange portions of 

their character strings to form new individuals. Mutation randomly changes the value of 

a bit in the character string of a new individual. 

These three operators serve to perform specific functions in the evolutionary 

process. Any evolutionary process, whether biological or computer based, requires 

diversity and a selection routine. The selection requirement is fulfilled by the 

reproduction operator. Reproduction exploits the attractive qualities of highly fit 

individuals by focusing more attention on such individuals. The diversity requirement is 

fulfilled by the initial population and the crossover and mutation operators. A random 

initial population introduces a large amount of diversity at the start of the algorithm. 

Crossover and mutation explore new areas of the search space by perturbing the 

individuals in the population. 

The evolutionary algorithm used in the present study is a slight deviation from a 

true genetic algorithm. While the base logic and operators are the same, the 

representation of individuals is different. Instead of using character strings to represent 
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individuals, the current study uses four real-valued functions. This alteration decreases 

the chances of finding the global minimum, but provides for very fast population 

convergence. 

The first step in the genetic algorithm is to create an initial population. Each 

individual in the population consists of four real-valued variables: the real and imaginary 

parts of the inlet and outlet acoustic admittances. The search space is constrained in that 

the real part of the admittance must be non-negative. This stems from the fact that the 

real part of the admittance represents the dissipation of acoustic energy. Another 

constraint is also placed on the parameter search space, and is explained in Section 3.1.2. 

Once the initial population is generated, a two-step iterative process is entered. 

The first step is to evaluate S for each individual in the population, as in Equation 13. 

This sum-of-squares error is used to determine the fitness of individuals. A highly fit 

individual provides a better solution (the parameter set results in a lower sum-of-squares 

error) than a less fit individual. 

With the fitness of each individual determined, the second part of the iterative 

process can begin. This half consists of the three genetic operators: reproduction, 

crossover, and mutation. Reproduction begins by ranking the individuals according to 

their fitness, with a high fitness (low S) being good and a low fitness (high S) being bad. 

After the individuals are ranked each one is assigned a probability of being chosen as a 

parent. The probabilities are fitness-proportionate, with the sum of all equal to 1.0. For 

each child in the next generation two parents are selected using random numbers and the 
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probabilities. This process can be thought of as the spinning of a roulette wheel where 

space on the wheel is allocated according to fitness. Individuals of high fitness are given 

more space and, therefore, are more likely to be chosen as a parent. At this point, 

reproduction is over and crossover begins. 

The crossover operation has been modified to accommodate the change in 

representation of individuals. Instead of each parent passing on a part of a character 

string to the child, the parents pass the real-valued functions. Each of the four values 

(chromosomes) in the offspring are derived from the chromosomes in the parents. The 

new chromosome can be an exact duplication of the corresponding chromosome in the 

first parent, it can be an exact duplication of the corresponding chromosome in the 

second parent, or it can be an average of the two. The three possibilities have an equal 

chance of occurring and are determined by a random number draw. Once the new 

chromosomes are determined, crossover ends and the chromosomes are checked for 

mutation. 

Each chromosome in the offspring is checked for mutation, If mutation occurs, 

then a completely new value is assigned to the chromosome (in accordance with the 

constraints on the search space.) 

The entire process, selection of parents and subsequent determination of the four 

offspring chromosomes, is repeated for as many children as will be in the next 

generation. In the current study an elitist strategy is employed in which the information 

in the best four individuals in the current populations passed directly to the next 
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generation. So with a population size of forty, thirty-six children must be inserted into 

the new generation along with the four best from the parent generation. (Some 

techniques allow for the creation of more children and then hold a fitness-based 

tournament to see which ones advance to the next generation.) 

With the new generation complete, the fitness of each individual is once again 

determined and the stopping criteria are checked. If the stopping criteria are not met then 

the process returns to build a new generation. The stopping criteria in this case are a 

maximum number of generations and an acceptable lowest S value. If either of these 

criteria are met, then the process will not begin another iteration. 

Throughout the entire process the average fitness is calculated and stored for 

every generation to track convergence. Also, the absolute lowest fitness and its 

corresponding individual parameters are stored. 

2.4 Finite Element Model: DYNAMITE 

Parameter estimation techniques described in Section 2.3 require a mathematical 

model that predicts a measurable event. The simulation used in the current study is a 

finite-element-method (FEM)-based model that predicts the acoustic pressure field in a 

combustion chamber. It is called DYNAMITE and is a modification of a previously 

existing program called DYNAMODE, which was conceived and developed by Prof. J. 

R. Mahan [31] of Virginia Polytechnic Institute and State University. 
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2.4.1 Theory 

Programs DYNAMODE and DYNAMITE are based on the same fundamental 

theory: an FEM-based model is used to provide an approximate solution to the 

nonhomogeneous acoustic wave equation. This equation describes the acoustic pressure 

field due to a point heat source distribution, and is given by [31] as 

1 p_gay_Patt-D%q 
a ot’ at? 

°o 

(22) 

The finite-element-method is able to provide a solution to such an equation by effectively 

reducing the order of the differentiation. As explained by Reddy [34], reduction of order 

is achieved by the introduction of a test function and the spreading of the differentiation 

equally over the test function and the independent variable (which, in the current study, 

is the acoustic pressure field, p(x,y,z,t).) The finite-element-method allows the problem 

to be expressed in a matrix formulation as 

(K, + M,)P, =F, (23) 

where P, represents the acoustic pressure, F, the heat source at the nodes, and (K, + M,,) 

represents the “stiffness” of the mesh. Once in this form, matrix inversion techniques 

can readily be used to solve for the pressure distribution, P.. 

The resulting solution is an approximation because the domain of the problem is 

discretized into a mesh of nodes and elements, and the governing equation is only solved 

at the nodal points. Solutions at other locations must be approximated, usually by 

interpolation between nodal values. A detailed derivation of the FEM model used in the 

current study is given in Appendix A. 
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It is in the stiffness matrix that the acoustic boundary conditions are found. From 

[31], the M, components can be expressed as 

M, = -@p,(y - S,), (24) 

where 

y = Rely,n, + yn, + y,n,] + jimly,n, + yn, + y,n,] (25) 

is the complex specific acoustic admittance. This admittance is assumed to be uniform 

over an element and is capable of having a nonzero value only at the bounding surfaces 

of the domain (i.e. the combustor walls and ports.) The term S, in Equation 24 

represents the value of volume integral in the FEM process, and has no effect on the 

boundary conditions. 

Three significant assumptions have been placed upon the admittances in 

DYNAMODE and DYNAMITE for the purpose of simplifying the task at hand. The 

first is that the walls of the burner are “hard.” This means that the admittance in a wall 

element is zero, resulting in the component of the pressure gradient normal to the wall 

being zero. Justification for this assumption lies in the fact that the walls of the candidate 

burner are relatively rigid — no porous or flexible combustion liner, or similar device, 

that could allow for the damping of acoustic energy is present. 

The second assumption is that the admittance is purely one-dimensional. This 

results in a non zero value in the longitudinal direction (y, #0), and zero values in the 

remaining directions (y, = y, = 0.) This assumption is justified in that in the current 
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limited application only the low-frequency response of the candidate burner is being 

studied, and so only the longitudinal pressure modes are present. 

The third, and final, assumption is that the admittance is spatially uniform over 

the element faces in the inlet and exhaust ports. This assumption is justified in that the 

range of frequencies being studied is well below the cut-on frequency for higher (non- 

longitudinal) modes; i.e. only longitudinal pressure wave shapes would be present even if 

the two admittances were allowed to have radial or circumferential distributions. 

2.4.2 Modifications to DYNAMODE 

In the creation of DYNAMITE, two major modifications were applied to 

DYNAMODE: (1) the geometry of the domain was altered to represent the candidate 

combustor, and (2) the acoustic pressure and heat source function are treated as complex- 

valued rather than real-valued functions. The original geometry of DYNAMODE is that 

of an annular-type combustor with uniform inner and outer radii. This is changed in 

DYNAMITE to the METC geometry of a can-type combustor having two different outer 

radii. The change is accomplished by definition of the finite element mesh and its 

corresponding connectivity array in the subroutines COORDS and CONNECT. Worth 

noting is that the elements along the central axis are still six-sided brick elements, but 

with the length of one side collapsed to zero. This modification is suggested by Bathe 

[32] and is demonstrated in Figure 5. 
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The conversion to complex-valued variables is achieved by data-type declaration, 

and by recognizing and addressing a slight change in the M, term. In DYNAMODE the 

real component of the acoustic admittance 1s neglected, resulting in the expression 

M, = -op,(Im[y] -S,) , (26) 

but the complex derivation in DYNAMITE yields 

M,, = op,(y - §,,). (27) 

An example illustrates the difference. If y is expressed as 

y=a+ jy, (28) 

then jy must be 

jy = -W + ja. (29) 

This transformation must be recognized and the code changed accordingly. 

These modifications allow DYNAMITE to return real and imaginary parts (or 

magnitude and phase angle) of the dynamic pressure at each of the specified node 

locations in the candidate combustor. 
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3.0 Approach 

The underlying theory of the approach presented here is that experimentally 

observed pressures can be used in conjunction with a numerical model to determine the 

acoustic boundary conditions. For theoretical analyses, the pressure vector, Y, is 

obtained by sending a realistic parameter vector to DYNAMITE. In this way the user 

knows the true target parameter vector, B, and comparisons between it and the final 

estimate can be made. In experimental analyses, Y is obtained from a data file that 

contains actual measurements of pressure variations detected by probes in a candidate 

combustor. 

3.1 Equipment 

The equipment used in the analysis is the Program ESTIMAT and a near-scale 

gas-turbine combustor, shown in Figure 6. The combustor is provided and operated by 

the United States Department of Energy Morgantown Energy Technology Center 

(METC), located in Morgantown, West Virginia. 
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3.1.1 The METC Combustor 

The candidate combustor, shown in Figure 5, is a near-scale, can-type burner with 

two distinct sections. The first section has an axial length of 8.05 in. (20.447 cm) and a 

constant inner radius of 7.625 in. (19.3675 cm), while the second section has an axial 

length of 9.0 in. (22.86 cm) and a constant inner radius of 2.0 in. (5.08 cm). The entire 

apparatus is constructed of stainless steel and is water-cooled. Combustion is fueled by a 

mixture of natural gas and air that is mixed by a swirl vane. The fuel mixture enters the 

burner through a 2.75 in. (6.985 cm) diameter port in the first section, and the products 

of combustion exit through a 2.0 in. (5.08 cm) diameter port in the second section. The 

mean operating pressure is 149.7 psi (1.0322 MPa), and the temperature ranges from 

3680°F (2027°C) in the head end to 2690°F (1477°C) in the exhaust plane. 

Four dynamic pressure probes are installed in the combustor, as shown in Figure 

7. These probes return a time series of the dynamic pressure which is then converted to 

the frequency domain (magnitude and phase angle) via FFT. The magnitude and phase 

values can then be converted to the real and imaginary components of the pressure 

deviation above the mean value, resulting in eight independent measurements at any 

particular frequency. These eight measurements constitute the target vector, Y, that is 

sent to program ESTIMAT. As explained is Section 2.3.1, Y, is the real component of 

the dynamic pressure observed at the first probe, Y, is the imaginary component of the 

pressure from the same probe, Y, is the real component of the pressure from the second 

probe, and so on. 
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3.1.2 Program ESTIMAT 

The estimation method developed in the current study is a FORTKAN-77 

computer code called ESTIMAT. It is a combination of the gradient-based Gauss 

method and an evolutionary genetic algorithm. By exploiting the advantages of both 

techniques, it is possible for ESTIMAT to arrive at accurate estimates of the acoustic 

boundary conditions for nearly any candidate system. ESTIMAT uses the FEM model 

DYNAMITE in its numerical simulation of the dynamic behavior of the combustor. 

Five major steps comprise the main body of ESTIMAT: (1) determination of the 

targets, (2) an initial search using the Gauss method, (3) a search using the genetic 

algorithm, (4) a second search with the Gauss method, and (5) post-processing of the 

results. These steps, along with additional logic, are shown in Figure 8. 

As mentioned above, the target pressure vector, Y, can be obtained theoretically 

or experimentally. For the current study Y is a 1 x 8 vector made up of four real and 

four imaginary components of measured pressure at a given frequency. 

With the target vector determined, ESTIMAT enters a two-step loop consisting of 

the creation of a random starting position and the subsequent Gaussian estimation from 

this position. The purpose of this loop is to find the general location of the global 

minimum of the error function, S. The general location is defined, in this case, as an area 

in the search space where the sign (+/-) of every component of the estimated vector, P, is 

the same as the sign of the corresponding component of the target vector, Y. This 

looping process searches for such an area by comparing the signs of P and Y during 
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Figure 8. Logic for Program ESTIMAT. 
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Gaussianestimations from random Starting positions in the search space. The loop 

continues until an appropriate parameter set, b’, is found, or until a preset maximum 

number of restarts is surpassed. 

The Gauss method itself, the logic of which is shown in Figure 9, is limited to 

eight iterations per restart. Also, the least-square error, S, must decrease from iteration to 

iteration. The subroutine GAUSS terminates and a random restart occurs if either of 

these conditions is violated. During the execution of GAUSS the parameter set with the 

smallest sum-of-squares error, regardless of sign, is stored in the vector xxminb. If the 

signs do happen to match during an iteration, then the parameter set with the smallest 

sum-of-squares error is stored in minb. These two vectors, minb and xxminb, are used 

to prime the next estimation procedure, the genetic algorithm. 

The subroutine GENETIC uses a genetic algorithm to focus more sharply on the 

global minimum of the objective function, S. Its probabilistic rules allow it to overcome 

any ill-conditioning that might cause problems for the Gauss method. The subroutine, 

the logic of which is shown in Figure 10, uses minb and xxminb as seeds for a random 

population, and returns an improved parameter estimate vector, interm. 

The variety provided by the randomized initial population is the first essential 

part of the genetic algorithm. GENETIC achieves its variety in the following manner. 

The first two individuals of the forty-member population are exact duplications of minb 

and xxminb. The next thirteen individuals are created with the constraint that each 

parameter must not be higher in absolute value than ten times the corresponding 

parameter in minb.
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Figure 9. Logic for Subroutine GAUSS. 
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Figure 9. (continued) Logic for Subroutine GAUSS. 
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Begin 
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q 
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      q 

( Check new chromosome for Mutation ‘| 

Figure 10. Logic for Subroutine GENETIC. 
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Figure 10. (continued) Logic for Subroutine GENETIC. 
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Individual parameters, or chromosomes, are created by drawing a random number from a 

uniform distribution between 0.0 and 1.0, and scaling this number according to the 

particular constraint. For example, if minb were equal to (0.979,-0.032, 1.587,-6.549), 

then the first parameter would be constrained between 0.0 and 9.97, the second between 

-0.32 and 0.32, the third between 0.0 and 15.87, and the fourth between -65.49 and 

65.49. (Remember that the first and third parameters represent the real part of the 

acoustic admittance, and must be non-negative.) Individuals sixteen through twenty-eight 

are determined using xxminb in a similar fashion. The last twelve individuals are 

determined by randomly multiplying or dividing a parameter from minb or xxminb by a 

random number between 0.0 and 1.0. It should be noted that the population size of forty 

and the initial distribution of 2-13-13-12 are products of the author’s discretion. Both 

were chosen because of their apparent ability to balance effectiveness with reasonable 

computing time. 

A scheme for fitness-proportionate reproduction is the second essential part of the 

genetic algorithm. This is accomplished by GENETIC with a two-step iterative process. 

The first step is the evaluation of the sum-of-squares error for each individual, and 

subsequent ranking of the population according these S values. After being ranked, the 

best twenty individuals of the forty-member population are selected as possible parents. 

The first four children of the next generation are exact duplicates of the best four parents. 

For each of the remaining thirty-six children, two parents are selected and genetic 

information is passed. Each of the four parameters in the offspring can be either an exact 
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duplication of the chromosome in the first parent, an exact duplication of that of the 

second parent, or an average of the two. Once a new chromosome is determined it is 

checked for mutation, which, if it occurs, randomly changes the value of the 

chromosome. The mutation rate in GENETIC is set at 80 occurrences out of 1000, 

which is considered high by genetic algorithm standards. After the new generation is 

complete, the process either repeats itself or terminates. The stopping criteria are a 

minimum sum-of-squares error (1.0 x 10” psi’ (4.754 x 10™* Pa)), or a maximum 

number of generations (20). When either stopping criteria is met, GENETIC ends and 

sends the improved estimate, interm, back to the main code. Once again, it should be 

noted that the proportions of these search parameters (number of parents to chose from, 

number of exact duplicates, crossover technique, mutation rate, and stopping criteria) are 

formed at the discretion of the author. It is quite possible that different values will work 

better for different conditions. 

The fourth step in ESTIMAT is another Gaussian estimation, using interm as the 

Starting point. This estimation is used to pinpoint the global minimum of the least-square 

error function, and returns the final parameter estimate, final. This parameter set and its 

corresponding pressure vector are then post-processed in the last step of ESTIMAT. 

3.2 Analysis 

The analysis in the current study is purely theoretical; at the time of this writing 

data is not available from the METC combustion rig. The analysis consists of 
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estimations based on a variety of conditions, summarized in Table 1, using two different 

geometries: the long, open-ended pipe used by Howard [17], and the METC burner. 

The nine sets of acoustic boundary conditions in Table 1 were obtained from [17], and 

each can be used to create a unique target pressure vector, Y, using program 

DYNAMITE. The objective of the analysis, then, is to see if ESTIMAT can use Y to 

recover the known parameter set which was used to create Y. 

To simulate the uncertainties associated with physical dynamic pressure 

measurements, the components of Y are normally perturbed about their exact values 

before the estimation begins. This is accomplished using the target pressure value as the 

mean, an assumed standard deviation on the pressure measurement, and a uniform 

random number generator. The result is a random, normally distributed perturbation of 

each individual value in Y. 

For the cases involving the simple open-ended pipe geometry, uncertainties of 

zero, one, and five percent are applied to Y. These values were chosen because a one- 

percent uncertainty is common in reported measurements, and zero and five percent may 

be considered to be limiting cases in either direction from one percent. For the cases 

involving the METC geometry, only uncertainties of zero and one percent are applied. 

The use of a five-percent uncertainty is omitted since this limiting case is studied in the 

straight, open-ended pipe geometry. 

Therefore, each of the nine target parameter sets has five different theoretical 

situations associated with it: three values of uncertainty for the simple geometry, and 
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two values for the METC geometry. Furthermore, the admittances for each case are 

estimated twice, with the two estimates beginning from different starting points in the 

search space. The starting points are created randomly, and examining Y can provide a 

priori knowledge about how to construct the random bounds. For example, acoustic 

theory dictates that a low admittance be associated with a pressure anti-node, and high 

admittance with a pressure node. In the current analysis, randomly generated 

admittances that correspond to a pressure anti-node location are within the range of +5 

ft’/lb,s (+ 0.0318 m’/N-s); and admittances that correspond to a pressure node are in the 

range of +20 ft'/lb,s (40.1273 m’/N-s). These multiple estimates are performed to 

study the sensitivity of the process to starting position. 

Overall, 45 estimates are performed based on the theoretical analysis. They are 

labeled as Cases 1 through 18, where Cases 1 through 9 involve the simple geometry and 

Cases 10 through 18 involve the METC geometry. The results of the estimates are 

analyzed and discussed in the next chapter. 
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4.0 Results and Discussion 

In this chapter the results of the analysis are presented, explained, and discussed. 

The estimated complex acoustic admittance values for Cases 1 through 18 are presented 

in Tables 2 through 10. Two major points can be made from these results. First, the 

process performs very well in estimates involving zero uncertainty on the target pressure 

values. Of the 36 estimates of this type, 24 return admittance values that are nearly 

identical to the targets. More significantly, only three times out of eighteen did neither 

of the two estimates for a particular case return a perfect estimate. Secondly, it can be 

seen that the head-end admittances are consistently estimated closer to the targets than 

the exhaust-end admittances. This, coupled with the fact that the head end is the location 

of a pressure anti-node and the exhaust a pressure node, is very interesting. 

Results in a different form are presented in Figures 11 through 46. These figures 

show the idealized target pressure fields, which are produced by the parameters in Table 

1 and are not perturbed. They also show the error of the estimated pressure field relative 

to the targets for each theoretical case. The organization of the figures is as follows: 
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Figures 11 through 19. These contain the results for the simple geometry cases 

involving one and five percent uncertainty on the target pressures. Each figure 

has four subfigures (labeled a, b, c, and d). Subfigure a is the real component 

of the nonperturbed target pressure and subfigure b is the relative error between 

the target and estimated pressure fields. Subfigure b shows two curves for each 

of one- and five-percent uncertainty because two estimation processes are 

conducted for each; the two estimation processes are begun at different starting 

positions in the search space. Subfigures c and d are the same information for the 

imaginary component of the pressure. 

Figures 20 through 28. These figures contain the results for the simple geometry 

cases involving zero uncertainty on the target pressures. The target pressure 

fields are the same as those in Figures 11 through 19 and, therefore, are not 

replotted in these figures. What is shown is the relative error curves for the real 

and imaginary components of pressure. These results are plotted separately from 

the one- and five-percent estimates due to the vast differences in magnitude of the 

relative error. Again, there are two curves labeled as zero-percent uncertainty 

because two estimation processes were conducted from different starting points. 

Figures 29 through 37. These figures contain the results for the METC geometry 

cases involving one-percent uncertainty on the target pressures. The format is the 
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same as that for Figures 11 through 19, except that no five-percent uncertainty 

estimates are reported. 

Figures 38 through 46. These figures contain the results for the METC geometry 

case involving zero uncertainty on the target pressures. The format is the same as 

that for Figures 20 through 28. 

The reason for reporting the real and imaginary components of the acoustic 

pressure should be emphasized. Normally, results involving pressure are not presented in 

this fashion; however, the current study uses the two components as separate 

observations (or targets) in the process that estimates the complex-valued acoustic 

admittance. Therefore, the two components, and the relative error between the targets 

and estimates, are reported separately. 

In the results, the relative error plots are based on how well a set of estimated 

parameters replicates the ideal (nonperturbed) target pressure field. The ideal pressure 

field, which is produced from the parameters in Table 1, is used because the objective of 

this part of the analysis is to see how accurately ESTIMAT can recover a target 

parameter set—not how closely it can match a slightly perturbed pressure field. With that 

in mind, the formula for determining the relative error is 

E, as 
Y, i 

  x 100% , (30) 
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where E, is the relative error, in percent, at location i, Y, is the target pressure at i, and P, 

is the corresponding real or imaginary component of the estimated pressure field. The 

pressure fields for Cases 1 through 18 are sampled at [FEM] nodes along the centerline 

of the burner. While the estimation process is conducted using only four nodal points of 

observation, the results are reported for the entire length of the combustor (which 

consists of 11 nodes for the simple geometry and 12 for the more complicated METC 

geometry.) 

In examining Figures 11 through 46, some observations are common to every 

case. First, the magnitude of the real component of the pressure is greater than that of 

the imaginary component, generally by two or three orders of magnitude. This implies 

that the complex-valued acoustic pressure is dominated by the real component. It can be 

seen in the results that the estimation process “recognizes” this, because the relative error 

of the real component is almost always less than that of the imaginary component at the 

same location. In other words, the estimation process pays more attention to the 

dominant term, i.e. the real component of the pressure. Second, the worst (highest) 

relative error invariably coincides with the location of pressure nodes (places where p’ = 

0). This is to be expected, given the extremely small pressure magnitudes at these points. 

Figures 11 through 19 reveal that, for the majority of the cases, one or both of the 

estimates involving one-percent uncertainty are better than those involving five-percent 

uncertainty, as seen in Figures 11, 14, and 19. Sometimes, however, the larger 

uncertainty estimates yield better results, as in Figure 17. This is made possible by poor 
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definition of the global minimum of the error function, S. Poor definition, which can be 

thought of as flatness in the error function, can allow a set of parameters to meet the 

stopping criteria of the estimation process well before the true minimum is found. This 

leads to a sensitivity of the process to starting position; that is, estimates which approach 

from different directions reach different results. 

Also seen in these figures is the fact that the relative error of the real component 

of the pressure, for both one- and five-percent estimates, consistently lies below a value 

of ten percent at locations that do not coincide with a pressure node. Only two of the 36 

estimates have a relative error value higher than ten percent along the entire length of the 

burner. These are a one-percent uncertainty estimate in Case 3 and a five-percent 

uncertainty estimate in Case 9, shown in Figures 13b and 19b, respectively. More 

significant is the fact that the real component of the estimates involving one-percent 

uncertainty generally have a relative error value below unity, i.e. below one percent. In 

all but Case 7, shown in figure 17b, at least one of these estimates returns relative error 

values less than unity along the entire length of the burner (except at pressure nodes). 

The imaginary component of the pressure in Figures 11 through 19, being of a 

significantly smaller magnitude than the real component, generally has a higher relative 

error associated with it. While the error values of a few estimates lie entirely below one 

percent, as seen in Figure 11d, most of the estimates possess error values in the range of 

10 to 1000 percent. 
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Figures 20 through 28 contain the error plots of the zero uncertainty estimates for 

Cases | through 9. Both the real and imaginary components of pressure have much 

lower (better) error values than those for the corresponding estimates involving one- and 

five-percent uncertainty. Only for one estimate of Case 8, shown in Figure 27a, did the 

relative error of the dominant real component remain above a value of one percent for 

the entire length of the burner. 

Results of the estimation processes for Cases 10 through 18, which involve the 

METC geometry, are depicted in Figures 29 through 46. One very noticeable difference 

between this and the previous set of figures is in the target pressure mode shapes. 

Although Cases 10 through 18 use the same parameter sets as Cases 1 through 9, the 

METC geometry constrains the longitudinal mode shape to that of a quarter-wave in all 

cases, while in the simple long-pipe geometry the mode shape changes with frequency. 

The most significant result seen in Figures 29 through 37 is the fact that the 

relative error values of the real component of estimated pressure for one-percent 

uncertainty estimates is generally around 0.1. The importance of this is not limited to the 

ability to predict the target pressure field; it also gives insight into the ability of the 

process to predict types of mode shapes. These results suggest that, in its current form, 

the estimation process is more adept at recovering parameters from lower-order mode 

shapes. 

A final result lies in the dependence of the pressure field on the locations of (1) 

the pressure nodes and anti-nodes, and (2) the acoustic boundary conditions. The 
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pressure field is more sensitive to boundary conditions that are coincident with pressure 

anti-nodes, while it is less sensitive to boundary conditions that are coincident with 

pressure nodes. Comparing the tabulated admittance results and the plotted pressure 

results reveals that the relative error of the pressure field is affected more by the head- 

end admittance, where a pressure anti-node occurs, than by the exhaust-end admittance. 

Low-error cases almost always perfectly estimate the head-end admittance, while the 

exhaust-end admittance may be slightly erroneous. This can be seen in Case 6 in the 

One-percent uncertainty estimates: from Table 7, both estimates missed the exhaust-end 

admittances by roughly the same amount but, as seen in Figure 16b, the estimate that 

more closely matches the head-end admittances has a much lower relative error. 
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5.1 

5.0 Conclusions and Recommendations 

Conclusions 

Based on the work presented in this thesis, it may be concluded that: 

Even though the current study deals only with longitudinal mode shapes, radial 

and circumferential modes could also be treated with the process. The accuracy 

of the estimation process, however, is expected to decrease as the complexity of 

the pressure mode shape increases. 

The poor definition of the global minimum of the error function can result in 

premature stoppage of the estimation process and, therefore, can produce poor 

parameter estimates. 

The poor definition of the global minimum of the error function can result in a 

sensitivity of the estimation process to starting position in the search space. 
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5.2 

The pressure field is less sensitive to boundary conditions that are located at 

pressure nodes, and more sensitive to boundary conditions that are located at 

pressure anti-nodes. 

The pressure mode shape is generally not extremely sensitive to the 

boundary conditions; the general mode shape can be recovered even when 

there is a relatively large error associated with the boundary conditions. 

