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Abstract

REDUCED RANK ADAPTIVE FILTERING APPLIED TO INTERFERENCE

MITIGATION IN WIDEBAND CDMA SYSTEMS

By

Seema Sud

The research presented in this dissertation is on the development and application

of advanced reduced rank adaptive signal processing techniques for high data rate

wireless code division multiple access (CDMA) communications systems. This is an

important area of research in the field of wireless communications. Current systems

are moving towards the use of multiple simultaneous users in a given channel to

increase system capacity as well as spatial and/or temporal diversity for improved

performance in the presence of multipath and fading channels. Furthermore, to ac-

commodate the demand for higher data rates, fast signal processing algorithms are

required, which often translate into blind signal detection and estimation and the

desire for optimal, low complexity detection techniques. The research presented here

shows how minimum mean square error (MMSE) receivers implemented via the mul-

tistage Wiener filter (MWF) can be employed at the receiving end of a CDMA system

to perform multiuser detection (MUD) or interference suppression (IS) with no loss

in performance and significant signal subspace compression better than any previous

reduced rank techniques have shown. This is important for optimizing performance

because it implies a reduction in the number of required samples, so it lessens the

requirement that the channel be stationary for a time duration long enough to obtain
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enough samples for an accurate MMSE estimate. The structure of these receivers is

derived for synchronous and asynchronous systems for a multipath environment, and

then it is shown that implementation of the receiver in a reduced rank subspace results

in no loss in performance over full rank methods. It is also shown in some instances

that reduced rank exceeds full rank performance. Multiuser detectors are also studied,

and the optimal reduced rank detector is shown to be equivalent to a bank of parallel

single user detectors performing interference suppression (IS). The performance as a

function of rank for parallel and joint multiuser detectors are compared. The research

is then extended to include joint space-code (i.e. a joint multiuser detector) and joint

space-time processing algorithms which employ receiver diversity for low complexity

diversity gain. Non-linear techniques, namely serial interference cancellation (SIC)

and parallel interference cancellation (PIC), will also be studied. The conventional

matched filter correlator will be replaced by the MWF, thereby incorporating IS at

each stage of the interference canceller for improved performance. A closed form ex-

pression is derived for the probability of error, and performance gains are evaluated.

It will be further shown how the receiver structure can be extended when space-time

codes are employed at the transmitter for additional diversity gain with minimal im-

pact on complexity. The MMSE solution is derived and implemented via the MWF

with some examples. It is believed that these new techniques will have a significant

impact on the design of fourth generation (4G) and beyond cellular CDMA systems.
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Chapter 1

Introduction

The second generation of wireless cellular communications systems, e.g. IS-95 in the

United States, uses code division multiple access (CDMA) to allow multiple users to

share the same bandwidth. CDMA enables an increase in system capacity over other

multiple access techniques such as time division multiple access (TDMA) or frequency

division multiple access (FDMA) ([63] and [96]), by as much as a factor of four or

more. CDMA also offers other advantages, making it the preferred multiple access

(MA) technique for future cellular systems. For instance, the impact of frequency

selective multipath fading can be greatly reduced, since the CDMA spread spectrum

(SS) signal is spread over a large bandwidth, assuming the bandwidth is larger than

the coherence length of the channel [68]. CDMA systems have a soft capacity limit,

unlike TDMA and FDMA. This means that the number of users may be increased

without limit, and the resulting performance will begin to degrade linearly as the

noise floor increases [68].

Designers of such emerging wireless communications systems must contend with a

significant amount of interference. This interference arises from the very nature of the

system, which must often accommodate multiple users transmitting simultaneously

1
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through a common physical channel. The interference could also arise from multiple

users sharing a common bandwidth for different services. Interference in such systems

arises because of the non-orthogonal multiplexing of signals that results from the

multipath induced by the channel, producing intersymbol interference (ISI). This

type of interference occurs in cellular environments due to the reflections of signals

off local surroundings, such as buildings, cars, terrain, trees, etc. Systems such as IS-

95 employ traditional methods for combating the problem of multipath interference,

namely the rake receiver developed by Price and Green [64]. While successful in

mitigating multipath, this technique fails in the context of a highly loaded CDMA

system. This occurs because the rake receiver treats the interfering users as noise

and does not attempt to mitigate the induced interference. For the third generation,

wireless systems, i.e. CDMA2000 (United States) and WCDMA (Europe and Asia)

because of the high demand for access, and the need for high reliability and high

throughput, more robust interference mitigation techniques are required.

The study of interference suppression techniques has been an active area of re-

search for the past few years and will continue to grow in preparation for third gen-

eration wireless communications systems and beyond. Several such techniques exist,

some requiring decision directed training to adapt, others requiring fewer sample sup-

port than the optimal full rank minimum mean square error (MMSE) method. The

most recent research in interference suppression has focused on data aided or blind

MMSE receivers, which are suboptimal in multipath channels. The results presented

in this dissertation differ from those in [71], which considers an MMSE/rake solu-

tion that incorporates multipath but operates in a full rank environment. In [85], a
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spatial domain rake receiver, operating in a full-rank space, is used to combat fre-

quency selective fading while simultaneously realizing path diversity gain. In [32], a

reduced rank asynchronous CDMA system is considered but without the presence of

multipath. In [49], a cyclically shifted filter bank (CSFB) of lower complexity than

a full rank MMSE filter is presented. It is shown that the CSFB performs better

than the conventional matched filter (MF), although it is suboptimal compared to

the MMSE detector. Finally, [35] discusses the reduced rank multistage Wiener filter

for suppressing interference induced in asynchronous, direct sequence (DS) CDMA

systems but does not include any additional processing to combat multipath.

Furthermore, since many systems operate under time-varying conditions, due to

time-varying channel characteristics and user mobility, these techniques must be adap-

tive [34]. Current work in the field of adaptive interference suppression for CDMA sys-

tems is concerned with optimizing performance in time-varying, fast fading, multipath

channels. A blind multiuser detector which converges to the MMSE detector with no

more knowledge than the traditional single user detector is presented in [33]. A chip-

level MMSE solution is shown to perform better than MMSE and the rake receiver

for combating multipath on the forward link in [7], [42],and [105]. A two-dimensional

angle of arrival estimator that could be extended to a two-dimensional rake receiver

for joint time/space processing of the received signal is examined in [28]. Another

joint adaptive MMSE/rake receiver is described in [71]. Joint space-time code diver-

sity is also being investigated, e.g. [55], [88], and [89]. A low complexity MMSE/rake

receiver, which performs optimally in the presence of multipath, and low complexity

joint space-time coding techniques will be presented in this dissertation. The results

are shown to apply for both the forward, base station (BS) to mobile, and reverse,
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mobile to base station, links of a CDMA system, and can thus be utilized for sin-

gle user (SU) detection or multiuser detection (MUD). These techniques all prove

promising, but the research in this field is ongoing.

All of the techniques described above apply linear methods for interference sup-

pression. Clearly, if the received signal is distorted by non-linearities, this is a sub-

optimal solution. However, extension to adaptive non-linear algorithms is still in the

early stages of investigation. Two nonlinear receivers are serial interference cancella-

tion (SIC) and parallel interference cancellation (PIC). However, decoding schemes

relying on MMSE are far too complex for such systems. In this dissertation, a SIC

and PIC employing a low complexity MMSE detector in place of the conventional

matched filter detector are analyzed.

A novel diversity scheme known as space-time coding has been developed in recent

years. This scheme improves performance in the presence of interference and fading

by employing multiple antennas at the transmitter using a coding scheme which

transmits the coded symbols on spatially separated antennas (see e.g. [1], [55], [86],

[88], [89]). In this dissertation, the study of reduced rank techniques in the context

of space-time coded systems is also performed.

1.1 Overview of Current and Next Generation CDMA
Systems

Signal processing algorithms for CDMA systems are presented in this dissertation. In

this section, an overview of these systems is presented and for brevity, attention is

restricted to the second generation (2G) and third generation (3G) systems in the

United States and Europe, to be deployed in the timeframe 2002-2004, although the
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algorithms described herein are applicable and extendable to other systems.

Table 1.1 shows a comparison between the major forward and reverse traffic chan-

nel parameters for the current (2G) CDMA system, known as IS-95 in the United

States. Note that in the forward link, where data is transmitted synchronously,

Hadamard codes, to be described later, are used to distinguish users. This is pos-

sible because these codes have the desirable property that each code is orthogonal

to every other code in the set. In the reverse link, however, where users are asyn-

chronous, pseudo-random (PN) codes are used to distinguish users. PN codes are

used because Hadamard codes have poor auto-correlation and cross-correlation prop-

erties. PN codes have good auto-correlation properties, but poor cross-correlation

properties. Thus, while they will perform better in asynchronous transmission, ca-

pacity of the system will still be limited by the multiuser interference. For next gener-

ation systems, codes with good orthogonality, auto-correlation, and cross-correlation

properties are desirable. In this dissertation, a set of codes called Gold codes will be

shown to have all these properties and will be shown to perform well in the multiuser

CDMA environment in conjunction with the new interference mitigation techniques

to be presented.

In CDMA systems, traffic channels are used to send speech data via multiple chan-

nels separated in frequency. A good speech link must have bit error rates (BERs)

prior to digital-to-analog (D/A) conversion of about 10−3. Throughout this disserta-

tion, performance results will be analyzed to determine the conditions under which

this error rate is achieved. As shown in Table 1.1, coding, interleaving, and sym-

bol repetition are common techniques employed to improve BER. When necessary,

these techniques will be discussed. Spreading code lengths in the same range as those
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 Coding Convolutional,
Rate 1/2

Hadamard Codes        Distinguish users 

Long Pseudo-random
(PN) Codes

Spreading gain

Modulation Scheme Quadrature Phase
Shift Keying (QPSK)

Convolutional,
Rate 1/3

Forward Link Reverse Link

Provide modulation 

Distinguish users 

Offset Quadrature
Phase Shift Keying
(O-QPSK)

Typical PN
chips/symbol

42.6764

Table 1.1: Second Generation (2G) CDMA System (IS-95) Forward and Reverse Link
Traffic Channel Comparison

shown for the current system are used in simulations.

Table 1.2 shows the evolution of the 2G systems to the 3G systems that have been

proposed to satisfy the International Mobile Telecommunications (IMT) year 2000 re-

quirements as presented by the International Telecommunications Union (ITU) [17]. The

reason for the evolution of 3G systems is to meet the demand on mobile wireless com-

munications systems to increase user accessibility and data access. Another vision is

to enable the adaptability of handsets that can support global roaming and multiple

air interface environments. Note the requirement for advanced signal processing tech-

niques for 3G systems (shown in the shaded region) due to the requirements for higher

capacity and for the support of multiple services in the same frequency band. Ad-

dressing this requirement will be the focus of the dissertation. Applications of 3G
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systems include high speed and high quality voice services (e.g. CD quality), inter-

active imaging and video, video conferencing, data transmission, internet browsing

capability, and geo-location.

Higher Data Rates 
with High Spectrum Efficiency

Advanced Networks

Advanced Antennas

Picocellular
Technology

Wireless Intelligent
Network

Analog Cellular
Systems

Macrocellular
Systems

Integrated Voice/Data 

Multimedia Services

Advanced Wireless
Telephone Services

Wireless Data 
Services

First Generation Second Generation Third Generation

          Year 2000+       1990s

W-CDMA
cdma2000

Analog AMPS GSM
IS-95(cdmaOne)

    1980s 

Emergency Location

Advanced Coding & Signal
Processing Techniques

Mobile Telephone
Service

AMPS:  Advanced Mobile Phone System
GSM:  Global System for Mobile Communications
IS-95 (cdmaOne):  Interim standard for U.S. CDMA systems
W-CDMA:  Wideband CDMA; third generation CDMA standard in Europe
cdma2000:  Third generation CDMA system in the U.S.

Digital Cellular
Systems

Table 1.2: Global Wireless and Network Services Evolution

A summary of the general differences between the 2G and 3G system services

and parameters is shown in Table 1.3 [17]. The main requirement difference between

these systems that fuels the research presented here is the requirement for higher data

rates, which in turn places more stringent requirements on efficient signal processing

algorithms with reliable performance in real-time applications.
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2G System 3G System

Designed for Voice services

Bit
Rate

16 kbps 

Digital
Technology

For modulation, speech,
channel coding, control
channels and data channels

Software radio, high
order modulation, and
improved channel coding

Environments Optimized for specific 
(indoor, outdoor) environment

Multiple environments

Frequency
Bands

800 & 900 MHz; 1.5, 1.8,
& 1.9 GHz

Data Services Up to 64 kbps Up to 144 kbps outdoor and
2 Mbps indoor

Multimedia services

Roaming Generally limited to
specific regions

Global roaming due to global
frequency coordination,
availability of global satellite
coverage

High quality voice and
internet/intranet services

144 kbps (outdoor) and 2
Mbps (indoor) 

Use of common global
frequency band (2 GHz)

Table 1.3: Second Generation (2G) vs. Third Generation (3G) Services

A summary of the main differences between the North American 2G and 3G

systems is shown in Table 1.4 ([16], [17], and [90]). Note that the chip rate is now up

to 12 times faster, but the rate of power control is the same. Thus, for an increase in

capacity, the interference suppression will need to be more reliable. A summary of the

main features of the wideband CDMA UMTS (Universal Mobile Telephone System)

Terrestrial Radio Access (UTRA) system in Europe versus those of CDMA2000 in

the United States is shown in Table 1.5. The asynchronism in the European system

brings forth the requirement for better interference suppression (IS) mechanisms since

this results in non-orthogonal multiplexing. In CDMA2000, IS should be used with

fast power control for suppression of intracell/intercell interference.



9

cdma2000
   (3G)

 Chip Rate (Mcps) 1.2288 F x 1.2288
F =1, 3, 6, 9, 12

 Carrier Spacing (MHz) 1.25      1.25, 5, 10, 15, 20

 Frame Length (ms)

       

20 5, 20

 Inter BS Synchronization Synchronous Synchronous

Coherent Detection RL: pilot symbols
multiplexed with
power control bits
FL: common 
pilotchannel and 
auxiliary pilot channel

cdmaOne
   (2G)

FL: common
pilot channel 

 Power Control Fast on RL (800 Hz),
slow on FL

Fast (800 Hz)

RL: no pilot 
channel

cdmaOne:  Second generation (2G) CDMA system in the U.S.
cdma2000:  Third generation (3G) CDMA system in the U.S.

F = Spreading code factor
BS = Base station
RL = Reverse link
FL = Forward link

Table 1.4: North American Second Generation (2G) vs. Third Generation (3G)
Systems

1.2 Conventional Detection of CDMA Signals

One popular modern detection technique is the rake receiver ([44] and [64]). The

idea behind the rake is that multipath components that are separated by delays

greater than 1/W , where W is the correlation bandwidth of the incoming signal,

can be resolved and are delayed and summed appropriately at its output. The gain

obtained at the output is known as the rake diversity gain. The rake receiver performs

well provided the number of interfering users is small. Thus, this type of detection

scheme alone will result in an interference limited system and is not suitable for future
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W-CDMA cdma2000
(Europe/Japan)    (U.S.)

 Chip Rate (Mcps) 1.024*/3.84/8.192/16.384 F x 1.2288

* Japan only

F = 1, 3, 6, 9, 12

 Carrier Spacing (MHz) 1.25*, 5, 10, 20               1.25, 5, 10, 15, 20

 Frame Length (ms)        10 5, 20

 Inter BS Synchronization Asynchronous; Synchronous
Could be synchronous

 Power Control Fast (1500 Hz) Fast (800 Hz)

 Coherent Detection User dedicated pilot RL: pilot symbols
(FL and RL), and multiplexed with

power control bits common pilot in FL
FL: common 
pilot channel and
 auxiliary pilot channel

W-CDMA:  Wideband CDMA; third generation CDMA standard in Europe
cdma2000:  Third generation CDMA system in the U.S.

F = Length of spreading code
BS = Base station
RL = Reverse link
FL = Forward link

Table 1.5: North American vs. European Third Generation (3G) Systems

generation systems.

Conventional detection techniques for CDMA signals also include interference re-

jection methods. For example, on the forward link in IS-95, long pseudo-random

(PN) codes with different phase offsets are used by different base stations to help

the mobile handset reject interference from other base stations [44]. Furthermore, on

the reverse link, different mobile users are distinguished by different phases of a 42

stage long PN code. This is considered a long code because at the chip rate of 1.2288

Mcps, one period of the sequence lasts nearly six weeks. As mentioned before, these

rejection techniques will have limitations because the cross-correlation peaks of PN
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codes can be high.

1.3 Dissertation Overview

Throughout this dissertation, attention is restricted to binary data so that the bits

are taken from the binary alphabet (−1, +1). Thus, a system employing binary

phase shift keying (BPSK) is assumed. Extending the work to quadrature phase

shift keying (QPSK) and other modulation schemes is left for future research. Mod-

ulation is ignored for simplicity and baseband equivalent representations are used. In

Chapter 2, the model of the CDMA system to be used throughout the dissertation

is described. The optimal receiver is derived for the case of the the additive white

Gaussian noise (AWGN) channel. It is shown that the optimal receiver is the min-

imum mean square error (MMSE) receiver, which is implemented by the classical

Wiener filter. The analytical model (AM) and Monte Carlo (MC) method to be used

in validating the theory are then briefly described. In Chapter 3, the eigenvector-

based reduced rank signal processing algorithms, namely principal components (PC)

and the cross-spectral (CS) method, are described. The reduced rank multistage

Wiener filter (MWF) that has been shown in many different applications to meet or

exceed the performance of the classical Wiener filter at a significantly lower rank is

introduced. Structures for further improving the efficiency of MWF implementation

are also provided; specifically, the correlation subtraction architecture (CSA) of the

MWF is presented.

In Chapter 4, two reduced rank MMSE receivers implemented by the MWF are de-

rived to combat interference and the multipath channel. The first is the MMSE/rake
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receiver which optimally combines the multipath. The second is a suboptimal struc-

ture that employs an MMSE receiver at each rake finger to suppress interference

followed by multipath combining. It will be shown that this solution is slightly sub-

optimal to the full rank solution, but can be implemented as a “plug-and-play” fix to

the rake receiver in existing systems. Monte Carlo and analytical simulation results

will be provided and compared to show the validity of the algorithms and the MC

model for future simulations.

In Chapter 5, the multiuser detector is derived. It is shown that this detector

can be implemented in matrix form or via a bank of parallel detectors without loss in

performance. The tremendous complexity reduction using the CSA-MWF is demon-

strated for the parallel implementation. The matrix implementation, equivalent to

a joint code-time detection scheme, is analyzed in Chapter 6. Performance using a

joint space-time detection scheme, which employs multiple receiver antennas is also

explored. A new spreading code required by this structure will be derived. Chapter 7

extends use of the MWF to non-linear interference cancellation. Probability of error

(Pe) is derived for the SIC and PIC. A simple two user example is used to compare

the Pe to the MC model, and then MC results are shown and analyzed. Chapter 8

extends the joint detection schemes to space-time codes in which symbols are coded

and then transmitted over multiple antennas and multiple time slots. In this chapter,

systems with multiple transmit and receive antennas are considered.



Chapter 2

Code Division Multiple Access
(CDMA) System Model

In this chapter, the model of the code division multiple access (CDMA) system that

will be used throughout the dissertation is described. An overall block diagram of

the system architecture is presented first. The transmitter, channel, and optimum

receiver are then described in detail. In the last section, a description of the simulation

models that will be used is provided.

2.1 System and Signal Structure

A CDMA system with K users is assumed. The diagram in Figure 2.1 illustrates the

overall physical layer model of the communication system. This model is similar

to the architecture for next generation CDMA systems proposed in [103]. The bi-

nary data, bk for k = 1, 2, ..., K can be encoded using a space-time code and spread

via a spreading code (or chip sequence) sk. The encoded data is then transmitted

using Lt transmitter (Tx.) antenna elements. This part of the system will not be

discussed until Chapter 8. The signals propagate through the atmospheric channel

and are captured by multiple receiver (Rx.) antennas. Multiuser detection (MUD),

13
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or interference suppression (IS), is performed on the received data via the multistage

Wiener filter (MWF) followed by spatial or temporal diversity processing, and then

hard decisions are made to obtain the bit estimates, b̃k. The topics of MUD and

IS using the MWF and space-time processing/coding are discussed separately in this

dissertation. In [103], the proposed system also includes a Turbo encoder at the

front end of the transmitter and a Turbo decoder at the back end of the receiver for

robustness in the presence of deep fading multipath channels. See [2] and [3] for a

discussion of Turbo codes.

The notation used to describe the signal structure is similar to that used by Honig,

et al., in [32] and [34]. User k transmits a baseband signal given by

xk(t) =
∑

i

Akbk(i)sk(t− iT − τk), (2.1)

where bk(i) is the symbol transmitted by user k at time i, sk(t) is the spreading code

associated with user k, and Ak and τk are the amplitude and delay, respectively. Bi-

nary signaling is assumed, so that the symbols bk(i) ∈ (-1,+1). The spreading se-

quence can be written as

sk(t) =
N−1
∑

i=1

ak[i]Ψ(t− iTc), (2.2)

where ak[i] ∈ ( +1√
N

, −1√
N

) is a normalization factor for the spreading code required to

maintain unity energy in the spread bit. The processing gain of the CDMA system,

or equivalently the bandwidth spreading factor, is given by N = T
Tc

. Here, Tc is

the chip period, and T is the symbol period. The spreading code is assumed to be

a square wave sequence with no pulse shaping, i.e. direct sequence (DS) CDMA,

so that the chip sequence Ψ(t) is a constant. Short codes which span the duration
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of a bit interval are assumed, so that joint multiuser detection (MUD) can be per-

formed [46]. Future systems based on short codes have been proposed for personal

communications services (PCS) because of their suitability for MUD ([48] and [57]).

Define the sampled transmitted signal y(i) as the N-vector composed of asyn-

chronous combinations of the data for each user multiplied with its respective spread-

ing sequence. Assume also, without loss of generality, that user one is the desired

user, and that the receiver has timing information to synchronize to its spreading

code. The transmitted signal may then be written in the form

y(i) = b1(i)s1 +
K

∑

k=2

Ak[bk(i)s+
k + bk(i− 1)s−k ]. (2.3)

Here, s1 is the spreading sequence of user one, and s+
k and s−k are the N × 1 vectors

of spreading codes associated with each of the K − 1 interfering users. Due to the

asynchronous transmission, as is inherent to the reverse link of a cellular system, at

time i both the current bit of user k, denoted bk(i), and the previous bit of user

k, denoted bk(i − 1), multiplied with the respective portions of the spreading code,

interfere with the current bit of user one. This is depicted pictorially in Figure 2.2.

2.2 Channel Models

2.2.1 Additive White Gaussian Noise (AWGN) Channel

In an additive white Gaussian noise (AWGN) channel, discrete noise samples denoted

by nk, are added to the transmitted signal, producing a received signal that is the sum

of the two. AWGN has the desirable property that noise samples are uncorrelated

from one time instance to the next; that is, the auto-correlation function of the noise

process is given by <τ = NO
2 δ(τ). Furthermore, the double-sided power spectral
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density (PSD), given by Sn(f) = NO
2 in units of Watts/Hz, is a constant at all

frequencies. Performance curves for most modulation schemes in the presence of

AWGN are readily available in the literature (e.g. [15], [75], and [101]). Attention is

restricted to zero mean AWGN processes.

When the channel is an AWGN channel, the sampled received signal is an N

vector containing samples at the output of a chip-matched filter at each symbol i,

represented by

r(i) = y(i) + n(i). (2.4)

Substituting Eq. (2.3) for y(i), one can write

r(i) = b1(i)s1 +
K

∑

k=2

Ak[bk(i)s+
k + bk(i− 1)s−k ] + n(i). (2.5)

To simplify the notation and to make the mathematical analysis easier, one can

rewrite Eq. (2.3) in matrix form as

y(i) = S+Ab(i) + S−Ab(i− 1), (2.6)

where S+ = (s+
1 s+

2 ... s+
K), S− = (s−1 s−2 ... s−K), A = diag(A1, A2, ..., AK), and

b(i) = (b1(i), b2(i), ..., bK(i))T . Here, S+ and S− are N ×K matrices, A is a K ×K

matrix in which the signal amplitudes are the diagonal components, and b(i) is a

K × 1 vector. Substituting for y using Eq. (2.6), one can rewrite the received signal

in Eq. (2.5) in matrix form as

r(i) = S+Ab(i) + S−Ab(i− 1) + n(i). (2.7)

2.2.2 Multipath Channel

Now consider the case of a multipath channel, also termed a frequency selective fading

channel, modelled in discrete time by an L-tap tapped-delay line whose coefficients
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are denoted h = [h1, h2, ..., hL]. The parameter L, when viewed in units of time,

is known as the delay spread of the channel and is typically on the order of 5 to 10

microseconds [78]. The received signal in a multipath channel can now be written as

r̂(i) = ŷ(i) + n(i), (2.8)

where ŷ = y ∗ h and ∗ denotes convolution [58]. Figure 2.3 shows the discrete-time

representation of the multipath channel model in which Tc is the chip period. The

parameters hl, for l = 1, 2, ..., L, are random variables whose amplitude is assumed to

be taken from a Rayleigh distributed probability density function (pdf), defined as

pR(α) =
α
σ2 e−α2/(2σ2), (2.9)

where α is the Rayleigh fading parameter [44] and σ is increased for successive hl. The

Rayleigh pdf is as shown in Figure 2.4. Substituting for y using Eq. (2.3), one can

write the received signal explicitly as

r̂(i) = b1(i)̂s1 +
K

∑

k=2

Ak[bk(i)̂s+
k + bk(i− 1)̂s−k ] + n(i), (2.10)

where (̂·) will be used to denote convolution of the operand (·) with the channel vector

h throughout the dissertation.

Using the matrix notation defined in Eq. (2.6), one can also write the received

signal in Eq. (2.10) in matrix form as

r̂(i) = Ŝ+Ab(i) + Ŝ−Ab(i− 1) + n(i). (2.11)

Note that the synchronous form is obtained by setting ŝ+
k = ŝk or setting Ŝ+ = Ŝ in

Eqs. (2.5)and (2.11), respectively (with ŝ−k = 0 and Ŝ− = 0), yielding

r̂(i) = ŜAb(i) + n(i). (2.12)

The AWGN form is obtained by further setting Ŝ = S or setting ŝk = sk.
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2.3 Optimum Receiver

For the single user detector, the goal is to extract the desired information, i.e., the

bits transmitted by user one (b1) while suppressing the interference represented by

the term in the summation of Eq. (2.3) or Eq. (2.10). Ideally, it would be desirable

to subtract out the interference term and then multiply by the spreading code of

user one, s1, to extract b1 from the received signal. This is not possible in practice

because the interference is unknown and embedded in the received signal, and the

channel will further distort the transmitted signal. Thus, attention is now focused

on optimum linear detection techniques. In this section, the optimum linear receiver,

in terms of minimum probability of bit error (Pe), is derived. It is shown that this

optimum receiver is the minimum mean squared error (MMSE) receiver which can

be implemented by the classical Wiener filter.

2.3.1 Maximum Likelihood (ML) Receiver

An optimum technique for estimating input sequences from a received signal that has

been corrupted by a dispersive channel and AWGN is maximum likelihood sequence

estimation (MLSE). In MLSE, the input sequence selected is that which maximizes

the probability density function of the received signal with respect to all possible

input sequences. MLSE is based on the Maximum Likelihood Ratio Test (MLRT)

where at some arbitrary time instant, the estimate of the transmitted bit, b̃, is chosen

to be that which maximizes Pr(r|b) where r denotes the received signal. In the case

of binary signalling, there are two hypotheses under which the received vector r is
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observed. These are

H0 : r = y + n (2.13)

H1 : r = −y + n (2.14)

where y represents the transmitted signal vector and n is the AWGN vector. Note

from Eq. (2.5) that under these conditions, y is simply s1 and n contains the in-

terference plus white noise terms. The noise is assumed AWGN for the purposes of

this derivation, so the multivariate Gaussian probability density function of r can be

easily obtained [61] and is given by

f(r|H0) =
1

(π)Ndet(Rn)
e[−(r−y)HRn

−1(r−y)] (2.15)

and

f(r|H1) =
1

(π)Ndet(Rn)
e[−(r+y)HRn

−1(r+y)], (2.16)

where Rn is the covariance matrix of the interference plus the noise [43] and (·)H

represents the Hermitian (complex conjugate transpose) operator. The likelihood

ratio test is then written as

Λ(r) =
f(r|H1)
f(r|H0)

=
e[−(r+y)HRn

−1(r+y)]

e[−(r−y)HRn
−1(r−y)]

. (2.17)

Using the monotonic property of the exponential function to take the natural loga-

rithm and cancelling common terms, one obtains the log-likelihood ratio, given by

ΛL(r) , ln[Λ(r)] = 2(yHRn
−1r + rHRn

−1y) (2.18)

which can be further simplified and written as

ΛL(r) = 4<e(yHRn
−1r), (2.19)
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where <e(·) denotes “real part of”. Thus, the MLRT becomes

<e(yHRn
−1r) ≷H1

H0
0. (2.20)

Note from Eq. (2.20) that the final test is based on the inner product of the received

vector r and the linear filter given by R−1
n s1 where y has been replaced with its

equivalent s1 for the problem under consideration. This is a test that maximizes the

output signal-to-interference plus noise ratio (SINR) [5].

In general, it can be shown that if the transmitted bits are equally likely, the

ML decoder is equivalent to a maximum a posteriori (MAP) decoder [98]. It can

further be shown, [78] and [98], that the MAP receiver is equivalent to a minimum

Pe receiver. Thus, the MLRT solution in (2.20) is the minimum probability of error

solution. In the next section, it is shown that the MMSE solution, which can be

implemented by the classical Wiener filter, gives the same result.

2.3.2 Minimum Mean Square Error (MMSE): The Wiener
Filter

For the MMSE receiver, the coefficient vector c is chosen to minimize the mean square

error (MSE) between the transmitted bit and its estimate, given by

MSE = E[|b1(i)− cHr(i)|2], (2.21)

where E[·] denotes the expected value operator. The bit estimate can be written

directly as

b̃1(i) = cHr(i). (2.22)

Solving Eq. (2.21) [34] yields

cMMSE = R−1p1, (2.23)
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where R is the well-known covariance matrix of the received signal, given by E[r(i)r(i)H ],

and has dimension N × N . The quantity p1 is given by r(i)b1(i) when the MMSE

receiver operates in training mode. When it operates in blind mode, in which case

the received bit b1(i) is unknown, p1 is given by s1, the spreading code of the de-

sired user. Throughout the dissertation, simulation results are shown for blind mode

only. The trend for future generation systems is to eliminate training requirements

as this reduces system throughput. However, pilot channels will be continuously

transmitted in near term future systems, so training data is available. With the

low complexity implementation provided by the MWF, throughput may not be an

issue. Performance in training mode will be significantly better than in blind mode.

The original Wiener filter structure is based on the problem of obtaining an N di-

mensional filter of coefficients wx to approximate a desired scalar signal d0(i) given an

observed vector x0(i) of dimension N by minimizing the mean square error [22]. This

is depicted pictorially in Figure 2.5. In other words, one chooses wx to minimize

MSEWF = E[|d0(i)−wx
Hx0(i)|2], (2.24)

in the same way as in Eq. (2.21) with the MMSE solution. Thus, the classical

Wiener filtering problem has the same solution in accordance with Eq. (2.23) for

the MMSE. As shown in [5], Eq. (2.23) also maximizes the output SINR, and is

therefore equivalent to the MLRT solution given in Eq. (2.20). Thus, both solutions

are equivalent to each other and also to the minimum probability of error solution. For

a detailed treatment of the Wiener filtering problem, see [30] and [92].
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2.3.3 Motivation for Reduced Rank Signal Processing

From Eq. (2.23), the MMSE solution, implemented by the Wiener filter, requires

inversion of an N ×N statistical covariance matrix R. Recall that N represents the

processing gain of the CDMA system. A rule of thumb known as the RMB Rule

(standing for Reed, Mallett, Brennan who initially discovered it) is that at least 2N

statistically independent samples of a Gaussian random process are required to come

within 3 dB of the optimal Wiener solution [69]. Also, the computational complexity

associated with the matrix inversions is on the order of N3 operations. Furthermore,

in a rapidly varying channel or signal environment [59], the covariance matrix must

also be updated rapidly, thereby increasing the computational burden. In some cases,

the hardware may not be able to perform the calculations required to keep up with

the rapidly varying environmental conditions or enough samples may not be available

to converge to the optimum Wiener solution. In the next chapter, attention is focused

on efficient methods of implementing the Wiener filter. Early reduced rank, subspace

based approaches such as principal components and cross-spectral method, [25] and

[97], have been presented to mitigate the aforementioned problems. It is shown that

the computational burden associated with the multistage Wiener filter is far less than

that of the other techniques and has the additional advantage that the reduced rank

is not dependent on the number of signals present in the system.

2.4 Simulation Models

For validation of the analysis, many of the numerical results presented in this dis-

sertation are based both on Monte Carlo (MC) methods and an analytical model

(AM). In this section it is described how these models are developed. Simulations
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are developed in MatLabr, and [50] and [66] are programming guides.

2.4.1 Monte Carlo Method and Bit Error Rate (BER)

Curves of Eb/N0 vs. bit error rate (BER) will be obtained by varying the Eb/N0 via

the variance of the noise samples n(i). The parameter Eb/N0 is a common figure

of merit in communications and denotes bit energy Eb divided by single-sided noise

PSD N0. It is equivalent to the signal-to-noise ratio (SNR) for BPSK if the data rate

is equal to the noise bandwidth. Assume a sampling rate of one sample per bit or

chip, so that Eb/N0 for BPSK is defined by

Eb/N0 = µ2/2σ2, (2.25)

where µ is the mean signal value at the receiver input, and σ2 is the variance of

the AWGN. Since the modulator produces output symbols ε (−1, +1), µ2 is always

one. Therefore, the Eb/N0 will be adjusted via the noise variance alone. The number

of users can be adjusted via the parameter K. It is also assumed that all the bits

and spreading codes are real, so that the received signal will also be real. Hadamard

codes or Gold codes, which are obtained by modulo two addition of PN codes, are

chosen for spreading.

Hadamard codes are orthogonal [44] to one another and are therefore well-behaved

in synchronous channels. Gold codes, first described in [18], have better cross-

correlation properties than the corresponding PN sequences from which they are

obtained [44] but are not strictly orthogonal. When important, a distinction will be

made as to which code is used. For simplicity, modulation is ignored and simulations

are performed using real, baseband data. For MMSE, Eq. (2.23) is used to compute

cMMSE which is then applied to Eq. (2.22) to compute the bit estimate. The method
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for obtaining the bit estimate for the MWF is described in the next chapter. Errors

will be counted to generate the BER.

