
Algorithms and Orders for Finding

Noncommutative Gröbner Bases

by

Benjamin J. Keller
Dissertation submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science and Applications

c©Benjamin J. Keller and VPI & SU 1997

APPROVED:

Lenwood S. Heath, Co-chairman Edward L. Green, Co-chairman

Donald C.S. Allison

Michael A. Keenan

Daniel R. Farkas

Clifford A. Shaffer

March, 1997

Blacksburg, Virginia

Algorithms and Orders for Finding Noncommutative

Gröbner Bases

by

Benjamin J. Keller

Committee Co-chairmen:

Lenwood S. Heath

Computer Science

and

Edward L. Green

Mathematics

(ABSTRACT)

The problem of choosing efficient algorithms and good admissible orders for computing Gröbner

bases in noncommutative algebras is considered. Gröbner bases are an important tool that make

many problems in polynomial algebra computationally tractable. However, the computation of

Gröbner bases is expensive, and in noncommutative algebras is not guaranteed to terminate. The

algorithm, together with the order used to determine the leading term of each polynomial, are known

to affect the cost of the computation, and are the focus of this thesis.

A Gröbner basis is a set of polynomials computed, using Buchberger’s algorithm, from another

set of polynomials. The noncommutative form of Buchberger’s algorithm repeatedly constructs a

new polynomial from a triple, which is a pair of polynomials whose leading terms overlap and form

a nontrivial common multiple. The algorithm leaves a number of details underspecified, and can

be altered to improve its behavior. A significant improvement is the development of a dynamic

dictionary matching approach that efficiently solves the pattern matching problems of noncommu-

tative Gröbner basis computations. Three algorithmic alternatives are considered: the strategy for

selecting triples (selection), the strategy for removing triples from consideration (triple elimination),

and the approach to keeping the set interreduced (set reduction).

Experiments show that the selection strategy is generally more significant than the other tech-

niques, with the best strategy being the one that chooses the triple with the shortest common

multiple. The best triple elimination strategy ignoring resource constraints is the Gebauer-Möller

strategy. However, another strategy is defined that can perform as well as the Gebauer-Möller

strategy in less space.

The experiments also show that the admissible order used to determine the leading term of a

polynomial is more significant than the algorithm. Experiments indicate that the choice of order is

dependent on the input set of polynomials, but also suggest that the length lexicographic order is a

good choice for many problems. A more practical approach to chosing an order may be to develop

heuristics that attempt to find an order that minimizes the number of overlaps considered during

the computation.

iii

ACKNOWLEDGEMENTS

There are several people who have made it possible for me to finish my Ph.D. First, are my advisors

Dr. Ed Green who introduced me to my research problem, and Dr. Lenny Heath who has helped me

explore it and otherwise had to endure my being across the hall. Second, are my committee consisting

of Dr. Allison, Dr. Farkas, Dr. Keenan and Dr. Shaffer who have put up with the conditions under

which I have completed my degree. Special thanks go to Drs. Allison and Shaffer for suspending

their disbelief about the relevance of my research topic, and to Dr. Keenan for driving eight hours

to be at my defense.

Over the years I have received financial support from the Department of Computer Science and

the Systems Research Center. People that I owe for these opportunities are Dr. Verna Schuetz and

Dr. Dick Nance.

What is left of my sanity, I owe to the many friends I have made during my years at Virginia

Tech including Siva Challa, Susan Keenan, Mani Mukherji, Greg Lavender and Ernie Page. Special

thanks to Susan for listening to me during the roughest time of my Ph.D. studies; and to Greg for

the lunches at the College Inn, for the trips to Reiters, and for sharing the secrets of finishing.

iv

TABLE OF CONTENTS

1 Introduction 1

1.1 Research Context . 2

1.1.1 Related Problems . 2

1.1.2 Noncommutative Algebras . 4

1.1.3 Applications . 4

1.2 Overview of Results . 5

1.3 Organization . 6

2 An Introduction to Noncommutative Gröbner Bases 8

2.1 Two Algebraic Problems . 9

2.1.1 Subspace Membership . 9

2.1.2 Ideal Membership . 11

2.2 Gröbner Bases . 14

2.3 Computing Commutative Gröbner Bases . 16

2.4 Computing Noncommutative Gröbner Bases . 21

2.5 Decidability . 22

2.6 Relationship to Rewriting . 23

2.7 Path Algebras . 25

2.8 Summary . 27

3 Computing Noncommutative Gröbner Bases 29

3.1 The Basic Algorithm . 29

3.2 Termination . 30

v

3.3 Algorithmic Alternatives . 35

3.3.1 Selection Strategy . 36

3.3.2 Polynomial Reduction . 36

3.3.3 Set Reduction . 37

3.3.4 Triple Elimination . 40

3.4 Data Structures . 43

3.4.1 Polynomials . 43

3.4.2 Polynomial Sets . 44

3.4.3 Triple Sets . 44

3.5 Algorithmic Experimentation . 45

3.5.1 A Prototype Implementation . 46

3.5.2 Experiments . 49

3.5.3 Implications for Implementation . 60

4 Pattern Matching 63

4.1 Pattern Matching in the Gröbner Basis Computation 64

4.2 Related Problems . 65

4.3 Suffix Trees and Dictionary Matching . 66

4.4 Pattern Matching Solution . 72

4.4.1 Superword Search . 73

4.4.2 Left-overlap Search . 73

4.4.3 Right-overlap Search . 74

4.5 Summary . 75

5 Admissible Orders 76

5.1 Related Work . 77

5.2 Definition . 77

5.3 A Class of Orders . 80

5.4 Experimentation . 81

5.4.1 Algorithm . 82

5.4.2 Input Problems . 82

5.4.3 Execution . 82

vi

5.4.4 Results . 83

5.5 Analysis . 83

5.6 Alphabetic Orders . 86

5.7 Summary and Directions . 90

6 Admissible Orders in Path Algebras 92

6.1 Equivalence of Orders . 93

6.2 Spanning Trees and Orders . 95

6.3 Future Directions . 102

6.3.1 Orders and Generators . 102

6.3.2 Equivalence and Choosing a Good Order . 103

6.3.3 Gröbner Walks . 103

7 Conclusions 105

7.1 Contributions . 105

7.1.1 Algorithms . 105

7.1.2 Orders . 106

7.1.3 Implementation . 107

7.2 Directions . 107

A Useless Triple Elimination 113

B Suffix Tree Insertion Algorithm 119

C Problem Instances 125

C.1 Free Algebras . 125

C.1.1 A4 through A8 . 125

C.1.2 Control Theory Problems . 127

C.2 Other Free Instances . 127

C.3 Path Algebras . 127

C.3.1 CGL and Derivatives . 128

C.3.2 DCYC and ICYC . 130

C.3.3 P5 . 132

vii

C.3.4 Binary Tree Quivers . 132

C.3.5 M1 and Derivatives . 136

C.3.6 MS, MTB, MM . 138

C.4 Random Instances . 140

C.4.1 A51E and A51H . 140

C.4.2 AGS . 141

C.4.3 GL . 141

D Problem Instance Generation 142

D.1 Graph generation . 142

D.2 Generating Set Generation . 142

E Experimental Results 152

E.1 Algorithm Experiments . 152

E.1.1 Counts . 152

E.1.2 Times . 180

E.2 Order Experiments . 207

viii

LIST OF FIGURES

2.1 Buchberger’s Algorithm. 18

2.2 Confluence of Rewrite System. 24

2.3 Quiver for Free Algebra in a, b. 25

2.4 Quiver for Simple Path Algebra. 26

2.5 Two-Node Quiver for Uniform Projection Example. 26

3.1 Buchberger’s Algorithm for Noncommutative Algebras. 31

3.2 Initialization for Buchberger’s Algorithm. 31

3.3 Basis Reduction. 32

3.4 Simple Update. 32

3.5 Buchberger’s Algorithm for the General Case. 33

3.6 Buchberger’s Algorithm for the Degree Homogeneous Case. 34

3.7 Standard Selection Algorithm. 37

3.8 Tip Reduction Algorithm. 38

3.9 Total Reduction Algorithm. 38

3.10 Update Using Redundant Element Deletion. 39

3.11 Update Algorithm Using Element Reduction. 40

3.12 Division of Common Multiple for Buchberger’s Second Criterion. 41

3.13 Selection With Triple Elimination. 42

3.14 Gebauer-Möller Elimination. 42

3.15 Structure of the Prototype. 47

3.16 Generic Quadratic Relations for Free Algebra Instances. 50

3.17 Example Graph for Mesh Algebra. 50

ix

4.1 Dictionary Suffix Tree. 67

4.2 Dictionary Suffix Tree with Suffix Links. 68

4.3 Construction of Suffix Tree for cc. 69

4.4 Extension of Suffix Tree for cc by Inserting cab. 69

4.5 Extension of Suffix Tree for {cc, cab} by Inserting baba (Part One). 70

4.5 Extension of Suffix Tree for {cc, cab} by Inserting baba (Part Two). 71

5.1 Quiver for A51 Problem Instance. 89

6.1 Graph for Uniform Equivalence Class Example. 96

6.2 Graph with Three Paths ab, cd, ef from u to v. 98

6.3 Spanning Tree with Path ef from u to v. 98

6.4 Graph for Spanning Tree Example. 99

6.5 Example Family of Spanning Trees. 100

6.6 Graph for Inconsistency Example. 100

6.7 Inconsistent Family of Spanning Trees. 101

B.1 Suffix Tree Insertion Algorithm. 120

B.2 Algorithm for Insertion of a Single Suffix. 121

B.3 Scan Algorithm. 122

B.4 Rescan Algorithm. 124

C.1 Quiver for CGL, CGL1, and CG5. 128

C.2 Quiver for the DCYC Problem Instance. 131

C.3 Quiver for the ICYC Problem Instance. 131

C.4 Quiver for P5 Instance. 132

C.5 Quiver for BT7 instance. 133

C.6 Quiver for BT31 instance. 133

C.7 Quiver for M39 instance. 135

C.8 M1 Quiver. 136

C.9 Quiver of the MS Instance. 138

C.10 Quiver of the MTB Instance. 139

C.11 Quiver of the MM Instance. 139

x

C.12 Quiver for A51E Problem Instance. 140

C.13 Quiver for A51H Problem Instance. 140

D.1 Graph Generation Function. 143

D.2 Multigraph Generation Function . 144

D.3 Acyclic Graph Generation . 145

D.4 Coefficient Generation Function. 145

D.5 Function to Compute Set of Successors of Node. 146

D.6 Function to Compute Successors of Node in Graph. 146

D.7 Function to Generate Paths (Part One). 147

D.8 Function to Generate Paths (Part Two). 148

D.9 Function to Generate Polynomials. 149

D.10 Function to Generate Polynomial Sets (Part One). 150

D.11 Function to Generate Polynomial Sets (Part Two). 151

xi

LIST OF TABLES

2.1 Trace for Commutative Gröbner Basis Example Computation (Part One). 19

2.1 Trace for Commutative Gröbner Basis Example Computation (Part Two). 20

3.1 Ranking of Algorithms by Counts for Problem A4 (Part One). 52

3.1 Ranking of Algorithms by Counts for Problem A4 (Part Two). 53

3.1 Ranking of Algorithms by Counts for Problem A4 (Part Three). 54

3.1 Ranking of Algorithms by Counts for Problem A4 (Part Four). 55

3.2 Average Rank of Algorithms for Free Algebra Instances. 55

3.3 Average Rank of Algorithms for Mesh Algebra Instances. 56

3.4 Average Rank of Algorithms by Counts for P5 Instance. 56

3.5 Average Rank of Algorithms by Time for Free Algebra Instances. 57

3.6 Average Rank of Algorithms by Time for Mesh Algebra Instances. 57

3.7 Average Rank of Algorithms by Time for P5 Instance. 58

3.8 Observations for Comparison of Set Reduction Techniques. 58

3.9 Counts for Comparison of Elimination Strategies for Problem BT31. 60

3.10 Counts for Comparison of Elimination Strategies for Problem BT7. 60

3.11 Counts for Comparison of Elimination Strategies For Problem DCYC. 60

3.12 Counts for Comparison of Elimination Strategies For Problem ELP. 61

3.13 Counts for Comparison of Elimination Strategies for Problem ICYC. 61

3.14 Counts for Comparison of Elimination Strategies For Problem A4. 61

3.15 Counts for Comparison of Elimination Strategies for Problem P5. 61

5.1 Ranking of Admissible Orders for Instance MM. 84

xii

5.2 95% Confidence Intervals for Differences between Admissible Orders for Instance MM. 85

5.3 Ranking of Alphabetic Orders for Instance MM. 85

5.4 95% Confidence Intervals for Differences between Alphabetic Orders for Instance MM. 86

5.5 Ranking of Orders for Individual Free Problems. 86

5.6 Ranking of Orders for Individual Mesh Algebra Problems. 87

5.6 Ranking of Orders for Individual Mesh Algebra Problems (cont.). 87

5.7 Ranking of Orders for Individual Random Problems. 87

5.8 Ranking of Orders for Individual Path Algebra Problems. 88

5.9 Ranking of Admissible Orders. 88

5.10 Counts for Classes of Alphabetic Orders on Problem A51. 90

E.1 Counts for Problem A4 Instance (Part One). 153

E.1 Counts for Problem A4 Instance (Part Two). 154

E.1 Counts for Problem A4 Instance (Part Three). 155

E.2 Counts for Problem A5 (Part One). 156

E.2 Counts for Problem A5 (Part Two). 157

E.2 Counts for Problem A5 (Part Three). 158

E.3 Counts for Problem A6 (Part One). 159

E.3 Counts for Problem A6 (Part Two). 160

E.3 Counts for Problem A6 (Part Three). 161

E.4 Counts for Problem A7 (Part One). 162

E.4 Counts for Problem A7 (Part Two). 163

E.4 Counts for Problem A7 (Part Three). 164

E.5 Counts for Problem A8 (Part One). 165

E.5 Counts for Problem A8 (Part Two). 166

E.5 Counts for Problem A8 (Part Three). 167

E.6 Counts for Problem BT7 (Part One). 168

E.6 Counts for Problem BT7 (Part Two). 169

E.6 Counts for Problem BT7 (Part Three). 170

E.7 Counts for Problem BT31 (Part One). 171

E.7 Counts for Problem BT31 (Part Two). 172

E.7 Counts for Problem BT31 (Part Two). 173

xiii

E.8 Counts for Problem M39 (Part One). 174

E.8 Counts for Problem M39 (Part Two). 175

E.8 Counts for Problem M39 (Part Three). 176

E.9 Counts for Problem P5 (Part One). 177

E.9 Counts for Problem P5 (Part Two). 178

E.9 Counts for Problem P5 (Part Three). 179

E.10 Times for Problem A4 (Part One). 180

E.10 Times for Problem A4 (Part Two). 181

E.10 Times for Problem A4 (Part Three). 182

E.11 Times for Problem A5 (Part One). 183

E.11 Times for Problem A5 (Part Two). 184

E.11 Times for Problem A5 (Part Three). 185

E.12 Times for Problem A6 (Part One). 186

E.12 Times for Problem A6 (Part Two). 187

E.12 Times for Problem A6 (Part Three). 188

E.13 Times for Problem A7 (Part One). 189

E.13 Times for Problem A7 (Part Two). 190

E.13 Times for Problem A7 (Part Three). 191

E.14 Times for Problem A8 (Part One). 192

E.14 Times for Problem A8 (Part Two). 193

E.14 Times for Problem A8 (Part Three). 194

E.15 Times for Problem BT31 (Part One). 195

E.15 Times for Problem BT31 (Part Two). 196

E.15 Times for Problem BT31 (Part Three). 197

E.16 Times for Problem BT7 (Part One). 198

E.16 Times for Problem BT7 (Part Two). 199

E.16 Times for Problem BT7 (Part Three). 200

E.17 Times for Problem M39 (Part One). 201

E.17 Times for Problem M39 (Part Two). 202

E.17 Times for Problem M39 (Part Three). 203

E.18 Times for Problem P5 (Part One). 204

xiv

E.18 Times for Problem P5 (Part Two). 205

E.18 Times for Problem P5 (Part Three). 206

E.19 Counts for Admissible Order Comparison with Problem A4. 208

E.20 Counts for Admissible Order Comparison with Problem A5. 209

E.21 Counts for Admissible Order Comparison with Problem A51E. 210

E.22 Counts for Admissible Order Comparison with Problem A51H. 211

E.23 Counts for Admissible Order Comparison with Problem A6. 212

E.24 Counts for Admissible Order Comparison with Problem AGS. 213

E.25 Counts for Admissible Order Comparison with Problem BT7. 214

E.26 Counts for Admissible Order Comparison with Problem CG5. 215

E.27 Counts for Admissible Order Comparison with Problem CGL. 216

E.28 Counts for Admissible Order Comparison with Problem CGL1. 217

E.29 Counts for Admissible Order Comparison with Problem DCYC. 218

E.30 Counts for Admissible Order Comparison with Problem ELP. 219

E.31 Counts for Admissible Order Comparison with Problem HWEB. 220

E.32 Counts for Admissible Order Comparison with Problem HWRES. 221

E.33 Counts for Admissible Order Comparison with Problem ICYC. 222

E.34 Counts for Admissible Order Comparison with Problem M1. 223

E.35 Counts for Admissible Order Comparison with Problem MBFS. 224

E.36 Counts for Admissible Order Comparison with Problem MDFS. 225

E.37 Counts for Admissible Order Comparison with Problem MM. 226

E.38 Counts for Admissible Order Comparison with Problem MS. 227

E.39 Counts for Admissible Order Comparison with Problem MT1. 228

E.40 Counts for Admissible Order Comparison with Problem MT2. 229

E.41 Counts for Admissible Order Comparison with Problem MT3. 230

E.42 Counts for Admissible Order Comparison with Problem MT4. 231

E.43 Counts for Admissible Order Comparison with Problem MTB. 232

E.44 Counts for Admissible Order Comparison with Problem MTRI. 233

E.45 Counts for Admissible Order Comparison with Problem P4. 234

E.46 Counts for Admissible Order Comparison with Problem P5. 235

E.47 Counts for Admissible Order Comparison with Problem P6. 236

xv

Chapter 1

Introduction

A Gröbner basis is a set of polynomials with a property that ensures that unique normal forms

of other polynomials can be found as the remainder of dividing by the Gröbner basis elements.

Gröbner bases are important because they make many problems in polynomial algebra computa-

tionally tractable. Unfortunately, the computation of Gröbner basis itself can be very expensive.

This expense is compounded in noncommutative algebras by the fact that Gröbner bases may be in-

finite, and so a Gröbner basis computation may not terminate. Despite this extra difficulty, the goal

of this research is to develop techniques that produce a noncommutative Gröbner basis as efficiently

as possible.

We approach this task experimentally and concentrate on alternatives of two factors that affect

the efficiency of Gröbner basis computations. The first factor is algorithmic. For commutative

Gröbner basis computations, progress has been made toward improving the efficiency through algo-

rithms that eliminate unnecessary work. However, for Gröbner bases in noncommutative algebras,

all that is known (or speculated) is that the commutative techniques should still apply (see the

survey by Mora [46]). The algorithms considered in this research are a mix of new algorithms and

adaptations of algorithms used in the commutative case. We successfully identify a configuration of

alternative algorithms that computes noncommutative Gröbner bases more efficiently.

The second factor is the choice of order used to determine the leading terms of polynomials. These

orders are called admissible orders and are special well-orders on the terms of the polynomials (see

Chapter 2 for the definition). Admissible orders help determine the Gröbner bases for a given input

1

Benjamin J. Keller Chapter 1 2

and are known to significantly affect the computation. In the commutative case, an optimal order

is known, but in the noncommutative case there is little information about the effect of an order on

the efficiency of computing Gröbner bases. We experimentally compare a small class of admissible

orders and develop a ranking based on a limited number of problems. However, what the experiments

indicate is that the choice of order is highly problem dependent and that a simple ranking is not

really valid.

The remainder of this chapter describes the relationship of this research to other work in symbolic

computation in Section 1.1, summarizes the results in Section 1.2, and outlines the organization of

the thesis in Section 1.3. Readers not familiar with noncommutative algebras and Gröbner bases

may want to read Chapter 2 before reading the remainder of the thesis.

1.1 Research Context

The focus of this research is the efficient computation of Gröbner bases in noncommutative algebras.

How this research fits into existing work is briefly reviewed in this section. The first subsection

describes how the noncommutative Gröbner basis computation relates to other problems in symbolic

computation. The second subsection relates the noncommutative algebras considered here to other

noncommutative algebras for which Gröbner bases have been studied. Finally, the third subsection

describes some of the known applications of noncommutative Gröbner bases.

This section is meant to be an overview for readers who are at least vaguely familiar with Gröbner

bases, noncommutative algebras, and symbolic computation. Other literature relevant to the goals

of this research is discussed later as appropriate.

1.1.1 Related Problems

The problem of computing a Gröbner basis is a special case of the problem of finding a convergent

term rewriting system. Term rewriting is used primarily to test equivalence of terms in a universal

algebra [55] using a set of rules that defines an equivalence relation on the terms. The goal in term

rewriting is to have a system of rules that can be used to rewrite any term to a unique irreducible

form regardless of which rules are applied and in what order. Such a system is convergent (a more

formal definition is given in Chapter 2). Given an arbitrary rewriting system, the Knuth-Bendix

completion algorithm can be used to find an equivalent convergent rewriting system [36]. The

Benjamin J. Keller Chapter 1 3

difficulty is that for any given rewrite system the equivalent convergent system may not be finite;

so, in general, a Knuth-Bendix computation might not terminate.

If we view a set of polynomials together with polynomial division as a rewrite system, then a

Gröbner basis is exactly a convergent system of rules. (See the work by Bündgen [14, 15] for more

details.) However, a Gröbner basis is a tool for answering a different (but analogous) question, that

of membership in ideals of polynomial rings. Here, instead of having a set of rules that represents

(or generates) an equivalence relation, we have a set of polynomials that represents the ideal. A

Gröbner basis of an ideal allows testing whether a polynomial is an element of the ideal by testing

if the normal form is zero.

Polynomials are sums of a finite number of monomials that consist of a nonzero coefficient and a

term. In commutative polynomial rings, the terms are elements of an abelian monoid, which means

that the order of the indeterminates in a term is not important. Hironaka [32] first defined standard

bases, which are closely related to Gröbner bases; however, Buchberger first defined Gröbner bases

(for commutative polynomial rings) and the algorithm for computing them [11]. Mishra and Yap [43]

discuss the relationship between standard and Gröbner bases. The algorithm takes as input a set

of polynomials and adds new polynomials to create a new set for which all polynomial reductions

converge. In the commutative case, a finite Gröbner basis always exists, and Buchberger’s algorithm

always terminates.

In noncommutative algebra, the terms are words in a noncommutative monoid (or in our case, a

semigroup). Noncommutative algebras are quotients of free (associative) algebras, where the terms

are elements of a free monoid over the alphabet of indeterminates. Bergman [8] first defines the

concept of Gröbner bases for free algebras, but the algorithm is due to Mora [45]. The algorithm for

the noncommutative case is nearly identical to the one for the commutative case with the primary

difference being how the new elements are formed. However, for noncommutative algebras, Gröbner

bases are not guaranteed to be finite. In fact, the algorithm terminates only when there is a finite

Gröbner basis for the input set and admissible order.

The noncommutative case actually subsumes the problem of completion of string rewriting sys-

tems. String rewriting is a specific case of term rewriting where the terms are words from a free

monoid rather than from an arbitrary universal algebra. The rules of a string rewriting system cor-

respond to binomials in a noncommutative polynomial ring with some restrictions on the coefficient

field. Therefore, the Knuth-Bendix completion algorithm for string rewriting is basically the same

Benjamin J. Keller Chapter 1 4

as the noncommutative form of Buchberger’s algorithm.

1.1.2 Noncommutative Algebras

Our problem is actually that of computing Gröbner bases for ideals in path algebras (as presented by

Farkas, Feustel, and Green [20]). Path algebras are quotients of free algebras that can be conveniently

described in terms of a graph. If K is a field, a path algebra KΓ consists of K-linear combinations

of finite paths in a directed multigraph Γ (called the quiver). To compute Gröbner bases in path

algebras the input generators must be given in a particular form; otherwise, the algorithms for path

algebras and free algebras are the same. Since free algebras can be presented as path algebras, all

finitely generated noncommutative algebras can be obtained by forming a quotient of some path

algebra. Despite the fact that the algorithms are identical, using path algebras where possible does

appear to have a number of advantages (not the least being that the quotient relations need not be

part of the input, since they are implicit in the graph).

Gröbner bases in other noncommutative algebras occur in the literature. However, most are

“almost-commutative” polynomial rings where the relationship between products of indeterminates

like ab is not ba but some other expression of a and b. Examples of these algebras are Weyl

algebras [21], enveloping algebras of Lie algebras [3], algebras of solvable type [35], Grassman al-

gebras [26, 53], and Clifford algebras [26]. Strictly speaking these algebras are noncommutative,

but all have properties that imply that all ideals have finite Gröbner bases. Problem instances in

these algebras probably can be solved more directly than by presenting them as quotients of path

algebras. Because of this, these cases are not considered here.

The Gröbner basis theory for rings whose terms are elements of monoids presented by string

rewriting systems is developed by Reinert [48]. Path algebras can be described in this setting as

monoid rings with zero divisors. The rings with many objects defined by Mitchell [44] are very

similar to path algebras, and the Gröbner basis theory likely extends to these algebras.

1.1.3 Applications

Noncommutative Gröbner bases were developed as a tool for algebraic research, and therefore most

applications are in algebra. However, there are also other more “real-world” applications. One such

application is the simplification of polynomial equations that arise in operator theory and linear

control theory [29, 30, 31]. In essence, a Gröbner basis is found for a set of equations that express

Benjamin J. Keller Chapter 1 5

the basic assumptions of the theory, and so can be used to simplify other equations so that they

can be solved by other means. Algebraic applications include finding more information about the

quotient algebra KΓ/I when we have a Gröbner basis for I.