Recommendations 

Based on the work presented and the conclusions drawn, it is recommended that: 

For work with higher order longitudinal, as well as with radial and 

circumferential pressure mode shapes, the FEM mesh should be refined and more 

pressure observations/targets should be used. It is recommended that more 

detailed studies be conducted in which the optimal mesh definition and number of 

observations be determined for a specific mode shape. Both specifications would 

necessarily depend upon the number of and spacing between the pressure maxima 

and minima in the standing wave pressure distribution at the particular frequency. 

The stopping criteria of the process should be made more stringent to prevent 

poor estimates. 
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Multiple estimates, each with different starting positions, should be made for any 

single burner condition. The results of the multiple estimates (the final sum-of- 

squares error and the pressure mode shape) can then be compared, and the best of 

the group can be identified. 

Finally, it is strongly recommended that an analysis be performed using 

experimental data for verification purposes. An independent measure of the 

boundary conditions, such as a two-microphone technique measurement, could be 

compared to estimated values. 
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Table 1. Parameters Used to Create Target Pressure Vectors 

  

  

  

  

  

  

  

  

  

              

Frequency Head-End | Exhaust-End Head-End Exhaust-End 

Temperature | Temperature Admittance Admittance 

(Re, Im) (Re, Im) 
Hz °F °F ft’/lb,-s f'/lb,-s 

°C °C m’/N-s x 10° m’/N-s x 10° 

Cases 1 and 10 300 1456 1056 (0.0371, 0.0046) (2.4212, -10.6078) 
791 569 (0.2362, 0.0293) (15.4131, -67.5283) 

Cases 2 and 11 400 1456 1056 (0.0305, -0.0098) (2.4581, -7.5764) 
791 569 (0.1942, -0.0624) | (14.7877, -45.4033) 

Cases 3 and 12 500 1456 1056 (0.0240, -0.0050) (1.9279, -6.0829) 
791 569 (0.1528, -0.0318) | (12.2728, -38.7232) 

Cases 4 and 13 300 1580 1180 (0.0371, 0.0046) (1.8658, -11.2969) 
860 638 (0.2362, 0.0293) (11.8775, -71.9151) 

Cases 5 and 14 400 1580 1180 (0.0305, -0.0098) (1.2631, -8.5203) 
860 638 (0.1942, -0.0624) (8.0410, -54.2395) 

Cases 6 and 15 500 1580 1180 (0.0240, -0.0050) (1.8874, -6.4044) 
860 638 (0.1528, -0.0318) | (12.0150, -40.7698) 

Cases 7 and 16 300 1950 1550 (0.0371, 0.0046) (1.5750, -14.6644) 
1066 843 (0.2362, 0.0293) (10.0263, -93.3523) 

Cases 8 and 17 400 1950 1550 (0.0305, -0.0098) (1.6701, -9.5784) 
1066 843 (0.1942, -0.0624) { (10.6317, -61.1026) 

Cases 9 and 18 500 1950 1550 (0.0240, -0.0050) (1.3754, -7.1523) 
1066 843 (0.1528, -0.0318) (8.7557, -45.5309) 
  

All cases use: 

Heat Release = 1200.5 BTU/Ib,, (2792.4 kJ/kg) @ nodes 1 through 76 

Mean Pressure = 14.699 Ib/in’ (1.013 x 10° Pa) 

Cases 1 through 9 use the straight pipe geometry: 
  

= 
Head End 

= 
Exhaust End 

Cases 10 through 18 use the METC geometry: 

    
Head End 

Exhaust End 

63 

 



Table 2. Estimated Admittance Values for Cases 1 and 10. 

  

Case 

Number 

Head-End 

Admittance 

(Re, Im) 
ft/bes 

m?/N-s x 10° 

Exhaust-End 

Admittance 

(Re, Im) 

f/lbres 

m/N-s x 10° 
  

  

  

(2.4212, -10.6078) 
  

  

  

  

  

  

  

  

    

straight pipe, 1 (0.0371, 0.0046) 

0% uncertainty (0.2362, 0.0293) | (15.4131, -67.5283) 

straight pipe, 1 (0.0371, 0.0046) (2.4241, -10.6127) 

0% uncertainty (0.2362, 0.0293) | (15.4316, -67.5595) 

straight pipe, 1 (0.0365, 0.0014) (1.7175, -13.3450) 

1% uncertainty (0.2323, 0.0088) | (10.9332, -84.9531) 

straight pipe, 1 (0.0364, 0.0005) (3.4984, -9.1452) 

1% uncertainty (0.2316, 0.0029) | (22.2707, -58.2175) 

straight pipe, 1 (0.0342, -0.0111) | (3.7306, -29.2718) 

5% uncertainty (0.2180, -0.0705) | (23.7485, -186.3414) 

straight pipe, 1 (0.0339, -0.0154) (4.8305, -6.5015) 

5% uncertainty (0.2159, -0.0983) | (30.7508, -41.3880) 

METC geometry, 10 (0.0523, 0.0042) (4.2997, -2.7168) 

0% uncertainty (0.3328, 0.0265) | (27.3714, -17.2948) 

METC geometry, 10 (0.0033, -0.0917) (0.1629, 3.5783) 

0% uncertainty (0.0210, -0.5838) (1.0370, 22.7788) 

METC geometry, 10 (0.0350, 0.0044) (3.1633, -22.4794) 

1% uncertainty (0.2229, 0.0279) | (20.1370, -143.1017) 

METC geometry, 10 (0.0188, -0.0108) (7.4691, 12.1579) 

1% uncertainty     (0.1196, -0.0688)   (47.5475, 77.3964)     

Frequency = 300 Hz 

Head-End Temperature = 1456°F (791°C) 

Exhaust-End Temperature = 1056°F (569°C) 
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Table 3. Estimated Admittance Values for Cases 2 and 11. 

  

      

Case 

Number 

Head-End 

Admittance 

(Re, Im) 
fP/lbes 

m?/N-s x 10° 

Exhaust-End 

Admittance 

(Re, Im) 

ft’/Ibes 
m/N-s x 10° 

  

  

  

  

  

  

  

  

  

  

  

          

straight pipe, 2 (0.0305, -0.0098) (2.3230, -7.1323) 

0% uncertainty (0.1942, -0.0624) | (14.7877, -45.4033) 

straight pipe, 2 (0.0305, -0.0098) (2.4510, -8.0158) 

0% uncertainty (0.1942, -0.0624) | (15.6027, -51.0280) 

straight pipe, 2 (0.0313, -0.0097) (3.5250, -5.6059) 

1% uncertainty (0.1990, -0.0615) | (22.4397, -35.6868) 

straight pipe, 2 (0.0451, -0.0288) (3.0575, 1.2822) 

1% uncertainty (0.2872, -0.1832) (19.4637, 8.1621) 

straight pipe, 2 (0.0341, -0.0092) (3.7153, -2.9548) 

5% uncertainty (0.2174, -0.0586) | (23.6514, -18.8099) 

straight pipe, 2 (0.0459, -0.0282) (3.0679, 1.1982) 

5% uncertainty (0.2920, -0.1797) (19.5299, 7.6276) 

METC geometry, 11 (0.0305, -0.0098) (2.4581, -7.5764) 

0% uncertainty (0.1942, -0.0624) | (15.6480, -48.2307) 

METC geometry, 1] (0.0305, -0.0098) (2.4588, -7.5729) 

0% uncertainty (0.1942, -0.0624) | (15.6524, -48.2086) 

METC geometry, 11 (0.0266, -0.0138) (3.4123, -5.9428) 

1% uncertainty (0.1691, -0.0881) | (21.7222, -37.8311) 

METC geometry, 11 (0.0305, -0.0098) (3.7735, -4.2710) 

1% uncertainty (0.1942, -0.0623) | (24.0219, -27.1885)     

Frequency = 400 Hz 

Head-End Temperature = 1456°F (791°C) 

Exhaust-End Temperature = 1056°F (569°C) 
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Table 4. Estimated Admittance Values for Cases 3 and 12. 

  

Case 

Number 

Head-End 

Admittance 

(Re, Im) 

ft'/bes 
m/N-s x 10° 

Exhaust-End 

Admittance 

(Re, Im) 

fP/lbes 

m/N-s x 10° 
  

  

  

  

  

  

  

  

  

  

  

          

straight pipe, 3 (0.0240, -0.0050) (1.9279, -6.0829) 

0% uncertainty (0.1528, -0.0318) | (12.2728, -38.7232) 

straight pipe, 3 (0.0240, -0.0050) (0.3754, -6.0322) 

0% uncertainty (0.1528, -0.0318) | (2.3898, -38.4005) 

straight pipe, 3 (0.0227, -0.0048) (0.6011, -11.4766) 

1% uncertainty (0.1446, -0.0308) | (3.8268, -73.0592) 

straight pipe, 3 (0.0117, 0.0774) (0.3766, 6.3521) 

1% uncertainty (0.0743, 0.4930) (2.3972, 40.4369) 

straight pipe, 3 (0.0236, -0.0049) (1.9443, -5.7369) 

5% uncertainty (0.1503, -0.0313) | (12.3774, -36.5203) 

straight pipe, 3 (0.0442, -0.0144) (4.3383, -1.6605) 

5% uncertainty (0.2813, -0.0918) | (27.6172, -10.5705) 

METC geometry, 12 (0.0240, -0.0050) (1.9279, -6.0829) 

0% uncertainty (0.1528, -0.0318) | (12.2728, -38.7232) 

METC geometry, 12 (0.0240, -0.0050) (1.9279, -6.0829) 

0% uncertainty (0.1528, -0.0318) | (12.2729, -38.7232) 

METC geometry, 12 (0.0238, -0.0054) (2.9899, -3.7026) 

1% uncertainty (0.1517, -0.0342) | (19.0334, -23.5705) 

METC geometry, 12 (0.0244, -0.0042) (2.9491, -3.8930) 

1% uncertainty (0.1554, -0.0270) | (18.7738, -24.7824)     

Frequency = 500 Hz 

Head-End Temperature = 1456°F (791°C) 

Exhaust-End Temperature = 1056°F (569°C) 
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Table 5. Estimated Admittance Values for Cases 4 and 13. 

  

  

  

  

  

  

  

  

  

  

  

  

    

Case Head-End Exhaust-End 

Number Admittance Admittance 

(Re, Im) (Re, Im) 

ft*/Ibes ft’bes 
m°/N-s x 10° m/N-s x 10° 

straight pipe, 4 (0.0371, 0.0046) (1.8658, -11.2969) 

0% uncertainty (0.2362, 0.0293) | (11.8775, -71.9151) 

straight pipe, 4 (0.0371, 0.0046) (1.8658, -11.2969) 

0% uncertainty (0.2362, 0.0293) | (11.8775, -71.9151) 

straight pipe, 4 (0.0375, 0.0049) (1.0290, -17.9906) 

1% uncertainty (0.2384, 0.0314) | (6.5502, -114.5265) 

straight pipe, 4 (0.0339, 0.0008) (4.7972, -7.8649) 

1% uncertainty (0.2158, 0.0049) | (30.5385, -50.0671) 

straight pipe, 4 (0.0388, 0.0063) (1.7415, -60.4562) 

5% uncertainty (0.2472, 0.0399) | (11.0861, -384.8588) 

straight pipe, 4 (0.0290, -0.0056) (6.7741, -9.6224) 

5% uncertainty (0.1848, -0.0354) | (43.1234, -61.2554) 

METC geometry, 13 (0.0371, 0.0046) (1.8546, -11.2954) 

0% uncertainty (0.2362, 0.0293) | (11.8063, -71.9053) 

METC geometry, 13 (0.0230, -0.0183) | (10.3532, 10.2514) 

0% uncertainty (0.1465, -0.1162) | (65.9077, 65.2593) 

METC geometry, 13 (0.0447, -0.0050) (9.6326, -2.8089) 

1% uncertainty (0.2848, -0.0318) | (61.3201, -17.8814) 

METC geometry, 13 (0.0079, -0.0359) (3.8613, 12.3177) 

1% uncertainty (0.0502, -0.2286) | (24.5805, 78.4134)           

Frequency = 300 Hz 

Head-End Temperature = 1580°F (860°C) 

Exhaust-End Temperature = 1180°F (638°C) 
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Table 6. Estimated Admittance Values for Cases 5 and 14. 

  

Case 

Number 

Head-End 

Admittance 

(Re, Im) 

f/lb- S 

m/N-s x 10° 

Exhaust-End 

Admittance 

(Re, Im) 

fP/b- S 

m/N-s x 10° 
  

  

  

  

  

  

  

  

  

  

  

    

straight pipe, 5 (0.0305, -0.0098) (1.2631, -8.5203) 

0% uncertainty (0.1942, -0.0624) | (8.0410, -54.2395) 

straight pipe, 5 (0.0305, -0.0098) (1.2618, -8.5191) 

0% uncertainty (0.1942, -0.0624) | (8.0326, -54.2320) 

straight pipe, 5 (0.0152, -0.0331) (3.1129, 6.1549) 

1% uncertainty (0.0970, -0.2104) | (19.8167, 39.1816) 

straight pipe, 5 (0.0193, -0.0029) (1.5477, 18.6889) 

1% uncertainty (0.1226, -0.0185) | (9.8528, 118.9716) 

straight pipe, 5 (0.0152, -0.0331) (7.9876, 4.9462) 

5% uncertainty (0.0970, -0.2104) | (50.8482, 31.4870) 

straight pipe, 5 (0.0593, -0.0217) (2.1065, -0.1768) 

5% uncertainty (0.3778, -0.1383) | (13.4100, -1.1255) 

METC geometry, 14 (0.0306, -0.0104) } (3.7389, -23.6019) 

0% uncertainty (0.1948, -0.0664) | (23.8013, -150.2478) 

METC geometry, 14 (0.0305, -0.0098) (1.1345, -8.5084) 

0% uncertainty (0.1942, -0.0624) | (7.2219, -54.1638) 

METC geometry, 14 (0.0261, -0.0144) | (5.2912, -38.2223) 

1% uncertainty (0.1661, -0.0914) | (33.6834, -243.3196) 

METC geometry, 14 (0.0169, 0.0459) (0.9253, -2.9286) 

1% uncertainty (0.1075, 0.2920) (5.8903, -18.6432)           

Frequency = 400 Hz 

Head-End Temperature = 1580°F (860°C) 

Exhaust-End Temperature = 1180°F (638°C)



Table 7. Estimated Admittance Values for Cases 6 and 15. 

  

      

  

  

  

  

  

  

  

  

  

  

    
          

Case Head-End Exhaust-End 

Number Admittance Admittance 

(Re, Im) (Re, Im) 

ft’/Ibes f/lbes 
m/N-s x 10° m/N-s x 10° 

straight pipe, (0.0240, -0.0050) (1.8892, -6.3836) 

0% uncertainty (0.1528, -0.0318) | (12.0265, -40.6372) 

straight pipe, 6 (0.0240, -0.0050) (1.8934, -6.3931) 

0% uncertainty (0.1528, -0.0318) | (12.0534, -40.6977) 

straight pipe, 6 (0.0090, 0.0673) (0.1207, -0.9947) 

1% uncertainty (0.0575, 0.4282) (0.7682, -6.3319) 

straight pipe, 6 (0.0229, -0.0054) (1.2243, -11.0995) 

1% uncertainty (0.1455, -0.0342) (7.7935, -70.6586) 

straight pipe, 6 (0.0032, -0.0058) (0.2268, -2.4129) 

5% uncertainty (0.0205, -0.0370) (1.4441, -15.3601) 

straight pipe, 6 (0.0032, -0.0058) (0.2268, -2.4129) 

5% uncertainty (0.0205, -0.0370) (1.4441, -15.3601) 

METC geometry, 15 (0.0240, -0.0050) (1.8874, -6.4044) 

0% uncertainty (0.1528, -0.0318) | (12.0150, -40.7698) 

METC geometry, 15 (0.0240, -0.0050) (1.8874, -6.4044) 

0% uncertainty (0.1528, -0.0318) | (12.0150, -40.7698) 

METC geometry, 15 (0.0272, -0.0011) | (0.0516, 77.7716) 

1% uncertainty (0.1728, -0.0071) }(191.3057, 495.0868) 

METC geometry, 15 (0.0227, -0.0139) (2.3373, -16.0055) 

1% uncertainty (0.1448, -0.0885) | (14.8789, -101.8895) 
  

Frequency = 500 Hz 

Head-End Temperature = 1580°F (860°C) 

Exhaust-End Temperature = 1180°F (638°C) 
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Table 8. Estimated Admittance Values for Cases 7 and 16. 

  

  

  

  

  

  

  

  

  

  

  

  

    

Case Head-End Exhaust-End 

Number Admittance Admittance 

(Re, Im) (Re, Im) 

ft*/lbes ft'/lbes 
m/N-s x 10° m/N-s x 10° 

straight pipe, 7 (0.0371, 0.0046) (1.5699, -14.6913) 

0% uncertainty (0.2362, 0.0293) (9.9936, -93.5235) 

straight pipe, 7 (0.0371, 0.0046) (1.5750, -14.6644) 

0% uncertainty (0.2362, 0.0293) | (10.0263, -93.3523) 

straight pipe, 7 (0.0024, 0.1217) (0.2423, 18.5800) 

1% uncertainty (0.0152, 0.7747) (1.5422, 118.2788) 

straight pipe, 7 (0.0384, 0.2154) (3.2195, -2.9630) 

1% uncertainty (0.2444, 1.3709) | (20.4951, -18.8624) 

straight pipe, 7 (0.0024, 0.1217) (0.2985, 12.7158) 

5% uncertainty (0.0152, 0.7747) (1.9000, 80.9474) 

straight pipe, 7 (0.0525, -0.0193) (5.0673, -18.5129) 

5% uncertainty (0.3345, -0.1228) | (32.2581, -117.8517) 

METC geometry, 16 (0.0080, 0.0054) (1.5241, 75.1735) 

0% uncertainty (0.0511, 0.0343) (9.7024, 478.5476) 

METC geometry, 16 (0.0049, 0.0172) (1.1417, 20.5133) 

0% uncertainty (0.0314, 0.1097) (7.2680, 130.5856) 

METC geometry, 16 (0.0167, 0.0216) (42.2469, 15.1175) 

1% uncertainty (0.1064, 0.1375) | (268.9400, 96.2368) 

METC geometry, 16 (0.0136, 0.0299) (0.4566, -5.0021) 

1% uncertainty (0.0866, 0.1902) (2.9064, -31.8431)           

Frequency = 300 Hz 
Head-End Temperature = 1950°F (1066°C) 

Exhaust-End Temperature = 1550°F (843°C) 
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Table 9. Estimated Admittance Values for Cases 8 and 17. 

  

  

  

  

  

  

  

  

  

  

  

  

  

    

Case Head-End Exhaust-End 

Number Admittance Admittance 

(Re, Im) (Re, Im) 

ft’/Ibes ft*/lbes 
m/N-s x 10° m/N-s x 10° 

straight pipe, (0.0007, 0.0508) (2.1330, 6.4384) 

0% uncertainty (0.0046, 0.3231) (13.5782, 40.9864) 

straight pipe, 8 (0.0305, -0.0098) | (7.6400, -32.5993) 

0% uncertainty (0.1942, -0.0624) |(48.6354, -207.5240) 

straight pipe, 8 (0.0050, 0.0465) (1.3072, 7.5415) 

1% uncertainty (0.0319, 0.2961) (8.3212, 48.0083) 

straight pipe, 8 (0.0304, -0.0098) (4.4245, -6.8669) 

1% uncertainty (0.1937, -0.0622) | (28.1663, -43.7142) 

straight pipe, 8 (0.0323, -0.0046) (5.6543, 1.9243) 

5% uncertainty (0.2056, -0.0292) | (35.9949, 12.2497) 

straight pipe, 8 (0.0301, -0.0097) (4.5836. -3.2892) 

5% uncertainty (0.1917, -0.0616) | (29.1787, -20.9391) 

METC geometry, 17 (0.0306, -0.0097) (47.9336, 9.0932) 

0% uncertainty (0.1948, -0.0615) | (305.1409, 57.8867) 

METC geometry, 17 (0.0305, -0.0098) (1.6458, -9.8193) 

0% uncertainty (0.1942, -0.0624) | (10.4771, -62.5091) 

METC geometry, 17 (0.0324, -0.0108) | (4.8360, -12.6856) 

1% uncertainty (0.2065, -0.0690) | (30.7853, -80.7554) 

METC geometry, 17 (0.0290, -0.0110) (3.7449, -8.1358) 

1% uncertainty (0.1849, -0.0703) | (23.8397, -51.7915)           

Frequency = 400 Hz 

Head-End Temperature = 1950°F (1066°C) 

Exhaust-End Temperature = 1550°F (843°C) 
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Table 10 . Estimated Admittance Values for Cases 9 and 18. 

  

Case 

Number 

      

Head-End 
Admittance 

(Re, Im) 
ft/lbrs 

m/N-s x 10° 

Exhaust-End 

Admittance 

(Re, Im) 

f’/bes 
m/N-s x 10° 

  

  

  

straight pipe, 

0% uncertainty 

(0.0240, -0.0049) 
(0.1526, -0.0314) 

(3.2207, -6.0660) 
(20.5029, -38.6157) 

  

straight pipe, 

0% uncertainty 

(0.0240, -0.0050) 
(0.1528, -0.0318) 

(2.0490, -6.8244) 

(13.0438, -43.4437) 
  

straight pipe, 

1% uncertainty 

(0.0264, -0.0046) 

(0.1680, -0.0294) 

(3.8159, -4.2352) 
(24.2915, -26.9609) 

  

straight pipe, 

1% uncertainty 

(0.0237, -0.0051) 

(0.1507, -0.0323) 

(0.0015, -12.9565) 
(0.0096, -82.4802) 

  

straight pipe, 

5% uncertainty 

(0.0363, -0.0028) 
(0.2312, -0.0176) 

(2.6566, -3.9334) 

(16.9114, -25.0395) 
  

straight pipe, 

5% uncertainty 

(0.5907, 0.0014) 
(3.7606, 0.0090) 

(5.3695, -3.8539) 
(34.1819, -24.5335) 

  

METC geometry, 

0% uncertainty 

18 (0.0240, -0.0050) 
(0.1528, -0.0318) 

(1.3754, -7.1523) 

(8.7557, -45.5309) 
  

METC geometry, 

0% uncertainty 

18 (0.0240, -0.0050) 
(0.1528, -0.0318) 

(1.3754, -7.1523) 

(8.7557, -45.5309) 
  

METC geometry, 

1% uncertainty 

18 (0.0259, -0.0026) 
(0.1647, -0.0165) 

(0.0000, -12.1331) 
(0.0002, -77.2385) 

  

METC geometry, 

1% uncertainty     18   (0.0238, -0.0047) 
(0.1515, -0.0302)   (1.5230, -18.8316) 

(9.6954, -119.8805) 
  

Frequency = 500 Hz 
Head-End Temperature = 1950°F (1066°C) 

Exhaust-End Temperature = 1550°F (843°C) 
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Figure lla. The Real Component of the Target Pressure, Case 1. 
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Figure 11b. Percent Error of the Real Component of 

the Estimated Pressure, Case 1. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 

73



Pr
es

su
re

 
x 
10

" 
(p

si
) 

  

  

      

0 5 10 15 20 25 30 35 40 

Axial Location (in.)} 

Figure lic. The Imaginary Component of the Target Pressure, Case 1. 
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Figure 11d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 1. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 12a. The Real Component of the Target Pressure, Case 2. 
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Figure 12b. Percent Error of the Real Component of 

the Estimated Pressure, Case 2. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 12c. The Imaginary Component of the Target Pressure, Case 2. 
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Figure 12d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 2. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 13a. The Real Component of the Target Pressure, Case 3. 
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Figure 13b. Percent Error of the Real Component of 

the Estimated Pressure, Case 3. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 13c. The Imaginary Component of the Target Pressure, Case 3. 
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Figure 13d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 3. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 14a. The Real Component of the Target Pressure, Case 4. 
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Figure 14b. Percent Error of the Real Component of 

the Estimated Pressure, Case 4. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 14c. The Imaginary Component of the Target Pressure, Case 4. 
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Figure 14d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 4. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 

  

80



  

Pr
es

su
re

 
x 

10
° 

(p
si

) 

  

      

Axial Location (in.) 

Figure 15a. The Real Component of the Target Pressure, Case 5. 
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Figure 15b. Percent Error of the Real Component of 

the Estimated Pressure, Case 5. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 15c. The Imaginary Component of the Target Pressure, Case 5. 
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Figure 15d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 5. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 16a. The Real Component of the Target Pressure, Case 6. 
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Figure 16b. Percent Error of the Real Component of 

the Estimated Pressure, Case 6. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 16c. The Imaginary Component of the Target Pressure, Case 6. 
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Figure 16d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 6. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 17a. The Real Component of the Target Pressure, Case 7. 
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Figure 17b. Percent Error of the Real Component of 

the Estimated Pressure, Case 7. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 17c. The Imaginary Component of the Target Pressure, Case 7. 
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Figure 17d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 7. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 18a. The Real Component of the Target Pressure, Case 8. 
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Figure 18b. Percent Error of the Real Component of 

the Estimated Pressure, Case 8. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 18c. The Imaginary Component of the Target Pressure, Case 8. 

Pe
rc
en
t 

Er
ro
r 

(l
og
 
sc
al
e)
 

  

  

  

    

0 5 10 15 20 25 30 35 40 

Axial Location Gn.) 

  

—¢e— 1% uncertainty —™@ - 1%uncertainty — & —5%uncertainty - -% - 5% uncertainty | 

Y. —P. 
Percent Error = Bee x 100% 

i 

Figure 18d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 8. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 19a. The Real Component of the Target Pressure, Case 9. 
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Figure 19b. Percent Error of the Real Component of 

the Estimated Pressure, Case 9. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 19c. The Imaginary Component of the Target Pressure, Case 9. 
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Figure 19d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 9. 
(Two Different Starting Positions for Both One- and Five-Percent Uncertainty) 
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Figure 20a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 1. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 20b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 1. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 2la. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 2. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 21b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 2. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 22a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 3. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 22b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 3. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 23a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 4. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 23b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 4. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 24a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 5. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 24b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 5. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 25a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 6. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 25b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 6. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 26a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 7. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 27a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 8. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 27b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 8. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 28a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 9. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 28b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 9. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 29a. The Real Component of the Target Pressure, Case 10. 
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Figure 29b. Percent Error of the Real Component of 

the Estimated Pressure, Case 10. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 29c. The Imaginary Component of the Target Pressure, Case 10. 
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Figure 29d. Percent Error of the Imaginary Component .of 

the Estimated Pressure, Case 10. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 30a. The Real Component of the Target Pressure, Case 11. 
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Figure 30b. Percent Error of the Real Component of 

the Estimated Pressure, Case 11. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 30c. The Imaginary Component of the Target Pressure, Case 11. 
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Figure 30d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 11. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 3la. The Real Component of the Target Pressure, Case 12. 
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Figure 31b. Percent Error of the Real Component of 

the Estimated Pressure, Case 12. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 31c. The Imaginary Component of the Target Pressure, Case 12. 
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Figure 31d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 12. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 32a. The Real Component of the Target Pressure, Case 13. 
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Figure 32b. Percent Error of the Real Component of 

the Estimated Pressure, Case 13. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 32c. The Imaginary Component of the Target Pressure, Case 13. 
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Figure 32d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 13. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 33a. The Real Component of the Target Pressure, Case 14. 
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Figure 33b. Percent Error of the Real Component of 

the Estimated Pressure, Case 14. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 33c. The Imaginary Component of the Target Pressure, Case 14. 
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Figure 33d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 14. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 34a. The Real Component of the Target Pressure, Case 15. 
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Figure 34b. Percent Error of the Real Component of 

the Estimated Pressure, Case 15. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 34c. The Imaginary Component of the Target Pressure, Case 15. 
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Figure 34d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 15. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 35a. The Real Component of the Target Pressure, Case 16. 
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Figure 35b. Percent Error of the Real Component of 

the Estimated Pressure, Case 16. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 35c. The Imaginary Component of the Target Pressure, Case 16. 
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Figure 35d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 16. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 36a. The Real Component of the Target Pressure, Case 17. 
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Figure 36b. Percent Error of the Real Component of 

the Estimated Pressure, Case 17. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 36c. The Imaginary Component of the Target Pressure, Case 17. 
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Figure 36d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 17. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 37a. The Real Component of the Target Pressure, Case 18. 
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Figure 37b. Percent Error of the Real Component of 

the Estimated Pressure, Case 18. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 37c. The Imaginary Component of the Target Pressure, Case 18. 
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Figure 37d. Percent Error of the Imaginary Component of 

the Estimated Pressure, Case 18. 
(Two Different Starting Positions for One-Percent Uncertainty) 
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Figure 38a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 10. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 38b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 10. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 39a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 11. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 39b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 11. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 40a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 12. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 

  

Pe
rc

en
t 

Er
ro

r 
(l

og
 
sc
al
e)
 

  

  

    

0 2 4 6 8 10 12 14 16 18 

Axial Location (in.) 

