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(ABSTRACT)

The linear stability analysis of Huang [1995] has been adapted to ignore the effects of
swirl, and to allow calculation of the eigenvalues and eigenfunctions for integer, fractional, and
multiple modes of excitation. The investigation was intended to be exploratory; to gain the best
possible insights into the flow characteristics from analysis of the linearized Euler equations. All
of the azimuthal modes investigated (one-half, one, three-halves, and two) were found to lead to
the continuous, helical, vortical structure evolution in the streamwise direction of the jet. The
analysis for fractional modes of excitation predicted aphysical behavior near the jet center that
has been attributed to a unresolved questions in the mathematical analysis of the problem.
Multiple mode excitation at the axisymmetric mode and one or more azimuthal modes were
found to result in un-even, periodic, vortex-ring growth in the shear layer. An argument was
presented for the axisymmetric mode (m=0) resulting in the highest levels of entrainment for all

integer, fractional, and multiple modes of excitation. Finally the importance of the azimuthal



component of vorticity in the entrainment process was identified.
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CHAPTER 1:

INTRODUCTION

1.1 Free Jet Flows

A jet by definition, is an unbounded fluid stream moving at higher velocities than its
surroundings. In turn, a fluid is defined as a substance that will yield to any system of external
forces that tends to deform it without changing the volume of the fluid element. Free jets are a
classification of jet flows where the fluid stream evolves in such a way that it is undisturbed or
unaffected by any surrounding surfaces or boundaries. Thus, a free jet is considered to be any jet
where the so-called free jet assumption -- that any confining walls are far from the jet -- is

satisfied.

Free jet flow can be broken down into three regions where the flow differs significantly
from one region to the next. They are fhe laminar, transitional and turbulent regions. The
laminar region of the jet is inherently unstable and is subject to Kelvin-Helmholtz instabilities.
This instability is a result of a fatal weakness common to any shear flow: poor resistance to high
Reynolds numbers. For any given type of laminar flow, there is a critical Reynolds number that

jeopardizes the very nature of the flow.
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As the jet evolves downstream of the nozzle or exit, small disturbances grow
exponentially in the shear layer of the laminar region until they are no longer small. Generally,
these disturbances need not be infinitesimal -- the concept of amplification is implicit to the
instability of the jet. The fluid then undergoes a transitional period where these disturbances

amplify until the entire jet erupts into turbulent flow.

The primary instability in jets is wavelike in nature and leads to a rolling-up phenomenon
in the shear layer. Secondary instabilities encourage the growth of streamwise vorticity and
ultimately increase the entrainment of the surrounding fluid by the jet. (Entrainment being the
process by which ambient fluid is engulfed into the jet and is subsequently carried off
downstream where mixing on finer and finer levels occurs.) It is only after secondary
instabilities become significant that the jet takes on a less orderly nature and small scale

structures dominate the flow.

Stability, by definition, is the property that causes a specific physical characteristic to be
resistant to sudden change or inflection. Fluid dynamic (hydrodynamic) stability is concerned
with how and when laminar flow breaks down and undergoes transition to turbulent flow. The
stability of free jets is but one classification of the many types of flow where stability may be

analyzed.

In the case of the free jet, stability is interpreted as the quality of being immune to small
disturbances. As a phenomenon that has been established time and again by experiment; free jets
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are inherently unstable. The question of stability that arises in free jet applications is whether a
given physical state can withstand a disturbance and still return to its original state. If so, it is

stable, and if not, it is obviously unstable.

1.2 Applications of Free Jets

Hydrodynamic stability has many physical applications: engineering, meteorology,
oceanography, astrophysics, geophysics, and applied mathematics to name a few. Several areas
of industrial interest in which free jets have physical applications are in fiber fabrication,

transmission systems, propulsion systems and in combustors.

Thorough understanding of the temporal and spatial development of free jets is critical to
improving any current physical application of free jets. The practicality of these unstable
conditions present in the jet can have both positive and negative effects. On the positive side, the
unstable jet allows for large desirable effects to occur by applying a minimal force to the fluid
jet. On the negative side, the unstable nature of the free jet makes possible the rapid and drastic

changes in flow characteristics with little or no advance warning.

One such application involving free jets that could be significantly improved upon,
through better understanding of the principles of jet instability, is the combustor of a gas turbine

engine. This example will be called upon regularly throughout this thesis to give a physical
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illustration of how specific aspects of the early transitional properties of the jet may effect the
efficiency of the combustor. Desirable effects that could be produced by forcing the free jet
would be to cause the mixing process to occur thoroughly, quickly, and in the shortest distance
possible. Also, better mixing on a molecular level leads directly to more efficient combustion --
another desirable effect. This molecular level mixing has to start with entrainment of the
oxidizer into the fuel jet. Thus, if increasing combustor performance is desired, it could be
achieved by a combination of large-scale engulfment of the surrounding oxidizing fluid into the

fuel jet by large-scale coherent vortices and small scale mixing of the fuel and oxidizer.

1.3 Historical Background

The first documentation of free jets dates back to 300 B.C. with recorded accounts of
Ctesibius inventing a two piston water-pump used in fire-fighting in the Greek era. There are
also accounts of a steam-driven rotating device forced into motion by jet propulsion, but it was
considered to be nothing more than a toy by Hero, its creator. In the early 15th century, the first
documented accounts of actual attempts to understand the complex nature of transitional flow
were written by Leonardo da Vinci, the famous artist, sculptor, engineer, and proud owner of a
great many other occupational titles. Da Vinci was the first to derive an equation for
conservation of mass for incompressible, one-dimensional, viscous flow. He also gave accurate

accounts of eddy formation behind bluff bodies and the velocity distribution in a vortex.
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Not much documented interest in the nature of transitional flow exists between the time
of da Vinci and the mid 18th century. It wasn’t until 1755 that Leonhard Euler derived the
frictionless equation now credited to Bernoulli. Daniel Bernoulli (1700-1782) and Leonhard
Euler (1707-1783) together described inviscid fluid flow and presented the Euler equations that
same yeaf. Euler admitted that the equations were flawed as they didn’t account for the
intermolecular forces he knew to exist, but failed to offer a means by which to quantify their

effects.

The next historical event worth noting was the discovery, by Isaac Newton, of the
contraction of jet flows immediately after exiting an orifice. This discovery however is not what
Newton became famous for. In fact, the discovery of this contraction paled in comparison to his

contribution of differential calculus to the field of mathematics.

In the Nineteenth Century, Hermann Ludwig von Helmholtz (1821-1894) became the fist
to use the equation that Louis Navier and George Stokes derived from Euler’s equations,
including the terms for viscous forces, to investigate the instability between two fluids of
different densities. This investigation by Helmholtz became the first major contribution to the
study of hydrodynamical stability as an attempt was made to take the study beyond the point of

verbal description and into mathematical analysis.

The other main nineteenth century contributors identifying and studying the problems of
hydrodynamic stability were Kelvin, Rayleigh, and Reynolds. Lord Rayleigh (1878-1917), the
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founder of hydrodynamic stability, conducted analyses that eventually lead to predictions of how
the wavelength of a disturbance affected the amplification of normal mode disturbances. He was
the first to introduce to concepts of “cutoff’vand “most dangerous disturbance”. Rayleigh is also
credited with the discovery of instabilities in flow between rotating cylinders. Perhaps his most
notable contribution to the field of hydrodynamic stability was his Inflection Point Theorem
which identified the necessary condition for instability as the existence of an inflection point in

the basic velocity profile of the flow.

Reynolds is widely recognized as having been the first to discover experimental evidence
of “sinuous” motion and for providing the first description of random flow using the term
“turbulent”. His most notable contribution to the field of fluid dynamics was his use of
dimensional analysis to quantify a critical value, above which, flow experiences transition to

turbulence: this quantity now bears his name: the Reynolds number.

It was not until the years 1907 and 1908 that Orr and Sommerfeld independently derived
the key equation relating hydrodynamic stability to viscous forces. This equation remained
unsolved for 22 years until Tollmien found the solution in 1929. Tollmien solved the Orr-
Sommerfeld equation and arrived at the first neutral eigenvalues determining the critical

Reynolds number at which a flow would begin transition from laminar to turbulent flow.

Several years prior to the accomplishments of Tollmien (1923), G.I. Taylor
experimentally confirmed linear theory for the first time while working with vortices forming
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between concentric rotating cylinders. During the span from 1932 to 1935, Schlicting built upon
the initial success of Tollmien to further evaluate the critical Reynolds numbers and

amplification rates.

The invention of the jet engine in 1939 sparked renewed interest in jet phenomena. The
two major questions that were asked at that time and are still not completely answered today
were the questions on the mechanisms responsible for jet mixing and noise production. Today
these phenomena are still being researched with the goals to increase combustor efficiency,

improve jet mixing, and determine methods to decrease noise production levels.

In the mid 1940's, Heisenberg and Lin proved Lin’s general expansion to stability
analysis by considering Poiseuille flows. Before this proof, Lin’s work was viewed with a
degree of skepticism. In 1950, Fjortoft published his theorem as an additional requirement to
Rayleigh’s Inflection Point Theorem for unstable flow. It consisted of the fact that if a flow is
subject to instabilities, the quantity U”(U-U,) < 0 somewhere in the flow field where z is a point
at which U”=0 and U=U(z,). Like Rayleigh’s Theorem, Fjortoft’s Theorem did not prove
conditions resulting in the presence of instabilities, it only disproved some situations where

Rayleigh’s Theorem allowed for the possibility of an unstable situation.

Schubauer and Scramstad [1947] took measurements of transition occurring over a flat
plate. They were one of the first to take dynamic measurements of a transitional flow using a hot
wire. Among their discoveries was the selective amplification of the random fluctuations during
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transition.

The major achievements in hydrodynamic stability studies prior to 1960, were closed out
with the 1955 publication of a comprehensive monograph by Lin, covering the field of
hydrodynamic stability. Essentially, Lin used asymptotic power series that have since been

improved, but the work laid the foundation for future endeavors in stability studies.

1.4 Circular Jet Stability and Relevant Discoveries

In the early sixties, Batchelor and Gill [1962] analyzed the temporal stability of
axisymmetric jets with streamwise velocity profiles obtained from solving the Navier-Stokes
equation. Their studies assumed that the jet emanated from a forced point source making the
results valid only in the far field. They managed to extend the necessary conditions for unstable
physical situations in axisymmetric jet flows and found a similar relationship to Howard’s
Theorem existed for a range of complex phase speeds. Finally, they succeeded in demonstrating

that one and only one neutral disturbance with a non-zero wave number existed for this jet flow.

Prior to the sixties, flow instability was treated as a wave property only. Michalke [1965]
was the first to predict the rolling-up phenomenon of traveling instability waves into periodic
vortices, taking the treatment of hydrodynamic instabilities to a new level. This was

demonstrated experimentally and verified by Freymuth [1966] one year later. Michalke had also
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studied spatial and temporal characteristics of planar shear layers. He used asymptotic solutions
for the boundary conditions in order to integrate the Rayleigh equation. A fourth order Runge-
Kutta method was used in his integration scheme. This integration was performed twice, from a
distance far from the shear layer (considered to be infinity), inward, approaching the shear layer
from either side. Michalke required that when the correct solution was obtained, the solution and
its derivative determined from each integration matched where the two integration steps met in
the shear layer, the so-called shooting method. Through his study of inviscid shear layers,
Michalke was able to show that the shear layer was temporally unstable over a range of spatial
wave frequencies and that two neutral frequencies existed where disturbances neither grew nor
dissipated. This work disproved the notion that one and only one neutral disturbance was
possible as Batchelor and Gill [1962] had claimed several years earlier. Michalke [1966] also
completed a spatial linear stability analysis for a planar shear layer to obtain similar results to

those of his temporal linear stability analysis.

