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Motivation

International Electrotechnical Commission (IEC) offshore design
standards recommend the average of the maximums of 6 one hour
simulations for the 50-year extreme event load cases (DLC 6.X)

Research has shown that this amount of simulation time may not
enough for convergence for fixed-bottom support structures, but little
research has been done concerning convergence of extreme loads for
floating platforms

This presentation will discuss the convergence of extreme loads for a
fixed bottom monopile support structure as well as two floating
platforms.
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Research Questions

How does the convergence of extreme loads of different support
structures differ?

Can we create an analytical method of predicting how many
simulations any given combination of support structure and set of
input conditions requires for convergence?
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Simulation Tools

To run the simulations, we use
FAST; NREL’s computer-aided
wind turbine design tool

FAST version 8 is used, which can
implement 2nd order waves

TurbSim is used to create the
turbulent wind fields
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Support Structures

OC3 Monopile
OC3 Hywind Spar Buoy

OC4 DeepCWind
Semi-submersible
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Simulation Overview

Floating simulations used 35 m/s wind speeds, significant wave
heights of 15 m, and a wave peak spectral period of 14 s, while
monopile simulations used 54 m/s wind and 10 m significant wave
heights.

Each support structure was simulated for 1000 one-hour simulations
for each of the following conditions: wind and second order waves,
wind and first order waves, no wind with second order waves, no wind
with first order waves, and wind but no waves.

For brevity, we will show results from only the wind and second order
waves simulations and the wind and first order waves simulations.

The results use the resultant tower bending moment, calculated using
a root sum square value of the fore-aft and side-side bending
moments.
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Extreme Load Convergence for Semi-Submersible
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Extreme Load Convergence for Spar Buoy
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Extreme Load Convergence for Monopile
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Support Structure Comparison
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Note that the mean maximum value for each support structure is different;
1.67x105kNm for the monopile, 1.78x105kNm for the semi-submersible,
and 2.79x105kNm for the spar buoy.
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Second Order Waves- Semi-submersible
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Second Order Waves- Spar Buoy
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Probabilistic Problem Formulation

Consider a stochastic process (e.g. tower base bending moment)

X (t)

and a time interval [0, tf) during which the process is observed. The
maximum value of the process:

Xmax ,tf = max(X (t) : t ∈ [0, tf ))

is a random variable that depends on the properties of X(t) and tf and has
distribution and second moment properties:

Fxmax ,tf (x), µxmax ,tf , σxmax ,tf

If n observations x(t) of X (t) in [0, tf ) are available and have maxima:

xmax ,tf

one can employ the estimator:

X̄max ,tf = 1
n

∑n
i=1 xmax ,tf ,i
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Probabilistic Problem Formulation, Continued

The estimator is itself a random variable with distribution and properties:

Fx̄max ,tf (x), µx̄max ,tf , σx̄max ,tf

Assuming independence of the observations, the estimator:

X̄max ,tf

is unbiased with

σ2
x̄max ,tf

=
σ2
xmax ,tf
n COVx̄max ,tf =

σxmax ,tf

µxmax ,tf

√
n

implying a 1/n convergence rate for the variance

Conclusion: One needs only accurately estimate:

σ2
xmax ,tf

to understand the convergence of:

X̄max ,tf
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Probabilistic Model Validation for the Monopile
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Summary

Current IEC guidelines for 50 year extreme condition cases require too
few simulations for proper convergence of extreme loads

The convergence of extremes under these conditions is highly
dependent on support platform

Second-order waves were important for semi-submersible extremes,
but not for the spar buoy

Using probabilistic methods, the convergence of the variance of
extreme loads can be defined
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Thanks and any questions?
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Probabilistic Model Validation- Sample Characteristics
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Probabilistic Model Validation- Distribution Characteristics
of X(t)

Marginal
I Non-Gaussian
I Weibull and
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Probabilistic Model Validation- Extreme Value
Characteristics of X(t)

2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.2

0.4

0.6

0.8

1

X
max,tf

C
D

F

Weibull
Gaussian
Lognormal
Empirical

Extreme values Xmax ,tf
I Non-Gaussian
I No good overall fits
I Weibull best at upper tail

G Stewart (University of Massachusetts) Extreme Load Convergence June 11, 2015 4 / 4


	Appendix