2.4.2 Analytical Model and Probability of Error (Pe)

In the analytical model, curves of Eb/N0 vs. Pe are obtained by first computing

an estimate of the SINR, defined as the ratio of the signal power to the noise plus

interference power. The noise power for an AWGN process, PN , is the area under the

PSD curve. Since the mean of the process is assumed to be zero, the noise power is

simply equal to its variance, i.e. PN = σ2, and since the sampling rate is normalized

to one, the signal power is PS = Eb. Furthermore (see Figure 2.6), the noise variance

is σ2 = N0/2, which denotes the double-sided PSD. Thus, the SINR can be written

as

SINR =
Eb

σ2 =
Eb

N0/2
. (2.26)

The Pe using the Gaussian relation for BPSK is [65]

Pe = Q(
√

2Eb/N0). (2.27)

So, in terms of the SINR, the Pe becomes

Pe = Q(
√

SINR), (2.28)

where Q(·) is the Marcum Q function and is defined by [101]

Q(x) =
∫ ∞

x

1√
2π

e−t2/2dt. (2.29)

The general formulation of the analytical SINR for the full rank MMSE receiver

and the MWF can be expressed in terms of the covariance matrix R, the spreading

codes, sk, k = 1, 2, ..., K, and the weight vectors which are denoted cMMSE and cMWF ,
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respectively. The expression for cMMSE is given in Eq. (2.23), with R replaced by R̂

in multipath, and a detailed description on how to form cMWF from the orthogonal

decomposition of the MWF is provided in [21] and will be summarized in the following

chapter. The analytical covariance matrix in multipath, expanded in terms of the

received signal r̂(i) in Eq. (2.11), is given as

R̂ = E [̂r(i)r̂(i)H ] = ŜA2ŜH + σ2I (2.30)

for the synchronous case and

R̂ = E [̂r(i)r̂(i)H ] = Ŝ+A2Ŝ+H + Ŝ−A2Ŝ−H + σ2I (2.31)

for the asynchronous case. Even though in the presence of multipath, Ŝ+ and Ŝ−

are not orthogonal, the independence of the bits, specifically the current bit b(i) and

previous bit b(i−1), forces the expectation of the cross-terms to zero. This equation

is similar to Eq. (10) of [32], which is shown for the AWGN case. It is also important

to note that for synchronous or asynchronous users in multipath, the length of the

window used to represent the data Ŝ+ and Ŝ− must span the entire channel length

in bit duration, given by [76]

Lb = p
L + N − 1

N
q, (2.32)

where p(x)q represents the smallest integer greater than or equal to x. Setting user

one as the desired user, the analytical SINR can be written as [76]

SINRMMSE =
cH

MMSE ŝ1
+A1AH

1 ŝ1
+HcMMSE

cH
MMSE(R̂− ŝ1

+A1AH
1 ŝ1

+H)cMMSE
(2.33)

for the MMSE and similarly,

SINRMWF =
cH

MWF ŝ1
+A1AH

1 ŝ1
+HcMWF

cH
MWF (R̂− ŝ1

+A1AH
1 ŝ1

+H)cMWF
(2.34)

for the MWF. Then, the probability of error can be obtained using Eq. (2.28).
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Chapter 3

Reduced Rank Statistical Signal
Processing Algorithms

Recall that computation of the minimum mean square error (MMSE) solution to the

interference mitigation problem for CDMA requires inversion of the N×N covariance

matrix R, which can be quite computationally intense and may not even be possible

in real-time for a high data rate system. Also, if the channel or signals are changing

in time, then the sample covariance matrix estimated from the data does not depict

the true non-stationary signal environment. Thus, it is desirable to find alternate

solutions that approach, or better yet, exceed the performance of the MMSE receiver

but require much fewer computations and can adapt rapidly. These conditions have

motivated much of the research in the area of interference suppression and led to the

development of the principal components method, the cross-spectral method, and the

multistage Wiener filter (MWF). The multistage Wiener filter has demonstrated the

ability operate successfully at a much lower rank than any other reduced rank method

(e.g., see [22] and [32]). These techniques are described next.

30
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3.1 Principal Components (PC)

The method of principal components is a popular reduced rank technique (introduced

in [14] and [37] and applied in e.g., [35] and [91]) based on an eigen-decomposition of

the covariance matrix R of the received signal vector r. Specifically, let

R = VΛVH , (3.1)

where V is the matrix whose columns consist of the eigenvectors of R, and Λ is a

diagonal matrix whose elements are the corresponding eigenvalues; V and Λ are

N × N matrices. Given this decomposition, R can now be projected using only D

columns of the N columns of V , where D < N . The columns that are chosen are those

D columns corresponding to the D largest eigenvalues of R. To see this explicitly,

write R as

R =
D

∑

i=1

λiViVH
i (3.2)

where λi is the ith diagonal element of Λ and Vi is the ith column of V. Note here

that if D ≥ K, where K is the number of users in the system, then the reduced rank

subspace contains the signal subspace, so that full rank minimum mean square error

performance can still be attained. If, however, D < K, i.e. if the number of users is

unknown or changing, then performance can degrade quite rapidly as the number of

users increases. This occurs because now the reduced rank subspace may no longer

span the subspace containing the signal components. Another disadvantage to this

method is the computational complexity associated with the eigen-decomposition,

especially in a rapid time-varying environment.
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3.2 Cross-Spectral (CS) Method

A technique that is closely related to the method of principal components is the cross-

spectral (CS) method, which also uses the eigenvectors and eigenvalues in a way such

as to reduce the rank of the signal subspace ([24] and [25]). Suppose a received data

matrix X is formed, which can be assumed to be formed from many observations of

the received vector r. Thus, X has dimension M × N , where M is the number of

observations of the sampled statistical process. One can compute the singular value

decomposition (SVD) of the observation matrix X from [77]

X = UZVH , (3.3)

where U, Z, and V are M×N left singular, N×N diagonal singular, and N×N right

singular matrices of X, respectively. The matrix V consists of the eigenvectors of R =

XHX, the covariance matrix of X. The column vectors of U form an orthonormal

basis of R. To solve the reduced rank problem one can choose a subset D, D < N , of

these vectors to minimize the mean square error for the least squares (LS) problem,

given by

MSELS = |d0 −XwLS|2, (3.4)

where d0 is some desired M dimensional vector and wLS is the LS weight vector to be

determined. Note that the minimization of the MSE given in Eq. (3.4) is equivalent

to maximization the norm of the estimate XwLS, which can be written as

Ey = ‖XwLS‖2. (3.5)

Expanding Ey in terms of the covariance matrix R, one can write

Ey = rxd
HR−1rxd = rxd

HVΛ−1VHrxd, (3.6)
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where rxd = XHd; i.e. the cross-correlation vector between the observed data matrix

and the desired signal. Introducing the cross-correlation vector, defined by

ρ = VHrxd, (3.7)

one can write

Ey =
N

∑

j=1

ρ2
k

λk
, (3.8)

where λk is the kth eigenvalue of R, alternatively the kth diagonal element of Λ, and

ρk is the kth element of ρ for k = 1, 2, ..., N . To maximize the norm of the estimate,

i.e. its energy, those eigenvectors that correspond to a large cross-correlation vector

should be retained. Thus, the term in the summation above, ρ2
k

λk
, is a measure of

the energy projected along the kth basis vector of R and is termed the cross-spectral

energy. Note that the full rank LS solution is easily computed by solving the MMSE

problem and is written as

wLS = R−1rxd, (3.9)

Thus, by choosing a set of D basis vectors that correspond to the D largest values

of the CS energy, a reduced rank subspace is formed. However, while this algorithm

generally performs slightly better than principal components because it is not as

sensitive to the number of users being less than or equal to the rank of the subspace,

it too suffers from computational complexity issues [31]. More importantly, the CS

metric is also dependent on eigen-decomposition and estimation of the covariance

matrix.
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3.3 The Multistage Wiener Filter (MWF)

It is important to point out that the eigen-based subspace approaches presented in

the previous sections require calculation of the covariance matrix R. This drives

the required sample support and immediate degradation occurs if signals are non-

stationary over the large intervals typically required to compute R. In this section, a

different approach is introduced which enables low complexity processing by avoiding

calculation of the covariance matrix R.

3.3.1 MWF Decomposition using Orthogonal Projections

The multistage Wiener filter was first introduced in [20], [22], [23], and [24] and is a

pioneering breakthrough in reduced rank algorithms in that it meets or exceeds MMSE

performance but does not require any matrix inversions nor computationally complex

eigen-decompositions. This new representation of the Wiener filter can be obtained

by performing multistage decompositions based on maximizing the cross-correlation

between the desired signal and the observed signal. This results in two subspaces,

one in the direction of the cross-correlation and one orthogonal to it. Note that this

approach naturally creates signal subspaces at successive stages that are orthogonal

to those of the previous stage. The multistage structure is obtained by repeated

correlations of the signal that lies in the orthogonal subspace at the previous stage

and thus is also termed the residual correlation algorithm [32]. It is shown in [21] that

the mean square error obtained with this multistage structure is the same as with the

classical multi-dimensional, single stage Wiener filter when all stages are retained,

the covariance matrix exists (stationarity exists), and the covariance matrix can be

estimated (sufficient sample support can be utilized). Thus, the full rank MWF is
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also equivalent to the MMSE solution.

A block diagram showing the nested chain of scalar Wiener filters in a multistage

implementation for D = 4 stages is shown in Figure 3.1. The notation used closely

follows that of [21]. This structure requires that all input signals are wide-sense

stationary (WSS) and this is assumed to be true in the system model. As shown in

the figure, x0(i) represents an N × 1 data vector, which contains the outputs of a

chip-matched filter. In training mode, d0(i) represents the desired signal, which is

set equal to the training bit. The scalars εj(i), j = 1, 2, ..., D − 1, denote the errors

at each successive stage, and are given by

εj = dj(i)− wj+1εj(i) (3.10)

This is analogous to the error signal of the multi-dimensional Wiener filter, repre-

sented by the term in brackets in Eq. (2.24). Note that εD(i) = dD(i). The output,

ε0(i) denotes the error signal, which is the difference between the desired signal d0(i)

and the final estimate of the signal produced by the filter and given by b̃1(i) = w1ε1(i).

The vectors hj for j = 1, 2, ..., D represent the normalized cross-correlation vec-

tor between the corresponding input signal at that stage, xj−1(i) and the desired

signal for that stage, dj−1(i). The matrices Bj for j=1, 2, ..., D represent blocking

matrices, which are orthogonal to hj so that Bjhj = 0, and whose rows are orthonor-

mal. Therefore, all signal components in the same direction as hj are eliminated

at the next stage of the filter. One method for obtaining appropriate blocking ma-

trices can be found in [21]. A simple blocking matrix is Bj = I − hjhH
j , and the

orthogonality between Bj and hj here can be easily verified. The scalars wj, j = 1,

2, ..., D, are the new scalar Wiener weights, computed from the Wiener-Hopf (WH)

equation [30]. Note that this multistage Wiener filter structure does not require an
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Figure 3.1: Multistage Wiener Filter (MWF) in Training Mode, D = 4 Stages;
d0(i)=desired signal at time i; b1(i)=transmitted bit for user one; x0(i)=observed
signal; ε0(i)=error signal

inverse of the covariance matrix of the input sequence, given by Rx0 = E[x0(i)xH
0 (i)]

as is required for the MMSE technique and for the classical multi-dimensional Wiener

filter [22].

The multistage Wiener filter structure can be summarized by a set of recursive

relationships. The forward and backward recursion equations, summarized below

in Table 3.1, are identical to those used to implement the block residual correlation

algorithm ([21] and [32]). The parameter Ω denotes the region of sample support used

to compute the sample statistics. In training mode, d0(i) = b1(i) and x0(i) = r(i).

In blind mode, when b1(i) is unknown, its estimate can be obtained via the

matched filter (MF). Here, this is simply the spreading code, s1 of user one, more

generically denoted a steering vector. So, one simply inserts s1 at the front end

of the filter, so that now d0(i) = sH
1 r(i), and set x0(i) = B0r(i), where B0 is the

blocking matrix which is orthogonal to the spreading code s1. The filter structure
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Table 3.1: Recursion Equations for the Multistage Wiener Filter (MWF)

Initialization: d0(i) and x0(i)

Forward Recursion: For j = 1, 2, ..., D:
hj =

P
Ω{d∗j−1(i)xj−1(i)}

||
P

Ω{d∗j−1(i)xj−1(i)}||

dj(i) = hH
j xj−1(i)

xj(i) = Bjxj−1(i)

Backward Recursion: For j = D, D − 1, ..., 1
eD(i) = dD(i)

wj =
P

Ω{d∗j−1(i)ej(i)}P
Ω{|ej(i)|2}

ej−1(i) = dj−1(i)− w∗
j ej(i)

for blind mode operation is shown in Figure 3.2. Now, d0(i) is just the matched

filter output and produces the best initial estimate of the bits in the absence of their

prior knowledge. Note that in blind mode the Wiener filter eliminates signals that

lie in the space orthogonal to s1, namely the interference. Thus, ε0(i) is not an error

signal but is the estimate of the transmitted information after the interference has

been subtracted out. Thus, the bit estimate used in the Monte Carlo simulations is

b̃1(i) = ε0(i). Performance results of the MWF for asynchronous CDMA in AWGN

can be found in [32] and [43].

For the Monte Carlo simulations, the data in the Wiener filter is processed in

blocks of M bits at a time. In training mode, the N × 1 vector x0(i) is replaced with

an N×M matrix X0(i) = [x0(i) x0(i+1) ... x0(i+M−1)]. Also, the scalar d0(i) is

replaced by an 1×M vector of bits given by d0(i) = [b1(i) b1(i+1) ... b1(i+M−1)]. The
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Figure 3.2: Multistage Wiener Filter (MWF) in Blind Mode, D = 4 Stages;
r(i)=received signal at time i; s1=spreading code for user one; ε0(i)=bit estimate
for user one

same is true for the received vector r(i) in blind mode. So, estimates are also produced

one block at a time and are given by b̃1(i) = ω1ε1(i) in training mode or b̃1(i) = ε0(i)

in blind mode. As mentioned earlier, typically M ≥ 2N data bits are required for

reliable processing according to the Reed-Mallett-Brennan (RMB) rule.

In Figure 3.3, the Gram-Schmidt interpretation of the MWF is shown [21]. Com-

bining this form and Figure 3.1, the MWF can be written in compact matrix form. In

the figure, the MWF is represented by a combination of an analysis filterbank and a

synthesis filterbank [21]. The filterbanks, LN and UN , are given by

LN =





















hH
1

hH
2 B1
...

hH
N−1

∏1
i=N−2 Bi

hH
N

∏1
i=N−1 Bi





















(3.11)
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and

UN =





















1 −w∗
2 w∗

2w
∗
3 · · · (−1)N ∏N−1

i=2 w∗
i (−1)N+1 ∏N

i=2 w∗
i

0 1 −w∗
3 · · · (−1)N−1 ∏N−1

i=3 w∗
i (−1)N ∏N

i=3 w∗
i

... . . . ...

0 0 0 · · · 1 −w∗
N

0 0 0 · · · 0 1





















(3.12)

where wi is the scalar Wiener weight in the multistage decomposition at stage i as

depicted in Figure 3.1. From Figure 3.3, it is seen that the (N + 1)× (N + 1) output

error vector ε(i) = [ε0(i) ε1(i) ... εN(i)]H can be written as

ε(i) = UN+1LN+1

[

d0(i)

x0(i)

]

, (3.13)

where the quantities UN+1 and LN+1 are defined by

LN+1 =

[

1 0

0 LN

]

(3.14)

and

UN+1 =

[

1 −wH
z1

0 UN

]

, (3.15)

respectively, and wz1 is given by

wz1 =
[

w∗
1 −w∗

1w
∗
2 ... (−1)N+1 ∏N

i=1 w∗
i

]H
. (3.16)

From this representation, the multistage Wiener filter can be written in compact

vector form using

cMWF = UN+1LN+1, (3.17)

which is the equation used to compute cMWF in the analytical model.
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Figure 3.3: Gram-Schmidt Multistage Wiener Filter (MWF) Decomposition;
d0(i)=desired signal; b1(i)=bits for user one; x0(i)=observed signal; εn(i)=error signal
at stage n

3.3.2 Reduced Rank MWF

Recall that the space spanned by the columns of the covariance matrix of the received

signal is of rank N . Rank reduction for the classical Wiener filtering problem can

be accomplished by filtering the input sequence by an N ×D matrix, whose columns

now span a space of rank D. This would result in a new covariance matrix of size

D×D, where clearly D < N . Rank reduction for the Wiener filter in the multistage

structure can be accomplished easily by truncating the multistage filter at stage D,

thereby discarding the last N −D stages of the decomposition [21].

It is important to emphasize the superb ability of the MWF to compress the

received signal space into a subspace composing the desired information in only a

few stages by maximizing the mutual information between the desired data with the

received signal at each stage. This enables significant rank reduction that is not

attainable with either the principal components (PC) or cross-spectral (CS) reduced
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rank techniques, which require the rank to equal or exceed the number of users present

in the system for successful rank reduction. This implies that exact knowledge of the

number of users must always be available. In many CDMA systems, this is not

practical because the number of users is constantly changing.

3.3.3 Efficient Implementation Structures

In this section, two efficient structures that further reduce the computational com-

plexity associated with the implementation of the MWF are presented.

Correlation Subtraction Architecture (CSA)

A new structure of the multistage Wiener filter, based on a correlation subtraction

architecture (CSA) is described in [72]. The equations that perform the forward

recursion are modified with the CSA by recognizing that the blocking matrix calcu-

lation is no longer required. By substituting the equation for the blocking matrix,

Bj = (I−hjhH
j ) into xj(i) = Bjxj−1(i), and recognizing that dj(i) = hH

j xj−1(i), one

can write the output at each stage j simply as

xj(i) = xj−1(i)− hjdj(i). (3.18)

The multistage decomposition using the CSA for D = 2 stages is shown in Figure

3.4. As with the original MWF, for blind mode processing, h0 = s1, the spreading

code of the desired user, and d0(i) = sH
1 x0(i). The filter in Figure 3.4 demonstrates

the low complexity of this implementation of the MWF and the fact that the computa-

tion of signal blocking matrices are no longer necessary for any subspace partitioning

such as that required for constrained adaptation. Again, with the CSA-MWF, data

is typically processed in blocks of M bits, rather than one bit at a time.
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Figure 3.4: Correlation Subtraction Architecture of the Multistage Wiener Filter
(CSA-MWF); d0(i)=desired signal; x0(i)=observed signal; h0 = s1, the spreading
code of user one; ε0(i)=bit estimate for user one

Householder Transformation

The Householder transformation ([38] and [39]) is a matrix transformation which

projects a vector s onto a hyperplane that spans the subspace orthogonal to another

vector u. To describe this transformation in more detail, assume that u is an N × 1

vector and define the N ×N Householder transformation matrix by [30]

H = I− 2uuH

‖u‖2 . (3.19)

Now post-multiply H by another N × 1 vector s to obtain

Hs = s− 2uHs
‖u‖2 u. (3.20)

By definition [30], the second term in the above expression without the scale factor

is defined as the projection of s onto u and can be written as

Pu(s) =
uHs
‖u‖2u. (3.21)

This operation is illustrated in Figure 3.5. Note from the figure that the product Hs

is the reflection of s about the hyperplane u⊥, which is the plane orthogonal to the

plane spanned by vector u.
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Suppose now that H is assumed to be composed of a spreading code vector s and

a blocking matrix Bs orthogonal to s. Then Hs can be written as

Hs =

[

sH

I− ssH

]

s =





















1

0

0
...

0





















(3.22)

It is seen that this interpretation of H obeys Property 6 of the Householder transfor-

mation [30]. Note here that the number of rows of Bs is now N − 1. Thus, at each

stage the number of rows in the matrix decreases by one. This interpretation allows

one to compute the decomposition at each stage in the Wiener filter using one matrix

in place of a vector and a matrix.
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3.3.4 Computational Cost and Memory Requirements

In this section, approximate formulas for the computational savings and memory re-

quirements for the reduced rank MWF, the full rank MMSE, and the conventional

MF are compared. These are important criteria to determine the actual implemen-

tation complexity reduction attainable with the MWF over the MMSE for real-time

operation. Recall for this discussion that N is the length of the spreading code, D is

the number of stages in the MWF, and M is the number of bits per block.

Computational Cost

In the matched filter, N multiplications and N − 1 additions are required for each

bit of data, equivalently approximately N floating point operations (or flops) are

required. For a block of data, O(NM) flops are needed, where O denotes ‘on the

order of’. The zeroth stage of the MWF is the matched filter, requiring N operations

per block. Next, the output is re-spread with the spreading code and subtracted

from the received signal, requiring another N flops. This is the dominant term in

the computations, and for D stages and M blocks, the result is a requirement of

O(2DNM) flops. Finally, for the MMSE, the dominant term is the N × N matrix

inversion, which requires O(N3) operations per block or a total of O(N3M) opera-

tions. Thus, the MF, MWF, and MMSE require O(NM), O(2DNM), and O(N3M)

flops, respectively.

As an example, let N = 32, D = 5, and M = 100. The computational costs

associated with the MF, MWF, and MMSE are 3, 200, 32, 000, and 3, 276, 800 flops,

respectively. Note that the MWF has an increase in complexity by a factor of only 10

over the MF, but reduces in complexity by a factor of 1024 over MMSE. This minimal
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complexity increase of the MWF over the MF is outweighed by the performance

increase. Furthermore, there also exists a huge complexity reduction over MMSE

without the occurrence of any performance loss. In some cases, as will be shown in

later chapters, there is actually a performance gain over the full rank receiver.

Memory Requirements

The memory requirement for the MF is simply a buffer of size N needed to store the

spreading code. For the MWF, N elements are also needed for the MF stage, plus at

each additional stage, storage space is required for hj for j=1, 2, ..., D. Since each of

these vectors is of length N , a total of (D+1)N storage elements are necessary. This

requirement is not a function of M because the storage space can be overwritten for

each subsequent block of data. Finally, the MMSE requires 2N2+N storage elements

to store the N × N covariance matrix, its inverse, and the dimension N spreading

code. Using the same example as above, the memory requirements associated with

the MF, MWF, and MMSE are 32, 192, and 2, 080, respectively. While the storage

requirement of the MWF is greater than the MF, it is again significantly less than the

MMSE. Furthermore, as long as storage space is available on the desired implemen-

tation hardware, the MWF can be accommodated. These equations are summarized

in Table 3.2 below.
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Table 3.2: Computational Cost and Memory Requirements: Matched Filter (MF),
Multistage Wiener Filter (MWF), and Minimum Mean Square Error (MMSE);
N=length of spreading code; D=rank of MWF; M=block size

Computational Cost Memory Requirements
MF NM N

MWF 2DNM (D + 1)N
MMSE N3M 2N2 + N



Chapter 4

Minimum Mean Square Error
(MMSE)/Rake Receivers

The rake receiver is the conventional processing method for handling multipath in

a code division multiple access (CDMA) system by estimating the path amplitudes

and delays and combining them at the receiver. However, the rake receiver fails in

the presence of a large amount of interference. In this chapter, a minimum mean

square error (MMSE) solution for interference suppression and signal detection in the

presence of multipath is derived. This is termed the MMSE/rake receiver because

it incorporates an MMSE-type solution in conjunction with a rake-type solution. It

will be shown via simulation that implementation of this solution using the efficient,

reduced rank correlation subtraction architecture (CSA) of the multistage Wiener

filter (MWF) ([20], [22], and [21]) meets the full rank MMSE/rake performance at

a low rank. Performance results of the standalone rake receiver will be shown for

comparison.

The purpose of the MMSE/rake receiver implemented via the CSA-MWF is to

perform interference suppression (IS) in the presence of multipath but without the

covariance matrix inversion required by MMSE. In designing next generation CDMA

47
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systems, as mentioned in Chapter 1, higher capacity and higher data rates fuel the

need for sophisticated signal processing algorithms. For example, new personal com-

munication systems (PCS) may employ short codes, so performance as a function of

the code length (N) will be shown. Capacity improvements are shown in terms of

the number of users (K) that can be supported. The rank (D) will be shown to be

nearly independent of the number of users, thereby enabling a system design in which

the number of users does not need to be continuously estimated. This is especially

important on the forward link of a CDMA system, where the mobile typically does

not have this information. An additional benefit of the MWF implementation is that

the mobile does not need to know the spreading codes of the other users to optimally

detect its own signal, in the MMSE sense; this is important because it implies that

joint detection does not need to be performed for the mobile to detect its signal, but

rather a single user detector is sufficient. The low rank and low implementation com-

plexity further imply that the mobile can process the incoming data quickly, enabling

higher data rates and the ability to adapt more quickly to rapidly changing chan-

nels. Perhaps more remarkably, at lower sample support (M) than required by full

rank MMSE, the MWF implementation can actually exceed full rank performance.

Following the derivation of the receiver in Section 4.2, simulation results will be

shown. In order to determine performance of the receiver in terms of bit error rate

(BER) and its robustness to rank selection, the following parameters are varied: (1)

the length of the spreading code (N); (2) the signal-to-noise ratio (Eb/N0); (3) the

number of bits per block that are processed (M); (4) the number of users (K); (5) the

delay spread of the multipath channel (L); and, (6) synchronism vs. asynchronism

among the users. In most of the simulations, the user of interest is at ∆P = 6 dB less
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power than the interferers. The rank (D) can be maintained at a maximum constant

value without any loss in performance, independent of the number of users. The

simulation parameters of the results presented in the next section are summarized in

Table 4.1.

Table 4.1: Minimum Mean Square Error (MMSE)/Rake Receiver Simulation Pa-
rameters: N=length of spreading code, Eb/N0=Bit energy divided by single-sided
noise power spectral density (PSD), M=block size, K=number of users, D=rank of
multistage Wiener filter (MWF), L=channel delay spread, ∆P=power of interfering
users/power of desired user

N Eb/N0 [dB] M K D L ∆P [dB] Synchronism
Fig. 4.2 32 15 5000 12 N/A 5 6 Asynchronous
Fig. 4.3 32 N/A 5000 15 7 5 6 Asynchronous
Fig. 4.4 32 15 5000 N/A 7 5 6 Asynchronous
Fig. 4.5 32 12 5000 N/A 7 5 6 Asynchronous
Fig. 4.6 32 15 5000 12 N/A 5 6 Synchronous
Fig. 4.7 32 N/A 5000 15 7 5 6 Synchronous
Fig. 4.8 32 15 5000 N/A 7 5 6 Synchronous
Fig. 4.9 32 15 N/A 15 3 5 0 Asynchronous
Fig. 4.10 32 N/A 5000 15 7 12 6 Synchronous
Fig. 4.11 128 15 5000 50 N/A 5 6 Asynchronous

A second receiver which employs an MMSE correlator to improve performance

of the conventional rake receiver is described in the following section. This type of

receiver could be an easy plug-and-play solution to improve the capacity and perfor-

mance of existing systems, e.g. IS-95, that employ only rake receivers. This can be

done because the receiver is modular in structure, consisting of an MMSE processor to

perform interference suppression on each rake ‘finger’, followed by multipath combin-

ing as done by the conventional rake. Performance is shown to be sub-optimal to the
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MMSE/rake because the processing spans only one bit and does not include the chan-

nel delay spread as the MMSE/rake does. Although this receiver is sub-optimal to

the MMSE/rake solution, performance improvement over the rake is significant. The

parameters used in simulations in that section are summarized in Table 4.2. First,

a brief description of the rake receiver is provided.

Table 4.2: Minimum Mean Square Error (MMSE) Correlator Based Rake Receiver
Simulation Parameters: N=length of spreading code, Eb/N0=Bit energy divided by
single-sided noise power spectral density (PSD), M=block size, K=number of users,
D=rank of multistage Wiener filter (MWF), L=channel delay spread, ∆P=power of
interfering users/power of desired user

N Eb/N0 [dB] M K D L ∆P [dB] Synchronism
Fig. 4.13 16 N/A 5000 15 7 3 0 Synchronous
Fig. 4.14 16 12 5000 N/A 7 3 0 Synchronous
Fig. 4.15 32 N/A 5000 30 7 3 0 Synchronous

4.1 The Rake Receiver

The conventional technique for mitigating multipath effects is the rake receiver [44],

introduced in Chapter 1. The rake receiver operates by estimating the channel am-

plitudes and delays from each of the multiple paths of a transmitted signal in order to

coherently combine them. The rake receiver structure is shown in Figure 4.1, where

W represents the correlation bandwidth of the received signal. Multipath compo-

nents that are separated by delays greater than 1/W can be resolved by the rake

receiver and are thus combined at the output of this tapped-delay line (TDL) to ob-

tain improved performance, known also as the rake diversity gain. The variables ĉl,

l = 1, 2, ..., L, represent the estimates of the channel coefficients. The parameter L,
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also known as the delay spread of the channel, is the total number of paths that are

received. While the rake receiver performs well when the number of users is small,

its performance degrades significantly for highly loaded systems (i.e. it is interference

limited). This occurs because the rake treats the interfering users in the system as

additive white Gaussian noise (AWGN), and does not perform any interference rejec-

tion. Thus this detection technique is not suitable to meet the increasing capacity

requirements on next generation systems.
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Figure 4.1: Rake Receiver

4.2 Optimal MMSE Receiver in Multipath

4.2.1 Derivation

Consider an asynchronous CDMA system with K users transmitting. Eq. (2.10)

gives the expression for the received signal in the presence of multipath, which for
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convenience is rewritten here as [83]

r̂(i) = b1(i)̂s1 +
K

∑

k=2

Ak[bk(i)̂s+
k + bk(i− 1)̂s−k ] + n(i). (4.1)

where s1 is the N × 1 spreading code associated with user one, and s+
k and s−k are

the N × 1 vectors of spreading codes associated with each of the K − 1 interfering

users. The terms bk(i) and bk(i− 1) are the current bit and previous bit of user k at

time i, respectively. Since the general case of asynchronous transmission is assumed,

portions of both bits, multiplied with the respective portions of the spreading codes,

interfere with the desired user’s bit, b1(i). The notation (̂·) denotes convolution of

the operand with the channel coefficients, and n(i) are AWGN samples.

It is assumed that the channel vector is known, or that it can be accurately

estimated by some means, e.g. a training sequence, which can be assumed to be

the pilot channel for CDMA systems. Using the analogy between Eq. (2.5) for the

AWGN channel and Eq. (2.10) for the multipath channel, the MMSE solution in the

presence of multipath can now be written directly from the AWGN solution in Eq.

(2.23), or

ĉMMSE = R̂−1ŝ1 = E [̂rr̂H ]
−1

ŝ1. (4.2)

By definition, R̂ is the covariance matrix of the received signal r̂ in multipath. The

MWF implementation of this solution can be obtained similarly, by setting h0 = ŝ1

in the blind MWF filter shown in Figure 3.2. This solution is similar to the MMSE

solution in AWGN, but with the matched filter replaced with a channel matched

filter, exactly as the rake receiver. Thus, it is termed the MMSE/rake. Note that

the rake solution, which only incorporates the effects of the multipath and neglects



53

the interference, can be written simply as

crake = ŝ1. (4.3)

This interpretation of the rake receiver will be justified by an alternate method in

the next section. In the presence of only AWGN, this further reduces to the matched

filter (MF) solution, cMF = s1. The equations above provide a simple and elegant

way of representing the rake, MWF, and MMSE filter coefficients when multipath is

present. Note that these receivers now span a duration greater than one symbol length

of N samples; they now span N +L−1 samples, where L was defined previously as the

channel delay spread. Validation of these equations is provided using analytical and

Monte Carlo simulations in the next section. The analytical expression for the rake

receiver is obtained by simply replacing cMMSE or cMWF by crake in the analytical

model and by using b̃1(i) = ŝH
1 r(i) in the Monte Carlo model.

4.2.2 Numerical Results

In this section, simulation results of the linear, reduced rank MMSE/rake receiver

using the CSA-MWF are compared with the corresponding full rank MMSE receiver

and rake receiver. Results from both the Monte Carlo simulation model and the

analytical model are shown for comparison. Unless otherwise indicated, Hadamard

codes with a processing gain of N = 32 are used. A random, L=5 tap Rayleigh

distributed channel is used to simulate the multipath, using one tap per chip. The

power of the interfering users is set to 6 dB greater than that of the desired user to

determine performance in a near-far situation. For this and all subsequent runs, the

number of bits per block in the Monte Carlo simulation and the number of blocks is

chosen to be large enough to produce enough errors to obtain a valid statistical bit
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error rate estimate (typically 10 to 100 errors). At least 10 runs are averaged in the

analytical simulations as well, since there is randomness in the spreading codes and

their relative shifts (for the asynchronous case). In these plots, Monte Carlo results

are indicated with (MC) and analytical results with (AM).

The simulation results are as follows: the first three plots show rank (D), Eb/N0,

and number of users (K) vs. BER for asynchronous CDMA, respectively. The next

plot shows the effect of increasing the span of the receiver from 2 bits to 3 bits

for asynchronous users via the AM. The next three plots repeat the results from

the first three for synchronous CDMA. Then, the effect of block size (M) on the

performance of the CSA-MWF vs. the MMSE using the MC model is shown. Finally,

for completeness in the analysis, plots of BER for larger L and N/K are provided.

Figure 4.2 shows a plot of rank of the multistage Wiener filter versus the bit error

rate (BER) from the Monte Carlo model and Pe from the analytical model. Observe

the close agreement between the Monte Carlo and analytical models, as desired. The

variation in BER for the MMSE and rake methods is due to the nature of the Monte

Carlo simulation, since their performance is independent of rank. Note that for a

rank as low as eight, the CSA-MWF performs as well as the full rank MMSE and

maintains this performance as rank increases. The performance of the MWF does not

significantly degrade until the rank is reduced below five. The MWF performance at

full rank exactly matches the full rank MMSE for both models, as expected. Both

the MWF and MMSE consistently perform significantly better than the rake receiver,

which cannot combat the large number of interfering users. Note that the convergence

at rank eight is less than the number of users, K = 12, and is significantly less than

the full rank of N = 32.
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Figure 4.2: Minimum Mean Square Error (MMSE)/Rake Receiver, Multistage Wiener
Filter (MWF) Implementation: Rank (D) of the MWF vs. BER; asynchronous
CDMA; spreading code length, N = 32 (Hadamard Codes); Eb/N0 = 15 dB; number
of users, K = 12; channel delay spread, L = 5; power of interfering users/power of
desired user, ∆P = 6 dB (MC=Monte Carlo, AM=Analytical Model).

Figure 4.3 shows a plot of Eb/N0 versus BER. In this case, the rank of the CSA-

MWF is seven. It is seen here that the MWF performs as well as the MMSE receiver

and significantly better than the rake receiver. Note that there is about a 6 dB

degradation in performance from the ideal BPSK curve. This degradation is directly

related to the desired user having 6 dB less power relative to the interferers. To a lesser

extent, it is also caused by the system’s being asynchronous and the environment,

including the multipath channel. The performance here could be improved using

decision feedback, coding, or power control. Note that the BER has degraded at

Eb/N0 = 15 dB from 3 · 10−4 to about 10−3 from the preceding case because of the

presence of three additional users. However, convergence to full rank MMSE is still
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maintained at rank seven, demonstrating the rank robustness of the MWF.
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Figure 4.3: Minimum Mean Square Error (MMSE)/Rake Receiver, Multistage Wiener
Filter (MWF) Implementation: Eb/N0 [dB] vs. BER; asynchronous CDMA; spread-
ing code length, N = 32 (Hadamard Codes); number of users, K = 15; rank of MWF,
D = 7; channel delay spread, L = 5; power of interfering users/power of desired user,
∆P = 6 dB (MC=Monte Carlo, AM=Analytical Model).

Next, Figure 4.4 shows a plot of the number of users (K) versus BER. Here, the

Eb/N0 is 15 dB, and the rank of the multistage Wiener filter is again seven. The

number of users varies from 1 to 25. It is seen here that for a lightly loaded system,

the rake receiver performs reasonably well, but its error rate degrades rapidly as

the load is increased. As before, the MWF meets MMSE performance over the entire

range of loading. Note that MWF and MMSE performance does not degrade much as

the number of users is increased up to N/2. But, when the number of users increases

beyond N/2, the performance degrades substantially. This occurs because the CDMA

signals are asynchronous but the N + L − 1 taps of the MC receiver and the 2 bit
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taps of the AM receiver in each case span just over the delay spread [48]. To correct

this problem, a receiver with taps that span multiple symbols would be required. A

sample plot showing the performance difference for the same parameters when the

receiver spans two and three symbols is shown in Figure 4.5 using the analytical

model. Ths plot shows that increasing the receiver span from two to three symbols

improves the BER for K ≥ N/2 by a factor of 5 to 10. Another possible way to

mitigate this problem would be to increase the sampling rate, which is equivalent to

increasing the number of taps per bit. Then, the asynchronism would have less of an

impact. Of course, coding could also alleviate this problem.
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Figure 4.4: Minimum Mean Square Error (MMSE)/Rake Receiver, Multistage Wiener
Filter (MWF) Implementation: Number of Users (K) vs. BER; asynchronous CDMA;
spreading code length, N = 32 (Hadamard Codes); Eb/N0 = 15 dB; rank of MWF,
D = 7; channel delay spread, L = 5; power of interfering users/power of desired user,
∆P = 6 dB (MC=Monte Carlo, AM=Analytical Model).