It was in the studies of jet noise production by Crow and Champagne [1971] that the
existence of a preferred mode of instability was demonstrated. Crow and Champagne showed
that modestly forcing the jet at its preferred frequency resulted in increasing the size of large-
scale structures and increased entrainment. This most amplified frequency is a very important
concept in planar mixing layers and jet shear layer control as both mixing layers have a thin
shear layer in the near field. Crow and Champagne also proved that coherent structures could be
strengthened and stabilized by periodic stimulation. The following year, Crow and Champagne

[1972] observed the preferred mode of jet column instability to scale approximately with the jet
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diameter and velocity. This characterized a single scale that dominated the turbulent region.

Lessen and Singh [1973] found that axisymmetric shear layers are more stable than
corresponding planar shear layers. Browand and Laufer [1975] confirmed the existence of the
preferred frequency resulting in the greatest growth rate as proposed by Crow and Champagne.
They also observed the development of large scale vortical structures in the near field of circular
jets in demonstrating the preferred frequency phenomenon. Entrainment was attributed to the
pairing of vortex rings and Browand and Laufer postulated that entrainment and noise production

were governed by vortex dynamics in the near field.

Ho and Huang [1982] and Ho and Huerre [1984] investigated the basic mechanisms of
the instabilities of the vortex sheet leaving a trailing edge. They found the existence of a most
amplified frequency in the flow that scaled with the local momentum thickness. Strange [1983],
studied high Reynolds number axisymmetric jets excited at modes m =0, 1, and 2. He showed

that the growth rates for m = 0 and m = 1 were comparable.

Michalke [1981, 1984] performed another spatial linear stability analysis of a circular jet
using the shooting method. Using modified Bessel functions of the first and second kind as
approximations at small and large radii in the integrations to find the pressure eigenfunction, he
found that the growth rate increased for larger values of R/, where R is the jet radius and 0O is
the momentum thickness. He also demonstrated that the phase speed increases with decreasing
R/O and that increasing the Mach number decreased the growth rates at higher frequencies while

Chapter 1 10



the growth rates at lower frequencies were unchanged by Mach number variations. The
compressibility of the fluid at high Mach numbers absorbing energy and thus, causing a decrease

in growth rate, was postulated as the reason for this natural event.

AXisymmetric air jets of moderate Reynolds numbers were studied by Petersen and
Samet [1987]. They found that the natural instabilities scaled with the local shear layer
thickness. The preferred mode of instability was found to be a shear layer instability. Over a
range of low to high levels of excitation, linear stability analysis of the Orr-Sommerfeld equation

proved to accurately predict the results of experiment.

Lin and Corcos [1984] suggested that streamwise vorticity was produced in the braid
region between large scale structures. Their claim was that streamwise structures were
responsible for the onset of mixing transition in axisymmetric jets. Cohen and Wygnanski
[1987], Peterson [1990] and Corke [1993] showed that in the near field of circular jets, where the
shear layer is usually thin, many azimuthal modes are equally unstable, not just for the modes
m=0 and m=1 as Strange and Crighton[1983] had found. There are many similarities between
mixing layers and jets. First, the momentum thickness used in mixing layers as a length scale is
also an appropriate length scale for near-field jet dynamics. Further downstream, at axial
distances greater than three jet diameters, according to Corke [1993], the jet diameter generally

governs the evolution of the flow.

Bayly, Orzag, and Herbert [1988] studied instability mechanisms in shear flows and
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found that the primary periodic instability imposed on the basic flow causes roll-up of the
Kelvin-Helmholtz instability waves into large scale vortical structures. Monkewitz and
Pfizenmaier [1991] claimed that the development of streamwise vorticity initiates the breakdown
of the laminar jet. Grosch and Jackson [1991] studied inviscid spatial stability characteristics of
three-dimensional mixing layers. They proved that the three-dimensional problem could be
reduced to a two-dimensional problem and found a universal dispersion relationship curve that

could be used to find the growth rate of the shear layer with any other parameter.

The extent of study on multi-mode excitation has been limited to what Strange [1983]
refers to as spinning modes. Spinning modes consist of counter-propagating modes of equivalent
azimuthal mode number. Cohen and Wygnanski [1987] extended the work of Strange to show
that the standing wave excitation produced by spinning modes allows for control of the
directional jet expansion. Iso-velocity contours predict elliptic evolution of the jet for m = +1
excitation, triangular evolution for m =+1.5 excitation, and square evolution for m = +2

excitation.

Flow visualization by Leipman and Gharib [1992] showed the existence of streamwise
vorticity in round jets. These structures were found to drastically alter the entrainment process in
the near-field and were identified as a major mechanism contributing to the entrainment.
Leipman and Gharib claimed that as the flow evolved downstream, the efficiency of streamwise
vorticity in entraining fluid increased relative to entrainment due to azimuthal vorticity. (Itis
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important to note that when identifying vorticity components, Liepman and Gharib refer to the
plane that the rotational motion lies in, not what mathematical component the vortical structures

represent.)

Huang [1994] performed a spatial linear stability analysis of a non-reacting, circular, free
jet that allowed for the presence of a swirling basic flow. Huang followed the shooting method
as prescribed by Michalke [1981] to find the solution to a linearized form of the perturbed Euler
equations. His results for the non-swirling jet agreed with those of Michalke’s earlier work,

demonstrating the strong influence of momentum thickness on the stability of the jet.

Studies of active control of free shear flows were conducted by Ding [1995]. These
studies focused on control of the far field. Ding found that by exciting the jet at non-integer and
counter-propagating azimuthal modes, marked changes in the streamwise evolution of the jet
could be achieved. Increased entrainment of the surrounding air by somewhat more than two-
fold was demonstrated for the non-integer and counter-propagating azimuthal modes when

compared with the unexcited jet.

1.5 Goals and Methodology

The objectives of the research described in this thesis are two distinct, but connected

efforts leading toward similar goals. With the linear stability analysis tool developed by Huang
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[1994] available as a foundation for the current work, this tool will be modified to ignore the
effects of swirl and to allow for the solution of the eigenvalue problem for the spatial linear
stability analyses at fractional modes of excitation. The effects of exciting a circular jet at

several modes simultaneously will also be explored.

The investigation of integer, fractional, and multi-mode excitation will focus on
identifying mechanisms responsible for the instabilities that develop in non-reacting, circular,
free jets that cause the jet to experience transition from laminar to turbulent flow. The results of
the fractional mode analysis will be presented in the Appendix due to unresolved questions
regarding proper mathematical analysis. If possible, these mechanisms responsible for the
entrainment of ambient fluid into the jet will be identified and possible methods (if any) of

increasing the entrainment will be addressed.

This investigation is intended to be exploratory. The limitations of linear stability
analysis in accurately predicting flow characteristics is well known. The emphasis of the effort is
on gaining the most insight possible given the tools available. The current work is intended to
provide a starting point for a more in-depth look at the concepts of mathematical analysis of

fractional and multi-mode excitation.

These tasks will be accomplished by first performing the linear stability analyses
necessary to determine the linear effects on the evolution of the flow field for all modes to be
considered, and streakline visualizations will be analyzed to gather information that could
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possibly lead to better understanding of structure formation and evolution in the streamwise
direction of the jet. Then a means of measuring the entrainment for a given mode or modes of
excitation will be developed in order to form a basis upon which entrainment resulting from

different modes of excitation may be evaluated and compared.

Finally, visualizations of instantaneous plots of vorticity will be produced and examined
in the hope of gaining insight to the development of near-field structure formation and evolution.
These visualizations should provide some perspective as to what structures develop as a result of
the interaction of differing modes of excitation. In addition, the possibility of future work

building upon the foundation of the present effort will be addressed.
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CHAPTER 2:

CIRCULAR JET STABILITY ANALYSIS

2.1 Linear Stability Analysis

Many scientific fields of study offer physical situations in which the stability of the
system is questionable. Mechanical, astronomical and electrical systems are all such examples.
In addition to being potentially unstable, they all have in common a finite (generally few)
number of degrees of freedom. It has already been stated that many hydrodynamic systems are
inherently unstable. However, the analysis of hydrodynamic systems are quite different from the
examples sited above in the respect that hydrodynamics deal with continuums. In a continuum,
there exist an infinite number of degrees of freedom. When studying infinite degree of freedom
systems, the mathematical analysis generally leads to an expression in some form of a partial

differential equation.

The solution to many of these problems requires solving a linearized form of the partial
differential equation formed into an initial value problem. While linearizing the equations causes
the problem to lose a degree of physical reality, linear stability analysis has proven itself to
provide accurate models of the early stages of the mixing process in jets (Petersen and Samet
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[1988]). According to Brown and Roshko [1974], depending upon the initial shear layer

thickness, features of the flow field many diameters downstream may bear a remarkable

resemblance to features predicted by linear stability analysis. The stability analysis on circular

and elliptical jets by Huang [1994] proved effective in obtaining insight into the entrainment

process and possible methods of enhancing the entrainment of elliptical jets was offered.

Linear stability analysis provides an efficient method of investigating the influence of

geometrical parameters on the stability properties of jet flows. The results are generally limited

in accuracy to the near field, however, linear stability analysis can be used to propose

mechanisms responsible for the appearance of large scale structure in transitional regions. The

procedure for the stability analysis can be outlined as follows (Sherman [1990]):

1.)
2.)
3)
4)
5.)
6.)

7.)

Select a basic solution flow.

Add a disturbance.

Find the disturbance equations.

Linearize the equations.

Simplify (if possible and if necessary).

Solve for the eigenvalues.

Interpret the stability conditions. (Find ranges of stability, growth rates, decay

rates, etc.)

The analysis is generally approached in one of two ways: temporal or spatial analysis.
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First, for either temporal or spatial analysis, a streamwise invarient but radially varying basic
flow must be assumed. The temporal analysis involves tracking the temporal evolution of
spatially periodic perturbations. The spatial analysis consists of tracking the spatial evolution of
temporally periodic perturbations. In both cases, the perturbation terms are assumed to vary
exponentially; either in time for the temporal analysis, or in streamwise direction for the spatial
analysis. The linear stability analysis for the circular jet is a linear combination of an infinite
number of solutions; each with a periodic, azimuthally dependant eigenfunction (Drazin and

Reid [1982]). Defining these dependancies is called mode classification.

In solving the eigenvalue problem, the real and imaginary parts of the eigenvalue
relationship and the temporal or spatial frequency is the dispersion relation. The dispersion
relation gives information on the growth rate and phase speed of the disturbance. The resulting

eigenfunction provides the spatial distribution of the disturbance.

2.2 Developing the Eigenvalue Problem

In order to study the evolution of circular jets excited simultaneously at several modes,
linear stability analysis was used to predict the distribution of the velocity disturbance fields
resulting from excitation of azimuthal (helical) and axisymmetric modes. The spatial linear
stability analysis developed by Huang [1994] featured spatial instabilities resulting from an

excited, swirling, continuous basic velocity. It is Huang’s approach that will be followed here
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except that the effects of swirl will not be considered. Thus, it will be assumed that no basic
azimuthal variation will be present in the velocity field and all terms including this basic
azimuthal velocity according to Huang’s [1994] development will be ignored. The analysis will
be further adapted to allow for fractional mode excitation and extended to analyze the effects of
multiple mode excitation. These two topics will be discussed in further detail in subsequent
chapters and in the appendix after the development and solution of this problem have been

addressed.

Following Huang’s [1994] approach of linearizing Euler’s equations, the fluid comprising
the jet is assumed to be inviscid and imcompressible. Another dissipative property, the thermal
diffusivity, will also be assumed to be negligible. When the effects of viscous forces are ignored,
the fluid moves according to the equilibrium between its inertia and the pressure forces. A small
disturbance may upset this balance. In fact, in the absence of viscous forces, the free jet presents

an even more unstable situation in comparison to its viscous counterpart.