Other applications are expected to develop. One area being explored is in performing computa-

tions in quantum physics where computations are for the most part done by hand, but use of Gröbner

bases and other techniques may help. Noncommutativity is also common in computation, and at

times abstract algebraic structures correspond to underlying computational models. Two examples

are the use of categories of Hopf algebras as models of linear logic [9], and the use of polynomials

to express polymorphic type systems [34]. Whether these particular areas will provide important

applications for noncommutative Gröbner bases is not clear, but they do provide evidence of places

where noncommutative algebras occur and Gröbner bases might serve some useful purpose.

1.2 Overview of Results

This research was done in two phases, with algorithms compared first, and orders compared second.

The algorithms were compared using a family of prototype systems that implement various combi-

nations of algorithmic alternatives. The results of the experiments with the algorithms were used to

guide the construction of the Opal system which was used to compare the admissible orders.

In the algorithmic experiments, three algorithmic alternatives were considered: the strategy by

which pairs of polynomials and their overlaps are selected (selection), the strategy by which pairs

of polynomials and overlaps are removed from consideration (triple elimination), and the manner in

which the set is kept interreduced (set reduction). The experiments show that the choice of selection

strategy is generally more significant than the other techniques, although the triple elimination

strategy is also important. The selection strategy that is generally best chooses a pair of polynomials

together with an overlap that has the shortest common multiple of their leading terms among all

possible overlapping polynomials. Ignoring space and time constraints, the best triple elimination

strategy is the noncommutative version of the Gebauer-Möller strategy that removes pairs as soon

as possible. However, a more practical algorithm combines the Gebauer-Möller strategy with one

of Buchberger and can be as good for some inputs without the added space requirement. The Opal

system was written to use this hybrid approach to triple elimination, but allows different selection

and set reduction strategies to be used.

Benjamin J. Keller Chapter 1 6

Both Opal and the prototype systems use a dictionary matching approach adapted to the pattern

matching problems of the Gröbner basis computation. This pattern matching approach allows fast

changes to the dictionary, which is significant to the efficient implementation of the basic algorithm

for noncommutative Gröbner bases. The approach can also be used for completion in string rewriting

where a static form of the approach has been used, but the dynamic version has yet to be applied.

The problem of choosing an admissible order was also considered experimentally. The Opal

system was used (with shortest selection) to compare seven orders: length lexicographic, left vector

lexicographic, right vector lexicographic, length left vector lexicographic, length right vector lexico-

graphic, length reverse left vector lexicographic, and length reverse right vector lexicographic. The

experiments show that which order is best is highly problem dependent, and that it really is not

possible to define a general ranking. Despite this difficulty, a pragmatic ranking is given. In gen-

eral, the length lexicographic order appears to be the best order to try first (which is supported by

string-rewriting folklore). More practical, however, is the observation that the best order minimizes

the number of overlaps during the computation. This observation should help identify heuristics

that can be used to choose the best order for a given problem.

Other approaches for characterizing and finding the best choice of orders were also considered.

These results are incomplete, but suggest promising directions for future work.

1.3 Organization

The remainder of the thesis is organized as follows. Chapter 2 is a tutorial that introduces non-

commutative Gröbner bases and other key concepts used. In Chapter 3 we describe the algorithm,

its variants and experimentation to compare the variants. Chapter 4 develops a pattern matching

approach used in the implementation of the algorithm. Chapter 5 investigates admissible orders and

experimentation with the orders. Chapter 6 considers the relationship of orders and the problem

instances in path algebras. Chapter 7 contains conclusions and a list of open problems.

There are several appendices that provide supplementary information for the earlier chapters.

Appendix A contains a proof of Buchberger’s Second Criteria for noncommutative algebras and sup-

plements Chapter 3, where the result is used. Appendix B gives details of the insertion algorithm

for suffix trees described in Chapter 4. Appendix C is a list of problem instances used in the exper-

imentation, and Appendix D describes the algorithms used to generate random problem instances.

Benjamin J. Keller Chapter 1 7

Finally, Appendix E contains the tables of raw data from the experimentation.

Chapter 2

An Introduction to

Noncommutative Gröbner Bases

This Chapter introduces noncommutative Gröbner bases and their computation. Since most readers

are likely not familiar with noncommutative algebras, Gröbner bases are first developed in the more

familiar setting of commutative polynomial rings, and then defined for noncommutative algebras.

Along the way, an analogy is drawn between computing Gröbner bases and performing Gaussian

elimination in linear algebra. Later, the relationship with term rewriting is discussed. All three

computations are strongly related.

The Chapter begins in Section 2.1 by developing an analogy between a problem in linear algebra

solved by Gaussian elimination and another in polynomial algebra for which Gröbner bases provide

a solution. Gröbner bases are defined in Section 2.2, the algorithm to compute them is introduced

in Section 2.3, and the noncommutative case is considered in Section 2.4. Decidability issues are

discussed in Section 2.5, the relationship between Gröbner bases and term rewriting is discussed

in Section 2.6. Finally, the Chapter ends by defining path algebras, the form of noncommutative

algebra used in the remaining Chapters.

8

Benjamin J. Keller Chapter 2 9

2.1 Two Algebraic Problems

To introduce Gröbner bases, we consider two analogous problems, one from linear algebra and the

other from polynomial algebra. In linear algebra, the problem is that of determining whether a

vector is a member of a given subspace. The solution to the corresponding problem in polynomial

algebra leads to Gröbner bases. For simplicity, we fix Q , the field of rational numbers, as the set of

scalars.

2.1.1 Subspace Membership

Recall that a subspace U of a vector space V is a subset of V that is also a vector space (U is

closed under addition and scalar multiplication). An example of a subspace in Q 3 (3-space over

the rational numbers) is the subset {(0, 0, q) : q ∈ Q }. A generating system S for a vector space

V is a subset such that all elements of V can be expressed as linear combinations of elements of

S. A generating system consisting of linearly independent elements is a basis. For example, the set

{(2, 3, 1), (5, 1, 7), (6, 2, 3), (9, 7, 9)} is a generating system for Q 3 (but not a basis since (9, 7, 9) =

2 · (2, 3, 1) + (5, 1, 7)), and {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for Q 3.

Consider the problem of deciding whether an arbitrary vector is in a particular subspace of Q 3.

Stated precisely, it is the Subspace Membership problem.

Problem 2.1 (Subspace Membership) Let S be a finite subset of the vector space Q 3, and let

U be the subspace generated by S. Given a vector v in V , decide whether v is an element of U , that

is, whether v is a linear combination of elements of S.

Let S be the set {(1, 3, 0), (0, 2, 4), (1, 5, 4), (1, 1,−4)}, and let U be the subspace generated by S.

To show that a vector v ∈ Q 3 is in U , we need to find a linear combination of elements in S that is

equal to v. For example, the vector (13, 33,−12) is an element of U because it is equal to the linear

combination

5 · (1, 3, 0) + 3 · (0, 2, 4) + (1, 5, 4) + 7 · (1, 1,−4).

In general, a vector v is an element of U if there is an indexed set of scalars {kg : g ∈ G} such

that v −
∑

g∈G kg · g = 0. Let A be the matrix formed by taking the vectors in S as columns.

Finding the scalars kg is equivalent to solving the equation Ax = v. For example, the membership

Benjamin J. Keller Chapter 2 10

of v = (13, 33,−12) in U can be demonstrated by solving the system
1 0 1 1 13

3 2 5 1 33

0 4 4 −4 −12

 .
To solve the system, it is first reduced to row echelon form using Gaussian elimination. Then, if

there is a row in the reduced form with the first 4 entries zero and the last entry nonzero, then v is

not in U .

Gaussian elimination consists of a series of row reductions. Row reduction is a process analogous

to dividing one row by another to eliminate the leading nonzero entry. The reduced row is replaced

with the remainder. In the matrix above, the row reduction that subtracts 3 times the first row

from the second row yields the new (reduced) matrix
1 0 1 1 13

0 2 2 −2 −6

0 4 4 −4 −12

 .
Since only the first row now has a nonzero first component, the next step is to reduce the third row

using the second. The matrix that results from Gaussian elimination on this example is
1 0 1 1 13

0 1 1 1 −3

0 0 0 0 0

 .
According to the test described, the vector (13, 33,−12) is linearly dependent on the elements of S

and so is an element of the subspace U .

The test for subspace membership (or, equivalently, linear dependence) does not require exhibit-

ing a linear combination but merely proving the existence of one. Since the example generating set S

is not linearly independent, there are an infinite number of linear combinations for (13, 33,−12). If a

unique linear combination is required, then a basis should be used instead of an arbitrary generating

system.

A basis for U is {(1, 3, 0), (0, 1, 2)} (found by performing Gaussian elimination on S). Repeating

Benjamin J. Keller Chapter 2 11

the test for (13, 33,−12), the augmented matrix using the basis instead of the generating system is
1 0 13

3 1 33

0 2 −12

 .
When Gaussian elimination is applied to the matrix, the reduced form

1 0 13

0 1 −6

0 0 0


again shows that (13, 33,−12) is an element of the subspace U . However, the reduced matrix also

yields the unique linear combination 13 · (1, 3, 0)− 6 · (0, 1, 2) for (13, 33,−12).

2.1.2 Ideal Membership

An analogous problem to subspace membership occurs in rings. A ring is a set R with two operations

addition + and multiplication ·, and a zero element 0 such that

1. R with addition is an Abelian group with identity 0;

2. multiplication is associative; and

3. multiplication distributes with addition [7, p.19].

In this thesis, all rings also have a unit, which is the identity for multiplication.

A polynomial ring has elements that are polynomials. If the order of the variables in the terms

is not significant then the polynomial ring is commutative, and the terms are usually written so

that multiple occurrences of a variable are combined as a power (so xyxyzz is written x2y2z2).

A polynomial ring for which the order of the variables in the terms is significant (for example,

xyxyzz and xxyyzz are different) is called noncommutative. Noncommutative rings are discussed

further in Section 2.4. In what follows commutative variables are written as capital letters, and

noncommutative variables are written in lower case letters.

An example of a commutative polynomial ring is Q [X, Y, Z], which is the set of polynomials

with rational coefficients and terms that are products of powers of the variables X, Y and Z. For

example, 2
5
X2Y 2Z2 + 9

2
XY −2XZ is a polynomial where the term X2Y 2Z2 has coefficient 2/5, the

Benjamin J. Keller Chapter 2 12

term XY has coefficient 9/2, and the term XZ has coefficient −2. Note that Q [X, Y, Z], like Q 3,

is a vector space over the rationals, and at first glance it may appear that they are essentially the

same. However, Q [X, Y, Z] has infinite dimension, while Q 3 has dimension 3.

A subspace in a vector space corresponds to an ideal in a ring. A (two-sided) ideal is a subset

I of a ring Q [X1, . . . , Xn] that is closed under addition and satisfies the property that if p and q

are polynomials and g is a member of I, then pgq, the product of p, g, and q, is in I. In the

polynomial ring Q [X, Y, Z], examples of ideals include the sets {0}, Q [X, Y, Z] itself, and {fZ2g :

f, g ∈ Q [X, Y, Z]}. A generating set of polynomials P for an ideal I is a subset of Q [X, Y, Z] such

that all elements of I can be expressed as combinations of elements of P :

I =

∑
g∈P

pggqg : pg, qg ∈ Q [X, Y, Z]

 ;

where all but a finite number of pggqg = 0. The ideal I generated by a subset P of Q [X, Y, Z] is

denoted 〈P 〉. While, in general, we deal with two-sided ideals, in commutative rings two-sided ideals

are the same as ideals that are closed by multiplying by ring elements only on the left or on the

right.

The ideals given above can be written as
〈
{Z2}

〉
for {fZ2g : f, g ∈ Q [X, Y, Z]}, and 〈{1, X, Y, Z}〉

for Q [X, Y, Z] (or just 〈{1}〉). No direct analogue to a vector subspace basis exists for an ideal. As

we shall see, Gröbner bases, generating sets with particular properties, play a similar role.

The analogue of the subspace membership problem in polynomial rings is the problem of deciding

whether an element of Q [X, Y, Z] is in a particular ideal of Q [X, Y, Z].

Problem 2.2 (Ideal Membership) Let P be a finite subset of the ring Q [X, Y, Z]. Given a

polynomial f in Q [X, Y, Z], decide whether f ∈ 〈P 〉.

Let P be the set
{
XY 2Z − Z,XY − 1

}
, and let g1 = XY 2Z − Z and g2 = XY − 1. To show

that a polynomial f from Q [X, Y, Z] is in 〈P 〉, we need to find polynomials pg1 , pg2 ∈ Q [X, Y, Z]

such that

f = pg1(XY 2Z − Z) + pg2(XY − 1).

For example, the polynomial f = X2Y 2Z + X2Y Z + XY 2Z − XY Z − 2XZ is an element of I

because choosing pg1 = X + 1 and pg2 = XZ − Z yields

f = (X + 1)(XY 2Z − Z) + (XZ − Z)(XY − 1).

Benjamin J. Keller Chapter 2 13

The polynomials pg1 = X + 1 and pg2 = XZ − Z constitute evidence that f is in the ideal. (In

general, testing membership in a two-sided ideal requires finding multipliers on both sides, but this

is not necessary in commutative rings.)

So the condition for membership in an ideal I = 〈P 〉 is analogous to that of membership in

a subspace: a polynomial f is an element of I if there is an indexed set of polynomials {pg, qg ∈

Q [X, Y, Z] : g ∈ P } such that f −
∑
g∈P pggqg = 0. While this equation is reminiscent of the one

for subspace membership, here the “scalars” are polynomials. Therefore, the relationship between

f and the generators is nonlinear, and so the simple test using Gaussian elimination is not possible.

A more direct approach to solving f −
∑
g∈P pggqg = 0 is to use an operation based on division

similar to row reduction in Gaussian elimination. Consider the example of determining whether

f = X2Y 2Z +X2Y Z +XY 2Z −XY Z − 2XZ is an element of I. Dividing f by XY 2Z − Z gives

f −X(XY 2Z − Z) = X2Y Z +XY 2Z −XY Z −XZ. Dividing again gives

(f −X(XY 2Z − Z)) − 1(XY 2Z − Z) = X2Y Z −XY Z −XZ − Z.

Further dividing the remainder by XY − 1 gives

((f − (X + 1)(XY 2Z − Z)) −XZ(XY − 1)) + Z(XY − 1) = 0

or equivalently

f − ((X + 1)(XY 2Z − Z) + (XZ − Z)(XY − 1)) = 0.

Here polynomial division gives the desired test for ideal membership: find the remainder r of dividing

f by the generating set P ; if r is zero, then f ∈ 〈P 〉, otherwise f 6∈ 〈P 〉.
The operation of computing the remainder of a single polynomial division is a simple reduction,

and the operation of computing the remainder of a polynomial after dividing a polynomial by a set

of polynomials is called reduction. The example above shows the reduction of X2Y 2Z + X2Y Z +

XY 2Z −XY Z − 2XZ to 0 by {XY 2Z − Z,XY − 1}.

In a vector space, testing subspace membership using a generating system may not find a unique

linear combination of generating vectors. Something similar but more serious happens in polynomial

rings: there may not be a unique remainder of division by an arbitrary generating set. In the example,

X2Y 2Z + X2Y Z + XY 2Z − XY Z − 2XZ reduces to 0 by first dividing by XY 2Z − Z and then

by XY − 1. However, if division is done by repeatedly using XY − 1 instead, then we obtain the

remainder −XZ − Y Z, which is not divisible by either element of the generating set and so is not

further reducible.

Benjamin J. Keller Chapter 2 14

Therefore, given an arbitrary generating set P for an ideal I, different reductions may yield

different results. In fact, ideal membership is in general undecidable [35, 46]. However, for decidable

instances (including all instances in commutative polynomial rings), if a finite generating set P is

given, then it is possible to find another generating set GP which generates the same ideal and for

which reduction always yields a unique value. Such a generating set is called a Gröbner basis.

2.2 Gröbner Bases

A Gröbner basis for an ideal plays a similar role to that of a subspace basis. A basis for a subspace

can be found from a generating system by using Gaussian elimination. To find the basis for the

generating system {(1, 3, 0), (0, 2, 4), (1, 5, 4), (1, 1,−4)}, Gaussian elimination is performed on the

matrix 
1 3 0

0 2 4

1 5 4

1 1 −4


to find the reduced row-echelon form of the matrix

1 0 −6

0 1 2

0 0 0

0 0 0

 .

This final matrix gives the basis {(1, 0,−6), (0, 1, 2)}.
Note that in this example, the leading (nonzero) component of each of the first two rows of the

reduced matrix is distinct from that of the other rows. Therefore, the elements of the basis are

independent and so do not divide one another. More importantly, for any linear combination of the

elements of the generating system, the leading component is divisible by the leading component of

one of the elements of the basis. This is the key property of a Gröbner basis.

The coordinate structure of a vector implies an order on the coordinates. For polynomials, an

order on terms is needed to identify the leading term of a polynomial. In linear equations over the

variables x, y, z, the lexical order on the variables is typically z < y < x, and so the terms with x

Benjamin J. Keller Chapter 2 15

are the leading ones. More general polynomials have more complex terms like X3, XY and XY 3,

and these more general terms require explicit orders on terms.

An admissible order is a total order < on the set of terms (variable strings) such that for terms

s, t, v and w,

1. If s < t, then vsw < vtw; and

2. If v and w are not both empty, then s < vsw.

Admissible orders differ for commutative and noncommutative terms. Noncommutative terms are

variable strings, but commutative terms are really equivalence classes of variable strings. Typically,

a commutative term such as X2Y 3Z is represented by a tuple (2, 3, 1) where the entries correspond

to the count of the variables (in the sequence defined by the lexical order). So admissible orders

must be defined differently for commutative and noncommutative terms.

Most admissible orders are based on the lexicographic order. If we define a lexical order on the

variables z < y < x, noncommutative terms can be lexicographically ordered such that the term s

is less than the term t if at the first position where s and t differ the variable in s lexically precedes

the variable in t (e.g. xzy < xxy). However, this order does not make sense for commutative terms

since the order of the variables is not significant. Using the tuple representation mentioned above,

the commutative terms can be lexicographically ordered such that the term s is less than the term

t if at the first position where the tuples for s and t differ the count is less for s (e.g. XY Z < X2Y

since (1, 1, 1) < (2, 1, 0)). The lexicographic order is admissible in commutative polynomial rings,

but not admissible in noncommutative ones.

An example order admissible for both commutative and noncommutative terms is the length (or

degree) lexicographic order. In this order, the term s is less than t (s < t) whenever the length

of the string for s is shorter than the length of the string for t, or if they are the same length,

then s is lexicographically less than t. For noncommutative terms this order gives z < y < x <

zz < zy < zx < yz < yy < yx < xz < xy < xx < zzz < · · ·, and for commutative terms gives

Z < Y < X < Z2 < Y Z < Y 2 < XZ < XY < X2 < Z3 < · · ·.
For each admissible order and for each polynomial f , we obtain a unique representation of f as a

linear combination of terms written in decreasing order. For example, f = X2Y 2Z+X2Y Z+XY 2Z−

XY Z − 2XZ is written in decreasing order according to the (commutative) length lexicographic

order. The tip of a polynomial f is the maximal (leading) term in a polynomial f with respect to a

Benjamin J. Keller Chapter 2 16

particular admissible order. So for the length lexicographic order, the tip of the polynomial f above

is tip<(f) = X2Y 2Z. The set Tip<(H) is the set of tips for the set of polynomials H. A Gröbner

basis is defined as follows.

Definition 2.1 Let I be an ideal of Q [x1, . . . , xm]. A generating set G of I is a Gröbner basis for

I (and an admissible order <) if 〈Tip<(G)〉 = 〈Tip<(I)〉.

The choice of admissible order is significant since it determines the tip set of the ideal. So, for

most ideals I, if two orders <1 and <2 disagree (meaning Tip<1
(I) 6= Tip<2

(I)) then the Gröbner

bases of I with respect to <1 and <2 are different. There are ideals for which this is not true, an

example is an ideal generated by a single generator such as XY + Y Z (in the noncommutative case

the situation is slightly more complicated). A Gröbner basis always exists regardless of the admissible

order (an ideal is its own trivial Gröbner basis). In commutative polynomial rings, finite Gröbner

bases always exist (in fact, they are usually defined to be finite [7, p.207]), but in noncommutative

polynomial rings one admissible order may yield an infinite Gröbner basis while another yields a

finite Gröbner basis.

From the definition, a Gröbner basisG has the property that if t is the tip of a nonzero polynomial

in 〈G〉, then the tip of some polynomial in G divides t. This property ensures that when a polynomial

in an ideal is divided by a member of the corresponding Gröbner basis, the leading term of a nonzero

remainder is divisible by some other member of the basis. Therefore, when testing ideal membership,

reduction of a polynomial f by a Gröbner basis always converges to a remainder that is zero if and

only if f is in 〈G〉. In the next section, we explain how to obtain a Gröbner basis and give an

example.

2.3 Computing Commutative Gröbner Bases

The algorithm for computing Gröbner bases for ideals of commutative polynomial rings is due to

Buchberger [13]. Buchberger’s algorithm is based on the subtle fact that it is sufficient to complete

the generating set with polynomials of a particular form. Each of these special polynomials arises

as a combination of a pair of generators that is not divisible by the constituent generators because

their leading terms cancel.

Consider using reduction to test whether XY 2Z − Z is an element of 〈P 〉 for P = {XY 2Z −
Z,XY − 1} (using the length lexicographic order). In this example, XY 2Z − Z reduces to zero

Benjamin J. Keller Chapter 2 17

by itself, and reduces to Y Z − Z by XY − 1. The set P can be extended by adding Y Z − Z

without affecting the generated ideal (since Y Z − Z is in the ideal). With the new generating set

P ′ = {XY 2Z − Z,XY − 1, Y Z − Z}, all possible reductions of XY 2Z − Z find zero.

This new set of generators P ′ is still not a Gröbner basis. The polynomial XZ − Z is the

difference Z(XY − 1) − X(Y Z − Z) and so is an element of the ideal 〈P ′〉. However, the tip XZ

(with respect to the length lexicographic order) of XZ − Z is not divisible by the tip of any of the

generators (and so is not reducible to zero). The term XY Z is the least common multiple of the

tips XY and Y Z. Since the least common multiple occurs in both Z(XY − 1) and X(Y Z − Z) of

Z(XY −1)−X(Y Z−Z) the occurrences cancel each other [7, p.210]. A pair of polynomials (p, q) for

which the leading terms can be canceled in this way is called a critical pair, and the corresponding

polynomial (called the s-polynomial) is denoted SPol (p, q). Formally, the s-polynomial of p and q is

SPol (p, q) =
1

LC (p)
sqp−

1

LC (q)
spq,

where sq = lcm(tip(p), tip(q))/tip(q) and sp = lcm(tip(p), tip(q))/tip(p) (LC (p) is the leading co-

efficient of p). (Note that in general, the coefficients of the leading terms must be canceled in the

s-polynomial, but in our examples the leading coefficient is always one.)

Adding the nonzero reduced s-polynomials SPol(p, q) for critical pairs to a basis clearly expands

the set of terms divisible by some tip of a generator. Not so clear is the fact that adding the s-

polynomials SPol(p, q) that cannot be further reduced is sufficient to find a Gröbner basis. This fact

is due to the following theorem by Buchberger.

Theorem 2.1 If all the s-polynomials SPol (p, q) for the critical pairs of G reduce to zero by G,

then G is a Gröbner basis [7, p.211].

This result suggests the basic forms of Buchberger’s algorithm shown in Figure 2.1. The algorithm is

underspecified and allows many alternative implementations. Also, many variations to the algorithm

are described in the literature. These variations are the subject of Chapter 3 and are introduced

there.

Note that the algorithm maintains the set of critical pairs of basis elements. The algorithm

removes one of these critical pairs from the set each iteration and adds new pairs if the resulting

polynomial does not reduce to zero. The algorithm terminates when the set of critical pairs is empty,

at which point G is a Gröbner basis for P . Typically the algorithm removes the leading coefficient

of each new basis element by multiplying by the inverse of the coefficient.

Benjamin J. Keller Chapter 2 18

Gröbner(P). Buchberger’s algorithm for commutative Gröbner bases.

INPUT: A set P of generators, admissible order <.
OUTPUT: A finite, totally reduced Gröbner basis G of 〈P 〉 with respect to <.

1 G← P
2 C ← {(f, g) critical pairs for G}
3 while C is not empty do
4 Select and remove a critical pair (f, g) from C
5 Form p = SPol (f, g)
6 Reduce p by G, and let h be the result
7 if h 6= 0 then
8 Add h to G
9 Add all critical pairs of h with elements of G to C
10 return G

Figure 2.1: Buchberger’s Algorithm.

As an example, consider the computation of a Gröbner basis for the set

P = {XY 2Z −W, Y 2ZW,XY 2W − Z}.

The computation is shown in Table 2.1. Initially, G is P , and C consists of the three pairs shown in

the first row of Table 2.1. For each iteration, the first pair in the column for C is selected and the

s-polynomial is formed. For the first iteration, the pair (XY 2Z −W, Y 2ZW) is selected, and the

corresponding s-polynomial is

p = SPol(XY 2Z −W, Y 2ZW)

= (XY 2Z −W)W −X(Y 2ZW)

= −W 2.

Removing the leading coefficient gives the new polynomial as W 2. Since W 2 is not reducible by G,

it is added to G as shown in the second row of Table 2.1.

Each row of the tables shows G, C, and p at the end of an iteration. Note that pairs of monomials

always result in a zero s-polynomial and may safely be ignored when adding new pairs to C. Also,

when the algorithm ends

G = {XY 2Z −W, Y 2ZW,XY 2W − Z,XY 2W − Z,W 2, ZW, Z2}.

Benjamin J. Keller Chapter 2 19

Table 2.1: Trace for Commutative Gröbner Basis Example Computation (Part One).