Figures 4.6-4.8 shows the results for synchronous signals. Note from Figure 4.8
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Figure 4.5: Minimum Mean Square Error (MMSE)/Rake Receiver, multistage Wiener
filter (MWF) Implementation: Number of Users (K) vs. BER; Asynchronous CDMA;
spreading code length, N = 32 (Hadamard Codes); Eb/N0 = 12 dB; rank of MWF,
D = 7; channel delay spread, L = 5; power of interfering users/power of desired user,
∆P = 6 dB; 2 Bit Receiver (Rx.) vs. 3 Bit Receiver (AM=Analytical Model).

that the performance does not suffer degradation at K ≥ N/2 as with asynchronous

codes. In fact, performance is maintained with only slight linear degradation versus

the number of users. This result shows the promise of the CSA-MWF to accom-

modate high capacity systems. There is also some improvement, as expected, over

the asynchronous data, as the orthogonality among the codes is maintained more

precisely. Again, the Monte Carlo model agrees well with the analytical model, as

desired.

Figure 4.9 is a curve showing the number of bits per block versus BER. For this

result, the Eb/N0 is 15 dB, K = 15, and the rank of the CSA-MWF is three. The
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Figure 4.6: Minimum Mean Square Error (MMSE)/Rake Receiver, multistage Wiener
filter (MWF) Implementation: Rank (D) of the MWF vs. BER; synchronous CDMA;
spreading code length, N = 32 (Hadamard Codes); Bit energy divided by single-sided
noise power spectral density (PSD), Eb/N0 = 15 dB; number of users, K = 12; channel
delay spread, L = 5; power of interfering users/power of desired user, ∆P = 6 dB
(MC=Monte Carlo, AM=Analytical Model).

true BER is shown with a dashed horizontal line. Note that the MMSE curve re-

quires about 2000 samples to converge to the true bit error rate of about 5 · 10−4.

However, the MWF requires only about 1000 samples per block to converge to the

same error rate. Thus, the MWF is less sensitive to sample support than the full rank

MMSE. This in turn implies that the MWF can track changes in signals that are

varying in time faster than MMSE, which is an important advantage of the reduced

rank processing provided by the MWF. In addition, the MMSE solution requires

inversion of an N × N covariance matrix, but the MWF does not. This illustrates

the twofold benefit in computational savings that can be obtained by employing the
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Figure 4.7: Minimum Mean Square Error (MMSE)/Rake Receiver, multistage Wiener
filter (MWF) Implementation: Eb/N0 [dB] vs. BER; synchronous CDMA; spreading
code length, N = 32 (Hadamard Codes); number of users, K = 15; rank of MWF,
D = 7; channel delay spread, L = 5; power of interfering users/power of desired user,
∆P = 6 dB (MC=Monte Carlo, AM=Analytical Model).

reduced rank MWF, which yields the same performance as full rank MMSE. Note

also that the MWF outperforms full rank for small block sizes. This is another dis-

tinguishing feature of the MWF, in that at low sample support and at low rank,

it will meet or exceed full rank performance. That is, it simultaneously achieves a

convergence speed-up substantially better than other reduced rank techniques and

at a dramatically reduced computational burden. As before, the rake receiver does

significantly worse, achieving at best an error rate forty times worse.

The curve in Figure 4.10 displays Eb/N0 versus BER for synchronous users and

a multipath channel tap length of L = 10. At a chip rate of 1.2288 Mcps, a delay

spread of 8 µs, which is typical is urban cellular areas, will produce a multipath chip
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Figure 4.8: Minimum Mean Square Error (MMSE)/Rake Receiver, Multistage Wiener
Filter (MWF) Implementation: Number of Users (K) vs. BER; synchronous CDMA;
spreading code length, N = 32 (Hadamard Codes); Eb/N0 = 15 dB; rank of MWF,
D = 7; channel delay spread, L = 5; power of interfering users/power of desired user,
∆P = 6 dB (MC=Monte Carlo, AM=Analytical Model).

spread of about 10 chips. Therefore, to test the reliability of the MWF in a realistic

channel, L = 10 is simulated. Note that with N = 32, this is equal to a delay of

about 1
3 of a bit. While there is some degradation over the L = 5 case, performance

of the reduced rank MMSE/rake receiver is maintained. Finally, the plot in Figure

4.11 shows rank vs. BER for asynchronous users with a processing gain of N = 128

with K = 50 users. Performance is maintained at 10−3 for large processing gains and

large numbers of users.
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Figure 4.9: Minimum Mean Square Error (MMSE)/Rake Receiver, Multistage Wiener
Filter (MWF) Implementation: Block Size (M) vs. BER; asynchronous CDMA;
spreading code length, N = 32 (Hadamard Codes); Eb/N0 = 15 dB; number of users,
K = 15; rank of MWF, D = 3; channel delay spread, L = 5; power of interfering
users/power of desired user, ∆P = 0 dB (MC=Monte Carlo).

4.3 MMSE Correlator Based Rake Receiver

4.3.1 Coherent Rake Receiver

In this section, it is shown how the conventional rake receiver can be modified such

that its performance is comparable to the MMSE/rake receiver as derived in the

preceding section [54]. It is then shown how to implement this new structure using

the MWF. In obtaining the result, it is also proved that the rake receiver can be

written compactly in terms of Eq. (4.3).

Recall that the performance of the rake receiver is limited in the presence of

multiple access interference (MAI). Assume without loss of generality that the user
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Figure 4.10: Minimum Mean Square Error (MMSE)/Rake Receiver, Multistage
Wiener Filter (MWF) Implementation: Eb/N0 vs. BER; synchronous CDMA; spread-
ing code length, N = 32 (Hadamard Codes); number of users, K = 15; rank of MWF,
D = 7; channel delay spread, L = 10; power of interfering users/power of desired user,
∆P = 6 [dB] (MC=Monte Carlo, AM=Analytical Model).

of interest is user one. To provide insight on how it may be possible to improve the

performance of the rake receiver to account for MAI, observe (see Figure 4.1) that

the decision variable of the output of the rake receiver configured to detect user one

can be written using the convolution integral as

ỹ =
L

∑

l=1

∫ T

0
s∗1(t− l/W )ĉl(t)r(t)dt. (4.4)

If it is assumed that the channel is slowly fading, then the channel coefficients can be

regarded as remaining constant over several chip periods. In this situation, Eq. (4.4)

can be written as

ỹ =
L

∑

l=1

ĉl

∫ T

0
s∗1(t− l/W )r(t)dt. (4.5)
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Figure 4.11: Minimum Mean Square Error (MMSE)/Rake Receiver, Multistage
Wiener Filter (MWF) Implementation: Rank (D) vs. BER; asynchronous CDMA;
spreading code length, N = 128 (Hadamard Codes); Eb/N0 = 15 dB; number of users,
K = 50; channel delay spread, L = 5; power of interfering users/power of desired
user, ∆P = 6 [dB] (MC=Monte Carlo, AM=Analytical Model).

Eq. (4.5) can be written in discrete form by exploiting the equivalent definition of

inner product for discrete time vectors, so that

∫ T

0
s∗1(t− l/W )r(t)dt = 〈̄s1, r〉 = s̄H

1 r, (4.6)

where s̄1 are shifted versions of the spreading code for user one in a time interval that

span multiple symbols and form the columns of a convolution matrix. So, now, Eq.

(4.5) can be written as

ỹ =
L

∑

l=1

ĉls̄H
1 r. (4.7)

Now, define ĉ = [ĉ1, ĉ2, ..., ĉL]T and β = [̄sH
1,0r, s̄

H
1,1r, ..., s̄

H
1,L−1r]

T where the second

subscript denotes the number of samples by which the code has been shifted. The
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columns of β form the outputs at each “finger” of the rake. One can further write β

in term of the convolution matrix of the spreading code. That is,

β = CH
s̄1
r, (4.8)

where the N + L− 1× L matrix Cs̄1 is given by

Cs̄1 =



























s1(1) ... 0

s1(2) ... 0
... . . . ...

s1(N) ... s1(N − 2)

0 ... s1(N − 1)

0 ... s1(N)



























. (4.9)

With this notation, Eq. (4.7) can be written as

ỹ = ĉHCH
s̄1
r. (4.10)

One can further rewrite Eq. (4.10) as

ỹ = sH
1 CH

c r = (Ccs1)Hr, (4.11)

where Cc is the channel convolution matrix defined analogously to the spreading

code convolution matrix. From the last equation, it is easy to recognize that the rake

receiver can now be expressed simply as

crake = Ccs1. (4.12)

The equality between this solution and that of Eq. (4.3) is clear, and thus the former

is validated.
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4.3.2 Derivation of MMSE Correlator

From Eq. (4.12), the standard rake receiver can be interpreted as a linear filter defined

by a matrix multiplication (or convolution) of the channel coefficients with the desired

user’s spreading code, i.e. a channel matched filter. It is desirable to utilize an MMSE

correlator in place of the matched filter sk to suppress the multiple access interference

(MAI) to improve upon the rake receiver’s performance. Using similar notation as in

the preceding section, the MMSE solution that combines multipath and is given in

Eq. (4.2) can be rewritten as

cMMSE = R̂−1Ccs. (4.13)

To derive the MMSE based correlator, first rewrite β from the preceding subsection

as

β = [rH
1 s1, rH

2 s1, ..., rH
L s1]H , (4.14)

where now the received signal has been time delayed according to each of the L

diversity paths. So, now, one can suppress the MAI for each delayed symbol along

each path of the rake receiver. To see this, apply MMSE to each delayed component

and rewrite Eq. (4.14) as

βMMSE = [(R−1
1 r1)Hs1, (R−1

2 r2)Hs1, ..., (R−1
L rL)Hs1]H (4.15)

or

βMMSE = [rH
1 R−1

1 s1, rH
2 R−1

2 s1, ..., rH
L R−1

L s1]H , (4.16)

where Rl = E[rlrH
l ] denotes the N × N covariance matrix windowed to the data

symbol corresponding to the lth diversity path, and l = 1, 2, ..., L. The desired MMSE

correlator can thus be defined as

sMMSEl = R−1
l s1. (4.17)
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Note that this correlator will be sub-optimal relative to the MMSE/rake receiver

described in the preceding section because the data window for suppressing the MAI

is now smaller than the convolved channel window.

4.3.3 Implementation Using MWF

It is now shown how the MMSE based correlator can be efficiently implemented using

the CSA-MWF. From the analogy between Eq. (4.2) and Eq. (4.17), it can easily be

seen that the MMSE correlator based rake can be implemented with the structure

shown in Figure 4.12. Here, L = 3 paths are assumed, so that the received signal is

delayed by 3 samples. The MWF applies the MMSE solution to each delayed path,

forming the MMSE solution in βMMSE, and then the delayed paths are combined

according to Eq. (4.7). A hard decision on the output ỹ(i) is used to obtain the bit

estimate. Note that this receiver implements the MMSE solution first, followed by

the rake, whereas the previously described MMSE/rake receiver reversed the order of

the operations.

4.3.4 Numerical Results

Figures 4.13, 4.14, and 4.14 are plots of Eb/N0 number of users (K) vs. BER. The

first two plots show Eb/N0 and number of users (K) versus BER for N = 16, re-

spectively, and the third plot shows a highly loaded N = 32 system. As expected,

this implementation of the CSA-MWF is slightly sub-optimal compared to the full

rank MMSE solution and MMSE/rake solution described previously. Note that the

sub-optimum performance is less prevalent in the low Eb/N0 regime, where the noise

dominates the errors. However, performance is close to optimal because in this case
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Figure 4.12: Minimum Mean Square Error (MMSE) Correlator Based Rake Receiver
Example; channel length, L = 3)

the delay spread (L) of the channel is much less than the symbol period. In gen-

eral, as the ratio L/N increases, the degradation of the MMSE correlator based rake

relative to the full rank MMSE will increase.
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Chapter 5

Reduced Rank Multiuser
Detection (MUD) and Interference
Suppression (IS)

In this chapter, the multiuser solution for asynchronous users in multipath is derived

and its implementation using the correlation subtraction architecture of the multi-

stage Wiener filter (CSA-MWF) is presented. It is shown that the multiuser detector

can be implemented in joint form or as a bank of parallel single user detectors, each

performing interference suppression (IS), with no loss in performance. In joint form,

the matched filter portion is a matrix of spreading codes, whereas in parallel form the

single user spreading codes are used. The relationship between the parallel multiuser

detector and the single user detector performing IS, as explained in the preceding

chapter, is provided. Analysis of the joint detector is discussed in Chapter 6. The

parallel MUD solution is compared to other full rank MUD solutions that exist in the

literature, e.g. in [35] and [95]. MUD is also explored in [10], [33], [36], [84], [97], and

[103].

A performance analysis is provided to determine the conditions under which the

multiuser detector implemented by the CSA-MWF performs optimally. It will be

72
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shown that the multiuser detector performs best when the cross-correlation between

the spreading codes is low, e.g. as with Gold codes, versus when the cross-correlation

is high, e.g. as with Hadamard codes. It will be shown that Gold codes will provide

much better performance than Hadamard codes in real channels in which perfect

orthogonality cannot be maintained, either due to the asynchronism among the users

or the spreading of the codes induced by multipath, thus underscoring the importance

of code choice for future generation systems. It is further shown that performance

that can be achieved with Gold codes by employing the reduced rank CSA-MWF

is often an order of magnitude or more better than with full rank MMSE. The

parallel implementation also does not require knowledge of the spreading codes of the

interfering users, and is therefore useful for forward link operation when the mobile

does not have this information. Simulation parameters are summarized in Table 5.1.

Table 5.1: Multiuser Detector Simulation Parameters: N=length of spreading
code, Eb/N0=Bit energy divided by single-sided noise power spectral density (PSD),
M=block size, K=number of users, D=rank of multistage Wiener filter (MWF),
L=channel delay spread, ∆P=power of interfering users/power of desired user

N Eb/N0 [dB] M K D L ∆P [dB] Synchronism
Fig. 5.4 32 12 5000 N/A N/A 5 0 Synchronous
Fig. 5.6 32 12 5000 N/A N/A 5 0 Asynchronous
Fig. 5.7 31 12 5000 N/A N/A 5 0 Synchronous
Fig. 5.8 31 12 5000 N/A N/A 5 0 Asynchronous

5.1 Derivation of Multiuser Detector

Recall that for the single user (SU) minimum mean square error (MMSE) receiver,

the receiver filter coefficients in multipath, denoted in vector form by ĉ, are chosen
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to minimize the MSE between the transmitted bit and its estimate, given by

MSESU = E[|b1(i)− ĉH r̂(i)|2], (5.1)

where E[·] denotes the expected value operator and (·)H represents the Hermitian

transpose operator. The subscript SU (for single user) will be used to distinguish

this solution from the multiuser solution. The MMSE solution in the presence of

multipath was shown to be given by Eq. (4.2), repeated here for convenience as

ĉMMSE = R̂−1ŝ1 = E [̂rr̂H ]
−1

ŝ1. (5.2)

For the MUD problem, the goal is to choose the receiver filter coefficients, denoted

now in matrix form by Ĉ, to minimize the mean square error (MSE) between the

vector of transmitted bits, b(i) = (b1(i) b2(i) ... bK(i)) and their estimates b̃(i) =

(b̃1(i) b̃2(i) ... b̃K(i)) for all k = 1, 2, ..., K users. This can be written as

MSEMUD = E[||b(i)− b̃(i)||2], (5.3)

where

b̃(i) = ĈH r̂(i). (5.4)

To obtain the MMSE solution, the above quantity must be minimized [81]. First,

using the identity ||x||2 = trace(xxH), where trace(X) is the sum of the diagonal

elements of matrix X, write

min
Ĉ

E[trace((b(i)− ĈH r̂(i))(b(i)− ĈH r̂(i))H)]. (5.5)

Since the trace of the covariance of a vector quantity is always non-negative, the trace

operation can be ignored. Expanding the quantity in brackets, one obtains

min
Ĉ

E[b(i)b(i)H − b(i)r̂(i)HĈ− ĈH r̂(i)b(i)H − ĈH r̂r̂HĈ]. (5.6)
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Next, from the linearity property of the E[·] operation, consider separately each of

the terms in the brackets:

• E[b(i)b(i)H ] = I

• E[b(i)r̂(i)HĈ]

= E[b(i)(b(i)HAŜ+H + b(i− 1)HAŜ−H + n(i))]Ĉ

= AŜ+HĈ

• E[ĈH r̂(i)b(i)H ]

= ĈHE[(Ŝ+Ab(i) + Ŝ−Ab(i− 1) + n(i))b(i)H ]

= ĈHŜ+A

• E[ĈH r̂r̂HĈ] = ĈHE [̂rr̂H ]Ĉ = ĈHR̂Ĉ.

In the second and third expression above, the fact that b(i) and b(i−1) are indepen-

dent, identically distributed random variables so that their expected value is zero has

been used. The fact that A is a real, diagonal matrix so that AH = A is employed.

Furthermore, since the noise n(i) is additive white Gaussian noise (AWGN), its sam-

ples are uncorrelated with the data, so the expected value of their product is zero as

well. The definition of the covariance matrix R̂ from Eq. (4.2) has been applied to

the last term. Substituting these expressions into Eq. (5.6), the MSE can be written

as

min
Ĉ

[I−AŜ+HĈ− ĈHŜ+A + ĈHR̂Ĉ]. (5.7)

To solve Eq. (5.7), take its gradient with respect to the minimization parameter Ĉ

and set the result equal to zero. This yields

−AŜ+H −AŜ+H + ĈHR̂H + ĈHR̂ = 0. (5.8)
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Now, using the property that the covariance matrix of a stationary discrete time

random process is Hermitian, or R̂H=R̂ [30], the final solution is given by

ĈMMSE = R̂−1Ŝ+A. (5.9)

Before proceeding to the implementation of this solution, a few important obser-

vations are discussed. First, note that the solution for the kth user can be written

individually by simply extracting the kth columns of Ŝ+ and of A. That is, the MUD

solution may be written as

ĈMMSE = [ĉ1/MMSE, ĉ2/MMSE, ..., ĉK/MMSE], (5.10)

where

ĉk/MMSE = R̂−1ŝ+
k Ak (5.11)

for the kth user. Thus, the matrix form of the MUD solution can be implemented in

vector form using parallel single user detectors. This agrees with the results stated

in [35]. Note the similarity between the MUD solution in Eqs. (5.9) and (5.11) and

the single user solution given in Eq. (4.2). Second, note that the synchronous solution

is obtained by setting Ŝ+ = Ŝ or setting ŝ+
k = ŝk in Eqs. (5.9)and (5.11), respectively

(with Ŝ− = 0 and ŝ−k = 0). Also, recall from Eq. (2.31) that the covariance matrix,

if expanded in terms of the received signal r̂(i) in Eq. (2.10), is given by

R̂ = Ŝ+A2Ŝ+H + Ŝ−A2Ŝ−H + σ2I. (5.12)

Even though in the presence of multipath, Ŝ+ and Ŝ− are not orthogonal, the inde-

pendence of the current bit b(i) and previous bit b(i − 1) forces the expectation of

the cross-terms to zero. This equation is similar to Eq. (10) of [32], which is shown

for the AWGN case.
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5.2 Implementation of Multiuser Detector using
the Multistage Wiener Filter (MWF)

For the multiuser detection (MUD) problem, the solution of Eqs. (5.9) or (5.11) show

that the MUD implementation can be obtained in matrix form (H0) or vector form

(h0,k) by replacing the initialization step of the CSA-MWF recursion equations with

H0 = Ŝ+ ; d0 = Ŝ+H x̃(i) (5.13)

or

h0,k = ŝ+
k ; d0,k = ŝ+H

k x̃(i), (5.14)

where in the case of Eq. (5.14) an additional subscript k has been added to indicate

that the recursions are now performed separately for each user k. That is, a bank of K

parallel Wiener filters, each operating in a reduced rank subspace, is employed. This

structure is shown in Fig. 5.1. In this figure, the subscript jk refers to stage j in

the correlation subtraction architecture (CSA) of the MWF for user k, respectively,

where a total of D stages and K users are assumed. As with the single user Wiener

filter, the bit estimates for each user are given by bk(i) = ε0k(i) for k = 1, 2, ..., K.

5.3 Comparison to Previous Multiuser Detectors

In this section, the full rank MMSE MUD solution obtained above is compared to

existing solutions presented in the recent literature. The differences between the

existing full rank solutions and the new reduced rank solution are described and

discussed. This is important to ensure that the new solution does not contradict

previous works. In [35], Eq. (9), the MUD solution is derived for synchronous users
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i( ) i( ) i( )

+

h h h h
2 12 22 22

++

+ +

x i( ) x i( )
22

d i( )02
d i(  )12

d i(  )
22

w2w1
02 2212

T
e
rm

in
a
to

r

s2

12

^ ŝ 12

i( ) i( ) i( )
.
.
.

h2Kh1K

+

h1K

User 1

User 2

User K

MWF
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and, using the same notation as in this dissertation, is given by

ĈMMSE = Ŝ(ŜHŜ + σ2I)−1. (5.15)

It can be shown via the Matrix Inversion Lemma (MIL), see e.g. [74], given below as

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1, (5.16)

that this solution can also be written as

ĈMMSE = (ŜŜH + σ2I)−1Ŝ. (5.17)
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Comparing the new solution in Eq. (5.9) to Eq. (5.17), it can be seen that the former

solution simplifies to the latter solution for the synchronous AWGN case. Indeed, by

letting Ŝ+ = Ŝ (and Ŝ− = 0) as would be for synchronous users, the new solution

is exactly that of Eq. (5.17). The amplitude matrix is absent because it is absorbed

into the spreading code matrix in Eqs. (5.15) and (5.17). Note that the same result

is also given in Eq. (15) of [33].

Another full rank MUD solution is presented in [95]. Converting this to the

adopted notation, and applying the MIL, this solution can be reformulated as

ĈMMSE = A−1[(ŜŜH + σ2A−2)−1Ŝ]. (5.18)

Since A is a diagonal matrix, the above equation can be written as

ĈMMSE = (ŜA2ŜH + σ2I)−1ŜA. (5.19)

This equation is also derived for the case of synchronous users in AWGN. Now, if

the same conditions are again assumed for the new solution, namely that Ŝ+ = Ŝ

(and Ŝ− = 0) as before and the value of R̂ given in Eq. (5.12) is substituted into

Eq. (5.9), the solution of Eq. (5.19) is found to be identical. Thus, it is seen that

under the same conditions, the new MUD solution agrees with the full rank solutions

in the literature. However, the solution derived herein is more general in that it

can be applied to asynchronous users in multipath environments. Furthermore, it is

emphasized that computation of these full rank solutions is not feasible in practice

due to the inability to obtain and/or invert the covariance matrix R̂. Thus, the

reduced rank solution is highly useful.

Note that in practice, for the reverse link of a cellular communications system,

either the parallel or the matrix multiuser detectors can be applied. In the parallel
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case, only synchronization with the desired user is necessary for each SU detector, and

all other users are suppressed. In the forward link, the handset is only interested in

detecting one user, so in this case an SU detector performing IS is sufficient. However,

performance will be the same as if each user performs MUD. Finally, note that the

above derivation only suggests the use of a reduced rank scheme to implement the

MUD solution in the form of a parallel bank of Wiener filters. It does not state

that the rank of the parallel scheme will be equivalent to the rank of the joint MUD

solution. In general, this will not be the case, as is analyzed in the next chapter.

5.4 Performance Analysis

In the previous section, it is shown that the optimum linear solution to the MUD

problem can be implemented in reduced rank form using a bank of parallel CSA-

MWF receivers, each performing IS. In this section, an analysis is performed to show

how the bit error rate (BER) varies as a function of rank, the number of users and the

synchronism among the users, and even the type of code employed (i.e. Hadamard

or Gold code). First, note from Eqs. (5.4) and (5.10) that one can write the bit

estimates for each user individually as

b̃k(i) = ĉH
k/MMSE r̂(i). (5.20)

Substituting for ĉk/MMSE using Eq. (5.11) and for the received signal using Eq. (4.1),

the solution can be written explicitly as

b̃k(i) = R̂−1ŝ+H
k Ak[Ŝ+Ab(i) + Ŝ−Ab(i− 1) + n(i)]. (5.21)

It is seen from this equation that the quality of the bit estimates is largely determined

by the ability of the receiver to suppress the cross-correlation of the desired user’s
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code with the codes of the interference; this implies that for good performance ŝ+H
k Ŝ+

i

and ŝ+H
k Ŝ−i should be as close to zero as possible for all i 6= k, in which Ŝ+

i and Ŝ−i

denote the ith columns of Ŝ+ and Ŝ−, respectively. Note that when i = k, ŝ+H
k Ŝ+

i = 1

and ŝ+H
k Ŝ−i = 0 [82]. Thus, codes that have low cross-correlation properties are

highly desirable. The codes currently in use on CDMA systems, and the ones being

considered for the future generation systems are Hadamard and Gold codes. A brief

description of each type of code is now provided to determine which ones have the

most desirable properties.

Hadamard Codes : Hadamard codes are obtained from the columns of square

Hadamard matrices. In a Hadamard matrix, the rows and columns form mutually

orthogonal vectors containing elements only in (+1,−1) [44]. The simplest 2 × 2

Hadamard matrix is given by

H2 =

[

1 1

1 −1

]

. (5.22)

Hadamard codes of increasing powers of two can be found from the recursion

H2N =

[

HN HN

HN H̄N

]

, (5.23)

where N must be a power of two and H̄N denotes the complement of HN . Further-

more, if Ha and Hb are Hadamard matrices of order a and b, respectively, then Hab

is also a Hadamard matrix that is given by Ha ×Hb.

Gold Codes : While pseudo-random (PN) sequences have good auto-correlation

properties, their cross-correlation properties can produce large peaks. Thus, while

these sequences have desirable properties for CDMA applications, they are problem-

atic in multiuser environments when each user transmits with a distinct PN code. As

mentioned before, these codes limit the capacity of existing CDMA systems on the
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reverse link. Gold codes are generated by the modulo-2 addition of two PN sequences

that have been generated by two distinct polynomials. These codes were discovered

[18] to overcome the cross-correlation problems of PN sequences. These codes are

also easily generated, as two length n shift registers can produce 2n + 1 Gold codes,

compared to only Φ(2n − 1)/n PN sequences. Here, Φ(x) denotes Euler’s number,

equal to the number of positive integers that are relatively prime to all the numbers

less than x.

The cross-correlation functions of the length N = 32 Hadamard codes and length

N = 31 Gold codes are illustrated in Fig. 5.2. The zeroth lag of the output cor-

relation is in the middle of the grid, at element or row N . The corresponding plot

showing the orthogonality properties is shown in Fig. 5.3. From these figures, note

that Hadamard codes are orthogonal, but they have poor cross-correlation proper-

ties. Thus, when these codes are used as the spreading sequences in the case of

asynchronous users and/or a multipath environment, performance is expected to de-

grade as the number of users increases. On the other hand, Gold codes have a limit

in the maximum cross-correlation peak, and this limit is well-defined [65]. They also

maintain good orthogonality. This is the reason why Gold codes should now be the

preferred spreading codes of future CDMA systems, whereas Hadamard codes are

used only to provide orthogonal modulation. This feature of Gold codes is especially

important on the reverse link, where asynchronous transmission precludes the ability

of the Hadamard codes to suppress large amounts of interference. Of course, in the

absence of multipath, synchronous Hadamard codes would outperform Gold codes,

given their ideal orthogonality properties [82]. Thus, for the forward link, which

has synchronous transmission, if multipath is not severe, then the Hadamard code
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is more suitable. This analysis clearly shows that future system designers should

consider code selection carefully.

Now, the overall cross-correlation threshold of the Gold codes is lower. Thus, it is

to be expected that these codes will perform at least as well as the Hadamard codes

in the synchronous case, but better than the Hadamard codes in the asynchronous,

multipath case. It is also expected that the performance will degrade as the number of

users is increased for asynchronous Hadamard codes and synchronous or asynchronous

Gold codes, as the properties are less than ideal. Synchronous Hadamard codes,

however, will not cause degradation as the number of users increases, as their ability to

suppress the perfectly orthogonal interference is maintained, although with multipath,

slight losses are incurred. In addition, for both Hadamard and Gold codes, as the

number of users increases, the optimum rank required to meet the full rank MMSE

performance will increase. But, it is important to note that this is not a linear

function, and performance is still optimum at a much reduced rank. This is an

outstanding feature of the MWF that makes it a promising tool in a multitude of

applications. Furthermore, it has been shown [32], that performance at low rank

may exceed that of full rank. This can occur if the codes have good correlation

properties that enable the MWF to suppress interference more reliably, as with Gold

codes. These remarks are validated with simulation results using both Hadamard

and Gold codes, presented in the next section.

5.5 Numerical Results

In this section, results obtained from Monte Carlo simulations to show the validity

of the MUD solution derived above and its performance as a function of rank (D)
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Figure 5.2: Cross-Correlation Functions (Hadamard and Gold Codes); spreading code
length, N

and the number of users (K) are presented. Simulation results for synchronous and

asynchronous users as a function of rank using Hadamard and Gold codes of length

N = 32 and N = 31, respectively, are shown. The BER obtained is an average over

all the users present in the system using the parallel MUD implementation shown in

Fig. 5.1. The BER of the full rank MMSE receiver is averaged over all the runs for a

better estimate, as its performance is independent of rank. The results are analyzed

next.

Fig. 5.4 shows a plot of rank of the MWF versus the BER for synchronous,

Hadamard codes. It is observed that performance meets, and even exceeds, full rank

for 5, 10, and 15 users at extraordinary low ranks of about 1, 1, and 2, respectively.

Furthermore, the BER converges to the same value in both cases. As mentioned
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Figure 5.3: Orthogonality Functions (Hadamard and Gold Codes); spreading code
length, N

above, this is due to the orthogonality property of the Hadamard codes and the abil-

ity of the MWF to suppress the orthogonal interference. The performance of the

MWF does not significantly degrade except for the 15 user case at rank 1, i.e. a one

stage filter. The MWF performance at these low ranks meets the full rank MMSE

and maintains performance as rank increases.

The next curve in Fig. 5.6 shows rank versus BER for the case of 5, 10, and 15

asynchronous Hadamard codes. In this case, convergence of BER is seen at ranks

of only 1, 1, and 5, respectively. But, note that unlike the synchronous case, the

BER degrades slightly as more users are added to the system. As pointed out earlier,

while Hadamard codes maintain orthogonality, they also have poor cross-correlation

properties in general, and thus gradual degradation is expected with the asynchronous

case as the number of users increases. Note also the overall performance degradation
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versus the synchronous case, which again is attributed to the poor cross-correlation

properties.

Recall for speech transmission, the BER should be about 10−3 or better to be

considered operational. This translates to a minimum signal-to-noise ratio (S/N)

requirement of about 30 dB. The simulations above show that in the synchronous

case, the Hadamard codes fail to support the increasing capacity. For asynchronous

users, Hadamard codes fail even with a capacity as low as 5 users. Thus, these

codes are not suitable for future generation links, especially when users are asyn-

chronous. To improve the performance on such a link, forward error control (FEC)

would be needed. Convolutional codes are used in IS-95 to improve the BER, and

it is seen that the Hadamard codes will not perform acceptably without them. A
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convolutional encoder is used to add redundancy to the information bits prior to mod-

ulation [99]. The purpose of encoding is to reduce the required Eb/N0 at the receiver

at versus that of an uncoded system at the same BER. This difference in Eb/N0

is known as coding gain. An example of a rate 1
2 recursive convolutional encoder

(RCC) of constraint length equal to 3 is shown in Fig. 5.5. This is an example of an

encoder that employs recursive feedback so that for each information bit, denoted x

in the figure, the encoder transmits an additional parity bit, denoted p. The inherent

limitations of Hadamard codes are overcome by Gold codes, as seen next.

x(i)
+ D

a(i) a(i-1)
D

+

a(i-2)

+

x(i)

p(i)

D = Unit delay

Figure 5.5: Rate 1
2 Recursive Convolutional Encoder (RCC); x(i)=input bit,

p(i)=parity bit at time i

Fig. 5.7 shows rank versus BER for the case of 5, 10, and 15 synchronous users

with Gold sequences. In this case, convergence of BER is seen to occur quickly, at

ranks of only 1 or 2. Note that the MWF performance exceeds full rank performance

by up to two orders of magnitude at ranks from 2 to 9, but then eventually converges



88

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Rank (D)

B
E

R

Full Rank MMSE
MWF           

K = 5 

K = 10 

K = 15 

Figure 5.6: Multiuser Detector: Rank (D) vs. BER; asynchronous CDMA; spreading
code length, N = 32 (Hadamard Codes); Eb/N0 = 12 dB; channel delay spread,
L = 5; power of interfering users/power of desired user, ∆P = 0 dB

again. This effect is not observed for the case of Hadamard codes and can be ex-

plained by observing that the slight asynchronism produced by the multipath results

in Hadamard codes separated by a very small amount. From Fig. 5.2, it is seen that

this in turn results in high correlation peaks, which makes suppression difficult. In

the case of the Gold codes, the high correlation peaks do not occur. This dramatic

effect has also been shown in [32] and is a remarkable property of the MWF to si-

multaneously achieve a convergence substantially better than that achieved with full

rank MMSE and a dramatically reduced computational burden as well. Intuitively

speaking, the MWF achieves the best of both worlds - faster convergence and re-

duced computation - by applying the information inherently contained in both the

covariance matrix and the cross-correlation vector in choosing the reduced-dimension
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subspace in which the weight vector is constrained to lie. Finally, note that unlike

the synchronous Hadamard codes, degradation in performance is observed with syn-

chronous Gold codes. Again, this is due to the orthogonality properties, which are

less than ideal.
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Figure 5.7: Multiuser Detector: Rank (D) vs. BER; synchronous CDMA; spreading
code length, N = 31 (Gold Codes); Eb/N0 = 12 dB; channel delay spread, L = 5;
power of interfering users/power of desired user, ∆P = 0 dB

Fig. 5.8 shows rank versus BER with 5, 10 and 15 asynchronous users using Gold

codes. In this case, convergence of BER is seen at ranks of 1, 3, and 4. Note that

unlike the synchronous case, the BER here also degrades as more users are added

to the system. As seen in Fig. 5.2, while Gold codes have good cross-correlation

properties, there still exists some correlation among them, and this effect is enhanced

by the imperfect orthogonality, as seen also in Fig. 5.7. In the 15 user case, some form

of coding would be needed to improve the BER. Nevertheless, the advantage of the
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reduced rank MWF in terms of performance and rank reduction is clearly seen. Also,

the benefit of employing codes with low correlation properties is clear.
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Figure 5.8: Multiuser Detector: Rank (D) vs. BER; asynchronous CDMA; spreading
code length, N = 31 (Gold Codes); Eb/N0 = 12 dB; channel delay spread, L = 5;
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Chapter 6

Joint Reduced Rank Detection
Techniques

In this chapter, the performance of the reduced rank adaptive filtering methods in

the context of diversity processing schemes, including joint code-time processing

(CTP), or multiuser detection (MUD), and joint space-time processing (STP) will

be shown. Implementation is again described in terms of the correlation subtraction

architecture of the multistage Wiener filter (CSA-MWF). For the joint multiuser

detector, which uses a steering matrix whose columns are the spreading codes of all

the users, convergence is shown to occur at a rank of only one. This effect occurs

because the blocking matrix implicitly formed by the MWF constrains the weight

vector for each user to lie in a subspace orthogonal to that of the other users from

the first stage. This remarkable convergence property of the joint multiuser detector

makes it a strong contender for use in future systems. The joint space-time processor

is an natural extension in which the MWF is applied to a scheme employing multiple

receive antennas for diversity. The complexity introduced by the multiple antenna

structure is countered by the low complexity implementation of the MWF. The sig-

nificant gains that can be obtained with such an architecture can therefore be applied

91
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to future generation systems without concern for decoding complexity.