The coordinate system chosen for this problem will be the circular cylindrical coordinate
system (r,0,z), where every point in a three dimensional space is defined by a radius (r), an
azimuthal location, designated by an angle (0), and an axial coordinate (z), measuring distance

from the origin. In circular cylindrical coordinates, Euler’s equations are:
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where v,, vg, and v, are the three velocity components in the radial, azimuthal, and axial
directions, respectively. Note that these equation are intended to be interpreted in non-
dimensional form where all lengths are non-dimensionalized by the jet radius, R (simply taken as
the radius of the nozzle at the jet exit), all velocities are non-dimensionalized by the half
centerline basic streamwise velocity U, and all pressures are non-dimensionalized by the

quantity pU2. It should be noted here that the flow in question will be assumed to be parallel.

The three components of velocity can be expressed as a mean value, and a fluctuating

disturbance value. The only mean value of velocity which is non-zero is the axial velocity
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component where the mean velocity is the axial veolcity of the basic flow, U,, thus

v, =u 2.5)
vg = up (2.6)
v, = U, +u. 2.7)

The pressure is again expressed as a mean and a fluctuating value:

p =p_+p/ (28)

where p-bar is the mean pressure and p’ is the fluctuating pressure. There is no basic radial or
azimuthal velocity component. Notice that this is consistent with the basic parallel flow
assumption. The consequences of the above assumptions are that the basic flow is independent
of streamwise location and azimuthal coordinate. Azimuthal dependancy only results from a
swirling flow which is not considered in the present work. The basic streamwise velocity U, will
be described as a function of radial location (r) only. Later, when the form of the basic
streamwise velocity becomes important, it will be addressed; for now however, it is only

important to note that U, is dependant upon radius (r), or that:
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u,=U0m. (2.9)

The primed (‘) quantities in equations (2.5) - (2.8) are the fluctuating disturbance quantities

which, when averaged over time are zero.

Substituting the basic velocity components into equations (2.1) - (2.4) yields the

equations for the basic velocity and the mean pressure:

op
0 = £
5, (2.10)
op
0 = -2 .
rdd @1
op
0 =-—. .
S, (2.12)

Thus, the average (basic) pressure is constant and does not change throughout the flow field.

(Note that a temporal variation of the pressure, p, still exists due to the fluctuating component.)

The Euler equations can now be linearized by taking the following steps:
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1) Substitute equations (2.5) - (2.8) into equations (2.1) - (2.4);

2)) Subtract the equations for the basic flow quantities;

3.) Neglect quadratic and higher order terms.

Thus, the linearized form of the Euler equations become:

/
A oy O _ _0p (2.13)
ot ? 0z or
aue/ aué 10p’
— + U()— = ——— (2.14)
ot =7 a r a6
/ /
/
Ou, . ur,aUz(r) . U(r)auz _ _op’ 2.15)
ot or 7 0z Oz

/ / /
“,  Ou 104  Ou (2.16)

r or r 00 Oz
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[f the normal mode assumption is made, the velocity and pressure disturbance terms can

be represented as:

u! = u(rye@ mo-wo Q.17)
ué = ug(r)e ez +mb - w (2.18)
u! = u(r)e@ m0-wn (2.19)
p’ = p(re@ *me oo (2.20)

where u,(r), ug(r), u,(r), and p(r) represent the velocity and pressure disturbance eigenfunctions.
In the exponent, o is called the wave number. The specific mode of excitation is determined by
the mode number m. When m=0, the disturbance is called the axisymmetric disturbance. The
reasoning behind this name should be clear as when m=0, there can be no azimuthal variation in
the disturbance since dependance upon azimuthal coordinate O disappears. For any mode: m>0,
the disturbance is said to result from a helical disturbance of mode m. These modes are also
typically called azimuthal modes in which case m is referred to as the azimuthal wave number.
The argument w, is the temporal (non-dimensional) frequency of the disturbance at a particular
mode, m. For a given mode m, there are a range of frequencies where the disturbance will grow

exponentially, as well as a range of frequencies for which the disturbances will have a negative
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growth rate and will be damped out, disappearing with increasing streamwise coordinate z. It
can also be shown (and was proven by Michalke [1975]) that there exist two neutral eigenvalues

for which the disturbances neither grow, nor dissipate.

In spatial stability analysis, the approach used here, has both m and w as real numbers.
The wave number « however, is a complex value where both the real and imaginary parts have
significance in spatial linear stability analyses. The real part is used to determine the phase
speed, a measure of how fast the disturbances travels axially (in the streamwise direction). The

phase speed is given by:

w
Ch = ?’ . (2.21)

The negative of the imaginary part of the complex wave number is called the growth rate. Since
-,z is the only real part of the exponential term, it should be obvious that it is the only quantity
that will cause the disturbance to grow exponentially. The greater the quantity o; becomes, the
faster the disturbances will grow with increasing axial distance z. The relationship of the
complex wave number with the frequency is called the dispersion relationship and this, along
with the disturbance eigenfunctions, determine the stability characteristics of the jet. Thus, in the
normal mode representation, the physically meaningful portion of the complex disturbances

corresponds to the real part of the eigenfunctions (Drazin and Reid [1981]).
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Substituting the expressions for the velocity and pressure disturbance eigenfunctions into
the linearized forms of Euler’s Equations, yields the equations for the disturbance

eigenfunctions:

u Wi = -2 2.22)
dr
m
ugW(r) = -Tp(r) (2.23)
dU (r)
u W(r)i + u ——— = -iap(r) (2.24)

r

u, du, 1
— + — + —imuy +idu, =0 (2.25)
r dr r

where W, a function of radius r, only, is introduced to simplify the equations and takes on the

following form:

W) = -0 + 2 + U (2.26)
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Expressing the velocity disturbance eigenfunctions u,, ug, and u, in terms of the pressure

disturbance eigenfunction p(r), yields:

w =i 9 (2.27)
W{r) dr
_ m
ug = rW(r)p (2.28)
dUu
w =ty LT (2.29)

: W(r)p w(r)? dr dr '

Substituting the expressions for u,, ug, and u, in terms of the pressure disturbance p, into
equations (2.22) - (2.25) and solving the system of equations for pressure p, yields a second order

ordinary differential equation for the pressure disturbance eigenfunction:

d? d
ap _ I_P+c2p =0 (2.30)

dr? dr

where

1 aw@e) 1 di(r) =« 4U(M) (2.31)
w(r) adr L(r) ar W) ar

Cl:_}.+
r

Chapter 2 27



(2.32)

L(r) =-W(r)? . (2.33)

2.3 Solving the Eigenvalue Problem

At this point it will be repeated that the point of linear stability analysis is to find the
complex wave number (growth rate and phase speed), the velocity disturbance eigenfunctions,
and the pressure disturbance eigenfunction for a specific mode m, at a specific frequency w. In
order to solve the above differential equation, two boundary conditions need to be specified. The
requirements that equation (2.30) must satisfy are that the pressure disturbance must be finite as
the centerline of the jet is approached, and that the pressure disturbance must tend to zero as the

radius becomes infinite. Thus the boundary conditions become:

r-0: p = finite (2.34)

I — oo p=0. (2.35)

The solution to the differential equation (2.30) is not immediately recognizable as the
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boundary conditions make the problem difficult. However, as the radius tends to zero, it should

be noted that the solution takes on the form of a modified Bessel function of the first kind.

Likewise, when the radius in equation (2.30) increases to infinity, the solution takes on the form

of a modified Bessel function of the second kind. This can be shown to be true by applying the

following transformation to equation (2.30):

let

asr-0,

and let

as r-0,

Chapter 2

£ = /IO

w(0)

52‘;—;’ P (B -mp =0

n=-—2_JI=r

w(e)

2d2P
2

n——+n§f]—+(—n2—m’>p=0.

dn

(2.36)

(2.37)

(2.38)

(2.39)
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Inspecting the above transformed differential equation and looking at the plots of the first
two orders of the modified Bessel functions of the first and second kind (Fig. 2.1), it should be
evident that the solutions for the modified Bessel functions satisfy the boundary conditions.
Particular solutions of the modified Bessel functions of the first kind are denoted as I,,(x) and
match the requirement that the disturbances remain finite at the jet centerline. Particular
solutions to the modified Bessel functions of the second kind are designated K ,(x) and match the
requirement that the disturbances tend to zero as the radius tends to infinity. The general
solution to equation (2.30) is a linear combination of the particular solutions I, and K,,, where

the order of the Bessel function m corresponds to the azimuthal mode number m.

From the above explanation, it is clear that the boundary conditions satisfying equation

(2.30) are:
asr-0
o
=1 =17 -L(0
p =18 =1( W(O)‘/ 0)r) (2.40)
and as r-oo,
p =K, () = Km(W‘(xw)\/%(w)r) : (2.41)
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To solve the eigenvalue problem for equation (2.30), the adaptive step size Runge-Kutta
method is used to integrate the equation in two regions. In the first region, for radial locations
R1, between some point close to the jet centerline and the jet radius R, the I,, modified Bessel
solutions are used as approximate boundary conditions in the integration. In the second region,
for radial locations R2, starting at some location (infinity) far from the jet centerline and moving
inward to the jet radius R, approximations for the boundary conditions are made using the K,
modified Bessel solutions in the integration. The third and final condition that must be satisfied
is the that the disturbance eigenfunctions must be smooth and continuous everywhere,

particularly at the location of the jet radius R, or in mathematical terms:

dp,(R) dp,(R)
F(o) = p(R - p.(R =
(@) = p,(R) . p(R) ’»

0 (2.42)

where p, and p, are the pressure disturbance eigenfunctions at the jet radius obtained from the
two integrations. F(a) in equation (2.42) is a non-linear function of complex eigenvalue a. Now
equation (2.42) can be solved using the Newton method, where a simple algorithm to find the

solution is as follows:

a.) For a specific mode m and frequency w, make an initial guess at the eigenvalue

(the complex wave number) o;
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b.)

d)

f)

Integrate equation (2.30) outward from R1 to the jet radius R to get p,(R) and its

derivative dp,(r)/dr;

Integrate equation (2.30) inward from R2 to the jet radius R to get p,(R) and its

derivative dp,(R)/dr;

Calculate F(e) from equation (2.42);

If F(e) is less than a specified tolerance (<10°), then the guess at ¢ is correct; the

eigenfunction may be computed and the algorithm ended;

If F(e) is greater than a specified tolerance, then repeat the solution process using

a new value for ot where:

R T (2.43)
new old F f(aou) -

After executing the Newton method algorithm and finding the eigenvalue (complex wave

number) ¢, the pressure disturbance eigenfunction (p(r)), and its derivative (dp(r)/dr), the

velocity disturbance eigenfunctions may be solved for by substituting the pressure disturbance

eigenfunction p(r), back into equations (2.27) - (2.29).
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At this point, the only other piece of information needed to perform the linear stability
analysis for a given mode m and a given frequency w, is the basic streamwise velocity. Again,
following the process outlined by Huang [1994], Michalke’s second basic streamwise velocity

profile is used (Fig. 2.2.):

1 R R r
U = {1 + h[—(— - —
() 2{ tan [46(r R)]} (2.44)

where R is the jet radius and 0 is the momentum thickness (not to be confused with 0, the

azimuthal coordinate).

When linearizing the perturbation equations, losing the non-linear effects of the flow
evolution takes away a great deal of the physical reality of the flow and makes the solution valid
only in the region where the linear effects out weigh the non-linear effects. This region is limited
to as little as one jet radius downstream. However, when adding Michalke’s second basic
streamwise velocity profile, a profile found to closely fit true jet behavior near the nozzle exit in
experiment, a new degree of physical validity is introduced back into the analysis causing not
only better results than expected, but also extending the region of validity of the solution of the

linearized equations.