Percent Error = Poe x 100% 

Figure 40b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 12. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 41a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 13. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 41b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 13. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 42a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 14. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 42b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 14. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 43a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 15. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 43b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 15. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 

123



Pe
rc

en
t 

Er
ro

r 
(l

og
 
sc
al
e)
 

Pe
rc
en
t 

Er
ro

r 
(l

og
 
sc

al
e)

 
  

  

  

    0. Ol {. ~ _f —_f. | | — ——l. 

Axial Location (in.) 

Percent Error = a x 100% 
i 

Figure 44a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 16. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 44b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 16. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 45a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 17. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 45b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 17. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 46a. Percent Error of the Real Component of 

the Estimated Pressure, Ideal Case 18. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Figure 46b. Percent Error of the Imaginary Component of 

the Estimated Pressure, Ideal Case 18. 
(Two Different Starting Positions for Zero-Percent Uncertainty) 
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Appendix A 

Contained here is a derivation of the finite element model used by Program 

DYNAMODE and Subroutine DYNAMITE. It is adapted, nearly verbatim, from a 

derivation written by Dr. J. R. Mahan [31] in 1994 as part of a research proposal. 

A.1 Theoretical Development 

The nonhomogeneous acoustic wave equation describing the acoustic pressure 

field p(xy,z,t) (1b/ft’) due to a point heat source distribution q(,y,z,t) (ft-lb/lb_,) is 

1? (y-De + _ V’p _— p Y og 

a> oO ae ot 
(Al) 

where a, (ft/s) is the steady-flow speed of sound, p, (1b,/ft’) is the steady-flow mass 

density, and y is the specific heat ratio, ¢/c, The derivation of equation Al assumes that 

the fluid is an ideal gas undergoing an isentropic process. Consistent with this 

assumption, 

a, = YRTI. » (A2) 

where R (ft-lb/lb,-R) is the gas constant of the medium, TJ, (R) is the local steady-flow 

absolute temperature, and g (=32.2 ft-lb,/lb,s’) is the required dimensional constant; and 

  =—, A3 P, RL. (A3) 

where ® (lb/ft’) is the local steady-flow pressure. Due to the high temperatures and 

large temperature variations in a gas turbine combustor, temperature-dependent specific 

heats should be used in computing the local specific heat ratio y. Equation Al also 
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assumes that p/P << 1.0, i.e. small perturbations are assumed. Equation A1 can be used 

to find the pressure field within an enclosure, assuming that the acoustic impedance 

conditions are known at the walls. The finite-element method (FEM) is used to solve 

equation Al. 

A.2_ Solution Using the Finite-Element Method 

The development is begun by multiplying equation Al by a test function A and 

then integrating over a volume element in the physical x,y,z coordinate system, 

NO p ,Op ,Aep Ap dAp,(y—-1)0°¢q ACP _47°P_y°P_4°P_APo dxdydz = 0. A4 
ie ae Ox? dy? dz? a oar} A") 

@ 

    

Note that the analysis is being developed in rectangular coordinates even though the 

geometry of a cylindrical burner would seem to require development in cylindrical 

coordinates. This is because the solution space will be approximated using six-sided 

prismatic volume elements which are capable of being mapped into a rectangular master 

element. The analysis will be formulated on the basis of the physical x,y,z coordinate 

system, and then at the appropriate time the analysis will be mapped into the &,7,¢ 

coordinates of the master element. This mapping allows the FEM to conform to irregular 

geometries. 

The analysis is converted to the frequency domain by assuming that the acoustic 

pressure field can be represented by 

pliyzt)=Ployze” , (AS) 

where j= J-1. This separation of variables leads to a solution for the mode structure in 

the burner; that is, the local magnitude of P/x,y,z)of the acoustic pressure corresponding 

to a source distribution Q/,y,z) where 

qlayz.t) = Qyzle, (A6) 

Subject to this assumed form of the solution, the first term of the integrand in equation 

A13 may be written 
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_ 2 

| = he * txdydz, (A7) 
Vv a 

and the last term of the integrand may be written 

| OM AYU 6, i tedyde, (A8) 
Vv a 

Focusing on the middle three terms of the integrand in equation A3, application 

of the identity 

ash ~fhe ae . (A9) 

where f=Aand g= ap/outuher arepresents x y, or z), yields for these terms 

[ Od OP | AN OP | Oh OP 

dxdx dy dy dz dz 

aP\ a(.ae 2 oe le” dedyd Al0b 
-{|2(02) al +2 32 2) ayes. (A10b) 

Note that all of the terms of equation A4, when rewritten using expressions A7, A8, and 

} * txdydz, (A10a) 

A10, contain ¢” as a factor. Thus, this common factor can be divided out of equation 

Ad. 

Note that in the first integral of equation A10 the differentiation has been spread 

equally over the test function A and the dependent variable # so that the differentiation of 

the dependent variable has been reduced to first order. However, the second integral in 

the expression still contains second-order derivatives. The normal continuation in FEM 

at this point is to apply the divergence theorem to the second volume integral in equation 

A10 to convert it to a surface integral containing only first derivatives. But taking this 

approach in the case of the acoustic wave equation misrepresents the acoustic boundary 

conditions in the analysis. However, for reasons explained below, the order of 

differentiation of the second integral of equation A10 still needs to be reduced. 
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The approach, which is believed to be a new contribution to the FEM applied to 

acoustic analysis, is to introduce Euler’s equation, 

Vp = pout) (All) 
where u (xy,z,t) = U(xyz)e” is the acoustic particle velocity. With the introduction of the 

acoustic admittance, y =u/p = U/?, Euler’s equation can be written 

VP = jwpy Pe”, (A12) 

where it is noted that equation Al2 is a vector equation; that is, like V®, y is a vector 

quantity having components in the x y, and z directions. Introducing equation A12 into 

the second integral of expression A10 (from which the factor ¢” has been dropped) yields 

ion, | [ WAP), y AP), y AP) Jette (A13) 
Y Ox oy dz 
      

where the components of the acoustic admittance, y, y, and y,, are treated as constant 

coefficients under the differentiation. These admittances represent the acoustic boundary 

conditions and so have nonzero values only at bounding surfaces of the burner. Finally, it is 

recognized that the acoustic admittance is a complex number, 

y = Rely] + j Imly]. (Al4) 

This completes the reduction of order of differentiation while correctly including the 

acoustic boundary conditions. 

It should be noted that, other than geometry, here lies the major difference 

between DYNAMODE and DYNAMITE. In DYNAMODE, the real, or dissipative, 

component of the acoustic admittance is neglected, in which case equation A13 becomes 

“ap, | (a yee Im[ y, poe), Im[ y, JOP? 
v x Oy dz 

    Jest . (A13b) 

In DYNAMITE, the real part of the admittance is not neglected, leaving the imaginary j 

term in the formulation. To accommodate this, the admittance defined by the user must 

be multiplied by j 

BD = -Imly] +7 Rely] (A14b) 

before it is inserted into the analysis. 
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As stated above, the problem is formulated in the physical ~,4,z coordinate system 

and then mapped onto a rectangular master element. The master element and related 

nomenclature are shown in Figure Al. It is assumed that the dependent variable P(€,7,C ) 

may be represented in the master element by the approximate function 

N 
HE,n,6) = >) 26 ,(61,0). (A15) 

jal 

where Ais the number of nodes per element (in this case 8) and the one jare basis 

functions. In the current analysis the @, are represented as linear functions: 

o, =30-§)d-md- 9), (A16) 

d, = 30+ 0-nd-o), (A17) 

o, =¢U+§)+n)1-6), (A18) 

o,=30-9d+md-o), (A19) 

o; =401-§)-n)+9), (A20) 

O,= 30+ G0-ndt+), (A21) 

o, =3(1+§)+ nto), (A22) 

o, =30-§ 0+ nd+0. (A23) 

Equations 26 through 33 meet the requirements that: (1) @and its first partial derivatives 

can be evaluated everywhere in the master element, and (2) @.= 1 at node iof the 

element. This shows clearly why it was important to reduce the order of derivatives in 

the formulation. 

The test function A is arbitrary as long as it can conform to the boundary 

conditions. It is convenient and usual to use the same polynomial functions to represent 

Aas those used for P. When expressions A7, A8, Al10, A1l3, and Al5 are combined and 

introduced into equation A14 there results 

[K, + MJP = F, (A24) 
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where 

  

  

  

    
  

06, 96, 00, 90, a0, 9, = i i i dxduydz , A25 
Xs {(z dx dy dy dz Oz Og ( ) 

M, = jOP Cy, 55 + ¥,S55 + ¥.5;)> (A26) 

and 

F,=—k'p, (y¥-1)Q] 0,dxdydz. (A27) 
Vv 

C 

(-1 71,1) (-1,1,1) 

(1,-1,1) ! (1,1,1) 
a 

(Ay -1) po-----po--n eee -* (4,11) 

(1,-4.1) ¥ Aet)     

Figure Al. The Master Element and its Coordinate System. 
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In Equations A25 and A27 the quantity k = @/a, is the wavenumber, and in equation A26 

ss | (0%. 2) 4g ty, (A28) 

Si= [[e2. sg, 00, 221 te. (A28) 

and 

Si - | (0.2. 20; +o, 0, Nt. (A28) 

Note that a version of equation A13 exists for every element in the problem 

domain. These elements must be assembled to form an approximation of the physical 

space. When this is done a new version of A24 exists for which the i,j subscripts now 

refer to the total number of nodes in the finite element model (mesh). In the current 

version of the model of a can-type gas turbine combustor, symmetry can be used to 

model only a 180° sector of the combustor. Still, the half-combustor model contains 

1416 elements and 1662 nodes. This means that, using standard matrix techniques, a 

1662x1662 matrix must be manipulated and stored. To avoid this problem the K+, 

matrix is converted to banded form, resulting in a 1662XNHBW matrix, where NHBW is 

the narrow half-bandwidth of the banded matrix. The value of NHBW can be minimized 

by judicious numbering of the nodes, and in the current study has a value of 203. 

Subroutine INTER3 and Subroutine SOLVE, which put matrix K+, in banded form 

and solve equation B24, are based on Subroutine INTER from Noura Tira’s M.S. Thesis 

[33] and Subroutine SOLVE from Reddy’s [34] book on the finite element method. 

The next step in the analysis is to evaluate the volume integrals in equations A25, 

A27, A28, A29, and A30 and assemble the results to obtain the matrices K, and M, and 

the vector ¥,in the assembled version of equation A24,. However, before proceeding it is 

useful to discuss the physical significance of these quantities. The eigenvalues of the 

matrix X, are the resonant frequencies of the burner for the special case of a hard-walled 
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burner (all admittances y equal to zero.) Thus, in the special case of a hard-walled 

burner, the assembled version of equation A24 becomes 

[KJ®, = F, 
and its solution gives the three-dimensional acoustic pressure mode shapes in the hard- 

(A31) 

walled burner. Similarly, the eigenvalues of the matrix K,+M, are the resonant 

frequencies of the burner with specified acoustic wall admittances. The vector Ff, 

represents the “forcing function” to which the combustor responds. 

The careful reader will have already recognized that the integrals in equations 

A25, A27, A28, A29, and A30 need work before they can be evaluated because they are 

written in terms of two different coordinate systems: the physical ~,y,z coordinate system 

describing the burner geometry, and the &,7,¢ coordinate system of the master element. 

Clearly one of these systems must be expressed in terms of the other before the integrals 

can be evaluated. Transformations between coordinate systems are normally 

accomplished using the Jacobian matrix, 

Ez 
ae 
ax 
on 
ax 
aC 

[7] 

  
Then, 

dy Oz 

0 
Oz 
an | 

az 
at   

dxdydz = |9/ dEdnd, 

where /49/ is the determinant of the Jacobian matrix, and similarly 

99. | | 2 
Ox. Ox 

8, |_| 9 
oy Oy 

og, } | 6 
Oz Oz 

] 20, 

06 
a6, 
on 
90,   J   

(A32) 

(A33) 

, (A34) 

where the matrix is the inverse of the Jacobian matrix, /7/”. Equations A33 and A34 are 

used to eliminate x, y, and z from the integrals in equations A25, A27, A28, A29, and 
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A30, after which the integrals can be evaluated. For example, equation A28 can now be 

fT (, %, 

-{ | | (ogo %, BE 11 |I|de and 

LPP (e2 +6, 20 Nr oldednd (A35) 

‘LL (05 iN ey |a|dedn dl 

The actual integrations are carried out using Gauss quadrature. In Gauss 

written 

        

quadrature the value of an integral like those in equation A35 is approximated as 

I 1 i P 

| | | FIENNES ang = S fbemebeM (A36) 
-1d-1{d-1 = 

where the €,,¢, are the Gauss points, NGP is the number of Gauss points, and the W, 

are the corresponding weights. The Gauss points and weights for various situations can 

be found in [34]. 

A.3_ Finite Element Description of the Combustor Geometry 

Central to FEM is the discretization of the problem domain. In the current study, 

a mesh of nodes and six-sided “brick” elements is used to describe the combustion 

chamber. The geometry is defined using a combination of: (1) the number of divisions 

(elements) in the axial, radial, and circumferential directions, (2) the coordinate 

definition of the nodal points, and (3) the arrangement of the elements in the mesh. 

Figure A2 shows a radial-axial plane and two radial-circumferential planes of the FEM 

mesh used for the METC can-type burner. To model other geometries, one must change 

the mesh definition (as well as other parameters), and this process is described in 

Appendix B. 
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Appendix B. User’s Guide to Program ESTIMAT 

B.1 Changing the Burner Geometry 

Currently, Program ESTIMAT is set up for the METC can-type combustor geometry. 

Other types of burners, such as a straight-can or an annular geometry, can be modeled by 

simply altering the FEM mesh definition. Below is a list of changes that are required alter 

the geometry in ESTIMAT. The line numbers alluded to in these changes correspond to the 

line numbers of the documented code in Appendix B.3. Also, explanations of the varibales 

used in ESTIMAT are given in the documentation. 

List of Alterations for Changing the Burner Geometry in ESTIMAT: 

1. The user must change the value of the user-defined variables in lines 1916 

through 1949 of ESTIMAT. These variables include IFULL, NEM, NTHETA, NR, NZ, 

NQ1, NQ2, N1, N2, N3, N4, R(), AND ZPLANE(). Also, the assignment of the 

NGEOM() array to geometric variables in lines 1969-1972 and 1977-1988 needs 

attention. 

2. The sizes of arrays in variable declaration in Subprogram DYNAMITE must 

be changed according to the new geometry. If computing space is not a restraint, 

the user may want to oversize these arrays and then never worry about them again. 

However, if the computing system won’t handle oversized arrays, then the 
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declarations can be divided into two types depending upon nodal or elemental 

variables. The following variables need an array the size of which is at least as 

big as the number of elements: X, Y, Z, GAMMA, RHO, WN, QQ, MC. The following 

variables need an array the size of which is at least as big as the number of nodes: 

XX, YY, ZZ, GF, GK, P, Q, T. The user must be sure to correctly declare variables in 

all of the subroutines where they are used. Also, be aware that the NHBW may 

change due to a change in the mesh, and GK must be dimensioned to handle it! 

3. Lines 2085 through 2112 are used to assign the initial values of P, Q, and T to 

the nodes. The method of looping through the nodes is important here; a change 

in geometry may change this looping process. 

4. Subroutine COORDS located in lines 2448 through 2558 defines the x,y,z 

coordinates of the nodes. The same looping process used in step 3 can often be 

employed here. The task here is to come up with a simple logic for assigning the 

nodal coordinates. 

5. Subroutine CONNECT located in lines 2571 through 2755 defines how the 

elements are connected in the global FEM mesh. Judicious numbering and 

arrangement of the elements can minimize the NHBW and reduce computing time. 

An extremely good way to become familiar with the process of constructing the 

connectivity array is to go through a few examples by hand. 

6. Finally, redefining the geometry will usually require the location of the 

pressure observations (for the parameter estimation) to be changed. The 

definition of these locations is located in lines 2418 through 2431. 
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B.2__ Other Changes 

Other desired modifications may include: changing the stopping criteria of the 

estimation process, changing the number of experimental observations, changing the 

number of parameters to estimate, and other specific alterations to the estimation 

processes. 

The stopping criteria of the Gaussian estimation can be changed in Subroutine 

STOPPER (lines 660 through 691.) These criteria include the number of iterations from a 

particular starting position, and the definition of negligible change in any estimated 

parameter. 

Changing the number of experimental observations requires many modifications to 

the code. Obviously variables such as Y, PRESS, ETA and, EETTAA must be declared 

accordingly. But one must also be sure that the matrix operations and variable 

declarations in subroutines GAUSS, SENSTV, PARAM, LSTSQR, GENETIC reflect any changes. 

Changing the number of parameters to be estimated is similar to changing the 

number of experimental observations. Variables must be declared correctly and matrix 

operations must be changed in the main program as well as in subroutines GAUSS, 

STOPPER, SENSTV, PARAM, INVERT, GENETIC, AND DYNAMITE. 

Specific changes to the estimation process, other than those described, can also be 

implemented by the user. There are many possibilities for change, ranging from a new 

population size in the genetic algorithm, to a different numerical differentiation technique 

in the Gauss linearization, to a different formulation for the specific heat in DYNAMITE. 
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Documentation of ESTIMAT 
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This code was written by Andrew D. Wright while he was c 

a student at Virginia Polytechnic Institute and state University. c 
It was written as part of a research project that was conducted c 

with the United States Department of Energy, Morgantown c 
Energy Technology Center. c 

ESTIMAT can be used to determine the acoustic boundary c 

conditions of a combustion system. The input to ESTIMAT is ac 
target pressure vector, which contains the real and imaginary c 

parts of the acoustic pressure obtained from four locations c 
during combustor operation. The user also must specify the c 

burner geometry in subroutine DYNAMITE, and parameters 

such as heat release, temperature, and mean pressure must be 

provided. 

ESTIMAT is written to perform both theoretical and 
experimental analyses. If so desired, one can input a set of 

known boundary conditions, and the code will produce a target 

pressure vector and then try to recover the original boundary 

conditions. Or one can just input a target pressure vector, and 

let the code go from there. 

Output from the code is written to a data file, the name of 

which can be specified in the subroutine POSTPRO. 
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Integer Quantities: c 

c 
I,J counters used in loops c 

K number of iterations from a starting point during c 
Gauss linearization estimation. c 

COL column number used in inversion of matrix c 
CHANGE index used in ranking of objecitve function c 

values in genetic algorithm c 
CHROME counter used to track the parameter number c 

in the genetic algorithm c 

ELITIST index used in the creation of the initial random c 
in the GA; specifies which seed to use. c 

FN output file number used in psot-processing c 
GEN generation number in genetic algorithm (GA) c 
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 KEEPNUM number of individuals if GA that will be directly 

passed into next generation 
MAXGEN maximum number of generations in the GA 

MAXCOL number of columns in m.utrix to invert 

MAXROW number of rows in matrix to invert 

MAXRUN maximum number of random restarts in the 

first Gauss linearization process 
MINK _ stored value of K where lowest sum-of-squares error 

occurs during the Gauss linearization (corrrect signs) 

NEWRANK temporary storage location used in ranking the 

individuals of the GA 
NCOL column counter in matrix inversion 
NROW row counter used in matrix inversion 
NUM _ index used to loop through individuals in many parts of GA 
NUMETA number of pressure observations, used in GA 

PARENT index for the first individual chosen for mating to 
create a single child in the next generation of the GA 

PARENT2 index for the second individual chosen for mating to 
create a single child in the next generation of the GA 

POPNUM size of population (# of individuals) in GA 

RANK rank of individual in GA according to error function 

ROW row index used in matrix inversion 

RUNNUM counter for the number of random restarts that occur 

during the first Gauss estimation 

SAMEFLAG index used to indicate that two individuals are 

identical while evaluating sum-of-squares error 

in the GA 

SEED1, SEED2 _ seeds sent to the random number generator 
SENTRY index used to stop Gauss estimation; SENTRY is 

assigned a value of 1 if stopping criteria are met 

SET counter used in ranking individuals in GA 

SIGNFLAGI index equals 1 if the signs of the target and estimate 
pressures don’t match before parameter modification 

SIGNFLAG2 index equals | if the signs of the target and estimate 

pressures don’t match after parameter modification 

STCL _ starting column for row-reduction in matrix inversion 
STRW starting row for row-reduction in matrix inversion 

XXMINK stored value of K where lowest sum-of-square error 
occurs during the Gauss linearization (wrong signs) 

Real Quantities 

BMINUSA range of pressure about the mean value in which 
a perturbation must be (Ibf/in2) 

DEL stopping criteria for negligible change in parameter 
in the Gauss estimation (ft3/lbf*s) 

DEL1 differential number to avoid division by zero 

DELB differential change in a parameter value (ft3/Ibf*s) 

ERROR] percent error in the real part of either pressure 
or admittance, used in post-processing 

ERROR2Z percent error in the imaginary part of either pressure 
or admittance, used in post-processing 

CHECKER value to compare against DEL (ft3/lbf*s) 

MEAN mean pressure value used to determine the 
perturbed value (Ibf/in2) C
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MINLSE the lowest sum-of-square error function value ofc 

MUTATION 
NEWNUM 
ORIGNAL 

RANDOM 
RANMAR 

RANSUM 
REALSEED 

RESMAG 

SMIN 

XXSMIN 

S 
SNEW 

SOLD 

STOPLSE 

SUMI 

SUM2 

TARMAG 

TOTALLSE 

TWOSIGMA 

UNCERTAIN 

Vector Quantities 

AVGLSE(D 

BBQ) 

BBNEW() 

ETA() 

the entire generation in the GA (lbf/in2)2 

the mutation rate (out of 100) in the GA 

number used in determining perturbed pressrue 
temporary storage during numerical differentiation 

(fB/bf*s) 
random number obtained by calling RANMAR 

random number generating function; generates a 

unifromly distributed number between 0 and 1 

number used to perturb pressure target 

number used to automatically send different seeds 

to the random number generator 

magnitude of estimated pressure at a probe location 

used in post-processing (lbf/in2) 

lowest sum-of-squares error value for pressure 

vector with correct signs in Gaussian estimation 

(lbffin2)2 
lowest sum-of-squares error value for pressure 

vector with incorrect signs in Gaussian estimation 

(lbf/in2)2 
sum-of-squares error (lbf/in2)2 

sum-of-squares error for new parameter estimates 

of iteration K during the Gauss method (Ibf/in2)2 

sum-of-squares error for old parameter estimates 

of iteration K during the Gauss method (lbf/in2)2 
accceptable stopping sum-of-squares error used 

as a stopping criterion in the GA (ibf/in2)2 

value used to determine probabilities of being 

chosen as a parent in the GA 

value used to determine probabilities of being 

chosen as a parent in the GA 

magnitude of target pressure at a probe location 
used in post-processing (lbf/in2) 

summation of all sum-of-square error of a gener- 
ation of individuals in the GA; used to determine 

the average error for the generation (Ibf/in2)2 
uncertainty on the mean value in terms of a part 

of the mean (ibf/in2) 

assumed uncertainty (5%=0.05) on the mean value 
used in perturbing the target pressure field 

average sum-of-square error for the generations 
of the GA (Ibf/in2)2 
estimated acoustic admittances, (ft3/lbf*s) 
BB(1)=Re(Inlet Admittance) 

BB(2)=Im(Inlet Admittance) 

BB(3)=Re(Exhaust Admittance) 

BB(4)=Im(Exhaust Admittance) 

newly estimated admittances during iteration in the 

Gauss method (ft3/Ibf*s) 

pressure field resulting from sending BB to sub- 

program dynamite, (lbf/in2) 

ETA(1)=Re(Pressure at location #1) o
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ETANEW() 
DELETA() 

FINAL() 
HIGH) 

INTERM(1) 

LOW() 

LSE) 

ETA(2)=Im(Pressure at location #1) 

ETA(3)=Re(Pressure at location #2) 

L 
ETA(8)=Im(Pressure at location #4) 

pressure field resulting from BBNEW (lbf/in2) 
pressure field used in numerical differentiation to 
determine the sensitivity matrix (bf/in2) 

final parameter estimates (ft3/lbf*s) 
limits used in creating the initial population in the 
GA; this is obtained by multiplying XXMINB(I) 

by 10.0 (ft3/lbf*s) 
parameter estimates [acosutic admittances] between 

the steps of the GA and second Gauss estimation 
(ft3/lbf*s) 
limits used in creating the initial population in the 

GA; this is obtained by multiplying MINB() 

by 10.0 (ft3/lbf*s) 
sum-of-square error for every individual in the 

current generation of the GA (Ibf/in2) 

MINB() parameter estimates [acosutic admittances] after the 

NEWCHILD(D 

PRESS() 

first Gauss estimation; these estimates give the 

correct signs on the pressures (ft3/Ibf*s) 

parameter set used in ranking the individuals of the 
current GA generation (ft3/lbf*s) 

pressures resulting from FINAL (lbf/in2) 
PROB() the probability of indiviula I in the current gener- 

PROBDIV(I) 

PROPS() 

RNKLSE() 

TARGET(D 
TARGETB() 

TMPCHILD() 

Y() 

XXMINB(I) 

Matrix Quantities 

ation of the GA to be chosen as a parent; summed 

over all I, this variable equals 1.0 

different representation of PROB(I) used to 

fascilitate logical IF statement 
properties used by subroutine DYNAMITE; 
PROPS(1)=HeatRelease (BTU/Ibm) 

PROPS(2)=MeanPressure (Ibf/in2) 

PROPS(3)=InletTemperature (°F) 

PROPS(4)=ExhaustTemperature (°F) 

PROPS(5)=Frequency (Hz) 

ranked sum-of-square error function for the current 

generation; ranked from lowest to highest (Ibf/in2)2 

Target pressure vector used in GA (same as Y(I)) 

Target admittances used in the theoretical 

analysis (ft3/lbf*s) 

parameter set used in ranking the individuals of the 
current GA generation (ft3/lbf*s) 

Target pressure vector (Ibf/in2) 
Y(1)=Re(Target Pressure at location #1) 

Y(2)=Im(Target Pressure at location #1) 

Y(3)=Re(Target Pressure at location #2) 

L 
Y(8)=Im(Target Pressure at location #4) 

parameter estimates [acosutic admittances] after the 

first Gauss estimation; these estimates give the 
incorrect signs on the pressures (ft3/lbf*s) 
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4
 A(LJ) Matrix that gets inverted in INVERT 

ANEW(I,J) Form of A(I,J) in inversion process 

CHECK,J) Matrix used to check that the matrix inversion 

is working correctly. This matrix should be the 
equal to the identity matrix. 