Both of these new architectures, of course, are suitable for the reverse CDMA

links. The joint multiuser detector can be employed by the base station, which always

has knowledge of the spreading codes of all the users. Since it is the base station which

has to demodulate signals from multiple users, the low complexity decoding scheme

introduced by the joint MUD scheme presented here is invaluable. Furthermore,

multiple receive antennas can be deployed at the base station but not at the mobile,

as the size of the handsets should always be made small. The extension to a three-

dimensional joint space-time-code processing (STCP) scheme is straightforward and

will be described briefly as well.

The parameters for simulations performed using the joint multiuser detector are

summarized in Table 6.1. Here, it will be shown that the matrix MUD performs

optimally at a rank of only one compared to the vector MUD, but both meet or

exceed minimum mean square error (MMSE) performance at low ranks. Similarly,

Table 6.2 summarizes the simulation parameters for the space-time processor. Here,

it will be shown that with 5 receiver antennas, gains of 7 performance gains of 7 dB

or more can be achieved at bit error rates of 10−3 or less.

Table 6.1: Joint Code-Time Processing (CTP) Simulation Parameters: N=length of
spreading code, Eb/N0=Bit energy divided by single-sided noise power spectral den-
sity (PSD), M=block size, K=number of users, D=rank of multistage Wiener filter
(MWF), L=channel delay spread, ∆P=power of interfering users/power of desired
user

N Eb/N0 [dB] M K D L ∆P [dB] Synchronism
Fig. 6.3 32 N/A 5000 12 7 5 6 Synchronous
Fig. 6.4 32 12 5000 15 N/A 5 Random Synchronous
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Table 6.2: Joint Space-Time Processor Simulation Parameters: N=length of spread-
ing code, Eb/N0=Bit energy divided by single-sided noise power spectral density
(PSD), M=block size, K=number of users, D=rank of multistage Wiener filter
(MWF), L=channel delay spread, ∆P=power of interfering users/power of desired
user

N Eb/N0 [dB] M K D L ∆P [dB] Synchronism
Fig. 6.6 32 N/A 5000 15 5 5 0 Asynchronous
Fig. 6.7 32 N/A 5000 30 5 5 0 Synchronous
Fig. 6.8 32 N/A 5000 30 5 5 6 Synchronous
Fig. 6.9 31 N/A 5000 30 5 5 6 Synchronous

6.1 Joint Code-Time Processing (CTP)

6.1.1 Code-Time Processor Description

In this section, the solution which implements the matrix version of the MUD solution

is analyzed further; this receiver is also called a joint code-time processor. This

requires an N ×K matrix of steering codes in place of the single user N × 1 steering

vector as is implemented in Chapters 4 and 5. The joint full rank MMSE matrix

solution was derived in Chapter 5, and given in Eq. (5.9), which is repeated here for

convenience as

ĈMMSE = R̂−1Ŝ+A. (6.1)

Recall that R̂ is the covariance matrix of the data, Ŝ+ is the matrix of spreading

codes of the current bit in the asynchronous transmission, and A is the diagonal

matrix of amplitudes. The implementation of this solution via the multistage Wiener

filter (MWF) requires a matrix form of the correlation subtraction architecture (CSA)

of the MWF to replace the original vector form.

To derive the exact matrix solution, first consider an alternate solution to the
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multistage decomposition where the optimum matrix multistage Wiener filter can

be obtained by minimizing the MSE of the MUD problem, given in Eq. (5.3) and

rewritten here as

MSEMUD = E[||b(i)− b̃(i)||2] = E[||b(i)− ĈH r̂(i)||2]. (6.2)

For simplicity in the derivation, synchronous CDMA is assumed here. Substituting

for the received signal r̂(i) using Eq. (2.12),

MSEMUD = E[||b(i)− ĈHŜAb(i)− ĈHn(i))||2] (6.3)

which can be expanded as [19]

MSEMUD = E[||b(i)− ĈHŜAb(i)||2] + trace(ĈHRnĈ), (6.4)

where Rn is the covariance matrix of the white noise samples. A further constraint

is now imposed which requires that the minimum solution be independent of the bit

estimates. In other words, the MSE should be independent of b(i), producing an

unbiased solution. This condition in turn implies that the first term in Eq. (6.4) be

zero, yielding the constraint

ĈHŜA = IK×K , (6.5)

where IK×K is the K × K identity matrix. Note that the constraint results in the

signature waveforms S being passed undistorted. Then, the MMSE solution can be

written simply as

MMSEMUD = minC trace(ĈHRnĈ) (6.6)

under the constraint given in Eq. (6.5). The solution to the above equation can

be obtained by breaking up the multidimensional problem into K single constraint
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problems. That is, solve

MMSEMUD = minci trace(ĉH
i Rnĉi) (6.7)

subject to the constraint

ĉH
i ŝiAi = δij, (6.8)

where δij is the Kronecker delta function, and j = 1, 2, ..., K. The solution is

obtained using Lagrange multipliers [19] and is given by

ci = R−1
n S(SHR−1

n S)−1ui, (6.9)

where ui is the K × 1 vector in which the ith element is one and the remaining K − 1

elements are zero. The matrix form can then be written as

C = R−1
n S(SHR−1

n S)−1. (6.10)

While the above equation provides a joint solution to the MUD problem using

the unbiased constraint assumption, it is seen that covariance matrix inversion is

again required. This requirement will now be relaxed by performing a decomposition

similar to that in Chapter 3.

To construct the decomposition, first formulate the matrix filter in the form of a

generalized sidelobe canceller (GSC) as shown in Figure 6.1. Define

∆0 = (SHS)1/2. (6.11)

As in the previous chapter, H0 is the normalized matrix of spreading codes, given by

H0 = S∆−1
0 , (6.12)
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Figure 6.1: Matrix Form of Multistage Wiener Filter (MWF) as Generalized Sidelobe
Canceller (GSC)

and B0 is the blocking matrix for H0. Define the transformation

T0 =

[

HH
0

B0

]

, (6.13)

and define the output of the first stage of the decomposition, shown in Figure 6.1, by

z0 = T0X0. (6.14)

Note that d0(i) is the matched filter output. The covariance matrix of the transformed

process z0 is given by

Rz0 = T0RX0T
H
0 , (6.15)

where RX0 is the covariance matrix of the input process X0. Solving the above

equation for RX0 , one obtains

RX0 = T−1
0 Rz0T

−H
0 , (6.16)

or

R−1
X0

= TH
0 R−1

z0
T0. (6.17)
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Continuing the decomposition, it can be shown that the covariance matrix of the

process after D stages can be written as

RzD = TDRX0T
H
D , (6.18)

where

TD =















HH
0

HH
1 B0

HH
2 B1B0

...















, (6.19)

and so

R−1
X0

= TH
DR−1

zD
TD. (6.20)

Finally, the optimum Wiener solution is obtained by substituting Eq. (6.20) into the

matrix Wiener filter solution in Eq. (6.1) to yield

CMMSE = TH
DR−1

z0
TDŜ+A. (6.21)

A full rank matrix inversion is still observed in this solution, but the matrix can

be truncated to less than full rank. The rank one decomposition is performed by

retaining only the first two rows of TD, equivalent to T1, or

T1 =

[

HH
0

HH
1 B0

]

, (6.22)

which gives the simple solution

CMMSE = TH
1 R−1

z0
T1Ŝ+A. (6.23)

For this solution, the claim of reduced rank processing can still be made even though

a matrix inversion is required as long as K < N/2. This is true because the dimension
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of the matrix to be inverted is now 2K × 2K versus the original covariance matrix

dimension of N ×N . Thus, while the computational reduction is not as pronounced

as with the multistage Wiener filter, the reduction is still significant. As an example,

if K = 10, and N = 32, the matrix MWF implemented this way requires on the order

of 203 = 8, 000 flops, versus the full rank of 323 = 32, 768 flops, an improvement by a

factor of approximately 4.

In [8] and [19], it is also shown that the optimum Wiener filter can be written as

CMMSE = TH
0

[

I

−R−1
X1

RX1d1

]

∆−1
0 = (H0 −BH

0 W1)∆−1
0 , (6.24)

as shown in Figure 6.1. The decomposition outlined above would thus also yield

the optimum Wiener filter. The multistage decomposition of this solution (given in

detail in [19]) yields the filter of Figure 6.2, which is directly analogous to the single

user MWF. Note that this solution provides the best reduced rank implementation,

matrix inversions have been eliminated. Furthermore, this matrix MWF can often

be truncated after only one or two stages because of its use of all the users’ spreading

codes as a multiple constraint. In fact, construction of the blocking matrix as B0 =

(I −H0HH
0 ) forces the weight vectors for each user to be orthogonal to those of the

other users, so typically only one stage is required. The quantities H0 and d0 are

defined in Eq. (5.13). Note that now ε0(i) is a 1×K vector containing the bit estimates

of all the users instead of a scalar for a given user, i.e. ε0(i) = [ε01(i) ε02(i), ..., ε0K(i)],

where ε0k(i) refers to the bit estimate for the kth user at time i.

The rank one solution can be obtained using the standard MWF with the steering

vector replaced by the steering matrix. The multistage decomposition using this solu-

tion assumes (as for the vector MWF), that the covariance matrix is tri-diagonalized
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at each stage. This assumption is not valid for the matrix MWF, because the co-

variance matrix is now full rank and banded, and further research must be done

to determine the recursion equations in the multistage decomposition. This is be-

yond the scope of this dissertation, but simulation results and the alternate solution

given above indicate that truncating the decomposition after one stage is sufficient,

so violation of this assumption is not important. Significant rank reduction is thus

attained.
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Figure 6.2: Joint Code-Time (Matrix) Form of Correlation Subtraction Architecture
of the Multistage Wiener Filter (CSA-MWF) Processor, D = 2 stages

The matrix MWF operates on all of the spreading codes and thus maximizes the

mutual information between the received data and the spreading codes jointly. Thus,

the only interference that it requires to suppress is the additional noise and multi-

path. Using the MMSE/rake concept, the multipath can be handled. Regardless of

this, it is expected that the joint (matrix) CSA-MWF will converge much quicker in

terms of rank than its single user counterpart. This claim is validated with simulation

results next. Note that for this matrix CSA-MWF to jointly process all the users, they

must be synchronous. This means that the incoming data from many asynchronous
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users must be synchronized first before applying the matrix CSA-MWF.

6.1.2 Numerical Results

In this section, the matrix MUD is compared to the vector MUD derived in Chapter 5

using Monte Carlo simulations. The parallel form of the CSA-MWF is denoted ‘Vector

MUD’ and the joint CTP form of the CSA-MWF is called ‘Matrix MUD’. The matrix

MWF of Figure 6.2 is used to implement the joint CTP.

Figure 6.3 shows a plot of Eb/N0 vs. bit error rate (BER) for synchronous users,

N = 32 Hadamard codes and K = 12 users. Note the remarkable ability of the joint

CTP implemented by the CSA-MWF to suppress interference rapidly. In fact, while

the vector CSA-MWF requires only a rank of seven to achieve the full rank solu-

tion, the matrix solution requires only an astounding rank of one (i.e. one stage) to

achieve the full rank solution, as explained in the preceding section. While this may

not always be the case, e.g. when inter-cell interference or other external sources of

interference are present, simulations for fully loaded systems have repeatedly shown

that a rank of one or at most two is sufficient. Note that if there is inter-cell inter-

ference from another cell using the same frequency and another user employing the

same spreading code, other interference mitigation techniques are required. Since

this type of signal will be correlated with that of the user of interest in the desired

cell, the interference it creates will leak through the CSA-MWF.

Fig. 6.4 shows a plot of rank of the multistage Wiener filter versus the BER for

synchronous users. The powers of some of the users are randomly set up to 4 dB above

the others to simulate a near-far scenario. The slight variation in BER for the MMSE

and rake methods is due to the nature of the Monte Carlo simulation, since their

performance is independent of rank. Note that the matrix multiuser detector achieves
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Figure 6.3: Joint Code-Time CSA-MWF Processor: Eb/N0 vs. BER; Synchronous
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better than full rank performance at a rank of only one, by employing knowledge of all

the users’ spreading codes. For a rank as low as 3, the vector MWF converges to the

matrix MUD solution and maintains this performance as rank increases. The matrix

multiuser detector is held at rank one, and thus the performance curve across rank

is flat. On the other hand, the rank of the vector MWF increases, and it eventually

converges to match the full rank MMSE solution. The performance of the vector

MUD does not substantially degrade even at a rank as low as 2, which is significantly

less than the processing gain of N = 32. Again, the rake receiver fails in the presence

of interference. Note that even here, because synchronous Hadamard codes are used,

MWF performance is seen to do better than MMSE at low rank.



102

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

Rank (D)

B
E

R

Full Rank MMSE
Matrix MUD
Vector MUD
RAKE Receiver

Figure 6.4: Joint Code-Time Form of Correlation Subtraction Architecture of the
Multistage Wiener Filter (CSA-MWF) Processor: Rank (D) vs. BER; synchronous
CDMA; spreading code length, N = 32 (Hadamard Codes); Eb/N0 = 12 dB; number
of users, K = 15; channel delay spread, L = 5

6.2 Joint Space-Time Processing (STP)

6.2.1 Space-Time Processor Description

In this section, the performance gains using a joint space-time adaptive pre-processor

at the receiver in conjunction with multiple receiver antennas is determined. In [67],

a two-dimensional matched filter is shown to provide spatial and temporal diversity

gain for DS-CDMA. Figure 6.5 shows the structure of the pre-processor assuming the

number of receiver antenna elements is Lr. This structure is similar to that cited in

[45], [52], and [53]. The receiver coefficients to be computed by the adaptive process

are represented in matrix form by C = [c1, c2, ..., cLr ], where each cl represents the

N × 1 vector of coefficients at receiver antenna element l. It is assumed that a linear
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antenna array is used, with equally spaced elements. Note that with a single array

element, we simply set

C = c1 = ŝ1. (6.25)

With multiple array elements, the received signal is computed by taking the Kro-

necker product of the incoming vector and the receiver array manifold [45]. This

represents the phase shift produced on an incoming waveform impinging upon mul-

tiple, equally spaced elements from a random direction. The phase shift θk is related

to the separation between the elements. The array manifold can be written as

a(θk) =





















1

e−jθk

e−j2θk

...

e−j(Lr−1)θk





















. (6.26)

The matched filter at the receiver following the pre-processor is also given by a

Kronecker product, resulting in a space-time spreading code denoted by

sκ
k = a(θk)⊗ sk, (6.27)

where the superscript κ denotes Kronecker. The MMSE/rake concept can also be

exploited to include multipath compensation. This yields

ŝκ
k = a(θk)⊗ ŝk, (6.28)

The receiver can now process the data as usual, using an MMSE or MWF based

detector. The effect of taking a Kronecker product is that now all dimension N signals

now become dimension NLr. That is, x0(i) and d0(i) are now NLr× 1 vectors. This

in turn means that the covariance matrix R̂ also increases in each dimension by a
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factor Lr. Even for a three or four antenna system, the computational complexity

associated with inverting such a matrix can be tremendous. Since this type of matrix

inversion is usually not practical for a real-time system, it is desirable to determine

an implementation of the solution with the reduced rank CSA-MWF.

Noting the analogy between the data dimensions and covariance matrices from

the original MWF structure, it is observed that the CSA-MWF can be employed by

initializing with the pre-processor matched filter. In other words, set h0(i) in the

original structure (Figure 3.4) equal to the spreading code given in Eq. (6.28), which

is the new matched filter.

Note that the joint code-time processor of the preceding section and the space-time

processor can be combined to form a joint space-time-code processor (STCP). This

would involve forming a Kronecker product on the spreading code matrix, namely,

Ŝκ = [̂sκ
1 ŝκ

2 , ..., ŝκ
K ] = [a(θ1)⊗ ŝ1, a(θ2)⊗ ŝ2, ..., a(θK)⊗ ŝK ]. (6.29)

As with the single receiver antenna structure, this could be implemented in either

joint (matrix) or parallel (vector) form.

6.2.2 Numerical Results

A plot showing the BER versus Eb/N0 for Lr = 1 (no space-time gain) and Lr =

5 antenna elements in a Monte Carlo simulation is shown in Figure 6.6. For the

simulation, length N = 32 asynchronous Hadamard codes are used for spreading, the

number of users is K = 15, the rank of the CSA-MWF is D = 5, and the number of

bits per block is M = 1000. All the users have normalized equal power. Note that

the analytic gain can be computed by taking

GSTP = 10 · log10Lr, (6.30)
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which for Lr = 5 yields about 7 dB gain. From the plot, it is seen that this is the gain

achieved over low bit error rates. Even with two or three receiver antennas, significant

gains of about 3 or 4.75 dB can be achieved, respectively. This would be a suitable

technique for the reverse link of a CDMA system, where multiple antennas can be

deployed at the base station without significant cost. To improve transmission on

the forward link, transmit antennas could be employed with similar processing gains

expected. Alternatively, space-time codes exploiting multiple transmit antennas could

be used, so that again the burden is placed on the base station. These are described

in Chapter 8. A similar plot showing the curves for a highly loaded system supporting

K = 30 synchronous users is presented in Figure 6.7. Here the performance as Eb/N0

increases does not fall off as steeply as with the previous plot. This, of course, is due

to the large number of interfering users present in the system. But, gains of 5 − 7

dB over the non-diversity case are still achieved. The last plot shown in Figure 6.8

repeats the results of the previous plot except that the desired user is 6 dB below all

of the interferers. Significant gain with the multiple antennas is still observed. Note,

as seen in Chapter 5 with MUD performance using Hadamard and Gold codes in

multipath, that all of the above results would improve if Gold codes are used. Figure

6.9 shows a sample result with Gold codes of length 31 using the same simulation

parameters as in Figure 6.8.
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Chapter 7

Non-linear Reduced Rank
Multiuser Detection (MUD) and
Interference Suppression (IS)

In this chapter, conventional non-linear interference cancellation (IC) techniques are

implemented using the efficient correlation subtraction architecture of the multistage

Wiener filter (CSA-MWF). Thus, interference suppression (IS) is done at each succes-

sive stage in place of the matched filter (MF). Serial interference cancellation (SIC)

and parallel interference cancellation (PIC) schemes are considered. The non-linearity

occurs because hard decisions are performed to obtain bit estimates for cancellation

and a feedback loop is employed to cancel successive users. The analytical model

(AM) is expanded to determine the probability of error associated with these inter-

ference cancellation schemes, and these models are compared to the results obtained

with Monte Carlo (MC) methods for a simple case of one interferer to validate the

Monte Carlo method. Simulations of the SIC and PIC are then performed via Monte

Carlo methods when multiple interferers are introduced as analytical evaluation be-

comes difficult. Performance of these non-linear MWF/SIC and MWF/PIC are com-

pared to conventional cancellation schemes involving the matched filter (MF/SIC and

111
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MF/PIC) as well as the standard full rank MMSE and rake receiver. Performance is

expected to improve greatly over the conventional cancellation schemes as the num-

ber of users increases, as the matched filter fails when multiple users are present. It

is shown that these new techniques perform better than full rank MMSE, with the

additional benefit of lower complexity. It is also shown that the new non-linear SIC

and PIC receivers continue to perform well even where conventional SIC and PIC fail.

Table 7.1 summarizes the simulation parameters for the serial interference can-

celler. It will be shown that as the number of users increases, the MWF performs

consistently better than MMSE by about 2 dB, and continues to maintain its per-

formance even at low error rates. The conventional SIC, however, fails quickly as

the number of users is increased. Table 7.2 summarizes the simulation parameters

for the parallel interference canceller. In this case, it will be shown that significant

performance gains, about 1−4 dB over conventional MMSE and about 2−6 dB over

conventional PIC, can be achieved at bit error rates from 10−3 to 10−6. In both of

the new schemes, it is shown that a large number of users can be easily supported,

thereby enabling larger capacities for future systems. The conventional SIC and PIC

schemes are not suitable for the high capacity CDMA systems of the future.

Table 7.1: Serial Interference Cancellation (SIC) Simulation Parameters: N=length
of spreading code, Eb/N0=Bit energy divided by single-sided noise power spectral
density (PSD), M=block size, K=number of users, D=rank of multistage Wiener
filter (MWF), L=channel delay spread, ∆Pstep=power step size

N Eb/N0 [dB] M K D L ∆Pstep[dB] Synchronous
Fig. 7.3 31 N/A 5000 10 5 5 1 Synchronous
Fig. 7.4 31 N/A 5000 15 5 5 1 Synchronous
Fig. 7.5 31 N/A 5000 20 5 5 1 Synchronous
Fig. 7.6 31 N/A 5000 25 5 5 1 Synchronous
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Table 7.2: Parallel Interference Cancellation (PIC) Simulation Parameters: N=length
of spreading code, Eb/N0=Bit energy divided by single-sided noise power spectral
density (PSD), M=block size, K=number of users, D=rank of multistage Wiener
filter (MWF), L=channel delay spread, ∆P =power of interfering users/power of
desired user

N Eb/N0 [dB] M K D L ∆P [dB] Synchronous
Fig. 7.9 31 N/A 1000 20 8 5 0 Synchronous
Fig. 7.10 31 N/A 1000 25 12 5 0 Synchronous
Fig. 7.11 31 N/A 1000 20 (3 Cells) 12 5 0 Synchronous

7.1 Serial Interference Cancellation (SIC)

The conventional serial interference canceller (SIC) provides cancellation of strong

users first by either prior knowledge of each user’s transmitted power or by estima-

tion of the user’s power via a correlation of its spreading code with the received

signal. The correlation is obtained using a filter matched to the spreading code of

the desired user. A hard decision on the correlator output is used to regenerate the

decoded signal and subtract it out of the received signal for the next stage in the

cancellation. Thus, each user is decoded successively ([62] and [40]). In this new

scheme, it is proposed to replace the conventional correlator at each stage with the

MMSE receiver, implemented using the CSA-MWF. The bit estimates used to regen-

erate the signal will be more accurate as the MMSE receiver will provide interference

suppression whereas the MF cannot. A block diagram of this MWF/SIC scheme is

shown in Figure 7.1.
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chitecture of the Multistage Wiener Filter (CSA-MWF)

7.1.1 Probability of Error (Pe) Derivation

The Pe for a simple SIC is derived in [62] by treating the interference due to both the

uncancelled users and the imperfectly cancelled users as Gaussian noise. In [12] and

[13] the an accurate probability of error for a decorrelating multiuser decision feedback

(DF) detector is derived for synchronous CDMA systems by utilizing decisions of the

high energy users to decode the weaker ones. Those structures can be modified by

replacing the forward filter by the MMSE filter, implemented by the MWF. This is

the approach taken here. Since the SIC is a form of multiuser detector, one should

begin by writing the received CDMA signal in the presence of multipath in matrix
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form. Recall from Eq. (2.11) that this expression is given by

r̂(i) = Ŝ+Ab(i) + Ŝ−Ab(i− 1) + n(i), (7.1)

where S+ = (s+
1 s+

2 ... s+
K) and S− = (s−1 s−2 ... s−K) are the N×K matrices containing

the spreading codes of the users associated with asynchronous transmission. Also,

A = diag(A1, A2, ..., AK) is a K ×K matrix in which the signal amplitudes are the

diagonal components, b(i) = (b1(i), b2(i), ..., bK(i))T is a K × 1 vector containing

the bits for each user k for k = 1, 2, ..., K, and n(i) are additive white Gaussian

noise (AWGN) samples. As in preceding chapters, (̂·) denotes convolution of the

quantity with the channel. Referring to Figure 7.1 [80], the first operation performed

in the SIC is a matched filter for each of the K users. For the next block, the

feedforward filter of the DF detector described in [12], is replaced by the equivalent

matrix form of the MWF. It is shown in Chapter 5 that the MUD filter is equivalent

to the concatenation of a bank of IS filters, and thus the matrix of coefficients can

be written as CMWF = [c1,MWF c2,MWF , ..., cK,MWF ] where ck,MWF denotes the

vector of coefficients for user k. With this substitution, the structure of Figure 7.1 is

identical to that in [12] with CMWF taking on the role of (F T )−1. An outline of the

derivation of the Pe, following the notation in [12] is presented below.

First assume that correct decisions are fed back to the SIC, so that the output

signal-to-noise ratio (SNR) for user k can be written as

SNRk,SIC = F 2
k,kA

2
k/σ

2. (7.2)

Recall that Ak is the amplitude of the kth user’s signal, and σ is the standard deviation

of the AWGN. Then, the Pe can be written by applying Eq. (2.27) to obtain

Pek,SIC = Q(Fk,kAk/σ) (7.3)
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Now, assuming that some errors occur, a more accurate probability of error can be

calculated by first computing the conditional error probability assuming a particular

error and then averaging over all the possible errors for all of the previously cancelled

k − 1 users. This expression can be written as

Pek,SIC = E[∆b1, ..., ∆bk−1]Q(
Fk,kAk +

∑k−1
i=1 Fk,iAi∆bi

σ
) (7.4)

where the error for the ith user is ∆bi = (bi − b̃i). For the binary system under

consideration, ∆bi can only take on the values 2 or −2. Substituting CMWF for F,

the expression for Pe is written as

Pek,SIC = E[∆b1, ..., ∆bk−1]Q(
ck,MWF Ak +

∑k−1
i=1 ci,MWF Ai∆bi

σ
) (7.5)

The final expression of the probability of error given in Eq. (7.5) is complicated to

evaluate even for the binary problem because of the presence of multiple users and

will therefore be evaluated using a simple example to validate the corresponding MC

simulations.

Example : In this example, a two-user system is considered to simplify the

expression for Pe above. The Eb/N0 vs. Pe curve obtained with this expression is

then compared to the MC simulation generating bit error rate (BER) with the same

system parameters. This result is thus used to validate the MC simulation used in

the next section to provide numerical results with multiple interferers. Assume that

the first user has higher power than the second user and is thus cancelled first. First,

note that the probability of error for the stronger user is given by the output of the

first stage of the SIC, i.e. the MF followed by the MWF. This is denoted P1 and is

given by

P1 = Q(c1,MWF A1/σ). (7.6)
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Then, the input to the decision device for the second user is A2b2 + c1,MWF A1(b1 −

b̃1) + n2. By averaging over the two possible values that can be taken on by b1 − b̃1,

the error probability for the second user, denoted P2, can be written as

P2 = (1− P1)Q(A2/σ) +
P1

2
[Q(

A2 − 2c1,MWF A1

σ
) + Q(

A2 + 2c1,MWF A1

σ
)]. (7.7)

To test the result via simulation, a synchronous CDMA system with Gold codes of

length N = 31 is used. The number of users again is K = 2, the rank of the MWF is

D = 5, the multipath channel has L = 5 taps, and the power difference between the

two users is ∆P = 1 dB. The BER and Pe are plotted as a function of the Eb/N0 and

are shown in Figure 7.2 below. Note the excellent agreement between the simulation

models. Having validated the Monte Carlo model, the model is now used to provide

results with multiple users in the next section.

7.1.2 Numerical Results

In this section, results from Monte Carlo simulations are provided to determine the

performance gain of the MWF/SIC over the standard MMSE and conventional SIC re-

ceivers. Synchronous users are shown, although performance with asynchronous users

can be assessed by treating each asynchronous user as two synchronous users. Per-

formance of the standard rake receiver is also shown for comparison. Using Gold

codes of length N = 31, plots of Eb/N0 versus BER are shown in Figures 7.3, 7.4, 7.5,

and 7.6 for 10, 15, 20, and 25 users, respectively, assuming that the power difference

among the users, from one user to the next, is 1 dB. This means that the strongest

user can be as much as 19 dB above the weakest for the 20 user case. The strongest

user is detected first, and the BER is computed for the weakest user. Note that in

the range of 10−3 to 10−5 BER, the MWF IS/SIC gives a performance gains of about
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Figure 7.2: Comparison of Monte Carlo and Analytical Serial Interference Cancella-
tion (SIC) Models: Eb/N0 [dB] vs. Probability of Error (Pe) and BER; synchronous
CDMA; spreading code length, N = 31 (Gold Codes); number of users, K = 2; rank
of MWF, D = 5; channel delay spread, L = 5; power of interfering user/power of
desired user, ∆P = 1 dB

2 dB over full rank MMSE and at least 6 dB over conventional SIC, which fails if

the number of users is too high. Furthermore, the relative performance gain over

the conventional SIC as the number of users increases is significant. The conven-

tional SIC degrades rapidly as the number of users increases due to the fact that the

matched filter is interference limited. Thus, bit error rates in the desired range for

speech (10−3) cannot be achieved. On the other hand, the MWF based schemes can

support bit error rates lower than 10−6, which makes this detection scheme suitable

even for digital data.

A few noteworthy observations are now made. First, it was observed in simulations

that if the power difference among the codes is too great, the SIC does not offer
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Figure 7.3: Comparison of Serial Interference Cancellation (SIC) Schemes: Eb/N0

[dB] vs. BER; synchronous CDMA; spreading code length, N = 31 (Gold Codes);
number of users, K = 10; rank of MWF, D = 5; channel delay spread, L = 5; power
step size, ∆Pstep = 1 dB

improvement over the MMSE receiver. This is explained by noting first that a power

difference of ∆P = 3 dB with, say, K = 15 users results in a 45 dB difference

between the strongest and weakest user. In this case, the difference is so high that

the MMSE receiver suffices to produce valid bit estimates. Furthermore, the BER

shown is only for the weakest user. If the BER is averaged over all the users, the

result would be much better than what is shown in the plots. Next, it is noted

that performance of the SIC with Hadamard codes did not do as well as with Gold

codes. This is explained by again by pointing out the poor cross-correlation properties

of the Hadamard codes, so that when multipath is present, correct detection and

estimation for the signal-to-noise ratios under consideration is less accurate, and so
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Figure 7.4: Comparison of Serial Interference Cancellation (SIC) Schemes: Eb/N0

[dB] vs. BER; synchronous CDMA; spreading code length, N = 31 (Gold Codes);
number of users, K = 15; rank of MWF, D = 5; channel delay spread, L = 5; power
step size, ∆Pstep = 1 dB

error propagation occurs. Recall, though, that Hadamard codes are typically not

used for spreading. It is also noted that performance of the MWF/SIC at a rank of

D = 12 improved by about 1 dB over D = 5.

7.2 Parallel Interference Cancellation (PIC)

The standard parallel interference canceller (PIC) provides cancellation of all of the

equal (or nearly equal) power interferers from the received signal at successive stages

before decoding the bits transmitted by the desired user. Again the decoding of

the interfering users is done by correlation with a matched filter. A hard decision

on each correlator output is used to regenerate the decoded interfering signals and
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Figure 7.5: Comparison of Serial Interference Cancellation (SIC) Schemes: Eb/N0

[dB] vs. BER; synchronous CDMA; spreading code length, N = 31 (Gold Codes);
number of users, K = 20; rank of MWF, D = 5; channel delay spread, L = 5; power
step size, ∆Pstep = 1 dB

subtract them out of the received signal. Following the last stage of the PIC, the

desired user’s bits are then decoded. An improved Gaussian approximation to the

conventional PIC is developed in [6]. In [93], a multistage detector that is moderately

complex but sub-optimal is derived. In [11], a PIC scheme that includes tentative

decision devices at each stage is developed. The complexity of this implementation is

linear in the number of users. The idea of combining linear detectors with non-linear

interference cancellation has also been explored in many papers. An MMSE/PIC

detector is presented in [36]. A decorrelating linear detector in combination with a

PIC is considered in [94]. In this paper, an exact expression for Pe is derived. In

[9], a combined MMSE/PIC is derived, and the Pe is computed using the Gaussian
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Figure 7.6: Comparison of Serial Interference Cancellation (SIC) Schemes: Eb/N0

[dB] vs. BER; synchronous CDMA; spreading code length, N = 31 (Gold Codes);
number of users, K = 25; rank of MWF, D = 5; channel delay spread, L = 5; power
step size, ∆Pstep = 1 dB

assumption. Finally, a mathematical approach to the analysis of linear PIC schemes

is presented in [27].

In this new scheme, it is again proposed to replace the conventional correlator

at each stage in the PIC with the CSA-MWF. The IS performed at each stage is

again expected to improve performance. A partial block diagram of a two-stage PIC

structure similar to that shown in [36] is shown in Figure 7.7 [80]. Further stages

can be concatenated by subtracting the re-spread bit estimates at each stage from

the input to the MWF of that stage, which has the estimates of the previous stages

already removed.
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chitecture of the Multistage Wiener Filter (CSA-MWF) (Two-Stage)

7.2.1 Probability of Error (Pe) Derivation

The Pe derivation in this section can be obtained easily from that presented in

[36], in which an approximate formula for Pe using an MMSE/PIC is derived and

bounded. By replacing the MMSE detector with the equivalent MWF, the MWF/PIC

solution is obtained. The expression for Pe is complicated and is bounded in [36],

Eq. (31). Note the similarity between this equation and Eq. (7.5), derived for

the SIC. In fact, it can be shown that these equations are identical. Alternatively,

note the similarity between the structures in Figures 7.1 and 7.7. This is because
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the single stage SIC structure is identical to that of the two-stage PIC, with the only

exception being the way the users are cancelled. In the PIC, the users are assumed

equal power, and therefore all cancelled simultaneously whereas in the SIC, users of

higher power are cancelled first. For a multistage PIC, the derivation is difficult, and

Monte Carlo simulations are a more reasonable alternative. Performance of the PIC

is again evaluated using a simple example. A two user system is again considered, and

the parameters are identical to that of the SIC example. However, now the powers

of the two users are set equal, to 0 dB. In Figure 7.8, the Pe and BER are plotted

vs. Eb/N0. Note again the good agreement between the two models.
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Figure 7.8: Comparison of Monte Carlo and Analytical Parallel Interference Cancel-
lation (PIC) Models: Eb/N0 [dB] vs. Probability of Error (Pe) and BER; synchronous
CDMA; spreading code length, N = 31 (Gold Codes); number of users, K = 2; rank
of MWF, D = 5; channel delay spread, L = 5; power of interfering user/power of
desired user, ∆P = 0 dB
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7.2.2 Numerical Results

Results from Monte Carlo simulations are now provided to determine the perfor-

mance gain of the MWF/PIC over the standard MMSE and conventional PIC re-

ceivers. Synchronous users are again used and performance is demonstrated for a

three stage PIC. Performance of the standard rake receiver is also shown for com-

parison. Plots of Eb/N0 versus BER are shown in Figures 7.9 and 7.10 for highly

loaded systems containing 20, and 25 users. For optimal PIC performance, users of

equal powers are considered. The last plot in Figure 7.11 shows the same results as

in 7.9 for K = 20 users except the effect of inter-cell interference from two cells is also

included. Blocks of size M = 1000 are used to keep the Monte Carlo simulation run

times reasonable, as block sizes of M = 5000 would cause the BER to reduce further

by an order of magnitude. Note that performance suffers at low Eb/N0. This occurs

because high noise levels cause errors in the first stages to propagate to later stages,

thereby causing a performance loss. Typically, PICs are only used in high signal-to-

noise environments where error propagation is not a concern. A similar effect is not

observed in the SIC, because the highest power users are cancelled first, increasing

detection reliability and reducing the number of errors. Performance gains of 2− 4

dB are observed. The loss due to the inter-cell interference is about 1 dB.
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Figure 7.9: Three Stage Parallel Interference Cancellation (PIC): Eb/N0 [dB] vs.
BER; synchronous CDMA; spreading code length, N = 31 (Gold Codes); number
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Figure 7.10: Three Stage Parallel Interference Cancellation (PIC): Eb/N0 [dB] vs.
BER; synchronous CDMA; spreading code length, N = 31 (Gold Codes); number
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Figure 7.11: Three Stage Parallel Interference Cancellation (PIC): Eb/N0 [dB] vs.
BER; synchronous CDMA; 3 Cells; spreading code length, N = 31 (Gold Codes);
number of users, K = 20; rank of MWF, D = 12; channel delay spread, L = 5; power
of interfering users/power of desired user, ∆P = 0 dB



Chapter 8

Reduced Rank Space-Time Coding
(STC)

In this chapter, the joint detection techniques from Chapter 6 are extended to space-

time codes. With space-time codes, the data bit of a particular user is mapped into a

set of symbols and the symbols are transmitted over separate antennas. In a CDMA

system, the symbols are also multiplied by the appropriate spreading codes. The re-

ceived codeword is decoded at the receiver using a maximum likelihood (ML) or min-

imum mean square error (MMSE) approach, and a bit estimate is determined. The

impact of antenna spatial diversity on wireless communications systems is shown in

[100]. In [103], space-time codes are combined with Turbo codes and processed via

combined MMSE and parallel interference cancellation (PIC) detection. A quasi-

orthogonal space-time block code is designed in [41]. In this chapter, a reduced rank

interference suppression (IS) algorithm using the correlation subtraction architecture

of the multistage Wiener filter (CSA-MWF) is presented. The goal is again to show

the reduction in complexity while achieving or often exceeding the performance of

the original ML solution. For ease in implementation, attention is restricted to flat

fading channels. That is, the spread due to the multipath is neglected. However,

129
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the techniques developed in Chapter 5 to optimize performance in multipath could

be applied.