Now, for a given mode m, frequency w, momentum thickness 0, and two guesses at the
eigenvalue (complex wave number) &, the disturbance eigenfunctions may be solved for along
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with the correct eigenvalue a.
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Figure 2.1
Modified Bessel Functions of the First and Second Kind
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Figure 2.2 Michalkes 2nd Basic Streamwise Velocity Profile
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CHAPTER 3:

INTEGER, FRACTIONAL AND MULTIPLE MODES

3.1 Experimental and Theoretical Excitation

In the previous chapter, the linear stability analysis of Huang [1994] was adapted and
developed for the non-swirling circular jet according to Michalke’s shooting method using
Michalke’s second basic streamwise velocity profile. In this chapter, the significance of
azimuthal mode excitation will be addressed and the excited jet will be studied through the use of

streakline visualizations. The concept of multiple mode excitation will also be investigated.

The linear stability analysis tool provides the eigenvalue (complex wave number o) and
the shapes of the velocity and pressure disturbance eigenfunctions. These eigenfunctions must
be normalized before they can be used to determine the physical disturbance fields. The code by
Huang [1994] normalizes the eigenfunctions by requiring that the matching conditions in the
solving routine meets a specific tolerance, thus, forcing the absolute maximum and minimum to
be on the order of one. It was felt that for the quantitative comparisons used here that the degree
of normalization was sufficient. No additional normalization was carried out. These

eigenfunctions are in non-dimensional form as are all of the other arguments in the analysis. The
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eigenfunctions therefore have the same units as the basic velocity and are measured on the same
scale. In order to more accurately model the jet instability phenomenon, the jet is excited at
some percentage of the basic centerline velocity €; generally a value less than five percent (0.05).
Thus, the actual velocity fluctuations are given by equations 2.27 - 2.29, where each disturbance

quantity is pre-multiplied by the level of disturbance &:

v, = eur(r)e’(“’ +mb - wn 3.1
vg = Sue(r)ei(az *m8 -y (3.2)
v, = U@) + suz(r)ei(“’ *mb - wn (3.3)

The mode m, of excitation affects the perturbation terms by acting as a frequency
modulator of sorts. This is more easily seen by decomposing the complex exponential into its
real and imaginary parts and expressing the exponential with the imaginary argument

trigonometrically as follows:

i - -~z iz +mB - wo
el(az+m6 ) _ e e

3.4)

e_a‘z[cos(arz +mB - wr) +isin(ez + mB - wn] .
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With the exponential in this form, several things become apparent. First, for any complex wave
number o, when the imaginary part is negative, the disturbance will grow exponentially with
axial distance z. Second, at any axial location z, and time t, the mode of excitation m, serves to
change the phase of the sine and cosine terms with azimuthal location 0, thus modulating the
disturbance as mentioned above. It is this analytical phase modulation that is physically

reproduced when experimentally exciting jets at modes other than the axisymmetric (m=0) mode.

In physical experimentation, different azimuthal modes are excited by an arrangement of
electrically driven actuators located around the periphery of the jet exit. Figure 3.1 shows the
experimental set-up of Ding [1995] illustrating the experimental set-up described above. The
generators send sinusoidal electrical signals to the actuators such that the phase of the signal
from one actuator to the next is offset by the value 2mm / N, where m is the azimuthal mode
number, and N is the number of actuators around the periphery of the jet. This phase difference
occurs between one actuator and the next in a clockwise direction for a positive mode number m,
and the same difference occurs between one actuator and the next counter-clockwise actuator for

a negative mode number m.

3.2 Integer Modes of Excitation

In integer mode excitation the phase difference between any one actuator and either the

previous actuator or the next is the same. This result from the geometry ends up creating a
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continuous disturbance at any streamwise cut through the jet. A continuous azimuthal

disturbance also results. (The same cannot be said to result from fractional mode excitation.)

The commonly referred to helical mode for any mode m > 0, should now make some
physical sense. If one were to track a constant phase of the disturbance beginning at time t=0, at
some radius r, starting at the jet exit, the trajectory of this constant phase evolving with time

would in fact produce a helix (Fig 3.2), and thus, the term helical mode.

As Huang [1994] only dealt with integer modes of excitation, a general algorithm could
be used to calculate the modified Bessel functions of the first and second kind. When calculating
the modified Bessel functions of the first kind, for a given azimuthal mode, the (n+1)th order

function could be calculated using the recursion relations:

n+

. = I~ 221
X

for (3.5

4 ( ]n+2+k
I(x) = Z;__

k=0 k!P(n +k+1)

where T, the Gamma function is given as:

Chapter 3 40



I'n+1) =n! for n =0,1,2,.. where 0! =1, (3.6)

When calculating the zeroth order (axisymmetric mode: m=0) modified Bessel function of the
first kind, only the ascending series shown in Eq. 3.5 was used. The modified Bessel functions
of the second kind were calculated from the modified Bessel functions of the first kind again

using the ascending series for the zeroth order function as follows:

x x? x4 1 x 8 1 1
K = —{In(=) + Yy} (x) + =— + 1+-) + 1+—+=) + ..., (3.7
o) = NG+ VI + 2 Sm () (14 (3.7)

where v = 0.5772156649, and for modified Bessel functions of the second kind of integer order

greater than zero:

Ll - rmk,mi (3.8)

x) x

K (x) =
0

- _2G+D)

K40 + K00, (3.9)

As stated earlier, the above equations only hold when calculating modified Bessel
functions of integer order. An interesting trend can be identified in the real part of the axial

direction velocity disturbance eigenfunction. Figures 3.3 - 3.6 show the eigenfunctions for
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modes 0, 1, and 2. In Fig 3.6, the real part of the axial direction velocity distrubance
eigenfunction, a clear trend exists regarding the location of the relative minima and maxima with
respect to one another for a given eigenfunction. The intermediate minima and maxima for the
real part of the velocity disturbance eigenfunction for the mode m = 0 grow in their relative
positions‘to the absolute minimum and maximum, as the mode of excitation increases until
finally, at mode m = 2, the absolute minimum and maximum occur between a local minimum

and a local maximum.

It is also of interest to note that while it has been proven that the growth rates decrease as
azimuthal mode number of excitation increases (Huang [1994]), the velocity disturbance
eigenfunctions become more inclined, (steeper), suggestive of larger velocity gradients in the
shear layer of the jet. While this phenomena is more pronounced in the axial (z) direction
velocity disturbance eigenfunctions (particularly in the real component of velocity), the trend is
still evident in the azimuthal and radial direction disturbance eigenfunctions. This effect may be
better measured, as will be seen shortly, by means of an average total vorticity level

measurement.

3.3 Multi-Mode Excitation

As a free jet undergoes transition from laminar to turbulent flow, it is safe to say that as

the turbulence evolves, the fluid motion (on a fine scale) becomes random. Thus, it could be
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argued, to a greater or lesser extent, that the frequency content for an infinite number of
independent frequencies with which velocity fluctuations occur, would be found in this
turbulence. This finite amount of frequency content over all frequencies within a specified
range, could be looked at as a sort of excitation of an infinite number of modes at levels
correspohding to the relative amount of content at a particular frequency. In such a case, the total
excitation energy would be analogous to the mean turbulence kinetic energy. This phenomena
could be looked at as being a problem of multiple mode excitation and leads to an interesting
question: what effect would simultaneously forcing a jet at several modes of excitation have on
the stability of the jet and ultimately upon the entrainment resulting from this unstable physical

situation.

Now it would seem that in order to experimentally excite a jet simultaneously at multiple
modes, a separate series of actuators would be required to operate under a specific phase offset
from one actuator in its group to the next actuator in its group at a frequency also specific to its
series of actuators, for each mode of excitation. That is, for each mode that is to be excited, a
separate series of actuators would be required to disturb the flow. It is much easier to accomplish

this from a linear stability analysis point of view than to produce this effect experimentally.

At first, one might question whether or not additional speakers would be necessary.

When looking at the exponential part of the normal mode assumption:

PICH +mB - wrn (3.10)
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and breaking the exponential down into sines and cosines and adding them to the resulting sines
and cosines of another mode of excitation with a different azimuthal mode number and a
different frequency, a product of sines and cosines of the combined argument would result. This
result could then be interpreted as a resulting mode, m, made up of some expression of the
argumenfs of the exponents of the two original modes of excitation. This representation of
multiple modes as a single combined mode, in fact, would not work, because of the effects of
multiplying the exponential by the disturbance eigenfunction corresponding to a specific mode.
It would be similar to performing the addition of: AeX!' + Be*? and coming up with something of
the form: Ce*®. For example, breaking the complex exponential into sines and cosines, it is clear
that Asin(x1) + Bsin(x2) cannot be represented as Csin(x3). Therefore, it should also be clear
that the complex arguments cannot be combined into a single complex term of the form

previously mentioned.

To excite the circular jet at two different modes, the linear stability analysis needs only to
be performed separately for each mode of excitation, then the velocity disturbance components in
the radial, azimuthal, and axial directions resulting from one mode of excitation would simply be
added to the velocity disturbance eigenfunction components of the same direction resulting from
the second mode of excitation. This superposition of velocity disturbance fields applies for any

number of modes that one wishes to consider.

Thus for any two modes m, and m,, excited at frequencies w, and w, respectively, the
velocity disturbances in some arbitrary direction x are:
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i(t,z +m 0 - w1
v, = § uﬂ(r)e'( 177 ! (3.11)

and

2 = i) e T (3.12)

where €, and ¢, are the levels of disturbance (percent of jet centerline basic velocity) for
excitation at modes m, and m, respectively. The quantities u,,(r) and u,,(r) are the velocity
disturbance eigenfunctions in the x-direction which are given as a function of radius, r. Thus the
velocity disturbance (in the x-direction) for a circular jet simultaneously excited at modes m, and

m, becomes:

x2

(3.13)

ez + m 0 - ) {0,z + my0 - w0

= g uxl(r) e + g, “xz(") e

and the velocity disturbance (in the x-direction) for a circular jet excited at some arbitrary

number (k), of modes is given by the following expression:
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(3.14)

k
_ i(oez + m,0 - w0
= 21: gu (e .
i=

Given this expression (Eq. 3.14), any application which involves the effects of excitation at one

mode can be easily adapted to account for multi-mode excitation.

When superimposing the resulting disturbance fields from different modes of excitation
upon one another, there is the inherent question of the phase relationship between the different
modes excited. Because of the lack of an imposed normalization of the eigenfunctions in
addition to the approximate normalization preserved by the matching process, the phase
relationship between multiply excited modes will be to some extent arbitrary and uncontrolled.

This will not affect the conclusions that will be drawn from the visualizations.

3.4 Results -- Streakline Visualizations

3.4.1 Integer Modes of Excitation
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One method of visualizing the results of linear stability analysis is to look at
visualizations of streakline evolution using the velocity disturbance fields resulting from the
stability analysis. The spatial linear stability analysis tool created by Huang [1994] and adapted
by the author provides the eigenfunctions necessary to calculate the velocity at any point in the
flow. With this knowledge, a particle released at some specific time t, at some location (r, 0, z),
in the flow field, can be tracked as it travels downstream. The path that it follows can reveal a
great deal about how structures in the near field evolve. The limit to the usefulness of the
streakline method of flow visualization for linear stability analysis corresponds to the limit of the

prevailing linear effects of the perturbed the Euler equations over the non-linear effects.

The original code used to calculate the streaklines was written by Huang [1994],
however, it was only intended to calculate the streaklines for the axisymmetric (m=0) mode.
This code was altered by the author to allow for azimuthal variation of the streaklines (as well as
for fractional mode excitation). For each mode investigated (0, 1, and 2), six streakline plots
were calculated over a range of times, measured in forcing periods, from 0.5 forcing periods, up
to 1.5 forcing periods. The plots show the streaklines at times 0.5T, 0.7T, 0.9T, 1.1T, 1.3T, and
1.5T, where T = 27/w is the forcing period for a particular mode of excitation. Thus, the
developing streaklines were calculated over one forcing period and should provide all the

information that could be gathered from any streakline study of the flow.