Iteration G C p

initial XY 2Z −W , (XY 2Z −W, Y 2ZW)
Y 2ZW , (Y 2ZW,XY 2W − Z)

XY 2W − Z (XY 2Z −W,XY 2W − Z)

1st XY 2Z −W , (Y 2ZW,XY 2W − Z) W 2

Y 2ZW , (XY 2Z −W,XY 2W − Z)
XY 2W − Z, (Y 2ZW,W 2)

W 2 (W 2,XY 2W − Z)

2nd XY 2Z −W , (XY 2Z −W,XY 2W − Z) Z2

Y 2ZW , (Y 2ZW,W 2)
XY 2W − Z, (W 2,XY 2W − Z)

W 2, (Z2,XY 2Z −W)
Z2 (Z2, Y 2ZW)

3rd XY 2Z −W , (Y 2ZW,W 2) W 2 − Z2

Y 2ZW , (W 2,XY 2W − Z)
XY 2W − Z, (Z2,XY 2Z −W)
W 2,Z2 (Z2, Y 2ZW)

4th XY 2Z −W , (W 2,XY 2W − Z) 0
Y 2ZW , (Z2,XY 2Z −W)

XY 2W − Z, (Z2, Y 2ZW)
W 2,Z2

5th XY 2Z −W , (Z2,XY 2Z −W) ZW
Y 2ZW , (Z2, Y 2ZW)

XY 2W − Z, (ZW,XY 2Z −W)
W 2,Z2, (ZW,Y 2ZW)
ZW (ZW,XY 2W − Z)

(ZW,W 2)
(ZW,Z2)

Benjamin J. Keller Chapter 2 20

Table 2.1: Trace for Commutative Gröbner Basis Example Computation (Part Two).

Iteration G C p

6th XY 2Z −W , (Z2, Y 2ZW) ZW
Y 2ZW , (ZW,XY 2Z −W)
XY 2W − Z, (ZW,Y 2ZW)
W 2,Z2, (ZW,XY 2W − Z)
ZW (ZW,W 2)

(ZW,Z2)

7th XY 2Z −W , (ZW,XY 2Z −W) 0
Y 2ZW , (ZW,Y 2ZW)
XY 2W − Z, (ZW,XY 2W − Z)
W 2,Z2, (ZW,W 2)
ZW (ZW,Z2)

8th XY 2Z −W , (ZW,Y 2ZW) W 2

Y 2ZW , (ZW,XY 2W − Z)
XY 2W − Z, (ZW,W 2)
W 2,Z2 (ZW,Z2)
ZW

9th XY 2Z −W , (ZW,XY 2W − Z) 0
Y 2ZW , (ZW,W 2)
XY 2W − Z, (ZW,Z2)
W 2,Z2,
ZW

10th XY 2Z −W , (ZW,W 2) Z2

Y 2ZW , (ZW,Z2)
XY 2W − Z,
W 2,Z2,
ZW

11th XY 2Z −W , (ZW,Z2) 0
Y 2ZW ,
XY 2W − Z,
W 2,Z2,
ZW

12th XY 2Z −W , 0
Y 2ZW ,
XY 2W − Z,
W 2,Z2,
ZW

Benjamin J. Keller Chapter 2 21

Note, however, that Y 2ZW is reducible by ZW and so can be removed from the basis giving the

reduced basis

GP = {XY 2Z −W,XY 2W − Z,W 2, ZW, Z2}.

If Y 2ZW is removed when ZW is first computed (in the 5th iteration), then the computation of

unnecessary critical pairs can be avoided. GP is the Gröbner basis for the input set P .

2.4 Computing Noncommutative Gröbner Bases

The discussion so far has addressed Gröbner bases in commutative polynomial rings, but now we

turn to the noncommutative case. The paradigmatic noncommutative algebra is the free associative

algebra. An example is Q 〈x, y, z〉, which is the ring of polynomials with rational coefficients and

terms that are strings of the variables x, y, z. To be more precise, the set of terms of Q 〈x, y, z〉 is

the free monoid {x, y, z}∗ = {λ, x, y, z, xx, xy, xz, yx, yy . . .}.

The definition of Gröbner bases in noncommutative rings is the same as in the commutative case.

However as mentioned earlier, noncommutative Gröbner bases may be infinite. As a consequence, in

the computation of general noncommutative Gröbner bases, we must be concerned with termination.

When we know in advance that there is a finite Gröbner basis, the noncommutative algorithm is not

drastically different from the commutative algorithm.

Buchberger’s algorithm for commutative polynomial rings uses least common multiples to find

the s-polynomials SPol (p, q) for a critical pair (p, q). However, for noncommutative polynomial

rings just using least common multiples is not sufficient; all common multiples must be used instead.

Consider the set

P = {xyzy − w, yzyw, xywy − z, ywyz},

assuming the variables do not commute (and so yzyw is not the same as ywyz).

Buchberger’s algorithm as discussed above yields the generating set

G = {xyzy − w, yzyw, xywy − z, ywyz, ww, zz},

which is essentially the same as the commutative Gröbner basis for P . However, G is not a Gröbner

basis, since the polynomial wzyw is an element of 〈P 〉 (as a combination of yzyw and xyzy − w)

but is not divisible by any tip in G.

Benjamin J. Keller Chapter 2 22

The polynomial wzyw is

wzyw = xyz(yzyw) − (xyzy − w)zyw

which eliminates the common multiple xyzyzyw of xyzy and yzyw rather than the least common

multiple xyzyw. In general, the algorithm needs to compute polynomials for all common multiples

of a pair of tips. So the algorithm cannot simply consider critical pairs but must consider triples

which consist of a pair of polynomials and an overlap of their tips. For example, the polynomial

wzyw corresponds to the triple 〈xyzy−w, yzyw, y〉. Such a polynomial is called an overlap relation

and is denoted o(xyzy − w, yzyw, y). For a triple t = 〈p, q, v〉, the overlap relation is defined as

o(t) =
1

LC (p)
psq −

1

LC (q)
spq

where tip(p) = spv and tip(q) = vsq .

The set G can be completed to a Gröbner basis by adding wzyw and

xyw(ywyz) − (xywy − z)wyz = zwyz

to G. The overlap relations for all other triples reduce to zero.

2.5 Decidability

The problem of determining whether a finite Gröbner basis exists for an ideal in a noncommutative

polynomial ring is an undecidable problem. Undecidability is shown using a reduction of the word

problem for semigroups to the ideal membership problem [35, p.25] [46, p.137].

The source of the undecidability is not directly related to finiteness. This is indicated by using

polynomial reduction to solve the ideal membership problem using a finite subset of a Gröbner basis

for the ideal. Deciding whether a polynomial f is in an ideal I only requires the elements of the

Gröbner basis for I whose tips are less than tip(f). Since every admissible order is well-founded, any

choice of admissible order < has the property that for all terms t, the set {s a term : s < t} is finite.

Using this order, the partial Gröbner basis bounded by tip<(f) is finite. However, the undecidability

of the ideal membership problem implies that this finite partial basis is not computable [46, pp.137–

138].

There are classes of ideals for which the existence of a finite Gröbner basis is decidable. Decidable

instances occur when the ideal has a finite Gröbner basis either for all admissible orders or for some

Benjamin J. Keller Chapter 2 23

order that can be chosen by some means based on the input generators (if this is at all possible).

The first case occurs when the algebra is finite dimensional, and when the algebra is noetherian

(meaning all ideals are finitely generated). No general conditions for the second case are known.

The slightly different problem of finding a partial (bounded) basis is decidable when all elements of

the ideal are (degree) homogeneous and the order is compatible with the length of terms [46, p.138].

2.6 Relationship to Rewriting

The earlier discussion showed how the Gröbner basis computation is a kind of nonlinear Gaussian

elimination. In this section, the relationship of Gröbner basis to another kind of algebraic com-

putation called term rewriting is considered. This relationship is more of an algorithmic one than

algebraic.

Term rewriting is used to decide equivalence between terms in some universal algebra [18]. Terms

are mathematical expressions composed of constants, variables and operators. A rewrite rule s −→ t

is used to rewrite (or reduce) a term w by first finding a substitution σ of terms for variable names

in s such that sσ is a subterm of w. The result of rewriting w in this way is the term formed by

replacing sσ in w by tσ. So for example, a rule f(x, g(y)) −→ g(f(x, y)) could be used to reduce

f(u, g(z)) to g(f(u, z)) using the substitution σ for which x 7→ u and y 7→ z. A sequence of zero or

more rewrites t −→ t1 −→ t2 −→ · · · −→ t′ is denoted t −→∗ t′. If t −→∗ t′ and t′ is not further

reducible, then t′ is a normal form of t.

A relation −→ induces another relation ←→, which is defined by s ←→ t if either s −→ t or

t −→ s. The transitive closure ←→∗ of ←→ induces an equivalence relation ≡ on terms, which is

defined as t ≡ s whenever t←→∗ s.

A rewrite system is the set of terms together with the relation determined by a set of rewrite

rules on the terms. A rewrite system is confluent, if for all terms w, w −→∗ s and w −→∗ s′, implies

that there exists a term t such that s −→∗ t and s′ −→∗ t (see Figure 2.2). If for any term t there is

no infinite sequence of rewrites, then the rewrite relation is noetherian. Confluence ensures that if

all rewrites of a term lead to a normal form, then that normal form is unique. Having a noetherian

system guarantees that all terms have normal forms, therefore the combination of the two properties

is an important one for testing equivalence by rewriting. A rewrite system that is both noetherian

and confluent is called convergent or complete.

Benjamin J. Keller Chapter 2 24

* *

**

s′

t

s

w

Figure 2.2: Confluence of Rewrite System.

Clearly, convergence is not a property of all rewrite systems. On the other hand, given some

noetherian system (usually obtained by choosing a well-ordering of the terms compatible with the

operation structure and orienting the rules by the order), an equivalent convergent system may be

found using Knuth-Bendix completion [36]. The completion algorithm considers critical pairs of

terms which correspond to a pair of rules whose left-hand sides interact. In particular, a critical pair

is a pair of terms (t1, t2) such that there exists a pair of rules l1 −→ r1 and l2 −→ r2 and a term

t that can be rewritten by the first rule to t1 and by the second rule to t2. For each critical pair,

the algorithm rewrites both terms until a normal form is found for both. If the normal forms are

distinct then a new rule is formed by orienting the normal forms. Knuth-Bendix completion stops

when all critical pairs converge. However, since the equivalent convergent rewrite system may be

infinite, the completion algorithm may not terminate.

The Gröbner basis computation is a special form of the Knuth-Bendix completion algorithm for

term-rewriting. A polynomial p can be treated as a rewrite rule l −→ r in which the left-hand side l

is tip(p) the tip of p, and the right-hand side r is the remainder, 1/αp−tip(p) (where α is the leading

coefficient of p). While polynomial reduction is basically rewriting, it is slightly different since it

includes scalar multiplication and term cancellation. However, using this view of polynomials as

rewrite rules, a Gröbner basis is a convergent set of rules, and Buchberger’s algorithm corresponds

to Knuth-Bendix completion. (More details of this relationship can be found elsewhere [14, 15].)

Noncommutative Gröbner bases include a special form of term rewriting called string rewrit-

ing. In string rewriting the terms are words in a free monoid, and rewriting is done by replacing

occurrences of the left-hand side by the right-hand side [10]. A string rewriting rule s −→ s′ can

be considered to be a polynomial s − s′ (equal to zero) that is an element of the corresponding

free algebra. Therefore, completion in string rewriting corresponds to computing Gröbner bases for

Benjamin J. Keller Chapter 2 25

a b

Figure 2.3: Quiver for Free Algebra in a, b.

binomial ideals (ideals generated by sums of pairs of terms).

2.7 Path Algebras

The algebras that this research deals with are path algebras. The polynomials in a path algebra are

linear combinations where each term is a pair consisting of a coefficient and a path from a graph

(called the quiver of the algebra). In general, the coefficients are elements of a field K.

Let Γ = (Γ0,Γ1) be a finite directed multigraph with vertex set Γ0 and arc set Γ1 (Γ may have

multiple arcs between a pair of vertices and may have loops at a single vertex). The set B of finite

paths in Γ includes the vertices, the arcs, and all finite walks of Γ. Each path p has a source src(p)

and a target tgt(p) that are the initial and terminal vertices of the path. B is closed under valid

path compositions: if p, q ∈ B and the target tgt(p) of p is the source src(q) of q, then the product

p · q is the path pq formed by composition of paths. Note that if v is a vertex, then v · v = v, and so

the vertices are idempotents. Also, if v = src(p) then v · p = p and so the vertices act like identities

for particular elements (so B is like the arrows of the free category of Γ [5]). If we add a zero value 0

to B and extend the operation to return 0 for invalid compositions, then B ∪{0} is closed under the

composition operator. Since p · q = pq, the operator is generally not written. If p = aqb for paths

p, q, a, b, we say that q divides p and write q|p. Two paths p, q are uniform equivalent if they begin

at the same vertex and end at the same vertex (src(p) = src(q) and tgt(p) = tgt(q)).

Two example graphs are shown in Figure 2.3 and Figure 2.4. The set of finite paths for the graph

in Figure 2.3 is isomorphic to the Kleene closure {a, b}∗ of the two letter alphabet {a, b} where the

vertex corresponds to the empty string. Such a graph with one node and multiple loops corresponds

to a free algebra and is referred to as a free graph. The set of paths for the graph in Figure 2.4 is

{u, v, w, a, b, ab}.

Given a graph Γ and a field K, the path algebra KΓ is the collection of linear combinations∑
b∈B αbb where αb is a coefficient from K and only a finite number of the coefficients are nonzero.

Benjamin J. Keller Chapter 2 26

ba

vu w

Figure 2.4: Quiver for Simple Path Algebra.

c

a, b

Figure 2.5: Two-Node Quiver for Uniform Projection Example.

The unit (the element that acts like 1 in multiplication) is the sum of the vertices
∑
v∈Γ0

v. The

elements of KΓ are called relations (but the term polynomial is also used to refer to them as formal

sums of terms).

The set of paths whose coefficients are nonzero in a relation f is called the support of f and is

denoted supp(f). A polynomial p for which all elements of supp(p) are uniform equivalent to each

other is called uniform. Given an admissible order < on B, the leading term or tip of a polynomial

p is the maximum element tip<(p) in the support of p. If the graph Γ is a single vertex with several

loops labeled a, b, c, then KΓ is the free associative algebra, usually denoted K〈a, b, c〉.
Ideals, generating sets, and Gröbner bases are all defined as before. However, computing Gröbner

bases in path algebras can lead to problems if the input generators are not uniform. The problem is

that during reduction the tip of the dividing polynomial is multiplied on both sides, and if there is

a path with different source and target in the support, that term is canceled by path compositions

(rather than by the polynomial difference). Consider the computation of the Gröbner basis for the

generators {abc + bab + a + c} from the algebra whose quiver is the graph in Figure 2.5. Using

the length lexicographic order defined for a > b > c, the algorithm does not find any new elements.

However, the generator abc+bab+a+c is a sum of uniform polynomials abc+c and bab+a. Using the

generating set {abc+ c, bab+a} the algorithm computes the set {abc+ c, bab+a, ac− bc, aab− baa}.

The first generating set does not satisfy the Gröbner basis criterion since the element bab+ a is in

the ideal, but is not divisible by the tip abc. So, for the nonuniform generator, the set returned is

not a Gröbner basis. As this example shows, using nonuniform generators as input to the Gröbner

basis computation can give incorrect results.

By definition, ideals are closed under multiplication by elements of the algebra KΓ. So, in

Benjamin J. Keller Chapter 2 27

particular, if we have an element p of an ideal I and two vertices u and v then upv ∈ I. For example,

suppose that p = t1 + t2 + t3, for paths t1, t2, t3. Also let the sources and targets for these paths be

the following

Path Source Target

t1 s v

t2 s v

t3 u v

where s, u, and v are distinct vertices. Now consider the products

spv = st1v + st2v + st3v

= t1 + t2 + 0

and

upv = ut1v + ut2v + ut3v

= 0 + 0 + t3.

Hence, p can be written as the sum spv + upv. Since both spv and upv are relations whose support

elements are uniform equivalent, we call spv and upv uniform projections of p.

In general, it is sufficient to consider only uniform generators [20]. To see this, suppose we have

a generating set P with a nonuniform element p. Let p1 and p2 be the uniform projections of p.

Then p1 and p2 are in 〈P 〉. But since ideals are closed under addition p1 + p2 = p is in 〈P 〉 and we

can replace p by its uniform projections in P and still generate the same ideal. Precisely,

〈P 〉 = 〈(P \ {p}) ∪ {p1, p2}〉

Therefore, generators given as input to the noncommutative form of Buchberger’s algorithm can

be assumed to be uniform (or equivalently, for the purposes of the computation, elements of a free

algebra).

2.8 Summary

This chapter has introduced the computation of Gröbner bases of (two-sided) ideals of noncommu-

tative algebras. The key concepts to remember from this chapter are the basic definition of non-

Benjamin J. Keller Chapter 2 28

commutative algebras, noncommutative polynomials, ideals, admissible orders and Gröbner bases.

The algorithm and orders are revisited in later chapters.

Path algebras are important in this thesis because all specific problem instances are presented

in path algebras (for example, in the discussion of experiments in Chapter 3). However, the path

algebra definition is most important in Chapter 5 where the problem of choosing an admissible order

is addressed.

Chapter 3

Computing Noncommutative

Gröbner Bases

This chapter considers the problem of finding a good combination of algorithms and data structures

to implement Buchberger’s algorithm for noncommutative algebras. The emphasis is on the alter-

native algorithms defined in the commutative Gröbner basis literature, but some new algorithms

are also presented. Data structures are rarely discussed in the Gröbner basis literature, so they are

considered here for the sake of thorough discussion.

The chapter begins in the first section by revisiting the basic algorithm and the different methods

used for termination. Then, in the subsequent sections, the algorithmic variants and alternative data

structures are considered. The fourth section deals with experiments that compare the different

configurations of the algorithm.

3.1 The Basic Algorithm

Buchberger’s algorithm for computing noncommutative Gröbner bases is shown in Figure 3.1. The

algorithm takes a set F of generators as its argument, and finds the reduced Gröbner basis G for

F . Formally, the algorithm also has an admissible order < as an argument, but the order is implicit

in the algorithm as shown in Figure 3.1. This algorithm terminates if and only if there is a finite

Gröbner basis for the given generating set and order (modifications for termination are considered

29

Benjamin J. Keller Chapter 3 30

below).

The algorithm begins with the Initialize procedure (Figure 3.2), which makes a reduced copy

G of F and a corresponding set T of triples. A triple is a pair of polynomials and a (nonempty)

overlap of their tips. The triples are used to keep track of the overlap relations for G (see Section 2.4

for the definition of overlap relation). The Initialize function reduces each element f of F by G,

and if the result g is nonzero adds it to G and forms new triples of g with elements of G (using

the Update procedure). The Reduce function can do either tip- or total-reduction, which are the

functions Tip Reduce and Total Reduce detailed in Section 3.3.2.

Following initialization ofG, the algorithm iterates the process of selecting (and removing) a triple

from T (with Select), forming the corresponding overlap relation, reducing the overlap relation,

and, if the result is nonzero, using Update to add the result to G (and any new triples to T). The

loop ends when there are no triples remaining to consider. The algorithm ends by totally reducing

G using Reduce Basis (Figure 3.3).

The Update procedure in its simplest form is shown in Figure 3.4. Basically, Update finds

overlaps of the new element h with elements of G, and adds h to G. This Update procedure does

not keep G reduced. The next section shows different implementations of Update that both keep

the set reduced and delete “useless” triples. The function Overlap computes the triples of elements

of G with h. Details of how Overlap can be implemented are given in Chapter 4.

3.2 Termination

The fact that noncommutative Gröbner bases may not be finite requires modifications to the algo-

rithm to force it to terminate. The algorithm in Figure 3.1 only terminates if the input generators

(and order) have a finite Gröbner basis. (The proof of termination when the Gröbner basis is finite

is based on the “diamond lemma” of Bergman [8].) Otherwise, the algorithm enumerates an infinite

set. There are two ways in which the algorithm is modified to use bounds to force termination. Both

modifications will find a finite Gröbner basis if it exists within the given bound.

In the general case, the algorithm is modified to take an additional argument N that is a bound

on the number of nonzero reductions of overlap relations. This algorithm is shown in Figure 3.5 (the

differences are the added test on line 3, and the addition of line 14). Once N nonzero reductions

have occurred the modified algorithm stops. This form of the algorithm extends the reduced form

Benjamin J. Keller Chapter 3 31

Gröbner(F). Buchberger’s algorithm for instances with finite Gröbner bases.

INPUT: Set F of generators.
OUTPUT: G a finite, totally reduced Gröbner basis for F .

1 (G, T)←Initialize(F);
2 while (T 6= ∅) do
3 begin
4 . select a triple
5 t← Select(T,G);
6 . form overlap relation
7 h← Overlap Relation(t);
8 . reduce overlap relation
9 h′ ← Reduce(h,G);
10 . add h′ to G if not zero
11 if (h′ 6= 0) then
12 Update(G, T, h′);
13 end
14 Reduce Basis(G);
15 return G;

Figure 3.1: Buchberger’s Algorithm for Noncommutative Algebras.

Initialize(F). Initialization function for Buchberger’s algorithm.

INPUT: Set F of generators.
OUTPUT: G a self-reduced copy of F , and the set T of triples for G.

1 G← ∅;
2 T ← ∅;
3 foreach (f ∈ F) do
4 begin
5 g ← Reduce(f, G);
6 if (g 6= 0) then
7 Update(G, T, g);
8 end
9 return (G, T)

Figure 3.2: Initialization for Buchberger’s Algorithm.

Benjamin J. Keller Chapter 3 32

Reduce Basis(G). Total reduction of set G.

INPUT: Tip-reduced set G of generators.
OUTPUT: G totally reduced.

1 foreach (g ∈ G) do
2 begin
3 G← G \ {g};
4 g′ ← Total Reduce(g, G);
5 G← G ∪ {g′};
6 end

Figure 3.3: Basis Reduction.

Update(G, T, h). Procedure to update G and T with h.

INPUT: Tip-reduced set G, triple set T , tip-reduced polynomial p.
OUTPUT: Self-reduced G with h ∈ G, triples for h in T

1 T ← T ∪Overlaps(G, h);
2 G← G ∪ {h};

Figure 3.4: Simple Update.

Benjamin J. Keller Chapter 3 33

Gröbner(F,N). Buchberger’s algorithm for instances with finite Gröbner bases.

INPUT: Set F of generators, positive integer N .
OUTPUT: G a finite, totally reduced Gröbner basis for F .

1 (G, T)←Initialize(F);
2 k← 0;
3 while (T 6= ∅ and k < N) do
4 begin
5 . select a triple
6 t← Select(T,G);
7 . form overlap relation
8 h← Overlap Relation(t);
9 . reduce overlap relation
10 h′ ← Reduce(h,G);
11 . add h′ to G if not zero
12 if (h′ 6= 0) then
13 Update(G, T, h′);
14 k ← k + 1;
15 end
16 Reduce Basis(G);
17 return G;

Figure 3.5: Buchberger’s Algorithm for the General Case.

of F by at most N new elements when run with a bound of N .

Theorem 3.1 The process of computing a (partial) Gröbner basis by bounding the maximum num-

ber of nonzero reductions of overlap relations terminates and returns a subset of the Gröbner basis.

Proof If this algorithm does not terminate for a given input F , then there must be an infinite

number of zero reductions of overlap relations computed from F . However, each overlap relation is

determined by a triple in the set T of triples, and at any point during the computation the set T is

finite. (Since there are only a finite number of overlaps of the elements of the current generating set,

which is itself finite.) Since new triples are added only when a nonzero overlap reduction occurs,

there cannot be an infinite sequence of zero reductions. Therefore, the algorithm will terminate

either by emptying T , or by reaching the bound on nonzero reductions. In the first case, the result

is a complete Gröbner basis, and in the second case the result is a nontrivial subset of the Gröbner

basis. �

Benjamin J. Keller Chapter 3 34

Gröbner(F,W). Buchberger’s algorithm for instances with finite Gröbner bases.

INPUT: Set F of generators, positive integer W .
OUTPUT: G a finite, totally reduced Gröbner basis for F .

1 (G, T)←Initialize(F);
2 while (T 6= ∅) do
3 begin
4 . select a triple
5 t← Select(T,G);
6 . form overlap relation
7 h← Overlap Relation(t);
8 . reduce overlap relation
9 h′ ← Reduce(h,G);
10 . add h′ to G if not zero
11 if (h′ 6= 0) then
12 if (|tip(h′)| ≤W) then
13 Update(G, T, h′);
14 end
15 Reduce Basis(G);
16 return G;

Figure 3.6: Buchberger’s Algorithm for the Degree Homogeneous Case.

Alternatively, if the elements of F are all homogeneous, a different kind of bound can be used.

All of the terms of a (degree) homogeneous polynomial have the same length, which is called the

degree of the polynomial. When all generators are homogeneous, the degree of new basis elements is

nondecreasing and so a bound on the degree of elements can be used. The algorithm for homogeneous

generators shown in Figure 3.6 inserts a polynomial into G only if its tip is shorter than the bound

W . The only change to the algorithm is the additional test on line 12 that the length of tip(h′) is

less than or equal to W . The elements with longer tips can either be discarded, or saved in another

set.

Theorem 3.2 The algorithm for degree homogeneous generators shown in Figure 3.6, terminates

and returns all elements of a Gröbner basis having degree less than W .

Proof The termination of this algorithm is based on the fact that, given a finite alphabet, there

is a finite number of words of length at most W . This means that there can only be a finite number

Benjamin J. Keller Chapter 3 35

of elements of a Gröbner basis whose tips are of length at most W . Therefore, we need to show that

the algorithm computes all elements of the bounded basis and no more.

First, notice that if we reduce a degree homogeneous polynomial p by another degree homoge-

neous polynomial q, then the result is degree homogeneous and of the same degree as p. Therefore,

the reduced form h′ of an overlap relation h = o(g1, g2, v) has the same degree as h. Also, note that

the degree of h is greater than both the degree of g1 and the degree of g2. The implication is that

the algorithm cannot find a new basis element whose tip is shorter than every other element of the

basis.