CHILDd,J) Individual I consisting of parameters (J,, J,, J,, J,) 

in the current generation of the GA (ft3/Ibf*s) 

ELITE(1,J) Storage location for MINB() and XXMINB(D 

in the GA (ft3/Ibf*s) 

NEWCHILD(LJ) New Individual I consisting of parameters (J,, J,, J,, 
J,) in the next generation of the GA (ft3/Ibf*s) 

RNKCHILDd,J) Ranked population of the current generation in 
the GA (ft3/Ibf*s) 

X(I,J) Sensitivity matrix used in Gauss method 

XTC,J) Transpose of sensititvity matrix 

XTETA(I,J) YYETA(I,J) matrix premultiplied by XT(I,J) 

YYETAGS) Vector difference of Y(I) and ETA(D 

YYETATGJ Transpose of YYETA(Z,J) 

PXTETAG,D XTETA(LJ) matrix premultiplied by Pd,J) 

Pd,J) Result of the inversion of the PINVd,J) matrix 

PINV(L,J) Matrix product of XJ) and XT,J) o
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Declare variables. Real and Complex types are double preCision. 

INTEGER RUNNUM, MAXRUN, SEED1, SEED2, SIGNFLAG1 

REAL*8 RANDOM, RANMAR, REALSEED, SMIN, XXSMIN, 
UNCERTAIN, MEAN, TWOSIGMA, BMINUSA, RANSUM, 
NEWNUM 

REAL*8  BB(4), Y(8), MINB(4), XXMINB(4), INTERM(4), 

FINAL(4), PROPS(5), TARGETB(4), PRESS(8) 

It is essential that the user define the PROPS() vector, which 

contains the properties of HEAT, PMEAN, T1, T2, and FREQ, 

which are needed by SubProgram DYNAMITE. These are defined 

here to fascillitate ease of Change. 

PROPS(1) = DREAL(1200.50d0) 
PROPS(2) = DREAL(14.699d0) 
PROPS(3) = DREAL(1950.0d0) 
PROPS(4) = DREAL(1550.0d0) 
PROPS(5) = DREAL(300.0d0) 

Initialize Random Number Generator, using values of PROPS() 

for seeds. The seeds must be integers between 1 and 30000, so 

the values must be scaled accordingly. 

REALSEED = DABS(DSIN(DREAL(PROPS(1)/PROPS(2))))*1.0D+7 
REALSEED = REALSEED/10.0D0 
IF (REALSEED.GT.30000.0D0) GOTO 20 
SEED1 = INT(REALSEED) 

REALSEED = DABS(DCOS(DREAL(PROPS(4)/PROPS(5))))*1.0D+7 
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22 

24 
c 

REALSEED = REALSEED/10.0D0 
IF (REALSEED.GT.30000.0D0) GOTO 22 
SEED2 = INT(REALSEED) 

CALL RMARIN (SEED1,SEED2) 
DO 24 NUM = 1,(ABS(SEED1-SEED2)), 1 

RANDOM = RANMAR() 
CONTINUE 
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The following Commented block of logic is used for validation 

purposes. It allows the user to define target admittanCes, 

TARGETBO(), then creates a target pressure veCtor, Y(), then 

goes through the estimation process to see if the Code Can 

aCtually recover the user-defined target admittanCes. 

Assign target admittance vector, TARGET(). 

TARGETB(1) = DREAL(0.0371d0) 
TARGETB(2) = DREAL(0.0046d0) 
TARGETB(3) = DREAL(1.5750d0) 
TARGETB(4) = DREAL(-14.6644d0) 

Evaluate Targets. Here the target pressure veCtor, Y(), that 

results from the user-defined admittanCes is evaluated. The 

vector TARGET() is sent to SubProgram DYNAMITE, 

and Y() returns. 

write(*,*) "Target AdmittancCes:’ 

write(*,*) targetb(1),targetb(2) 

write(*,*) targetb(3),targetb(4) 

call dynamite(targetb,y,props) 

write(*,*) "TARGETS:’ 
do 371= 1,7,2 

write(*,*) y(i),y~it1) 

continue 

Perturb Targets with a random normal distribution. Here, the 

target pressure veCtor, Y(), is "jostled" using a random 
generation of normally distributed values about the mean. The 
mean value is the individual pressure value, and the user 

defines the unCertainty. (The unCertainty should be defined 

as a fraCtion, e.g. +/-1% = 0.01). 

do 38 i= 1,8,1 

uncertain = 0.00d0 

mean = y(i) 

twosigma = dabs(mean*unCertain) 

sigmasq = (twosigma/2.0d0)*(twosigma/2.0d0) 

bminusa = dsqrt(12.0d0*sigmasq) 

ransum = 0.0d0 

do 39} =1,11,1 

newnum = ranmar()*bminusa + (mean-(bminusa/2.0d0)) 
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40 

ransum = ransum + newnum 

Continue 

y(i) = ransum/11.0d0 

continue 

Display the perturbed targets. 

write(*,*) 'PERTURBED TARGETS: ’ 

do 40 i= 1,7,2 

write(*,*) y(i),y(i+1) 
continue 

This end the block of logic used to theoretically 

determine a target pressure veCtor, Y(). From this point 

forward, the Code is the same for both the theoretical 

and experimental analysis. a
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Initialize Variables. These variables must be initialized 

every time a random restart ocCcurrs. 

RUNNUM = 0 
MAXRUN = 15 
SIGNFLAGI = 1 
SMIN = 10.0D0 
XXSMIN = 10.0D0 
MINB(1) = DREAL(0.50D0) 
MINB(2) = DREAL(2.0D0) 
MINB(3) = DREAL(0.50D0) 
MINB(4) = DREAL(2.0D0) 
XXMINB(1) = DREAL(0.50D0) 
XXMINB(2) = DREAL(2.0D0) 
XXMINB(3) = DREAL(0.50D0) 
XXMINB(4) = DREAL(2.0D0) 

Create Random Starting Position. A position is defined by a set 

of parameters, BB(). Here, a random set of parameters is 

generated. The user Can define the Constraints on these, 

and also influence the sign (these Controls allow the user to 
make use of any a priori knowledge about the boundaries that 
he/she might have.) 

RUNNUM = RUNNUM + 1 
RANDOM = RANMAR() 
BB(1) = RANDOM*5.0D0 
RANDOM = RANMAR() 
BB(2) = RANDOM*5.0D0 
RANDOM = RANMAR() 
IF (RANDOM.LE.0.75D0) THEN 
BB(2) = BB(2) * -1.0D0 

END IF 
RANDOM = RANMAR() 
BB(3) = RANDOM*20.0D0 
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RANDOM = RANMAR(Q) 
BB(4) = RANDOM*20.0D0 
RANDOM = RANMAR(Q) 
IF (RANDOM.LE.0.75D0) THEN 
BB(4) = BB(4) * -1.0D0 

END IF 

Call Subroutine GAUSS, which performs a Gauss linearization 
type of parameter estimation. This initial estimation is 

done to get in the general area of the error function global 

minimum. This is accomplished by trying to match the signs 

(+/-) of YQ and the estimated pressure veCtor. The subroutine 

returns two sets of parameter estimates: MINB and XXMINB. 
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CALL GAUSS(Y,BB,MINB,XXMINB,SIGNFLAGI,PROPS,SMIN,XXSMIN) 

Check stopping Criteria. If the stopping Criteria are not met, 

then the estimation proCess begins from a new random location 

(where a set of parameters BBQ) defines a location). 

IF (SIGNFLAG1.EQ.1).AND.CRUNNUM.LE.MAXRUN)) GOTO 5 

Call Subroutine GENETIC, which performs a genetic algorithm- 

based parameter estimation. This step is used to focus more 

sharply on the error function minimum by overComing any 

ill-conditioning that the Gauss method Could not deal with. 

The MINB and XXMINB vectors obtained from Subroutine GAUSS 
are sent to GENETIC as seeds for the initial random population. 

When Complete, GENETIC returns an veCtor of improved 

parameter estimates Called INTERM. 

CALL GENETICS(Y,MINB, XXMINB,PROPS,INTERM) 

Call Subroutine GAUSS, which performs a second Gauss 
linearization; this time to pinpoint the parameters. 

The vector interm obtained from GENETIC is used as the 

starting position in this last estimation process. The final 

parameter estimates are returned in the veCtor Called FINAL. 

FINAL(1) = DREAL(NTERM(1)) 
FINAL(2) = DREALONTERM(2)) 
FINAL(3) = DREAL(INTERM(3)) 
FINAL(4) = DREAL(INTERM(4)) 
CALL GAUSS(Y,INTERM,FINAL,XXMINB,SIGNFLAG1,PROPS,SMIN,XXSMIN) 

Call Subroutine POSTPRO, which post-proCesses the search 

results. Output can be tailored to the user's liking. 

DYNAMITE is Called on last time with FINAL to get a pressure 
field for the final parameter estimates. 

CALL DYNAMITE(FINAL,PRESS,PROPS) 
CALL POSTPROCY, TARGETB,FINAL,PRESS,PROPS) 
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ecceeeceecccecececeeceeecceceeeecececeecececceceeeccecceeceeeeceecceccceccecccce 

c c 
c SUBROUTINE POSTPRO c 

c c 
ceececeeeceeeceeceeeeceecececececececececececeeceececeeececeececceceeceecececece 

c This subroutine is used to post process the search results. c 

c Output format Can be tailored here by the user. c 
ceceececeeceececeececeeeceeceeceeeceeceeececececeececcececeecececececcececececccee 
c c 

SUBROUTINE POSTPRO(CY, TARGETB, FINAL,PRESS,PROPS) 

Declaration of variables. 

INTEGER I, FN 
REAL*8 TARMAG, RESMAG, ERROR1, ERROR2 
REAL*8 Y(8), PRESS(8), TARGETB(4), FINAL(4), PROPS(5) 
CHARACTER*14 NAME 

c Open a data file to write results to. c 

FN =i 

FILENAME = 'ESTIMAT.DAT 
OPEN(UNIT=FN,FILE=NAME) 

Begin writing results. 

Report the properties used by DYNAMITE. 
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WRITE(EN,*) ‘DYNAMITE PROPERTIES: 
WRITE(FN,*)' HEAT =',PROPS(1) 
WRITE(FN,*)' =PMEAN = ',PROPS(2) 
WRITE(FN,*)' = -T1 = ',PROPS(3) 
WRITE(FN,*)' = T2 = ',PROPS(4) 
WRITE(FN,*)' FREQ =',PROPS(5) 
WRITECEN,*) 

Report the target admittances. This is used if the user has 

pre-defined the targets, i.e. theoretical analysis. Also 

reported is the percent error between the estimated and 

target admittanCes. 
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WRITEC(EN,*) "TARGET ADMITTANCES:' 
WRITE(FN,*) TARGETB(1), TARGETB(2) 
WRITE(EN,*) TARGETB(3), TARGETB(4) 
WRITE(CEN,*) ‘RESULT ADMITTANCES:’ 
WRITE(FN,*) FINAL(1),FINAL(2) 
WRITE(EN,*) FINAL(3),FINAL(4) 
WRITE(EN,*) '%ERROR IN ADMITTANCE VALUES:' 
WRITE(EN,*) (DABS(TARGETB(1)-FINAL(1))/TARGETB(1))*100.0D0 
WRITE(EN,*) (DABS(TARGETB(2)-FINAL(2))//TARGETB(2))*100.0D0 
WRITE(EN,*) (DABS(TARGETB(3)-FINAL(3))/TARGETB(3))*100.0D0 *¥
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* WRITE(EN,*) (DABS(TARGETB(4)-FINAL(4) /TARGETB(4))*100.0D0 
WRITE(FN,*) 

Report the target pressure veCtor, Y(), and the resulting 

estimated pressure veCtor, PRESS(). Also report the percent 
error for the result pressure estimates. 

o
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a
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WRITECFN,*) "TARGET PRESSURES: 

DO 251 = 1,7,2 
WRITE(FN,*) Y(I), Yd+1) 

25 CONTINUE 
WRITE(EN,*) 'RESULT PRESSURES: 
DO 271 =1,7,2 
WRITE(FN,*) PRESS), PRESS(1+1) 

27 CONTINUE 
WRITE(EN,*) ‘%ERROR IN PRESSURE VALUES:' 
DO 291 =1,7,2 
ERRORI = (DABS(Y(1)-PRESS())/Y(1))*100.0D0 
ERROR2 = (DABS(Y(i+1)-PRESS(I+1))/Y(I+1))*100.0D0 
WRITE(FN,*) ERROR1, ERROR2 

29 CONTINUE 

Report the target and result pressure magnitudes, and the 

Corresponding perCent error. 

oO
 

02 
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WRITE(FN,*) TARGET AND RESULT PRESSURE MAGNITUDES: 
DO 401 = 1,7,2 
TARMAG = DSQRT(Y(1)*Y() + Y(i+1)*¥(I+1)) 
RESMAG = DSQRT(PRESS(I)*PRESS(I) + PRESS(I+1)*PRESS(I+1)) 
WRITE(FN,*) TARMAG,RESMAG 

40 CONTINUE 
WRITE(EN,*) '%ERROR IN PRESSURE MAGNITUDES:’ 
DO 411 = 1,7,2 
TARMAG = DSQRT(Y()*Y(I) + Y(4+1)*Y(+D) 
RESMAG = DSQRT(PRESS()*PRESS(1) + PRESS(I+1)*PRESS(I+1)) 
WRITE(EN, *) (DABS(TARMAG-RESMAG)TARMAG)*100.0 

41 CONTINUE 

c Close the output data file, and terminate the subroutine. 

CLOSE (FN) 
END 

ececceccececececececcececccccececcecceceeececceccecececceccecceccccececececcecccccce 

c c 
c SUBPROGRAM GAUSS c 
c c 
ccceececeeceececeececececececececcececceeceeceeceeceeeccececeeceeceeeeccecececce 

This subprogram is used to perform a Gauss-Linearization type 

parameter estimation. It requires the target veCtor Y(), an 

initial set of parameters BB(), and the properties of the 
system, PROPS(). It returns parameter estimates in MINB() 
and XXMINB(). 

ecccececcccecececoececcececeecececcececcceecceececeecceeeccceccceceecececcecceceecccccccece 
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SUBROUTINE GAUSS(Y,BB,MINB,XXMINB,SIGNFLAG1,PROPS,SMIN,XXSMIN) 

Declaration of variables. 

INTEGER K, SENTRY, SIGNFLAG1, SIGNFLAG2, I, MINK, XXMINK 
REAL*8 SOLD, SNEW, SMIN, XXSMIN 
REAL*8 ETA(8), Y(8), BB(4), BBNEW(4), YYETA(8,1) 

REAL*8 X(8,4), XT(4,8), PINV(4,4), P(4,4), ETANEW(8) 
REAL*8 PROPS(5), MINB(4), XXMINB(4) 

Initialize the variables K, SENTRY, and SNEW. 

K=0 
SENTRY = 0 
SNEW = 5.0D0 

Call subroutine DYNAMITE with the initial parameter set. 

CALL DYNAMITE(BB,ETA,PROPS) 

Begin the iterative estimation process, and Continue until 

one of the stopping Criteria are met. 

DO 106 WHILE (SENTRY.EQ.0) 

Call subroutine LSTSQR, which calculates the least square 

error between the target pressures Y(), and the estimated 

pressures ETAQ). 

CALL LSTSQR(Y,ETA, Y YETA,SOLD) 

Compare the signs (+/-) of ETAQ to those of YQ. 

SIGNFLAG1 = 0 
DO 121 1= 1,8,1 

IF ((Y()*ETA()).LT.0.0D0) SIGNFLAGI = 1 
CONTINUE 

Call subroutine SENSTV, which Calculates the sensitivity 

matrix for the Current set of parameters. 

CALL SENSTV(X,XT,PINV,BB,ETA,PROPS) 

Call subroutine INVERT, which inverts the sensitivity matrix. 

CALL INVERT(PINV,P) 

Call subroutine PARAM, which uses the sensitivity matrix, its 

inverse, and the Current parameter estimates to Create a new 

parameter estimate BBNEW(). 

CALL PARAM(BB,P, XT, YYETA,BBNEW) 
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Call subroutine DYNAMITE, which evaluates the pressure vector 
for the new parameter estimates. 

CALL DYNAMITE(BBNEW,ETANEW,PROPS) 

Call subroutine LSTSQR, which evaluates the least square error 
for the new parameter estimates. 

CALL LSTSQR(Y,ETANEW, YYETA,SNEW) 

Compare the signs of the new pressure vector ETANEW() to those 

of the target vector Y(). 

SIGNFLAG2 = 0 
DO 122 I= 1,8,1 

IF ((Y()*ETANEW()).LT.0.0D0) SIGNFLAG? = 1 
CONTINUE 

If the signs of ETANEW( are Correct and if the least square 

error is lower than that of the previous set with Correct 

signs, then assign MINB( the values of BBNEW(). 

IF ((SIGNFLAG2.EQ.0).AND.(SNEW.LT.SMIN)) THEN 
SMIN = SNEW 
MINK = K 
DO 1151=1,4,1 

MINB(I) = DREAL(BBNEW(D) 
CONTINUE 

END IF 

If the signs of ETANEW() are incorrect and if the least square 

error is lower than that of the previous set with incorrect 

signs, then assign XXMINB() the values of BBNEW(). 

IF (SIGNFLAG2.EQ. 1). AND.(SNEW.LT.XXSMIN)) THEN 
XXSMIN = SNEW 
XXK=K 
DO 1171= 1,4,1 

XXMINB(I) = DREAL(BBNEW(I)) 
CONTINUE 

END IF 

If the signs of ETAQ are Correct but the signs of ETANEW() 

are inCorrect, then terminate the iteration. 

IF ((SIGNFLAG1.EQ.0).AND.(SIGNFLAG2.EQ.1)) THEN 
SENTRY = 1 

END IF 

If the signs of ETANEW() are incorrect and if the least square 

error increased from ETAQ to ETANEW(), then terminate the 

iteration. 

IF (SNEW.GT.SOLD).AND.(SIGNFLAG2.EQ.1)) THEN 
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SENTRY = 1 
END IF 

Call subroutine STOPPER, which determines if any of the 

stopping Criteria have been met. 

oa 
0a 

09 
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o
a
 

09
°8
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CALL STOPPER(BB,BBNEW,K,SENTRY) 

Change the old parameters to the new, in preparation for the 

next iteration. 

oa 
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07 
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DO 1101 =1,4,1 
BB() = BBNEW() 

110 CONTINUE 
DO 1111 =1,8,1 
ETA(1 = ETANEW()) 

111. CONTINUE 
DO 1121 = 1,8,1 

IF ((Y(I)*ETA(D)).LT.0.0D0) SIGNFLAGI = 1 
112 CONTINUE 

Increment the iteration Counter, K. 

K = K+1 

a
 

Oo 

End the iterative process. 

oO
 oO 

oO 
0 

106 CONTINUE 

Return values of MINB, XXMINB, and SIGNFLAGI, and terminate 

the subprogram. 

ao 
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0
 

RETURN 
END 

eecececececcccceccecececececceccececceceecceccecececcececccececececceccceccecececece 

c c 
c SUBROUTINE STOPPER c 
c c 

ceccececececceeccceceeeeeceececceeeeceeeeeceeeececeeceecceeeceecececccecceccececce 

c This subroutine examines the stopping Criteria, and terminates c 

c the iterative proCess in GAUSS if either has been met. c 
ececeeeeeceeececeeeecececeeecceceeceececceeeeccececceccececececeececceececceccece 
c c 

SUBROUTINE STOPPER(@B,BBNEW,K,SENTRY) 
c 

Declaration of variables. c 
c c 

INTEGER I, K, SENTRY 
REAL*8 CHECKER, DEL, DELI 

REAL*8 BB(4), BBNEW(4) 

Assign values to Constants. 
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DEL = 1.0D-7 
DEL1 = 1.0D-38 

c c 

c Check the number of iterations stopping Criteria. c 

c Cc 
IF (K.GE.7) THEN 
SENTRY = 1 

END IF 
c 

c Check the negligible change in parameters stopping Criteria. 

c c 

DO 1451 =1,4,1 
CHECKER = (DABS(BBNEW()D-BB()))((DABS(BB(D)+DEL1) 
IF (CHECKER.LT.DEL) THEN 
SENTRY = 1 

END IF 
145. CONTINUE 

c c 
c Return value of SENTRY and terminate subroutine. c 
c c 

RETURN 
END 

c c 

eccececcecececccececcecececcecececceccececcecececcccecececccececececcecceeccececeececee 

c c 
c SUBROUTINE SENSTV c 
c c 
ccceceeceeececcececececeeececceecceecececeeececeeceeceeecececececceceececcececcce 

c This subroutine Calculates the sensitivity matrix for the Gauss c 
c method estimation. c 
ececcececeeeccecceccecececeeecceceececececeecceececececececceceeecceececeeeeceece 

c c 
SUBROUTINE SENSTV(X,XT,PINV,BB,ETA,PROPS) 

c 

c Declaration of variables. c 

c 
INTEGER I,J,KOUNT 
REAL*8 ORIGNAL, DELB 
REAL*8 X(8,4), XT(4,8), PINV(4,4), BB(4), PROPS(5) 

REAL*8 ETA(8), DELETA(8) 
c c 

c Calculate the sensitivity matrix using the forward difference c 

c technique of numerical differentiation. c 
c c 

DO 801 = 1,4,1 
ORIGNAL = BB(I) 
DELB = 0.0001 *BB(1) 
IF (.GE.3) THEN 

DELB = 0.005*BB() 
END IF 
BB() = BB) + DELB 

CALL DYNAMITE(BB,DELETA,PROPS) 
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DO 85 J =1,8,1 
X(,D = (DELETA(J)-ETA(J))/DELB 
XT = X(LD 

85 CONTINUE 
BB() = ORIGNAL 

80 CONTINUE 

Calculate the PINV matrix which is the product of the sensitiv- 
ity matrix and its transpose. PINV will be inverted later. 

a
n
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4
 

a
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DO 90J = 1,4,1 
DO 1001 = 1,4,1 
PINV(J,D = 0.0D0 
DO 105 KOUNT = 1,8,1 
PIN V(J,D=PINV(J,1)+(XT(J,KOUNT)*X(KOUNT,D) 

105 CONTINUE 
100 CONTINUE 
90 CONTINUE 

Cc Return the values of XT and PINV, and terminate the subroutine. 

RETURN 
END 

ecceeececcecececcecceccecceceeccceccececeeccecccceececccccecececeecececececeeccceceeeccce 

c c 
c SUBROUTINE PARAM c 
c c 
ceecceeceeeeceececececececceccecececeeeeccececceececeeceecceecceeceecececeececeece 

c This subroutine CalCulates the new parameter estimates for the c 
c Gauss method estimation. c 

ceceececececeeecceeeceecececeeceeceeceeeeceeeeceecceceececececeececeecceeceeceece 
c c 

SUBROUTINE PARAM(BB,P,XT,Y YETA,BBNEW) 
c 

Cc Declaration of variables. 

c 
INTEGER I,J 
REAL*8 BB(4), BBNEW(4), P(4,4), XT(4,8) 
REAL*8 XTETA(4,1), PXTETA(4,1), YYETA(8, 1) 

c c 

c Matrix multiply the tarnspose of the sensitivity matrix by the c 

c by the (target minus estimate pressure) veCtor to get XTETA(). c 

c c 
DO 30 J = 1,4,1 
XTETA(J,1) = 0.0D0 
DO 40 [= 1,8,1 
XTETAG,1) = XTETAG,1)+(XTU,D*YYETA(,1)) 

40 CONTINUE 
30 CONTINUE 

c c 
c Matrix multiply the PQ) matrix by XTETAQ), to get PXTETA(). c 

c 
DO 50 J =1,4,1 
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PXTETA(J,1) = 0.0D0 
DO 60 I=1,4,1 
PXTETA(J,1) = PXTETA(J,1)+(P(,D*XTETA(L1)) 

60 CONTINUE 
50 CONTINUE 

Add PXTETA() to the parameter estimates BB() to get the new 

parameter estimates BBNEW(). 
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DO 70 J=1,4,1 
BBNEW(J) = BBG) + PXTETA(J,1) 

70 CONTINUE 

Constrain the parameters according to physical meaning. The 

real Components, BB(1) and BB(3), cannot be negative. Also, 

all of the parameters are kept away from zero to keep the 

estimation process from hitting a singularity. 
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IF (BBNEW(1).LE.0) BBNEW(1)=BB(1)/5.0D0 
IF (BBNEW(2).EQ.0) BBNEW(2)=BB(2)/5.0D0 
IF (BBNEW(3).LE.0) BBNEW(3)=BB(3)/5.0D0 
IF (BBNEW(4).EQ.0) BBNEW(4)=BB(4)/5.0D0 

Constraint he parameters to a reasonable range to keep the 

iterative process from going unstable. 
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DO 711 = 1,4,1 
IF (DABS(BBNEW()).GT.100.0D0) THEN 
BBNEW() = BB(1/5.0D0 

END IF 
71 CONTINUE 

c Return value of BBNEW(), and terminate the subroutine. c 

RETURN 
END 

cececececeececec\ec\ecceccccceceecececececececcececececccececececcecccecceccecccccccccc 

c c 

c SUBROUTINE LSTSQR c 
c c 
eccceeeceeeceeececececeecececeeceeeeeeceeccececeeeceeeceecceceeececececcececceece 
c This subroutine evaluates the least square error between the c 

c taeget pressure vector, Y(), and the estimated pressure veCtor. c 
ccceeececeeceeececececececececeeecececeeeceeceeececeecececececeecececeeeceeceecce 
c c 

SUBROUTINE LSTSQR(Y,ETA,YYETA,S) 
c 

Declaration of variables. c 

c c 

INTEGER I 

REAL*8 Y(8), ETA(8), YYETA(8,1), YYETAT(1,8), S 

c Cc 
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Cc 
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Cc 

Calculate the difference vector, YYETAQ, and the least square c 

error, 8. 

S = 0.0D0 
DO 20 I=1,8,1 
YYETA(L1) = Y(I) - ETA() 
YYETAT(1,]) = YYETA(,1) 
S=$ + YYETAT(LD*YYETA(L1) 

20 CONTINUE 

Return values of YYETAQ and S, and terminate the subroutine. 

RETURN 
END 

/ececcececececceccecececcececcecececceccecececcecccceccececececcceccececceccceecececcece 

c 

Cc 

c 

c 
SUBROUTINE INVERT c 

c 

ceccececceccecececcceccececcecccececececcecececcceccececccccececececececc/ececceccececcece 
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 This subroutine uses row elimination teChniques to invert the 

PINV matrix and return the P matrix. The PINV matrix is row- 

reduced to the identity matrix. By performming the same oper- 
ations on a separate identity matrix as those performmed on 

PINV, the matrix inverse, P, is found. Locally, PINV is 

reffered to as A, and P as INV. o
0
n
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c 

c 

SUBROUTINE INVERT(A, INV) 

c 

Declaration of variables. c 

c 

INTEGER ROW, NROW, MAXROW, STRW, COL, NCOL, MAXCOL, STCL 
REAL*8 (4,4), ANEW(4,4), INV(4,4), INVNEW(4,4) 
REAL*8 CHECK(4,4), ORIG(4,4), PIVOT 

Assign the dimensions of the matrices. 

MAXROW = 4 
MAXCOL = 4 

Initialize the INVQ matrix as the identity matrix, and assign 

values of A() to ORIGQ), which will be used as a Check at the 
end of the inversion process. 
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0 

DO 10 ROW = 1, MAXROW, 1 
DO 20 COL = 1, MAXCOL, 1 
ORIG(ROW,COL) = A(ROW,COL) 
INV(ROW,COL) = 0.0 

20 CONTINUE 
INV(ROW,ROW) = 1.0 

10 CONTINUE 
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c 

Scale the values of AQ). c 

DO 13 ROW = 1,MAXROW,1 
DO 15 COL = 1.MAXCOL,1 
A(ROW,COL)=A(ROW,COL)*1.0D5 

15 CONTINUE 
13. CONTINUE 

Row-reduce the lower trinagle of the AQ matrix. 