In addition to the single-mode excitation streakline calculations, visualizations were also
calculated for jets excited at multiple modes. The modes excited for this case were modes zero
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one (0 and 1).

In each case, the streaklines were only calculated out to a maximum of four jet radii
downstream, and only for one half (one side) of the jet. Looking at Figs. 3.10 - 3.15, it can be
seen that if the streaklines were to be calculated around the full periphery of the jet, it would be
difficult to determine any definite structures present in the flow field. Again, in all cases the total
level of disturbance at the jet exit was 5 percent of the centerline basic axial velocity. In cases
where multiple modes were excited, each mode was excited with a fraction of the disturbance
energy proportional to the number of modes excited for that case. That is, for the calculations
performed for two modes of excitation, each mode was excited with 2.5 percent of the centerline
basic axial velocity. The constant disturbance level for all cases was chosen to ensure that an
equivalent amount of energy went into forcing the flow, and so that any comparison of the results

of different modes of excitation would be on an equal basis.

The axisymmetric mode (m=0) streaklines will be investigated first since they are the
least complex. It should be obvious in Fig. 3.7 that exciting the jet at mode m=0 results in a
pulsating, axisymmetric disturbance. A particle released in the shear layer of the jet, very close
to the exit would travel along one of the trajectories shown in Fig. 3.7. Roll-up of the flow into
vortices occurs at the same axial distance from the jet exit independent of azimuthal location.
This can be seen in Fig. 3.8 where the streaklines are displayed from a side, top (looking down
the streamwise axis), and arbitrary view. The top view will subsequently be referred to as a view
looking down the streamwise axis (the axial direction). Although not to scale, the top view of
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the streaklines clearly shows that no azimuthal disturbance exists in the jet. Thus, for the
axisymmetric case, a single streakline is indicative of the entire flow field and may reveal more

insight to the development of vortical structures when viewed alone as it is in Fig. 3.9.

The periodic nature of the jet is also evident at time 1.5T, as the vortical structure at three
jet radii from the exit is well developed, while another vortical structure can be seen forming just
after exiting the jet. It is important to note that the streaklines shown for time 0.5T are exactly
the same as those at time 1.5T with the exception that at time 1.5T, the flow field has been

allowed to evolve further downstream.

Looking at Fig. 3.10 gives a good indication of the evolution of the flow field resulting
from excitation at the first azimuthal mode (m=1). It should be immediately obvious that
excitation at mode m=1 results in an azimuthal deviation from the initial starting point for a
given fluid particle. That is the flow is clearly no longer axisymmetric as it was for the m =0
case. It can be seen that as the jet first begins to show signs of roll-up, one side of the jet is being
sucked inward toward the jet center while the opposite side is being pushed outward, away from
the jet center (Fig. 3.11). This figure also shows that roll-up occurs on one side of the jet before
occurring on the opposite side in an un-even, or rather non-parallel evolution of the jet. Actually,
rather than one side of the jet experiencing roll-up prior to the other side as is seen in the
evolution of elliptical jets (where roll-up occurs on the minor axis before occurring on the major
axis (Mutter [1994], Huang [1994] and Blair [1995])), the formation of the structure can be seen
to develop in such a manner that a continuous helical vortical structure is produced as the jet
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evolves downstream. Again, notice that the streaklines are the same for time 0.5T and time 1.5T
except that at time 1.5T the flow field has evolved further (Fig. 3.10). Unfortunately, the
streaklines cannot be viewed as a single streakline as in Fig. 3.9 for the axisymmetric mode case.
The three dimensionality of the flow precludes a clear representation of the flow in a single

meridional plane.

For excitation at the second azimuthal or helical mode m=2 (Fig. 3.12), effects similar to
those seen to result from forcing the jet at mode m=1 are apparent. Again, one side of the jet is
sucked in while the side experiencing roll-up first is being pushed out. The appearance of the
continuous helical vortical structure can be seen again as well. However, it now appears that the
vortical structure travels downstream at a faster rate than its m=1 counterpart. This result is
expected as the effect of increasing the mode number, should be predicted from the mathematical

representation of normal modes. The mode number plays a major role in the exponential term:

g/ m8-wn = cogtaz + mO - wr) + isin(ez + mB - wry, (3.15)

where the expected effect of increasing the mode number m, increases the rate at which the phase
of the disturbance cycles with azimuthal location O (spatially), at some time t. Thus, form =2,
the helical evolution of the disturbance would be expected to complete two spatial cycles in the

time it would take for the first azimuthal mode to complete one temporal cycle.

3.4.2 Multi-Mode Excitation
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The effects of multi-mode excitation can be seen in Fig. 3.13 showing streakline
evolution for modes zero and one (0 and 1) excited simultaneously. Comparing the resulting
streaklines from multi-mode excitation with those from single mode excitation show more or less
what one might expect, that there is a definite helical tendency to the vortical structure, however,
it is no lo4nger a continuous vortical structure such as those seen in the singly excited azimuthal
modes. Roll-up still occurs at approximately the same downstream distance as in the
axisymmetric case, however, now roll-up occurs on one side of the jet considerably earlier than it

does on the opposite side of the jet.

Another interesting aspect of the multi-mode excitation is the stretching of the vortices in
the azimuthal direction. Close inspection of the evolution plot, Figs. 3.13, shows the centers of
the vortex like structures being drawn out in the azimuthal direction. It is also of interest to note
that the formation of the vortices appear to be much more coherent (orderly) than those due
solely to azimuthal excitation. Again, this can be explained by the resulting roll-up of the flow in
the axisymmetric jet combined with the appearingly less structured vortical elements in

azimuthally excited jet resulting in vortical structures of decreasing levels of order.

With one of the goals of this effort being to identify causes of jet instabilities leading to
increased levels of entrainment, one would assume that for higher levels of disorder in the flow,
correspondingly higher levels of entrainment would result. Thus, one might expect that with
greater levels of disorder in the vortical structures, such as those seen in Fig. 3.14 from a view
looking directly at the jet exit, there would be higher levels of entrainment. However, it is well
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documented that in experiment (Michalke [1964] and many others), that the axisymmetric and
first azimuthal modes, the modes with the highest growth rates, cause the highest levels of
entrainment. It is clear from Figs. 3.7 and 3.13 that as the vortical structure forms and is carried
off down stream, the fluid below it wells up (appearing similar to the mushroom cloud resulting
from a large explosion) and the potential core is sucked inward. This is a clear indicator of how
the surrounding ambient fluid is entrained into the jet and carried off downstream where it
undergoes fine scale mixing. This phenomena is perhaps better predicted by a property called

vorticity which will be discussed next.
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Figure 3.1

Experimental Set-Up

Courtesy of Ding [1995]
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Figure 3.3 Radial Direction Velocity Disturbance Eigenfunctions
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Figure 3.4  Azimuthal Direction Velocity Disturbance Eigenfunctions
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Figure 3.5
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Figure 3.6  Real Axial Direction Disturbance Eigenfunctions
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Figure 3.7
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Figure 3.8
STREAKLINES (m-0, omega=1.4, eps=0.05, t=1.3T)
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Figure 3.9

EVOLUTION CF STREAKLINE (M=0, omega=1.4, eps=0.05)
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Figure 3.10

STREAKLINE E4VOLUTION (M=1, omega=1.4, eps=0.05)
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Figure 3.11

STREAKLINES (M=1, omega=1 .4,eps=0.05, t=1.1T)
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Figure 3.12
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Figure 3.13
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Figure 3.14

STREAKLINES (M=2, omega=1.2, eps=0.05, t=1.5T

top view
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CHAPTER 4:

ENTRAINMENT

4.1 Description

Accompanying the vortical patterns described in the previous chapter is the induced
motion of the surrounding fluid near the shear layer of the jet. As the jet evolves downstream
from the exit, the surrounding fluid is engulfed into the jet, begins mixing with the jet fluid, and
is carried off down stream. This induced motion of the fluid surrounding the potential core is

called entrainment.

Vortical structures forming in the shear layer of the jet engulf relatively large quantities
of the surrounding fluid into the jet stream. As the original jet fluid and the entrained fluid travel
downstream, they continue to mix on finer and finer scales until mixing on a molecular level has
occurred. For applications such as combustors, as mentioned earlier, the more rapidly the
entrainment process leads to molecular level mixing, the sooner combustion can occur. Also, the
more homogenous the mixing of the fuel and oxidizer, the more efficient the combustion process.

Both of these effects are desirable developments in combustor design.
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As one of the goals of the present work is to investigate the effects of fractional mode
excitation and multiple mode excitation to suggest improvements to increase entrainment, there
is a need to determine how best to measure entrainment resulting from different modes of

excitation.

Huang [1994] showed a connection between high levels of vorticity and corresponding
high levels of entrainment. His argument was based upon vorticity counts. Dividing the flow
field up into many locations on a grid, the vorticity count was taken as the number of grid
locations that represented areas of the flow field where the vorticity level was above a specific
threshold. As the flow evolved downstream, the number of counts at an axial location for
vorticity levels above this threshold increased, indicating a spreading of the jet. This spreading
indicated the induced motion of the previously unmoving flow, thus indicating higher levels of
entrainment. Thus it is postulated that high levels of vorticity are indicative of large gradients.
Real fluids tend to diffuse local regions of high vorticity which lead to higher vorticity counts
indicative of higher levels of entrainment. Thus, the total level of vorticity is suggested as
providing a good basis of comparing the levels of entrainment resulting from excitation at

different modes.

4.2 Vorticity

4.2.1 The nature of Vorticity
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Vorticity is a vector indicative of the rotation of a small mass of fluid with respect to a set
of chosen coordinates. In a fluid flow, tangential stresses on a viscous fluid element can induce
angular velocities in the fluid element and set the particles spinning. Mathematically speaking,

the vorticity I, is the curl of the velocity vector:

' = curl(id)
4.1
= Vxuy
where V is the ‘del’ operator given in cylindrical coordinates by:
~ 0 ~1 0 ~ 0
V== +ig—0 +i— 4.2
(lrar ler 00 lzaz) (4-2)

and 1,, 14 hat, and 1, hat are unit vectors in the radial, azimuthal, and axial directions respectively.

Since the modified spatial linear stability analysis of Huang [1994], developed in Chapter
2, gives the non-dimensional velocity at every point in the flow field, we can use the expressions
for the velocities to derive the expressions for the vorticity. The three components of vorticity

thus become:
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T = 8(%u2(r)im - ug(r)ioye '@+ m0 - w0 (4.3)

dUz(r) . duz iz + mB - we)
Fe = - n + S(ur(r)zoc —?)e (44)
dug 1 . 9. ilaz + mB - wi
Pz = 8(—;: - —r-u’(r)lm + T)e (45)

for the radial, azimuthal and axial directions. Continuing to use Michalke’s second basic
streamwise velocity profile, Eq. 2.44, the derivative of the basic axial velocity term in the

azimuthal component of vorticity becomes:

} (2.44)

|

U@y = 141 + tann| L R[ R - 2
: 2 406\ r R
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(4.6)

where R is the jet radius and 0 is the momentum thickness (not to be confused with azimuthal

coordinate 0).

Now, in order to compute the vorticity field at any time t, for a given disturbance level &,
the linear stability analysis must be carried out for a given mode m, frequency w, and momentum
thickness 0. The analysis will determine the eigenfunctions (as a function of radius), and the
eigenvalue (complex wave number ). The stability analysis, level of disturbance and the
specific time at which the jet is observed, provide all the information needed for computation of
the vorticity field. Unfortunately, the computed vorticity field only holds at this specific time t,
and is continuously changing in time. Thus, if the vorticity fields resulting from two different
modes of excitation are to be compared, depending upon the time at which the two are compared
and depending upon the location (r,0,z) in the flow field, either mode of excitation may be
indicative of a greater level of vorticity in either the radial, azimuthal, or axial directions. Thus,

some sort of average vorticity measure is required.