Suppose that there is some g with degree at most W that is an element of the Gröbner basis, but

that g is not found by the algorithm. Then either g cannot be computed from the input generating

set, or requires computing elements whose degree is larger than W (since the algorithm ignores

these elements, g would never be found). However, if g cannot be computed from the generators,

g cannot be in the Gröbner basis; and, as discussed above, g could not possibly be computed from

elements of larger degree. Therefore, g must be found by the algorithm, and so the algorithm must

find all elements of the Gröbner basis of degree at most W . As a consequence, if every element of

the Gröbner basis has degree less than W , the result will be the complete set.

Now suppose that the algorithm does not terminate. Then the algorithm must make an infinite

selection of triples whose overlap relations are of degree greater thanW . However, since the algorithm

makes no triples for such elements, all such triples must correspond to overlaps of elements of shorter

degree. But since this set is finite, there is only a finite number of overlaps, and only a finite number

of possible triples to select. Therefore, the triple set must eventually be empty, and the algorithm

must terminate. �

3.3 Algorithmic Alternatives

As has been discovered in the setting of commutative polynomial rings, there are several variations

of the basic Buchberger algorithm. Variations occur in the selection strategy (the Select function

in Figure 3.1), triple elimination (the Update function), basis reduction (in both Update and

Reduce Basis), and polynomial reduction (in function Reduce). Our goal is to determine what

combination of these variations is the most efficient.

Benjamin J. Keller Chapter 3 36

3.3.1 Selection Strategy

A selection strategy is a method for selecting a triple from the triple set so that its overlap relation

can be used in the computation. The role of a selection strategy is to choose triples in such a way

that the Gröbner basis is found as directly as possible. Usually, this means finding new elements

that can be used to eliminate other triples (see the discussion on triple elimination below).

In general, a selection strategy need only satisfy a fairness property that the selection of a

particular triple is not postponed indefinitely (see [46]). One form of selection strategy is to choose

the triple with the smallest common multiple with respect to some well-order (that need not be

the same as the admissible order on the polynomials). If the well-order used for selection is also

the admissible used to order the polynomials, this strategy is called the normal strategy. Fairness

is ensured by the property of well-orders (there is not an infinite sequence of triples less than any

particular triple). Traverso and Donati [54] describe other forms of selection. One example that

performs well in their experiments (in the commutative case) is ordering the triples by the leading

term of the corresponding overlap relation.

In Figure 3.1, the Select function performs selection. The selection strategy used here (Fig-

ure 3.7) selects the triple t with minimal common multiple cm(t) with respect to some order (min< T

is the minimal such triple in T with respect to <). Two such strategies are considered in our experi-

ments. The first is the normal strategy, and the second uses a length lexicographic order to compare

the common multiples and is called the shortest strategy.

Assuming that triples are computed as new elements are added, it is most efficient to store

the triples in a priority queue data structure where the next triple to be selected can be extracted

in logarithmic time. One such data structure is a heap, although the prototype on which the

experiments are run uses a sorted list. A heap is used in the Opal system.

3.3.2 Polynomial Reduction

Polynomial reduction is an operation performed repeatedly during the Gröbner basis computation.

The two forms of reduction, tip- and total reduction introduced in Chapter 2, are the alternative

algorithms for reduction. The algorithm for tip-reduction is shown in Figure 3.8 and the algorithm

for total reduction is shown in Figure 3.9. Clearly, tip reduction is a simpler algorithm, but it is

not clear which is the better choice. For the commutative case, Traverso and Donati [54, p.196]

Benjamin J. Keller Chapter 3 37

Select(T). Triple selection.

INPUT: Set T of triples.
OUTPUT: Triple t with cm(t) minimal with respect to a given admissible order <.

1 t← min< T ;
2 T ← T \ {t};
3 return t;

Figure 3.7: Standard Selection Algorithm.

state that total reduction is a better choice than tip reduction (but the experiments from which this

conclusion is drawn are not described).

Neither reduction algorithm specifies how the divisor should be chosen for each simple reduction

(e.g., line 6 in Figure 3.9 and line 3 in Figure 3.8). The choice of divisor can lead to coefficient

explosion if the coefficient field is not finite (e.g., is the rational numbers, or a rational function

field). Traverso and Donati [54] discuss experiments in the noncommutative case that imply a good

choice is the divisor with the fewest terms; however, they also note that the choice of divisor is less

significant than the selection strategy.

Coefficient explosion is also common in other normal form computations such as finding canonical

forms of matrices, and the heuristics [27, 28] used in these situations may extend well to Gröbner

basis computations.

Nothing is done in this research to compare the two reduction strategies in the noncommutative

case, nor is anything done to consider the selection of a divisor. In the prototype, the “first” divisor

found is used; and in Opal, the one with the fewest number of terms is used.

3.3.3 Set Reduction

If the goal of the Gröbner basis computation is to find the minimal reduced Gröbner basis, then

keeping the working set reduced (or at least, tip-reduced) during the computation is important.

Otherwise, unnecessary overlap relations are computed and reduced. If during the computation,

some element p of the working set P is tip-reducible by the leading term of the newest reduced

overlap relation h, then p needs to be reduced. Gebauer and Möller call such a tip-reducible element

Benjamin J. Keller Chapter 3 38

Tip Reduce(f, P). Polynomial Tip Reduction.

INPUT: Polynomial f , set P of polynomials.
OUTPUT: Remainder of dividing f by elements of P at the tip.

1 while (∃p ∈ P such that tip(p)|tip(f)) do
2 begin
3 Choose p ∈ P and a, b ∈ B such that tip(f) = a(tip(p))b;
4 f ← f − a · p · b;
5 end
6 return f ;

Figure 3.8: Tip Reduction Algorithm.

Reduce(f, P). Polynomial Reduction.

INPUT: Polynomial f , set P of polynomials.
OUTPUT: Remainder of dividing f by elements of P .

1 f ′ ← 0;
2 while (f 6= 0) do
3 begin
4 if (∃p ∈ P such that tip(p)|tip(f)) then
5 begin
6 Choose p ∈ P and a, b ∈ B such that tip(f) = a(tip(p))b;
7 f ← f − a · p · b;
8 end
9 else
10 f ′ ← f ′ + tip(f);
11 f ← f − tip(f);
12 end
13 return f ′;

Figure 3.9: Total Reduction Algorithm.

Benjamin J. Keller Chapter 3 39

Update(G, T, h). Add h to G and new triples to T using redundant element deletion.

INPUT: Tip-reduced set G, triple set T , tip-reduced polynomial p.
OUTPUT: Self-reduced G with h ∈ G, triples for h in T

1 T ← T ∪Overlaps(G, h);
2 D ← {g ∈ G : tip(h)|tip(g)};
3 G← (G \D) ∪ {h};

Figure 3.10: Update Using Redundant Element Deletion.

redundant [22].

Tip-reducible elements of P can be dealt with in two ways. The first technique, due to Gebauer

and Möller, is to simply delete the reducible elements. This approach, called redundant element

deletion, requires that the triples involving reducible elements be kept. Otherwise, the result may

not be complete. The second approach is to (tip-) reduce the reducible elements and add them

back to the set. This approach, called (redundant) element reduction, deletes all triples involving

reducible elements, and then finds triples for the reduced form.

In the commutative case, reductions of redundant elements can be done by the ordinary compu-

tation and reduction of s-polynomials. Specifically, if p is tip-reducible by q, then p and q form a

critical pair for which the s-polynomial SPol(p, q) is the simple reduction of p by q. Traverso and

Donati [54] consider a selection strategy that chooses reduction of redundant elements over other

pairs that is analogous to element reduction. In the noncommutative case, however, overlap relations

cannot correspond to reductions of redundant elements, and so redundant element reduction must

be done explicitly.

Set reduction, the process of removing redundant elements, is done in Figure 3.1 by the Update

procedure. The two forms of set reduction give two forms of the Update procedure. One using

redundant element deletion is given in Figure 3.10, and the other using element reduction is given

in Figure 3.11. (The notation left(t) and right(t) refers to the polynomials occurring in the left and

right respectively of a triple t.) The element reduction form of Update calls itself for each reduced

element added back into the set. Both forms of set reduction are compared in the experimentation

described in Section 3.5.

Benjamin J. Keller Chapter 3 40

Update(G, T, h). Procedure to update G and T with h using element reduction.

INPUT: Tip-reduced set G, triple set T , tip-reduced polynomial p.
OUTPUT: Self-reduced G with h ∈ G, triples for h in T

1 D ← {g ∈ G : tip(h)|tip(g)};
2 G← (G \D);
3 T ′ ← {t ∈ T : left(t) ∈ D or right(t) ∈ D};
5 T ← T \ T ′;
6 G← G ∪ {h};
7 T ← T ∪Overlaps(G, h);
8 foreach g ∈ D do
9 begin
10 g′ ← Reduce(g, G);
11 if (g′ 6= 0) then
12 Update(G, T, g′);
13 end

Figure 3.11: Update Algorithm Using Element Reduction.

3.3.4 Triple Elimination

The elimination of useless pairs (pairs for which the s-polynomial reduces to zero) is first considered

by Buchberger [12]. Buchberger defines several criteria that can be used to determine whether a crit-

ical pair can be eliminated, and later Gebauer and Möller [22] derive similar criteria using syzygies.

Mora [46] shows (using syzygies) that these criteria can be applied in computing noncommutative

Gröbner bases. Another proof is given in Appendix A that uses an approach like that of Becker and

Weispfenning [7].

What is proved in the appendix is known as Buchberger’s second criterion. The other well-known

Buchberger criterion is Buchberger’s first, which says that pairs of polynomials with disjoint leading

terms (terms with no common divisor) need not be considered. In the noncommutative case, this

criterion is: the overlap relation of two polynomials whose tips do not overlap need not be considered.

Since triples are only computed for polynomials whose tips overlap, this criterion is vacuous. (In the

commutative case, the criterion is not vacuous since the definition of s-polynomials allows disjoint

leading terms.)

The noncommutative form of Buchberger’s second criterion states something roughly like the

following (the exact statement appears in Appendix A). Let F be a generating set, and let g1 and

Benjamin J. Keller Chapter 3 41

tip(g1)

tip(p)

α v

β tip(g2)

Figure 3.12: Division of Common Multiple for Buchberger’s Second Criterion.

g2 be elements of F . Suppose that tip(g1) and tip(g2) have an overlap v, and that the common

multiple cmv(tip(g1), tip(g2)) is properly divisible by the tip of an element p ∈ F . In this situation,

tip(p) overlaps with tip(g1) on the left, and with tip(g2) on the right (see Figure 3.12). Call these

overlaps wl and wr. If o(g1, p, wl) and o(p, g2, wr) reduce to zero by F , then o(g1, g2, v) reduces to

zero by F .

The implication is that the overlap relation o(g1, g2, v) is superfluous once the other two relations

have been added to F (or are likewise expressible by another pair of relations). The second criterion

translates to the following algorithmic test: if the common multiple cmv(tip(g1), tip(g2)) is properly

divisible by tip(p) for some p ∈ F , then the triple 〈g1, g2, v〉 can be discarded. Note that p could be

either g1 or g2 so long as the tip of p divides somewhere other than as a prefix (if p = g1) or as a

suffix (if p = g2) of the common multiple. To be more precise, let tip(p) divide cmv(tip(g1), tip(g2))

such that tip(p) = αvβ as in Figure 3.12. Then, in the case that p = g1, the elimination can only

be performed if β is a nonempty word (e.g., it is not the case that tip(p) = αv). Similarly, when

p = g2, α must be nonempty for the elimination to be valid.

In general, we will assume that the generating set F is kept tip-reduced during the computation.

So, in particular, the tip of one element will never divide the tip of another. Notice that, in this case,

if tip(p)|cmv(tip(g1), tip(g2)), then the overlap v must divide tip(p). However, it is not necessary to

check this condition.

In the literature, two strategies for using this result are described. The first is due to Buchberger

and the second to Gebauer and Möller. Although, in the commutative case these strategies are

significantly different (or at least appear so), in the noncommutative case the test for elimination is

the same. The main difference is when the elimination is done.

Buchberger’s strategy tests the common multiple for divisibility for each triple selected, and if

the common multiple is divisible, then selects another triple (Figure 3.13). The Gebauer-Möller

Benjamin J. Keller Chapter 3 42

Select(T). Triple selection with Buchberger triple elimination.

INPUT: Set T of triples.
OUTPUT: Triple t with cm(t) minimal with respect to a given admissible order <.

1 repeat
2 t← min< T ;
3 T ← T \ {t};
4 until (there is no g ∈ G such that tip(g)|cm(t));
5 return t;

Figure 3.13: Selection With Triple Elimination.

Eager(G, T, h). Gebauer-Möller triple elimination.

INPUT: G tip-reduced set of generators, T set of triples for G, h polynomial.
OUTPUT: T ′ triple set containing nondivisible elements of T and triples of h.

1 TO ← {t ∈ T : tip(h) 6 | cm(t)};
2 TN ← {t ∈ Overlaps(G, h) : ∃g ∈ G tip(g) 6 | cm(t), g 6= h};
3 return (TO ∪ TN);

Figure 3.14: Gebauer-Möller Elimination.

strategy is to perform eliminations as soon as possible, which is when a new element is introduced to

the Gröbner basis during a computation. This requires testing common multiples for overlaps of the

newly inserted polynomial with elements already in the set (e.g., testing divisibility by “old” tips),

and testing existing common multiples for divisibility by the tip of the new element (Figure 3.14).

The Gebauer-Möller strategy is applied in the Update procedure (replacing line 1 of Figure 3.10 or

line 7 of Figure 3.11 with T ← Eager(G, T, h)).

Again, the only real difference between these two approaches is when they are applied. Since

the Gebauer-Möller strategy is to apply the test as soon as possible, and Buchberger’s strategy is

to apply the test as late as possible, we refer to them as the eager and lazy elimination strategies.

A third approach is a hybrid of the eager and lazy strategies. In this approach, new triples (those

involving h and the elements of G) are eagerly eliminated in the Update algorithm, and old triples

Benjamin J. Keller Chapter 3 43

(those involving just current elements of G) are eliminated lazily in Select. We call this approach

the hybrid elimination strategy. All three elimination strategies are considered in the experiments.

Note that, in general, elimination also refers to an application of Gröbner bases (see Becker and

Weispfenning [7, p.256], or Helton and Stankus [29]), so some care is needed in using the term. In

this thesis, triple elimination and elimination always mean the same thing.

3.4 Data Structures

The main data structures required for the algorithm are polynomial sets for storing basis elements

(and facilitating pattern matching) and triple sets. The representations of paths and polynomials

are also important, but neither provides much opportunity for finding an exceptionally efficient data

structure (most operations can be done in linear time in the number of terms and there is not much

chance of improving this dramatically).

3.4.1 Polynomials

Polynomials are typically stored as a list of coefficient-term pairs, sorted with respect to an admissible

order on the terms. This data structure allows the tip, which is the head of the list, to be found in

constant time. Addition and subtraction are basically merge sorts with combination or cancellation

of like terms.

The most costly operation on polynomials is reduction. A simple reduction of p by q using lists

takes time on the order of n+ k where n and k are the number of terms in p and q respectively. A

reduction of p by a set P takes time on the order of O(n2).

An alternative we have considered is to impose an indexing structure on the list that makes the

task of finding the first position for merging more efficient. Two possible structures are a binary

tree that would hold pointers to monomials in the list, and a bucket structure that partitions the

monomials. When reducing p by P , the index structure is first added to the list for p, and then each

simple reduction p−a · q · b by some q ∈ P uses the index to merge the list for a · q · b into the list for

p. The indexing is discarded once the reduction is complete. The only advantage of this approach is

when p has a large number of terms, and the sequential search for the beginning of the merge is too

inefficient. Yan [56] describes another data structure to store subterms during reduction as a list of

sorted lists of geometrically increasing length. Merging is then done after the reduction is complete.

Benjamin J. Keller Chapter 3 44

3.4.2 Polynomial Sets

Other than simply storing polynomials, the polynomial set data structure must also support polyno-

mial reduction, basis reduction, and finding overlaps (for forming triples). Reduction of a polynomial

p by a set S requires searching for an element q of S such that tip(q) divides a term of p. In basis

reduction, the objective is to find all the basis elements g whose tips are divisible by the tip of a

polynomial h not in the basis. Overlaps are found when a new element h is added to the basis. A

new overlap occurs between tip(h) and the tip of some element currently in the polynomial set. An

overlap of two paths α and β is determined by a common subpath that is a suffix of α and a prefix

of β. Therefore, the overlaps formed by a polynomial h with a polynomial set G can be viewed as

two types: overlaps where the basis elements are on the left (left-overlaps), and overlaps where the

the basis elements are on the right (right-overlaps). All of these operations can be thought of as

pattern matching operations with a set of patterns, the tip set of the current generating set. Chap-

ter 4 discusses the pattern matching problems in detail and gives a solution based on the dynamic

dictionary matching approach of Amir et al. [2] in which all searches take time linear in the size of

the search string.

3.4.3 Triple Sets

One key to efficient Gröbner basis computation is the efficient handling of triples. This follows from

the frequency of operations on triples (selection, formation of overlap relations, and elimination), and

the large number of triples (which can be at least exponential in the number of initial generators).

The triple set data structure needs to support the addition and deletion of elements as well as

selection of the next triple in whatever selection strategy is used. Selection needs to be as cheap as

possible since it is the most frequent operation. Keeping the triples in some kind of priority queue

sorted in the order of the selection strategy means that selection can be done in (at least amortized)

logarithmic time. In this case, the complexity of insertions depends on the data structure chosen

for the priority queue.

Deletions from the triple set are only done in conjunction with redundant element reduction.

Deletions occur when a polynomial is removed from the polynomial set, and all triples involving the

tip must be removed. This requires some form of index into the priority queue structure that allows

the deleted elements to be removed without significant searching. Two indices are needed, one that

Benjamin J. Keller Chapter 3 45

maps polynomials to triples in which they occur as the left polynomial, and the other that maps

polynomials to triples in which they occur on the right. For each polynomial, the indices hold a list

of (references to) triples.

With this structure, deletion by polynomial p first finds the list of left occurrences of p, deletes

each occurrence from the priority queue, and then does the same for the right occurrences of p. The

order of deleting left and right occurrences is not important, but the algorithm must take care not

to attempt the deletion of triples corresponding to self-overlaps of tip(p) twice.

In the prototype system described below, the priority queue is implemented as a sorted linked list

with pointers to the front and rear of the list. The entries of the list are not triples but lists of overlap

lengths for each pair of polynomials sorted from shortest overlap to longest overlap. Although this

approach of storing the triples saves some space and allows quicker deletion, it means that selecting

a triple may require more time since the triple for the next overlap in the front list entry may not

correspond to the smallest common multiple for the set. So the entry may need to be pushed back

into the list. The best choice of data structure for implementing the priority queue is a heap with

each node corresponding to a triple.

The efficiency of the eager triple elimination strategy also depends on the heap structure. The

second part of eager elimination is the test that the common multiples of any existing triples are

divisible by the tip of the newly inserted basis element. This test requires that every triple in the

set be tested (which is what the prototype does).

Clearly, searching the whole triple set is not time efficient, so another approach is to include a

pattern matching dictionary of the kind used for the polynomial sets and described in Chapter 4.

Instead of holding the tips of the polynomial set, the dictionary for the triple set holds the common

multiples for all of the triples. Only the subword and superword searches would be necessary to

test for elimination. This approach to implementing eager elimination is not implemented in the

prototype, and so is not considered in the experiments described in the next section. Opal uses the

hybrid approach to triple elimination which does not require the extra dictionary.

3.5 Algorithmic Experimentation

The algorithmic alternatives of triple elimination, set reduction, and selection strategies are com-

pared experimentally. The experiments use the prototype system described in the first subsection

Benjamin J. Keller Chapter 3 46

to compare different configurations of these three algorithmic variations. The experiments discussed

in the second subsection first do a general comparison, and then do separate comparisons of the set

reduction strategies, and the triple elimination strategies. The implications for implementation of

Gröbner basis systems, and, in particular, the Opal system are discussed in the third subsection.

3.5.1 A Prototype Implementation

A prototype system written in Standard ML is used to study the interactions between the algo-

rithmic variations described above. The system is actually a family of different prototypes that

implement seven different configurations of the algorithmic variations (each configuration is built by

compilation). The seven configurations are combinations of the two approaches to basis reduction

(element reduction, redundant element deletion) and four approaches to triple elimination (none,

lazy strategy, eager strategy, and the hybrid strategy). (The hybrid elimination strategy cannot be

combined with redundant element deletion.)

The system is built using the SML module facilities of signatures, structures, and functors (sig-

natures define the module interface, structures give the module implementation, and functors are

parameterized modules). The relationships between the primary functors and structures of the sys-

tem are shown in Figure 3.15. (The system consists of many other structures, some of which are

implementations of data structures from the SML/NJ library, version 0.2 [4].) In the figure, the

square boxes represent the functors and the rounded boxes represent the structures created using

the functors. The arrows into the functor boxes indicate which structures are arguments to the

functors.

Each different configuration of the system is primarily determined by a different “Buchberger”

functor (there are seven files containing the different versions of the functor). Most of the differences

are localized to the function that implements the Update procedure discussed above. The only

other structure that varies for the different configurations is the polynomial set structure, which is

different for the redundant element deletion approach to set reduction.

Triple sets are implemented as doubly linked lists (using SML references) with the nodes sorted

in increasing order using the admissible order used by the selection strategy. Each list node holds all

the triples for a pair of polynomials as a tuple consisting of references to the two polynomials and

a list of overlap lengths (sorted longest to shortest). The order on the nodes compares the common

multiples for the first overlap in each node using the selection order.

Benjamin J. Keller Chapter 3 47

PathFUN

Path

Graph

GraphFUN

Buchberger

BuchFUN

TripleSet

TriplesFUN

PolySet

PolySetFUN

Polynomial

PolyFUN

Field

PatternMatch

PatternMatcherFUN

AdmissOrder

AdmissOrderFUN

Figure 3.15: Structure of the Prototype.

Benjamin J. Keller Chapter 3 48

When an element is selected, the first overlap in the tuple at the head is used to form a triple,

and the tuple consisting of the remaining overlaps is reinserted into the list. A pair of hash tables for

looking up triples for particular polynomials is also included (the tables correspond to polynomials

occurring on the right and left of some triple). The hash tables are used for deleting triples when a

polynomial is reduced during redundant element reduction.

Polynomial sets are implemented as a dynamic array (from the SML/NJ library) of polynomials

and a dynamic dictionary pattern matcher. For redundant element deletion, the deleted elements

are kept in the array, but their leading terms are removed from the pattern matcher. So, the deleted

elements are not included in new triples and are not accessible except by operations on triples in

which they already occur.

Polynomials are implemented as SML lists of coefficient-path pairs, with the empty list repre-

senting the zero polynomial. The polynomials are kept sorted by the admissible order. Paths are

also implemented as an SML data type consisting of a zero value and tuples describing the path.

The tuples hold the source and target vertices, the list of arcs in the path, and the weight of the

path. A path which is a single vertex is a tuple with the vertex as both its source and target and the

arc list empty. The coefficients are from the field structure, which represents the Integers modulo a

prime (which for the experiments is fixed to be 32117).

The admissible order structure provides higher order functions that can be used to build up orders

from an alphabetic order (constructed using the graph structure). The functions to build orders

include one for the lexicographic order that takes an alphabetic order as an argument, and seven other

functions that take orders on paths as arguments and produce orders on paths. The order producing

functions are length, weight (for integer weightings), reversal, vector lexicographic (identical to

the commutative left lexicographic ordering), and inverse vector lexicographic (commutative right

lexicographic). To build an order function, a lexicographic order is built first and then one of the

other orders is used to add other tests as prefixes to the order. (Not all compositions of these

functions produce admissible orders, but the prototype does not check admissibility.)

In the prototype, the graph structure plays the role of a symbol table for checking whether the

symbols in an input polynomial are valid, and whether two arcs compose. The graph is implemented

using the binary tree dictionary structure from the SML/NJ library to store a dictionary of arcs and

vertices.

In addition to the structures shown in Figure 3.15, the prototype includes an instrumentation

Benjamin J. Keller Chapter 3 49

structure used to collect information about the execution of the system. Information collected

includes execution time, counts of reductions, and maximum cardinality of the generating set (or

basis) and the triple set. Information about coefficient size is not gathered since the size of the

representation of finite field elements is bounded and is small in our case (for the field of rationals or

rational function fields, gathering this information can be important to understand how coefficient

explosion affects the computation).

3.5.2 Experiments

Three basic experiments have been done using the prototype. The first experiment is a comparison

of the different strategies for a small set of ‘real’ problems (provided by Dr. Green). The second

experiment compares the set reduction strategies using a randomly generated instance for which the

Gröbner basis is (effectively) infinite. The third experiment compares triple elimination strategies

for problems that are specifically designed to produce unnecessary overlaps.

For all of the experiments, each of the prototype configurations was built using the SML of New

Jersey compiler (version 0.93) on an IBM RS/6000 model 530H running AIX 3.2. Each problem

instance was run over the network with no other users on the system. No repetitions were done since

other experiments showed that the variance of observed times is very small for repetitions under

these conditions.

3.5.2.1 General Comparison

The following experiments are a comparison of most of the combinations of strategies for selection,

triple elimination, and set reduction.

Input Instances The selection strategies considered are shortest and normal, and both forms of

set reduction are considered. For elimination, the eager, lazy, and hybrid strategies are compared, as

is the algorithm with no elimination. The combination of these strategies is not complete, since the

hybrid strategy was not run with redundant element deletion, and the algorithm with no elimination

was only run using the normal selection strategy.