Performance will be analyzed for specific 2× 2 and 4× 4 space-time codes. The

theory to be described is valid for any type of space-time code, but the specific re-

ceiver structure must be modified for different codes. Performance improvements,

in terms of coding gain, over non-encoded systems are studied using Gold codes for

spreading. These codes have already been shown to exhibit properties better than any

other (e.g. Hadamard or PN) codes, especially when the users are transmitted asyn-

chronously. Performance gains over the full rank MMSE implementation for detecting

the bits using the space-time codes is also studied. It is shown that performance ben-

efits over unencoded systems are huge, up to 18 dB. Performance benefits versus

the MMSE receiver are also significant, up to 4 dB. These benefits are attributed

once again to the excellent ability of the MWF to suppress interference induced by

non-orthogonal multiplexing of Gold codes, which have good cross-correlation proper-

ties. The benefits will be most pronounced in the asynchronous environment. In the

synchronous case, since flat fading is assumed, ideal orthogonal (Hadamard) codes

would be best, but to limit the number of simulations, only Gold codes are used. The

simulation parameters are summarized in Table 8.1.

The construction of such codes will first be provided. Since the design of such

codes is not the focus here, only code examples will be cited. For detailed theory on

code design, see [41], [86], and [88]. The optimum estimation of the bits from the

received codewords is obtained by the ML solution, which can be implemented using

the MMSE receiver structure. The implementation of the solution in reduced rank

is shown. Numerical results are provided and analyzed. Numerical results obtained
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Table 8.1: Space-Time Code Simulation Parameters: N=length of spreading code,
Eb/N0=Bit energy divided by single-sided noise power spectral density (PSD),
M=block size, K=number of users, D=rank of multistage Wiener filter (MWF),
L=channel delay spread, ∆P =power of interfering users/power of desired user

N Eb/N0 [dB] M K D L ∆P [dB] Synchronism
Fig. 8.3 31 N/A 5000 2 1 1 0 Asynchronous
Fig. 8.4 31 N/A 5000 15 5 1 0 Asynchronous
Fig. 8.5 31 N/A 5000 15 5 1 0 Synchronous
Fig. 8.6 31 N/A 5000 4 1 1 0 Asynchronous
Fig. 8.7 31 N/A 5000 15 5 1 0 Asynchronous
Fig. 8.8 31 N/A 5000 15 5 1 0 Synchronous

using the MWF will be compared to the full rank MMSE to determine the coding

gain associated with the space-time codes.

8.1 Space-Time Code Construction

The simplest and most cited space-time code for transmission with two transmit

antennas is developed in [1]. This scheme was generalized later in [86] and [88] to an

arbitrary number of antennas and is able to achieve the full diversity capacity of the

transmit and receive antenna system. For the purposes of this discussion, attention is

restricted to simple cases of 2 and 4 transmit antenna systems, with the same number

of receive antennas, hereafter referred to as the 2× 2 and 4× 4 systems, respectively.

In the 2× 2 case, at a given time period t, symbol c1 is transmitted from antenna

one, and symbol c2 is transmitted from antenna two. During the next time period,

t+T , symbol −c2 is transmitted from antenna one, and symbol c1 is transmitted from

antenna two. This simple code, also termed the Alamouti code after its inventor, can
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be written as

C2x2 =

[

c1 c2

−c2 c1

]

. (8.1)

The sequence is also shown in Table 8.2. In this notation, the column i of the

code matrix denotes the signals transmitted from antenna i, and the row t denotes

transmission at time t. In the CDMA system under consideration, referring back to

Figure 2.1, these symbols could represent bits for any given user multiplied by that

user’s spreading codes.

Table 8.2: 2× 2 Space-Time Coding (STC) Scheme

Antenna 1 Antenna 2
Time t c1 c2

Time t+T −c2 c1

An example of a 4 × 4 space-time code constructed from orthogonal designs is

presented in [86] and is given by

C4x4 =















c1 c2 c3 c4

−c2 c1 −c4 c3

−c3 c4 c1 −c2

−c4 −c3 c2 c1















. (8.2)

This code is also summarized in Table 8.3 below. The complex conjugation opera-

tions found in the original development are neglected here because all data is assumed

to be real. The design of this code is based on the mathematical theory of orthog-

onal designs, in which an n × n code can be produced but only for certain sporadic

values of n. Codes for arbitrary n can also be designed using a generalization of the

orthogonal code design [86]. From this development, it can be seen that the transmis-

sion rates achieved with these code designs are the maximum possible with transmit
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diversity. This will be true in general for real codes based on orthogonal designs.

Table 8.3: 4× 4 Space-Time Coding (STC) Scheme

Antenna 1 Antenna 2 Antenna 3 Antenna 4
Time t c1 c2 c3 c4

Time t+T −c2 c1 −c4 c3

Time t+2T −c3 c4 c1 −c2

Time t+3T −c4 −c3 c2 c1

Other work in the construction of space-time codes is as follows: In [55], an

overview of block and trellis space-time coding schemes as well as their corresponding

decoding schemes are analyzed. Generalized design theory, performance criteria, and

performance results in multipath channels is presented in [87], [88], and [89]. A

space-time code for a four transmit antenna system is presented in [60]. Performance

gain of space-time coding schemes coupled with optimum antenna selection is given in

[26]. Finally, high rate space-time codes that can be constructed for any configuration

of transmit and receive antennas is given in [29].

8.2 Derivation of Minimum Mean Square Error
(MMSE) Solution

The MMSE solution will first be derived for the 2 × 2 code and then for the 4 ×

4 codes described above [79]. The MMSE solution for the 2 × 2 code has been

previously shown in [55] and shown specifically for CDMA systems in [47]. The

solution will be briefly described here to determine the implementation of the solution

via the MWF. The development follows that shown in [47]. The 4 × 4 solution is

derived in a similar way. Extension to more complicated codes is straightforward. To
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make mathematical analysis easier, the model is developed assuming synchronous

users. But, the solution can be applied to asynchronous users as well assuming that

the receiver is synchronized with the desired user.

8.2.1 2× 2 Space-Time Code

Recall for the 2 × 2 code, c1 is transmitted from antenna one and c2 is transmitted

from antenna two at time T . In the next time period, −c2 and c1 are transmitted

from antennas one and two, respectively. Define hij as the channel coefficient from

the ith transmit antenna to the jth receive antenna. These coefficients are modelled

as Rayleigh distributed random variables. Denote the received signals over the two

consecutive symbol periods as rj(i) and rj(i − 1). Assuming, as mentioned earlier,

that each hij is approximately constant over two consecutive symbol periods, one can

write the received signal at antenna j = 1 or j = 2 as

• rj(i) =
∑K

k=1 Ak(h1jskbk(i) + h2jskbk(i− 1)) + nj(i)

• rj(i− 1) =
∑K

k=1 Ak(−h2jskbk(i) + h1jskbk(i− 1)) + nj(i− 1),

where nj(i) and nj(i − 1) are N × 1 AWGN vectors. To ease the development,

define the received signal vector by r(i) = [rj(i) rj(i − 1)]T and the noise vector by

n = [nj(i) nj(i− 1)]T . Define code symbol vectors by

cjk,1 = [h1jsT
k h2jsT

k ]T (8.3)

cjk,2 = [−h2jsT
k h1jsT

k ]T . (8.4)

This can also be written as

cjk,1 = ζk,1hj (8.5)

cjk,2 = ζk,2hj, (8.6)
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where

ζk,1 =

[

sk 0

0 sk

]

(8.7)

ζk,2 =

[

0 −sk

sk 0

]

, (8.8)

and hj = [h1j h2j]T . One can further define

h = [hT
1 hT

2 ]T , (8.9)

and

ck,1 = [cT
1k,1 cT

2k,1]
T = (I2 ⊗ ζk,1)h (8.10)

ck,2 = [cT
1k,2 cT

2k,2]
T = (I2 ⊗ ζk,2)h, (8.11)

where I2 denotes a 2× 2 identity matrix and ⊗ denotes the Kronecker product as be-

fore. Writing the received signal as the sum of the outputs of both receiver antennas,

the output becomes

r(i) =
K

∑

k=1

Ak(ck,1bk(i) + ck,2bk(i− 1)) + n(i), (8.12)

where n = [nT
1 nT

2 ]T .

The MMSE receiver must detect the vector of received bits b(i) = [b1(i) b2(i) ...bK(i)]T

from the received signal vector r(i). To compute the MMSE solution, minimize the

MSE, given by

MSESTC = arg=minE[‖b(i)−=Hr(i)‖2]. (8.13)

The MMSE solution can be written directly as

= = R−1
rr Rrb, (8.14)
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where Rrr is the data covariance matrix and Rrb is the cross-correlation vector. From

Eq. (8.12), the cross-correlation vector can be written as

Ryb = E[r(i)b(i)] = CA, (8.15)

where C = [C1 C2 ... CK ], Ck = [ck,1 ck,2], and A is the diagonal matrix of signal

amplitudes defined previously. Assuming without loss of generality that user one is

the desired user, the MMSE simplifies to

=SU = A1R−1
rr C1. (8.16)

8.2.2 4× 4 Space-Time Code

The derivation of the MMSE solution for the 4× 4 STC can be obtained analogously

to that for the 2×2 code. The parameters hij are as defined for the 2×2 code. The

received signals over four consecutive symbol periods at antenna j, j = 1, 2, 3, 4, are

defined, respectively, as

• rj(i) =
∑K

k=1 Ak(h1jskbk(i)+h2jsk bk(i−1)+h3jskbk(i−2)+h4jskbk(i−3))+nj(i)

• rj(i− 1) =
∑K

k=1 Ak(−h2jskbk(i) + h1jskbk(i− 1)− h4jskbk(i− 3)+

h3jskbk(i− 4)) + nj(i− 1),

• rj(i− 2) =
∑K

k=1 Ak(−h3jskbk(i) + h4jskbk(i− 1) + h1jskbk(i− 3)+

h2jskbk(i− 4)) + nj(i− 2),

• rj(i− 3) =
∑K

k=1 Ak(−h4jskbk(i)− h3jskbk(i− 1) + h2jskbk(i− 3)+

h1jskbk(i− 4)) + nj(i− 3),

where nj(i), nj(i− 1), nj(i− 2), and nj(i− 3) are N × 1 AWGN vectors. Write the

received vector as r(i) = [rj(i) rj(i− 1) rj(i− 2) rj(i− 3)]T and the noise vector by
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n = [nj(i) nj(i− 1) nj(i− 2) nj(i− 3)]T . Define the code symbol vectors by

cjk,1 = [h1jsT
k h2jsT

k h3jsT
k h4jsT

k ]T (8.17)

cjk,2 = [−h2jsT
k h1jsT

k − h4jsT
k h3jsT

k ]T (8.18)

cjk,3 = [−h3jsT
k h4jsT

k h1jsT
k − h2jsT

k ]T (8.19)

cjk,4 = [−h4jsT
k − h3jsT

k h2jsT
k h1jsT

k ]T . (8.20)

Each of the above equations can also be written as

cjk,i = ζk,ihj, (8.21)

where

ζk,1 =















sk 0 0 0

0 sk 0 0

0 0 sk 0

0 0 0 sk















, (8.22)

ζk,2 =















0 −sk 0 0

sk 0 0 0

0 0 0 −sk

0 0 sk 0















, (8.23)

ζk,3 =















0 0 −sk 0

0 0 0 sk

sk 0 0 0

0 −sk 0 0















, (8.24)

ζk,4 =















0 0 0 −sk

0 0 −sk 0

0 sk 0 0

sk 0 0 0















, (8.25)
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and hj = [h1j h2j h3j h4j]T . One can further define

h = [hT
1 hT

2 hT
3 hT

4 ]T , (8.26)

and

ck,1 = [cT
1k,1 cT

2k,1 cT
3k,1 cT

4k,1]
T = (I4 ⊗ ζk,1)h (8.27)

ck,2 = [cT
1k,2 cT

2k,2 cT
3k,2 cT

4k,2]
T = (I4 ⊗ ζk,2)h (8.28)

ck,3 = [cT
1k,3 cT

2k,3 cT
3k,3 cT

4k,3]
T = (I4 ⊗ ζk,3)h (8.29)

ck,4 = [cT
1k,4 cT

2k,4 cT
3k,4 cT

4k,4]
T = (I4 ⊗ ζk,4)h (8.30)

The received signal can now be written as

r(i) =
K

∑

k=1

Ak(ck,1bk(i) + ck,2bk(i− 1) + ck,3bk(i− 2) + ck,4bk(i− 3)) + n(i), (8.31)

where n = [nT
1 nT

2 nT
3 nT

4 ]T .

With the first user as the user of interest, the MMSE solution is

=SU = A1R−1
rr C1, (8.32)

where Rrr is the data covariance matrix defined previously, C = [C1 C2 ... CK ] as

before, and Ck = [ck,1 ck,2 ck,3 ck,4].

8.3 Implementation using the Correlation Subtrac-
tion Architecture (CSA) of the Multistage Wiener
Filter (MWF)

To implement the MMSE solution for space-time codes via the MWF, note the analogy

between the original MMSE solution in Eq. (2.23) and that of the STC in Eq. (8.16).

In the original solution, R is the covariance matrix, computed using an expectation of
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the received signal times its Hermitian. In the MMSE solution above, a similar result

is obtained. Here, the desired covariance matrix is computed exactly the same way,

using the joint received vector r, defined in Eq. (8.12) or Eq. (8.31). Similarly, the

spreading code s1 employed in the original solution is now replaced by C1, defined as

C1 = [ck,1 ck,2] for the 2×2 code and C1 = [ck,1 ck,2 ck,3 ck,4] for the 4×4 code. This

substitution causes d0(i) to become a vector instead of a scalar. A matrix MWF or

a parallel implementation must therefore be used. The outputs, [̂b1(i) b̂1(i − 1)] for

the 2× 2 code, and [b̂1(i) b̂1(i− 1) b̂1(i− 2) b̂1(i− 3)]T for the 4× 4 code, are delayed

appropriately and summed together to determine the final bit estimate. Thus, the

MWF algorithm is initialized by setting d0(i) = CH
1 r(i) and x0(i) = BC1r(i) for the

2× 2 code, and similarly for the 4× 4 code. The blocking matrix BC1 is defined to

be orthogonal to C1 as always. The parallel MWF structures are shown for the 2× 2

code and the 4×4 code in Figures 8.1 and 8.2, respectively. These are the structures

used to obtain the simulation results presented in the next section.

Σ

CSA-MWF

b (i)
~

r(i) b (i)k
^

Advance 1
b (i-1)^

k

k

c k,1

CSA-MWFc k,2

Figure 8.1: 2 × 2 Space Time Code (STC) Decoding Scheme Using the Correlation
Subtraction Architecture of the Multistage Wiener Filter (CSA-MWF); r(i)=received
signal at time i; ck,i=code symbol vector for user k at transmit antenna i; b̃k(i)=bit
estimate for user k at time i
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Σ

CSA-MWF

b (i)
~

r(i) b (i)k
^

b (i-1)^
k

k

c k,1

CSA-MWFc k,2

b (i-2)^
kCSA-MWFc k,3

b (i-3)^
kCSA-MWFc k,4 Advance 3

Advance 1

Advance 2

Figure 8.2: 4 × 4 Space Time Code (STC) Decoding Scheme Using the Correlation
Subtraction Architecture of the Multistage Wiener Filter (CSA-MWF); r(i)=received
signal at time i; ck,i=code symbol vector for user k at transmit antenna i; b̃k(i)=bit
estimate for user k at time i

8.4 Numerical Results

In this section, numerical results comparing Eb/N0 vs. BER for the MMSE solution

and the MWF solution are compared. Performance gains over a conventional system

without space-time coding are also determined. Sample results for the 2 × 2 and

4× 4 codes are evaluated. For ease in implementation, only one receiver antenna is

assumed. Significant additional gains can be attained by exploiting multiple receiver

antennas as shown in Chapter 6.

8.4.1 2× 2 Space-Time Code

Figure 8.3 is a plot of Eb/N0 vs. BER for a 2 × 2 STC assuming the values of

the code symbols are ε (−1, +1). The channel taps are chosen randomly from a

Rayleigh distribution and equal power, asynchronous, users are assumed. The full
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rank MMSE without the use of coding is shown for comparison. The performance is

close to ideal even in this case because the number of users is only K = 2. As desired,

the STC/MWF algorithm converges to the full rank solution at a rank of only one,

due to the presence of only one interferer and the diversity. Significant performance

gains of up to about 12 dB are observed, due to the transmit code diversity and

time diversity. Note also that the MWF outperforms the MMSE by about 1 dB at

the low rank of one. Figure 8.4 shows the same case but with K = 15 users and

a rank of D = 5. Performance gains of up to 17 dB are observed here. Figure

8.5 is a plot of Eb/N0 vs. BER for a 2 × 2 STC assuming K = 15 synchronous

users. Performance gains of up to 11 dB are observed here due to the transmit code

diversity, time diversity, and receiver antenna diversity. Note also that the MWF

performance meets that of full rank at a rank of 5.

8.4.2 4× 4 Space-Time Code

Figure 8.6 is a plot of Eb/N0 vs. BER for the 4 × 4 STC. The channel taps are

again chosen randomly, and all users have equal power. The number of users in the

system is K = 4, and the users are asynchronous and transmit equal power. Again,

the STC/MWF algorithm performs with 2 to 4 dB less Eb/N0 than the full rank

solution at a rank of only one. This occurs because the MWF is able to compress

the received signal subspace to a smaller dimension containing the desired signal,

thereby eliminating more noise. Performance gains of 17 dB are observed over the

unencoded system. The complexity of the MMSE solution is also greatly reduced by

employing the MWF as the dimension of the covariance matrix now increases from

N to NLt (or NLr). So now, the number of required flops for the MWF and the

MMSE implementations is O(2DNLt) and O((NLt)3), respectively. With Lt = 4,
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Figure 8.3: 2×2 Space Time Code (STC): Eb/N0 [dB] vs. BER; asynchronous CDMA;
spreading code length, N = 31 (Gold Codes); number of users, K = 2; rank of MWF,
D = 1; channel delay spread, L = 1; power of interfering users/power of desired user,
∆P = 0 dB

this number can become impractically large, even for small N , and reduced rank

implementation is clearly desirable. The need for reduced rank implementation is

greater still when the code length increases beyond N = 31, and even more so if

multiuser detection (MUD) is required and K is large, as with the next example.

Figure 8.7 shows the result for the same 4× 4 case but with K = 15 users. The

benefit of using the reduced rank MWF in conjunction with space-time coding is most

apparent here. For a highly loaded system in flat fading, the MMSE solution requires

high values of Eb/N0. Low bit error rates are attainable at very low Eb/N0 only by

employing the reduced rank MWF with space-time coding. Here, the MWF/STC

performance exceeds that of full rank MMSE/STC by 2 dB and improves over the

standalone MMSE by an astonishing 21 dB. Of course, the drawback is the cost and
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Figure 8.4: 2 × 2 Space Time Code (STC): Eb/N0 [dB] vs. BER; asynchronous
CDMA; spreading code length, N = 31 (Gold Codes); number of users, K = 15; rank
of MWF, D = 5; channel delay spread, L = 1; power of interfering users/power of
desired user, ∆P = 0 dB

complexity of deploying multiple receive antennas. However, the use of the MWF

for decoding greatly reduces complexity, and the coding gain justifies the additional

cost.

Finally, Figure 8.8 is a plot of Eb/N0 vs. BER for the 4 × 4 STC with K = 15

synchronous users. For this highly loaded system in flat fading, the MMSE solution

requires high values of Eb/N0. Low BERs are attainable at very low Eb/N0 by em-

ploying the reduced rank MWF with space-time coding, with the added benefit of low

complexity implementation as described above. Here, the MWF/STC performance

improves over full rank MMSE by nearly 15 dB, again at a rank of 5.

The solutions derived for the 2 × 2 and 4 × 4 codes and the MMSE solution via
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Figure 8.5: 2×2 Space Time Code (STC): Eb/N0 [dB] vs. BER; synchronous CDMA;
spreading code length, N = 31 (Gold Codes); number of users, K = 15; rank of MWF,
D = 5; channel delay spread, L = 1; power of interfering users/power of desired user,
∆P = 0 dB

the MWF can be extended to more complicated codes. However, as the number of

users and code complexity increases, MWFs running in parallel to detect each code

symbol are required. To reduce this computational burden further, one can simply

design the system to process only the user of interest and treat the other users as

AWGN, as the conventional rake receiver does. Due to the significant coding gains

from the STC, desired BERs can be attained.
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Figure 8.6: 4×4 Space Time Code (STC): Eb/N0 [dB] vs. BER; asynchronous CDMA;
spreading code length, N = 31 (Gold Codes); number of users, K = 4; rank of MWF,
D = 1; channel delay spread, L = 1; power of interfering users/power of desired user,
∆P = 0 dB
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Figure 8.7: 4 × 4 Space Time Code (STC): Eb/N0 [dB] vs. BER; asynchronous
CDMA; spreading code length, N = 31 (Gold Codes); number of users, K = 15; rank
of MWF, D = 5; channel delay spread, L = 1; power of interfering users/power of
desired user, ∆P = 0 dB
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Figure 8.8: 4×4 Space Time Code (STC): Eb/N0 [dB] vs. BER; synchronous CDMA;
spreading code length, N = 31 (Gold Codes); number of users, K = 15; rank of MWF,
D = 5; channel delay spread, L = 1; power of interfering users/power of desired user,
∆P = 0 dB



Chapter 9

Conclusions

In this dissertation, novel interference mitigation methods for future generation wide-

band cellular code division multiple access (CDMA) systems are presented. The

techniques developed all apply a new method for performing reduced rank statistical

signal processing, i.e. the multistage Wiener filter (MWF). Reduced rank signal

processing in CDMA systems is motivated by the requirement for increased data

rates, multimedia access, and increased capacity. These requirements in turn fuel

the need for low complexity detection algorithms. The MWF has been shown in

previous work to provide several advantages to prior reduced rank algorithms such

as principal components (PC) and the cross-spectral (CS) metric, as well as exist-

ing full rank algorithms, because it enables significant signal subspace compression,

thereby greatly reducing computational complexity. In CDMA, this translates to

higher data rates and faster convergence of the algorithm in terms of the required

sample support. The MWF also does not rely on eigen-based decomposition, which

is computationally complex, and does not require calculation or inversion of the tra-

ditional data covariance matrix, as does the full rank minimum mean square error

(MMSE). Furthermore, rank reduction with the MWF is nearly independent of the
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number of signals, which is of crucial importance to CDMA systems because the

number of users in a CDMA system is typically unknown (especially at the mobile

handset) and is continuously changing in time. The reduction in required sample

support further implies fast adaptation in stationary environments, and the ability to

adapt optimally to real, non-stationary environments in which the channel is changing

too rapidly to allow enough samples to be obtained to form a reliable solution via al-

ternate methods. The MWF is implemented efficiently via the correlation subtraction

architecture (CSA) [72].

The MWF is applied here to the CDMA problem, and the significant performance

benefits that are achievable along with the added benefit of reduction in complexity

are determined. Operation of the MWF in this dissertation is blind, that is, no

training data (pilot channel) is assumed. Naturally, if a pilot is available, additional

performance benefits will be achieved. The optimum receiver is derived first in ad-

ditive white Gaussian noise (AWGN) and then extended to the frequency selective

multipath channel. It is shown that the MWF, with its initial stage being a filter

matched to the spreading code and channel of the desired user, is the optimal solu-

tion. Thus, the MWF is shown to be a colored noise matched filter (CNMF). An

alternate derivation shows how to improve upon the performance of the conventional

rake receiver by applying an MMSE correlator implemented by the MWF at each

rake ’finger’ of the receiver. Though sub-optimum to the previous receiver, signifi-

cant gains are achieved, and this receiver can be used as a plug-n-play fix to the rake

for existing systems. It is demonstrated that the MWF is robust in colored noise envi-

ronments, where conventional reduced rank processing techniques fail, while greatly

reducing the computational complexity of full rank techniques. Thus, it is shown
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that, in general, the benefit is two-fold - one can achieve an order of magnitude com-

plexity reduction in terms of rank and sample support in addition to an order or more

of magnitude performance improvement in terms of bit error rate (BER) - with no

negative consequences. As a result, future CDMA systems can enjoy higher capac-

ities (number of users that can be supported), faster data rates and throughput, as

well as improved decoding performance at low complexity. Hence, it is expected that

these techniques will revolutionize future CDMA system standards and capabilities.

These results are extended to the multiuser detection (MUD) problem, in which a

bank of MWFs or a joint MWF are both shown to provide the optimal solution. In

terms of rank, the joint MWF is shown to converge at an astounding low rank of one,

by optimally combining the spreading codes of all the users to form the initial stage

matched filter. Perhaps more importantly, it is shown that the MUD implemented

by the MWF can exceed MMSE performance. The amount of performance gain is

largely determined by minimization of the cross-correlation properties between the

codes used to transmit the data. Gold codes, which have good correlation properties,

are shown to provide one or even two orders of magnitude improvement in BER with

extremely low complexity (rank). This is due to the aforementioned cross-correlation

properties and the ability of the MWF to suppress the uncorrelated interference. The

results demonstrate the remarkable property of the MWF to simultaneously achieve

a convergence substantially better than that achieved with full rank MMSE and a

dramatically reduced computational burden as well. Intuitively speaking, the MWF

achieves the best of both worlds - faster convergence and reduced computation - by

applying the information inherently contained in both the covariance matrix and the

cross-correlation vector in choosing the best reduced-dimension subspace in which the
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weight vector is constrained to lie. Performance of the parallel MUD solution requires

slightly higher ranks than the joint MUD because all of the information contained in

the spreading codes is not used, but is still shown to converge at much less than full

rank, while suffering no loss in performance.

The significance of these results for CDMA is that the joint and parallel MUD

receivers implemented by the MWF can be applied to the CDMA reverse and for-

ward links, respectively, with tremendous savings in computational complexity. In

the forward link, only a single spreading code is known so the parallel (single user)

receiver should be applied. However, in the reverse link, since the base station has

knowledge of every user’s spreading code, the joint implementation will provide sig-

nificant computational savings over any prior technique since it requires only one

stage of the MWF and no matrix inversions. The MWF matched filter input can also

be applied to the problem in which multiple receiver antennas provide temporal pro-

cessing diversity. The new (matched filter) initial stage of the MWF is derived and

results again show significant performance gains can be attained with great reduc-

tion in computational complexity over MMSE. With future systems heading towards

multiple antenna structures, low complexity implementation is a must.

Non-linear interference cancellation (IC) schemes employing the MWF to do inter-

ference suppression at each stage in place of the conventional matched filter correlator

are also studied. These receivers prove robust and provide huge gains over the conven-

tional IC schemes, which fail even in modest capacity situations. An expression for

the probability of error is derived and Monte Carlo simulation results show that the

MWF easily provides desired bit error rates even in highly loaded systems where the

conventional IC schemes fail. This suggests significant capacity increases for future
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systems are feasible.

Finally, application of the MWF to systems employing space-time codes at the

transmitter and multiple transmit antennas is also studied. The MWF solution is

described for the 2×2 code and also for the 4×4 code. Extension of the decoding meth-

ods to more complicated codes is straightforward and is expected to yield significant

coding gains. Utilization of the MWF greatly reduces the decoding complexity, which

increases non-linearly as a function of the code dimension. Substantial performance

gains over the full rank MMSE are also shown to occur, especially when asynchronous

Gold codes are transmitted, since this maximizes the ability of the MWF to suppress

the non-correlated interference. This improves the feasibility of employing a multiple

transmit and receive antenna system for superior decoding capability far beyond any

existing system.

A future research topic related to the work presented here is rank optimization

for the MWF; i.e. an algorithm that uses some criteria to automatically determine

the rank that provides the best solution (in terms of the desired optimization pa-

rameter). The application of the MWF to interference mitigation for other types of

systems such as the Advanced Mobile Phone System (AMPS) and the Global System

for Mobile Communication (GSM) is another broad research area for the future (see

[4] or [68] for a detailed description of such systems). Application of the MWF to

these problems is not obvious because the matched filter is not well-defined, as with

CDMA, and because there does not exist a repeating sequence that can be used to

form a data matrix to apply to the MWF algorithm.

Yet another challenging problem facing system designers is the synchronization

of signals or detection in the absence of timing information. The application of the
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MWF to this problem is introduced in [70], in which shifted versions of the MWF

are applied to a signal and that which produces the maximum correlated output

with the desired data is selected. Other references relating to this problem are [51],

[102], and [106]. Accurate blind synchronization techniques are important for the

design of future cellular systems, especially in the absence of a pilot channel. One

final application is that of channel estimation. One idea is to apply the MWF in

training mode to train the weights to the combined effects of the unknown channel

and interference and then to apply the weights to the data. This could be done

efficiently if a pilot signal were used; however, in the absence of continuous training

data, other methods would need to be developed. A dual MWF system in which

the MWF is applied first to account for interference and then to correct for channel

effects is one possible solution to this problem.

Derivations for an exact expression for the probability of error for multiple stage

interference cancellers are also left for future research. In general, these expressions

are mathematically very difficult to evaluate. Extension of all the techniques discussed

to more complicated modulation schemes such as quadrature amplitude modulation

(QAM), and continuous phase modulation (CPM) is another topic needing further

investigation. These modulation schemes may also be of interest as they are used

in other types of systems in which reduced rank processing may be beneficial. How-

ever, none of the aforementioned techniques is limited to binary phase shift keying

(BPSK). Extension to quadrature phase shift keying (QPSK) is straightforward, as

each of the quadrature channels may be treated independently at the receiver and by

the MWF prior to combining.
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ABSTRACT

This paper investigates the performance of a reduced rank
MMSE correlator for a RAKE receiver in the context of
CDMA in frequency selective multipath. The MMSE cor-
relator based on the Correlations Subtractive Architecture
(CSA) is derived for frequency selective multipath. It is
demonstrated that the standard multiuser limited RAKE re-
ceiver can achieve BER performance close to the MMSE
receiver spanning multiple symbols by replacing its conven-
tional correlator with an MMSE correlator. The CSA gener-
ates an MMSE correlator without requiring matrix inversion
(thereby reducing computational complexity) and facilitates
direct replacement of the standard RAKE correlator.

1. INTRODUCTION

The RAKE receiver is designed to operate in a multipath
environment, but is limited in performance due to Multiuser
Access Interference (MAI). The MAI contribution causes
the RAKE receiver to degrade rapidly as the number of
users are increased in a CDMA system. To mitigate the
MAI effects and automatically combine the multipath, one
can utilize the (coherent) MMSE receiver that spans more
than one symbol to account for the multipath delay spread.
The purpose of this paper is to modify the conventional
RAKE receiver in such a way that it has performance com-
parable to the MMSE receiver that spans more than one
symbol.

2. CDMA SIGNAL MODEL

We assume a DS-CDMA system, in which we have
�

syn-
chronous users in a frequency selective multipath channel.
The notation used here is similar to that used by Honig, et.
al., in [1] and [2]. User � transmits a baseband signal
given by

�������
	���
���������������	
�����������! "��#���	%$ (1)

where � � ����	 is the symbol transmitted by user � at time � ,�������
	 is the spreading code associated with user � , and �&�
and #'� are the real valued amplitude and delay, respectively.
We assume binary signaling, so that the symbols ��������	)(
(-1,+1). We also assume that the bits are independent, iden-
tically distributed. The spreading sequence can be written
as

� � ���
	*�,+�-/.
��0
.
1 �32 ��4�56�����7�! /89	�$ (2)

where 1�� 2 ��4:(;��< .= +
$ -!.= +

	 is a normalization factor for the
spreading code. The processing gain of the CDMA system,
or equivalently the bandwidth spreading factor, is given by> �@??BA . Here,  /8 is the chip period, and  is the symbol
period. We assume that the spreading code is a square wave
sequence with no pulse shaping, so that the chip sequence56���
	 is a constant.

The chip rate sampled received signal based on this model
in a frequency selective channel over C symbols is defined
in [6] to be

DBE���F�HGI����	KJLGNMPO
 Q 0
.
F� Q ����	
J Q MSRTE6����	 (3)

based on the equivalent synchronous model from [3]. As-
suming user 1 is the desired user, without loss of generality,
the desired symbol is F�HGI����	��U� . ����	 , the vector RTE6����	
contains samples from an AWGN process, and the inter-
fering symbols are F� Q ����	 , where V �XWY$'Z[Z\Z[$^] , consist of��_N`aM C ��W�	�� � �7W�	 Multiuser Access Interference (MAI)
and _N`LM C �;b ISI symbols for a total of ]c�d�e_N`LM C �W�	 � �fW [6]. _g` is the channel length in bit duration de-
fined as hji < +�-/.+

k
, where h � k is the smallest integer greater

than or equal to � , and _ is the number of multipaths. The

1
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transmitted code matrix for the desired user is defined to be

�����
���������

�
	���
 �
...

. . . �
	���
�
	�������
 ...� . . . �
	�������
�
����������������! (4)

The desired signal vector "$# can now be defined as" # �%���'&(� (5)

where
&)�

consists of the channel tap coefficients.
The desired signal " # can be interpreted as a zero padded

coherent RAKE receiver. The significance of this interpre-
tation when considering equation (3) is that the RAKE re-
ceiver is unable to suppress the MAI due to the other in-
terfering vectors "$* . The inability of the RAKE receiver to
suppress MAI leads to the development of finding a RAKE
receiver with such capabilities. The next section develops
the formulation of (5) as a RAKE receiver.

3. COHERENT RAKE RECEIVER

It is necessary to understand the different interpretations of
the RAKE receiver to provide insight into how it is possible
to improve upon its performance to account for MAI. Let us
assume that + �-,  /. 	10 ��2�3 
 . The decision variable at
the output of the RAKE receiver can be written as4 �  65 �78:9 # ;=<#?> 	1@(�BA6CEDF
HGJI8 	�@E
E�KI�	1@E
ELM@ (6)

where
2

denotes the number of paths, A is the symbol pe-
riod, � is the coefficient of the spreading code of length � ,A C is the chip delay, N is the received signal, and G 8 are
the channel tap coefficients. If one assumes the channel is
slowly fading, the channel tap weights can be regarded as
constant over a few chip periods; therefore, equation (6) can
be written as4 �  O5 �78:9 # G I8 ; <# N 	1@$�PA C DF
!� I 	1@E
QL�@

�  O5 �78:9 # G�I8 ;=<# �KI)	�@(�PA C DF
 N 	1@E
QL�@SR (7)

The last equality holds due to the linearity of the convolu-
tion operation. Equation (7) can be written in discrete vector
form by exploiting the inner product equivalences between
discrete vectors and continuous time functions, i.e.; <# � I 	1@$�PA C DF
 N 	1@E
ELM@ �UT�V 8OW +YX �%V�Z8 + (8)

where
V 8 are shifted versions of the spreading code within a

time interval spanning multiple symbols that form the columns
of a convolution matrix. Equation (7) can be rewritten as4 �  65 �78:9 # G I8 V Z8 + �\[ Z^] (9)

where
[_�a` G # W G � W RbRcR W G  65 �ed < and

] �f` V Z# + W V Z � + W RcRbR V Z O5 � + d <
(the output at each “finger” of the RAKE receiver). One can
then rewrite equation (9) as4 �%[ Z � Z g + �%V Z � Z C + � 	 � C V 
 Z + (10)

where
�ih

and
�ij

are convolution matrices relative to
V

and[
respectively. In particular

�kh
is defined as�ihl� ` V # W V � W RbRbR W V  O5 � d

�
�������

�
	��

 �
...