4.2.2 Singly Excited Modes

The most logical method of taking an average vorticity measurement would be to average
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the vorticity values over one period. This could be accomplished by integrating the expression
for the vorticity over one period T, with respect to time t, and then dividing by the period;

mathematically expressed by the following:

T, = 5 [Tt (4.7
0
1 T

T o = = f T, dt (4.8)
0
) T

va = 7 [ Tact “4.9)

where the period is equal to 27/w. With the only term containing time (t) as a variable being the

exponential, the proposed average measurements for vorticity would be:

Crfe ergr =0 (4.10)
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dU (r) T dU (r)
-+ 2y f e O = - _F
e dr dr

4.11)

~N |-

T
1 _;
' ==c [e™dt = 0 4.12
7% (4.12)

where C,, Cy, and C, are constants made up of the arguments forming the equations for the
vorticity components in the radial, azimuthal, and axial directions. Unfortunately, since the only
term that varies with time (t) is a complex exponential, when expressed as a sine and a cosine
term and integrated over a period, they will always yield zero. Thus, the only component of
vorticity that has a non-zero value when averaged in this way is the azimuthal component.
Worse still is the fact that regardless of the mode of excitation, the proposed azimuthal

component of vorticity will always be the derivative of the basic streamwise velocity.

This result should be somewhat expected. After all, when looking at the velocity field,
each component of velocity results from velocity perturbations except the basic axial velocity.
By definition, the mean of the perturbations is zero, and thus any vorticity resulting from a
perturbed velocity would also be zero. This being the case, another method of taking an average

measurement of the vorticity must be devised.
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The expressions for the vorticity contain both real and imaginary parts, thus, integrating
the absolute value of the square of a particular component of vorticity would have to lead to a
non-zero value unless both the real and imaginary parts of that component of vorticity were both
0 for all instances of time t. Therefore, it is now proposed to take an average measurement of the

vorticity as follows:

T T
1 1 «
' =—[T%a = —[I'T|d ,
s ave T{I,Ir T{I,,It (4.13)
17 17
T = = [ ? = = *
owg = 7 [ [Tel it - { [T gl (4.14)
1 T 1 T
z avg B —fll-‘:ldt - ;fl:[‘zrzldt (415)
0 0
total avg = Fr avg + FB avg + Fz avg (416)

where I'* is the complex conjugate of I". Given the average components of vorticity for a
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specific mode of excitation, one could compare the levels of vorticity for two different modes of
excitation by comparing the values of average total vorticity at each mode. The measurements in
Eqgs. 4.13 - 4.16 are more accurately called the average vorticity squared. This average vorticity

squared will subsequently be referred to as the average vorticity. It will be assumed from earlier
argumem‘s that the higher the values of total average squared vorticity, the greater the

entrainment due to excitation at a particular mode.

At this point, it would be easy to simply give the results of integrating the above
expressions, however, when first computing the square of the complex argument for the vorticity,
an interesting feature of the expressions for the vorticity comes alight for two of the three

components which bears discussion. A common term to each component of vorticity is:

€ fI0, m, eigenfunctions & their derivatives) ¢ ®* * ™9 ~ @9 4.17)

The above common form can be expressed in complex notation resulting in expressions for the

average values of vorticity as:

- (C,. + iDr)ei(l!z +mb - wo) (418)

r avg

r =G + (Cy + iDg)e'® "m0 -0 (4.19)

0 avg
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- (C +iD )ei(az+m6—m1)
F4 z

z avg
where
c + Em
y = EO gy t EQ U, , L
D - _ , Em
r - EQug, ~ EGRUg, ., U
dqu
Ce = €U0 ~ Eu, 0 — €
dr
d";_]
De = gu, 0, - €u, 0 - €
dr
_ _dUz(r)
8 dr
du €
m €
c =e—R + 2, + 2y
z rl Or
dr r r
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du
er + €mu

. |
T S+ g (4.27)

In Egs. 4.21 - 4.27, the R’s and I’s in the subscripts denote real and imaginary parts. Now, take

a closer look at the the exponential argument. When split into real and imaginary components, it

can be rewritten as:

ei(az +m0 - wry _ e -Ot,zei(akz +mbB - wi)

= e "[cos(x) + isin(x)] (4.28)
_ e—ia,z(E + iF)

where
E = cos(x) (4.29)
F = sin(x) (4.30)

x = 0z + mb - wt . (4.28)
Chapter 4

77



The absolute value of the square of the vorticity components may now be expressed as:

I'T; =(C +Dle ™™ 4.32)
TyTgx = [Gg + (Cq + IDG)(E + iF)e 71Ty (4.33)
LT, = (c} +Dhe ™™ (4.34)

where E? + F2 = 1 has been used in writing Egs. 4.32 - 4.34.

In the above expressions for the radial and axial components of average vorticity, note
that all temporal, frequency, and azimuthal dependance has disappeared. Although dependance
upon the frequency is buried in the analysis leading to the eigenfunction terms (and their
derivatives), Egs. 4.32 and 4.34 are now functions of radial coordinate only. This means that if
the average value of the radial or axial vorticity is desired, no integration with respect to time is

necessary.

Looking at the average azimuthal vorticity, when the absolute value of the square is
taken, the average azimuthal vorticity is still dependent upon time, azimuthal coordinate, and

frequency. Multiplying the azimuthal vorticity by its complex conjugate, the following equation
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results:

T,Ty = Gg + 2Gge [Cycos(x) - Dgsin(x)] + [Ca + Dale > . (4.35)

Since I'g['y* is still dependent upon time, in order to get an average value for the azimuthal
vorticity, I'gI'g* must be integrated over one period with respect to time and then divided by the
period. It should again be evident that when integrating the above expression over one period,
any term that is multiplied by a sine or a cosine, of some argument of time, will average to zero.
Thus, the only terms left after performing the integration, are no longer dependent upon time.
Consequently, not only is this integrated average azimuthal vorticity independent of time, it is
also independent of azimuthal location and frequency of excitation. Thus, the average values of

the three components of vorticity are:

2

[C} + D e ™ (4.32)

1

3

!
[

T

Fe avg = lePGF;dt = Gé * [Caz + Dé] e 20,7 (436)
0

=TT =[c} +D}e?™ . (4.34)

z avg z7z

Substituting the values of the C’s, D’s and G in Eqgs. 4.21 - 4.27 back into Egs. 4.32, 4.34, and
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4.36, the average values for the vorticity are found:

m 2 m 2 2
= _ - = alz
Ty ave Qytgp + Oplty Y T Crer T Xp¥er T —Ur| |Be
r
2
dau (r)
B avg dr
2 2
du du
— - - zZR _ _ 2 -20,z
upl; — u,t Tl URY T U0 £
dr dr
2
_ dugy m_ . Yer dug,  m . Hor 20,z
L= n _or
zave dr r " r dr r ® r

(4.37)

(4.38)

(4.39)

Clearly, all three expressions for the average vorticity will grow exponentially to some function

of the growth rate. The exponential term e?*" is common to all three components of average

vorticity and only differs in the exponential growth rate of the velocity disturbances by a factor

of 2. This factor of €? is introduced to the growth rate when the expression for one component

of the vorticity is multiplied by its complex conjugate. It is interesting to see (from a

mathematical point of view) that the growth rate is preserved through the calculations for the
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time averaged vorticity.

[t should also be noted that the term for the azimuthal component of vorticity has the
constant of the derivative of the basic velocity profile squared added to the term that increases
exponenﬁally with the growth rate. It should be expected that the term for the basic velocity
surfaces again in the analysis, taking the form of its derivative, because the basic velocity
imposed on the flow field is always present and its effects should not be expected to disappear in
subsequent calculations. Its effects on the total vorticity calculations disappear quickly as the
exponential growth of the average vorticity quickly drowns out any contribution from the basic

velocity derivative.
4.2.3 Multiple-Mode Excitation

When the effects of exciting the circular jet simultaneously at more than one mode are
investigated, the equations determining the evolution of the vorticity field, Eqs. 4.13 - 4.15 need
to be changed to allow for these effects. They become:

£k

(4.40)

T

_ 1
ravg - ?f
0
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T\ » 2
1
r = — r dt 4.41
0 avg T{ [ P Bk] ( )
10l & ’
= — L | |at 4.42
z avg T-[ [ P zk] ( )

where any number of modes (up to n) may be excited, and k is an index representing each
individual mode being excited. In multi-mode excitation, the previously discussed independence
of time, frequency and azimuthal coordinate no longer occurs. This means that the integration
step in each of the above equations must be carried out. The mathematical consequence of the
interaction of modes results in expressions containing time, frequency, and azimuthal location as
variables. These terms result from trigonometric identities no longer simplifying the complex
terms resulting from the squaring of the vorticity expressions. Due to this temporal dependancy,

the integration step in each of the above equations must be carried out.

Egs. 4.40 - 4.42 are not easy to work with when more than several modes are
simultaneously excited and therefore, some sort of pattern for each of the above equations was
sought. After multiplying out the terms in the summation and integrating over one period with
respect to time, a general formula became evident for each of the above three equations that

made calculations considerably easier. In an attempt to limit the length of this document, only
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the results will be presented. The average components of vorticity due to multiple mode

excitation are;

n 2 2
- 207 _m _ m
ravg 'k_] €ce [( Cptore + Cpelon Tuzlk) + (au“elk O tore —r—qukJ (4.43)
2
du (r)
Pe avg dr
(4.44)

2 2
n
+Yee ™| -au, -a u, - Hope |, o -« LT
k Tk Y rRi R Ytk R ¥ rRi Sl
dr dr

2 2
_ 20,z m “ork _m Uork 4.45
r = €.e — 4 —r—u + ] + [d"eu _r—urRlc + — (4.45)

It is rewarding to see that again, there is no dependance upon time, frequency or azimuthal
location. As was the case in simplifying the expression for the single mode average azimuthal
component of vorticity, when using Egs. 4.43 - 4.45, no integration step is necessary. It should

be noted that when multiple modes are being excited at different periods, there is a common
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period for the two or more modes. What that period may be in not important. The fact that such

a period exists that the expression for vorticity may be integrated over, is important.

Several interesting features of the above equations should be pointed out. Egs. 4.40 -
4.42 leave it unclear as to whether multi-mode vorticity may be calculated as the superposition of
the combination of modes excited. However, Egs. 4.43 - 4.45 make it apparent that, this is in
fact an acceptable method of finding the total vorticity for multi-mode excitation. If the average
vorticity fields have been determined for several individual modes of excitation, the following
simple equations may be used to get the vorticity field for the corresponding multi mode

excitation case:

r avg = 1-‘r avg k (446)
k=0
Fe avg = ; PB avg k (447)
z avg = Fz avg k ° (448)
k=0

This would suggest that except in the region where the exponential term is close to one, i.e. in the

extreme near field (z < 0.15), the disturbance with the greatest growth rate will have the greatest
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effect on the flow regardless of how many modes are excited and which modes constructively

interact with each other.

4.3 Results -- Vorticity Visualizations

4.3.1 Average Vorticity

Using vorticity as a measure of the effectiveness of excitation at a particular mode allows
for visual interpretation of this measurement in the form of contour plots and iso-surface
visualizations. Figures 4.1 - 4.5 show the contour plots of average vorticity calculated by Egs.
4.46 - 4.48 for single mode and multi-mode excitation. The modes of excitation considered were
modes 0, 1, 2, and 0 and 1 simultaneously. In order to compare the average vorticity levels for
each case on a standard basis, the total disturbance level for each case was 5 percent of the basic
axial centerline velocity. Just as was the case in the streakline plots, in cases of multiple mode
excitation, each mode was excited at equal fractions of the total disturbance level. Although no
scaling is present in these figures, the range of the calculations depicted is three nozzle radii from
the centerline outward in the radial diréction, and three jet radii outward in the axial direction

with the jet centerline corresponding to an imaginary vertical line down the center of the plot.