DIVISOR = A(1,1) 
IF (DIVISOR.NE. 1.0). AND.(DIVISOR.NE.0.0)) THEN 

DO 25 COL = 1,MAXCOL,1 
A(1,COL) = A(1,COL)/DIVISOR 
INV(1,COL) = INV(1,COL)/DIVISOR 

25 CONTINUE 
END IF 

DO 30 COL = 1, MAXCOL, 1 

ANEW(1,COL) = A(1,COL) 
INVNEW(i,COL) = INV(1,COL) 

30 CONTINUE 

STRW =2 

DO 40 STCL = 1, (MAXCOL-1), 1 
DO 50 ROW = STRW, MAXROW, 1 
PIVOT = A(STRW-1,STCL)*A(STRW,STCL+1) 

& -A(STRW,STCL)*A(STRW-1,STCL#1) 
IF (PIVOT.NE.0) THEN 
DO 60 COL = STCL, MAXCOL, 1 
ANEW(ROW,COL) = A(STRW-1,STCL)*A(ROW,COL) 

& -A(ROW,STCL)*A(STRW-1,COL) 
ANEW(ROW,COL) = ANEW(ROW,COL)/PIVOT 

60 CONTINUE 
DO 70 COL = 1, MAXCOL, 1 
INVNEW(ROW,COL) = A(STRW-1,STCL)*INV(ROW,COL) 

& -A(ROW,STCL)*INV(STRW-1,COL) 
INVNEW(ROW,COL) = INVNEW(ROW,COL)PIVOT 

70 CONTINUE 
END IF 

50 CONTINUE 
DO 80 NROW = 1,MAXROW,1 
DO 90 NCOL = 1,MAXCOL,1 
A(NROW,NCOL) = ANEW(NROW,NCOL) 
INV(NROW,NCOL) = INVNEW(NROW,NCOL) 

90 CONTINUE 
80 CONTINUE 

STRW = STRW+1 
40 CONTINUE 

Row-reduce the upper trinagle of the AQ matrix. 

STRW = MAXROW-1 
DO 100 STCL = MAXCOL,1,-1 
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DO 110 ROW = STRW,1,-1 
PIVOT = A(STRW+1,COL)*A(ROW,STCL-1) 

& -A(ROW,STCL)*A(STRW+1,STCL-1) 
DO 120 COL = STCL,1,-1 
ANEW(ROW,COL) = A(STRW+1,STCL)*A(ROW,COL) 

& -A(ROW,STCL)*A(STRW+1,COL) 
ANEW(ROW,COL) = ANEW(ROW,COL) 

120 CONTINUE 
DO 125 COL = MAXCOL1,-1 
INVNEW(ROW,COL) = A(STRW+1,STCL)*INV(ROW,COL) 

& -A(ROW,STCL)*INV(STRW+1,COL) 
INVNEW(ROW,COL) = INVNEW(ROW.COL) 

125 CONTINUE 
110 CONTINUE 

DO 130 NROW=1,MAXROW, 1 
DO 140 NCOL = 1,MAXCOL,1 
A(NROW.NCOL) = ANEW(NROW,NCOL) 
INV(NROW NCOL) = INVNEW(NROW,NCOL) 

140 CONTINUE 
130 CONTINUE 

STRW = STRW-1 
100 CONTINUE 

Since A() is always symmetric, its inverse will be symmetric. 

Here the INV() matrix is made symmetric in Case any round-off 

error oCCurred during the row-reduCtion. 
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DO 143 COL = 3,1,-1 

DO 144 ROW = 1,COL,1 

INV(ROW,COL+1)=IN V(COL+1,ROW) 

144 CONTINUE 

143, CONTINUE 

c 

c Scale the inverse matrix. 

c 

DO 14 ROW = 1,MAXROW,1 

DO 16 COL = 1,MAXCOL,1 

INV(ROW,COL)=INV(ROW,COL)*1.0D5 

16 CONTINUE 

14 CONTINUE 

Check to see if the original matrix multiplied by the inverse 
returns the identity matrix. 

a
a
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a
 

DO 170 ROW = 1, MAXROW,1 
DO 180 COL = 1,MAXCOL,1 
CHECK(ROW,COL)= 0.0 
DO 181 K = 1,4,1 
CHECK(ROW,COL)=CHECK(ROW ,COL)+(ORIG(ROW,K)*INV(K,COL)) 

181 CONTINUE 

180 CONTINUE 

170 CONTINUE 

c 
c Return the value of P(), and terminate the subroutine. 

c 
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RETURN 

END 

ccececcececcecccccececceccececececcececceccceccececcecececececccceececeeececcecccceccce 

c c 
c SUBPROGRAM GENETICS c 
c c 
ececcececceceeeececcececececececeececeecceeecceceeceececeeceecceecececeeccecececcecececceccee 

This subprogram is used to perform a genetic algorithm type of 

parameter estimation. It requires teo initial guesses, MINB() 

and XXMINB(O), the target pressue vector Y(), and the properties 

of the system, PROPS(. It returns an improved parameter 

estimate in INTERM(). 

ccecececcececececceeececeeecececcececceeeeecececcecececeeeecececceeeeccececcececce 
c c 

SUBROUTINE GENETICS(TARGET,MINB,XXMINB,PROPS,INTERM) 
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Declaration of variables. 

INTEGER RANK,POPNUM,CHROME,NUM,NUMETA, 
KEEPNUM,PARENT1,PARENT2,GEN,MAXGEN, 
SEED1,SEED2,CHANGE,SAMEFLAG, ELITIST 

REAL*8 MINLSE, STOPLSE, TOTALLSE, MUTATION, SUM1, 
SUM2, RANMAR, RANDOM, REALSEED 

REAL*8 TARGET(8), MINB(4), XXMINB(4), PROPS(5), BB(4), 
ETA(8), CHILD(50,4), NEWCHILD(S0,4), ELITE(50,4), 
LSE(50), LOWLSE(50), AVGLSE(50), PROBDIV(50), 
PROB(50), HIGH(4), LOW(4), INTERM(4) 

COMPLEX*16  ADMITIN, ADMITOUT, TSTIN, TSTOUT 

S
e
e
 RP 

FP 
KR 
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Assign values of MINBQ and XXMINB() to vectors that will not 

undergo any Change. 
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DO 11 CHROME = 1,4,1 
ELITE(1,CHROME) = MINB(CHROME) 
ELITE(?2, CHROME) = XXMINB(CHROME) 

\1 CONTINUE 

c Initialize the random number generator using values of XXMINB. 

REALSEED = XXMINB(1)*1.0D+12 
5 REALSEED = REALSEED/10.0D0 

IF (REALSEED.GT.30000.0D0) GOTO 5 
SEED1 = INT(REALSEED) 

REALSEED = XXMINB(3)*1.0D+12 
6 REALSEED = REALSEED/10.0D0 

IF (REALSEED.GT.30000.0D0) GOTO 6 
SEED2 = INT(REALSEED) . 

CALL RMARIN (SEED1,SEED2) 
DO 13 NUM = 1,(ABS(SEED1-SEED2)),1 

RANDOM = RANMAR() 
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CONTINUE 

Initialize variables and Constants. Here is where the user Can 

define the population size, the number of individuals kept 

from one generation to the next, the mutation rate, the 

maximum number of generations, and the acceptable least square 

error. 

POPNUM = 40 
KEEPNUM = INT(POPNUM*0.08) 

MUTATION = 0.080D0 
MAXGEN = 20 
STOPLSE = 1.0E-25 
MINLSE = 10.0D0 
NUMETA = 8 
GEN = 1 

Create the bounds for a random population using ELITEOQ. 

DO 15 CHROME = 1,4,1 
HIGH(CHROME) = 10.0D0*DABS(ELITE(1,CHROME)) 
LOW(CHROME) = 10.0D0*DABS(ELITE(2,CHROME)) 

CONTINUE 

Create the initial, random population. Parameter values are 

determined using a uniform random number generator and the 

pre-determined bounds. The imaginary Components, the second 

and fourth parameters, Can be influenced towards positive 

or negative values here. 

The first two individuals in the population are MINB and XXMINB. 

DO 19 RANK = 1,2,1 
DO 20 CHROME = 1,4,1 

CHILD(RANK,CHROME) = ELITE(RANK,CHROME) 
CONTINUE 

CONTINUE 

The next 16 individuals are Created using the HIGH bounds. 

DO 21 RANK = 3,18,1 
DO 22 CHROME = 1,4,1 

RANDOM = RANMARQ 
CHILD(RANK,CHROME) = RANDOM*HIGH(CHROME) 
IF ((CHROME.EQ.2).OR.(CHROME.EQ.4)) THEN 
RANDOM = RANMAR() 
IF (RANDOM.LE.0.75D0) THEN 

CHILD(RANK,CHROME)=CHILD(RANK,CHROME)*-1.0D0 
END IF 

END IF 
CONTINUE 

CONTINUE 

The next 12 individuals are Created using the LOW bounds. 
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DO 234 RANK = 19,30,1 
DO 235 CHROME = 1,4,1 

RANDOM = RANMAR() 
CHILD(RANK,CHROME) = RANDOM*LOW(CHROME) 
IF (CHROME.EQ.2).OR.(CHROME.EQ.4)) THEN 
RANDOM = RANMAR() 
IF (RANDOM.LE.0.75D0) THEN 

CHILD(RANK,CHROME)=CHILD(RANK,CHROME)*-1.0D0 
END IF 

END IF 

CONTINUE 
CONTINUE 

The last 10 individuals are Created using random multiplication 

or division by a random number. This is done to introduce more 

diversity into the population. 

DO 237 RANK = 31,POPNUM,1 
DO 238 CHROME = 1,4,1 

RANDOM = RANMAR() 
IF (RANDOM.LE.0.50D0) THEN 
ELITIST = 1 

ELSE 
ELITIST = 2 

END IF 
RANDOM = RANMAR() 
IF (RANDOM.LE.0.50D0) THEN 
CHILD(RANK,CHROME) = ELITE(ELITIST,CHROME)*RANMAR() 

ELSE IF (RANDOM.LE.1.00D0) THEN 
CHILD(RANK,CHROME) = ELITE(ELITIST,CHROME)/RANMAR() 

END IF 
IF ((CHROME.EQ.2).OR.(CHROME.EQ.4)) THEN 
RANDOM = RANMAR() 
IF (RANDOM.LT.0.50D0) THEN 

CHILD(RANK,CHROME) = -CHILD(RANK,CHROME) 
END IF 

END IF 
CONTINUE 

CONTINUE 

Next, the least square error is evaluated for each individual 

in the population. If identical individuals exist, Computing 

time is saved by only calling DYNAMITE once per unique set. 

Also, the average least square error for the generation is 

calculated. 

TOTALLSE = 0.0D0 
DO 25 RANK = 1,POPNUM, 1 
ADMITIN = DCMPLX(CHILD(RANK, 1), CHILD(RANK,2)) 
ADMITOUT = DCMPLX(CHILD(RANK,3),CHILD(RANK,4)) 
SAMEFLAG = 0 

IF (RANK.GT.1) THEN 
DO 26 NUM = 1,RANK-1,1 

TSTIN=DCMPLX(CHILD(NUM, 1),CHILD(NUM,2)) 
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TSTOUT=DCMPLX(CHILD(NUM,3),CHILD(NUM,4)) 
IF ((ADMITIN.EQ.TSTIN).AND.(ADMITOUT.EQ.TSTOUT)) THEN 

SAMEFLAG = 1 
LSE(RANK) = LSE(NUM) 

END IF 
26 CONTINUE 

END IF 
IF (SAMEFLAG.NE.1) THEN 

BB(1) = CHILD(RANK,1) 
BB(2) = CHILD(RANK,2) 
BB(3) = CHILD(RANK,3) 
BB(4) = CHILD(RANK,4) 
CALL DYNAMITE(BB,ETA,PROPS) 
LSE(RANK) = 0.0D0 
DO 27 NUM = 1,.NUMETA,1 
LSE(RANK)=LSE(RANK)+(TARGET(NUM)-ETA(NUM))* 

& (TARGET(NUM)-ETA(NUM)) 
27 CONTINUE 

END IF 
TOTALLSE = TOTALLSE + LSE(RANK) 

25. CONTINUE 
AVGLSE(GEN) = TOTALLSE/DREAL(POPNUM) 

Call subroutine RANKER, which ranks the individuals according 
to their least square error value, with the lowest being best. 

29 CALL RANKER(CHILD,LSE,POPNUM) 

If the least square error of the best individual is lower than 

the previous best, then assign the values of that individual 
to INTERMO. 

LOWLSE(GEN) = LSE(1) 
IF (LSE(1).LT.MINLSE) THEN 
DO 299 CHROME = 1,4,1 

INTERM(CHROME) = CHILD(1,CHROME) 
299 CONTINUE 

MINLSE = LSE(1) 
END IF 

Assign a probabiltiy of being Chosen as a parent to the best 
twenty individuals. The probabilities are proportionate to 

the least square error values. 

DO 34 RANK = 1,POPNUM, 1 
PROB(RANK) = 0.0D0 
PROBDIV(RANK) = 0.0D0 

34 CONTINUE 
POPNUM = 20 

SUM1 = 0.0D0 

DO 30 RANK = 1,POPNUM,1 
SUMI1 = SUM1+LSE(RANK) 

30 CONTINUE 
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SUM2 = 0.0D0 
DO 35 RANK = 1,POPNUM,1 

1245 SUM2 = SUM2+(SUMI1/LSE(RANK)) 
35 CONTINUE 

DO 40 RANK = 1,POPNUM,1 
PROB(RANK) = (SUMI/LSE(RANK)V/SUM2 

1250 40 CONTINUE 

POPNUM = 40 

DO 45 RANK = 1,POPNUM,1 
PROBDIV(RANK)=0.0D0 

1255 DO 47 NUM = 1,RANK, 1 
PROBDIV(RANK)=PROBDIV(RANK)+PROB(NUM) 

47 CONTINUE 
45 CONTINUE 

1260 Generate the new population by Chosing parents for a child, 

and then performing the Crossover operation, and then Checking 

for mutation. 

Loop through for eaCh child in the next generation. 
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1265 
DO 50 NUM = KEEPNUM+1,POPNUM, | 

oO 
0 oO
 

Choose the first parent for the child. c 

1270 RANDOM = RANMAR() 
IF (RANDOM.LT.PROBDIV(1)) THEN 

PARENTI = 1 
ELSE IF (RANDOM.LT.PROBDIV(2)) THEN 

PARENT] = 2 
1275 ELSE IF (RANDOM.LT.PROBDIV(3)) THEN 

PARENTI = 3 
ELSE IF (RANDOM.LT.PROBDIV(4)) THEN 

PARENT1 = 4 
ELSE IF (RANDOM.LT.PROBDIV(5)) THEN 

1280 PARENTI = 5 
ELSE IF (RANDOM.LT.PROBDIV(6)) THEN 

PARENT] = 6 
ELSE IF (RANDOM.LT.PROBDIV(7)) THEN 

PARENTI = 7 
1285 ELSE IF (RANDOM.LT.PROBDIV(8)) THEN 

PARENT1 = 8 
ELSE IF (RANDOM.LT.PROBDIV(9)) THEN 

PARENTI = 9 
ELSE IF (RANDOM.LT.PROBDIV(10)) THEN 

1290 PARENT] = 10 
ELSE IF (RANDOM.LT.PROBDIV(11)) THEN 

PARENTI = 11 
ELSE IF (RANDOM.LT.PROBDIV(12)) THEN 

PARENT! = 12 
1295 ELSE IF (RANDOM.LT.PROBDIV(13)) THEN 

PARENTI = 13 
ELSE IF (RANDOM.LT.PROBDIV(14)) THEN 
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PARENTI = 14 
ELSE IF (RANDOM.LT.PROBDIV(15)) THEN 

PARENT! = 15 
ELSE IF (RANDOM.LT.PROBDIV(16)) THEN 

PARENTI = 16 
ELSE IF (RANDOM.LT.PROBDIV(17)) THEN 

PARENTI = 17 
ELSE IF (RANDOM.LT.PROBDIV(18)) THEN 

PARENT = 18 
ELSE IF (RANDOM.LT.PROBDIV(19)) THEN 

PARENT! = 19 
ELSE IF (RANDOM.LT.PROBDIV(20)) THEN 

PARENT! = 20 
END IF 

Choose the seCond parent for the child. 

RANDOM = RANMAR(Q) 
IF (RANDOM.LT.PROBDIV(1)) THEN 

PARENT? = 1 
ELSE IF (RANDOM.LT.PROBDIV(2)) THEN 

PARENT? = 2 
ELSE IF (RANDOM.LT.PROBDIV(3)) THEN 

PARENT2 = 3 
ELSE IF (RANDOM.LT.PROBDIV(4)) THEN 

PARENT? = 4 
ELSE IF (RANDOM.LT.PROBDIV(5)) THEN 

PARENT2 = 5 
ELSE IF (RANDOM.LT.PROBDIV(6)) THEN 

PARENT?2 = 6 
ELSE IF (RANDOM.LT.PROBDIV(7)) THEN 

PARENT2 = 7 
ELSE IF (RANDOM.LT.PROBDIV(8)) THEN 

PARENT2 = 8 
ELSE IF (RANDOM.LT.PROBDIV(9)) THEN 

PARENT2 = 9 
ELSE IF (RANDOM.LT.PROBDIV(10)) THEN 

PARENT? = 10 
ELSE IF (RANDOM.LT.PROBDIV(11)) THEN 

PARENT? = 11 
ELSE IF (RANDOM.LT.PROBDIV(12)) THEN 

PARENT? = 12 
ELSE IF (RANDOM.LT.PROBDIV(13)) THEN 

PARENT? = 13 
ELSE IF (RANDOM.LT.PROBDIV(14)) THEN 

PARENT? = 14 
ELSE IF (RANDOM.LT.PROBDIV(15)) THEN 

PARENT? = 15 
ELSE IF (RANDOM.LT.PROBDIV(16)) THEN 

PARENT? = 16 
ELSE IF (RANDOM.LT.PROBDIV(17)) THEN 

PARENT?2 = 17 
ELSE IF (RANDOM.LT.PROBDIV(18)) THEN 

PARENT? = 18 
ELSE IF (RANDOM.LT.PROBDIV(19)) THEN 
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PARENT? = 19 
ELSE IF (RANDOM.LT.PROBDIV(20)) THEN 

1355 PARENT? = 20 
END IF 

Pass the genetic information from the parents to the child. 

The new parameters in a Child Can be exact duplicates of the 

parents, or an averga of the two. The user Can define the 

likelihood of each here. 
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DO 55 CHROME = 1,4,1 
RANDOM = RANMAR() 

1365 IF (RANDOM.LT.0.30D0) THEN 
NEWCHILD(NUM,CHROME)=CHILD(PARENT1,CHROME) 

ELSE IF (RANDOM.LT.0.60D0) THEN 
NEWCHILD(NUM,CHROME)=CHILD(PARENT2,CHROME) 

ELSE IF (RANDOM.LT.1.0D0) THEN 
1370 NEWCHILD(NUM,CHROME)=(CHILD(PARENT1,CHROME}+- 

& CHILD(PARENT2,CHROME))/2.0D0 
END IF 

Check the new parameter in the Child for mutation. If mutation 

occurs, Then Create a Completely new Chromosome/parameter. 

The user Can define new bounds for the parameters here, or use 

the orignial bounds of HIGH and LOW. 
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RANDOM = RANMAR() 
1380 IF (RANDOM.LE.MUTATION) THEN 

RANDOM = RANMAR() 
IF (CHROME.EQ.1) THEN 

NEWCHILD(NUM,CHROME)=RANDOM#5.0D0 
ELSE IF (CHROME.EQ.2) THEN 

1385 NEWCHILD(NUM,CHROME)=RANDOM#*5.0D0 
RANDOM = RANMAR() 
IF (RANDOM.LE.0.75D0) THEN 
NEWCHILD(NUM,CHROME)=NEWCHILD(NUM,CHROME)*-1.0D0 
END IF 

1390 ELSE IF (CHROME.EQ.3) THEN 
NEWCHILD(NUM,CHROME)=RANDOM*20.0D0 

ELSE IF (CHROME.EQ.4) THEN 
NEWCHILD(NUM,CHROME)=RANDOM*20.0D0 
RANDOM = RANMAR(Q) 

1395 IF (RANDOM.LE.0.75D0) THEN 
NEWCHILD(NUM,CHROME)=NEWCHILD(NUM,CHROME)*-1.0D0 
END IF 

END IF 
END IF 

1400 55 CONTINUE 
50 CONTINUE 

c Place the Children into the population. 

1405 DO 60 RANK = KEEPNUM+1,POPNUM, 1 
DO 65 CHROME = 1,4,1 
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CHILD(RANK,CHROME) = NEWCHILD(RANK,CHROME) 
65 CONTINUE 
60 CONTINUE 

c c 

c Increment the generation Counter. c 

c 
GEN = GEN + 1 

c c 
c Evaluate the least square error, same as above. c 

c 
TOTALLSE = 0.0D0 
DO 71 RANK = 1,KEEPNUM,1 
TOTALLSE = TOTALLSE + LSE(RANK) 

71 CONTINUE 
DO 70 RANK = KEEPNUM+1,POPNUM,1 
ADMITIN = DCMPLX(CHILD(RANK,1),CHILD(RANK,2)) 
ADMITOUT = DCMPLX(CHILD(RANK,3),CHILD(RANK,4)) 
SAMEFLAG = 0 
IF (RANK.GT.1) THEN 

DO 73 NUM = 1,RANK-1,1 
TSTIN= DCMPLX(CHILD(NUM, 1), CHILD(NUM,2)) 
TSTOUT= DCMPLX(CHILD(NUM,3),CHILD(NUM,4)) 
IF ((ADMITIN.EQ.TSTIN).AND.(ADMITOUT.EQ.TSTOUT)) THEN 

SAMEFLAG = 1 
LSE(RANK) = LSE(NUM) 

END IF 
73 CONTINUE 

END IF 
IF (SAMEFLAG.NE.1) THEN 

BB(1) = CHILD(RANK,1) 
BB(2) = CHILD(RANK,2) 
BB(3) = CHILD(RANK,3) 
BB(4) = CHILD(RANK,4) 
CALL DYNAMITE(BB,ETA,PROPS) 
LSE(RANK) = 0.0D0 
DO 75 NUM = 1,NUMETA,1 
LSE(RANK)=LSE(RANK)+(TARGET(NUM)-ETA(NUM))* 

& (TARGET(NUM)-ETA(NUM)) 
75 CONTINUE 

END IF 
TOTALLSE = TOTALLSE + LSE(RANK) 

70 CONTINUE 
AVGLSE(GEN) = TOTALLSE/DREAL(POPNUM) 

Examine the stopping Criteria. If the generation number is less 

_ then the maximum allowed, and if the lowest least square error 

is higher than the highest allowed, then go back to the step 

of ranking the population. 

a
a
n
 

0o 
0
 
0
 
4
 

a
a
a
 

a
 
a
 
4
 

IF (GEN.LT.MAXGEN).AND.(MINLSE.GT.STOPLSE)) GOTO 29 

a
 

oO oO
 

Return the value of INTERM(), and terminate the subprogram. 

Qa 
a 

RETURN 

END 
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c c 
c SUBROUTINE RANKER c 
c c 
cecceeeeccececeecceceeeceeceecceececeececeeeeceececeececeececcececeeceececececccce 

c This subroutine ranks the individuals in the population aCcord- c 

c ing to their least square error values, with a lower value c 
c being better. c 

ececeeeecceceeeeeceececececcececeeceeceececececeeceeececeececeeceeececcececceecce 
c c 

SUBROUTINE RANKER(CHILD,LSE,POPNUM) 
c c 

c Declaration of variables. c 

c 

INTEGER SET, RANK, NEWRANK, CHROME, POPNUM 

REAL*8 CHILD(50,4),RNKCHILD(50,4), TMPCHILD(4), 

& NEWCHILD(4), LSE(S0), RNKLSE(50), TEMP, NEW 

c c 

c Rank the individuals and store them in RNKCHILD(O. 

c c 

DO 20 SET = 1,POPNUM,1 
NEW = LSE(SET) 
NEWRANK = SET 
RNKLSE(NEWRANK) = LSE(SET) 
DO 25 CHROME = 1,4,1 

NEWCHILD(CHROMB) = CHILD(SET,CHROME) 
RNKCHILD(NEWRANK,CHROME) = CHILD(SET,CHROME) 

25 CONTINUE 
DO 30 RANK = (SET-1),1,-1 

IF (NEW.LT.RNKLSE(RANK)) THEN 
TEMP = RNKLSE(RANK) 
RNKLSE(RANK) = NEW 
RNKLSE(NEWRANK) = TEMP 
DO 34 CHROME = 1,4,1 

TMPCHILD(CHROME) = RNKCHILD(RANK,CHROME) 
34 CONTINUE 

DO 35 CHROME = 1,4,1 
RNKCHILD(RANK,CHROME) = NEWCHILD(CHROME) 

35 CONTINUE 
DO 36 CHROME = 1,4,1 

RNKCHILD(NEWRANK,CHROME) = TMPCHILD(CHROME) 
36 CONTINUE 

NEWRANK = RANK 
END IF 

30 CONTINUE 
20 CONTINUE 

c c 
c Assign the values of RNKCHILDQ to CHILD(Q). c 

c c 
DO 40 RANK = 1,POPNUM,1 
LSE(RANK) = RNKLSE(RANK) 
DO 45 CHROME = 1,4,1 

CHILD(RANK,CHROME) = RNKCHILD(RANK,CHROME) 
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45 CONTINUE 
40 CONTINUE 

c Return the value of CHILDQ), and terminate the subroutine. c 

RETURN 
END 

c c 

ccceeeceecececceceecceceeceeecceeeceeececeecececeeceeeececeeeceecececececcececcce 
c c 
c SUBROUTINE RMARIN c 
c c 
cececcececececeeececcececceececeeeceeecececeeceeeeceececececeecececeecececececce 
c This subroutine initializes a uniform ramdom number generator. c 
eccceecececceceeccececeeeceecececeeceeeeecececececeeceeecceeeecceeececececcececce 
c c 

SUBROUTINE RMARIN(I, KL) 
Cc 
C THIS IS THE INITIALIZATION ROUTINE FOR THE RANDOM NUMBER 
C GENERATOR RANMAR(O). 
Cc 

C NOTE: THE SEED VARIABLES CAN HAVE VALUES BETWEEN: 
C 0<=JJ <= 31328 

C 0<=KL <= 30081 
Cc 

C THIS RANDOM NUMBER GENERATOR CAN CREATE 900 MILLION DIFFERENT 
C SUBSEQUENCES -- WITH EACH SUBSEQUENCE HAVING A LENGTH OF 
C APPROXIMATELY 10430. 
Cc 
C USE IJ = 1802 & KL = 9373 TO TEST THE RANDOM NUMBER GENERATOR. 
C THE SUBROUTINE RANMAR SHOULD BE USED TO GENERATE 20000 RANDOM 
C NUMBERS. THEN DISPLAY THE NEXT SIX RANDOM NUMBERS GENERATED 
C MULTIPLIED BY 4096*4096. IF THE RANDOM NUMBER GENERATOR IS 
C WORKING PROPERLY, THE RANDOM NUMBERS SHOULD BE: 
Cc 
C 6533892.0 14220222.0 7275067.0 
Cc 6172232.0 8354498.0 10633180.0 
c 

c 
c 

Declaration of variables. 

REAL*8 U(97), C, CD, CM, S, T 
INTEGER I, I, J, U, JJ, K, KL, L, M, 197, J97 
LOGICAL TEST 
COMMON /RASETI/U, C, CD, CM, 197, J97, TEST 
TEST = FALSE. 

IF(U .LT.0 OR. WJ GT. 31328 .OR. 