. . . �
	��

�
	m�-����
 ...� . . . �
	�������

� ������ R (11)

This establishes the equivalent zero padded matrix interpre-
tation of the RAKE receiver from equation (5) as" # �%���'&(�n�po � g [� q R (12)

Rewriting equation (10) with the last equality establishes
the framework for deriving the MMSE correlator using the
fact that the RAKE receiver is just a linear filter that can be
defined as rts6u6vnw �x� C V R (13)

4. MMSE CORRELATOR FOR THE RAKE
RECEIVER

It was shown in Section 3 that the standard RAKE receiver
can be interpreted as just being a linear filter defined asrts6u6vnw �y� C V . It is desirable to find a correlator other
than s that will suppress MAI for each RAKE “finger”. The
idea is to reduce MAI at each RAKE “finger” mathemati-
cally defined in

]
utilizing an MMSE correlator. It is first

necessary to understand how one can find such a correlator
based on the MMSE solution. The MMSE solution over
multiple chips that will automatically combine multipath
while mitigating interference can be defined asr ��� gQz �|{ 5 � �ij}V

(14)

where
{p��~�� +6+ Zk� . It should be emphasized again that

vector + spans multiple symbols accounting for the delay
spread of the channel. In deriving the MMSE correlator, it

2
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is desired to find a correlator ��������� based on the spreading
code that will yield improved MAI suppression compared
to the standard RAKE receiver. The MMSE correlator is
suboptimal compared to � �����	� because the data window
for suppressing MAI at the correlator is much smaller than
the convolution channel window. The MMSE correlator can
be derived by first rewriting



as


���
 ���� ��� ���� ��������� ������ � ��� � (15)

where now instead of shifting the spreading code across the
data, the data is delayed by the time associated with the � �"!
diversity path. Instead of trying to suppress MAI over the
span of multiple symbols, one can suppress MAI per de-
layed symbol along each diversity path of the RAKE re-
ceiver. One can utilize MMSE MAI suppression by rewrit-
ing equation (15) as


$#&%�'('������� � 
*),+ � �
� � �.- � �������/��� )�+ � �

��� � � ��� � - � ��� �
� 
 ���� + � �

� �,�0�/���/� ������ �1+ � �
��� � ��� �

� 
 � ��32 �����	��45�����/��� � ���� � 2 �����	�	6�784(� � (16)

where
+:9��<;>=0�?9@� �9BA

denotes the CEDFC covariance ma-
trix windowed to the data symbol corresponding to the � �"!
diversity path. The MMSE correlator for each diversity path
given in equation (16) is defined as being 2 �����	�	G �<+ � �9 � .
It can be shown that the


 �����	� output that utilizes the so-
lution of equation (14) can be written as


 �����	� �H
 � �� + � � � �(� � �I+ � � � �0�/�����J� ���� �1+ � � � �LKM� (17)

One can interpret �N�����	� as a correlator that can mit-
igate multiple access inteference over a limited data win-
dow. Now that it is known that the MMSE correlator exists
and has been defined, it is necessary to derive an efficient
implementation of this filter. The CSA facilitates such an
implementation.

5. DERIVING THE MMSE CORRELATOR FOR
THE RAKE RECEIVER BASED ON MWF

The MWF is an efficient innovative reduced rank algorithm
for finding the MMSE solution not requiring any type of
matrix inversions [4]. The MWF is based on multiple or-
thogonal projections and backward recursions to find the
MMSE solution. To derive the MMSE correlator it is nec-
essary to only consider the first orthogonal decomposition
initially. The MWF MMSE solution can be written as

�>O>PRQ � ��SUT � ' �<+ � �9 � � � ������� G (18)

where T is chosen such that T � � �<V
. The important con-

tributions of the CSA deal with how one picks T and solve

for � ' in an efficient implementation. This implementa-
tion yields the desired MMSE correlator. The MMSE cor-
relator for the RAKE receiver has an interesting interpreta-
tion. With no interference suppression (assuming � ' �WV

),
the solution yields the standard correlator of the RAKE re-
ceiver, but with interference suppression it is now possible
for the correlator to mitigate MAI before the RAKE receiver
does any type of optimal combining based on the channel
coefficients. Since the channel coefficients are already uti-
lized for the standard RAKE receiver, no additional infor-
mation is needed to get MMSE performance besides gener-
ating T and � ' . The CSA structure is utilized to indirectly
generate T and � ' to construct the MMSE correlator.

6. MMSE CORRELATOR BASED ON CSA

In the MWF, there is no computation of eigenvectors. It
has been shown that the MWF implicitly constrains the de-
sired weight vector to lie in the Krylov subspace spanned by= �NXY� + �NXZ�0�/����� +:[ � � �NX A

[5]. The word “implicit” is used
since there are implementations of the MWF that do not
require the formation of the correlation matrix such as the
CSA. A benefit of the MWF is that this algorithm can work
in the critical low-sample support operational environment
where other adaptive algorithms fail. In other words, the
ability for rapid adaptation is matched by a lower require-
ment for training data to estimate the statistics. Thus while
many least-squares algorithms or orthogonal filter structures
may offer faster convergence than stochastic gradient algo-
rithms, the MWF is the only algorithm which actually re-
duces the sample support requirements without degrading
performance. This facilitates tracking in a nonstationary
signal environment.

The MWF based on the CSA algorithm is summarized
below. The algorithm is initialized with a “desired” sig-
nal \ �.]@^�_ � � � � ]@^�_ and

� �8]"^�_ �`� ]"^�_ S�� \ ��]"^�_ . Note
that

� ]@^�_ corresponds to
� 9

of each diversity branch of the
RAKE receiver. This implies that the CSA structure would
replace each correlator at the �"�"! path in the RAKE receiver.

a Initialization: \ � ]"^�_ and
� � ]@^�_

a Forward Recursion: For b �dc �(ef�����/���Jg :

hji � ;>= \lki � � ]@^�_ � i � � ]@^�_ Am i � h i,npo/o h ilo�o
\ i ]"^�_ � m � i � i � � ]@^�_� i ]"^�_ � � i � � ]@^�_ S m i \ i ]"^�_

a Backward Recursion: For b � gq�JgrS c �����/��� c , with

3
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���������
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������� :
��� 	 ������������ ������� � ��������� ���"! � � �����#! $%�

� �&�'� �����(	 � �&��� �����*) � �� � � �����

A low complexity implementation of the MMSE corre-
lator is depicted in Figure 1 known as the CSA. This figure
clearly displays the multiple stages and modular structure
highlighted by the dashed box. Operating in a D-dimensional
space is tantamount to “terminating” all stages beyond the+

-th stage. It is important to notice that all operations of
the CSA after the first stage involve complex vector-vector
products, not complex matrix-vector products, thereby im-
plying , �.- + � per snapshot. This particular implementa-
tion of the MWF was first discovered by Ricks and Goldstein[8].
To reduce implementation complexity, they exploited the
structure of the full dimension orthogonal projection matrix.
Compared to other MMSE based algorithms having opera-
tions of , ��-0/&� , the CSA is by far more computationally
efficient.
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Fig. 1. Efficient implementation of the MMSE correlator
based on the CSA modular filter structure.

7. SIMULATIONS

A simulation was generated to show the decreased BER (bit
error rate) performance of the RAKE receiver by using the
MMSE correlator. A 4 tap channel model was used to sim-
ulate multi-path effects where 1 	3254%6#7 8:9;6#7 9
<"6=7>4#9�?�@ . The
system consisted of A 	B4�C synchronous equal power users
utilizing spreading codes D of length -E	F4#8 generated
from Hadamard sequences. Analytical BER curves were
derived based on equation (3). Further details about gen-
erating (3) can be found in [6]. Figure 2 illustrates how
the MMSE correlator improves the RAKE receiver to per-
formances close to the full rank MMSE solution that spans
multiple symbols. It will not reach full rank MMSE per-
formance due to interference suppression in a reduced data
window. Figure 3 illustrates the interference suppression

capabilities of the MWF correlator based RAKE receiver
for different stages. Notice that even at stage 1 out of -
stages, a significant improvement in BER compared to the
standard RAKE receiver is achieved. Figure 4 illustrates the
importance of having an adequate data window size (based
on processing gain) for the RAKE MWF correlator to sup-
press interference. For each processing gain - , -�)G4 equal
power users were simulated using the same channel model
1 . The full rank MMSE and RAKE curves in Figure 4 were
generated with -H	I4#8 and A 	J4�C for comparison pur-
poses. A processing gain of at least 8 for the specified chan-
nel model allows significant MAI suppression.
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Fig. 2. Performance of the RAKE MMSE correlator,
MMSE RAKE, and RAKE Receiver.

8. CONCLUSION

A reduced-rank MMSE correlator for the standard RAKE
receiver is described based on the low complexity correla-
tions subtractive architecture. It is shown that the MMSE
correlator can dramatically improve the performance of the
RAKE receiver just by replacing the standard correlator with
an MMSE correlator that reduces MAI from other users.
The structure of the MMSE correlator facilitates rapid im-
plementation into the RAKE receiver, thereby minimizing
receiver modifications.
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ABSTRACT

A novel receiver for space-time coded systems based on the
reduced rank multistage Wiener filter (MWF) is presented. It
is shown that this receiver has a complexity that is only a
linear function of the processing gain (N), the number of
transmit antennas (Lt), and the rank (D) of the MWF. The
complexity of the equivalent MMSE solution is a function
of (NLt)

3. It is also demonstrated by numerical simula-
tion that this receiver meets MMSE performance at a sig-
nificantly low rank. The MMSE implementation is derived
and performance is evaluated for highly loaded synchronous
CDMA systems in flat fading.

1. INTRODUCTION

Systems employing code division multiple access (CDMA)
are typically interference limited. The interference is due to
the non-orthogonal multiplexing of signals that results from
multipath induced by the channel, causing intersymbol inter-
ference (ISI). Interference can also arise from multiple users
sharing a common bandwidth for different services, such as
voice and data transmission. This interference severely lim-
its system capacity and increasing demand for access has
brought forth the requirements for better interference sup-
pression techniques for future systems. Recently, diversity
schemes employing space-time codes have been studied to
combat interference and channel fading using diversity pro-
cessing. In this paper, a low complexity receiver based on the
multistage Wiener filter (MWF) ([2]) for space-time coded
systems is presented and evaluated.

2. CDMA SIGNAL MODEL

We assume a CDMA system with K synchronous users, as
is typical of the forward link where space-time codes would
by typically used. User k transmits a baseband signal given
by

xk(t) =
∑

i

Akbk(i)sk(t− iT − τk), (1)

where bk(i) is the symbol transmitted by user k at time i,
sk(t) is the spreading code associated with user k, and Ak

and τk are the real valued amplitude and delay, respectively.
We assume binary signaling, so that the symbols bk(i) ∈
(-1,+1). The spreading sequence can be written as

sk(t) =
N−1
∑

i=1

ak[i]Ψ(t− iTc), (2)

where ak[i] ∈ (
+1√

N
, −1√

N
) is a normalization factor for the

spreading code. The processing gain of the CDMA system
is given by N = T

Tc
, where Tc is the chip period, and T is the

symbol period. We assume direct sequence (DS) CDMA, so
that the chip sequence Ψ(t) is a constant.

3. DERIVATION OF MMSE SOLUTION FOR

SPACE-TIME CODES

With space-time codes, the data bit of a particular user is
transmitted over multiple antennas. In a CDMA system,
the symbols are also multiplied by the appropriate spread-
ing codes. The received codeword is decoded using an ML
or MMSE approach, and a bit estimate is determined. In
this section, a reduced rank IS algorithm using the MWF is
presented. Attention is restricted to Rayleigh distributed,
flat fading channels. For the 2× 2 space-time code in [1], at
a given time period t, symbol c1 is transmitted from antenna
one, and symbol c2 is transmitted from antenna two. During
the next time period, t+T , symbol −c2 is transmitted from
antenna one, and symbol c1 is transmitted from antenna
two. The code can be written as

C2x2 =

[

c1 c2
−c2 c1

]

. (3)

An example of a 4× 4 space-time code ([5]) is

C4x4 =









c1 c2 c3 c4
−c2 c1 −c4 c3
−c3 c4 c1 −c2
−c4 −c3 c2 c1









. (4)

The MMSE solution will be derived for the 2×2 and 4×4
codes described above but can be easily extended to other
codes. Synchronous users are assumed, but the solution can
be applied to asynchronous users assuming the receiver is
synchronized to the desired user.

3.1. 2× 2 Space-Time Code

Define hij as the channel coefficient from the ith transmit
antenna to the jth receive antenna. Denote the received sig-
nals over the two consecutive symbol periods as rj(i) and
rj(i − 1). Assuming, as mentioned earlier, that each hij is
approximately constant over two consecutive symbol peri-
ods, we can write the received signal at antenna j = 1 or
j = 2 as ([4])

• rj(i) =
∑K

k=1 Ak(h1jskbk(i) + h2jskbk(i− 1)) + nj(i)
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• rj(i − 1) =
∑K

k=1 Ak(−h2jskbk(i) + h1jskbk(i − 1)) +
nj(i− 1),

where nj(i) and nj(i− 1) are N × 1 AWGN vectors. Define
the received signal vector by r(i) = [rj(i) rj(i−1)]

T and the
noise vector by n = [nj(i) nj(i− 1)]

T . Define code symbol
vectors by

cjk,1 = [h1js
T
k h2js

T
k ]

T (5)

cjk,2 = [−h2js
T
k h1js

T
k ]

T . (6)

This can also be written as

cjk,1 = ζk,1hj (7)

cjk,2 = ζk,2hj , (8)

where

ζk,1 =

[

sk 0

0 sk

]

(9)

ζk,2 =

[

0 −sk

sk 0

]

, (10)

and hj = [h1j h2j ]
T . We further define

h = [hT
1 hT

2 ]
T , (11)

and

ck,1 = [c
T
1k,1 cT

2k,1]
T = (I2 ⊗ ζk,1)h (12)

ck,2 = [c
T
1k,2 cT

2k,2]
T = (I2 ⊗ ζk,2)h, (13)

where I2 denotes a 2× 2 identity matrix and ⊗ denotes the
Kronecker product. The received signal is now given by

r(i) =

K
∑

k=1

Ak(ck,1bk(i) + ck,2bk(i− 1)) + n(i), (14)

where n = [nT
1 nT

2 ]
T .

The MMSE receiver must estimate the vector of bits
b(i) = [b1(i), b2(i), ..., bK(i)] from the received signal vector
r(i). To compute the MMSE solution, minimize the MSE,
given by

MSESTC = arg=minE[‖b(i)−=Hr(i)‖2]. (15)

The MMSE solution can then be written directly as

= = R−1
rr Rrb, (16)

whereRrr is the data covariance matrix andRrb is the cross-
correlation vector. From Eq. (14), the cross-correlation vec-
tor can be written as

Ryb = E[r(i)b(i)] = CA, (17)

where C = [C1 C2 ... CK ], Ck = [ck,1 ck,2], and A is the
diagonal matrix of signal amplitudes defined previously. If
we assume that user one is the desired user, the MMSE
simplifies to

=SU = A1R
−1
rr C1. (18)

3.2. 4× 4 Space-Time Code

The parameters hij are as defined for the 2 × 2 code. The
received signals over four consecutive symbol periods at an-
tenna j, j = 1, 2, 3, 4, are defined, respectively, as

• rj(i) =
∑K

k=1 Ak(h1jskbk(i)+h2jsk bk(i−1)+h3jskbk(i−
2) + h4jskbk(i− 3)) + nj(i)

• rj(i − 1) =
∑K

k=1 Ak(−h2jskbk(i) + h1jskbk(i − 1) −
h4jskbk(i− 3)+
h3jskbk(i− 4)) + nj(i− 1),

• rj(i − 2) =
∑K

k=1 Ak(−h3jskbk(i) + h4jskbk(i − 1) +
h1jskbk(i− 3)+
h2jskbk(i− 4)) + nj(i− 2),

• rj(i − 3) =
∑K

k=1 Ak(−h4jskbk(i) − h3jskbk(i − 1) +
h2jskbk(i− 3)+
h1jskbk(i− 4)) + nj(i− 3),

where nj(i), nj(i − 1), nj(i − 2), and nj(i − 3) are N × 1
AWGN vectors. Write the received vector as r(i) = [rj(i) rj(i−
1) rj(i−2) rj(i−3)]

T and the noise vector by n = [nj(i) nj(i−
1) nj(i− 2) nj(i− 3)]

T . Define the code symbol vectors by

cjk,1 = [h1js
T
k h2js

T
k h3js

T
k h4js

T
k ]

T (19)

cjk,2 = [−h2js
T
k h1js

T
k − h4js

T
k h3js

T
k ]

T . (20)

cjk,3 = [−h3js
T
k h4js

T
k h1js

T
k − h2js

T
k ]

T . (21)

cjk,4 = [−h4js
T
k − h3js

T
k h2js

T
k h1js

T
k ]

T . (22)

Each of the above equations can also be written as

cjk,i = ζk,ihj , (23)

where

ζk,1 =









sk 0 0 0

0 sk 0 0

0 0 sk 0

0 0 0 sk









, (24)

ζk,2 =









0 −sk 0 0

sk 0 0 0

0 0 0 −sk

0 0 sk 0









, (25)

ζk,3 =









0 0 −sk 0

0 0 0 sk

sk 0 0 0

0 −sk 0 0









, (26)

ζk,4 =









0 0 0 −sk

0 0 −sk 0

0 sk 0 0

sk 0 0 0









, (27)

and hj = [h1j h2j h3j h4j ]
T . We also define

h = [hT
1 hT

2 hT
3 hT

4 ]
T , (28)
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and

ck,1 = [c
T
1k,1 cT

2k,1 cT
3k,1 cT

4k,1]
T = (I4 ⊗ ζk,1)h (29)

ck,2 = [c
T
1k,2 cT

2k,2 cT
3k,2 cT

4k,2]
T = (I4 ⊗ ζk,2)h (30)

ck,3 = [c
T
1k,3 cT

2k,3 cT
3k,3 cT

4k,3]
T = (I4 ⊗ ζk,3)h (31)

ck,4 = [c
T
1k,4 cT

2k,4 cT
3k,4 cT

4k,4]
T = (I4 ⊗ ζk,4)h (32)

The received signal can now be written as

r(i) =

K
∑

k=1

Ak

4
∑

t=1

(ck,tbk(i− t+ 1)) + n(i) (33)

where n = [nT
1 nT

2 nT
3 nT

4 ]
T .

With the first user as the user of interest, the MMSE
solution is

=SU = A1R
−1
rr C1, (34)

where Rrr is the data covariance matrix defined previously,
C = [C1 C2 ... CK ] as before, and Ck = [ck,1 ck,2 ck,3 ck,4].

4. MMSE IMPLEMENTATION VIA THE MWF

To implement the MMSE solution for space-time codes via
the MWF, note the analogy between the standard MMSE
solution ([3]),

cMMSE = R−1s1, (35)

and that of the STC in Eq. (18) or Eq. (34). The desired co-
variance matrix is computed using the joint received vector
r, defined in Eq. (14) or Eq. (33). Similarly, the spreading
code s1 is replaced by C1, defined as C1 = [ck,1 ck,2] for
the 2 × 2 code and C1 = [ck,1 ck,2 ck,3 ck,4] for the 4 × 4
code. Note that d0(i) is now a vector instead of a scalar; a
parallel implementation must therefore be used. The out-
puts, [b̂1(i) b̂1(i − 1)] for the 2 × 2 code, and [b̂1(i) b̂1(i −

1) b̂1(i−2) b̂1(i−3)]
T for the 4×4 code, are delayed appropri-

ately and added to determine the final bit estimate. Thus,
the MWF algorithm (see [2] and Figure 1) is initialized by
setting d0(i) = CH

1 r(i) and x0(i) = BC1r(i) for the 2 × 2
code, and similarly for the 4 × 4 code, where the blocking
matrix BC1 is defined to be orthogonal to C1. The recur-
sion equations for the MWF (see Table 1), are described in
detail in [2] and [3]. The receivers are shown for the 2 × 2
code and the 4× 4 code in Figures 2 and 3, respectively.

x0(i )

d0(i ) =b (i)

B1 
{h1} B2 

{h2}

x3(i ) = d4(i )

d1(i ) =h1
H

 x 0( i )
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H

 x1(i )

d3(i ) =h 3
H

 x2(i )

w4

w3

w2

w1

+

-

+

-

+

-

+

-

 3(i )
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 0(i )
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h2

h1

h3

B3 
{h3}

ε
ε

ε

ε

1

= "The null space of"

Figure 1: Multistage Wiener Filter (MWF), D=4 stages

Computational Savings of the MWF: The zeroth stage
of the standard MWF is the matched filter, requiring N op-
erations per block. Next, the output is re-spread with the

Table 1: Recursion Equations for the MWF

Initialization: d0(i) and x0(i)
Forward Recursion: For j = 1, 2, ..., D:

hj =
∑

Ω
{d∗j−1(i)xj−1(i)}

||∑
Ω
{d∗j−1(i)xj−1(i)}||

dj(i) = hH
j xj−1(i)

xj(i) = Bjxj−1(i)
Backward Recursion: For j = D,D − 1, ..., 1

eD(i) = dD(i)

wj =
∑

Ω
{d∗j−1(i)ej(i)}

∑

Ω
{|ej(i)|2}

ej−1(i) = dj−1(i)− w∗
j ej(i)

Σ

CSA-MWF

b (i)
~

r(i) b (i)k
^

Advance 1
b (i-1)^

k

k

c k,1

CSA-MWFc k,2

Figure 2: 2× 2 STC Decoding Scheme Using the MWF

spreading code and subtracted from the received signal, re-
quiring another N flops. This is the dominant term in the
computations, and for D stages, the result is a requirement
of O(2DN) flops. For the MMSE, the dominant term is the
N × N matrix inversion, which requires O(N 3) operations
per block. With space-time coding, the complexity of the
MMSE solution is greatly reduced by employing the MWF as
the dimension of the covariance matrix now increases from
N to NLt (or NLr), where Lt and Lr are the number of
transmit and receive antennas, respectively. So now, the
number of required flops for the MWF and the MMSE imple-
mentations is O(2DNLt) and O(N3L3

t ), respectively. This
number can become impractically large even for Lt = 2 or
Lt = 4.

5. NUMERICAL RESULTS

We use length N = 31 Gold codes in spreading. Figure 4 is
a plot of Eb/N0 vs. BER for a 2× 2 STC assuming K = 15
users. Performance gains of up to 8 dB are observed here due
to the transmit code diversity, time diversity, and receiver
antenna diversity. Note also that the MWF performance
meets that of full rank at a rank of 5. Figure 5 is a plot of
Eb/N0 vs. BER for the 4× 4 STC with K = 15 users. For
this highly loaded system in flat fading, the MMSE solution
requires high SNR. Low BERs are attainable at very low
SNRs by employing the reduced rank MWF with the STC,
with the added benefit of low complexity implementation
as described above. Here, the MWF/STC performance im-
proves over full rank MMSE by nearly 9 dB, again at rank
5.
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Figure 3: 4× 4 STC Decoding Scheme Using the MWF
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Figure 4: 2× 2 Space-Time Code Example

6. CONCLUSION

A new receiver for space-time coded systems based on the
multistage Wiener filter is introduced. The MMSE solution
is derived for a 2 × 2 and a 4 × 4 coding scheme. Imple-
mentation of the solution using the reduced rank MWF is
then shown. The implementation complexity of the reduced
rank MWF versus the MMSE is O(2DNLt) and O(N3L3

t ),
respectively, with D ¿ N . Numerical results show that the
MWF meets full rank performance at a rank as low as 5 for
processing gains of 32. Performance gains up to 9 dB versus
the uncoded system are demonstrated.
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ABSTRACT

A new, low rank adaptive algorithm that performs serial
and parallel interference cancellation for a DS-CDMA in
frequency selective multipath is presented. The algorithm
provides interference suppression (IS) in place of matched
filtering at each stage of the cancellation for better inter-
ference mitigation. It employs a computationally efficient,
correlation-subtraction architecture (CSA) based on the mul-
tistage Wiener filter (MWF) to do the IS at each succes-
sive stage. This CSA-MWF structure meets MMSE per-
formance but requires substantially fewer computations than
the MMSE receiver, and eliminates the need for matrix in-
version, eigen-decomposition, or the construction of block-
ing matrices. Embedded within the new structure is also a
RAKE receiver that combines the multipath components for
added performance gain. It is shown that this technique per-
forms significantly better than the conventional matched fil-
ter (MF) SIC. The performance gains of the joint MWF/SIC
and MWF/PIC structures over the conventional SIC and
PIC, MMSE, and RAKE receivers are determined for a highly
loaded synchronous DS-CDMA system in frequency selective
multipath, and the computational costs and performance ben-
efits are presented.

1. INTRODUCTION

Code Division Multiple Access (CDMA) has been proposed
for future generation wireless communications systems due
to its’ potential for providing high system capacity over
other multiple access schemes. However, systems employing
CDMA are typically interference limited. The interference
is often exacerbated by what is commonly called the near-
far effect, in which a user near the base station causes a
large amount of interference to a user far away. Many com-
mercial systems employ stringent power control to mitigate
this problem. Others employ multiuser detection (MUD) to
suppress multi-access interference (MAI) ([7]). However, op-
timal multiuser detection schemes, i.e. maximum likelihood
(ML) are often computationally complex. In serial interfer-
ence cancellation (SIC) schemes, the output of a bank of
correlators is used to determine the highest power user to
then subtract that user’s signal out of the received signal.
This process is repeated for the next highest power user, and
so on. When users have equal power, parallel interference
cancellation (PIC) schemes can be used. Prior work in the

development of SIC and PIC receivers is found in e.g. [7],
[5], and [11].

In this paper, we present SIC and PIC schemes that per-
form IS along with multipath combining. The matched fil-
ter (MF) correlators in the SIC are replaced by the efficient
CSA structure of the MWF ([2], [3], and [8]) to do IS at
each stage. It has been shown that the MWF meets full
rank MMSE performance at a low rank, thereby giving a sig-
nificant improvement in performance over the conventional
MF, but without the covariance matrix inversion required by
the full rank MMSE receiver. It has also been shown that
this implementation of the MWF can be used to perform
multiuser detection (MUD) with no performance loss over
matrix version (full rank) MUD schemes. Multipath com-
bining is obtained by allowing the zeroth stage correlator of
the MWF to span more than one bit.

We begin by describing the MMSE solution to the CDMA
detection problem, which includes a RAKE type processor,
and show how this solution is efficiently implemented with
the CSA-MWF. The computational cost and performance
benefit of the MWF are also analyzed. We then describe
the SIC and PIC structures using the CSA-MWF and for-
mulate an expression for probability of error (Pe). The Pe

expression is compared to the bit error rate (BER) output of
a Monte Carlo simulation using a simple two user example.
Then, we show the performance benefits of the MWF/SIC
and PIC via Monte Carlo simulation and compare the new
structures with that of the standard SIC and PIC, as well
as the MMSE and the conventional RAKE receiver.

2. CDMA SIGNAL MODEL

We assume a synchronous CDMA system with K users. Per-
formance with asynchronous users can be assessed by treat-
ing each asynchronous user as two synchronous users. User
k transmits a baseband signal given by

xk(t) =
∑

i

Akbk(i)sk(t− iT − τk), (1)

where bk(i) is the symbol transmitted by user k at time i,
sk(t) is the spreading code associated with user k, and Ak

and τk are the amplitude and delay, respectively. We assume
binary signaling, so that the symbols bk(i) ∈ (-1,+1). The

1
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spreading sequence can be written as

sk(t) =

N−1
∑

i=1

ak[i]Ψ(t− iTc), (2)

where ak[i] ∈ ( +1√
N
, −1√

N
). The processing gain is given by

N = T
Tc

, where Tc is the chip period, and T is the symbol
period. We assume that the chip sequence Ψ(t) is a constant,
i.e. direct sequence (DS) CDMA.

Assume, without loss of generality, that we are interested
in detecting user 1 and write the transmitted signal as

y(i) = b1(i)s1 +
K

∑

k=2

Akbk(i)sk. (3)

Here, s1 is the spreading sequence of user 1, and sk is the
N × 1 vector containing the spreading code associated with
the kth interfering user. To simplify the notation, we rewrite
Eq. (3) in matrix form as

y(i) = SAb(i), (4)

where S = (s1 s2 ... sK), A = diag(A1, A2, ..., AK), and
b(i) = (b1(i), b2(i), ..., bK(i))T . S is an N ×K matrix, A is
a K ×K matrix, and b(i) is a K × 1 vector. Our goal is to
extract the desired information, i.e., the bits transmitted by
user 1 (b1) while suppressing the interference represented by
the term in the summation of Eq. (3).

3. THE REDUCED RANK CSA-MWF

In this section, we present the MMSE solution for a syn-
chronous, DS-CDMA system in a channel distorted by fre-
quency selective multipath and its implementation via the
reduced rank MWF.

Consider a multipath channel, modeled by an L-tap chip-
spaced tapped-delay line with coefficients h = [h1, h2, ..., hL].
The parameter L is known as the delay spread of the channel.
The received signal can now be written as

r̂(i) = ŷ(i) + n(i), (5)

where ŷ = y ∗h and ∗ denotes convolution. Substituting for
y from Eq. (3), we can write the received signal explicitly as

r̂(i) = b1(i)̂s1 +

K
∑

k=2

Akbk(i)̂sk + n(i), (6)

where (̂·) denotes convolution of the operand with the chan-
nel vector h. In this paper, it is assumed that the channel
vector is known. The goal of the MMSE receiver is to mini-
mize the mean square error between the transmitted bit and
its’ estimate, defined by

MSE = E[|b1(i)− ĉH r̂(i)|2], (7)

where E[·] denotes the expected value operator and (·)H

denotes Hermitian transpose. The MMSE solution in the
presence of multipath is ([9])

ĉMMSE = R̂−1ŝ1 = E [̂rr̂H ]
−1

ŝ1. (8)
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Figure 1: CSA-MWF (D=2 stages)

Note that computation of the MMSE solution requires
inversion of the (N +L−1)× (N +L−1) covariance matrix
R̂, which can be quite computationally intensive and may
not even be possible in real-time for a high data rate system.
Also, if the channel or signals are changing in time, then the
sample covariance matrix estimated from the data does not
depict the true non-stationary signal environment. Thus, it
is desirable to find alternative solutions that approach, or
exceed, the performance of the MMSE receiver but require
much fewer computations and can adapt rapidly. The MWF
has demonstrated the ability to do this (e.g., see [2]). The
multistage decomposition of the Wiener filter, based on the
correlation-subtraction architecture (CSA) for D = 2 stages
is shown in Fig. 1 ([8]).

The MWF solution for the multipath channel is obtained
by setting h0 = ŝ1, the spreading code of the desired user
convolved with the channel impulse response. Then, d0(n) =
ŝH
1 x0(n), where the input signal x0(n) is a vector com-
posed of a block of M bits of the received sampled signal:
[̂r(n − M + 1) r̂(n − M + 2) ... r̂(n)]. The filter in Fig. 1
demonstrates the low complexity of this implementation of
the MWF and the fact that the computation of signal block-
ing matrices are no longer necessary for subspace partition-
ing. The recursion equations are shown below ([3] and [4]).

• Initialization: d0(n) and x0(n)

• Forward Recursion: For k = 1, 2, ..., D:

hk =

∑

Ω
{d∗k−1(n)xk−1(n)}

||
∑

Ω
{d∗k−1(n)xk−1(n)}||

dk(n) = hH
k xk−1(n)

xk(n) = xk−1(n)− hkdk(n)

• Backward Recursion: For k = D,D − 1, ..., 1, with
εD(n) = dD(n):

wk =

∑

Ω
{d∗k−1(n)εk(n)}

∑

Ω
{|εk(n)|2}

εk−1(n) = dk−1(n)− w∗
kεk(n)

where Ω denotes the region of sample support used to com-
pute the statistics. Note that the RAKE solution, which
only incorporates the effects of multipath and neglects in-
terference, can be written simply as ([6]) cRAKE = ŝ1 and
in the presence of only AWGN, this further reduces to the
matched filter (MF) solution, cMF = s1.
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Computational Cost/Benefit of the MWF: In the matched
filter, N multiplications and N − 1 additions are required
for each bit of data, equivalently approximately N float-
ing point operations (or flops) are required. For a block of
data, O(NM) flops are needed, where O denotes ‘on the
order of’. The zeroth stage of the MWF is the matched fil-
ter, requiring N operations per block. Next, the output is
re-spread with the spreading code and subtracted from the
received signal, requiring another N flops. This is the dom-
inant term in the computations, and for D stages and M
blocks, the result is a requirement of O(2DNM) flops. Fi-
nally, for the MMSE, the dominant term is the N×N matrix
inversion, which requires O(N 3) operations per block or a
total of O(N3M) operations. As an example, let N = 32,
D = 5, and M = 100. Then, the computational cost asso-
ciated with the MF, MWF, and MMSE are 3, 200, 32, 000,
and 3, 276, 800 flops, respectively. The minimal complexity
increase of the MWF over the MF is outweighed by the per-
formance benefits, as the MF fails in a highly loaded system.

4. JOINT IS/SIC VIA THE CSA-MWF

The conventional SIC provides cancellation of strong users
first by correlating with a filter matched to the spreading
code of the desired user. A hard decision on the correlator
output is used to regenerate the decoded signal and subtract
it out of the received signal for the next stage in the can-
cellation ([7]). In the new scheme, it is proposed to replace
the conventional correlator at each stage with an MMSE
receiver, implemented using the CSA-MWF. The bit es-
timates used to regenerate the signal will improve as the
MWF does IS whereas the MF cannot. A block diagram of
the new scheme is shown in Figure 2.
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Figure 2: SIC via CSA-MWF

The Pe for a simple SIC is derived in [7] by treating the
interference due to both the uncancelled users and the im-
perfectly cancelled users as Gaussian noise. In [1] an accu-
rate Pe for a decorrelating multiuser decision feedback (DF)
detector is derived for synchronous CDMA systems by uti-
lizing decisions of the high energy users to decode the weaker
ones. Those structures can be modified to replace the for-
ward filter by the MWF. Since the SIC is a form of multiuser
detector, one should begin by writing the received signal in

matrix form. Using matrix notation of Eq. (4), we can write
the received signal in Eq. (6) as

r̂(i) = ŜAb(i) + n(i). (9)

Referring to Figure 2, the first operation performed in the
SIC is a matched filter for each of the spreading codes. For
the next block, the feedforward filter of the DF detector
described in [1], is replaced here by the equivalent matrix
form of the MWF. It can be shown that the MUD filter
is equivalent to the concatenation of a bank of IS filters
([10]), and thus the matrix of coefficients can be written as
CMWF = [cMWF,1 cMWF,2, ..., cMWF,K ] where cMWF,k

denotes the vector of coefficients for user k. Writing the
MWF as a vector of filter coefficients (from Figure 1), it can
be shown that the solution for user 1 is given by ε0(n) =
cH

MWF,1x0(n) where

cMWF,1 = ŝ1 − w1h1 + w1w2h2 − w1w2w3h3 + · · · . (10)

The solution for the other users is obtained similarly. With
this substitution, the structure of Figure 2 is identical to that

in [1] with CMWF replacing (F T )
−1

and cMWF,k replacing
Fi,k. An outline of the derivation of the Pe, following that
in [1], is presented below:

First assume that correct decisions are fed back to the
SIC, so that the output SNR for user k can be written as

SNRk = c2MWF,kA
2
k/σ

2. (11)

Recall that Ak is the amplitude of the kth user and σ is the
standard deviation of the white noise. Then, the Pe is

Pek
= Q(cMWF,kAk/σ), (12)

where Q() denotes the Q function. Now, assuming that er-
rors occur, a more accurate probability of error can be cal-
culated by first computing the conditional error probabil-
ity assuming a particular error and then averaging over all
the possible errors for all of the previously cancelled k − 1
users. This expression is given by

Pek
= E[∆b1, ...,∆bk−1]Q(

Ak(cMWF,k +
∑k−1

i=1 cMWF,i∆bi)

σ
)

(13)
where the error for the ith user is ∆bi = (bi − b̃i). For the
binary system under consideration, ∆bi only takes on the
values 2 or −2.