Figure 4.1 shows the average vorticities for the axisymmetric mode (m=0). As inspection

of Egs. 4.3 - 4.5 would reveal, knowing that ug, the azimuthal velocity disturbance eigenfunction
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is zero at any location in the flow field ( and with m=0), it becomes apparent that the only
component of vorticity resulting from the axisymmetric disturbance is due to the azimuthal
component. The results shown are consistent with what one would expect: that the greatest
levels of average vorticity occur in the shear layer (The regions approximately one jet radius
from the centerline where the fast moving fluid in the jet interacts with the slow moving or non-

moving ambient fluid surrounding the jet).

The four regions of growth that are evident in Fig.4.1 can be explained by inspecting the
form of the radial eigenfunction and the derivative of the axial direction velocity disturbance
eigenfunction. With the imaginary part of the radial eigenfunction (Fig. 3.3) reaching a negative
maximum just before the jet radius (r=1) and the real part of the radial eigenfunction reaching a
maximum just after the jet radius (r=1), the growth of the vorticity field just inside of the jet
radius and just outside of the jet radius is easily explained. No vorticity is expected inside the
shear layer as the velocity gradients are relatively small in this region, indicative of the lack of
activity. The three dimensional view of the average vorticity (labeled “Surface Mesh”) in Fig.
4.1 shows how the vorticity levels grow in the axial direction due to the exponential spatial

growth rate (-ct;) .

Inspection of Figs 4.2 and 4.3 showing the average vorticity contour plots for modes m=1
and m=2 are more interesting than that of the axisymmetric mode. The main difference between
the azimuthal (helical) modes and the axisymmetric mode, from an average vorticity standpoint,
is the additional radial and axial components of vorticity present in the flow field. As was seen
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in the streakline plots, the vortical structures rolling up in a manner such that they took on a three
dimensional structure, are a direct result of the presence of the radial and axial components of
vorticity. Again, for these two modes (m=1 and m=2), the concentrations of higher values of

average vorticity appear just where they would be expected, in the shear layer region.

Multiple mode excitation yields results that would be expected from inspection of the
results of single mode excitation for the average vorticity plots. Figure 4.4 shows the results of
multi-mode excitation for the m =0 and 1 case. As Eqgs. 4.46 - 4.48 predict, multiple mode
excited average vorticity results are simply the results of the individual modes superimposed
upon one another. That is the results of mode m = 0, added to the results of mode m =1, are
what the results would be for modes m = 0 and 1. Since roll-up in the cross-plane (the r-z plane)
is a result of the azimuthal component of vorticity (as is evident from the fact that in the
axisymmetric mode (m=0), roll-up only occurs in the cross-plane), the vortical structures
produced from multi-mode excitation are much stronger in the radial and axial directions than in

the azimuthal direction.

4.3.2 Instantaneous Vorticity

The plots depicting the average vorticity fields were valuable for indicating what regions
of the flow field experienced growth in vorticity when averaged over time, but gave no real
indication of the location of instantaneous regions of high levels of vorticity or of the jet
structure. For that reason, visualizations for the instantaneous vorticity field were generated to
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supplement the earlier streakline plots. In order to pick interesting instances in time at which to

observe at the instantaneous vorticity field, the streakline plots (Figs. 3.9 - 3.21) were examined.
The times chosen to look at these instantaneous plots were 1.1T and 1.3T where T = 27/w, is the
period of excitation, and w is the non-dimensional frequency of excitation. All of the images

displayed begin a short distance from the jet exit and extend downstream for three nozzle radii.

The axisymmetric mode (m=0) was investigated first. Fig (4.5) shows a surface of
constant vorticity for the mode m =0 at time t = 1.3T. The level of vorticity displayed in this
plot is 0.5 and corresponds to 1/80 of the maximum vorticity value at three jet radii downstream.
The level of vorticity chosen for the imaging is not of great importance. The specific level for
any of the instantaneous surfaces of constant vorticity were chosen only to display the vortical
structures present in the jet. As should be evident from Egs. 4.3 - 4.5, the vorticity grows
exponentially and thus, the highest levels of vorticity will appear farthest downstream.
Unfortunately, these high levels of vorticity give little indication of the structures present in the

flow. Therefore, lower levels of vorticity are looked at for all the instantaneous visualizations.

Figure 4.7 shows the beginning of the growth of one vortical structure near the jet exit
and then another vortical structure forming further downstream. Comparison with Fig. 3.7, the
streakline representation of the flow field at the same instant in time, shows the existence of
similar structures at corresponding locations in the flow field. The axisymmetry, and the

formation of vortex rings in complete structures that are periodic in nature should be noted.
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Next, the visualization of a surface of constant vorticity will be considered for the first
azimuthal mode (m=1). Figure 4.6 shows the three components of instantaneous vorticity for the
mode m = 1. From the streakline plots in a previous section, the phenomena of a helical vortical
structure continuously evolving in the azimuthal direction was suggested. Clearly, the radial and
axial coniponents of vorticity display this continuous helical behavior. The azimuthal
component, however, does not. While this helical behavior is not evident in the azimuthal
component, it is obvious that the vorticity is concentrated in the shear layer. One reason that the
helical behavior is not as evident in the azimuthal component of vorticity as it is in the radial and
axial directions is that the constant term of the derivative of the basic axial flow (Eq. 4.4
governing the evolution of the azimuthal component of vorticity) has a major contribution to the

vorticity in the very near field (before the disturbance quantities begin their exponential growth).

When the multi-mode cases for surfaces of constant vorticity are examined, more
evidence of the nature of the roll-up, discussed in the streakline section, is seen. In a previous
section, it was suggested, for the cases where the axisymmetric mode was excited simultaneously
with one or more azimuthal (helical) modes, that roll-up still occurred in distinct, periodic,
uneven, vortical ring-like structures. As was suggested in the axisymmetric case, if the
azimuthal component of vorticity was entirely responsible for this streamwise directional roll-up,
it would make sense that multiple mode excited jets exhibiting this periodic coherent structure
development should be evident in the iso-surfaces of azimuthal vorticity. As can be seen in Figs.
4.10 - 4.12, this is definitely the case. The radial and azimuthal components of vorticity also
show, to some extent, this phenomena of periodic distinct vortical structure formation (although
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the most evidence appears in the iso-surfaces of the azimuthal component as would be expected).

Linear stability theory predicts that the mode with the highest growth rate will cause the
shear layer to expand the most rapidly. In Chapter 2, this mode was demonstrated to be the
axisymmétric mode. It stands to reason, due both in fact to the physical geometry of the circular
jet and to predictions of growth rate, that the azimuthal component would be responsible for
greater entrainment than its radial and axial counterparts. This argument, based on the results of
linear theory, is also in agreement with the results of experimental flow visualizations by

Leipman and Gharib [1992].
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Figure 4.2
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Figure 4.3
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Figure 4.4
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Figure 4.5
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Figure 4.6
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Figure 4.7
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CHAPTER §:

CONCLUSIONS AND FINAL REMARKS

5.1 Conclusions

Chapter 1 presented the goal of the current research effort as identifying mechanisms
responsible for the entrainment of surrounding fluid into a non-reacting, circular, free jet using
linear stability analysis and the results of streakline and vorticity visualizations. Integer,

fractional, and multiple modes of excitation were examined.

The visualizations of instantaneous levels of vorticity showed the appearance of helical
structures but were of little value in indicating the relative levels of entrainment due to various
modes of excitation. A much more useful indicator was the average vorticity. With regard to the
average vorticity, it was argued that for a given mode of excitation m, the mode with the largest
growth rate will be the mode that results in the highest level of entrainment. As proven before
(Huang [1994]), the axisymmetric mode (m=0) has the largest growth rate. Multiple mode
excitation at modes other than the axisymmetric mode will clearly not be as effective as the

axisymmetric mode alone in the entrainment process.

Finally, the importance of the azimuthal component of vorticity in the entrainment
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process was identified. This component of vorticity was argued to be the most influential in the
engulfment of the surrounding fluid into the jet. While finite amounts of vorticity in the radial
and axial directions may help to more thoroughly mix the ambient fluid with the jet fluid once
entrained into the jet stream, it is the azimuthal component of vorticity that is primarily
responsib‘le for that entrainment. With the axisymmetric mode of excitation resulting in the
appearance of only azimuthal vorticity, and with the greatest growth rate of any other mode of

excitation, it is clearly the mode of excitation that results in the highest levels of entrainment.

5.2 Possible Future Work

The work presented in this thesis by no means represented a comprehensive study of
fractional and multiple mode excitation. This effort attempted only to identify the most
important issues of these types of excitation from a theoretical standpoint. Suggestions for future
work in the areas covered by this thesis consist of one main idea. An area that could produce
some interesting and potentially valuable insight to the early stages of the stability of circular jets
is the effects of the interaction of modes beyond what investigations were conducted in the
current effort. Areas left unaddressed Were effects of the interaction of modes at different
frequencies of excitation; the role of initial phase relationship in multiply excited modes at the
same excitation frequency; and comparison of counter-propagating or spinning modes of
excitation with the experimental results of Strange [1983], Cohen and Wygnanski [1987], and

Ding [1995]. The investigation of spinning mode excitation from a linear stability analysis
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approach would result in predictions of instantaneous regions of high levels of vorticity in a

manner consistent with the axis switching phenomena seen to occur in elliptical jets.
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APPENDIX A:

FRACTIONAL MODE EXCITATION

Modeling of fractional modes of excitation using linear stability analysis is a very
difficult task. The linear stability analysis eigenvalue problem does not admit a fractional value
for the mode of excitation m, because a discontinuity exists in the azimuthal direction. It is due
to the questionable methods of modeling fractional mode excitation that the results of this
investigation may also be debatable. It is the authors opinion that the results of the fractional
mode analysis investigated in this effort are acceptable provided that the locations of the jet
being explored do not approach the jet center. As all of the results of the fractional mode

excitation stem from this partial mathematical analysis, they will be presented in this appendix.

The extent of study on fractional mode excitation has been limited to experimental work.
Furthermore, this experimental fractional mode excitation has only dealt with the spinning modes
of excitation. Spinning modes consist of counter-propagating modes of equivalent azimuthal
mode number. Cohen and Wygnanski [1987] extended the work of Strange [1983] to show that
the standing wave excitation produced by spinning modes allows for control of the directional jet
expansion. Iso-velocity contours predict elliptic evolution of the jet for m = £1 excitation,

triangular evolution for m = +1.5 excitation, and square evolution for m = +2 excitation.
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Studies of active control of free shear flows were conducted by Ding [1995]. These
studies focused on control of the far field. Ding found that by exciting the jet at non-integer and
counter-propagating azimuthal modes, marked changes in the streamwise evolution of the jet
could be achieved. Increased entrainment of the surrounding air by somewhat more than two-
fold was demonstrated for the non-integer and counter-propagating azimuthal modes when

compared with the unexcited jet.

Modeling of the Fractional Modes

The linear stability tool of Huang [1994] was adapted to allow for fractional mode
excitation. One of the aspects that wasn’t addressed earlier, was the difference between integer
and fractional modes of excitation, and their significance. In this section, both the significance of
integer and fractional mode excitation will be addressed and the two different approaches to

solving the linear stability eigenvalue problem will be discussed.

In integer mode excitation, the phase difference between any one actuator and either the
previous actuator or the next is the same. This result from the geometry of the jet exit results in
the creation of a continuous disturbance at any streamwise cut through the jet. However the
same cannot be said of jets excited at fractional modes. Fractional mode excitation results in a
discontinuous disturbance as when one spatial cycle has been completed, an incomplete temporal

cycle exists. For example, the m = 3/2 case requires one and one-half spatial cycles to complete
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one temporal cycle.