1 KL.LT.0 .OR. KL GT. 30081 ) THEN 
WRITE (*, *)" THE FIRST RANDOM NUMBER SEED MUST HAVE A’ 

WRITE (*, *)' VALUE BETWEEN 0 AND 31328. 
WRITE (*, *) 
WRITE (*, *)' THE SECOND SEED MUST HAVE A VALUE BETWEEN 0° 
WRITE (*, *)' AND 30081." 
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c 

Cc 

c 

ececceececececececcecceccececceeceececcceccececeeeeeecececeeceecceceececceccecce 

This function returns a random number when called. 

ceccececeeceeeececececcececcecceeceececcececeeecececceccececeecceceeeceececececece 

Cc 

Cc 

C 
C THIS IS THE RANDOM NUMBER GENERATOR PROPOSED BY GEORGE MARSAGLIA 
C IN FLORIDA STATE UNIVERSITY REPORT: FSU-SCRI-87-50 
Cc 
c 

WRITE (*, *) ‘STOPPING...’ 
STOP 

ENDIF 

I= MOD(J/177, 177) +2 
J=MODdJ ,177)+2 
K = MOD(KL/169, 178) + 1 
L=MOD(KL, 169) 

DO 2 1] = 1, 97 

S$ =0.0 

T=0.5 

DO 3 JJ=1, 24 

M = MOD(MOD(I*S, 179)*K, 179) 

I=J 

J=K 

K=M 

L= MOD(53*L+1, 169) 

IF (MOD(L*M, 64) .GE. 32) THEN 

S=S+T 

ENDIF 

T=0.5 *T 

CONTINUE 

UdD=S 

CONTINUE 

C = 362436.0 / 16777216.0 
CD = 7654321.0 / 16777216.0 
CM = 16777213.0 /16777216.0 

197 = 97 
J97 = 33 

TEST = .TRUE. 

Return and terminate the subroutine. 

RETURN 
END 

FUNCTION RANMAR 

REAL*8 FUNCTION RANMAR(Q) 
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Oo Declaration of variables. 

REAL*8 U(97), UNI, C, CD, CM 
INTEGER 197, J97 
LOGICAL TEST 
COMMON /RASET1/ U, C, CD, CM, 197, J97, TEST 

IF(.NOT.TEST) THEN 
WRITE (*, *) 
WRITE (*, *)'RANMAR ERROR: YOU MUST CALL THE’ 
WRITE (*, *) INITIALIZATION ROUTINE RMARIN BEFORE’ 
WRITE (*, *) ‘CALLING RANMAR:’ 
WRITE (*, *) ‘STOPPING...’ 
STOP 

ENDIF 

UNI = U(I97) - UG97) 
IF(UNI .LT. 0.0) UNI = UNI + 1.0 
U(97) = UNI 
197 =197 -1 
IF(I97 .EQ. 0) 197 =97 
J97 = 397-1 
IF(J97 .EQ. 0) 597 = 97 
C=C-CD 
IF(C .LT.0.0)C=C+CM 
UNI = UNI-C 
IF(UNI .LT. 0.0) UNI = UNI + 1.0 

RANMAR = UNI 

Return the value RANMARO, and terminate the function. 

RETURN 
END 
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Subprogram DYNAMITE 

This program computes the acoustic field in a gas turbine 

combustor of user defined: type (can or annular), dimensions 

steady-flow gas temperature distribution, acoustic boundary 

conditions, and source distribution at a specified frequency. 

Written by Andrew D. Wright, Graduate Student of Mechanical 

Engineering, Virginia Polytechnis Institute and State 
University, Blacksburg, Virginia. Written for The United 

States Department of Energy, Morgantown Energy Technology 
Center, Morgantown, West Virginia, April-August, 1995. 0
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Integer Quantities: 

I Index used in "40" and "130" DO-Loops represent- 

ing axial element division (1 = 1 means the first 
axial division, etc.). Also used as index of 

convenience in other DO-Loops. 
IFULL Logical variable indicating whether analysis 

is over the full combustor volume (IFULL = 1) 

or over only one-half of the combustor volume 

(IFULL = 0), taking advantage of symmetry. 
J Index used in "40" and "130" DO-Loops represent- 

ing radial element division (J = 1 means the first 

radial division, etc.). Also used as index of 

convenience in other DO-Loops. 

K Index used in "40" and "130" DO-Loops represent- 
ing circumferential element division (K = 1 means 

the first circumferential division, etc.). Also 

used as index of convenience in other DO-Loops. 

Also used in "50" DO-Loop as the index of the 
Gauss points. 

MC(N,NN) The connectivity matrix; MC(N,NN) is the global 

node number of local node NN of element N. 
N Index for the elements; the "Nth" element. 

N1 Index of the lowest-numbered element having a 
specified acoustic boundary condition in the 

head end of the burner. 

N2 Index of the highest-numbered element having a 
specified acoustic boundary condition in the 
head end of the burner. 

N3 Index of the lowest-numbered element having a 

specified acoustic boundary condition at the 
exhaust end of the burner. 

N4 Index of the highest-numbered element having a 
specified acoustic boundary condition at the 

exhaust end of the burner. 
NROW _ Index representing row number in banded matrix. 

NCOL Index representing column number in banded matrix. 

NEM ~~ Number of finite elements needed to fill entire 
combustor volume (= 1536). 

NEQ = Number of equations; in this program equal to the 
number of nodes since all node pressures are 

unknown; thus set equal to the maximum value of 
NODE. 

NGP Number of Gauss points used to evaluate the coef- 
ficient integrals using Gauss quadrature (= 8). 

NHBW _ The half-bandwidth of the banded "stiffness" 
matrix. 

NN Index for the local nodes in element N; the "NNth" e
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local node of element N. 
NODE _ Index number of the I,",Kth node; value computed 

in the "40" DO-Loop. 
NPE Number of nodes per element (= 8). 
NQI1 Node number of lowest numbered node with heat 

input. 

NQ2 = Node number of highest numbered node with heat 
input. 

NR Number of radial layers of elements. 
NR1 NR +1. 
NTHETA Number of circumferential sectors of elements 

in entire combustor. 

NW Auxiliary variable used in computing NHBW. 
NZ Number of axial blocks of elements. 

NZI NZ +1. 

Real Quantities: 

A Nondimensional factor representing the relative 

thermoacoustic efficiency at the frequency being 

considered (-). User specified between 0 and 1.0. 

ANGLE Auxiliary variable representing the angular 

position in the bumer (rad), used to compute 

the angular distribution of heat input in the 
heat end. 

COEFF Nondimensional coefficient used in Gauss quadra- 
ture integration to locate Gauss points (-). 

DZ Physical distance between fuel injector interface 
with combustion liner and downstream limit of 

first block of elements (ft). User specified. 

ETA — Nondimensional dimension of Gauss point used in 
Gauss quadrature integration (-). 

FREQ _ Frequency (Hz); user specified. 

HEAT Heat release per unit mass of mixture (Btu/lbm). 
OMEGA Angular frequency; 2*PI*fhertz (rad/sec). 
PMEAN _ Uniform steady-state pressure in burner (psi). 

User specified. 

RR Radial location in the burner (ft). Computed 
and used for output purposes. 

THETA Angle in burner measured clockwise (looking 

downstream) from arbitrary zero reference (deg). 

Tl Maximum combustor temperature (F). User specified 
(Assumed to be in head end of the burner). 

T2 Minimum combustor temperature (F). User specified 

(Assumed to be at exhaust end of the burner). 

TMEAN Mean combustor temperature (F). Linear variation 
is assumed from head end to exhaust end. 

XI Nondimensional dimension of Gauss point used in 

Gauss quadrature integration (-). 

ZETA Nondimensional dimension of Gauss point used in 
Gauss quadrature integration (-). 

Vector Quantities: 

BC(NODE) Natural (pressure gradient) boundary condition n
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at global node NODE (psi/ft). 
GAMMAVWN) Steady specific heat ratio Cp/Cv averaged over 

element N (-). 

RW) Eight user-specified radii used to automatically 
determine the global node coordinants (ft). 

RHO(N) Steady mass density averaged over element N 

(lbm/ft*3) 
SQ) —_ Element-level coefficient vector for the (heat) 

source term corresponding to Gauss point K. Com- 
puted in Subroutine INTER3 (ft*3). I= 1, 2,...,8. 

SSI) Element-level coefficient vector for the (heat) 

source term summed over all NGP Gauss points of 

the master element (ft*3). 

T(NODE) Local steady temperature at global node NODE (F). 
User specified. 

WN(N) Steady wave number averaged over element N 

(1/ft). 
XX(NODE) x-coordinant of global node NODE (ft). Auto- 

matically computed. 
YY(NODE) y-coordinant of global node NODE (ft). Auto- 

matically computed. 
ZZ{NODE) z-coordinant of global node NODE (ft). Auto- 

matically computed. 
ZPLANE() z-coordinant of the nine planes forming the eight 

axial blocks of elements (ft). 

Matrix Quantities: 

SS(,J) Element-level t-component of the "stiffness" 

matrix for node pair I,J of the master element 

corresponding to Gauss point K; computed in Sub- 

roitine INTER3 (ft). I,J = 1, 2,..., 8. 

SSUC,J) Element-level t-component of the "stiffness" 

matrix for node pair I,J of the master element 

summed over all NGP Gauss points (unassembled) 
(ft). IJ= 1, 2,..., 8. 

SX(L,J) Element-level x-component of the admittance 

matrix for node pair I,J of the master element 
corresponding to Gauss point K; computed in 

Subroutine INTER3 (ft*2). I,J = 1, 2, ..., 8. 

SY(LJ) Element-level y-component of the admittance 

matrix for node pair IJ of the master element 
corresponding to Gauss point K; computed in 

Subroutine INTER3 (ft*2). LJ = 1, 2, ..., 8. 

SZ(1,J) Element-level z-component of the admittance 

matrix for node pair I,J of the master element 

corresponding to Gauss point K; computed in 

Subroutine INTER3 (ft*2). LJ = 1, 2, ..., 8. 
SSX(,J) Element-level x-component of the admittance 

matrix for node pair I,J of the master element 

summed over all NGP Gauss points (unassembled) 

(ft*2). IJ = 1, 2, ..., 8. 
SSY(LJ) Element-level y-component of the admittance 

matrix for node pair I,J of the master element 

summed over all NGP Gauss points (unassembled) o
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(ft*2). LJ = 1, 2, ..., 8. 
SSZ(,J) Element-level z-component of the admittance 

matrix for node pair I,J of the master element 
summed over all NGP Gauss points (unassembled) 
(ft*2). LJ =1, 2, ..., 8. 

SSXX(I,J) Element-level x-component of the "stiffness" 

matrix for node pair I,J of the master element 

summed over all NGP Gauss points (unassembled) 
(ft). LJ = 1, 2,..., 8. 

SSYY(LJ) Element-level y-component of the "stiffness" 

matrix for node pair I,J of the master element 

summed over all NGP Gauss points (unassembled) 

(ft). LJ = 1, 2,..., 8. 

SSZZA,J) Element-level z-component of the “stiffness” 
matrix for node pair I,J of the master element 

summed over all NGP Gauss points (unassembled) 

(f§. LJ = 1, 2,..., 8. 

SXX(I,J) Element-level x-component of the "stiffness" 

matrix for node pair I,J of the master element 

corresponding to Gauss point K; computed in Sub- 
roitine INTER3 (ft). I,J = 1, 2,..., 8. 

SYY(,J) Element-level y-component of the "stiffness" 

matrix for node pair I,J of the master element 
corresponding to Gauss point K; computed in Sub- 
roitine INTER3 (ft). I,J = 1, 2,..., 8. 

SZZ(I,J) Element-level z-component of the "stiffness" 
matrix for node pair I,J of the master element 

corresponding to Gauss point K; computed in Sub- 

roitine INTER3 (ft). IJ = 1, 2,..., 8. 
X(N,NN) x-coordinant of the NNth node of the Nth element (ft) 

Y(N,NN) y-coordinant of the NNth node of the Nth element (ft) 
Z(N,NN) z-coordinant of the NNth node of the Nth element (ft) 

Complex Quantities: 

ADMITIN Acoustic admittance at head end of burner 

(ft*3/bf-sec). User specified. 

ADMINOUT Acoustic admittance at exhaust end of burner 
(ft*3/lbf-sec). User specified. 

ADX Magnitude of acoustic admittance at a hypo- 
thetical boundary normal to the circumferential 

direction (ft*3/lbf-sec); always zero in this 

analysis because of circumferential symmetry. 

ADY = Magnitude of acoustic admittance at one of the 
radial boundaries of the burner (ft*3/lbf-sec); 

zero in current version of program (hard-wall 
condition). 

ADZ = Magnitude of acoustic admittance at one end of 
the burner (ft*3/lbf-sec). 

FACTOR Non-Dimensional scaling factor used in SOLVE. 
PNEW _ Temporary storage sight for pressure (lbf/in*2) 

at node NODE, used during output. 
EF(I) Element-level vector representing the sources 

and boundary conditions at node I of the master 

element; corresponds to the right-hand side of e
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a
a
 the system being solved (ibf/ft). 

GF(NODE) Assembled global vector in banded-matrix form 
representing the sources and boundary conditions 

at node NODE; the right-hand side of the system 
being solved (Ibf/ft). After execution of Sub- 

routine SOLVE, acoustic pressure (Ibf/ft*2). 

P(NODE) Local steady pressure at global node NODE (psi). 
User specified. 

Q(NODE) Local steady heat release per unit mass of mix- 

ture at global node NODE (Btu/lbm of mixture). 

User specified. 
QQ(N) Amplitude of unsteady heat release (source func- 

tion) averaged over element N (ft-lbfflbm mixture). 

EF)  Element-level vector representing the sources 
and boundary conditions at node I of the master 

element; corresponds to the right-hand side of 

the system being solved (Ibf/ft). 

EK(I,J) Element-level "stiffness" matrix for node pair 

I,J of the master element; corresponds to the 

coefficient matrix of the system being solved (ft). 
GK(NROW, Assembled global "stiffness" matrix in banded- 
NCOL) matrix form for use in Subroutine SOLVE (ft). 

0
7
0
O
 
0
0
 

OA 
nA 

MF 
0 

H
V
7
0
 

0 
0
0
0
0
0
2
—
¢
8
 

8
0
9
0
0
0
 
0
 
4
 

eccceececececcecccecececcceccececececececccececececccecccececececcceccecececececececcecce 

c 

ao 
0a 

09 
0 

SUBROUTINE DYNAMITE(BB,EETTAA,PROPS) 
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Specify double preCision for all real and complex variables, 

then dimension all vector and matrix quantities. 

INTEGER IFULL, NEM, NTEHTA, NR, NZ, NPE, NQ1, NQ2, 
N1, N2, N3, N4, NTHETAI, NR1, NZ1, NEQ, 
NODE, NODESA, CNODE, I,J,K, N, NN, NHBW, 

NW, NROW, NCOL, NGP, 
NRA, NZA, NRB, NZB, NZTOT, 
NRA1,NZA1,NRB1,NZB1,NZTOT1 

INTEGER MC(1700,8), NGEOM(4) 

REAL*8 A, COEFF, DZ, XI,LETA,ZETA, FREQ, HEAT, OMEGA, 
PMEAN, RR, THETA, T1, T2, TMEAN, ANGLE 

REAL*8 X(1700,8), Y(1700,8), Z(1700,8), SX(8,8), 
SY(8,8), SZ(8,8), XX(2400), YY(2400), ZZ(2400), 
SSX(8,8), SSY(8,8), SSZ(8,8), SSXX(8,8), 
SSYY(8,8), SSZZ(8,8), SSIJ(8,8), SSI(8), 
SXX(8,8), SY Y(8,8), SZZ(8,8), SS(8,8), 5(8), 

ZPLANE(20), R(8), T(2400), 
GAMMA(1700), RHO(1700), WN(1700), 
BB(4), EETTAA(8), PROPS(5) 

COMPLEX*16 ADMITIN, ADMITOUT, ADX, ADY, ADZ, PNEW 
COMPLEX*16  GF(2400), GK(2400,400), EF(8), EK(8,8), 

P(2400), Q(2400), QQ(1700) 

Initialize values of IFULL, NEM, NTHETA, NR, NZ, NPE, NQ1, 
NQ?, DZ, A, N1, N2, N3, N4, R, and ZPLANE. 
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***NOTE*** These values are user defined! *** 

IFULL = 0 

NEM = 2832 

NTHETA = 48 

NR=7 

NZ=5 

NPE=8 

NQ1 =1 

NQ2 = 76 

DZ = 0.60 

A=1.0D0 

Nl =1 

N2 =72 

N3 = 1321 

N4 = 1416 

R(1) = 0.0D0 

R(2) = 1.0D0*(1.417D0/2.0D0)/7.0D0 

R(3) = 2.0D0*(1.417D0/2.0D0)/7.0D0 

R(4) = 3.0D0*(1.417D0/2.0D0)/7.0D0 

R(5) = 4.0D0*(1.417D0/2.0D0)/7.0D0 

R(6) = 5.0D0*(1.417D0/2.0D0)/7.0D0 

R(7) = 6.0D0*(1.417D0/2.0D0)/7.0D0 

R(8) = 1.417D0/2.0D0 

ZPLANE(1) = 0.0d0 

ZPLANE(2) = 0.05d0 

ZPLANE(3) = 2.05d0 

ZPLANE(4) = 4.05d0 

ZPLANE(S) = 6.05d0 

ZPLANE(6) = 8.05d0 

ZPLANE(7) = 9.84d0 

ZPLANE(8) = 11.63d0 

ZPLANE(9) = 13.42d0 

ZPLANE(10)= 15.21d0 

ZPLANE(11)}= 17.00d0 

ZPLANE(12)= 17.05d0 

Initialize values of HEAT, PMEAN, T1, T2, FREQ. 

¥***N OTE*** These values are user defined in ESTIMAT!!*** 

HEAT = PROPS(1) 
PMEAN = PROPS(2) 
T1 = PROPS(3) 
T2 = PROPS(4) 
FREQ = PROPS(S5) 

Initialize values of ADMITIN and ADMITOUT. 
***NOTE*** These values are sent by ESTIMAT!!*** 

ADMITIN = DCMPLX(BB(1),BB(2)) 
ADMITOUT = DCMPLX(BB(3),BB(4)) 

Initialize NGEOM vector using NR, NZ, and two other user- 

defined values. 
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2015 
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NGEOM(1) = NR 
NGEOM(2) = NZ 
NGEOM(3) = 4 
NGEOM(4) = 6 

Initialize NR1,NZ1,NRA,NRA1,NZA,NZA1,NRB,NRB1,NZB,NZB1, 

NZTOT, and NZTOT1 using the NGEOM vector. 

o
a
 
|
 
a
 

NRA = NGEOM(1) 

NZA = NGEOM(2) 

NRB = NGEOM(3) 

NZB = NGEOM(4) 

NZTOT = NGEOM(2)+NGEOM(4) 

NR1 = NGEOM(1)}+1 

NZ1 = NGEOM(2)+1 

NRAI = NRA+1 

NZAI1 = NZA+1 

NRB1 = NRB+1 

NZB1 = NZB+1 

NZTOT1 = NZTOT+1 

TMEAN = (T1 + T2)/2.0D0 
IFQFULL.EQ.1) THEN 
Ni=1 
N2 = 145 

N3 = 1686 
N4 = 1878 

ENDIF 

If the analysis is over only one-half of the combustor 
volume (IFULL = 0), then divide NEM and NTHETA by two. 

a
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IFQFULL.EQ.0) THEN 
NEM = NEM/2 
NTHETA = NTHETA/2 

ENDIF 

Convert all physical dimensions into feet. Also compute 

the angular frequency OMEGA = 2*pi*FREQ. 

a
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DZ = DZ/12.0D0 
DO 1401 =1,NR1 

R(I) = R(D/12.0D0 
140 CONTINUE 

DO 1501 = 1, NZTOT1 
ZPLANE() = ZPLANE(1V/12.0D0 

150 CONTINUE 
OMEGA = 2.0D0*(DACOS(-1.0D0))*FREQ 

NTHETA1 = NTHETA 

IF(FULL.EQ.0) NTHETA1 = NTHETA + 1 

c 

c Assign nodal values of T, P, and Q. 
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Below is the logic for assignment of T, P, and Q, for an 

annular-type Combustor. 

NTHETA1 = NTHETA 
IF(FULL.EQ.0) NTHETA1 = NTHETA + 1 
NR1I=NR+1 
NZ1 =NZ+ 1 
DO 40 T= 1, NZ1 
DO 40 J= 1, NR1 
DO 40 K=1, NTHETA1 
NODE = (I-1)*NTHETA1*NRI + J-1)*NTHETAI + K 

Default values of T, P, and Q (temporary). 

T(NODE) = T1 - (T1 - T2)*ZPLANE(I)/ZPLANE(9) 
P(NODE) = PMEAN 
Q(NODE) = 0.0D0 
IF((NODE.GE.NQ1).AND.(NODE.LE.NQ2)) Q(NODE) = HEAT 

The following logic allows for an angular distribution of heat. 

IF(NODE.EQ.53) ANGLE = 0.261799388D0 
IF(NODE.EQ.57) ANGLE = 0.785398163D0 
IF(NODE.EQ.61) ANGLE = 1.308996939D0 
IF(NODE.EQ.65) ANGLE = 1.832595715D0 
IF(NODE.EQ.69) ANGLE = 2.35619449D0 
IF(NODE.EQ.73) ANGLE = 2.879793266D0 
Q(NODE) = HEAT*DCOS(ANGLE) 

cc 40 CONTINUE 
cceecececcecceececececeeceeeeceececeeceececeeeceecececeececececeeeeceececececcce 
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Below is the logic for the assignment of P, T, and Q, for a 

straight-pipe Can-type Combustor. 

do 40 i= I,nztotl,1 

Cnode = (((nthetal *nr)+1)*G-1))+1 

node = Cnode 

t(node) = ti-(t1-t2)*zplane(i)/zplane(nztot1) 

p(node) = pmean 
q(node) = 0.0d0 

if ((node.ge.nq1).and.(node.le.nq2)) then 

q(node) = heat 

end if 

do 42 } = 2,nrl1,1 

do 44 k = I,nthetal,1 

node = Cnode+((j-2)*nthetal)+k 

t(node) = t1-(t1-12)*zplane(i)/zplane(nztotl ) 

p(node) = pmean 

q(node) = 0.0d0 
if ((node.ge.nq1).and.(node.le.nq2)) then 
q(node) = heat 

end if 

Continue 

continue 
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Cc 40 Continue Cc 
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Below is the logic for the assignment of P, T, and Q, for a 

Can-type Combustor (METC geometry). 

NODESA = ((NTHETA1*NRA)+1)*NZA1 
DO 401 = 1,NZTOT1,1 

IF (LLE.NZA1) THEN 
CNODE = (((NTHETA1*NR)+1)*(I-1))+#1 

ELSE IF (.GT.NZA1) THEN 
CNODE = NODESA + (((NTHETA1*NRB)+1)*(I-(NZA1+1)))41 
NR1 = NRB1 

END IF 
NODE = CNODE 
T(NODE) = T1-(T1-T2)*ZPLANE()/ZPLANE(NZTOT]1) 
P(NODE) = PMEAN 
Q(NODE) = 0.0D0 
IF ((NODE.GE.NQ1).AND.(NODE.LE.NQ2)) THEN 
Q(NODE) = HEAT 

END IF 
DO 42J =2,NR1,1 
DO 44 K = 1. NTHETAI,1 
NODE = CNODE+((J-2)*NTHETA1)+K 
T(NODE) = T1-(T1-T2)*ZPLANE()/ZPLANE(NZTOT1) 
P(NODE) = PMEAN 
Q(NODE) = 0.0D0 
IF ((NODE.GE.NQ1).AND.(NODE.LE.NQ2)) THEN 
Q(NODE) = HEAT 

END IF 
44. CONTINUE 
42 CONTINUE 

NR1 =NR+1 
40 CONTINUE 

Assign the total number of nodes to NEQ. 

NEQ = NODE 

Call Subroutine COORDS, which computes the global x,y,z 

Coordinates, XX(NODE), YY(NODE), and ZZ(NODE), of node NODE. 

CALL COORDS(UFULL, NTHETA, NGEOM, DZ, R, ZPLANE, XX, YY, ZZ) 

Call Subroutine CONNECT, which Computes the Connectivity 
matrix, MC(N,NN), where N is the element index, NN is the 

local node index, and MC is the global node index. 

CALL CONNECT(CFULL, NTHETA, NGEOM, MC) 

Compute the narrow half-bandwidth, NHBW, of the banded matrix. 

NHBW = 0 
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DO 120 N = 1, NEM 

DO 1201 = 1, NPE 
DO 120 J=1, NPE 
NW = IABS(MC(N,D - MC(N,J) + 1 
IF(NHBW.LT.NW) NHBW = NW 

120 CONTINUE 

c Initialize the global stiffnes matrix and force veCtor to zero. 

DO 701 = 1, NEQ 
GF(1) = 0.0D0 
DO 70 J = 1.NHBW 
GK(LJ) = 0.0D0 

70 CONTINUE 

Loop through the elements (there are NEM elements; N is the 

index of the Current element). Within this loop, the element- 

level stiffness matrix and force vector for element N is 

evaluated, and then inserted into the global matrix and vector. 
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DO 100 N = 1, NEM 

Establish the x,y,z Coordinates of the global nodes in terms 

of the ConneCtivity matrix and local nodes. 

a
o
 

0 
0 

DO 60 NN = 1, NPE 
NODE = MC(N,NN) 
X(N,NN) = XX(NODE) 
Y(N.NN) = YY(NODE) 
Z(N,NN) = - ZZ(NODE) 

60 CONTINUE 

Call Subroutine WEIGHT, which computes the node-weighted 

steady-flow Coefficient values for each element. 

a
0
 

0 
6 

CALL WEIGHT(N,NPE,OMEGA,A,T,P,Q,RHO,GAMMA, WN,QQ,X, Y,Z,MC) 

Initialize the values of the Coeeficient matrices for the 

Current element (element N). 

a
a
a
 o
 

DO 101= 1, NPE 
SSI(I) = 0.0D0 
DO 10J=1,NPE 
SSXX(LJ) = 0.0D0 
SSYY(LJ) = 0.0D0 
SSZZ(LJ) = 0.0D0 
SSIJ(L,J) = 0.0D0 
SSX(LJ) = 0.0D0 
SSY(LJ) = 0.0D0 
SSZ(LJ) = 0.0D0 

10 CONTINUE 
c 

c Compute values of the Coefficient matrix for the Current 
c element (element N). This assigns the magnitude of the 
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Gauss Quadrature Coordinates. This will Change if the Current 

sCheme of quadrature integration is Changed (usually due to 

a different number of Gauss points (usually due to a diff- 
erent type of master element.)) 

COEFF = 1.0D0/DSQRT(3.0D0) 

Set the number of Gauss Quadrature points equal to eight 
and then loop through all eight points. 

NGP = 8 
DO 50 K = 1, NGP 

Set the Coordinates of the Current Gauss point. 

IF(K.EQ.1) THEN 
XI = - COEFF 
ETA = - COEFF 
ZETA = - COEFF 

ENDIF 

IF(K.EQ.2) THEN 
XI = COEFF 
ETA = - COEFF 
ZETA = - COEFF 

ENDIF 

IF(K.EQ.3) THEN 
XI = COEFF 
ETA = COEFF 
ZETA = - COEFF 

ENDIF 

IF(K.EQ.4) THEN 
XI = - COEFF 
ETA = COEFF 
ZETA = - COEFF 

ENDIF 

IF(K.EQ.5) THEN 
XI] = - COEFF 
ETA = - COEFF 

ZETA = COEFF 
ENDIF 

IF(K.EQ.6) THEN 

XI = COEFF 
ETA = - COEFF 
ZETA = COEFF 

ENDIF 

IF(K.EQ.7) THEN 
XI = COEFF 
ETA = COEFF 
ZETA = COEFF 
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ENDIF 

IF(K.EQ.8) THEN 
XI = - COEFF 
ETA = COEFF 
ZETA = COEFF 

ENDIF 

Call Subroutine INTER3, which Computes the Jacobian matrix, 

its determinant, and its inverse, all of which are functions 

of the Current element, N, and the current Gauss point, K. 