5. JOINT IS/PIC VIA THE CSA-MWF

The standard PIC provides cancellation of all of the equal
(or nearly equal) power interferers from the received signal
at successive stages before decoding the bits transmitted by
the desired user. Again the decoding of the interfering users
is done by correlation with a matched filter followed by a
hard decision and subtraction. Following the last stage of
the PIC, the desired user’s bits are then decoded. Again,
we replace the conventional correlator at each stage in the
PIC with the CSA-MWF to improve performance. A partial
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block diagram of a two-stage PIC structure similar to that in
[5] is shown in Figure 3. Further stages can be concatenated
by subtracting the re-spread bit estimates at each stage from
the input to the MWF of that stage, which has the estimates
of the previous stages already removed.
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Figure 3: PIC via CSA-MWF (Two-Stage)

The Pe derivation in this section can be obtained easily
from that presented in [5], in which an approximate formula
for Pe using an MMSE/PIC is derived and bounded. By
replacing the MMSE detector with the equivalent MWF,
the MWF/PIC solution is obtained. The expression for Pe

is complicated and is bounded in [5], Eq. (31). Note
the similarity between this equation and Eq. (13), derived
for the SIC. In fact, it can be shown that these equations
are identical. Alternatively, note the similarity between the
structures in Figures 2 and 3. This is because the single stage
SIC structure is identical to that of the two-stage PIC, with
the only exception being the way the users are cancelled. In
the PIC, the users are assumed equal power, and therefore all
cancelled simultaneously whereas in the SIC, users of higher
power are cancelled first.

6. A TWO-USER EXAMPLE

The final expression for Pe given in Eq. (13) is complicated
to evaluate even for the binary problem because of the pres-
ence of multiple users. It will therefore be evaluated using a
simple, two user example to validate the Monte Carlo simu-
lation to provide numerical results in the next section. For
the SIC, assume that the first user has higher power than
the second user and is thus cancelled first (for the PIC equal
power users are assumed and either one can be cancelled
first). First, note that the Pe for the stronger user is given
by the output of the first stage of the SIC, i.e. the MF
followed by the MWF, or

Pe,1 = Q(cMWF,1A1/σ). (14)

Then, the input to the decision device for the second user is
A2b2 + cMWF,1A1(b1 − b̃1) + n2. By averaging over the two

possible values that can be taken on by b1 − b̃1, the Pe can
be written as

Pe,2 = (1− P1)Q(A2/σ) +
P1
2
[Q(

ε1
σ
) +Q(

ε2
σ
)]. (15)
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Figure 4: Monte Carlo vs. Analytical SIC and PIC (K = 2)

where ε1 = A2−2cMWF,1A1 and ε2 = A2+2cMWF,1A1. To
test the validity of this expression, a synchronous CDMA
system with Gold codes of length N = 31 is assumed. The
number of users again is K = 2, the rank of the MWF is
D = 5, the multipath channel has L = 5 taps, and the power
difference between the two users is ∆P = 1 dB. The BER
and Pe are plotted as a function of the SNR in Figure 4
below. Performance of the PIC is evaluated using a similar
two-user system; however, now the powers of the two users
are set to 0 dB. This result is also shown in Figure 4. Note,
in both cases, there is excellent agreement between the two
models.

7. NUMERICAL RESULTS

We compare performance gains of the joint MWF SIC/PIC
over conventional SIC/PIC, MMSE, and RAKE. Gold codes
of length 31 are assumed with a multipath delay spread of
L = 5, K = 20 users, and rank D = 5. A plot of Eb/N0
versus BER for the SIC is shown in Figure 5. We assume
that the power difference among the users, from one user to
the next, is 1 dB. This means that the strongest user can be
as much as 19 dB above the weakest (since K = 20). The
BER is computed for the weakest user, so that the aver-
age BER over all users would be significantly better. Note
that in the range of 10−3 to 10−5 BER, the MWF IS/SIC
gives a performance gain of 2-4 dB over the conventional SIC
and MMSE. Note also that the conventional SIC performs
poorly due to the fact that the conventional matched filter
is interference limited. Thus, low bit error rates cannot be
achieved. Performance of the MWF/SIC at D = 12 can im-
prove by about 1 dB over D = 5. A plot of Eb/N0 versus
BER is shown for the PIC in Figure 6 for the same system as
above, but now with equal power users and D = 8. Perfor-
mance gains of 2−4 dB are observed at high Eb/N0. Perfor-
mance suffers at low Eb/N0 because high noise levels cause
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errors in the first stages to propagate to later stages. Typ-
ically, PICs are only used in high SNR environments where
error propagation is not a concern. A similar effect is not
observed in the SIC, because the highest power users are
cancelled first, increasing detection reliability and reducing
the number of errors.
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Figure 5: SIC (K = 20; D = 5)
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Figure 6: Three-Stage PIC (K = 20; D = 8)

8. CONCLUSION

In this paper, joint reduced rank IS and SIC/PIC schemes
are described. These novel IC schemes are implemented by
replacing the conventional matched filter at each stage with
a reduced rank MMSE receiver, implemented using an ef-
ficient CSA structure of the MWF. It is shown via Monte
Carlo simulation that for a highly loaded DS-CDMA system,
this IS/SIC performs significantly better than the MMSE re-
ceiver and the conventional SIC. Performance gains of 2-4 dB
are observed at low ranks of only 5 versus full rank of 31.
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ABSTRACT

A novel, low complexity, reduced rank multiuser detector
(MUD) for DS-CDMA is presented. The solution is de-
rived for the general case of an asynchronous DS-CDMA
system in frequency selective multipath. The joint MUD so-
lution is shown to be equivalent to a bank of parallel, single
user detectors, previously shown only for synchronous users.
The algorithm is implemented in low complexity form us-
ing the efficient correlations subtractive architecture of the
reduced rank multistage Wiener filter (CSA-MWF). The re-
duced rank algorithm is not based on an eigen-decomposition,
which requires the signal subspace rank to be greater than or
equal to the number of signals present in the system, and
is shown to be nearly independent on the number of signals.
It is shown that the joint and parallel CSA-MWF imple-
mentations perform identically to the full rank MMSE MUD
and approaches single user, full rank performance at signif-
icantly reduced ranks. Bit error rate (BER) performance as
a function of rank, signal-to-noise ratio, number of users,
code type, and synchronism among the codes is analyzed.

1. INTRODUCTION

Systems employing code division multiple access (CDMA)
are typically interference limited. The interference arises
from the very nature of the systems, which must often ac-
commodate multiple users transmitting simultaneously via a
common physical channel. This is due to the non-orthogonal
multiplexing of signals that results from multipath induced
by the channel, causing intersymbol interference (ISI). In-
terference can also arise from multiple users sharing a com-
mon bandwidth for different services, such as voice and data
transmission. On the forward link, the goal of the handset
is to suppress the interference introduced by the other users
and extract only the information intended for that user. For
the reverse link, however, the base station must demodulate
and detect the signals transmitted by all the users. This
falls under the topic of multiuser detection (MUD). For the
high speed voice and data applications proposed for the third
generation (3G) systems, adaptive, low complexity, reduced
rank MUD is highly desirable.
In this paper, we present the minimummean-square error

(MMSE) MUD solution for signal detection in the presence
of multipath. We show that implementation of this solution
using the correlations subtractive architecture of the multi-
stage Wiener filter (MWF) ( [1], [2], [3], [11]) can be imple-
mented as a joint structure or as a bank of parallel filters.

Performance is shown to meet or exceed MMSE performance
at a low rank. We also compare the full rank MUD to other
MUD receivers presented in the recent literature. We show
via simulation results that the new reduced rank MUD per-
forms as well as the full rank MUD for both synchronous and
asynchronous users in multipath and for all levels of signal-
to-noise (Eb/N0) and system loads. We begin by describing
the general asynchronous DS-CDMA system model.

2. CDMA SIGNAL MODEL

We assume a DS-CDMA system, in which we have K users
and develop a model for asynchronous transmission. The
notation used here is similar to that used by Honig, et. al.,
in [5] and [7]. User k transmits a baseband signal given by

xk(t) =
∑

i

Akbk(i)sk(t− iT − τk), (1)

where bk(i) is the symbol transmitted by user k at time
i, sk(t) is the spreading code associated with user k, and
Ak and τk are the amplitude and delay, assumed to be real
valued, respectively. We assume binary signaling, so that
the symbols bk(i) ∈ (-1,+1). We also assume that the bits
are independent and identically distributed. The spreading
sequence can be written as

sk(t) =
N−1
∑

i=1

ak[i]Ψ(t− iTc), (2)

where ak[i] ∈ (
+1√

N
, −1√

N
) is a normalization factor for the

spreading code. The processing gain of the CDMA system,
or equivalently the bandwidth spreading factor, is given by
N = T

Tc

. Here, Tc is the chip period, and T is the symbol
period. We assume that the spreading code is a square wave
sequence with no pulse shaping, so that the chip sequence
Ψ(t) is a constant.
Define the sampled transmitted signal y(i) as the N-

vector composed of asynchronous combinations of the data
for each user multiplied with its respective spreading se-
quence. Assume also, without loss of generality, that the
receiver has timing information to synchronize to the spread-
ing code of any user. The transmitted signal may then be
written in the form

y(i) =

K
∑

k=1

Ak[bk(i)s
+

k
+ bk(i− 1)s

−
k
]. (3)

1
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Here, s+
k
and s−

k
are the N × 1 vectors of spreading codes

associated with user k, where k = 1, 2, ...,K. In the case
of asynchronous transmission, as is inherent to the reverse
link of a cellular system, both the current bit of user k,
denoted bk(i), and the previous bit of user k, denoted bk(i−
1), multiplied with their respective portions of the spreading
code, are interfering with the current bit of user 1. For
synchronous users, s+

k
is equal to sk and s−

k
is zero. To

simplify the notation and to make the mathematical analysis
easier, we rewrite Eq. (3) in matrix form as

y(i) = S+Ab(i) + S−Ab(i− 1), (4)

where S+ = (s1
+ s2

+ ... sK
+), A = diag(A1, A2, ..., AK),

and b(i) = (b1(i), b2(i), ..., bK(i))
T . We would like to ex-

tract the desired information, i.e., the bits transmitted by
all the users, b(i), while suppressing the interference due
to the asynchronous transmission and multipath. Thus, we
turn our attention to the linear multiuser detection tech-
nique presented next.

3. REDUCED RANK MUD BASED ON

CSA-MWF

In this section, we present the derivation of the MUD solu-
tion for asynchronous users in multipath and show how it
can be implemented using the CSA-MWF.

3.1. MUD Derivation

Consider the case of a multipath channel, modeled in dis-
crete time by an L-tap tapped-delay line whose coefficients
are represented by h = [h1, h2, ..., hL]. The parameter L,
when viewed in units of time, is known as the delay spread
of the channel and is typically on the order of 5 to 10 mi-
croseconds for a cellular system. The received vector can be
written as

r̂(i) = ŷ(i) + n(i), (5)

where ŷ(i) = y(i) ∗ h, ∗ denotes convolution, and n(i)
are samples of an additive white Gaussian noise (AWGN)
process. Note that in an AWGN channel, this reduces to
r(i) = y(i) + n(i). Substituting for y using Eq. (4), we can
write the received signal explicitly as

r̂(i) = Ŝ+Ab(i) + Ŝ−Ab(i− 1) + n(i), (6)

where (̂·) denotes convolution of the operand with the chan-
nel vector h. In this paper, we assume the channel vector
is known, or that it can be estimated by some means. For
the single user (SU) MMSE receiver, we choose the receiver
filter coefficients, denoted in vector form by ĉ, to minimize
the mean-square error (MSE) between the transmitted bit of
the desired user and its estimate. Assuming without loss of
generality that user one is the user of interest, this is given
by

MSESU = E[|b1(i)− ĉH r̂(i)|2], (7)

where E[·] denotes the expected value operator and (·)H

represents the Hermitian transpose operator. The MMSE

solution in the presence of multipath is given by

ĉMMSE = R̂−1ŝ1 = E [̂rr̂H ]
−1

ŝ1, (8)

where R̂ is the well-known covariance matrix and is given
by E [̂r(i)r̂(i)H ]. Note that the RAKE solution, which only
incorporates the effects of the multipath and neglects the in-
terference induced by the other users, can be written simply
as

cRAKE = ŝ1. (9)

In the presence of only AWGN, this reduces further to the
matched filter (MF) solution, cMF = s1.
Now, for the MUD problem, we must choose the receiver

filter coefficients, denoted in matrix form by Ĉ, to minimize
the MSE between the vector of transmitted bits, b(i) =
(b1(i) b2(i) ... bK(i)) and their estimates. This can be written
as

MSEMUD = E[||b(i)− ĈH r̂(i)||2]. (10)

To obtain the MMSE solution, we minimize the above quan-
tity. First, using the identity ||x||2 = trace(x,xH) we write

min
Ĉ

E[trace((b(i)− ĈH r̂(i))(b(i)− ĈH r̂(i))H)]. (11)

Since the trace of the covariance of a vector quantity is al-
ways non-negative, we can ignore the trace operation. Ex-
panding the quantity in brackets, we obtain

min
Ĉ

E[b(i)b(i)H − b(i)r̂(i)HĈ− ĈH r̂(i)b(i)H − ĈH r̂r̂HĈ].

(12)
Next, from the linearity property of the E[·] operation, con-
sider separately each of the terms in the brackets:

• E[b(i)b(i)H ] = I

• E[b(i)r̂(i)HĈ]
= E[b(i)(b(i)HAŜ+H + b(i− 1)HAŜ−H + n(i))]Ĉ
= AŜ+HĈ

• E[ĈH r̂(i)b(i)H ]
= ĈHE[(Ŝ+Ab(i) + Ŝ−Ab(i− 1) + n(i))b(i)H ]
= ĈH Ŝ+A

• E[ĈH r̂r̂HĈ] = ĈHE [̂rr̂H ]Ĉ = ĈHR̂Ĉ.

In the second and third expressions above, we have used
the fact that b(i) and b(i − 1) are independent, identically
distributed random variables so that their expected value is
zero. We have also used the fact that A is a real, diagonal
matrix so that AH = A. Furthermore, since the noise n(i)
is AWGN, its samples are uncorrelated with the data, so the
expected value of their product is zero. Finally, we used the
definition of the covariance matrix R̂ from Eq. (8) in the
last term. Substituting these expressions into Eq. (12), we
can write the MSE as

min
Ĉ

[I−AŜ+HĈ− ĈH Ŝ+A+ ĈHR̂Ĉ]. (13)

To solve Eq. (13), we take its gradient with respect to the
minimization parameter Ĉ and set the result equal to zero.
This yields

−AŜ+H −AŜ+H + ĈHR̂H + ĈHR̂ = 0. (14)

2
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Now, using the property that the covariance matrix of a
stationary discrete time random process is Hermitian, or
R̂H=R̂ (see e.g. [4], p. 101), the final solution is easily
obtained, and is given by

ĈMMSE = R̂−1Ŝ+A. (15)

Before proceeding to the implementation of this solution,
we pause to make a few observations. First, note that we
can write the solution for the kth user individually by simply
extracting the kth columns of Ŝ+ and of A. That is, we can
write the MUD solution as

ĈMMSE = [ĉ1/MMSE, ĉ2/MMSE, ..., ĉK/MMSE], (16)

where
ĉk/MMSE = R̂−1ŝ+

k
Ak (17)

for the kth user. Thus, the matrix form of the MUD so-
lution can be implemented in joint matrix or vector form
using parallel single user detectors. This agrees with the
analysis presented in [8] for synchronous users. Note the
similarity between the MUD solution in Eqs. (15) and (17)
and the single user solution given in Eq. (8). Second, note
that the synchronous solution is obtained by setting Ŝ+ = Ŝ

or setting ŝ+
k
= ŝk in Eqs. (15)and (17), respectively. Fur-

thermore, observe that the covariance matrix, if expanded
in terms of the received signal r̂(i) in Eq. (6), is given as

R̂ = Ŝ+A2Ŝ+H + Ŝ−A2Ŝ−H + σ2I. (18)

Even though in the presence of multipath, Ŝ+ and Ŝ− are
not orthogonal, the independence of the data bits b(i) and
b(i − 1) forces the expectation of the cross-terms to zero.
This equation is similar to Eq. (10) of [5], which is shown
for the AWGN case.

3.2. Implementation of MUD Using the CSA-MWF

From Eqs. (15) or (17), we see that computation of the
MMSE solution requires inversion of the N × N covari-
ance matrix R̂, which can be quite computationally intense
and may not even be possible in real-time for a high data
rate system. Also, if the channel or signals are changing
in time, then the sample covariance matrix estimated from
the data does not depict the true non-stationary signal en-
vironment. Thus, it is desirable to find alternate solutions
that approach, or exceed, the performance of the MMSE re-
ceiver but require much fewer computations and can adapt
rapidly. The multistage Wiener filter ([1], [2], and [3]) is a pi-
oneering breakthrough in reduced rank algorithms in that it
meets or exceeds MMSE performance but does not require
any matrix inversions nor computationally complex eigen-
decompositions. By contrast, in an eigen-decomposition, if
the subspace rank is less than the number of signals (users)
present, i.e. D < K, then performance can degrade quite
rapidly as the number of users increases. This is a common
occurrence is cellular CDMA systems, because the number
of users may be continuously changing. Intuitively speaking,
the MWF achieves faster convergence and reduced compu-
tation by applying the information inherently contained in

+

h h h h1 1 2 2

++

+ +

x i( ) x i( ) x i( )
1

d i(  )
0

d i(  )
1

d i(  )
2

w2w1i(  )
0ε ε i(  )

2ε i(  )
1

T
e

rm
in

a
to

r

h0h0

0
~ ~ ~

Figure 1: CSA-MWF (D=2 stages)

both the covariance matrix and the cross-correlation vector
in choosing the reduced-dimension subspace that the weight
vector is constrained to lie within. Another benefit of the
MWF is that it can operate in critical low-sample support
operational environments where other adaptive algorithms
fail. In other words, the ability for rapid adaptation is
matched by a lower requirement for training data to esti-
mate the statistics.

The MWF structure is obtained by performing successive
decompositions based on maximizing the cross-correlation
between the desired signal and the observed signal. This
results in two subspaces, one in the direction of the cross-
correlation and one orthogonal to it. Note that this approach
naturally creates signal subspaces at successive stages that
are orthogonal to those of the previous stage. The multistage
structure is obtained by repeated correlations of the signal
that lies in the orthogonal subspace at the previous stage and
thus is often termed the residual correlation algorithm ([5]).

The single user multistage decomposition of the Wiener
filter for D = 2 stages is shown in Fig. 1. This is a new struc-
ture of the multistage Wiener filter, based on a correlation-
subtraction architecture (or CSA-MWF) as first described
by Ricks, et. al., in [11]. For the multipath channel, we
simply set h0 = ŝ1, the spreading code of the desired user
convolved with the channel. Then, d0(i) = ŝH

1 x̃(i), where
x̃(i) is the input signal, equal to r̂(i). Note that d0(i) is sim-
ply the matched filter solution matched to the code and the
channel. The filter in Fig. 1 demonstrates the low complex-
ity of this implementation of the MWF and the fact that the
computation of signal blocking matrices are no longer neces-
sary for any subspace partitioning such as that required for
constrained adaptation. The forward recursion equations,
presented below, are identical to those used to implement the
block residual correlation algorithm ([3] and [5]) but without
computation of the blocking matrices.

• Initialization: d0(i) and x̃(i)

• Forward Recursion: For j = 1, 2, ..., D:

hj =

∑

Ω
{d∗j−1(i)xj−1(i)}

||
∑

Ω
{d∗j−1(i)xj−1(i)}||

dj(i) = hH
j xj−1(i)

xj(i) = xj−1(i)− hjdj(i)

3
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• Backward Recursion: For j = D,D − 1, ..., 1, with
eD(i) = dD(i):

wj =

∑

Ω
{d∗j−1(i)ej(i)}

∑

Ω
{|ej(i)|2}

ej−1(i) = dj−1(i)− w∗
j ej(i)

where Ω denotes the region of sample support used to com-
pute the sample statistics and D is the number of stages,
i.e. the rank, of the filter. Performance results of the multi-
stage Wiener filter for asynchronous CDMA in AWGN can
be found in [5].

For the MUD problem, the solution of Eqs. (15) or (17)
show that the MUD implementation can be obtained in ma-
trix form (H0) or vector form (h0,k) by replacing the initial-
ization step of the recursion equations with

H0 = Ŝ+ ; d0 = Ŝ+H x̃(i) (19)

and

h0,k = ŝ+
k
; d0,k = ŝ+H

k
x̃(i), (20)

where in Eq. (20) an additional subscript k has been added
to indicate that the recursions are now performed separately
for each user k. That is, we employ a bank of parallel Wiener
filters operating in a reduced rank subspace. Note that the
above derivation only suggests the use of a reduced rank
scheme to implement the MUD solution in the form of a
parallel bank of Wiener filters. It does not state that the
rank of the parallel scheme will be equivalent to the rank of
the MUD solution. In general, as shown in Section 5, this
will not be the case.

4. COMPARISON OF REDUCED RANK AND

FULL RANK MUD SOLUTIONS

In this section, we compare the new reduced rank MUD so-
lution obtained above to full rank MMSE MUD solutions in
the recent literature and discuss and explain the differences
between them. In Eq. (9) of [8], the MUD solution is de-
rived for synchronous users and, using the same notation as
in the present paper, is given by

ĈMMSE = Ŝ(ŜH Ŝ+ σ2I)−1. (21)

It can be shown via the matrix inversion lemma that this
solution can also be written as

ĈMMSE = (ŜŜH + σ2I)−1Ŝ. (22)

Comparing our solution in Eq. (15) to Eq. (22), we see that
our solution simplifies to this solution for the synchronous
AWGN case. Indeed, if we let Ŝ+ = Ŝ (and Ŝ− = 0) as
would be for synchronous users, then the two solutions ex-
actly agree. The amplitude matrix is absent because it is
absorbed into the spreading code matrix in Eqs. (21) and
(22). The same result is also given in Eq. (15) of [6].

Another full rank MUD solution is presented in [12] (p.
295). Using our notation, and applying the matrix inversion
lemma as we did before, we can write this solution as

ĈMMSE = A−1[(ŜŜH + σ2A−2)−1Ŝ]. (23)

Since A is a diagonal matrix, we can rewrite the above equa-
tion as

ĈMMSE = (ŜA2ŜH + σ2I)−1ŜA. (24)

This equation is also derived for synchronous users in AWGN.
Now, if we again assume the same conditions for our solution,
namely that Ŝ+ = Ŝ (and Ŝ− = 0) and substitute the value
of R given in Eq. (18) into Eq. (15), we obtain exactly the
solution of Eq. (24). Thus, we see that under the same con-
ditions, our MUD solution agrees with the full rank solutions
in the literature. However, our solution is more general in
that it includes the asynchronous/multipath situation. Fur-
thermore, we emphasize that computation of these full rank
solutions is not feasible in practice due to the inability to
obtain and/or invert the covariance matrix R̂. Thus, the
reduced rank implementation is highly useful.

5. NUMERICAL RESULTS

We present results obtained from Monte Carlo simulations
to show the validity of the MUD solutions derived above.
Hadamard codes or Gold codes with processing gains of N =
32 and N = 31, respectively, are employed in spreading,
and an L=5 tap channel is used to simulate the multipath,
using one tap per chip. For the Monte Carlo simulations,
the data in the CSA-MWF is processed in blocks of M bits,
so that the N × 1 vector x̃(i) becomes an N ×M matrix
X̃(i) = [x̃(i) x̃(i + 1) ... x̃(i +M − 1)] Similarly, the scalar
d0(i) is replaced by an 1×M vector of bits given by d0,k(i) =
[bk(i) bk(i+1) ... bk(i+M−1)]. TypicallyM ≥ 2N data bits
are required for reliable processing according to the RMB
rule (named for Reed, Mallett, and Brennan who first proved
it in [9]). Then, estimates are also produced one block at
a time and are given by b̂k(i) = ε0,k(i) for user k in blind
mode. The number of bits per block is M = 1000, and the
number of blocks is at least 25 (chosen to produce enough
errors to obtain a valid statistical bit error rate estimate).
In the first two plots, the joint (matrix) MUD and the

parallel (vector) MUD are compared. The full rank MMSE
solution employing the covariance matrix inversion is labeled
accordingly. Fig. 2 shows a plot of rank of the multistage
Wiener filter versus the bit error rate (BER) for synchronous
users. The powers of some of the users are randomly set up
to 4 dB above the others to simulate a near-far scenario.
The variation in BER for the MMSE and RAKE methods is
due to the nature of the Monte Carlo simulation, since their
performance is independent of rank. Note that the matrix
MUD obtains full rank performance at a rank of only one, by
employing knowledge of all the users’ spreading codes. This
is an astounding result that shows for MMSE performance,
all that is required is a matched filter and a matrix-vector
multiplication. For a rank as low as three, the vector MWF
converges to the matrix MUD solution and maintains this

4
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performance as rank increases. The performance of the vec-
tor MUD does not substantially degrade even at a rank as
low as two, which is significantly less than the processing
gain of N = 32. Both reduced rank MUD solutions consis-
tently perform better than the RAKE receiver, which cannot
combat large numbers of interfering users.
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Figure 2: Multiuser Detector (MUD): Rank (D) vs. BER;
Synchronous Blind CDMA, N = 32 (Hadamard Codes),
Eb/N0 = 12 dB, K = 15, L = 5

Fig. 3 shows a plot of Eb/N0 of the multistage Wiener
filter versus the bit error rate (BER) for synchronous users.
The matrix MUD has converged at a rank (D) of only one,
due to the fact that it has knowledge of all the users’ spread-
ing codes and can thus determine the signal subspace in-
stantly. In general, the rank at which the matrix MUD con-
verges is a function of the number of users’ spreading codes
that it has knowledge of (termed the constraint length of
the matrix MUD), although it is not a linear relationship.
The vector MWF performs as well as the matrix version at
a rank of seven. Thus, while performance as a function of
rank differs between these two methods, they both perform
well at remarkably low ranks. Again, both the vector and
matrix MWF dramatically outperform the RAKE receiver.
The next two plots show performance as a function of

rank (D), number of users (K), and the synchronism among
the users for the vector MUD implementation. Fig. 4 has
rank of the MWF versus the bit error rate (BER) for syn-
chronous, Hadamard codes. We observe that performance
exceeds full rank for 5, 10 and 15 users at ranks of about 1,
1, and 2, respectively. Furthermore, the BER converges to
the same value in all cases. This is due to the orthogonal-
ity property of the Hadamard codes and the ability of the
MWF to suppress the orthogonal interference quickly. The
performance of the MWF does not degrade except for the
15 user case at rank one, i.e. a one stage filter. The MWF
performance meets the full rank MMSE performance as rank
increases.
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Figure 3: Vector Multiuser Detector (MUD): Eb/N0 vs.
BER; Synchronous Blind CDMA, N = 32 (Hadamard
Codes), K = 12, L = 5, ∆P = 0 dB

Fig. 5 shows a plot of rank (D) versus BER with 5, 10
and 15 asynchronous users employing Gold codes for spread-
ing. In this case, convergence of BER is seen at ranks of only
1, 3, and 4. This is a tremendous improvement over other
reduced rank techniques such as the eigenvector based prin-
cipal components, which would require a rank greater than
or equal to the number of users present. Note that the BER
degrades as more users are added to the system. While Gold
codes have good cross-correlation properties, there still ex-
ists some maximum level of correlation among them, and
this effect is enhanced by the imperfect orthogonality. Nev-
ertheless, the advantage of the reduced rank MWF in terms
of performance and rank reduction is evident.

6. CONCLUSION

In this paper, we present a formulation for the MMSE MUD
receiver for a general asynchronous DS-CDMA in a frequency
selective multipath channel. We show how to implement the
MUD solution using the reduced rank multistage Wiener fil-
ter both in vector form as a bank of single user detectors and
joint matrix form. The parallel implementation is shown to
be equivalent to the joint MUD solution in terms of perfor-
mance. The reduced rank solution is compared to existing
full rank solutions to assess its validity. BER performance is
evaluated as a function of rank and Eb/N0 via Monte Carlo
simulations for a highly loaded DS-CDMA system distorted
by multipath. The performance of the reduced rank vector
and matrix MUD solutions are compared to the standard,
full rank MMSE receiver. It is demonstrated that the re-
duced rank MUD performs as well as the single user, full
rank MUD MMSE solutions at a much lower rank, both in
vector and in matrix form. This allows the design in low
complexity, high speed receivers.
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Abstract—A new reduced rank multiuser detector (MUD)
for DS-CDMA is presented. The algorithm is derived for
the general case of an asynchronous DS-CDMA system in
frequency selective multipath. The MUD solution is shown
to be equivalent to a bank of parallel, single user detec-
tors. The algorithm is implemented in reduced rank form
using the correlations subtractive algorithm of the multi-
stage Wiener filter (CSA-MWF). It is shown that the CSA-
MWF implementation performs identically to the full rank
solutions of MMSE MUD and meets single user, full rank
performance at a substantially reduced rank for all levels of
system load.

I. Introduction

Systems employing code division multiple access
(CDMA) are typically interference limited. The interfer-
ence arises from the very nature of the systems, which must
often accommodate multiple users transmitting simultane-
ously via a common physical channel. This is due to the
non-orthogonal multiplexing of signals that results from
multipath induced by the channel, causing intersymbol in-
terference (ISI). Interference can also arise from multiple
users sharing a common bandwidth for different services,
such as voice and data transmission. On the forward link,
the goal of the handset is to suppress the interference in-
troduced by the other users and extract only the informa-
tion intended for that user. For the reverse link, however,
the base station must demodulate and detect the signals
transmitted by all the users. This falls under the topic of
multiuser detection (MUD). For the high speed voice and
data applications proposed for the third generation (3G)
systems, adaptive, reduced rank MUD is highly desirable.
In this paper, we present the minimum mean-square er-

ror (MMSE) MUD solution for signal detection in the pres-
ence of multipath. We show that implementation of this
solution using the CSA structure of the multistage Wiener
filter (MWF) ([1], [2], [3], and [10]) meets MMSE per-
formance at a low rank. We show via simulation results
that the new reduced rank MUD performs as well as the
full rank MUD in both the synchronous and asynchronous
multipath case. We begin by describing the general asyn-
chronous DS-CDMA system model.

II. CDMA Signal Model

We assume a DS-CDMA system, in which we have K
users and develop a model for asynchronous users. The
notation used here is similar to that used by Honig, et. al.,
in [5] and [6]. User k transmits a baseband signal given by

xk(t) =
∑

i

Akbk(i)sk(t− iT − τk), (1)

where bk(i) is the symbol transmitted by user k at time
i, sk(t) is the spreading code associated with user k, and
Ak and τk are the real valued amplitude and delay, respec-
tively. We assume binary data, so that the symbols bk(i) ∈
(-1,+1) and that the bits are independent, identically dis-
tributed. We further assume that the spreading code is a
square wave sequence with no pulse shaping and write

sk(t) =

N−1
∑

i=1

ak[i]Ψ(t− iTc), (2)

where ak[i] ∈ (
+1√

N
, −1√

N
) is a normalization factor and Ψ(t)

is a constant. The processing gain of the CDMA system,
or equivalently the bandwidth spreading factor, is given by
N = T

Tc
. Here, Tc is the chip period, and T is the symbol

period.

Define the sampled transmitted signal y(i) as the N ×
1 vector composed of asynchronous combinations of the
data for each user multiplied with its respective spreading
sequence. Assume also, without loss of generality, that
the receiver has timing information to synchronize to the
spreading code of any user. The transmitted signal may
then be written in the form

y(i) =

K
∑

k=1

Ak[bk(i)s
+

k
+ bk(i − 1)s−

k
]. (3)

Here, s+
k
and s−

k
are the N×K matrices of spreading codes

associated with the K users. In the case of asynchronous
transmission, as is inherent to the reverse link of a cellular
system, both the current bit of user k, denoted bk(i), and
the previous bit of user k, denoted bk(i − 1), multiplied
with their respective portions of the spreading code, inter-
fere with the current bit of all other users bj(i), j 6= k. For
synchronous users, s+

k
is equal to sk and s−

k
is zero. To sim-

plify the notation and to make the mathematical analysis
easier, we rewrite Eq. (3) in matrix form as

y(i) = S+Ab(i) + S−Ab(i − 1), (4)

where S+ = [s+
1
, s+

2
, ..., s+

K
], S− = [s−

1
, s−

2
, ..., s−

K
], A =

diag[A1,A2, ...,AK], and b(i) = [b1(i),b2(i), ...,bK(i)]
T.

We would like to extract the desired information, i.e., the
bits transmitted by all the users, b(i), while suppressing the
interference due to the asynchronous transmission. Thus,
we turn our attention to the linear multiuser detection tech-
nique presented next.
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III. CSA-MWF Based Reduced Rank MUD

In this section, we present the derivation of the MUD
solution for asynchronous users in multipath and show how
it can be implemented using the CSA-MWF.