This discontinuity in the excitation at 27 is the source of a mathematical difficulty which
will be discussed shortly. For the experimentalist, however, this discontinuity poses no
difficulty. This is because only a limited number of actuators are used (usually six or eight) in
experiments. Thus, what is seen by mathematician as a discontinuity is only a rapid (azimuthal)
change for the experimentalist which can easily be accommodated. This case will be taken up
again after the discussion of the procedure for the calculation of the eigenfunctions for fractional

modes of excitation.

From an analytical point of view, approximating the boundary conditions in the linear
stability analysis using modified Bessel functions changes significantly from integer to fractional
mode excitation. While the curves of fractional order modified Bessel functions appear as one
would expect, (Fig A1) fitting perfectly between their corresponding integer order modified
Bessel functions, the mathematical expressions of their forms and the methods of computing

them are very different.

The expressions for modified Bessel functions of fractional modes of excitation are
generally given in terms of a series of hyperbolic functions. Since the only fractional orders
being investigated in this effort were the half mode (m=1/2) and the three-halves mode (m=3/2),
these expressions were hard coded into the linear stability eigenfunction solving routine. Both
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the modified Bessel functions of the first and second kind and their derivatives were needed to

solve the eigenvalue problem. Thus, the code of Huang [1994] was changed and the Bessel

functions and their derivatives were all input as subroutines, specifically:

Ii(x) = l —2— sinh(x)
2 X
— 11(x) X ' —x cosh(x) - ‘Ir smh(x)
I3(x) = ' i[cosh(x) - m(—xl]
5 Tz z

3 cosh(x)

iIs(x) = _?_{(1 r Sy x) -
dx 3 Tz 2x2 2x

}

) sinh(x)

Ki(x) = 2 [cosh(x) - sinh(x)]
3 X
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The growth rates for a number of modes were calculated over a range of non-dimensional
frequencies (Fig. A2). As expected, the growth rate curves for the fractional modes, m=1/2, and
m=3/2, fell between the curves for m=0 and m=1, and between m=1 and m=2, as expected. The
most amplified frequency of the mode, m=1/2, fell around w=1.4. Since the most amplified
frequencies for m=0 and m=1 were found to be approximately 1.4 (Huang [1994]), the most
amplified frequency for the half mode would be expected to be the same. The most amplified
frequency for the three-halves mode was found to be approximately 1.3. This result is also
consistent with what would be expected based on the results of integer mode growth rates. The
validity of the integer mode growth rates was verified by the results of Huang [1994]. They were

also found to be in nearly exact agreement with results obtained by Michalke [1981].
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Another characteristic that was verified in the analysis of fractional modes was the trend
of higher azimuthal modes becoming the fastest growing modes as excitation frequency shifted
downward. Figure 3.4 shows that around a non-dimensional frequency of 1.2, the half mode has
the highest growth rate of all the modes. Near a non-dimensional frequency of 0.9, the first
azimuthal mode takes on the largest growth rate. This trend of the shifting of the mode with the
highest growth rate, continues as the frequency decreases. The fact that the frequency dependant
growth rates of the fractional modes conform to the verified integer mode trends is taken to be a

confirmation of the fractional mode results.

Further confirming the fractional mode analysis are the axial velocity disturbance
eigenfunctions (Figs. A3 - A5) (at least at locations away from the jet center). The axial
direction velocity disturbance eigenfunctions go to zero at both the jet center and far from the jet
center for both the half and the three-halves modes of excitation just as expected. It is disturbing
however, that the radial velocity disturbance eigenfunction and the azimuthal velocity
disturbance eigenfunction for m=1/2, exhibit asymptotic behavior as both the real and imaginary

parts tend to plus and minus infinity as they approach the jet center.

Another interesting trend can be identified in the real part of the axial direction velocity
disturbance eigenfunction. Figure A6 shows these eigenfunctions for modes zero, one-half, one,
three-halves, and two. This figure shows the results of the integer order modes of excitation
shown in Fig. 3.8 along with the results from the fractional mode analysis (not previously
displayed). The clear trend regarding the location of the relative minima and maxima with
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respect to one another for a given eigenfunction discussed earlier is consistent with the results
from the fractional modes of excitation. The intermediate minima and maxima for the real part
of the velocity disturbance eigenfunction for the mode m = 0 grow in their relative positions to
the absolute minimum and maximum, as the mode of excitation increases until finally, at mode
m=2, the absolute minimum and maximum occur between a local minimum and a local
maximum. While this is the most obvious trend in the eigenfunctions of both the integer and
fractional modes of excitation, other such trends do appear in the velocity disturbance
eigenfunctions in the radial and azimuthal directions. It is these trends along with results
consistent with expectations and results from integer modes of excitation that allow the author to

argue for the accuracy of the fractional mode results at locations away from the jet center.

Streakline Visualizations

The original streakline code used to calculate the streaklines was written by Huang
[1994], however, it was only intended to calculate the streaklines for the axisymmetric (m=0)
mode. This code was altered by the author to allow for azimuthal variation of the streaklines,
and also to allow for the calculation of streaklines developing due to fractional mode excitation.
For each fractional mode investigated (1/2 and 3/2), six streakline plots were calculated over a
range of times, measured in forcing periods, from 0.5 forcing periods, up to 1.5 forcing periods.
The plots show the streaklines at times 0.5T, 0.7T, 0.9T, 1.1T, 1.3T, and 1.5T, where T = 2n/w is

the forcing period for a particular mode of excitation. Thus, the developing streaklines were
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calculated over one forcing period and should provide all the information that could be gathered

from any streakline study of the flow.

Calculation of the streaklines for fractional modes (Figs. A7 and A8) show that the
helical growth rate of the continuous vortical structure appears as would be expected in relation
to those of modes m=1 and m=2, but only result in a continuous plot as long as the calculations
do not carry the particle trajectory across the axial plane (8-z plane) where 6=0+€ on one side
and 0=2m-€ on the other, (€ is some infinitesimal amount). Obviously, the disturbance at 6=0+¢€
and the disturbance at 0=2m-€ are two different values any time the mode m is equal to some
non-integer value. Thus, for these plots, streaklines that cross this axial plane of azimuthal

discontinuity are not displayed as they predict non-physical results.

The above discussion of the calculation of the streaklines crossing the plane of azimuthal
discontinuity does not mean that the discontinuity in the calculation reflects a discontinuity in the
flow field. Clearly, in a physical sense, as one passes through the angle 2, there is no sudden
jump back to zero. The azimuthal angle continues increasing, however this effect cannot be
displayed (nor is it necessary to display it) and would require considerable additional attention to
the streakline particle tracking. Although not shown, the helical vortical structures seen resulting
from fractional mode excitation are continuous. It is the disturbance in the cross plane (the r, 0

plane) of fractionally excited jets that is not (continuous).

In Figs. A7 and A8, for excitation at two modes, modes 0 and %2 and modes 0 and 1, the
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resulting delay in roll-up from one side to the side opposite, is not nearly as pronounced as the
delay in roll-up due to excitation at modes zero, one-half, and one (Fig. A9). The result that roll-
up occurs unevenly is considerably more evident in the triple mode excitation case than in the
double mode excitation cases is expected. In fact, the stronger azimuthal mode excitation
tendencies are a direct result of the fact that two-thirds of the disturbance energy comes from the
azimuthally excited modes: m=0 and m=1/2. In the double mode excitation cases, only half of
the disturbance energy is put into the azimuthally excited mode, either m=1/2 or m=1; the other
half of the energy going into the axisymmetric mode. Since the axisymmetric case contributes
no energy to azimuthal variation, putting more energy into the azimuthal modes of the multiple-
mode excited jet would lead to increased azimuthal variation in the rolling-up of the shear layer.
Again this is more evident in the case where two-thirds of the disturbance energy goes into the
azimuthally excited modes and only one-third of the energy goes toward exciting the

axisymmetric mode.

Average Vorticity Plots

In the average vorticity investigation, the fractional modes of excitation yield results that
seem to be expected in regions away from the centerline of the jet, but unfortunately predict
unrealistic behavior near the centerline. Figs. A11 and A12 show the average vorticity values for
mode m = 1/2 and m = 3/2. The expected growth in the shear layer occurs for all three

components of vorticity, however, in the axial direction, the linear stability analysis for fractional
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mode excitation predicts the growth of vorticity at the jet center; an unrealistic result (which is

worse for the m = ' case than for the m = 3/2 case).

Explanation for the presence of vorticity near the jet center is not difficult. This
centerline vorticity results from Eq. 4.5, the equation for the axial component of vorticity. The
terms responsible for this unrealistic growth are the terms containing the reciprocal of the radius
(1/r). As the radius approaches zero, the two terms in E.Q.. 4.5 including this reciprocal radius
will increase without bound unless the rest of the term also tends to zero, or if the values for
u,(r)im equal ugy(r). One look at the velocity disturbance eigenfunctions for the radial and
azimuthal directions for modes m = 1/2 and m = 3/2 will suggest that the above conditions for
centerline vorticity to approach zero (as would be expected) will not be satisfied. Thus, the
source of this prediction of artificial vorticity near the jet center lies in the linear stability
analysis. Since the analysis proves consistent with experiment for the integer modes of
excitation, the boundary conditions must be at fault. Despite this shortcoming, close inspection
of the velocity disturbance eigenfunctions for all of the modes investigated (m =0, 1/2, 1, 3/2,

and 2) show trends that are consistent for both the integer and fractional modes of excitation.

Instantaneous Vorticity

Figure A13 shows constant surfaces of vorticity for the mode m = 3/2. What can be seen

from this visualization, is the helical nature of the half mode. As was the case for the streakline

Appendix A 114



visualizations, all of the azimuthal modes investigated (0, 1/2, 1, 3/2, and 2) displayed this
continuous helical vortical structure. There is also greater evidence of the continuous helical
structure in the azimuthal component of instantaneous vorticity than in the other modes
azimuthal modes of excitation. This is attributed to the choice of the time (1.1T) at which the
vorticity field was computed.

In all three cases of multi-mode excitation that were examined, m =0 and 1/2, m = 0 and
l,and m =0, 1/2, and 1, (Figs. A14 and A15), the azimuthal component of vorticity shows
evidence of periodic vortex rings forming in the streamwise direction. This confirms the
suggestions by the author that evidence exists of such structure formation occurring from the

streakline visualizations.

At least some of the difficulties might be resolved by recognizing that the fractional mode
excitation might not be adequately modeled by normal mode representation of the disturbances.
This is because the resulting disturbance is discontinuous over 27 for a given fractional mode of
excitation. For the experimentalist, a real jet has no problem accommodating this disturbance,
however, from a mathematical point of view, this discontinuous disturbance may violate the

assumption of normal modes as several modes would be required to model the disturbance

properly.
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Figure Al

Modified Bessel Functions_of Increasing Order
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Figure A2 GROWTH RATES
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Figure A3

Radial Direction Disturbance Eigenfunctions
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Figure A4

: Azimuthal Direction Disturbance Eigenfunctions
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Figure A5

Axial Direction Disturbance Eigenfunctions
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Figure A6

'Real Axial Direction Disturbance Eigenfunctions
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Figure A7
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Figure A8
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Figure A9
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Figure A10
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Figure Al

Modified Bessel Fﬁnctions_of Increasing Order
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Figure A2
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F iguré A3

Radial Direction Disturbance Eigenfunctions
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Figure A4

Azimuthal Direction Disturbance Eigenfunctions
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Figure A5

Axial Direction Disturbance Eigenfunctions
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F igure A6

Real Axial Direction Disturbance Eigenfunctions
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Figure A10
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Figure All
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Figure Al2
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Figure Al3
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Figure Al4
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Figure AlS5
SURFACES OF CONSTANT VORTICITY
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