Each algorithm was run with problem instances from nine problems. (More kinds of problems

were considered initially, but the computations for some are too trivial to distinguish between the

different algorithms.) The problems are divided between five related problems in a free algebra,

Benjamin J. Keller Chapter 3 50

aa+ 5ab+ 7ac+ 11ba+ 2bb+ 31bc+ 19ca+ 13cb+ 23cc,
ab+ 5ac+ 7ba+ 11bb+ 2bc+ 31ca+ 19cb+ 13cc,

ac+ 5ba+ 7bb+ 11bc+ 2ca+ 31cb+ 19cc,
ba+ 5bb+ 7bc+ 11ca+ 2cb+ 31cc,

bb+ 5bc+ 7ca+ 11cb+ 2cc,
bc+ 5ca+ 7cb+ 11cc,

ca+ 5cb+ 7cc,
cb+ 5cc

Figure 3.16: Generic Quadratic Relations for Free Algebra Instances.

a a’

b’
b c

c’

Figure 3.17: Example Graph for Mesh Algebra.

three instances from mesh algebras, and one other problem. These problems are not representative

of a wide range of problems, but can, for some orders, be difficult to compute.

The free algebra problems are size k subsets (taken as prefixes of the list, for k = 4, . . . , 8) of the

generic quadratic relations over three variables {a, b, c} as shown in Figure 3.16. These free algebras

problems are identified as Ak where k is the size of the generating set.

Generators for mesh algebras are determined by the graph. The graph must have pairs of inverse

arrows between adjacent vertices (if an arc exists, so must its inverse). There is one generator for

each vertex in the graph. This generator is the sum of all length 2 paths from the vertex to itself

(so each path is an arc and its inverse). As an example, the generators for the graph in Figure 3.17

are {aa′ + bb′ + cc′, a′a, b′b, c′c}.
The mesh algebra instances used in the experiment are based on binary trees. The graph for

instance BT7 is a binary tree with seven nodes, and the graph for BT31 is a binary tree with thirty-

one nodes. Instance M39 is a modification of BT31, where the graph has an additional eight vertices

used to create cycles by adding arcs to the eight pairs of leaves.

The last input instance is P5, which is a Froebenius algebra [50]. The exact problem instance is

given in Appendix C.

Benjamin J. Keller Chapter 3 51

Each of these individual problems is combined with each of eight orders to form an input instance.

The orders considered are length lexicographic (l), length reverse lexicographic (lr), length vector

lexicographic (lv), length reverse vector lexicographic (li), length reverse right vector lexicographic

(lri), vector lexicographic (v), and right vector lexicographic (i). The total number of cases for the

experiment is 864.

The free and mesh algebra problems are all homogeneous and are run with a degree bound of

six. The P5 instance has a finite Gröbner basis and so is run without a bound.

Results The prototype provides both count and timing information from each run. The results

from the experiments is given in Appendix E in individual tables for each problem. The count

results are given in Tables E.1–E.9 and the timing results are given in Tables E.10–E.18. The count

results only include the number of reductions, the number of reductions to zero, and the maximum

cardinalities of the triple set and basis. The other counts are not common to every algorithm and

so are not included.

Analysis A simple ranking method is used to summarize the results. Each table is first partitioned

into groups of instances that have the same values for each of the four observed counts. These groups

are sorted lexicographically by the number of reductions, the number of zero reductions, the triple

set cardinality and then the basis cardinality. The groups are then assigned a rank based on their

order in the sequence of groups, which gives each combination of algorithms a rank for each input.

Finally, the ranks are averaged for each combination of algorithms. Table 3.1 shows the ranking and

average ranks for problem A4.

The average ranks for the free algebra instances are given in Table 3.2, the average ranks for the

mesh algebra instances are given in Table 3.3, and the average ranks for the P5 instance are given in

Table 3.4. The selection strategy divides each table into two parts, with shortest being best. Also,

the average rank values are equal for the different forms of elimination when shortest selection is

used, but not for normal selection.

The next obvious partition is how the three elimination strategies further divide the two groups.

In both groups, they occur ranked eager first, hybrid second, lazy third, and no elimination last.

(Note also that this ranking mirrors the pattern between these strategies in Table E.9 which suggest

the ranking method isn’t masking any major effects.) The relationship between set reduction strate-

gies is not as clear, although for most problems element reduction is ranked better than element

Benjamin J. Keller Chapter 3 52

Table 3.1: Ranking of Algorithms by Counts for Problem A4 (Part One).

Configuration Order Rank Avg Rank

Eager, Deletion, Normal l 1 7
lr 1
li 4
lv 4
lri 7
lrv 7
v 12
i 13

Eager, Deletion, Shortest l 1 4
lr 1
i 4
li 4
lv 4
v 4
lri 7
lrv 7

Eager, Reduction, Normal l 1 8.5
lr 1
li 4
lv 4
lri 7
lrv 7
v 14
i 16

Eager, Reduction, Shortest l 1 4
lr 1
i 4
li 4
lv 4
v 4
lri 7
lrv 7

Benjamin J. Keller Chapter 3 53

Table 3.1: Ranking of Algorithms by Counts for Problem A4 (Part Two).

Configuration Order Rank Avg Rank

Hybrid, Reduction, Normal l 2 10
lr 2
li 5
lv 5
lri 8
lrv 8
v 15
i 18

Hybrid, Reduction, Shortest l 2 5
lr 2
i 5
li 5
lv 5
v 5
lri 8
lrv 8

deletion.

The time data reveals a slightly different ranking. Using the same method, the average rank of

the algorithms determined by the times is given in Table 3.5, Table 3.6 and Table 3.7. Here the

hybrid approach to elimination wins over both eager and lazy elimination. The likely cause of this

is the way that eager elimination is implemented in the prototype; the count behavior of the eager

and hybrid strategies is considered again below.

Looking at the tables for this experiment in the appendix and Table 3.1, there is a strong

relationship between the groups and the orders. The ranks assigned to individual combinations of

algorithms and orders are grouped primarily by order rather than algorithm. Note that the length

orders, in particular, have the highest rank in all cases in Table 3.1. The choice of order is considered

in Chapter 5, but it is important to note here how the count results are uniform with respect to

the order. This suggests that orders have a stronger influence over the count behavior than the

algorithm (this is consistent with the folklore for commutative Gröbner bases).

3.5.2.2 Set Reduction

To address the question of which form of set reduction is better, we consider one larger problem.

The problem instance is randomly generated using the algorithms described in Appendix C. The

Benjamin J. Keller Chapter 3 54

Table 3.1: Ranking of Algorithms by Counts for Problem A4 (Part Three).

Configuration Order Rank Avg Rank

Lazy, Deletion, Normal l 3 12
lr 3
li 6
lv 6
lri 9
lrv 9
v 20
i 21

Lazy, Deletion, Shortest l 3 6
lr 3
i 6
li 6
lv 6
v 6
lri 9
lrv 9

Lazy, Reduction, Normal l 3 11
lr 3
li 6
lv 6
lri 9
lrv 9
v 17
i 19

Lazy, Reduction, Shortest l 3 6
lr 3
i 6
li 6
lv 6
v 6
lri 9
lrv 9

Benjamin J. Keller Chapter 3 55

Table 3.1: Ranking of Algorithms by Counts for Problem A4 (Part Four).

Configuration Order Rank Avg Rank

None, Deletion, Normal l 10 17.5
li 10
lr 10
lv 10
lri 11
lrv 11
i 22
v 25

None, Reduction, Normal l 10 17
li 10
lr 10
lv 10
lri 11
lrv 11
v 23
i 24

Table 3.2: Average Rank of Algorithms for Free Algebra Instances.

Elimination Set Reduction Selection A4 A5 A6 A7 A8
Eager Deletion Shortest 4 4 2.5 1 1
Eager Reduction Shortest 4 4 2.5 1 1
Hybrid Reduction Shortest 5 5 3 1 1
Lazy Deletion Shortest 6 6 4 2 2
Lazy Reduction Shortest 6 6 4 2 2
Eager Deletion Normal 7 11 6.5 2 1
Eager Reduction Normal 8.5 9.5 4.5 2 1
Hybrid Reduction Normal 10 11 4.5 2 1
Lazy Reduction Normal 11 12.5 5.5 3 2
Lazy Deletion Normal 12 13.5 7.5 3.5 2
None Reduction Normal 17 17 8.5 6.5 3
None Deletion Normal 17.5 17.5 9.5 7 3

Benjamin J. Keller Chapter 3 56

Table 3.3: Average Rank of Algorithms for Mesh Algebra Instances.

Elimination Set Reduction Selection BT7 BT31 M39
Eager Deletion Shortest 13 17 7
Eager Reduction Shortest 13 17 7
Hybrid Reduction Shortest 14.5 19 8
Lazy Deletion Shortest 15 20.5 8.5
Lazy Reduction Shortest 15 20.5 8.5
Eager Deletion Normal 16.5 16.5 6.5
Eager Reduction Normal 16.5 16.5 6.5
Hybrid Reduction Normal 17 18.5 7.5
Lazy Reduction Normal 17.5 21.5 9
Lazy Deletion Normal 18 21.5 9
None Reduction Normal 21 13.5 10.5
None Deletion Normal 22.5 13.5 10.5

Table 3.4: Average Rank of Algorithms by Counts for P5 Instance.

Elimination Set Reduction Selection P5
Eager Deletion Shortest 10
Eager Reduction Shortest 10
Hybrid Reduction Shortest 12
Lazy Deletion Shortest 14
Lazy Reduction Shortest 14
Eager Deletion Normal 15.5
Eager Reduction Normal 16
Hybrid Reduction Normal 17
Lazy Reduction Normal 18.5
Lazy Deletion Normal 19
None Reduction Normal 36
None Deletion Normal 36.5

Benjamin J. Keller Chapter 3 57

Table 3.5: Average Rank of Algorithms by Time for Free Algebra Instances.

Elimination Set Reduction Selection A4 A5 A6 A7 A8
Hybrid Reduction Shortest 2.5 1.5 1.5 1 1
Lazy Deletion Shortest 3 1.5 1.5 1 1
Lazy Reduction Shortest 3 1.5 1.5 1 1
Eager Deletion Shortest 4 1.5 1.5 1 1
Eager Reduction Shortest 4.5 1.5 2 1 1
None Reduction Normal 9 6 3 1 1
None Deletion Normal 10.5 9 5 1 1
Eager Deletion Normal 12.5 6.5 5 1 1
Lazy Deletion Normal 13 7.5 3.5 1 1
Eager Reduction Normal 13 7.5 5.5 1 1
Hybrid Reduction Normal 13.5 4.5 4 1 1
Lazy Reduction Normal 13.5 5.5 3.5 1 1

Table 3.6: Average Rank of Algorithms by Time for Mesh Algebra Instances.

Elimination Set Reduction Selection BT31 BT7 M39
Lazy Reduction Normal 22.5 2 11
Lazy Reduction Shortest 23 2 12.5
Hybrid Reduction Normal 23.5 2 13.5
Hybrid Reduction Shortest 24 2 12
Lazy Deletion Normal 24.5 2 14
Lazy Deletion Shortest 25 2 14
None Deletion Normal 26 8 15
None Reduction Normal 28 9 16
Eager Deletion Shortest 30 2.5 10.5
Eager Reduction Shortest 31 2.5 11
Eager Deletion Normal 32 3 11.5
Eager Reduction Normal 33 3 13

Benjamin J. Keller Chapter 3 58

Table 3.7: Average Rank of Algorithms by Time for P5 Instance.

Elimination Set Reduction Selection P5
Hybrid Reduction Shortest 4
Hybrid Reduction Normal 6
Eager Deletion Shortest 11
Eager Reduction Shortest 11
Eager Deletion Normal 14
Eager Reduction Normal 14.5
Lazy Deletion Shortest 27.5
Lazy Reduction Shortest 27.5
None Reduction Normal 28
None Deletion Normal 29.5
Lazy Reduction Normal 31
Lazy Deletion Normal 32

Table 3.8: Observations for Comparison of Set Reduction Techniques.

Algorithm Total Zero Triple Set Basis Time Complete

Element Deletion 624 224 260 2413 30 hours No
Element Reduction 726 475 822 904 36 hours Yes

problem is instance GL in Appendix D (see the Appendix for the parameters for generation). The

graph has 30 nodes and 457 arcs, and the generating set has 1940 inhomogeneous elements (the

input file requires 1.5 Megabytes of disk space). Only the right vector lexicographic order is used,

along with the shortest selection strategy. The problem was run using eager elimination combined

with both redundant element deletion and element reduction. The problem was run with a bound

of 400 nonzero reductions.

The results are given in Table 3.8, which includes reduction counts, elimination counts, the

maximum cardinalities and approximate computation time. The table also shows whether the result

is the entire Gröbner basis.

This experiment illustrates a phenomenon where using redundant element deletion fails to find a

finite Gröbner basis that is found by using redundant element reduction. The difference between the

number of reductions and the number of zero reductions is exactly 400 for the redundant element

deletion observation, and less than 400 for the redundant element reduction observation. This

suggests that the reduction of triples for redundant elements may not necessarily go to zero. Also,

Benjamin J. Keller Chapter 3 59

note that the maximum cardinality of the working generating set for redundant element deletion is

more than twice the size of that for redundant element reduction.

This result shows only that redundant element deletion is not suitable to be used in conjunction

with the bounded algorithm. It is not clear that element reduction is better in general. However,

the fact that the overlap set for element deletion is more than three times the size of the set for

element reduction is a good indication of the space overhead involved. More experimentation is

required to give a definitive answer, but the first set of experiments indicate that other factors have

more influence on the computation.

3.5.2.3 Elimination Strategy

Finally, the three triple elimination strategies are compared again. The real question is how to

choose between the eager and hybrid strategies.

For this experiment, seven problem instances were run. The problems are BT7, BT31, A4 and P5

from before, and three new problems DCYC, ELP and ICYC that are designed to cause eliminations

to occur. The DCYC, ELP, and ICYC instances are given in Appendix D. They all include a set

of elements whose tips overlap and subsequent terms are chosen to form new overlaps and divide

others.

All seven problems are run using the length lexicographic order defined in terms of the default

alphabetic order determined by their specification, and also using a randomly chosen alphabetic

order. Only shortest selection was used. The count results are given in Tables 3.9–3.15.

Note that for most problems, there seems to be no (or little) difference between the count

observations for eager and hybrid elimination. To determine whether the difference between the

results for the different techniques is truly significant, we compute the 95% confidence intervals of

the differences between count values for the three algorithms and for each problem. In particular,

we consider the maximum triple set cardinality and the total number of triple eliminations (both

during initialization and the computation). For the count of triples eliminated, results for five of the

seven problems show that the difference between the eager and hybrid is not significant. However,

for problems for which eager and hybrid are not significantly different, none of the approaches are

distinguished. For the maximum triple set cardinality, three of the seven problems show that eager

and hybrid are not significantly different.

These results suggest that eager elimination does perform better than the hybrid approach in

Benjamin J. Keller Chapter 3 60

Table 3.9: Counts for Comparison of Elimination Strategies for Problem BT31.

Algo. Order Total Zero Elims Max Triple Max Basis

Eager Default 368 212 192 82 147
Lazy Default 368 212 192 209 147
Hybrid Default 368 212 192 82 147
Eager Random 368 212 192 82 147
Lazy Random 368 212 192 209 147
Hybrid Random 368 212 192 82 147

Table 3.10: Counts for Comparison of Elimination Strategies for Problem BT7.

Algo. Order Total Zero Elims Max Triple Max Basis

Eager Default 10 5 0 5 12
Lazy Default 10 5 0 5 12
Hybrid Default 10 5 0 5 12
Eager Random 82 50 24 30 27
Lazy Random 82 50 24 47 27
Hybrid Random 82 50 24 30 27

general. However, only for the DCYC instance is the average difference for these counts over 10. So,

from a practical perspective, the difference between the approaches may not be enough to justify

the extra space overhead required for an efficient implementation of eager elimination.

3.5.3 Implications for Implementation

Although the experimentation discussed above is not exhaustive, it does suffice to make some choices

for implementation. The best configuration of algorithms appears to be shortest selection, hybrid

elimination, and redundant element reduction.

Table 3.11: Counts for Comparison of Elimination Strategies For Problem DCYC.

Algo. Order Total Zero Elims Max Triple Max Basis

Eager Default 198 125 479 87 75
Lazy Default 198 125 262 516 75
Hybrid Default 198 125 460 105 75
Lazy Random 208 140 279 390 75
Eager Random 218 146 540 94 79
Hybrid Random 218 146 514 125 79

Benjamin J. Keller Chapter 3 61

Table 3.12: Counts for Comparison of Elimination Strategies For Problem ELP.

Algo. Order Total Zero Elims Max Triple Max Basis

Eager Default 45 38 6 28 13
Lazy Default 45 38 10 73 13
Hybrid Default 45 38 6 30 13
Eager Random 93 79 25 55 20
Lazy Random 93 79 32 132 20
Hybrid Random 93 79 27 56 20

Table 3.13: Counts for Comparison of Elimination Strategies for Problem ICYC.

Algo. Order Total Zero Elims Max Triple Max Basis

Eager Default 29 20 17 13 16
Lazy Default 29 20 21 32 16
Hybrid Default 29 20 18 15 16
Eager Random 54 38 42 25 21
Lazy Random 54 38 47 59 21
Hybrid Random 54 38 43 28 21

Table 3.14: Counts for Comparison of Elimination Strategies For Problem A4.

Algo. Order Total Zero Elims Max Triple Max Basis

Eager Default 48 38 39 38 14
Lazy Default 48 38 39 80 14
Hybrid Default 48 38 39 45 14
Eager Random 48 38 39 38 14
Lazy Random 48 38 39 80 14
Hybrid Random 48 38 39 45 14

Table 3.15: Counts for Comparison of Elimination Strategies for Problem P5.

Algo. Order Total Zero Elims Max Triple Max Basis

Eager Default 69 43 47 22 41
Lazy Default 69 43 47 301 41
Hybrid Default 69 43 47 27 41
Eager Random 65 41 59 27 39
Lazy Random 65 41 59 284 39
Hybrid Random 65 41 59 28 39

Benjamin J. Keller Chapter 3 62

As discussed above, the choice between hybrid and eager elimination is not one of choosing

the optimal approach. Hybrid elimination misses some possible eliminations, but eager elimination

requires more space for efficient implementation. Since, the difference between the two strategies is

generally not large, hybrid elimination appears to be the best choice.

The choice of redundant element reduction is based on the one problem instance for which

redundant element deletion performs so badly. For finite and homogeneous input, the choice is not

so clear. However, it does appear that element reduction does require less overhead in general.

The Opal system is implemented using this configuration, but allows the user to choose selection

strategy (the choice is between normal, shortest, and minimum weight using a weight order).

Chapter 4

Pattern Matching

Pattern matching problems arise naturally in the computation of Gröbner bases in noncommutative

algebras. The algorithm repeatedly tests whether one polynomial term divides another, or if two

terms have a nontrivial common multiple. Because terms of noncommutative polynomials are words

in a free semigroup, these tests are pattern matching searches with a dictionary of strings. The

dictionary D is the set of tips of the generating set. In this chapter, the dynamic dictionary matching

approach of Amir et al. [2] is extended to solve the pattern matching problems involved in the

noncommutative Gröbner basis computation.

A similar situation occurs in the closely related computation of Knuth-Bendix completion for

string rewriting (see [10]). There the dictionary is the set of left-hand sides of rewrite rules, but

the pattern matching problems are identical. Although a static form of dictionary matching is used

in string rewriting, the dynamic technique developed here has not been used previously in string

rewriting or for similar applications. The approach described is significant because it dramatically

improves the time required for the pattern matching involved in the Gröbner basis and string com-

pletion computations.

The chapter is organized as follows. Section 4.1 identifies the pattern matching problems involved

in the computation of Gröbner bases. Then Section 4.2 discusses the similar problems of matching

for Knuth-Bendix completion for string rewriting and dynamic dictionary matching. Section 4.3

presents the suffix tree data structure used for the solution, and the searches are presented in 4.4.

Finally, section 4.5 is a brief summary.

63

Benjamin J. Keller Chapter 4 64

4.1 Pattern Matching in the Gröbner Basis Computation

The Gröbner basis computation is dominated by operations that use pattern matching. These

operations are overlap computations to form triples, polynomial reduction, set reduction, and triple

elimination. Both reduction and overlap computation occur at every iteration of the algorithm, and

it is important to make sure that these operations are as fast as possible.

Recall (from Section 2.2) that the tip of a polynomial p is denoted tip(p), and the set of tips

of a set of polynomials P is denoted Tip(P). Also, a triple t = 〈p, q, v〉 is a pair of polynomials p,

q together with an overlap v of their tips. The overlap determines a common multiple of the tips

denoted cm(t).

The operations in the Gröbner basis computation that use pattern matching are the following.

Computing overlaps. Overlaps are computed when a new nonzero, reduced overlap relation h

is added to G. An overlap of a word p with a word q is a nonempty suffix of p that is also a prefix

of q. The overlaps to be computed are all those of tip(h) with Tip(G ∪ {h}).

Polynomial reduction. Polynomial reduction of a polynomial q by a set of polynomialsP requires

finding all p ∈ P such that tip(p)|m for some term m of q. For tip-reduction, m = tip(q).

Set reduction. Set reduction is performed when a new nonzero reduced overlap relation h is

added to G. Since set reduction removes all elements of G that are tip-reducible by h, the goal is to

find all g ∈ G such that tip(h)|tip(g).

Triple elimination. Triple elimination is performed when the triples formed by a new element h′

and G are added to T . For each new triple s, first test that there is no t ∈ T such that cm(t)|cm(s);

if not, remove all t ∈ T such that cm(s)|cm(t).

Both the set Tip(G) of tips of G and the set of common multiples C for the triples can be

viewed as dictionaries of words on which searches must be performed. Only three types of pattern

matching searches are needed for the four operations described. Overlap searches are (obviously)

used to compute overlaps; subword searches are used for polynomial reduction and triple elimination;

and superword searches are used for both set reduction and triple elimination. In addition to

fast algorithms for these searches, a pattern matching mechanism must allow fast insertions to

Benjamin J. Keller Chapter 4 65

and deletions from the dictionary. Our extension of dynamic dictionary matching satisfies these

requirements.

Note that G is tip-reduced and so has the property that no tip of an element of G is a subword

of another tip. Therefore, it is safe to assume that the dictionary of words D has this property.

In particular, for all d ∈ D, there is no d′ such that d′|d. This assumption allows a significant

simplification in the data structures of Amir et al. [2].

If w is a string not in D, the subword and superword searches for w are the following:

1. Subword search – find all (d, i) where d ∈ D and d is a subword of w beginning at the ith

symbol of w.

2. Superword search – find all (d, i) where d ∈ D and w is a subword of d beginning at the ith

symbol of d.

The overlap searches are split into two kinds. Again, w is not a subword of any element of D.

1. Left-overlap search – find all (d, s) where d ∈ D and s is a suffix of d and a prefix of w.

2. Right-overlap search – find all (d, p) where d ∈ D∪{w} and p is a prefix of d and a suffix of w.

The suffix-tree insertion algorithm used makes it convenient to have the search of overlaps of w with

itself to be a right-overlap search. If another insertion algorithm is used, then it may be better to

have the search for self-overlaps be a left-overlap search.

4.2 Related Problems

As noted in Chapter 2, the computation of Gröbner bases is similar to Knuth-Bendix completion for

term-rewriting and string rewriting. In term rewriting the corresponding matching problems are to

find left-hand sides of rules that unify with terms to be reduced and finding critical pairs for pairs

of rules. Completion in term rewriting uses discrimination trees to match terms and to find critical

pairs [23].

Other (simpler) structures are used for matching in string rewriting. Sims [52] defines index

automata that can be used for the pattern matching problems in completion of string rewriting

systems. These matching problems are the same as for the Gröbner basis computation; however,

Sims suggests using the dictionary matching approach of Aho and Corasick [1]. The dictionary

Benjamin J. Keller Chapter 4 66

matching problem is to find all occurrences of all words in a given dictionary in a search string (this

is the same as the subword problem described in the previous section). Aho and Corasick show how

to compute an automaton for the dictionary that can be used for the search. This data structure

cannot be modified and so the addition and deletion of elements of the dictionary is linear in the

size of the dictionary. Therefore, the approach of Aho and Corasick is not suited for use in the

Gröbner basis computation (or Knuth-Bendix completion). The result is that index automata are

too expensive when implemented this way. In the string rewriting system kbmag the index automata

are used for testing confluence, but not for general completion since they are too expensive to rebuild

when new words are added to the dictionary [33].

Amir et al. [2] introduce the dynamic dictionary matching approach as a dynamic alternative to

Aho and Corasick’s static approach. Instead of using a static data structure, Amir et al. implement

the search automaton using a suffix tree. The suffix tree allows additions to and deletions from the

dictionary in time linear in the size of the added word.

In the general situation considered by Amir et al., one dictionary word may be a subword of

another. In this case, the longer word is hidden by the shorter word, and so an additional data

structure is required to keep track of the subword relationships. However, this situation does not

occur for the Gröbner basis computation as long as the set of generators is tip-reduced. As a

consequence, the additional data structure is not needed in our application.

4.3 Suffix Trees and Dictionary Matching

Dynamic dictionary matching is implemented using suffix trees. A suffix tree is a compacted trie

(an edge may be labeled by an arbitrary length word) for the suffixes of a word. Suffix trees can be

defined as follows.

Definition 4.1 Let s be a string of length m terminated by a unique symbol that appears nowhere

else in s. The suffix tree for s is the rooted tree with a leaf for each nonempty suffix and at most

m− 1 internal nodes and satisfying:

1. each edge of the tree is labeled by a substring of s, and each node corresponds to a position in

s;

2. no two sibling edges have labels with a common nonempty prefix; and

Benjamin J. Keller Chapter 4 67

b a

b c

a

1 2

3

3 2 c1 1 ab2

a3 2 ba3 3

Figure 4.1: Dictionary Suffix Tree.

3. each leaf corresponds to a particular suffix of s given by the concatenation of the labels from

the root to the leaf [25, pp.182–183].