A. MUD Solution

Consider a multipath channel, modeled in discrete time
by an L-tap tapped-delay line whose coefficients are rep-
resented by h = [h1,h2, ...,hL]. The parameter L, when
viewed in units of time, is known as the delay spread of
the channel and is typically on the order of 5 to 10 mi-
croseconds for a cellular system. The received vector can
be written as

r̂(i) = ŷ(i) + n(i), (5)

where ŷ(i) = y(i) ∗ h, ∗ denotes convolution, and n(i)
are samples of an additive white Gaussian noise (AWGN)
process. Note that in an AWGN channel, this reduces to
r(i) = y(i)+n(i). Substituting for y using Eq. (4), we can
write the received signal explicitly as

r̂(i) = Ŝ+Ab(i) + Ŝ−Ab(i − 1) + n(i), (6)

In this paper, we assume that the channel vector is known,
or can be estimated by some means. For the single user
(SU) MMSE receiver, we choose the receiver filter coeffi-
cients, denoted in vector form by ĉ, to minimize the mean-
square error (MSE) between the transmitted bit and its
estimate. Assuming user one is the desired user, this is
given by

MSESU = E[|b1(i)− ĉHr̂(i)|2], (7)

where E[·] denotes the expected value operator and (·)H

represents the Hermitian transpose operator. The MMSE
solution in the presence of multipath is given by

ĉMMSE = R̂−1ŝ1A1 = E[̂rr̂H]
−1

ŝ1A1, (8)

where R̂ is the well-known covariance matrix and is given
by E [̂r(i)r̂(i)H]. Note that the RAKE solution, which only
incorporates the effects of the multipath and neglects the
interference induced by the other users, can be written as

cRAKE = ŝ1. (9)

In the presence of only AWGN, this reduces further to the
matched filter (MF) solution, cMF = s1.
For the MUD problem, we choose the receiver filter

coefficients, denoted in matrix form by Ĉ, to minimize
the MSE between the K × 1 vector of transmitted bits,
b(i) = [b1(i), b2(i), ..., bK(i)] and the corresponding bit

estimates b̃(i) = [b̃1(i), b̃2(i), ..., b̃K(i)]. This can be
written as

MSEMUD = E[||b(i)− b̃(i)||2], (10)

where
b̃(i) = ĈHr̂(i). (11)

It can be shown that the MMSE solution is

ĈMMSE = R̂−1Ŝ+A. (12)

Before proceeding with the implementation of this solu-
tion, we pause to make a few observations. First, note that
we can write the solution for the kth user individually by
simply extracting the kth columns of Ŝ+ and of A. That
is, we can write the MUD solution as

ĈMMSE = [ĉ1/MMSE, ĉ2/MMSE, ..., ĉK/MMSE], (13)

where

ĉk/MMSE = R̂−1ŝ+
k
Ak (14)

for the kth user. Thus, the matrix form of the MUD so-
lution can be implemented in vector form using parallel
single user detectors. This agrees with the results stated
in [7]. Note the similarity between the MUD solution in
Eqs. (12) and (14) and the single user solution given in Eq.
(8). Second, note that the synchronous solution is obtained
by setting Ŝ+ = Ŝ or setting ŝ+

k
= ŝk in Eqs. (12)and (14),

respectively (with Ŝ− = 0 and ŝ−
k
= 0). Furthermore,

the covariance matrix, if expanded in terms of the received
signal r̂(i) in Eq. (6), is given as

R̂ = Ŝ+A2Ŝ+H + Ŝ−A2Ŝ−H + σ2I. (15)

Even though in the presence of multipath, Ŝ+ and Ŝ− are
not orthogonal, the independence of the current bits b(i)
and previous bits b(i − 1) forces the expectation of the
cross-terms to zero. This equation is similar to Eq. (10)
of [5], which is shown for the AWGN case.

B. Implementation of MUD Using the CSA-MWF

From Eqs. (12) or (14), we see that computation of the
MMSE MUD solution requires inversion of the N ×N co-
variance matrix R̂, which can be quite computationally
intense and possibly un-invertible in a real-time, high data
rate system. Also, if the channel or signals are changing in
time, then the sample covariance matrix estimated from
the data does not depict the true non-stationary signal
environment. Thus, it is desirable to find alternative so-
lutions that approach, or exceed, the performance of the
MMSE receiver but require much fewer computations and
can adapt rapidly. The multistage Wiener filter has demon-
strated the ability to do this (e.g., see [2] and [5]). The sin-
gle user multistage decomposition of the Wiener filter for
rank D=2 is shown in Fig. 1. This is a new structure of the
multistage Wiener filter, based on a correlation-subtraction
structure (or MWF-CSA) as first described by Ricks, et.
al., in [10]. Assume, without loss of generality, that user
one, with spreading code s1, is the desired user. For the
multipath channel, we simply let h0 = ŝ1, the spreading
code of the desired user convolved with the channel. Then,
d0(i) = ŝH1 x̃(i), where x̃(i) is the input signal, equal to
r̂(i). The bit estimate is given by b1(i) = ε0(i). The filter
in Fig. 1 demonstrates the low complexity of this imple-
mentation of the MWF and the fact that the computation
of signal blocking matrices are no longer necessary for any
subspace partitioning such as that required for constrained
adaptation.
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Fig. 1. CSA-MWF (D=2 stages)

The recursion equations, presented below, are similar to
those used to implement the block residual correlation algo-
rithm ([3] and [5]). Performance results of the multistage
Wiener filter for asynchronous CDMA in AWGN can be
found in [5].
• Initialization: d0(i) and x̃(i)
• Forward Recursion: For j = 1, 2, ..., D:

hj =

∑

Ω
{d∗j−1(i)xj−1(i)}

||
∑

Ω
{d∗j−1(i)xj−1(i)}||

dj(i) = hH
j xj−1(i)

xj(i) = xj−1(i)− hjdj(i)

• Backward Recursion: For j = D,D − 1, ..., 1, with
eD(i) = dD(i):

wj =

∑

Ω
{d∗j−1(i)ej(i)}

∑

Ω
{|ej(i)|2}

ej−1(i) = dj−1(i)− w∗
j ej(i)

where Ω denotes the region of sample support used to com-
pute the sample statistics.
For the MUD problem, the solution of Eqs. (12) or (14)

show that the MUD implementation can be obtained in
matrix form (H0) or vector form (h0,k) by replacing the
initialization step of the recursion equations with

H0 = Ŝ+ ; d0 = Ŝ+Hx̃(i) (16)

or
h0,k = ŝ+

k
; d0,k = ŝ+H

k
x̃(i), (17)

where in the case of Eq. (17) an additional subscript k
has been added to indicate that the recursions are now
performed separately for each user k. That is, we employ
a bank of K parallel Wiener filters, each operating in a
reduced rank subspace. This structure is shown in Fig. 2.
In this figure, the subscript jk refers to stage j in the MWF-
CSA and user k, respectively, where a total of D stages and
K users are assumed. As with the single Wiener filter, the
bit estimates for each user are given by bk(i) = ε0k(i) for
k = 1, 2, ...,K.

IV. Performance Analysis

In the previous section, we show that the optimum linear
solution to the MUD problem can be implemented in re-
duced rank form using the CSA-MWF. In this section, we
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Fig. 2. Parallel MUD Using CSA-MWF (D=2 stages)

do an analysis to show how performance varies as a func-
tion of rank, the number of users, and the synchronism
among the users . Gold codes are used for the analysis.
First, note from Eqs. (11) and (13) that we can write the
bit estimates for each user individually as

b̃k(i) = ĉH

k/MMSE
r̂(i). (18)

Substituting for ĉk/MMSE using Eq. (14) and for the re-
ceived signal using Eq. (6), we obtain

b̃k(i) = R̂−1ŝ+H

k
Ak[Ŝ

+Ab(i)+ Ŝ−Ab(i−1)+n(i)]. (19)

We see from this equation that the quality of the bit esti-
mates is largely determined by the ability of the receiver
to suppress the cross-correlation of the desired user’s code
with the codes of the interference; this implies that for good
performance we should have ŝ+H

k
ŝ+
i
and ŝ+H

k
ŝ−
i
as close to

zero as possible for all i 6= k, in which ŝ+
i
and ŝ−

i
denote

the ith columns of Ŝ+ and Ŝ−, respectively.
From the cross-correlation function of the length N = 31

Gold codes, the zeroth lag of the output correlation is in the
middle of the grid, at element or row N . From the corre-
sponding plot showing the orthogonality properties we see
that properly chosen Gold codes, which are created using
modulo two addition of two PN codes ([8] and [9]), have a
limit in the maximum cross-correlation peak and maintain
good orthogonality. This is the reason why Gold codes are
the preferred spreading codes of CDMA systems, whereas
Hadamard codes, which have poor cross-correlation prop-
erties but perfect orthogonality, are used only to provide
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orthogonal modulation. This feature of Gold codes is es-
pecially important on the reverse link, where asynchronous
transmission precludes the ability of the Hadamard codes
to suppress interference. Of course, in the absence of multi-
path, Hadamard codes would outperform Gold codes, given
their ideal orthogonality properties.
Now, because the cross-correlation of Gold codes is not

perfect, we expect their performance to degrade as the
number of users increases. In addition, the optimum rank
required to meet the full rank MMSE performance will in-
crease. But, it is important to note that this is not a linear
function, and performance is still optimum at a much re-
duced rank. This is an outstanding feature of the MWF
that makes it a promising tool in a multitude of applica-
tions. Furthermore, as we will see, performance at low rank
may exceed that of full rank, when the codes have good
correlation properties that enable the MWF to suppress
interference more reliably. These remarks are validated
with simulation results, presented in the next section.

V. Numerical Results

In this section, we present results obtained from Monte
Carlo simulations to show the validity of the MUD solution
derived above and its performance as a function of rank (D)
and the number of users (K). An L = 5 tap channel is used
to simulate the multipath, using one tap per chip at a fixed
Eb/N0 of 12 dB. We process binary (BPSK) baseband data
in blocks, where the number of bits per block is 1000 and
the number of blocks is at least 5 (chosen to produce enough
errors to obtain a valid statistical bit error rate estimate).
The powers of all the users are equal. We perform simula-
tions for synchronous and asynchronous users as a function
of rank using Gold codes of length N = 31. The BER ob-
tained is an average over all the users present in the system
using the parallel MUD implementation shown in Fig. 2.
The BER of the full rank MMSE receiver is averaged over
all the runs for a better estimate, as its’ performance is
independent of rank. The results are analyzed next.
Fig. 3 shows rank versus BER for the case of 5, 10, and

15 synchronous users using Gold sequences. In this case,
convergence of BER is seen to occur quickly, at ranks of
only 1 or 2. Note that the MWF performance exceeds full
rank performance at ranks from about 3 to 9, but then
eventually converges again. This is due to the aforemen-
tioned cross-correlation properties and the ability of the
MWF to suppress the uncorrelated interference. This is an
effect that has also been shown in [5] and is a remarkable
property of the MWF to simultaneously achieve a conver-
gence substantially better than that achieved with full rank
MMSE and a dramatically reduced computational burden
as well. Intuitively speaking, the MWF achieves the best
of both worlds - faster convergence and reduced computa-
tion - by applying the information inherently contained in
both the covariance matrix and the cross-correlation vec-
tor in choosing the reduced-dimension subspace in which
the weight vector is constrained to lie. Finally, note that
degradation in performance as a function of the number of
users is present, even with synchronous users, as expected.

Fig. 4 shows rank versus BER with 5, 10 and 15 asyn-
chronous users. In this case, convergence of BER is seen at
ranks of 1, 3, and 4. Note that unlike the synchronous case,
the BER here also degrades as more users are added to the
system. As pointed out earlier, while Gold codes have good
cross-correlation properties, there still exists some correla-
tion among them, and this effect is enhanced by the asyn-
chronism and imperfect orthogonality, as seen also in Fig.
3. Nevertheless, the advantage of the reduced rank MWF
in terms of performance and rank reduction is clearly seen.

VI. Conclusion

In this paper, we show how to implement the solution for
the MMSEMUD using the reduced rank multistage Wiener
filter both in parallel and joint form. It is demonstrated
via Monte Carlo simulations that the performance of the
reduced rank MMSE MUD meets or exceeds the full rank
MMSE MUD solutions at a much lower rank. The benefit
of the MWF in conjunction with codes with good cross-
correlation properties, such as Gold codes, when multipath
and/or asynchronism is present is also shown. In this case,
the MWF is shown to exceed full rank performance, also
at a much reduced rank.
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ABSTRACT

A new reduced rank adaptive algorithm for asynchronous,

DS-CDMA interference suppression in the presence of fre-

quency selective multipath is presented. The algorithm em-

ploys a computationally efficient, correlation-subtraction ar-

chitecture based on the multistage Wiener filter. It is shown

that this reduced rank technique performs nearly as well as

the full rank MMSE solution without requiring matrix inver-

sion, eigen-decomposition, or the construction of blocking

matrices. System performance is characterized for a highly

loaded asynchronous DS-CDMA system in the presence of

multipath and the performance of the multistage Wiener fil-

ter is compared to the MMSE and RAKE receivers.

1. INTRODUCTION

Code Division Multiple Access (CDMA) has been proposed
as the technique of choice for the next generation of wire-
less communications systems. This method of multiple ac-
cess allows for an increase in system capacity over other
approaches to provide multiple access such as Time Division
Multiple Access (TDMA) or Frequency Division Multiple
Access (FDMA). However, systems employing CDMA are
typically interference limited. The interference arises from
the very nature of the systems, which must often accommo-
date multiple users transmitting simultaneously through a
common physical channel. This is due to the non-orthogonal
multiplexing of signals that results from multipath induced
by the channel and occurs in cellular environments due to
the reflections of signals off local surroundings, such as build-
ings, cars, terrain, trees, etc. When multipath is present in
the signal, intersymbol interference (ISI) causes additional
degradation. Interference can also arise from multiple users
sharing a common bandwidth for different services, such as
voice and data transmission. Thus, interference suppres-
sion techniques for CDMA have received much attention in
the recent research. For the high speed voice and data ap-
plications proposed for the third generation (3G) systems,
adaptive, reduced rank interference suppression is highly de-
sirable.

In this paper, we present the minimum mean-square er-
ror (MMSE) solution for interference suppression and signal
detection in the presence of multipath. We show that im-
plementation of this solution using the multistage Wiener
filter (MWF) [2-4] meets MMSE performance at a low rank.

We also show performance results of the RAKE receiver for
comparison.

The most recent research in interference suppression has
focused on data aided or blind MMSE receivers, which are
suboptimal in multipath channels. The results presented
in this paper differ from those in [8], which considers an
MMSE/RAKE solution that incorporates multipath but op-
erates in a full rank environment. In [4], a reduced rank
asynchronous CDMA system is considered, but without the
presence of multipath. Finally, [6] discusses the reduced rank
multistage Wiener filter for suppressing interference induced
in asynchronous, DS-CDMA systems but does not include
any additional processing to combat multipath.

2. CDMA SIGNAL MODEL

We assume a DS-CDMA system, in which we have K users.
The notation used here is similar to that used by Honig, et.
al., in [4] and [5]. User k transmits a baseband signal given
by

xk(t) =
∑

i

Akbk(i)sk(t− iT − τk), (1)

where bk(i) is the symbol transmitted by user k at time i,
sk(t) is the spreading code associated with user k, and Ak

and τk are the amplitude and delay, respectively. We assume
binary signaling, so that the symbols bk(i) ∈ (-1,+1). The
spreading sequence can be written as

sk(t) =

N−1
∑

i=1

ak[i]Ψ(t− iTc), (2)

where ak[i] ∈ (
+1√

N
, −1√

N
) is a normalization factor for the

spreading code. The processing gain of the CDMA system,
or equivalently the bandwidth spreading factor, is given by
N = T

Tc

. Here, Tc is the chip period, and T is the symbol
period. We assume that the spreading code is a square wave
sequence with no pulse shaping, so that the chip sequence
Ψ(t) is a constant.

Define the sampled transmitted signal y(i) as the N-
vector composed of asynchronous combinations of the data
for each user multiplied with its respective spreading se-
quence. Assume also, without loss of generality, that we
are interested in detecting user 1, and that the receiver has
timing information to synchronize to the spreading code of

1
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the desired user. The transmitted signal may then be writ-
ten in the form

y(i) = b1(i)s1 +
K

∑

k=2

Ak[bk(i)s
+

k
+ bk(i− 1)s

−
k
]. (3)

Here, s1 is the spreading sequence of user 1, and s+
k
and s−

k

are the N × (K − 1) matrices of spreading codes associated
with the K-1 interfering users. Due to the asynchronous
transmission, as is inherent to the reverse link of a cellu-
lar system, both the current bit of user k, denoted bk(i),
and the previous bit of user k, denoted bk(i− 1), multiplied
with their respective portions of the spreading code, are in-
terfering with the current bit of user 1. We would like to
extract the desired information, i.e., the bits transmitted by
user 1 (b1) while suppressing the interference represented by
the term in the summation of Eq. (3). Ideally, we would
like to subtract out the interference term and then multi-
ply by the spreading code of user 1, s1, to extract b1 from
the received signal. This is not possible in practice because
the interference is unknown and embedded in the received
signal, and the channel will further distort the transmitted
signal. Thus, we turn our attention to the linear detection
techniques presented next.

3. LINEAR REDUCED RANK MMSE

DETECTION

In this section, we first provide the MMSE solution for the
asynchronous, DS-CDMA system, following the notation used
in [10], assuming an additive, white, Gaussian noise (AWGN)
channel. We then describe the MMSE solution for a channel
distorted by frequency selective multipath. In both cases,
we show how to implement the MMSE solution using the
reduced rank multistage Wiener filter.

3.1. AWGN Channel

First, consider the case where the channel is simply an AWGN
channel, so that the sampled received signal is an N-vector
containing samples at the output of a chip-matched filter at
each symbol i, represented by

r(i) = y(i) + n(i). (4)

Substituting Eq. (3) for y(i), we can write

r(i) = b1(i)s1 +

K
∑

k=2

Ak[bk(i)s
+

k
+ bk(i− 1)s

−
k
] + n(i). (5)

For the MMSE receiver, we choose the receive filter coeffi-
cients, denoted in vector form by c, to minimize the mean-
square error (MSE) between the transmitted bit and its es-
timate, given by

MSE = E[|b1(i)− cHr(i)|2], (6)

where E[·] denotes the expected value operator and (·)H

represents the Hermitian transpose operator. Solving Eq.
(6) yields

cMMSE = R−1s1, (7)

+
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Figure 1: Multistage Wiener Filter (D=2 stages)

where R is the well-known covariance matrix and is given
by E[r(i)r(i)H ].
Note that computation of the MMSE solution requires

inversion of the N × N covariance matrix R, which can be
quite computationally intense and may not even be possible
in real-time for a high data rate system. Also, if the channel
or signals are changing in time, then the sample covariance
matrix estimated from the data does not depict the true
non-stationary signal environment. Thus, it is desirable to
find alternate solutions that approach, or exceed, the perfor-
mance of the MMSE receiver but require much fewer compu-
tations and can adapt rapidly. The multistage Wiener filter
has demonstrated the ability to do this (e.g., see [2] and [4]).
The multistage decomposition of the Wiener filter for D=2
stages is shown in Fig. 1. This is a new structure of the
multistage Wiener filter, based on a correlation-subtraction
architecture (or MWF-CSA) as first described by Ricks, et.
al., in [9]. For the AWGN channel, we simply set h0 = s1, the
spreading code of the desired user. Then, d0(n) = sH

1 x̃(n),
where the input signal x̃(n) is a vector composed of a block
of M bits of the received sampled signal: [r(n − M + 1)
r(n−M + 2) ... r(n)]. The filter in Fig. 1 demonstrates the
low complexity of this implementation of the MWF and the
fact that the computation of signal blocking matrices are no
longer necessary for any subspace partitioning such as that
required for constrained adaptation.
The forward recursion equations, presented below, are

identical to those used to implement the block residual cor-
relation algorithm ([3] and [4]). Performance results of the
multistage Wiener filter for asynchronous CDMA in AWGN
can be found in [4].

• Initialization: d0(n) and x̃(n)

• Forward Recursion: For k = 1, 2, ..., D:

hk =

∑

Ω
{d∗k−1(n)xk−1(n)}

||
∑

Ω
{d∗k−1(n)xk−1(n)}||

dk(n) = hH
k xk−1(n)

xk(n) = xk−1(n)− hkdk(n)

• Backward Recursion: For k = D,D − 1, ..., 1, with
eD(n) = dD(n):

wk =

∑

Ω
{d∗k−1(n)ek(n)}

∑

Ω
{|ek(n)|2}

2
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ek−1(n) = dk−1(n)− w∗
kek(n)

where Ω denotes the region of sample support used to com-
pute the sample statistics.

3.2. Multipath Channel

Now consider the case of a multipath channel, modeled in
discrete time by an L-tap tapped-delay line whose coeffi-
cients are represented by h = [h1, h2, ..., hL]. The parame-
ter L, when viewed in units of time, is known as the delay
spread of the channel and is typically on the order of 5 to
10 microseconds. The received signal can now be written as

r̂(i) = ŷ(i) + n(i), (8)

where ŷ = y ∗h and ∗ denotes convolution. Substituting for
y using Eq. (3), we can write the received signal explicitly
as

r̂(i) = b1(i)̂s1 +

K
∑

k=2

Ak[bk(i)̂s
+

k
+ bk(i− 1)̂s

−
k
] + n(i), (9)

where (̂·) denotes convolution of the operand with the chan-
nel vector h. In this paper, we assume that the channel vec-
tor is known, or can be estimated by some means. Using
the analogy between Eq. (5) for the AWGN channel and Eq.
(9) for the multipath channel, the MMSE solution in the
presence of multipath can now be written directly from the
AWGN solution in Eq. (7), or

ĉMMSE = R̂−1ŝ1 = E [̂rr̂H ]
−1

ŝ1. (10)

The multistage Wiener filter solution can be obtained sim-
ilarly, by setting h0 = ŝ1. Note that the RAKE solution,
which only incorporates the effects of the multipath and ne-
glects the interference, can be written simply as

cRAKE = ŝ1. (11)

In the presence of only AWGN, this reduces to the matched
filter (MF) solution, cMF = s1. The equations above pro-
vide us with a simple and elegant way of representing the
RAKE, multistage Wiener filter, and MMSE filter coeffi-
cients when multipath is present. We present results ob-
tained from Monte Carlo simulations using these equations
in the next section.

4. NUMERICAL RESULTS

In this section, we present results from Monte Carlo simu-
lations of the linear, reduced rank MMSE receiver using the
multistage Wiener filter and compare the results with the
full rank MMSE receiver and the RAKE receiver. The bit
estimates can be obtained by multiplying the received signal
by the receiver filter coefficients and forming a hard decision.
Thus, in the case of MMSE and RAKE we compute

b̂1(i) = cH

MMSE/RAKE
r(i). (12)

In the case of the MWF, the bit estimate is produced at the
last stage of the filter and can be written simply as

b̂1(i) = ε0(i). (13)

For the Monte Carlo simulation results, unless otherwise in-
dicated, the processing gain is N=32, and the number of
users is fixed at K=15. An L=5 tap channel is used to sim-
ulate the multipath, using one tap per chip. The number of
bits per block is 5000, and the number of blocks is at least
10 (chosen to produce enough errors to obtain a valid statis-
tical bit error rate estimate). The power of the interfering
users is set to 6 dB greater than that of the desired user to
determine performance in a near-far situation.
Fig. 2 shows a plot of rank of the multistage Wiener fil-

ter versus the bit error rate (BER). The variation in BER
for the MMSE and RAKE methods is due to the nature of
the Monte Carlo simulation, since their performance is inde-
pendent of rank. Note that for a rank as low as seven, the
MWF performs as well as the full rank MMSE and main-
tains this performance as rank increases. The performance
of the MWF does not significantly degrade until the rank
is reduced below five. The MWF performance at full rank
exactly matches the full rank MMSE, as expected. Both
the MWF and MMSE consistently perform better than the
RAKE receiver, which cannot combat the large number of
interfering users.
Fig. 3 shows a plot of Eb/N0 versus BER. In this case,

the rank of the MWF is seven. We see here that the MWF
performs as well as the MMSE receiver and significantly bet-
ter than the RAKE receiver. Note that there is about a 6
dB degradation in performance from the ideal BPSK curve.
This degradation is directly related to the desired user hav-
ing 6 dB less power relative to the interferers. To a lesser
extent, it is also caused by the system being asynchronous
and the environment, including the effects of multipath. The
performance here could be improved using decision feedback.
Next, Fig. 4 shows a plot of the number of users (K)

versus BER. Here, the Eb/N0 is 15 dB, and the rank of the
multistage Wiener filter is again seven. The number of users
varies from 1 to 25. We see here that for a lightly loaded
system, the RAKE receiver performs reasonably well, but
its error rate degrades rapidly as the load is increased. As
before, the MWF meets MMSE performance over the entire
range of loading. Note also that when the number of users
increases beyond half the processing gain, the performance
degrades substantially. This occurs because we have asyn-
chronous CDMA signals but the N+L-1 taps of the receiver
in each case span only one bit interval (see [7]). To correct
this problem, a receiver with taps that span two symbols
would be required. Another possible way to mitigate this
problem would be to increase the sampling rate, which is
equivalent to increasing the number of taps per bit. Then,
the effect of the asynchronism would have less of an impact.
Finally, Fig. 5 is a curve showing the number of bits

per block versus BER. For this result, the Eb/N0 is 15 dB,
K=12, and the rank of the MWF is again seven. Note that
the MMSE curve requires about 1500 samples to converge
to a bit error rate of about 2 · 10−3. However, the MWF

3
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requires only about 1000 samples per block to converge to
the same error rate. Thus, the MWF is less sensitive to
sample support than the full rank MMSE. This in turn im-
plies that the MWF can track changes in signals that are
varying in time faster than MMSE, which is an important
advantage of the reduced rank processing provided by the
MWF. In addition, the MMSE solution requires inversion
of an N × N covariance matrix, but the MWF does not.
This illustrates the computational savings that can be ob-
tained by employing the reduced rank MWF, which yields
the same performance as full rank MMSE. As before, the
RAKE receiver does significantly worse, achieving an error
rate of only 10−1.

5. CONCLUSION

In this paper, we present a formulation for the MMSE re-
ceiver in a frequency selective multipath channel. We then
show how to implement this solution using the reduced rank
multistage Wiener filter. Monte Carlo simulation results of
the MMSE receiver and multistage Wiener filter are com-
pared to those of the RAKE receiver. A highly loaded,
asynchronous DS-CDMA system distorted by a five tap mul-
tipath channel is used for the simulation, and bit error rate
performance is evaluated as a function of rank, Eb/N0, num-
ber of users, and block size. It is demonstrated that the
multistage Wiener filter performs as well as the full rank
MMSE and significantly outperforms the RAKE receiver at
a considerably reduced rank.

6. ACKNOWLEDGMENTS

The authors would like to thank Professors Michael Honig of
Northwestern University and Irving Reed of the University
of Southern California for many fruitful conversations during
this effort.

REFERENCES

[1] Goldstein, J.S., and Reed, I.S., “Multidimensional
Wiener Filtering Using a Nested Chain of Orthogonal
Scalar Wiener Filters”, University of Southern Califor-
nia, Dec. 1996, CSI-96-12-04.

[2] Goldstein, J.S., and Reed, I.S., “A New Method of
Wiener Filtering and its Application to Interference
Mitigation for Communications”, in IEEE Transactions
on Information Theory, Jun. 1997.

[3] Goldstein, J.S., Reed, I.S., and Scharf, L.L., “A Mul-
tistage Representation of the Wiener Filter Based on
Orthogonal Projections”, in IEEE Transactions on In-
formation Theory, Vol. 44, No. 7, Nov. 1998.

[4] Honig, M.L., and Goldstein, J.S., “Adaptive Reduced-
Rank Residual Correlation Algorithms for DS-CDMA
Interference Suppression”, in Proceedings of Asilomar,
Jul. 1998.

[5] Honig, M.L., and Poor, H.V., Adaptive Interference
Suppression. In Poor, H.V., and Wornell, G.W., editors,
“Wireless Communications: Signal Processing Perspec-
tives”, Prentice Hall: Englewood Cliffs, New Jersey,
pgs. 64-102, 1998.

[6] Honig, M.L., and Tsatsanis, M.K., “Adaptive Tech-
niques for Multiuser CDMA Receivers”, in IEEE Trans-
actions on Signal Processing, Vol. 17, No. 3, pgs. 49-61,
May 2000.

[7] Madhow, U., “Blind Adaptive Interference Suppres-
sion for Direct-Sequence CDMA”, in Proceedings of the
IEEE, Special Issue on Blind Identification and Equal-

ization, pgs. 2049-2069, Oct. 1998.

[8] Rice, G.W., Garcia-Alis, D., Stirling, I.G., Weiss, S.,
Stewart, R.W., “An Adaptive MMSE RAKE Receiver”,
in Proceedings of Asilomar, 2000.

[9] Ricks, D.C., and Goldstein, J.S. “Efficient Architec-
tures for Implementing Adaptive Algorithms”, Proceed-
ings of the 2000 Antenna Applications Symposium, pgs.
29-41, Allerton Park, Monticello, Illinois, Sep. 20-22,
2000.

[10] Verdu, S., “Multiuser Detection”, Cambridge Univer-
sity Press, 1998.

0 5 10 15 20 25 30 35
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Rank (D)

B
E

R

Asynchronous Blind CDMA, N=32, E
b
/N

0
=15 dB, K=12, L=5

Full Rank MMSE
MWF           
RAKE Receiver 

Figure 2: Rank (D) vs. BER

4



187

0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

Asynchronous Blind CDMA, N=32, K=15, L=5

Ideal BPSK    
Full Rank MMSE
MWF (Rank = 7)
RAKE Receiver 

Figure 3: Eb/N0 [dB] vs. BER

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Users

B
E

R

Asynchronous Blind CDMA, N=32, E
b
/N

0
=15 dB, L=5

Full Rank MMSE
MWF (Rank = 7)
RAKE Receiver 

Figure 4: Number of Users vs. BER

0 500 1000 1500
10

−4

10
−3

10
−2

10
−1

10
0

Block Size (M)

B
E

R

Asynchronous Blind CDMA, N=32, E
b
/N

0
=15 dB, K=12, L=5

Full Rank MMSE
MWF (Rank = 7)
RAKE Receiver 

Figure 5: Block Size (M) vs. BER

5



Bibliography

[1] Alamouti, S.M., “A Simple Transmit Diversity Technique for Wireless Commu-

nications”, IEEE Journal on Selected Areas in Communications, Vol. 16, No. 8,

pgs. 1451-1458, Oct. 1998.

[2] Benedetto, S., and Montorsi, G., “Unveiling Turbo Codes: Some Results on

Parallel Concatenated Coding Schemes”, IEEE Transactions. on Information

Theory, Vol. 42, No. 2, pgs. 409-429, Mar. 1996.

[3] Berrou, C., Glavieux, A., and Thitimasjshima, P., “Near Shannon Limit Error-

Correcting Coding and Decoding: Turbo-Codes”, Proceedings of the IEEE Inter-

national Conference on Communications, Geneva, Switzerland, pgs. 1064-1070,

May, 1993.

[4] Black, U., “Second Generation Mobile and Wireless Networks”, Prentice Hall:

Upper Saddle River, New Jersey, 1999.

[5] Brooks, L.W., and Reed, I.S., “Equivalence of the Likelihood Ratio Proces-

sor, and Maximum Signal-to-Noise Ratio Filter, and the Wiener Filter”, IEEE

Transactions on Aerospace and Electronic Systems, Vol. 8, pgs. 690-692, Sep.

1972.

[6] Buehrer, R.M., and Woerner, B.D., “Analysis of Adaptive Multistage Inter-

ference Cancellation for CDMA Using an Improved Gaussian Approximation”,

IEEE Transactions on Communications, Vol. 44, Oct. 1996.

188



189

[7] Chowdhury, S., Zoltowski, M.D., and Goldstein, J.S., “Application of Reduced-

rank Chip-level MMSE Equalization to the Forward Link DS-CDMA with Fre-

quency Selective Multipath”, Proc. Allerton, 2000.

[8] Cifuentes, P.G., Myrick, W.L., Sud, S., Goldstein, J.S., and Zoltowski, M.D.,

“Reduced Rank Matrix Multistage Wiener Filter with Applications in MMSE

Joint Multiuser Detection for DS-CDMA”, Proceedings of IEEE ICASSP, Or-

lando, FL, May 13-17, 2002.

[9] Cruickshank, D.G.M., “Suppression of Multiple Acess Interference in a DS-

CDMA System Using Wiener Filtering and Parallel Cancellation”, Proc. Inst.

Elect. Eng. Commun., Vol. 143, No. 4, pgs. 226-230, Aug. 1996.

[10] Cui, S., and Luo, Z. “Robust Blind Multiuser Detection Against CDMA Signa-

ture Mismatch”, Proceedings of ICASSP, Salt Lake City, UT, May 2001.

[11] Divsalar, D., Simon, M.K., Raphaeli, D., “Improved Parallel Interference Can-

cellation for CDMA”, IEEE Transactions on Communications, Vol. 46, No. 2,

pgs. 258-268, Feb. 1998.

[12] Duel-Hallen, A., “Decorrelating Decision-Feedback Multiuser Detector for Syn-

chronous Code-Division Multiple Access Channel”, IEEE Transactions on Com-

munications, Vol. 41, No. 2, pgs. 285-290, Feb. 1993.

[13] Duel-Hallen, A., “A Family of Multiuser Decision-Feedback Detectors for Asyn-

chronous Code-Division Multiple Access Channels”, IEEE Transactions on Com-

munications, Vol. 43, No. 2/3/4, pgs. 421-434, Feb./Mar./Apr. 1995.

[14] Eckart, C., and Young, G., “The Approximation of One Matrix by Another of

Lower Rank”, Psychometrica, Vol. 1, pgs. 211-218, 1936.

[15] Freeman, R.L., “Radio System Design for Telecommunications”, New York:

Wiley and Sons, 1997.



190

[16] Garg, V.K., “IS-95 CDMA and CDMA 2000: Cellular/PCS Systems Implemen-

tation”, Prentice Hall, Nov. 1999.

[17] Garg, V.K., Rappaport T. (Editor), “Wireless Network Evolution: 2G to 3G”,

Prentice Hall, Apr. 2001.

[18] Gold, R., “Optimal Binary Sequences for Spread Spectrum Muliplexing”, IEEE

Transactions on Information Theory, Vol. 13, No. 4, pgs. 619-621, Oct. 1967.

[19] Goldstein, J.S., and Reed, I.S., “Adaptive Target Detection and Identification”,

SAIC/ASE Technical Report Number 99-10-001, Oct. 1999.

[20] Goldstein, J.S., and Reed, I.S., “Multidimensional Wiener Filtering Using a

Nested Chain of Orthogonal Scalar Wiener Filters”, University of Southern

California, CSI-96-12-04, Dec. 1996.

[21] Goldstein, J.S., Reed, I.S., and Scharf, L.L., “A Multistage Representation of

the Wiener Filter Based on Orthogonal Projections”, IEEE Transactions on

Information Theory, Vol. 44, No. 7, Nov. 1998.

[22] Goldstein, J.S., and Reed, I.S., “A New Method of Wiener Filtering and its Ap-

plication to Interference Mitigation for Communications”, Proceedings of IEEE

MILCOM, Vol. 3, pp. 1087-1091, Monterey, CA, Nov. 1997.

[23] Goldstein, J.S., Reed, I.S., and Scharf, L.L, “A New Method of Wiener Filter-

ing”, Proceedings of the 1st AFOSR/DSTO Workshop on Defense Applications

of Signal Processing, Victor Harbor, Australia, Jun. 1997.

[24] Goldstein, J.S., Optimal Reduced Rank Statistical Signal Processing, Detection,

and Estimation Theory, Ph.D. Thesis, Dept. of Electrical Engineering, University

of Southern California, Los Angeles, CA, Dec. 1997.



191

[25] Goldstein, J.S., and Reed, I.S., “Reduced Rank Adaptive Filtering”, IEEE

Transactions on Signal Processing, Vol. 45, No. 2, pgs. 492-496, Feb. 1997.

[26] Gore, D., and Paulraj, A., “Space-Time Block Coding with Optimal Antenna

Selection”, Proceedings of ICASSP, Salt Lake City, UT, May 2001.

[27] Guo, D., Rasmussen, L.K., Sun, S., and Lim, T.J., “A Matrix-Algebraic Ap-

proach to Linear Parallel Interference Cancellation in CDMA”, IEEE Transac-

tions on Communications, Vol. 48, No. 1, pgs. 152-161, Jan. 2000.

[28] Haardt, M., and Nossek, J., “3-D Unitary ESPRIT for Joint 2-D Angle and

Carrier Estimation”, Proceedings of IEEE, 1997.

[29] Hassibi, B., and Hochwald, B., “High-Rate Linear Space-Time Codes”, Proceed-

ings of ICASSP, Salt Lake City, UT, May 2001.

[30] Haykin, S., “Adaptive Filter Theory”, Prentice Hall: Upper Saddle River, New

Jersey, 1994.

[31] Honig, M.L., “A Comparison of Subspace Adaptive Filtering Techniques for DS-

CDMA Interference Suppression”, Proceedings of IEEE MILCOM, Vol. 2, pgs.

836-840, Monterey, CA, Nov. 1997.

[32] Honig, M.L., and Goldstein, J.S., “Adaptive Reduced-Rank Residual Correlation

Algorithms for DS-CDMA Interference Suppression”, Proceedings of Asilomar,

Jul. 1998.
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