CALL INTER3(N,XI,ETA,ZETA,X, Y,Z,SX,SY,SZ,SXX,SY Y,SZZ,SS,S) 

Perform Gauss Quadrature integration by adding the Current 

values of the Coefficient matrix, which are evaluated at the 

current Gauss point, to the Current sum. 

DO 301 = 1, NPE 
SSI) = SSID) + S() 
DO 30 J= 1, NPE 
SSXX(LJ) = SSXX(LJ) + SXX(LJ) 
SSYY(LJ) = SSYYC,J) + SYYGD 
SSZZ(LJ) = SSZZ(LJ) + SZZ(LJ) 
SSIJ(LJ) = SSUCLJ) + SS(,J) 
SSX(LJ) = SSX(LJ) + SX(LJ) 
SSY(LJ) = SSY(LJ) + SYD) 
SSZ(LJ) = SSZ(LJ) + SZ(LJ) 

30 CONTINUE 
50 CONTINUE 

Compute the element-level stiffness matrix, EK and force 

vector, EF. 

ADX = 0.0D0 
ADY = 0.0D0 
ADZ = 0.0D0 

This is where the inClusion of BOTH components of the 

admittance Calls for a multiplication by j=sqrt(-1). 

IF((N.GE.N1).AND.(N.LE.N2)) THEN 
ADZ = DCMPLX((-DIMAG(ADMITIN)),DREAL(ADMITIN)) 

END IF 
IF((N.GE.N3).AND.(N.LE.N4)) THEN 
ADZ = DCMPLX((-DIMAG(ADMITOUT)), DREAL(ADMITOUT)) 

END IF 
DO 80I= 1, NPE 
EF(1) = - WN(N)*WN(N)*RHO(N)*(GAMMA(N)-1.0D0)*QQ(N)*SSI(I) 
DO 80 J = 1, NPE 

EKG,J) = SSXX,D+SSYY(J+SSZZ(J)-C(WN(N)*WN(N))*SSUJ)+ 

c 

& OMEGA *RHO(N)*(ADX*SSX(LJ)+ADY*SS Y(LJ)+ADZ*SSZ(LJ) 
80 CONTINUE 
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4
 At this point the evaluation of the elemental stiffness matrix 

and force veCtor is Complete for element N. The next step is 

to insert these into the global matrix and veCtor. 

DO 901= 1, NPE 
NROW = MC(N,D 
GF(NROW) = GF(NROW) + EF(1) 
DO 90 I= 1, NPE 
NCOL = MC(N,J) - NROW + 1 
IF(NCOL) 95, 95, 110 

110 CONTINUE 
GK(NROW,NCOL) = GK(NROW,NCOL) + EK(I,J) 

95 CONTINUE 
90 CONTINUE 
100 CONTINUE 
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ec 

The 100 CONTINUE statement marks the end of the loop that 

covered every element. With the global stiffness matrix and 

force vector determined, it is now time to solve the NEQ 

equations using subroutine SOLVE. 

CALL SOLVE(NEQ, NHBW, GK, GF) 

Write out the pressure as a funCtion of location. 

OPEN(UNIT=5,FILE='OUTPUT) 
IF(FULL.EQ.1) THEN 
WRITE(S,5) 

ELSE 
WRITE(5,6) 

ENDIF 
WRITE(*,7) PMEAN, TMEAN 
WRITE(*,1) FREQ 
DO 1301 = 1, NZI 
DO 130J=1,NR1 
DO 130 K= 1, NTHETAI 
NODE = (-1)*NTHETA1*NR1 + (J-1)*NTHETA1 + K 
IF(K.EQ.1) THEN 
RR = DSQRT(XX(NODE)*XX(NODE) + YY(NODE)*YY(NODE)) 
WRITE(5,2) 
WRITE(5,8) RR, ZPLANE(1) 
WRITE(5,12) 
WRITE(5,2) 

ENDIF 
THETA = (K-1)*7.5D0 
PNEW = GF(NODE)/144.0D0 

WRITE(5,9) NODE, THETA, PNEW 
130 CONTINUE 

CLOSE (5) 

FORMAT statements. 

1 FORMAT(ILX, ‘Frequency =", F8.3, ' Hz’) 
2 FORMAT(Sx, ‘') 
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4 FORMAT(SX, I5, 5X, 3F10.3, 5X, E12.5) 
5 FORMAT(12X, ‘Full Burner Analysis’) 
6 FORMAT(12X, ‘Half Burner Analysis’) 

7 FORMAT(4X, 'Pmean =’, F5.1,' psi’, 3X, "Tmean =', F6.1,' F’) 
8 FORMAT(SX, ‘Radius =’, F5.3,' ft'", SX, ‘Z =', F5.3, ' ft’) 
9 FORMAT(SX, IS, 5X, F5.1, 5X, E12.5) 
12 FORMAT(7X, ‘Node’, 2X, ‘Theta (deg)’, 2X, ‘Press (psi)') 
14 FORMAT(10X, F8.3, 5X, E12.5) 

This Commented seCtion Can be used to write the entire 

calculated Complex pressure field to an output file. 

OPEN(UNIT=5,FILE='OUTPUT.DAT) 
IF(IFULL.EQ.1) THEN 
WRITE(5,5) 

ELSE 
WRITE(5,7) 

ENDIF 
WRITE(5,9) PMEAN, TMEAN 
WRITE(5,1) FREQ 

DO 1301 = 1,NZTOT1,1 
IF (LLE.NZA1) THEN 
CNODE = (((NTHETA1*NR)+1)*(-1))+1 

ELSE IF (.GT.NZA1) THEN 
CNODE = NODESA + (((NTHETA1*NRB)+1)*(-(NZA1+1)))+1 
NR1 = NRB1 

END IF 
NODE = CNODE 
PNEW = GF(NODE)/144.0D0 
ANGLE = ATAN2(DIMAG(PNEW),DREAL(PNEW))*(180.0/DACOS(-1.0D0)) 
WRITE(5,15) ZPLANE() 
WRITE(5,17) NODE,PNEW 
DO 132] =2,NR11 
DO 134 K= 1,NTHETAL1 

NODE = CNODE+((J-2)*NTHETA1)+K 
IF(K.EQ.1) THEN 
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RR = DSQRT(XX(NODE)*XX(NODE) + YY(NODE)*Y Y(NODE)) 
WRITE(5,3) 
WRITE(5,11) RR, ZPLANE(I) 
WRITE(5,13) 
WRITE(5,3) 

ENDIF 
THETA = (K-1)*7.5D0 
PNEW = GF(NODE)/144.0D0 o
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ANGLE=ATAN2(DIMAG(PNEW),DREAL(PNEW))*(180.0/DACOS(-1.0D0)) 
WRITE(5,19) NODE, THETA,PNEW 

134 CONTINUE 
132. CONTINUE 

NRI = NR+1 
130 CONTINUE 

Format Statements 

1 FORMAT(11X, ‘Frequency =', F8.3, ' Hz’) a
o
n
 

n
o
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c¢ 3FORMAT(x, "') . 
c 5 FORMAT(12X, ‘Full Burner Analysis‘) Cc 

c 7 FORMAT(12X, 'Half Burner Analysis’) c 

c 9FORMAT(4X, 'Pmean =', F5.1, ' psi’, 3X, "Tmean =', F6.1, ' F’) c 
c 11 FORMAT(SX, ‘Radius =', F5.3, ' ft'", 5X, 'Z =", F5.3, ' ft’) c 
ce 13 FORMAT(7X, 'Node’, 2X, 'Theta (deg)’, 2X, ‘Press (psi)') c 

c 15 FORMAT(4X,'Centerline Pressure for ZPlane',I3) c 

c 17 FORMAT(7X,'Node #',14,4X,'Pressure = (',E12.5,',',E12.5,") psi’) c 
c 19 FORMAT(5X,I5,5X,F5.1,5X,(,E12.5,',,E12.5,')') c 
c c 

c This seCtion assigns the appropriate pressure value to the c 

c estimated pressure vector EETTAA(). The nodal locations c 

c are user defined. c 

c c 
DO 141 J = 1,7,2 

IF (J-EQ.1) THEN 
NODE = 177 

ELSE IF (J.EQ.3) THEN 
NODE = 881 

ELSE IF (J.EQ.5) THEN 
NODE = 1158 

ELSE IF (J.EQ.7) THEN 
NODE = 1360 

END IF 
PNEW = GF(NODE)/144.0D0 
EETTAA(J) = DREAL(PNEW) 

EETTAAGJ+1) = DIMAG(PNEW) 
141 CONTINUE 

c c 
c Return values of EETTAA, and terminate main subprogram. c 

c c 
RETURN 

END 
eccececceeeeceecceeeecececccececeeeececeecececceceeececeeeceececceeceeccecceecce 
c c 
c SUBROUTINE COORDS c 
c c 
ceecceceeceeceecceeceeceeecececeeceeececececeececcececcececeecceeecececeeecccecece 
c c 

c This subroutine automatically Computes the Coordinates c 

c of the nodes in the global Coordinant system. c 
c c 
ececececeeeeecececeecececececececececececececeeeceecececeeececeeceececceeeccecce 
c c 

SUBROUTINE COORDS(IFULL, NTHETA, NGEOM, DZ, R, ZZ, X, Y, Z) 
c c 

Declare varibales, with real values being double precision. c 

c c 
INTEGER IFULL, NTHETA, NR, NZ, NTHETA1,NR1, NZI, 

& NODE, CNODE, I, J, K, NGEOM(4) 
REAL*8 PI, PI180, DZ, THETA 
REAL*8 X(2400), Y(2400), Z(2400), ZZ(20), R(8) 

c 

Declare integer variables that are needed for the METC c 
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can-type geometry. 

INTEGER NRA, NZA, NRB, NZB, NZTOT, 
& NRA1,NZA1,NRB1,NZ31,NZTOT1, NODESA 

Assign values to Constants. 

PI = DACOS(-1.0D0) 
P1180 = PI/180.0D0 
DZ = 0.0 

Determine whether the analysis is half- or full-combustor, 

and adjust NTHETAI accordingly. 

NTHETA1 = NTHETA 
IF(FULL.EQ.0) NTHETAI = NTHETA + 1 
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Commented below is the logic for the x,y,z Coordinates of a 

straight, Constant-radius, Can-type burner (no-annulus). 

NR = NGEOM(1) 
NZ = NGEOM(2) 
NR1 = NR+1 
NZ1 = NZ+1 
NZTOT1 = NZ1 
DO 41 I= 1,NZTOT1,1 
CNODE = (((NTHETA1*NR)+1)*(I-1))+1 
NODE = CNODE 
X(NODE) = 0.0 
Y(NODE) = 0.0 
Z(NODE) = ZZ(1) 
DO 43 J =2,NR1,1 
DO 45 K = 1,NTHETAI,1 
NODE = CNODE+((J-2)*NTHETA1)+K 
THETA = (K-1)*PI180*7.5D0 

X(NODE) = R(J)*DSIN(THETA) 
Y (NODE) = R(J)*DCOS(THETA) 
Z(NODE) = ZZ(1) 

CONTINUE 
c:° 43. CONTINUE 
¢ 41 CONTINUE 
ecececcecececccceccececcececccececececccccececcececceccecececccecccecececccecccecececece 
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Below is the logic for the x,y,z Coordinates of the METC 

burner. It is a Can-type with two different radii (from 

outside it resembles a soda Can sitting on a Coffee tin, with 

both sharing the Common Central axis.) 

Initialize NR1,NZ1,NRA,NRA1,NZA,NZA1,NRB,NRB1,NZB,NZB1, 

NZTOT, and NZTOT1 using the NGEOM vector. These values are 
needed for the METC geometry. 
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NRA = NGEOM(1) 
NZA = NGEOM(2) 
NRB = NGEOM(3) 
NZB = NGEOM(4) 
NZTOT = NGEOM(2}+NGEOM(4) 
NR1 = NGEOM(1)+1 
NZ1 = NGEOM(2)+1 
NRAI = NRA+1 
NZA1 = NZA+1 
NRB1 = NRB+1 
NZB1 = NZB+1 
NZTOT1 = NZTOT+1 

Compute the number of nodes in the first Cylindrical part of 

the METC geometry. 

NODESA = ((NTHETAI*NRA)+1)*NZAI1 

Loop through all nodes and determine the x,y,z Coordinates. 

DO 41 [= 1,NZTOT1,1 
IF (LLE.NZA1) THEN 
CNODE = (((NTHETA1*NRA)+1)*(-1))+1 

ELSE IF (I.GT.NZA1) THEN 
CNODE = NODESA + (((NTHETA1*NRB)+1)*(1-(NZA141)))+1 
NR1 =NRBI 

END IF 
NODE = CNODE 
X(NODE) = 0.0d0 
Y(NODE) = 0.0d0 
Z(NODE) = ZZ(1) 
DO 43J=2,NR11 
DO 45 K = 1,NTHETAI,1 
NODE = CNODE+((J-2)*NTHETA1)+K 
THETA = (K-1)*PI180*7.5D0 

X(NODE) = R(J)*DSIN(THETA) 
Y(NODE) = R(J)*DCOS(THETA) 
Z(NODE) = ZZ.) 

45. CONTINUE 
43 CONTINUE 

NR1 = NGEOM(1)+1 
41 CONTINUE 

Return to Calling routine. 

RETURN 
END 

a 
0a 

08 
0 

ececececccecceccceece cee cece ceceececcecCcecececcececcecceccecececccceccceececcecccecceceecccOCCCO 

c 

Cc 

Cc 

SUBROUTINE CONNECT 
Cc 

c 

Cc 

ccecececececececcececcccececccceccececcececccececececcecccceccecececececccecececececcee 

c 

c 

c 

This subroutine automatically generates the Connectivity 
matrix, MC(N,K), where N is the element index, K is the 

c 

Cc 

Cc 
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c 

c 

local node index and MC is the global node index. c 
c 

ecececececcecccecccececececccecccecececceccecececcecceccecececcecceececccececceececce 

Cc 
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a
a
 
a
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ce 
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ce 

ce 

ce 

ce 

cc 

ce 

ce 

ec 

cc 

cc 

ec 

ce 

ce 

ce 

cc 

ce 

c 

SUBROUTINE CONNECT(UFULL, NTHETA, NGEOM, MC) 

& 
& 

Declare integer values needed for the Connectivity array. 

INTEGER IFULL, N, NTHETA, NR, NZ, NTHETA1 
IR, IZ, ITHETA, INDEX 

INTEGER NGEOM(4), MC(1700,8) 

Declare integer variables that are needed for the METC 

Can-type geometry. 

a 
0a

 
0
 

G4 

INTEGER NRA, NZA, NRB, NZB, NZTOT, 
NRA1,NZA1,NRB1,NZB1,NZTOT1, 
NELEMA, NODESA1, NODESA2, M1,M2,M3,M4,M5 

Determine whether the analysis is half- or full-combustor, 

and adjust NTHETA1 accordingly. 

o
a
 02
 
6
 

NTHETAI = NTHETA 
IF(FULL.EQ.0) NTHETA1 = NTHETA + 1 

cceecccecececcceccccecececceceececcecceccecececceeceeeccececececececececeecccececcce 

Double Commented is the logic for the Connectivity array for ce 

a Constant radius, annular-type burner. cc 

ce 
NR = NGEOM(1) cc 
NZ = NGEOM(2) cc 
NTHETA1 = NTHETA cc 
TFQFULL.EQ.0} NTHETA1 = NTHETA + 1 cc 

DO 20 IZ = 1, NZ cc 

DO 20IR=1, NR cc 
DO 20 ITHETA = 1, NTHETA cc 
INDEX = 1 cc 

TF(IFULL.EQ.1).AND.(THETA.EQ.NTHETA)) INDEX = INDEX - NTHETA 
N = (IZ-1)*NR*NTHETA + (IR-1)*NTHETA + ITHETA cc 
MC(N,1) = (NR+1)*(NTHETA1)*(IZ-1)+(NTHETA1)*(IR-1)}#ITHETA cc 
MC(N,2) = (NR+1)*(NTHETA1)*0Z-1}+(NTHETA1)*(IR-1)HTHETA+INDEX 
MC(N,3) = (NR+1)*(NTHETA1)*(IZ-1)+(NTHETA1)*IR+ITHETA+INDEX cc 
MC(N,4) = (NR+1)*(NTHETA1)*(IZ-1}+(NTHETA1)*IR+ITHETA cc 
MC(N,5) = (NR+1)*(NTHETA1)*IZ+(NTHETA1)*(IR-1)+ITHETA ce 
MC(N,6) = (NR+1)*(NTHETA1)*IZ+(NTHETA1)*(IR-1)+ITHETA+INDEX cc 
MC(N,7) = (NR+1)*(NTHETA1)*IZ+(NTHETA1)*IR+ITHETA+INDEX cc 
MC(N,8) = (NR+1)*(NTHETA 1)*IZ+(NTHETA1)*IR+ITHETA cc 

20 CONTINUE ce 
ce 

ecceccececcecececcececcececcccececcecccecccecececccececceccececececcecececceccececcecc’e 

Cc 

a 
0
2
a
 4
 

Commented below is the logic for the Connectivity array for a c 

straight, Constant-radius, Can-type burner (no annulus). 

NR = NGEOM(1) 
NZ = NGEOM(2) o

a
 

0a
 

4 

192



2665 

2670 

2675 

2680 

2685 

2690 

2695 

2700 

2705 

2710 

2715 

DO 20 IZ = 1,NZ,1 
DO 22 IR = 1,NR,1 
DO 24 ITHETA = 1,NTHETA,1 
INDEX = 1 
IF ((IFULL.EQ.1).AND.(THETA.EQ.NTHETA)) THEN 
INDEX = INDEX-NTHETA 

END IF 
N = (Z-1)*NR*NTHETA + (IR-1)*NTHETA + ITHETA 
IF (IR.EQ.1) THEN 

MC(N, 1)=(((NTHETA1*NR)+1)*(Z-1)) +1 
MC(N,2)=(((NTHETA1*NR)+1)*(Z-1))+1 
MC(N,3)=(((NTHETA1*NR}+-1)*(IZ-1))+1+ITHETA+INDEX 
MC(N,4)=(((NTHETA1*NR)+1)*(IZ-1))+ 14ITHETA 
MC(N,5)=(((NTHETA1*NR)+1)*(1Z)) +1 
MC(N,6)=(((NTHETA1*NR)+1)*(1Z))+1 
MC(N,7)=(((NTHETA 1 *NR)+1)*(IZ))+1+ITHETA+INDEX 
MC(N,8)=(((NTHETA 1 *NR)+1)*(IZ))+14+I THETA 
ELSE IF (IR.GT.1) THEN 

MC(N,1)=(((NTHETA 1 *NR)+1)*(IZ-1))+14+((IR-2)*NTHETA1)+ITHETA 
MC(N,2)=(((NTHETA1*NR)+1)*(IZ-1))+14+((IR-2)*NTHETA]1)+ITHETA+INDEX 
MC(N,3)=(((NTHETA 1*NR)+1)*(IZ-1))+14+((IR-1)*NTHETA)+ITHETA+INDEX 
MC(N,4)=(((NTHETA 1 *NR)+1)*(IZ-1))+1+((IR-1)*NTHETA 1)+ITHETA c 
MC(N,5)=(((NTHETA1*NR)+1)*(IZ))+14((IR-2)*NTHETA1)+ITHETA c 
MC(N,6)=(((NTHETA 1 *NR)+1)*(IZ))+1+((IR-2)*NTHETA 1)+ITHETA+INDEX c 
MC(N,7)=(((NTHETA 1 *NR)+1)*(IZ))+1+((IR-1)*NTHETA 1)+ITHETA+INDEX c 
MC(N,8)=(((NTHETA1*NR)+1)*(IZ))+14+((IR-1)*NTHETA1)4ITHETA 

END IF 
24 CONTINUE 

¢ 22 CONTINUE 
c 20 CONTINUE 
COCCOCCOCCCCOCCCCCO COCO CC CO OCCCO CC CNC CN CCCO NCC ONC CCC CC COC OCOC CONC CO COCO COC CCN COCO 
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Below is the logic for the Connectivity array of the METC 

burner. [t is a Can-type with two different radii (from 

outside it resembles a soda Can sitting on a Coffee tin, with 

both sharing the Common Central axis.) 

Initialize NR1,NZ1,NRA,NRA1,NZA,NZAI,NRB,NRB1,NZB,NZB1, 

NZTOT, and NZTOT1 using the NGEOM vector. These values are 
needed for the METC geometry. 

Q
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NRA = NGEOM(1) 

NZA = NGEOM(2) 
NRB = NGEOM(3) 

NZB = NGEOM(4) 

NZTOT = NGEOM(2)+NGEOM(4) 
NR1 = NGEOM(1)}+1 

NZ1 = NGEOM(2}+1 
NRA] = NRA+1 

NZAI1 = NZA+1 
NRB1 = NRB+1 

NZB1 = NZB+1 

NZTOTI = NZTOT+1 
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49 
0 

Compute the number of elements in the first cylinder of the c 

METC Can-type Combustor. c 

c 

NELEMA = NTHETA*NRA*NZA 
c 

Compute the number of nodes in the first Cylinder of the c 

can-type Combustor (the nodes in the first NZA ZPlanes.) c 

c 

NODESAI = ((NTHETA1*NRA)+1)*(NZA) 
c 

Compute the number of nodes in the first cylinder of the c 

Can-type Combustor (the nodes in the first NZA+1 ZPlanes.) c 

c 
NODESA2 = (NTHETAI*NRA)+1)*(NZA1) 

DO 20 IZ = 1,NZTOT,1 

IF (Z.LE.NZA) THEN 

M1 =0 

M2=0 

M3 =0 

M4 =0 

M5 =0 

NR=NRA 

ELSE IF (Z.EQ.NZA1) THEN 

M1=NZA 

M2 = NELEMA 

M3 = NODESAI 

M4 = NODESA2 

M5 = 1 

NR = NRB 

ELSE IF (IZ.GT.NZA1) THEN 

M1 =NZAI 

M2 = NELEMA+(NRB*NTHETA) 

M3 = NODESA2 

M4 = NODESA2 

M5 =0 

NR = NRB 

END IF 

DO 22 IR = 1,NR,1 
DO 24 ITHETA = 1,NTHETA,1 
INDEX = 1 
IF ((IFULL.EQ.1).AND.(THETA.EQ.NTHETA)) THEN 
INDEX = INDEX-NTHETA 

END IF 
N=(1Z-(M1+1))*NR*NTHETA+(IR-1)*NTHETA+ITHETA+M2 
IF (IR.EQ.1) THEN 

MC(N,1)=(((NTHETA1*NR)+1)*(IZ-(M1+1)))}+14M3 
MC(N,2)=(((NTHETA1*NR)+1)*(IZ-(M1+1)))}+14M3 
MC(N,3)=(((NTHETA1*NR)+1)*(IZ-(M1+1)))+1+ITHETA+INDEX+M3 
MC(N,4)=(((NTHETA1 *NR}+1)*(IZ-(M1+1))}+1+TTHETA+M3 
MC(N,5)=(((NTHETA1*NR)+1)*(1Z-(M1+M5)))+1+M4 
MC(N,6)=(((NTHETA1*NR)+1)*(1Z-(M1+M5)))+14M4 
MC(N,7)=(((NTHETA1*NR)+1)*(Z-(M1+M5)))+1+ITHETA+INDEX+M4 

194



2775 

2780 

2785 

2790 

2795 

2800 

2805 

2810 

2815 

2820 

2825 

MC(N,8)=(((NTHETA1*NR)+1)*(Z-(M1+M5)))}+1+ITHETA+M4 
ELSE IF (IR.GT.1) THEN 

MC(N, 1)=((NTHETA1*NR)+1)*(Z-(M1+1)))+1+((IR-2)*NTHETA1)+ 
& ITHETA+M3 

MC(N,2)=(((NTHETA1*NR)+1)*(Z-(M1+1)))+14+((IR-2)*NTHETA1)+ 
& ITHETA+INDEX+M3 

MC(N,3)=(((NTHETA1*NR)+1)*(IZ-(M1+1)))+1+((IR-1)*NTHETA1)+ 
& ITHETA+INDEX+M3 
MC(N,4)=(((NTHETA 1 *NR}+1)*(Z-(M1+41)))+1+((IR-1)*NTHETA 1)+ 

& ITHETA+M3 
MC(N,5)=(((NTHETA1*NR}+-1)*(1Z-(M14+M5)))4+1+((IR-2)*NTHETA1)+ 

& ITHETA+M4 
MC(N,6)=(((NTHETA1*NR)+1)*(IZ-(M1+M5)))+1+((IR-2)*NTHETAI)+ 

& ITHETA+INDEX+M4 
MC(N,7)=(((NTHETA1*NR)+1)*(IZ-(M1+M5)))+1+((IR-1)*NTHETA1)+ 

& ITHETA+INDEX+M4 
MC(N,8)=(((NTHETA1*NR}¥-1)*(1Z-(M1+M5)))+14((IR-1)*NTHETAI)+ 

& ITHETA+M4 
END IF 

24 CONTINUE 
22 CONTINUE 
20 CONTINUE 

c Return to Calling routine. 

RETURN 
END 

ccceceeececeeceeceececececececeeceececeeececececeeecceeccececceceeceececececeecce 
c c 
c SUBROUTINE WEIGHT c 
c c 
cccececececececeeececeeececececceceecceececeececeeeccecceceeeecececeeeceeecececce 

This subroutine Computes the node-weighted steady flow 

coefficient values RHO(N), GAMMA(N), WN(N), AND QQ(N), 

for each element N. 

0o
0N
n 

0
0
 

4 

o
n
 

9
 
0
 

86 

ceecceeceecceccececceeeceeceeceececeeceeceececeececceceececcecececececcececceceee 
c c 

SUBROUTINE WEIGHT(N,NPE,OMEGA,A,T,P,Q,RHO,GAMMA,WN,QQ,X, Y,Z,MC) 
c 

Declare all non-integer variables as double preCision. c 
c c 

IMPLICIT REAL*8 (A-H,O-Z) 
INTEGER N, NPE, NNLIM, NN, NLOOP, 

& N1, N2, N3, N4, N5, N6, N7, N8, N9 
REAL*8 OMEGA, A, VOL, DENSE, CPCV, GAMMART, QHEAT 
REAL*8 T(2400), RHO(1700), GAMMA(1700), 

& WN(1700), X(1700,8), Y(1700,8), Z(1700,8), 
& TX(8), TY(8), TZ(8), V(9) 

COMPLEX*16 — P(2400), Q(2400), QQ(1700) 

First establish the global Coordinants of the 8 corner 

c nodes of the element or sub-element whose volume is to 
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4
 be Computed. Loop through the 8 corner nodes but also 

one step must be added for the element itself; that is, 

there are nine volumes to Calculate: one for the entire 

element and one each for the 8 sub-elements which Compose 

it. 