Note that each node v in a suffix tree corresponds to a unique string l(v) formed by concatenating

the labels of the edges from the root to v. For each v, the label l(v) is a prefix of the suffixes

represented by all leaves of the subtree rooted at v. Given a word s such that s = l(v) for some

node v of a suffix tree, then v is called the locus of s [42]. Note that for a word of length m, there

are m leaves of the suffix tree, and the size of the tree is bounded by 2m− 1.

For dictionary matching, the suffix tree holds the suffixes for the individual dictionary words. If

the dictionary is {w1, . . . , wn}, the suffix tree is isomorphic to the suffix tree for the word formed by

concatenating the words wi separated by special symbols outside of the alphabet. Numeric symbols

are sufficient here, so the tree for a dictionary of n words corresponds to the tree for the string

w11w22 · · ·n − 1wnn. For example, the tree for the dictionary {cc, cab, baba} shown in Figure 4.1

corresponds to the suffix tree for cc1cab2baba3 (where any part of the suffix past the first digit has

been deleted). The tree is actually built by inserting each dictionary word in sequence.

The insertion algorithm and data structure used for the suffix tree are based on that of Mc-

Creight [42]. McCreight’s algorithm inserts the suffixes from the longest to the shortest, and uses

suffix links in the tree so that insertion requires only linear time. A suffix link is an extra arrow

from a node v to the node labeled by the suffix of l(v) formed by removing the first symbol. (Only

internal nodes have suffix links.) The tree for the dictionary {cc, cab, baba} with suffix links added

is shown in Figure 4.2.

Benjamin J. Keller Chapter 4 68

b a

b c

a

c ab3

3

21

2 1

3

21

a3 2 3ba

Figure 4.2: Dictionary Suffix Tree with Suffix Links.

McCreight’s algorithm is based on the fact that prefixes of subsequent suffixes are related. Let

w be a word and wk be the length k suffix of w. Define head(wk) = s, where s is the longest prefix

of wk that is also a prefix of wl for some l satisfying |w| > l > k. McCreight [42] shows that if

head(wk+1) = aα for a symbol a and a possibly empty word α then α is a prefix of head(wk). The

implication for the algorithm is that if the locus of head(wk+1) is given, then the common prefix

with wk does not have to be scanned.

The algorithm for inserting each suffix is given by Amir et al. [2] (they call it procedure STI). The

arguments to the algorithm are the locus v of the previous head head(wk+1) and the current suffix

wk. The locus v is used to determine whether the previous head is empty or not, which determines

how to insert the suffix. Basically the algorithm has the goals of inserting each suffix and updating

the suffix link for the head of each suffix. The insertion algorithm is given in Appendix B.

Each step of the construction of the suffix tree for the dictionary {cc, cab, baba} is shown in

Figures 4.3–4.5. Figure 4.3 shows the suffix tree before the insertions and after the insertion of each

suffix of cc. In each tree, a leaf (the black node) is added, a suffix link for the previous head is

added, and possibly new interior nodes are added. Figure 4.4 shows the insertion of cab into the tree

for cc, and Figure 4.5 and Figure 4.5 show the insertion of baba into the tree for {cc, cab}. These

figures do not illustrate the use of suffix links, but do show how later suffixes are folded into the tree,

possibly introducing new interior nodes. Deletion is done in a similar fashion by removing suffixes

from longest to shortest. Deletion may remove nodes and merge arcs when a child node is deleted.

Benjamin J. Keller Chapter 4 69

c1 c1

cc1

1

1

1

cc

Figure 4.3: Construction of Suffix Tree for cc.

ab2c1

ab2c1

ab2

ab2c1

ab2

ab2c1

ab2
c

1

1

c

1

1
b2

c

1

1
b22

c

1

1

Figure 4.4: Extension of Suffix Tree for cc by Inserting cab.

Benjamin J. Keller Chapter 4 70

aba 3

3a aba 3

b c

c ab

21

2 1 21

ab 2

b c

c ab

21

1 21

ab

2 2

a

b c

c ab

21

2 1

3

21

3ba

3 a3

ab

Figure 4.5: Extension of Suffix Tree for {cc, cab} by Inserting baba (Part One).

Benjamin J. Keller Chapter 4 71

b a

b c

c ab3

21

2 1

3

21

a3 2 3ba

a

b a

b c

a

c ab3

3

21

2 1

3

21

a3 2 3ba

Figure 4.5: Extension of Suffix Tree for {cc, cab} by Inserting baba (Part Two).

Benjamin J. Keller Chapter 4 72

Two modifications are made to the suffix tree. The first is to distinguish between nontrivial

suffixes and full dictionary words. To do this, define pattern leaves to correspond to full dictionary

words, and suffix leaves to correspond to any other suffix. This modification is mostly conceptual

since in practice each leaf is labeled to identify the suffix and the word to which it corresponds.

The second modification to the suffix tree is to the nodes of the tree. A counter is added to each

node v that indicates the number of pattern leaves in the subtree rooted at v. This counter helps

to restrict the superword search as discussed in Section 4.4.1. The insertion operation is changed so

that when a full pattern word w is inserted, the counter for each existing node along the path to the

leaf for w is incremented as the scan passes it. Also, when a new interior node is created by splitting

an arc, the counter of the new node is set to the value of its children. The deletion operation is

changed to decrement the counters during the search for the leaf of the full word. The modified

insertion and deletion operations are still accomplished in linear time. Another modification of the

insertion algorithm is needed for computing overlaps and is described below.

4.4 Pattern Matching Solution

The dynamic dictionary matching approach of Amir et al. [2] supports linear time modifications to

the dictionary, but only implements the subword search. In particular, they show how to use a suffix

tree to implement the automata for the subword search. We describe how the suffix tree structure

also supports the superword and overlap searches.

Each search scans its input with the suffix tree. Scanning is the operation of comparing substrings

of the word to labels of the edges. For example, to scan the word cab by the tree in Figure 4.2,

begin at the root, match c with the arc labeled c and then match ab to the arc labeled ab. Scans

fail if none of the labels for the child arcs of the current node match a prefix of the remaining input

word. As an example, a scan of the word bac by the tree in Figure 4.2 fails because there is no arc

from the locus of ba that is labeled by c. Each step of the scan requires finding the edge from the

current node whose label matches the remaining substring. The cost of this operation depends on

the implementation of the suffix tree, but in the worst case takes time on the order of the number

of letters in the alphabet (which is constant in practice because the unique termination symbols are

not really needed). So, regardless of implementation, scanning a word w takes time O(|w|).

The time complexity of each search is of the form O(n+m), where n is the size of the input and

Benjamin J. Keller Chapter 4 73

m is the size of the output. The input size is n = |w| in all searches, but the size of the output m

depends on the search. In particular, the result by Amir et al. for the subword search [2] implies

the following. Let #(d, w) is the number of times d occurs in w.

Theorem 4.1 The subword search using the suffix tree takes time O(n + m) for which n = |w|,
and m =

∑
d∈D #(d, w).

4.4.1 Superword Search

The superword search takes as input a word w that is not an element of D, and returns as output the

set of pairs (d, i) where d ∈ D and w divides d beginning at position i. This problem is equivalent to

finding all suffixes of d ∈ D that have w as a prefix. The length of the suffix indicates the position

where w divides d, and therefore determines the pair.

The algorithm then is to scan w with the suffix tree for D to find the locus of w. If the scan

fails, then w is not a subword of any dictionary word. Otherwise, the locus v of w exists in the tree.

In this case, return all leaves of the subtree rooted at v.

Theorem 4.2 The superword search of D by w takes time O
(
|w|+

∑
d∈D #(w, d)

)
.

Proof Scanning w takes time O(|w|), and the search of the subtree takes time proportional to

the size of the subtree. The size of a suffix tree is on the order of the number of leaves, which for

the subtree is the size of the output
∑
d∈D #(w, d). �

4.4.2 Left-overlap Search

The left-overlap search takes as input a word w, where w is not in D and is not a subword of any d

in D, and returns the set of pairs (d, k) where k is the length of a suffix of d that is a proper prefix

of w. Viewed the other way, this problem is to find any proper prefix of w that is also a suffix of

some d in D.

The algorithm is to scan w with the suffix tree for D. If during the scan a node is reached that

has a suffix leaf as a child, then the corresponding suffix should be returned. Stop if the scan fails,

or the (|w| − 1)th symbol of w is reached.

Theorem 4.3 The search for left-overlaps of w with D takes time O (|w|+m) where the size of

the output is m =
∑
d∈D

∑min(|d|,|w|)
k=1 p(dk, w) in which dk is the length k suffix of d, and p(dk, w) is

a function which returns one if dk is a prefix of w and zero otherwise.

Benjamin J. Keller Chapter 4 74

Proof Scanning w with the tree takes time O(|w|), and the number of suffix leaves visited is the

size of the output. The size of the output is the number of suffixes of words in D that are prefixes

of w, or

m =
∑
d∈D

min(|d|,|w|)∑
k

p(dk, w).

�

4.4.3 Right-overlap Search

The right-overlap search takes as input a word w, where w is not in D and is not a subword of any

d in D, and returns the set of pairs (d, k) where k is the length of a prefix of d (d ∈ D ∪ {w}) that

is a proper suffix of w. This search is combined with the insertion algorithm.

The insertion algorithm inserts the suffixes of w into the tree from longest to shortest. This

means that w is in the tree before any other suffix of w is inserted. Therefore, when a proper suffix

wk of w is inserted into the tree, any d from D ∪ {w} with wk as a prefix is a pattern leaf in the

subtree rooted at the locus of wk.

The algorithm uses this fact, and after each insertion of a proper suffix wk searches the subtree

rooted at the locus of wk for all pattern leaves. Recall that each node is marked with the number of

pattern leaves in its subtree. The algorithm checks each child and searches a subtree only if its root

has a nonzero number of pattern leaves. The only modification required to the insertion algorithm

is that it return the locus of the suffix inserted so that the subtree can be searched.

Theorem 4.4 The insertion algorithm together with the right-overlap search takes time O(|w|+m)

where m is the sum of the lengths of the words that overlap with w.

Proof The insertion algorithm alone takes O(|w|) time with each suffix insertion taking amortized

constant time [2]. The addition of the subtree search does not affect the asymptotic time for inserting

each suffix. During the search for each insertion, the restriction of the search to subtrees with pattern

leaves takes time bounded by (c − 1)|d| for each dictionary word d corresponding to a pattern leaf

in the subtree where c is the number of symbols in the alphabet. Since c is a constant, the total

time required for searching is O(m) where m is the sum of the lengths of the dictionary words in

the answer. �

Benjamin J. Keller Chapter 4 75

4.5 Summary

The extended form of dynamic dictionary matching is a perfect solution to the pattern matching

problems in the Gröbner basis computation. This approach provides both fast searches (linear in the

size of the input and output) and fast modifications to the dictionary. The ability to quickly modify

the dictionary is crucial to Gröbner basis computations where the dictionary of patterns changes

frequently.

Although our dictionary matching approach is similar to the static approach to string rewrit-

ing defined by Sims, ours is the first approach to dictionary matching that can be used in the

Gröbner basis algorithm (or Knuth-Bendix completion). Previously, only standard string-matching

algorithms such as Knuth-Morris-Pratt or Boyer-Moore have been used. Using these approaches

the matching problems each have time-complexity dependent on the size of the dictionary, and so

could take much longer than the dictionary matching approach employed here. The suffix tree data

structure is implemented in both the prototype described in Chapter 3 and the Opal system.

A possible extension to the described approach would be to combine insertion with deletion of

words that are superwords of the inserted word. This would be useful in set reduction, assuming

that the operation is faster than the sequence of operations that must currently be used: scanning

for superwords, removing each superword individually and inserting the new pattern.

Chapter 5

Admissible Orders

As has been seen earlier, the choice of admissible order is very significant to the computation of

Gröbner bases. Not only can the order determine whether the Gröbner basis of a problem instance

is finite, but it can also affect the time required to compute a finite basis if it exists. Therefore, it is

very important to choose the right order for a given problem instance. This chapter addresses the

problem of choosing an admissible order by experimentally comparing a small class of orders over a

reasonably sized selection of problem instances. The goal is to develop a ranking that can be used

as a guide for the selection of orders for similar problems.

Unfortunately, such a ranking does not appear to exist. The reason is that what order is best for

a problem instance is strongly dependent on the characteristics of the instance, and the relationship

between the orders does not always imply a simple ranking. Despite this fact, we give a ranking

that ignores some of the statistical data that implies that the difference between some orders may

not be significant. We also give some guidance for choosing an order based on experience with the

experimentation.

The chapter begins with a review of the definition of admissible orders. The second section

discusses the experiments conducted to study orders, and the third section analyzes the results. The

next chapter (Chapter 6) explores the relationship between problem instances and admissible orders.

76

Benjamin J. Keller Chapter 5 77

5.1 Related Work

Guidance for choosing admissible orders for noncommutative Gröbner basis computations is not

available in the literature. For commutative Gröbner bases, an order called (degree) reverse lexico-

graphic has been shown to be optimal in the sense that the maximum degree of any tip generated

during a computation using the order is minimal among all possible orders [6]. Reeves [47] demon-

strates that for some problem instances other orders can do as well as the degree reverse lexicographic

order.

The degree reverse lexicographic order corresponds to an order on noncommutative instances

(here it is called “length right vector lexicographic”). However, the proof of optimality uses alge-

braic geometry and does not extend to the noncommutative case. Regardless, it is not clear whether

bounding the maximum size of the tip of any element generated during the computation always

results in the most efficient computation. Also, this notion of optimality is insufficient for computa-

tions of partial Gröbner bases from instances for which the whole Gröbner basis is infinite or is so

large as to be effectively infinite.

Another related problem is the choice of order for string rewriting. Experience in string rewriting

suggests that the length lexicographic order generally results in good performance [39]. However,

for particular classes of problems other orders are better; an example is the recursive path (or

wreath product) order for polycyclic groups [52]. Most results about orders on strings prove general

properties [38] or classification results [51], but there is no comparable result to the result regarding

degree reverse lexicographic for commutative Gröbner bases.

5.2 Definition

Admissible orders in path algebras are not that different from ones in free algebras, but they must

take into account the structure of the graph. As before, Γ is a finite directed multigraph (Γ0,Γ1)

where Γ0 is the set of vertices, and Γ1 is the set of arcs. The admissible orders are defined on the set

B of finite paths of Γ. Recall that the set B includes all vertices (as length zero paths), all arcs, and

all finite walks of Γ. A special element 0 is added to B to represent invalid path compositions. The

set B ∪ {0} is a semigroup with zero where the vertices are idempotents (for v a vertex, v · v = v).

The standard kinds of orders are defined as follows. A partial order ≤ on B is a reflexive,

transitive and antisymmetric relation [17]. A pre-order ≤ on B is a reflexive and transitive relation.

Benjamin J. Keller Chapter 5 78

A total order on B is a partial order such that all p, q ∈ B are comparable, meaning p < q, p > q or

p = q. For any partial (total or pre-) order ≤, p < q means that p ≤ q but p 6= q. A partial (total or

pre-) order≤ on B is a well-order if there no infinite descending chains of elements p0 > p1 > p2 > . . .

from B.

In this chapter, we define admissibility as a property of well-orders.

Definition 5.1 (Admissible Well-Order) An admissible well-order ≤ for the set of paths B is

a well-order of B satisfying these properties

1. If v ∈ Γ0 and p ∈ B \ Γ0, then v < p.

2. If p, q, r, s ∈ B, p < q, and rps 6= 0 6= rqs, then rps < rqs.

These properties together imply that if p|q and p 6= q then p < q.

If a total order ≤ is an admissible well-order, we call ≤ an admissible order. Pre- and partial

orders that are admissible well-orders are called admissible pre-orders and admissible partial orders.

Notice that since a free monoid can be represented by a graph with a single vertex and a loop for

each generator, the admissible orders of string rewriting are included in our definition.

All of the admissible orders dealt with in this chapter can be found by the following construction.

Let (M,≤m) be a monoid M with a total, well-order ≤m such that the operation of M is monotonic

with respect to ≤m and the unit is minimal (e.g., the order satisfies the analogues of the admissibility

conditions). To be precise, the fact that the operation of M is monotonic with respect to ≤m means

that if a < b then ac < bc and ca < cb. (The fact that ac = bc and ca = cb, when a = b follows from

the well-definedness of the operation.) This property implies that M cannot be cyclic, and so must

be infinite. In most cases, M will be finitely generated.

Given M , choose a map f of Γ0 ∪ Γ1 into M such that vertices are mapped to the unit, and

arcs are mapped to any non-unit element. Then there is an induced map f∗ of B into M given by

f∗(pq) = f∗(p)f∗(q). We call f∗ an order embedding and f an order map. Given an order map f on

the arcs and vertices, a pre-order ≤f can be defined on B as p ≤f q if and only if f∗(p) ≤m f∗(q).

Note that in such pre-orders all pairs of paths are comparable because ≤m is a total order. Also,

note that f∗(p) = f∗(q) does not imply that p = q, for a pair of paths p, q.

Lemma 5.1 A pre-order ≤f derived from an order map f : (Γ0 ∪ Γ1)→M is admissible.

Proof We must show that ≤f is a well-order, and that ≤f satisfies the admissibility properties.

Benjamin J. Keller Chapter 5 79

To see that ≤f must be a well-order, suppose that there is an infinite descending chain p0 >f

p1 >f p2 >f . . . in B. By the definition of ≤f , this implies that there is an infinite descending chain

f∗(p0) >m f∗(p1) >m f∗(p2) in M . But this contradicts the fact that ≤m is a well-order, and so

≤f must also be a well-order.

To prove the first admissibility property, let v ∈ Γ0 and p ∈ B \ Γ0. Then f∗(v) = 1 and

f∗(p) = m for some m ∈ M \ {1}. Since, 1 is minimal with respect to ≤m, f∗(v) <m f∗(p) and so

v <f p.

To show the second admissibility property, assume that r, p, q, s ∈ B satisfy rps 6= 0 6= rqs and

that p <f q. Then by the definition of ≤f , f∗(p) <m f∗(q). By the monotonicity of the monoid

operation with ≤m, f∗(r)f∗(p)f∗(s) <m f∗(r)f∗(q)f∗(s). Therefore, rps <f rqs by the definition

of ≤f . �

This construction gives an admissible pre-order, but to have an admissible order the order must

be total (antisymmetric, in particular). To build admissible orders we combine the pre-orders with

a lexicographic order to break the ties. Lexicographic orders on paths are determined by a total

ordering of Γ0 ∪ Γ1 such that the vertices are smaller than the arcs. Such an order is called an

alphabetic ordering. Given an alphabetic ordering ≤α on Γ0 ∪Γ1, the left lexicographic order ≤ll on

B is defined as p ≤ll q if p = q or p = wap′, q = wbq′, and a <α b for some path w, and arcs a and

b. In particular, p <ll q if p is a prefix of q. Given an alphabetic ordering ≤α on Γ0 ∪ Γl, the right

lexicographic order ≤rl is defined as p ≤rl q if p = q or p = p′as, q = q′bs, and a <α b for some path

s, and arcs a, b. In particular, p <rl q if p is a suffix of q. Both lexicographic orders are total and

satisfy the admissibility properties, but are not admissible orders because neither is a well-order.

We can now build admissible orders using an admissible pre-order followed by a lexicographic

order, or by prefixing an admissible order by an admissible pre-order. The following shows that the

result of such a construction is also admissible.

Theorem 5.1 Suppose that ≤f is an admissible pre-order on B defined from an order map f :

(Γ0 ∪Γ1)→M , and that ≤′ is either an admissible order or a lexicographic order on B. Define the

order ≤ by p ≤ q if p <f q or if f∗(p) = f∗(q) then p ≤′ q. Then ≤ is admissible.

Proof We first show that ≤ is a well-order. Suppose that ≤ is not a well-order. Then there is

an infinite descending chain p0 > p1 > p2 . . . in B. But since ≤f is a well-order, for this to happen

there must be an infinite chain of equalities f∗(pi) = f∗(pi+1) = f∗(pi+2) = · · · for some i ≥ 0,

and ≤′ must be a lexicographic order. Assume without loss of generality that this chain consists of

Benjamin J. Keller Chapter 5 80

the shortest paths equivalent under ≤f . Then removing the first arc of each path results in a set

of paths that are strictly ordered by ≤f . Since there are an infinite set of paths, there must be an

infinite descending chain of paths among this set of shortened paths. However, no such chain can

exist since ≤m is a well-order. Therefore, ≤ is a well-order.

To see that ≤ is a total order, note that all paths p, q ∈ B are comparable by ≤f , but there

are some pairs for which f∗(p) = f∗(q). So, ≤f is not a partial order. In this situation, p ≤
q is determined by ≤′ which is total. So, ≤ is antisymmetric and therefore total. Finally, the

admissibility properties hold for ≤ since both of the component orders respect the admissibility

properties. Therefore, ≤ is an admissible order. �

5.3 A Class of Orders

All of the specific orders considered in this thesis can be defined in terms of admissible pre-orders

and lexicographic orders. These orders are the length lexicographic, weight lexicographic, and vector

lexicographic orders. For the length and weight orders, the monoid is the positive integers under

addition, and the total order on the monoid is the numeric order on the integers. For a length order,

the pre-order on paths compares the length of the paths. For a weight order, the pre-order is defined

in terms of a map w that assigns weights to the vertices and arcs. The vertices are all assigned

weight zero, and the arcs are assigned positive weights. The weight pre-order then is determined by

the sum of the weights of the paths. The length order is a special case of a weight order when the

arcs are all given weight one.

For the vector orders, the monoid is the set of positive integer vectors Z n (n = |Γ1|) with

component-wise addition. Two lexicographic orders can be defined on the vectors. The left lexico-

graphic order compares the entries from the left to right, and the vector with the first entry that is

least is less than the order. The right vector lexicographic order compares from the right to the left

and looks for the last entry that is different. The pre-orders are defined by mapping the vertices to

the zero vector, and mapping each arc to a vector with a 1 in a unique entry. The pre-order defined

by the left lexicographic on the vectors is called the (left) vector order, and the pre-order defined

by the right lexicographic order is called the right vector order. The vector orders have the same

definition as the lexicographic orders for commutative monoids.

This class of orders is in no way complete. There are many other orders on strings that could be

Benjamin J. Keller Chapter 5 81

defined on the paths of a graph. Martin [39] considers a wider class of orders on strings.

In the experiments that follow, we exclude the weight orders because there are simply too many

of them, and choosing the “best” weight order for the experiments is not possible. The choice of

orders attempts to keep the group of orders considered small and also to avoid equivalent orders.

In addition to the weight orders, the right lexicographic orders are not considered, thus halving the

number of orders compared.

To avoid equivalences, none of the orders end with the reverse lexicographic order because equiv-

alences between orders can occur by using dual alphabetic orders (orders which are the reverse of

each other). An example is the length reverse lexicographic order which is equivalent to length

lexicographic with a dual alphabetic order. Other more subtle equivalences may exist, but are not

as easily identified.

The vector orders considered are somewhat restricted by the way in which they are implemented

in Opal. The alphabetic order is used to determine the sequence in which the count vectors are

built. If the alphabetic order is a > b > c for the three letter alphabet {a, b, c}, then the count

vectors are 3-tuples where the first entry is the number of a’s, the second entry is the number of

b’s, and the third entry is the number of c’s. So, the words aac, aca, and caa all correspond to

the vector (2, 0, 1). Opal does not allow the definition of vector orders that use a sequence different

from the alphabetic order. Therefore, some vector lexicographic orders cannot be defined. However,

these undefinable orders only differ in the order of words that are permutations of each other (since

these are determined by the lexicographic order). An example is the left vector lexicographic order

defined by using the alphabetic order a > b > c, followed by the lexicographic order defined by the

alphabetic order b > c > a. This order indicates that aabc > bacb > abbc, but the order using

a > b > c for both the vector and lexicographic orders indicates that aabc > abbc > bacb.

5.4 Experimentation

In our experiments the Opal system was used to compare the seven orders: length lexicographic, (left)

vector lexicographic, right vector lexicographic, length (left) vector lexicographic, length right vector

lexicographic, length reverse (left) vector lexicographic, length reverse right vector lexicographic.

The goal of the experiments was to find a ranking of these orders that could be used as a practical

guide to the choice of order. This section describes the experiments.

Benjamin J. Keller Chapter 5 82

5.4.1 Algorithm

The Opal system was used for the experiments. The algorithm used does shortest selection, tip-

reduction, hybrid triple elimination, and eager set reduction. The three forms of termination were

used where appropriate.

5.4.2 Input Problems

Twenty-nine problems were selected for the experiments. These problems can be divided into prob-

lems from mesh algebras, problems from free algebras, randomly generated problems, and problems

in other path algebras. The following problems used in the algorithms experiments are also used

here: A4, A5, A6, BT7, DCYC, ELP, ICYC, and P5. The following problems are new A51E, A51H,

AGS, CG5, CGL, CGL1, HWEB, HWRES, MBFS, MDFS, M1, MM, MS, MT1, MT2, MT3, MT4,

MTB, MTRI, P4, and P6. All of these problems are described in Appendix C.

For each of these problems, four random permutations of the arcs were computed in addition

to the “natural” presentation of the arcs (how the problem instance was first stated). These per-

mutations were used as the alphabetic orders on which the experiments were run. The goal being

to neutralize the effect of the alphabetic order on the choice of admissible order (prior experience

suggests that the alphabetic order has a strong effect). So, for each problem, five instances were

used to compare each order.

5.4.3 Execution

Each problem instance was run noninteractively, with the algorithm using the appropriate form of

termination depending on the problem. Because of the number of problem instances, a time limit

of fifteen minutes was set for each. In practice, this limit was only enforced if it was not practical

for all instances to be run to termination. With the exception of problems HWEB and A51E for

which there are only two observations, all five observations were made for all of the other problems

listed above. (Originally, there were 32 problems, but three were eliminated because they did not

consistently terminate for particular alphabetic orders.)

Benjamin J. Keller Chapter 5 83

5.4.4 Results

For each problem instance the following information was collected: the computation time, the total

number of overlap relation reductions, the number of overlap relation reductions to zero, the number

of simple reductions, and whether the result was a finite Gröbner basis. The detailed results for the

experiments are given in Appendix E.