NNLIM = NPE + 1 

DO 10 NN=1, NNLIM 

NLOOP =NN - 1 

IF(NLOOP.LE.1) THEN 

Nil=1 

N2=2 

N3 =3 

N4=4 

N5=5 

N6=6 

N7=7 

N8&=8 

ENDIF 

IF(NLOOP.EQ.2) THEN 

Ni=2 

N2=6 

N3=7 

N4=3 

N5S=1 

N6=5 

N7=8 

N8 =4 

ENDIF 

IF(NLOOP.EQ.3) THEN 

Ni=3 

N2=7 

N3=8 

N4=4 

NS =2 

N6=6 

N7=5 

N&=1 

ENDIF 

IF(NLOOP.EQ.4) THEN 

N1i=4 

N2=3 

N3=7 

N4=8 

N5=1 

N6=2 

N7 =6 

N8& =5 

ENDIF 

IF(NLOOP.EQ.5) THEN 

N1=5 

N2=1 

N3 =4 

N4=8 

N5 =6 

a
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N6=2 

N7 =3 

N&8=7 

ENDIF 

IF(NLOOP.EQ.6) THEN 

N1=6 

N2=5 

N3 =8 

N4=7 

NS =2 

N6=1 

N7=4 

N8 = 3 

ENDIF 

IF(NLOOP.EQ.7) THEN 

Ni=7 

N2=3 

N3=2 

N4=6 

N5 =8 

N6=4 

N7=1 

N8=5 

ENDIF 

IF(NLOOP.EQ.8) THEN 

N1=8 

N2=4 

N3 =3 

N4=7 

N5=5 

N6=1 

N7 =2 

N8&8=6 

ENDIF 

IF(NLOOP.EQ.0) THEN 

TX(1) = X(N,N1) 

TY(1) = Y(N.N1) 
TZ) = Z(N.N1) 

TX(2) = X(N,N2) 

TY(2) = Y(N,N2) 

TZ(2) = Z(N,N2) 

TX(3) = X(N,N3) 

TY(3) = Y(N,N3) 

TZ(3) = Z(N,N3) 

TX(4) = X(N,N4) 

TY(4) = Y(N,N4) 

TZ(4) = Z(N,N4) 

TX(5) = X(N,N5) 

TY(5) = Y(N,N5) 

TZ(S) = Z(N,N5) 

TX(6) = X(N,N6) 

TY(6) = Y(N,N6) 

TZ(6) = Z(N,N6) 

TX(7) = X(N,N7) 

TY(7) = Y(N,N7) 
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TZ(7) = Z(N,N7) 
TX(8) = X(N,NB) 
TY(8) = Y(N,N8) 
TZ(8) = Z(N,N8) 

ELSE 
TX(1) = X(N.N1) 
TY(1) = YINN1) 
TZ(1) = Z(N,N1) 
TX(2) = (X(N,N1)+X(N,N2))/2.0D0 
TY(2) = (Y(N.N1)+Y(N,N2))/2.0D0 
TZ(2) = (Z(N,N1)+Z(N,N2))/2.0D0 
TX(3) = (X(N,N1)+X(N,N2)+-X(N,N3)+X(N,N4))/4.0D0 
TY(3) = (Y(N,N1)+ Y(N,N2)+Y(N,N3)+Y(N,N4))/4.0D0 
TZ(3) = (Z(N,N1)+Z(N,N2)+Z(N,N3)+Z(N,N4))/4.0D0 
TX(4) = (X(N,N1)+X(N,N4)¥/2.0D0 
TY(4) = (Y(N.N1)+Y(N,N4))/2.0D0 
TZ(4) = (Z(N,N1)+Z(N,N4))/2.0D0 
TX(5) = (X(N,N1)+X(N,N5))/2.0D0 
TY(5) = (Y(N,N1)+Y(N,N5))/2.0D0 
TZ(5) = (Z(N,N1)+Z(N,N5))/2.0D0 
TX(6) = (X(N,N1)}+X(N,N2)+X(N,N5)+X(N,N6))/4.0D0 
TY(6) = (Y(N,N1)+Y(N,N2)+Y(N,N5)+Y(N,N6))/4.0D0 
TZ(6) = (Z(N,N1}+-Z(N,N2)+Z(N,N5)+Z(N,N6))/4.0D0 
TX(7) = (X(N,N1)+X(N,N2)+X(N,N3)+X(N,N4)+ 

& X(N,N5)+X(N,N6)+X(N,N7)+X(N,N8))/8.0D0 
TY(7) = (Y(N,N1)+Y(N,N2)+Y(N,N3)+Y(N,N4)+ 

& Y(N,N5)+Y(N,N6)+¥Y(N,N7)+Y¥(N,N8))/8.0D0 
TZ(7) = (Z(N,N1)+Z(N,N2)+Z(N,N3)+Z(N,N4)+ 

& Z(N,N5)+Z(N,N6)+Z(N,N7)+Z(N,N8))/8.0D0 
TX(8) = (X(N,N1)+X(N,N4)+X(N,N5)+X(N,N8))/4.0D0 
TY(8) = (Y(N,N1)+Y(N,N4)+Y(N,N5)+Y(N,N8))/4.0D0 
TZ(8) = (Z(N,N1)+Z(N,N4)+Z(N,N5)+Z(N,N8))/4.0D0 

ENDIF 

Now Call Subroutine TETRA, which actually computes the 

volume of the element or sub-element by Computing and 

summing the volumes of the five tetrahedrons which Compose 

it. 

a
a
n
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CALL TETRA(TX, TY, TZ, VOL) 
V(NN) = VOL 

10 CONTINUE 
V(1) = V(2)+V(3)+V(4)4+V(5)+V(6}-V(7)+V(8)+V(9) 

GAMMA\(N), WN(N), and QQ(N) for element N. 
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CALL DENSITY(N, V, T, P, MC, DENSE) 
RHO(N) = DENSE 
CALL CPCVAO(N, V, T, MC, CPCV, GAMMART) 
GAMMA\(N) = CPCV 
WN(N) = OMEGA/DSQRT(GAMMART) 
CALL HEAT(N, A, V, Q, MC, QHEAT) 
QQ(N) = QHEAT 

Finally, Compute the node-volume-weighted values of RHO(N), 
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Return to Calling routine. 

RETURN 
END 

ecececcececcccceccececcccececcceccecececeeeccecececccececececececceeecececcceccececccecce 

c 

c 

c 

SUBROUTINE TETRA 
Cc 

c 

c 

ceccececec\ececcceccecccecccecceccecceccccecececece/eccececcecececcececceccccecccecceccccce 
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4 
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This subroutine Computes the volume of a six-sided 

solid based on knowledge of the global Coordinants of 

its eight Corners. It accomplishes this by finding the 

volume of the five tetrahedrons which Compose it. 
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ececccececcececcececceccececececececcecceccecccceccccecceceececececeeccecccceceeccecccece 

c 

a 
Oo 

0 
0 

SUBROUTINE TETRA(TX, TY, TZ, VOL) 

Dimension veCtors and declare double precision for all real 

variables. 

INTEGER 

Initialize the volume to zero. 

VOL = 0.0D0 

Loop through the five tetrahedrons that make up th solid. 

DO 10 NT=1,5 

TF(NT.EQ.1) THEN 

[=7 

J=3 

K=6 

L=8 

ENDIF 

IF(NT.EQ.2) THEN 

I=4 

J=1 

K=3 

L=8 

ENDIF 

IF(NT.EQ.3) THEN 

{=2 

J=1 

K=6 

L=3 

ENDIF 

IF(NT.EQ.4) THEN 

I=5 

J=1 

NT, LI,K,L 
REAL*8 Al, B1, C1, VOL 
REAL*8 TX(8), TY(8), TZ(8) 

Cc 
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ENDIF 
Al = (TYGQ)-TY(L))*(TZ(K)-TZ(L))-(TY(K)-TY (L))*(TZ)-TZ(L)) 
Bi = (TX(K)-TX(L))*(TZQJ)-TZ(L))-(TX(J)-TX(L))*(TZ(K)-TZ(L)) 
Cl = (TX(J)-TX(L))*(TY(K)-TY(L))-(TX(K)-TX(L) "(TY (J)-TY(L)) 
VOL = VOL + A1*(TX()-TX(L)) + BIX(TYQ)-TY(L)) + C1*(TZ()-TZ(L)) 

10 CONTINUE 
VOL = VOL/6.0D0 

c Return to Calling routine. 

c c 
RETURN 
END 

ececeecececeeececececceceececceeecceeeeececeecececeeceeeececeeeeeeecceceececececc 

c c 
c SUBROUTINE DENSITY c 
c c 
ececeececeececcecececceccecececcceccccececcceccceccecceccceccececceccecececeecccce 

This subroutine Computes the volume-weighted mass density 

element n based on the mass densities at the eight Corners 

of the element and the relative volumes occupied by the 

eight Corner nodes. 

Ideal gas behavior is assumed. Thus, 

RHO = P/R*T, 

where R (= 53.3 ft-lbf/lbm-r) is the gas Constant of air. 

then RHO is in Ibm/ft‘3, P is in Ibf/ft*2, and T is in R. 
Pressure and temperature enter the subroutine with units 

psi and F, respectively. Thus Coefficients must be added 

convert these to lbf/ft*2 and R. 
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eccecececeeeceececcececeeeceecceeccecceececcecceeceecceceecececcececceecceececccce 
c c 

SUBROUTINE DENSITY, V, T, P, MC, RHO) 

Declare all real and complex variables as double preCision, 

and dimension the vectors and matrices. 
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INTEGER N, NN, NNN, NODE, MC(1700,8) 

REAL*8 R, C1, C2, RHO 
REAL*8 V(9), T(2400) 
COMPLEX*16 = P(2400) 

Establish values of Constants. 
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R = 53.3D0 
Cl = 144.0D0 
C2 = 460.0D0 

c c 
Initialize the mass density to zero. c 

c 
RHO = 0.0D0 

c c 

c Loop through the eight Corner nodes to Compute the volume- c 

c weighted mass density. c 
c c 

DO 10 NN =2, 9 
NNN =NN - 1 
NODE = MC(N,NNN) 

cc RHO = RHO + V(NN)*P(NODE)*C 1/(R*(T(NODE)+C2)) ce 

RHO = RHO + V(NN)*DREAL(P(NODE))*C 1/(R*(T(NODE)+C2)) 
10 CONTINUE 

c c 
c Divide by the total volume of the element. c 
c c 

RHO = RHO/V(1) 
c 

c Return to the Calling routine. c 

c c 

RETURN 
END 

ceececeeeeeeeceececeeeececeeceeecececceceececeeececececeececeecececeeeecccececce 
c c 

c SUBROUTINE CPCVAO c 
c c 
ceececcecececcecececececececcceccececcecccececceccececcecececcecececceecececceccccccec 

This subroutine Computes the volume-weighted specific 
heat ratio, GAMMA = Cp/Cv, and the speed of sound, 

Ao = SQRT(GAMMA*R*T), for air behaving as an ideal gas 

with variable specific heats. We use the Curve-fit 

equations from "Engineering Thermodynamics, an Intro- 

ductory Textbook (Second Edition),” by Jones and Hawkins 

John Wiley, p. 783). That is, Cp/R is assumed to have 

the form 

Cp/R = a+ bT + cT*2 + dT*3 + eT4, 

where the values of the Coefficients a, b, c, d and e 

depend on the temperature range. Then 

GAMMA = Cp/Cp = Cp/R / (CpiR - 1). 

Note that temperature is read in in F and so must be 

Converted to R in the routine. 
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SUBROUTINE CPCVAO\(N, V, T, MC, GAMMA, GAMMART) 

Declare all real variables as double precision, and dimension 

the vectors and matriCcs. 

INTEGER NN, NNN, NODE, MC(1700,8) 
REAL*8 GAMMA, GAMMAT, GAMMART, R, TR, A,B,c,D,E, CPR 
REAL*8 V(9), T(2400) 

Initialize the specific heat ratio GAMMA and the product 

GAMMAT = GAMMAFT to zero. Also set value of the gas Constant 
for air, R. 

GAMMA = 0.0D0 
GAMMAT = 0.0D0 
R=53.3D0 

Loop through the eight Corner nodes to Compute the volume- 

weighted specific heat ratio. 

DO 10 NN =2,9 
NNN = NN - 1 
NODE = MC(N.NNN) 

Establish the value of the Constants a,b,c,d,e depending on 

the temperature range. 

TR = T(NODE) + 460.0D0 
IF(TR.LE.1800.0D0) THEN 

A = 3.653D0 
B = - 0.7428D-03 
c= 1.017D-06 
D = - 0.3280D-09 
E = 0.02632D-12 

ELSE 
A = 3.045D0 
B = 0.7428D-03 
c= - 0.1506D-06 
D = 0.01466D-09 
E = - 5.426D-16 

ENDIF 
CPR = A+ B*TR +c*TR*TR + D*TR*TR*TR + E*TR*TR*TR*TR 
GAMMA = GAMMA + (CPR/(CPR - 1.0D0))*V(NN) 
GAMMAT = GAMMAT + (CPR/(CPR - 1.0D0))*TR*V(NN) 

10 CONTINUE 

Divide by the total volume of the element. 

GAMMA = GAMMA/V(1) 

GAMMART = 32.2D0*R*GAMMAT/V(1) 

Return to the Calling routine. 

RETURN 
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END 

ccceccececceccececcecceccceccecccccceccececceceeccececececececececcecececececcececee 

c c 
c SUBROUTINE HEAT c 
c c 

ceecececcececececccecccecececececececcecccccecececeecoceceeccecceccececececcececce. 

This subroutine Computes the volume-weighted value of the 

coefficient which represents the amplitude of the unsteady 

component of heat release in element N at angular frequency 

OMEGA. The quantity QHEAT = CJ*Q*A(OMEGA)*1.0D-06 is Com- 
puted, where CJ = 778.169 ft-lbf/btu, Q (btu/Ibm) is the 

heating value per unit mass of the fuel-air mixture, A is 

a angular frequency distribution funCtion which accounts 

for the distribution with frequency of the unsteady Compon- 

ent of heat release, and 1.0d-06 is the thermoacCoustic 

efficiency of the Combustion process. 
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/ecececccecececcececececececcceccccccececcececececccececceecccececececc/eccecececcecce 

c c 

SUBROUTINE HEATUN, A, V, Q, MC, QHEAT) 
c c 

c Declare all real and Complex variables as double preCision, c 

c and dimension the veCtors and matriCes. c 

c c 
INTEGER N, NN, NNN, NODE, MC(1700,8) 
REAL*8 QHEAT, CJ, A 
REAL*8 V(9) 
COMPLEX*16 = Q(2400) 

c 
c Initialize QHEAT to zero and establish the value of CJ. c 

c 
QHEAT = 0.0D0 
CJ = 778.169D0 

c Cc 

c Loop through the eight Corner nodes to Compute the volume- c 

c weighted value of QHEAT. c 
c c 

DO 10 NN = 2,9 
NNN =NN-1 
NODE = MC(N,NNN) 
QHEAT = QHEAT + V(NN)*CJ*Q(NODE)*A*1.0D-06 

10 CONTINUE 
Cc uv 

c Divide by the total volume of the element. c 

c c 

QHEAT = QHEAT/V(1) 
c 

c Return to the Calling routine. 

c c 
RETURN 
END 

c c 
ecececcceceeceecc\ecececcececcececcececececececcececececeecceecececececececceccececece 
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c c 
c SUBROUTINE INTER3 c 
c c 
cccecceceececceeceececeeceecceceeceeceecececeecee ~eececeecececcecceceeceeceecece 

This subroutine Computes the Jacobian matrix, its deter- 

minant, and its inverse for element N and gauss point K. 

It also Computes the Kth Component of the Coefficient 

matrix for element N. 

Subroutine INTER3 is a modification (by J. R. Mahan) of 

Subroutine INTER, written by N. E. Tira and documented 

in his M.S. Thesis, "Dynamic Simulation of Solar Cali- 

bration of the Total, Earth- Viewing Channel of the Earth 

Radiation Budget Experiment (ERBE)," Department of Mech- 

anical Engineering, VPI&SU, Blacksburg, VA, December, 1987. 
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c c 

SUBROUTINE INTER3(N,XLETA,ZETA.X, Y,Z,SX,SY,SZ,SXX,SYY,SZZ,SS,S) 

Declare all real variables as double precision, and dimension 

the veCtors and matrices. 
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INTEGER LJ, 0, JJ,N,K 
REAL*8 XI, ETA, ZETA, COEFF, DET 
REAL*8 X(1700,8), ¥(1700,8), Z(1700,8), SXX(8,8), 

SYY(8,8), SZZ(8,8), SS(8,8), S(8), SF(8), 
DSF(8,3), GINV(3,3), GJ(3,3), CF(3,3), 
SX(8,8), SY(8,8), SZ(8,8) Re

 
Re
 

& 

Compute the values of the interpolation functions Corresponding 

to the Current Gauss point. The interpolation functions are 

sometimes referred to as basis functions. 
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COEFF = 1.0D0/8.0D0 
SF(1) = COEFF*(1.0D0 - XI)*(1.0D0 - ETA)*(1.0D0 - ZETA) 
SF(2) = COEFF*(1.0D0 + XI)*(1.0D0 - ETA)*(1.0D0 - ZETA) 
SF(3) = COEFF*(1.0D0 + XI)*(1.0D0 + ETA)*(1.0D0 - ZETA) 
SF(4) = COEFF*(1.0D0 - XI)*(1.0D0 + ETA)*(1.0D0 - ZETA) 
SF(5) = COEFF*(1.0D0 - XI)*(1.0D0 - ETA)*(1.0D0 + ZETA) 
SF(6) = COEFF*(1.0D0 + XI)*(1.0D0 - ETA)*(1.0D0 + ZETA) 
SF(7) = COEFF*(1.0D0 + XI)*(1.0D0 + ETA)*(1.0D0 + ZETA) 
SF(8) = COEFF*(1.0D0 - XI)*(1.0D0 + ETA)*(1.0D0 + ZETA) 

Compute the values of the derivatives of the interpolation 

funCtions Corresponding to the Current Gauss point. 

(Perform partial differentiation of the above eight funCtions 

with respect to XI, ETA, and ZETA.) 
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DSF(1,1) = - COEFF*(1.0D0 - ETA)*(1.0D0 - ZETA) 
DSF(1,2) = - COEFF*(1.0D0 - XI)*(1.0D0 - ZETA) 
DSF(1,3) = - COEFF*(1.0D0 - XI)*(1.0D0 - ETA) 
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DSF(2,1) = + COEFF*(1.0D0 - ETA)*(1.0D0 - ZETA) 
DSF(2,2) = - CORFF*(1.0D0 + X1)*(1.0D0 - ZETA) 
DSF(2,3) = - COEFF*(1.0D0 + XI)*(1.0D0 - ETA) 

DSF(3,1) = + COEFF*(1.0D0 + ETA)*(1.0D0 - ZETA) 
DSF(3,2) = + COEFF*(1.0D0 + XI)*(1.0D0 - ZETA) 
DSF(3,3) = - COEFF*(1.0D0 + XI)*(1.0D0 + ETA) 

DSF(4,1) = - COEFF*(1.0D0 + ETA)*(1.0D0 - ZETA) 
DSF(4,2) = + COEFF*(1.0D0 - XI)*(1.0D0 - ZETA) 
DSF(4,3) = - COEFF*(1.0D0 - XI)*(1.0D0 + ETA) 

DSF(5,1) = - COEFF*(1.0D0 - ETA)*(1.0D0 + ZETA) 
DSF(5,2) = - COEFF*(1.0D0 - XI)*(1.0D0 + ZETA) 
DSF(5,3) = + COEFF*(1.0D0 - XI)*(1.0D0 - ETA) 

DSF(6,1) = + COEFF*(1.0D0 - ETA)*(1.0D0 + ZETA) 
DSF(6,2) = - COBFF*(1.0D0 + XI)*(1.0D0 + ZETA) 
DSF(6,3) = + COEFF*(1.0D0 + XI)*(1.0D0 - ETA) 

DSF(7,1) = + COEFF*(1.0D0 + ETA)*(1.0D0 + ZETA) 
DSF(7,2) = + COEFF*(1.0D0 + XI)*(1.0D0 + ZETA) 
DSF(7,3) = + COEFF*(1.0D0 + XD)*(1.0D0 + ETA) 

DSF(8,1) = - COBFF*(1.0D0 + ETA)*(1.0D0 + ZETA) 
DSF(8,2) = + COEFF*(1.0D0 - XI)*(1.0D0 + ZETA) 
DSF(8,3) = + COEFF*(1.0D0 - XI)*(1.0D0 + ETA) 

Initialize the Jacobian matrix to zero. 

DO 10 I= 1,3 

DO 10JJ=1,3 
GJ(I,JJ) = 0.0D0 

10 CONTINUE 

Compute the Jacobian matrix for the Current Gauss point. 

DO 20K = 1,8 
GJ(1,1) = GJ(1,1) + DSF(K,1)*X(N,K) 
GJ(1,2) = GJ(1,2) + DSF(K,1)*Y(N,K) 
GJ(1,3) = GJ(1,3) + DSF(K,1)*Z(N,K) 
GJ(2,1) = GJ(2,1) + DSF(K,2)*X(N,K) 
GJ(2,2) = GJ(2,2) + DSF(K,2)*Y(N,K) 
GJ(2,3) = GJ(2,3) + DSF(K,2)*Z(N,K) 
GJ(3,1) = GJ(3,1) + DSF(K,3)*X(N,K) 
GJ(3,2) = GJ(3,2) + DSF(K,3)*¥(N,K) 
GJ(3,3) = GJ(3,3) + DSF(K,3)*Z(N,K) 

20 CONTINUE 

Compute the determinant of the Jacobian matrix for the Current 
Gauss point. 

DET = GJ(1,1)*(GJ(2,2)*GI(3,3) - GI(2,3)*GI(3,2)) 
DET = DET - GJ(1,2)*(GJ@2,1)*GJG,3) - GJ(2,3)*GI(3,1)) 
DET = DET + GJ(1,3)*(GIJ(2,1)*GJ(3,2) - GI(2,2)*GJ(3,1)) 
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Compute the CofaCtor matrix of the Jacobian matrix in prep- 

aration for Computing the inverse of the Jacobian matrix. 

CF(1,1) = GJ(2,2)*GJ(3,3) - GJ(2,3)*GJ(3,2) 
CF(1,2) = G3(2,3)*GJ(3,1) - GI(2,1)*GJ(3,3) 
CF(1,3) = GJ(2,1)*GJ(3,2) - GI(2,2)*GJ(3,1) 
CF(2,1) = GJ(1,3)*GJ(3,2) - GI(1,3)*GJ(3,3) 
CF(2,2) = GJ(1,1)*GJ(3,3) - GI(1,3)*GJ(3,1) 
CF(2,3) = GJ(1,2)*GJ(3,1) - G3(1,1)*GI(3,2) 
CF(3,1) = GJ(1,2)*GJ(2,3) - GJ(1,3)*GJ(2,2) 
CF(3,2) = GJ(1,3)*GJ(2,1) - G(1,1)*GJ(2,3) 
CF(3,3) = GJ(1,1)*GJ(2,2) - GJ(1,2)*GJ(2,1) 

Compute the inverse of the Jacobian matrix for the Current 

Gauss point, by using the CofaCtor matrix and determinant. 

GINV(1,1) = CF(1,1)/DET 
GINV(1,2) = CF(2,1)/DET 
GINV(1,3) = CF(3,1)/DET 
GINV(2,1) = CF(1,2)/DET 
GINV(2,2) = CF(2,2)/DET 
GINV(2,3) = CF(3,2)/DET 
GINV(3,1) = CF(1,3)/DET 
GINV(3,2) = CF(2,3)/DET 
GINV(3,3) = CF(3,3)/DET 

Compute the Coefficient matrix for the Current element, N, 

Corresponding to the Current Gauss point, K. 

DO 40J=1,8 
DO 301=1,8 

SX(LJ) = GINV(1,1)*(SF(D*DSF(J,1)+SF(U)*DSFG, 1)) 
&  +GINV(1,2)*(SF()*DSFU,2)+SF(J)*DSF(,2)) 
&  +GINV(1,3)*(SF()*DSFU,3)+SF(J)*DSF(,3)) 
SX(LJ) = SX(J)*DET 

SY(LJ) = GINV(2,1)*(SF(D*DSF(J,1)4+SF(J)*DSF(,1)) 
&  +GINV(2,2)*(SF()*DSF(J,2)+SF()*DSF(,2)) 
& + GINV(2,3)*(SF(I)*DSF(,3)+SF(J)*DSF(L,3)) 
SY(LJ) = SY(LJ)*DET 

SZ(1,J) = GINV(,1)*(SF()*DSF(J,1)+SF(J)*DSF(,1)) 
& + GINV(3,2)*(SF()*DSF(,2)+SF(J)*DSF(,2)) 
&  +GINV(3,3)*(SF()*DSF(J,3)+SF(J)*DSFd,3)) 
SZ(L,J) = SZ(J)*DET 

SXX(LJ) = GINV(1,1)*DSF(,1) 
&  +GINV(1,2)*DSF(,2) 
&  +GINV(1,3)*DSF(,3) 
SXX(LJ) = SXX(LJ)*(GINV(1,1)*DSF(,1) 
&  +GINV(1,2)*DSF(J,2) 
&  +GINV(1,3)*DSF(J,3)) 
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SXX(LJ) = SXX(,J)*DET 

SYY(LJ) = GINV(2,1)*DSF(L,1) 
&  +GINV(2,2)*DSF(,2) 
&  +GINV(2,3)*DSFd,3) 
SYY(LJ) = SYY(,J)*(GINV(2,1)*DSF(J,1) 
&  +GINV(2,2)*DSFUJ,2) 
&  +GINV(2,3)*DSFU,3)) 
SYY(LJ) = SYY(,J)*DET 

SZZ(I,J) = GINV(3,1)*DSF(,1) 
&  +GINV(3,2)*DSF(L,2) 
&  +GINV(3,3)*DSF(L3) 
SZZ(LJ) = SZZ(LJ)*(GINV(G3,1)*DSFU,1) 
&  +GINV(3,2)*DSFU,2) 
&  +GINV(3,3)*DSF(,3)) 
SZZ(LJ) = SZZ(1,J)*DET 

c c 
SS(,J) = SF(D*SF(J)*DET 

c c 
30 CONTINUE 

SQ) = SFQ)*DET 
40 CONTINUE 

c 

c Return to the Calling routine. 

c c 
RETURN 
END 

eccecececcecececceccecceecececcecececececeececceecccceccecececcccccececececececceccecee 

c c 
c SUBROUTINE SOLVE c 
c c 
eccceccccecececccceccececccecceccceccececececccececeececcceccccceccececcccececececcc 

This subroutine solves a banded symmetric system of 
equations. It is based on subroutine SOLVE reported 

in “An Introduction to the Finite Element Method" by 

J.N. Reddy (Mcgraw-Hill, 1984/93), p. 423/634. The 

solution is returned in vector GF. 
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c c 

SUBROUTINE SOLVE(NEQ, NHBW, GK, GF) 

Declare Complex variables as double precision, 

and dimension the vectors and matrices. 
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INTEGER MEQ, NEQ, NPIV, NPIVOT, NHBW, LSTSUB, 
& NROW, NCOL, ICOL, JCOL, IJK, JKI 

COMPLEX*16 = GK(2400,400), GF(2400), FACTOR 

Perform Gaussian elimination and back-substitution to 

obtain the solution. c 
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MEQ = NEQ - 1 
DO 30 NPIV = 1, MEQ 
NPIVOT = NPIV + 1 
LSTSUB = NPIV + NHBW - 1 
IF(LSTSUB.GT.NEQ) LSTSUB = NEQ 
DO 20 NROW = NPIVOT, LSTSUB 

Invert rows and columns for row faCtor. 

NCOL = NROW - NPIV +1 
FACTOR = GK(NPIV,NCOL)/GK(NPIV,1) 
DO 10 NCOL = NROW, LSTSUB 
ICOL = NCOL - NROW + 1 
JCOL = NCOL - NPIV + 1 
GK(NROW,ICOL) = GK(NROW ICOL) - FACTOR*GK(NPIV,JCOL) 

10 CONTINUE 
GF(NROW) = GF(NROW) - FACTOR*GF(NPIV) 

20 CONTINUE 
30 CONTINUE 

Back-substitution. 

DO 70 IJK = 2, NEQ 
NPIV = NEQ - IJK +2 
GF(NPIV) = GF(NPIV)/GK(NPIV, 1) 
LSTSUB = NPIV - NHBW +1 
IF(LSTSUB.LT.1) LSTSUB = 1 
NPIVOT = NPIV - 1 
DO 60 JKI = LSTSUB, NPIVOT 
NROW = NPIVOT - JKI + LSTSUB 
NCOL = NPIV - NROW + 1 
FACTOR = GK(NROW,NCOL) 
GF(NROW) = GF(NROW) - FACTOR*GF(NPIV) 

60 CONTINUE 
70 CONTINUE 
GF(1) = GF(1)/GK(1,1) 

Return to the Calling routine. 

RETURN 

END 
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