5.5 Analysis

The goal of these experiments is to rank the orders in a practical sense. This requires that we have

some way to compare orders and determine which is best. For some applications, such as elimination

theory, which is the best order is determined by properties that are needed of the Gröbner basis.

But for most algebraic problems, it is sufficient to find any result. Therefore, we consider a general

notion of best based on getting a finite answer as quickly as possible.

When comparing two orders ≤1 and ≤2 for a problem instance and a bound on the computation,

order ≤1 is better than order ≤2 provided one of the following conditions is true.

1. If either the results found for both orders are finite Gröbner bases or both are not Gröbner

bases, then the computation using ≤1 takes less work.

2. If the result for ≤1 is a finite Gröbner basis, and the result for ≤2 is not.

We analyze the results based on this criterion. The quantity of work is determined by the number

of simple reductions, the number of nonzero reductions and the time required for the computation.

For each problem and each admissible order we compute the averages of the percentage of nonzero

reductions, the total computation time, the number of simple reductions, as well as the percentage of

finite results. Then for each problem the orders were ranked by first sorting them in decreasing order

of the percentage of finite results, and then sorting them by the averages for the number of simple

reductions, total computation time, and the percentage of nonzero overlap reductions. The exact

ranking was determined by comparing the 95% confidence intervals for the differences between the

observations for consecutive pairs of admissible orders in the sorted list. If the confidence interval

for the difference between two consecutive orders (by the sort) does not contain zero then they

are ranked differently. An example for the MM instance is shown in Table 5.1 with the confidence

intervals for the difference between the observations shown in Table 5.2. (In the tables, the following

Benjamin J. Keller Chapter 5 84

Table 5.1: Ranking of Admissible Orders for Instance MM.

Admissible Average % Average Average % Finite
Order Nonzero Time Simple

Reductions Reductions

lrv 0.6071 1.424 32 0.8
l 0.7151 1.488 38.8 0.8
lri 0.5904 2.262 59 0.8
i 0.6203 1.968 39.8 0.6
li 0.6203 1.956 39.8 0.6
lv 0.5404 2.626 65 0.4
v 0.5404 2.648 65 0.4

notation is used to identify the orders: ‘l’ stands for length, ‘v’ stands for (left) vector, ‘i’ stands for

right vector, and ‘r’ stands for reverse.)

This analysis technique finds a ranking, but has some drawbacks. Since we compare only con-

secutive pairs of orders, some differences are ignored even though the confidence intervals suggest

that orders ranked differently, should be ranked the same. This is evident in Table 5.1 where the

length reverse vector lexicographic (lrv) order has a higher rank than the length reverse right vector

lexicographic (lri) order even though they have the same percentage of finite results, and the con-

fidence intervals show that the difference between the number of simple reductions for each is not

significant. What this suggests is that the variation due to alphabetic orders makes such a ranking

meaningless, since the choice of alphabetic order can determine which admissible order is best for a

particular problem.

By looking at these same numbers analyzed to compare alphabetic orders instead of admissible

orders, it is clear that the differences between the alphabetic orders is stronger. Table 5.3 shows the

ranking of alphabetic orders for instance MM, and Table 5.4 shows the 95% confidence intervals for

the differences. The clearest indication of the significance of the alphabetic orders for this problem

is that for the first alphabetic order, finite results were found for all admissible orders where nothing

similar can be said for the admissible orders.

Despite this shortcoming in the analysis we proceed to develop a general ranking of the orders.

The ranking of the orders for individual problems is shown in Tables 5.5–5.8 (the problems are

divided into separate table for instances in free algebras, mesh algebras, other path algebras, and

randomly generated instances). The general ranking is developed by weighting occurrences of each

rank. Rank one has weight seven, rank two has weight six, etc. Then the weighted average for each

Benjamin J. Keller Chapter 5 85

Table 5.2: 95% Confidence Intervals for Differences between Admissible Orders for Instance MM.

Difference Nonzero Reductions Time Simple Reductions
Low High Low High Low High

i-l 0.0676 0.3705 0.5700 2.9500 12.7293 86.0707
i-li 0 0 0.0093 0.0307 0 0
i-lri -0.0134 0.2207 0.2663 3.8497 -8.4354 95.6354
i-lrv 0.0198 0.1136 -0.2729 2.0169 -4.7562 35.5562
i-lv -0.0095 0.1903 -0.2261 2.7181 -8.0316 80.0316
i-v -0.0095 0.1903 -0.2411 2.7931 -8.0316 80.0316
l-li 0.0676 0.3705 0.5708 2.9332 12.7293 86.0707
l-lri -0.0180 0.2680 0.0581 1.8419 0.0174 45.9826
l-lrv 0.0916 0.3274 0.1076 2.3884 -0.6254 77.4254
l-lv 0.0358 0.3381 0.4215 1.8545 13.2812 49.5188
l-v 0.0358 0.3381 0.4537 1.8663 13.2812 49.5188
li-lri -0.0134 0.2207 0.2725 3.8435 -8.4354 95.6354
li-lrv 0.0198 0.1136 -0.2482 2.0002 -4.7562 35.5562
li-lv -0.0095 0.1903 -0.2341 2.7181 -8.0316 80.0316
li-v -0.0095 0.1903 -0.2491 2.7931 -8.0316 80.0316
lri-lrv 0.0083 0.1824 -0.6313 3.0913 -16.7482 86.7482
lri-lv -0.0070 0.1388 0.6420 1.9420 13.5557 47.2443
lri-v -0.0070 0.1388 0.6135 1.9265 13.5557 47.2443
lrv-lv -0.0033 0.1612 0.3170 3.0870 5.2969 85.5031
lrv-v -0.0033 0.1612 0.3090 3.1470 5.2969 85.5031
lv-v 0 0 -0.0083 0.0763 0 0

Table 5.3: Ranking of Alphabetic Orders for Instance MM.

Alphabetic Average % Average Average % Finite
Order Nonzero Time Simple

Reductions Reductions

1 0.5000 2.2200 64.2857 1.0000
4 0.5491 1.6814 41.4286 0.8571
2 0.5983 1.5971 27.7143 0.4286
3 0.6785 2.0257 36.2857 0.4286
5 0.6983 2.7414 72.7143 0.4286

Benjamin J. Keller Chapter 5 86

Table 5.4: 95% Confidence Intervals for Differences between Alphabetic Orders for Instance MM.

Difference Nonzero Reductions Time Simple Reductions
Low High Low High Low High

1-2 0.0389 0.1577 0.2933 0.9524 21.2466 51.8963
1-3 0.0880 0.2691 0.7979 1.5278 3.9688 54.3169
1-4 -0.0385 0.1724 0.5576 1.2395 6.2627 40.5945
2-3 0.0528 0.1596 0.7299 1.8930 13.0414 44.6729
2-4 0.0521 0.1557 0.3206 1.0565 13.6392 36.6465
1-5 0.0633 0.3061 1.4032 2.6025 44.8433 70.0138
2-5 0.0742 0.2370 1.1494 2.9591 21.8430 90.1570
3-4 0.0608 0.1947 1.1064 2.2879 10.7091 54.4337
3-5 0.0989 0.2702 1.3689 3.7626 32.2012 100.9416
4-5 0.1319 0.3518 1.9379 3.1307 57.2758 93.8670

Table 5.5: Ranking of Orders for Individual Free Problems.

Order A4 A5 A6 ELP HWEB HWRES P4 P6
l 2 4 1 1 2 1 1 1
i 1 2 1 4 3 1 2 5
v 1 1 1 1 1 1 2 4
li 1 2 1 4 5 1 1 5
lv 1 1 1 1 4 1 1 4
lri 1 3 1 3 4 1 1 3
lrv 1 3 1 2 6 1 1 2

was found and used to rank the orders as shown in Table 5.9. What the table shows is that, for

these problems and instances, the length order is generally best, with the left vector order next.

5.6 Alphabetic Orders

We saw in the previous section that the alphabetic order seems to have a strong influence on the

choice of admissible order. This should actually be fairly obvious given the definition of the vector

orders in Opal and the definition of the lexicographic orders. In this light, it appears to have been

too naive to expect to be able to rank the admissible orders while ignoring the alphabetic order. In

this section, the problem of choosing an alphabetic order is briefly considered.

In Chapter 6, a theorem is proved that essentially says two admissible orders are equivalent if

they order the uniform equivalence classes consistently (recall that these classes are the sets of paths

Benjamin J. Keller Chapter 5 87

Table 5.6: Ranking of Orders for Individual Mesh Algebra Problems.

Order BT7 CG5 M1 MBFS MDFS MM MS
l 1 1 1 1 1 1 2
i 5 3 4 4 4 3 4
v 3 2 4 5 5 4 3
li 5 3 4 4 4 3 4
lv 3 2 4 5 5 4 3
lri 2 5 3 3 3 2 5
lrv 4 4 2 2 2 1 1

Table 5.6: Ranking of Orders for Individual Mesh Algebra Problems (cont.).

Order MT1 MT2 MT3 MT4 MTB MTRI
l 1 1 1 1 2 1
i 5 5 5 4 4 4
v 3 2 3 5 3 2
li 5 5 5 4 4 4
lv 3 2 3 5 3 2
lri 2 3 2 2 5 4
lrv 4 4 4 3 1 3

Table 5.7: Ranking of Orders for Individual Random Problems.

Order A51E A51H AGS
l 1 1 4
i 1 2 1
v 1 – 2
li 1 2 3
lv 1 1 5
lri 2 1 7
lrv 2 2 6

Benjamin J. Keller Chapter 5 88

Table 5.8: Ranking of Orders for Individual Path Algebra Problems.

Order CGL CGL1 DCYC ICYC P5
l 3 3 3 3 1
i 1 1 1 2 4
v 2 2 2 1 5
li 7 7 5 5 4
lv 4 4 6 3 5
lri 5 5 4 4 3
lrv 6 6 5 5 2

Table 5.9: Ranking of Admissible Orders.

Admissible Order Average Weighted Rank
Length (l) 6.38
Left vector (v) 5.43
Right vector (i) 5.03
Length left vector (lv) 5.00
Length reverse left vector (lrv) 4.93
Length reverse right vector (lri) 4.90
Length right vector (li) 4.28

Benjamin J. Keller Chapter 5 89

(4)

(2)(1)

(3)

d b

a

c

e

6

�
�
�
�
�
��

?�

-

Figure 5.1: Quiver for A51 Problem Instance.

with the same origin and terminus). What this implies is that when dealing with admissible orders

built with the left lexicographic, how the alphabetic order sequences the out-arcs of each vertex is

all that is important (at least to determining the Gröbner basis for a generating set). Similarly, if

the admissible order uses the right lexicographic order, all that matters is how the alphabetic order

sequences the in-arcs of each arc. To test this hypothesis, a simple problem instance was chosen and

run for all possible permutations of the arcs.

The graph for this instance is shown in Figure 5.1. The graph has six arcs and so 720 possible

alphabetic orderings (modulo the ordering on vertices). Two orders were used for the test: the

length lexicographic order, and a weight order that makes da < e.

The results divided into four classes depending on the relationship between d and e and the

relationship between a and c. Table 5.10 shows the results for each class (all numbers were the

same for all alphabetic orders in each class, and every instance resulted in a finite Gröbner basis).

The hypothesis would suggest that the relationship between d and e would be significant, but the

relationship between a and c is unexpected.

One explanation of the importance of the order between a and c is that it is significant to

the selection strategy for this particular problem. If this is true, it would mostly explain why

the alphabetic order has such a strong influence on the computation. That is, since the selection

strategy appears to have the most significant impact on the time required for the computation, the

alphabetic order determines which common multiple is chosen (among those of the same length).

Further experiments are needed to test how the alphabetic order influences selection and the rest of

the computation.

Benjamin J. Keller Chapter 5 90

Table 5.10: Counts for Classes of Alphabetic Orders on Problem A51.

Constraints Order % Nonzero Maximum Maximum
Reductions Overlaps Cardinality

d > e, a > c Length 79.41 848 163
Weight 92.50 1729 256

e > d, a > c Length 78.94 380 54
Weight 90 1598 127

d > e, c > a Length 80.30 3100 369
Weight 89.78 8707 691

e > d, c > a Length 83.33 516 66
Weight 91.30 2229 322

5.7 Summary and Directions

In Section 5.5 a ranking of seven orders considered is given. This ranking indicates that the first order

to try is the length order. In fact, this is what string rewriting folklore and our experience over the

course of this research suggests. However, the ranking is not really valid because the experimental

results do not imply a total ordering of the admissible orders. In fact, the results seem to imply that

which admissible order is best for a particular problem really depends on the alphabetic order.

Although some experiments with alphabetic orders have been done, there is no obvious result

that indicates how to choose the best alphabetic order. In fact, the results in the previous section can

be interpreted as showing the influence of the alphabetic order over the selection strategy. Perhaps

using an implementation that allows the use of different alphabetic orders for the selection strategy

and the polynomial order would be helpful in experiments to understand the choice of alphabetic

order.

Another approach that might be more practical than a simple ranking of orders, is to develop

heuristics for choosing an order for a particular problem. If we reconsider the criterion for ranking

the orders defined in the previous section, the best orders for a generating set P are those for which

P is a Gröbner basis. This means that either there are no overlap relations for P , or they all reduce

to zero. In general, the criterion translates to the best order being the one for which there are the

least number of overlap relations throughout the computation. A heuristic based on this idea is to

find an order that minimizes the number of overlaps of the generators. Refinements of this heuristic

might try to minimize overlaps that would occur in later stages of the algorithm.

Benjamin J. Keller Chapter 5 91

An approach of this sort might prove to be more practical, and certainly simpler to find than

a characterization of which orders are the best for which problems. The following chapter explores

the relationship between orders and problems in path algebras as an alternative approach to the

problem of choosing an order.

Chapter 6

Admissible Orders in Path

Algebras

This chapter explores the relationship between admissible orders and problem instances. The exper-

iments in Chapter 5 suggest that the choice of order is highly dependent on the problem instance.

For free algebras, the problem instance is determined by the relations, but in path algebras with

more complex quivers, the quiver determines what words appear and so also affects the choice of

order. This chapter explores the relationship between a graph and the orders on its paths. While

the experiments in Chapter 5 also indicated that the relations have more of an effect on the choice

of order, this relationship is not considered here.

In particular, this chapter looks at equivalence classes of orders on paths induced by the structure

of the corresponding graph. The goal is to identify representatives of equivalences classes of orders.

The equivalence we consider is whether two orders induce the same Gröbner basis (or at least

the same tip set) for a given generating set and is defined in Section 6.1. Section 6.2 begins the

development of an approach to the computation of representative orders for the equivalence classes

for very special graphs. This approach uses a relationship of spanning trees and admissible orders

observed by Green [24]. Once this approach is complete, it might be possible to combine it with an

approach using information on the generating relations to make the choice of order. This and other

future research directions are discussed in Section 6.3.

The work by Martin [41] on determining orders that induce termination of string rewriting

92

Benjamin J. Keller Chapter 6 93

systems is related and could be useful. The result on spanning trees given below is an observation

of Green.

6.1 Equivalence of Orders

Two orders are considered to be equivalent for a particular problem instance if the resulting Gröbner

bases are the same. Theorem 6.1 given below says that it is sufficient to consider only how two orders

sequence the uniform equivalence classes.

First we define some notation. Fix a finite directed multigraph Γ = (Γ0,Γ1). Suppose that

u, v ∈ Γ0 are vertices, and < is an admissible order on B the set of paths of Γ. Denote by E<u,v

the ordered sequence of uniform paths between u and v, and (in a slight abuse of notation) let

E<1
u,v = E<2

u,v denote the fact that the ordered sequences determined by <1 and <2 are identical. If

P is a set of polynomials, then T<u,v(P) is the set of uniform tips of the Gröbner basis (with respect

to <) for 〈P 〉 from u to v and N<
u,v(P) is the set of uniform nontips from u to v. Specifically,

T<u,v(P) = {t : t ∈ Tip(〈P 〉), src(t) = u, tgt(t) = v} .

Theorem 6.1 Let Γ = (Γ0,Γ1) be a finite directed multigraph, B the set of finite directed paths of

Γ, and K a field. If <1 and <2 are two admissible orders on B, then the following are equivalent:

1. For all u, v ∈ Γ0, the sequences E<1
u,v and E<2

u,v are identical.

2. For every set of polynomials P ∈ KΓ, and for all vertices u, v ∈ Γ0, the nontip sets are

identical:

N<1
u,v(P) = N<2

u,v(P).

3. For every set of polynomials P ∈ KΓ, and for all vertices u, v ∈ Γ0, the tip sets are identical:

T<1
u,v(P) = T<2

u,v(P).

Proof That condition 1 implies the other two conditions is straightforward. We first show that

condition 2 implies condition 1, and then show the equivalence of conditions 2 and 3.

Benjamin J. Keller Chapter 6 94

To show that condition 2 implies condition 1 we actually prove that if condition 1 is false, then

condition 2 is also false. Assume there exists p1 and p2 which are uniform such that p2 <1 p1

and p1 <2 p2, and let P = {p1 + p2}. We need to show p1 is in Nontips<2
(〈P 〉) and p2 is in

Nontips<1
(〈P 〉).

Suppose that p1 is not a nontip of 〈P 〉 with respect to <2. Then it must be that some path

p in Tip(〈P 〉) divides p1. But since p2 is the tip of the single generator, p2|p, and so p2|p1. So,

by admissibility of <2 it must be that p2 <2 p1 which is a contradiction. Therefore, p1 must be

in Nontips<2
(〈P 〉). By a similar argument, p2 ∈ Nontips<1

(〈P 〉). Since it is not the case that

p2 ∈ Nontips<2
(〈P 〉) and p1 ∈ Nontips<1

(〈P 〉), it follows that N<1
u,v(P) 6= N<2

u,v(P). Therefore,

condition 2 implies condition 1.

The equivalence of conditions 2 and 3 follows from the definition of a nontip set. Since the set

of tips and the set of nontips are complements, N<1
u,v(P) = N<2

u,v(P) if and only if T<1
u,v(P) = T<2

u,v(P)

for any set of polynomials P . Therefore, the second and third conditions are equivalent. �

This theorem is a specific form of a folk theorem from string rewriting that says equivalence of

two orders for a rewriting system is determined by how the two orders sequence the equivalence

classes of terms defined by the rewrite rules [40].

Theorem 6.1 says that how two orders behave on uniform equivalence classes determines equiva-

lence, at least, with respect to determining a Gröbner basis. This implies that the problem of building

an order that is a representative for an equivalence class of orders can be reduced to choosing how

it sequences the uniform equivalence classes. For this to be feasible, we need to find a (minimal) set

of paths that generate the uniform equivalence classes of the graph, and then order these generating

paths in such a way that the order can be extended to the whole uniform equivalence class.

This construction is not feasible for a graph with only one vertex. In this case, the uniform

equivalence class is the whole set of paths and the minimal set of generators is just the vertex and

the arcs. The problem is that simply ordering the arcs does not completely determine an order on

the paths, the process of forcing a total order can be infinite. An example of this is the graph with

two loops a and b. Simply setting a < b does not completely determine the admissible order, since

the relative order of ab and ba is not implied. Even if we set ab < ba, this does not determine the

relative order of bab and aba. Continuing by setting aba < bab again is not enough since the relative

order of abba and baab is not known. This process of forcing the order to be total does not terminate

in this case. So, it is not possible to deal effectively with more than one loop. The following section

Benjamin J. Keller Chapter 6 95

explores an alternative approach that works in special cases where loops do not occur.

6.2 Spanning Trees and Orders

In this section, we use the relationship between admissible orders and families of spanning trees on

graphs to build equivalence class representatives on a limited class of graphs (without loops and

having some restrictions on cycles). We begin with the observation that the minimal paths in a

graph Γ with respect to some admissible order < form spanning trees of Γ. Since Γ is directed, the

spanning trees are rooted at some vertex v with arcs in the tree oriented to form paths from v to all

other vertices of Γ. The relevant result is the following.

Theorem 6.2 If Γ is a strongly connected finite directed multigraph and < an admissible order on

the finite paths B of Γ, then for each vertex v ∈ Γ0 the set of minimal paths from v to all vertices

determines a spanning tree of Γ rooted at v.

Proof For all u, v ∈ Γ0, let P<(v, u) be the set of arcs on the unique minimal path (with respect

to <) from v to u in Γ. Let N<(v) be the union of these sets from v:

N<(v) =
⋃
u∈Γ0

P<(v, u).

We show that N = (Γ0, N<(v)) is a spanning tree. The fact that N spans Γ comes from its definition

and the fact that Γ is strongly connected. To obtain a contradiction, suppose that N is not a tree.

Then there exists some u ∈ Γ0 such that there are two paths p and q from v to u in N . Then there

exists some u ∈ Γ0, u 6= v, such that there are two paths p and q from v to u in N . In particular,

we can choose u, p and q to be such that there are no vertices w along either p or q for which there

are two paths from v to w. (So, u is the “nearest” such vertex to v.) Assume that p is the minimal

path whose arcs constitute P<(v, u). Then q must be the prefix o some minimal path from v to a

vertex x. So, in particular, r = qs where s is a path from u to x. Since p is the minimal path from v

to u, p < q and so ps < qs. So, r cannot be minimal, thus contradicting the assumption. Therefore,

N is a tree. �

These spanning trees are called <-spanning trees, and each admissible order determines a family

of trees indexed by the vertices of the graph. If the graph is not strongly connected, then instead of

spanning trees, the result is a family of trees, each of which spans some subgraph of Γ.

Benjamin J. Keller Chapter 6 96

t

tt

t
u

wv

x

a d

c

b

e
f

6

�
�
�
�
�
���6

-

-
�
�

�
�

�
��	

Figure 6.1: Graph for Uniform Equivalence Class Example.

The paths that form these trees are the nontips (or normal forms) for the ideal for a special

class of relations on Γ. Given a graph Γ = (Γ0,Γ1) the commutativity relations for Γ are differences

of the simple paths in each uniform equivalence class, and differences of simple cycles with the

corresponding vertices. For the uniform equivalence class Eu,v from u to v such that u 6= v, the

commutativity relations are all differences p− q where paths p, q ∈ Eu,v are simple. For each vertex

v and each simple cycle c from v to v, c− v is a commutativity relation.

As an example, consider the graph in Figure 6.1. The uniform equivalence classes for this graph

are the following.

[x, w] = {d, def, deac, debd, . . .}

[x, u] = {de, debde, defe, debac, . . .}

[x, v] = {dea, defea, deacea, debdea, . . .}

[w, u] = {e, efe, eace, ebde, . . .}

[w, v] = {ea, eacea, ebdea, efea, . . .}

[w, x] = {eb, eaceb, ebdebd, efeb, . . .}

[u, v] = {a, fea, acea, bdea, . . .}

[u, w] = {ac, bd, f}

[u, x] = {b, feb, bdeb, aceb, . . .}

[v, w] = {c, ceac, cebd, cef, . . .}

[v, u] = {ce, ceace, cefe, cebde, . . .}

Benjamin J. Keller Chapter 6 97

[v, x] = {ceb, cebdeb, cebfeb, cebdeaceb, . . .}

The cycles for the graph are

[u, u] = {u, ace, fe, bde, feace, febde, acebde, . . .}

[v, v] = {v, cea, cefea, cebdea, . . .}

[w,w] = {w, eac, ef, ebd, efeac, efebd, eacebd, . . .}

[x, x] = {x, deb, defeb, deaceb, . . .}

The only uniform equivalence class with more than one simple path is [u, w]. The commutativity

relations for this class are ac − bd, bd − f , and ac − f . The relations for the cycles are ace − u,

fe−u, bde−u, cea− v, eac−w, and deb−x. The Gröbner basis of the ideal for the commutativity

relations allows the uniform equivalence of two paths p, q to be decided by testing whether p − q

reduces to zero. The nontips for this ideal are the minimal elements of the equivalence class and so

give the <-spanning trees.

The existence of the <-spanning trees for each admissible order < suggests a way to classify the

admissible orders on Γ. That is to use all valid families of spanning trees to define the orders: if

two orders yield the same spanning tree then they are equivalent. Unfortunately, this is not the

equivalence we are after. A family of spanning trees indicates only how the orders behave on the

nontips for a very special class of generators, but by Theorem 6.1 the orders are equivalent only if

the nontips are all the same for every generating set of every ideal in the algebra.

In fact, it is easy to find a graph for which the spanning tree does not imply the desired equivalence

of orders. Consider the graph Γ in Figure 6.2 in which there are three paths ab, cd, ef from u to v. If

we pick a spanning tree rooted at u, then one of ab, cd or ef , say ef , will be in the tree (see Figure 6.3).

Then any two orders <1 and <2 that satisfy ef <1 ab <1 cd and ef <2 cd <2 ab, determine this

tree. Clearly, if we choose the generating set {ab + cd} the nontips and the tips determined using

these two orders are different. The only case in which the spanning trees are useful for (directly)

determining the orders is when the generators are binomials (e.g., the generators are a subset of the

commutativity relations for the graph).

However, the spanning trees can be used to find admissible pre-orders for the graph if the family

of trees corresponds to some admissible order. Assume that we have such a family of spanning trees,

then this family determines a set of constraints on the paths. Given a vertex u the constraints are

Benjamin J. Keller Chapter 6 98

u v

f

dc
a b

e

Figure 6.2: Graph with Three Paths ab, cd, ef from u to v.

u v

e

a

f

c

Figure 6.3: Spanning Tree with Path ef from u to v.

determined as follows. For each vertex v 6= u, if p is a path from u to v in Tu, then define a constraint

p < q for each path q 6= p from u to v.

More formally, an order constraint on the paths of the graph Γ is an ordered pair (p, q) of paths

p, q ∈ B that is interpreted to mean p < q. Let C be a set of constraints on the paths of Γ, and

denote by C∗ the smallest set of constraints containing C, and satisfying the following properties:

1. if (p, q) ∈ C∗ and (q, r) ∈ C∗ then (p, r) ∈ C∗; and

2. if (p, q) ∈ C∗ and r, s ∈ B such that rps 6= 0 6= rqs then (rps, rqs) ∈ C∗.

C∗ is called the closure of C. We say that C∗ is consistent if there is no pair (p, q) ∈ C∗ such that

(q, p) ∈ C∗.

We assume that C is determined by a family of spanning trees as described above. So, C contains

no pairs (p, p) for some path p, and for every pair (p, q) ∈ C∗, p and q are uniform equivalent. As

an example, consider the family of trees Figure 6.5 for the graph in Figure 6.4. Using this family of

trees we can find the set of constraints

c < dg, d < cei, ce < dhl,

bj < ad, bkl < ace,

g < fac, hl < ge, h < fbk,

k < jh, j < kli, jl < jge.

Benjamin J. Keller Chapter 6 99

c

k

f i

a e

lb

d g

hj

Figure 6.4: Graph for Spanning Tree Example.

Note that other constraints can be found, such as bjhl < adge, but they are implied by the constraints

given.

This example suggests the following proposition, which has not been proven.

Conjecture 6.1 Suppose that C is a set of order constraints on the paths B of a graph Γ derived

from a family of spanning trees of Γ. Then the set

C ′ = {(p, q) ∈ C : p, q are simple} \ {(p, q) ∈ C : ∃(r, s) ∈ C, p|r and q|r}

has the same closure as C, C∗ = (C ′)∗.

Unfortunately, there are families of spanning trees that induce inconsistent constraints on the

paths and so do not correspond to admissible orders. An example is given by the graph in Figure 6.6

and the family of trees in Figure 6.7 (there are only three trees in the figure, but the other two are

determined by the three given). These trees induce the constraints ga < he, hf < gb, bd < ac and

ec < fd, and using these constraints it is possible to derive the inconsistent relation gac < gac as

gac < hec < hfd < gbd < gac.

Therefore, we only want to deal with families of trees that give rise to consistent constraints.

A family F of spanning trees for a graph Γ = (Γ0,Γ1), indexed by Γ0, is called consistent if the

constraints induced by the elements of F are consistent (there is no pair of paths p and q such that

the constraints imply p < q and q < p). The trees of Figure 6.5 are an example of a consistent family

of trees, and those of Figure 6.7 are an example of an inconsistent family of trees. The inconsistency

in the example of Figure 6.7 appears to be related to the fact that there are disjoint cycles gac and

hfd in the graph that are not constrained by the trees. This suggests that consistency cannot be

Benjamin J. Keller Chapter 6 100

f

a

lb

g

h
f i

a

b

g

h

c

k

a

lb j

c

f

e

b

d

h

k

f

a

l

g

j
f i

a

lb

g

f i

a e

b h

Figure 6.5: Example Family of Spanning Trees.

c

h
e f

ba
g

d

Figure 6.6: Graph for Inconsistency Example.

Benjamin J. Keller Chapter 6 101

h
f

a
g

h

ba

d c

e f

g

Figure 6.7: Inconsistent Family of Spanning Trees.

expressed solely in terms of properties on the spanning trees. Further work needs to be done to

determine how to compute consistent families of trees for a graph.

What we want to do is use the constraints defined from a consistent family of spanning trees to

define a weight pre-order on the paths by assigning weights to the arcs in a manner consistent with

the constraints. The constraints determine constraints on the weight function for a weight order.

For the example in Figure 6.5, it must be that w(c) < w(d) +w(g) and w(b) +w(j) < w(a) +w(d).

For this example, any weighting that gives a and g a greater weight than the other arcs satisfies

these constraints. For example, the weighting that assigns a and g weight 2 and all other arcs weight

1 satisfies these constraints. (In fact, any length lexicographic order using an alphabetic order such

that h < g and b < a also satisfies the constraints given above.)

It is not clear that constructing a weight pre-order in this way is always possible. However, note

that the closure of a set of constraints is nearly a pre-order.

Lemma 6.1 If C is a set of constraints derived from a consistent family of trees, then C∗ is an

irreflexive, transitive relation.

Proof Irreflexivity follows from the fact that no path is related to itself in C, and by the consis-

tency of C∗. Transitivity is immediate from the definition of C∗. �

Therefore, if we assume that can define a weight function w : (Γ0 ∪ Γ1) → N consistent with a

set of constraints C, the derived pre-order <w corresponds to C∗. The weight pre-order may relate

more paths than C∗ (in particular, <w is reflexive, and also some unequal paths may be given the

same weight). We do not consider the problem of proving such a weight function exists, but the

existence of such functions should follow from the consistency of the constraints.

The constraints induced by a consistent family of spanning trees only determine a pre-order

on the uniform equivalent paths of the graph. Further work is needed to characterize when such

Benjamin J. Keller Chapter 6 102

pre-orders can be easily extended to a total order on the uniform equivalence classes. Note that

loops and disjoint cycles (cycles that do not share any edge with the rest of the graph and so are

like multiple edged “loops”) are not ordered at all by the constraints. So the approach only really

works for graphs without multiple loops or disjoint cycles at any vertex (single loops and disjoint

cycles can be dealt with).

Clearly, the work in this section is not complete. First, the construction of orders from spanning

trees is not entirely understood. In particular, it is not known how to compute or recognize a

consistent family of trees, short of finding the induced constraints and checking for inconsistencies.

It may be helpful to determine when inconsistencies occur. It seems that they only occur when there

are cycles that share a single vertex but no edges, but this needs to be proved. If this can be shown

it would be possible to check for families of trees that will give rise to inconsistencies.

6.3 Future Directions

The previous sections suggest several possible directions that future research might take.

6.3.1 Orders and Generators

Similar work is done by Martin [41], but instead of using the underlying structure of the language,

she uses string rewriting rules to determine constraints on the orders. Clearly, for a rewrite rule

p −→ q either p < q or p > q and so a set of rules determines a set of constraints that are not

necessarily consistent. After finding a consistent set of constraints it is possible to build weight

pre-orders as was done from spanning trees in Section 6.2. Admissible orders that satisfy these

constraints are equivalent in the sense given in Section 6.1 [41].

It is certainly possible (and necessary) to combine constraints determined by the quiver of the

path algebra, and the relations of the generating set. However, the constraints are not so easily

defined on relations, other than the fact that the term selected as the tip must be bigger than the

other terms in the support. This is something that needs to be explored. (The equivalence relation

determined by both the graph and relations will be a subrelation of the one determined just by the

graph.)

Note that it is possible to use the structure of the words in the relations to determine a graph

structure even if the words are from a free algebra. In some generating sets, certain arcs may occur

Benjamin J. Keller Chapter 6 103

only in a particular sequence and so can be treated as a path in a graph. This imposed graph

structure might be used like the quiver of the algebra as discussed above to augment the order

constraints defined using the relations directly. This may prove useful in developing representative

admissible orders on free algebra instances.

6.3.2 Equivalence and Choosing a Good Order

Whether the equivalence relation on orders is helpful in finding a good order is not yet clear. The

question that arises is whether all orders in an equivalence class behave the same computationally.

They certainly give the same Gröbner bases, but perhaps the computation is not as efficient as for

others. Depending on the answer to this question, we can ask either if it is possible to find the best

class of orders (if members of an equivalence class all behave the same), or if it is possible to find the

best representative for each equivalence class (if the members of an equivalence class do not behave

the same).

6.3.3 Gröbner Walks

In the commutative theory of Gröbner bases, there is the concept of a “Gröbner walk” that is used to

convert between Gröbner bases for different orders [16]. The algorithm uses the fact that admissible

orders on commutative terms correspond to projective cones and transform the cone from the initial

order to the cone for the final order. This algorithm depends heavily on the ability to characterize

all admissible orders by weight vectors (see Robbiano [49] or Dube, Mishra and Yap [19]). While

there is no such characterization for admissible orders on strings, the spanning trees might present

an opportunity for a similar algorithm for path algebras. Also, most common admissible orders can

be defined as weight orders, making it reasonable to deal with only this set of orders.

Assuming the graph has a reasonable structure, the problem is to convert a (finite) Gröbner basis

G with respect to an order <i to a Gröbner basis for an order <f . (Ignore for a moment the fact

that the target Gröbner basis may not be finite.) As discussed above, the orders determine families

of spanning trees on the graph. The idea is to incrementally mutate the family of trees for <i toward

the family of trees for <f and change G as the orders change. Spanning trees are all related by edge

swaps (see Lovász [37]), and most algorithms that generate all spanning trees of a graph use this

fact. It might be possible to use a similar approach to “walk” from one family of trees to another,

and then use an approach similar to the commutative Gröbner walk to change the basis. An obvious

Benjamin J. Keller Chapter 6 104

problem with noncommutative Gröbner walks is stepping into infinite potholes when an order for

which the basis is infinite is found. An interesting question is whether such a pothole exists on some

walk between two orders that both induce finite Gröbner bases.

The importance of the Gröbner walk is that it is often quicker to compute a Gröbner basis

with one order and then “walk” it to the desired order, rather than computing with the desired

order directly. This approach is used in the Gröbner basis function of the Magma computer algebra

system. Situations where this works for the noncommutative case would be quite interesting.

Chapter 7

Conclusions

The objective of this research is to improve the computation of noncommutative Gröbner bases by

finding the best choice of algorithm and admissible order. Progress was made in both areas. The

primary contributions of the research are in finding new algorithms and noncommutative forms of

existing Gröbner basis algorithms, but the research has also developed a better understanding of

the choice of order, and also has led to the development of two systems that can be used for exper-

imentation and algebraic research. This chapter surveys these contributions (in the first section),

and future research directions and open questions (in the second section).

7.1 Contributions

The contributions of the research are in the areas of algorithms, orders and implementations. Each

area is considered separately.

7.1.1 Algorithms

The algorithmic contributions are two-fold. The first contribution is the development of new algo-

rithms and conversion of algorithms from the commutative case as alternatives for configuring the

noncommutative form of Buchberger’s algorithm. In particular, algorithms for triple selection, triple

elimination, and set reduction are defined. The experimental comparison of these alternative config-

urations has helped identify an algorithm configuration that minimizes time and space requirements

105

Benjamin J. Keller Chapter 7 106

(at least for the experimental cases considered).

The second algorithmic contribution is the development of the dynamic dictionary matching

approach for solving the pattern matching problems involved in computing noncommutative Gröbner

bases. In this approach, all pattern matching searches take time linear in the size of the search word

and the output resulting from the search. Along with the fact that insertions and deletions of words

from the dictionary are also fast, the fast search times make this approach a significant improvement

over the other algorithms that might be used (single-word matching algorithms, and the extension

of static dictionary matching defined by Sims [52]).

Both of these algorithmic contributions dramatically improve the understanding of the compu-

tation of noncommutative Gröbner bases. They both should also extend to string rewriting where

the pattern matching approach alone is a major improvement over the approaches used in existing

implementations.

7.1.2 Orders

The contribution with respect to orders is mostly one of improved understanding, but also several

promising research directions have been identified. The primary point observed is that the choice

of order is much more problem dependent than we had understood previously. The choice of order

appears to depend on the language of the terms (the paths), and how the terms are combined in the

generators. Also, the admissible order is also a factor in determining which admissible order is best

for a particular problem.

In Chapter 5 it was observed that a simple ranking of the orders is not directly implied by the

experimental results. However, by sequencing the orders according to the observed values, and by

comparing only the differences between consecutive orders in the list it is possible to develop a

ranking. This ranking suggests that the length lexicographic order is generally the best (for the

kind of problems considered). In general, probably the best approach is to find heuristics that help

choose orders that minimize the number of overlaps considered during the computation.

Perhaps the biggest contribution with respect to orders are the possible research directions iden-

tified for exploring the choice of order. These are listed in the next section.

Benjamin J. Keller Chapter 7 107

7.1.3 Implementation

This research has contributed two implementations of systems to compute noncommutative Gröbner

bases. The first is the ngrb prototype family, which can be used to build alternative configurations

of algorithms and could be relatively easily extended to study other algorithms. The second is the

Opal system, which is designed to be used in algebraic research and can be used to experiment with

admissible orders. Opal is being extended to include a broader range of fields and orders which

should make it a good choice for algebraists who wish to test conjectures and experiment with

algebraic problems.

7.2 Directions

The following is a list of open problems and research directions identified throughout the thesis. The

appropriate chapter is given for each major group.

Algorithms (Chapter 4):

1. The experiments in Chapter 4 did not treat all possible algorithms. In particular, selection

strategies not based on admissible orders, and reduction strategies are not tested. Probably

the most significant omission is the reduction strategies.

2. The time-space trade-off between eager and hybrid triple elimination alluded to in Chapter 4

needs to be tested.

Orders (Chapters 5 and 6):

1. Development of heuristic approaches to the choice of order. Specific ideas to experiment with

are the heuristic of choosing the order that minimizes the initial overlaps, and modifying the

algorithm to dynamically adjust the order during the computation to minimize overlaps.

2. Combine order constraints determined by graphs and relations to define equivalence classes

of orders. Determine whether it is always possible to compute a representative order of each

equivalence class?

3. Determine whether there is a relationship between the equivalence classes of orders for a

problem and the choice of order.

Benjamin J. Keller Chapter 7 108

4. Determine what the relationship is between the choice of alphabetic order and problem in-

stance. (To do this correctly, it is necessary to have an implementation that decouples the

alphabetic order used for polynomials from the one used for selection.)

5. Determine whether there is a relationship between the admissible order on polynomials and

the admissible order used for selection. (In Opal, the alphabetic order used for both is the

same. Is this good?)

6. Explore application-dependent choices of order. For example, what elimination-order is best?

Other Algorithms:

1. The relationship between spanning trees and orders may provide a way to compute Gröbner

walks (see Chapter 6). The question is whether this “walk” is always possible, or if the

algorithm would only terminate in ideals for which all minimal Gröbner bases are finite?

2. Development of an algorithm for computing universal Gröbner bases (a generating set that is

a Gröbner basis regardless of order).

REFERENCES

[1] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340, 1975.

[2] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. Dynamic dictionary matching. Journal
of Computer and Systems Sciences, 49(2):208–222, 1994.

[3] J. Apel and W. Lassner. An extension of Buchberger’s algorithm and calculations in enveloping
fields of Lie algebras. In L. Robbiano, editor, Computational Aspects of Commutative Algebra,
pages 227–236. Academic Press, 1989.

[4] AT&T Bell Laboratories. The Standard ML of New Jersey Library Reference Manual (Release
0.1), 1993. Also distributed with Release 0.2.

[5] M. Barr and C. Wells. Category Theory and Computing Science. Prentice Hall, 1990.

[6] D. Bayer and M. Stillman. A criterion for detecting m-regularity. Inventiones Mathematicae,
87:1–11, 1987.

[7] T. Becker and V. Weispfenning. Gröbner Basis: A Computational Approach to Commutative
Algebra. Springer-Verlag, New York, 1993.

[8] G. Bergman. The diamond lemma in ring theory. Advances in Mathematics, 29:178–218, 1978.

[9] R. Blute. Hopf algebras and linear logic. Mathematical Structures in Computer Science,
6(2):189–217, 1996.

[10] R. V. Book and F. Otto. String-Rewriting Systems. Springer-Verlag, 1993.

[11] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomialideal. PhD thesis, Innsbruck, 1965.

[12] B. Buchberger. A criterion for detecting unnecessary reductions in the construction of Gröbner-
bases. In E. W. Ng, editor, EUROSAM ‘79, LNCS# 72, pages 3–21. Springer-Verlag, Berlin,
1979.

[13] B. Buchberger. Gröbner bases: an algorithmic method in polynomial ideal theory. In N. K. Bose,
editor, Multidimensional Systems Theory, Mathematics and its Applications, pages 184–232. D.
Reidel Publishing Company, Dordrecht, Holland, 1985.

[14] R. Bündgen. Simulating Buchberger’s algorithm by Knuth-Bendix completion. In R. V. Book,
editor, RTA ‘91, LNCS# 488, pages 386–397. Springer-Verlag, Berlin, 1991.

109

REFERENCES 110

[15] R. Bündgen. Buchberger’s algorithm: the term rewriter’s point of view. In W. Kuich, editor,
ICALP ’92, LNCS# 623, pages 380–391. Springer-Verlag, Berlin, 1992.

[16] S. Collart, M. Kalkbrener, and D. Mall. The Gröbner walk. Technical report, Department of
Mathematics, Swiss Federal Institute of Technology, Zurich, 1993.

[17] B. A. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge University Press,
1990.

[18] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, pages 245–320. MIT
Press, 1990.

[19] T. Dube, B. Mishra, and C. K. Yap. Admissible orderings and bounds for Gröbner bases normal
form algorithms. Technical Report 258, Department of Computer Science, New York University,
1986.

[20] D. R. Farkas, C. D. Feustel, and E. L. Green. Synergy in the theories of Gröbner bases and
path algebras. Canadian Journal of Mathematics, 45(4):727–739, 1993.

[21] A. Galligo. Some algorithmic questions on ideals of differential operators. In EUROCAL ’85,
LNCS# 204, pages 413–421, 1985.

[22] R. Gebauer and H. M. Möller. On an installation of Buchberger’s algorithm. In L. Robbiano,
editor, Computational Aspects of Commutative Algebra, pages 141–152. Academic Press, 1989.

[23] P. Graf. Term Indexing. PhD thesis, Universität des Saarlandes, 1995.

[24] E. L. Green, 1995. Personal Communication.

[25] D. Gusfield, G. M. Landau, and B. Schieber. An efficient algorithm for the All Pairs Suffix-Prefix
problem. Information Processing Letters, 41:181–185, 1992.

[26] D. Hartley and P. Tuckey. Gröbner bases in Clifford and Grassman algebras. Journal of Symbolic
Computation, 20:197–205, 1995.

[27] G. Havas, D. F. Holt, and S. Rees. Recognizing badly presented z-modules. Linear algebra and
its applications, 192:137–164, 1993.

[28] G. Havas and B. S. Majewski. Integer matrix diagonalization. Journal of Symbolic Computation,
(to appear).

[29] J. W. Helton and M. Stankus. Computer assistance for “discovering” formulas in system en-
gineering and operator theory. Technical report, Department of Mathematics, University of
California, San Diego, California, Feb. 1996.

[30] J. W. Helton, M. Stankus, and J. Wavrik. Computer simplification of engineering formulas.
IEEE Transactions on Automatic Control, (submitted), 1995.

[31] J. W. Helton and J. J. Wavrik. Rules for computer simplification of the formulas in operator
model theory and linear systems. Operator Theory: Advances and Applications, 73:325–354,
1994.

REFERENCES 111

[32] H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic 0.
Annals of Mathematics, 79:109–326, 1964.

[33] D. Holt, 1996. Personal Communication.

[34] C. Jay. Polynomial polymorphism. In R. Kotagiri, editor, Proceedings of the Eighteenth Aus-
tralasian Computer Science Conference, volume 17, pages 237–243. A.C.S. Communications,
1995.

[35] A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner bases in algebras of solvable
type. Journal of Symbolic Computation, 9:1–26, 1990.

[36] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebra. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297, 1970.

[37] L. Lovász. A homology theory for spanning trees of a graph. Acta Mathematica Academiae
Scientiarum Hungaricae, 30(3–4):241–251, 1977.

[38] U. Martin. A note on division orderings on strings. Information Processing Letters, 36:237–240,
1990.

[39] U. Martin. On the diversity of orderings on strings. Fundimenta Informaticae, 24(1/2):25–46,
1995.

[40] U. Martin, 1996. Personal Communication.

[41] U. Martin. Invariants of string rewriting systems: examples and questions. In Symbolic Rewrit-
ing Techniques, 1996. (submitted).

[42] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM,
23(2):262–272, 1976.

[43] B. Mishra and C. Yap. Notes on Gröbner bases. Information Sciences, 48:219–252, 1989.

[44] B. Mitchell. Rings with several objects. Advances in Mathematics, 8:1–161, 1972.

[45] F. Mora. Groebner bases for noncommutative polynomial rings. In J. Calmet, editor, Algebraic
Algorithms and Error-Correcting Codes, LNCS# 229, pages 353–362. Springer-Verlag, Berlin,
1986.

[46] T. Mora. An introduction to commutative and non-commutative Gröbner bases. Theoretical
Computer Science, 134:131–173, 1994.

[47] A. A. Reeves. The worst order is not always the lexicographic order. SIGSAM Bulletin,
25(4):18–19, 1992. Erratum vol. 26, no. 1, p.13.

[48] B. Reinert. On Gröbner Bases in Monoid and Group Rings. PhD thesis, FB Informatik,
University of Kaiserslautern, 1995.

[49] L. Robbiano. Term orderings on the polynomial ring. In B. F. Caviness, editor, EUROCAL
‘85, LNCS# 204, pages 513–517. Springer-Verlag, Berlin, 1985.

[50] J. J. Rotman. An introduction to homological algebra. Academic Press, 1979.

REFERENCES 112

[51] E. A. Scott. Weights for total division orderings on strings. Theoretical Computer Science,
135:345–359, 1994.

[52] C. C. Sims. Computation with Finitely Presented Groups. Cambridge University Press, New
York, 1994.

[53] T. Stokes. Gröbner bases in exterior algebras. Journal of Automated Reasoning, 6:233–250,
1990.

[54] C. Traverso and L. Donati. Experimenting the Gröbner basis algorithm with the AlPI. In
ISSAC ’89, pages 192–198, 1989.

[55] W. Wechler. Universal Algebra for Computer Scientists. Springer-Verlag, Berlin, 1992.

[56] T. Yan. The geobucket data structure for polynomials. (paper in preparation), 1996.

Appendix A

Useless Triple Elimination

In the following, the noncommutative version of Buchberger’s second criterion is proved. This result

shows that the triple elimination techniques discussed in Chapter 3 are valid. The proof follows

that given by Becker and Weispfenning [7] for the commutative case. (In this setting, we consider

the case where the leading coefficient may be something other than one. When needed the leading

coefficient of a polynomial p is denoted LC (p).)

We begin with another characterization of Gröbner bases. In the following let Γ be an arbitrary

directed multigraph, and B be the set of finite paths in Γ.

Definition A.1 (t-representation) Let P be a finite subset of KΓ such that every p ∈ P is

uniform. Let f be a non-zero, uniform element of KΓ, and t ∈ B. Then a representation

f =
∑
i∈I

αiuipivi,

where ai ∈ K, ui and vi are paths in B, I is a finite index set, and the pi ∈ P are not necessarily

distinct, is a t-representation of f with respect to P if

max
i∈I
{tip(uipivi)} ≤ t.

A t-representation of f where t = tip(f) is a standard representation of f with respect to P .

Note that a standard representation of f with respect to P is essentially a reduction of f to zero.

This fact links standard representations and Gröbner bases, as shown in the following Lemma.

113

Benjamin J. Keller Appendix A 114

Lemma A.1 Let P ⊆ KΓ be a generating set. Then P is a Gröbner basis for 〈P 〉 if and only if

every nonzero element of 〈P 〉 has a standard representation with respect to P .

Proof First, suppose that P has the property that every nonzero element of 〈P 〉 has a standard

representation with respect to P . This means that for every nonzero element p ∈ 〈P 〉, there is some

q ∈ P such that tip(q)|tip(p). Therefore, P is a Gröbner basis of 〈P 〉.

Conversely, suppose that P is a Gröbner basis of 〈P 〉. Then, every p ∈ 〈P 〉 can be reduced to

zero by elements of P . For each nonzero p, this reduction by P finds a standard representation of

p. Therefore, every nonzero element of 〈P 〉 has a standard representation with respect to P . �

This relationship between a Gröbner basis and standard representations is key to the elimination

of triples that reduce to zero at some point during the computation. We now use this fact to link

t-representations to Gröbner bases. Recall that cmv(w1, w2) is the common multiple of word w1 and

word w2 with overlap v (v is a suffix of w1 and a prefix of w2). First, we prove a lemma needed in

the following theorem.

Lemma A.2 Let G be a Gröbner basis in KΓ. Let p, q ∈ KΓ and let w ∈ B be such that

tip(p)w tip(q) 6= 0. Then o(pw, wq, w) has a t-representation with respect to {p, q} where t <

cmw(tip(pw), tip(qw)).

Proof Let p =
∑n
i=0 αipi and q =

∑m
j=0 βjqj where αi, βj ∈ K and pi, qj ∈ B. Assume, without

loss of generality, that α0 = β0 = 1. Also, assume that pi > pj for i, j such that 0 ≤ i < j ≤ n and

qi > qj for i, j such that 0 ≤ i < j ≤ m.

Then the overlap relation of pw with wq and overlap w is

o(pw, wq, w) = p · wtip(q) − tip(p)w · q

=

(
n∑
i=1

αipi

)
· wq0 − p0w ·

 m∑
j=1

βjqj

 .

Using the last equation, the overlap relation can be seen to have a representation∑
k∈K

γkukgkvk

where K = {(i, 0) : 1 ≤ i ≤ m} ∪ {(0, j) : 1 ≤ j ≤ n}, γ(i,0) = αiβ0, γ(0,j) = −α0βj , u(i,0) = src(pi),

u(0,j) = p0w, v(i,0) = wq0, v(0,j) = tgt(qj), g(i,0) = pi, and g(0,j) = qj . This representation is a

t-representation where t = maxk∈K {tip(ukgkvk)}. By the ordering on terms of polynomials, t is

either p1wq0 or p0wq1. Therefore, t < p0wq0 = cmw(tip(pw), tip(qw)), giving the desired result. �

Benjamin J. Keller Appendix A 115

What this lemma shows is that trivial overlaps formed by appending a word to two polynomials

can always be reduced by those polynomials (i.e., have a t-representation). This situation arises

in the proof of the following theorem, which shows the connection between t-representations and

Gröbner bases.

Theorem A.1 Let G be a finite subset of uniform elements of KΓ such that 0 6∈ G, and G is

tip-reduced. Suppose that for all g1, g2 ∈ G such that tip(g1) and tip(g2) overlap by v, the overlap

relation o(g1, g2, v) either equals zero or has a t-representation for some t < cmv(tip(g1), tip(g2)).

Then G is a Gröbner basis.

Proof Assume that G is a finite subset of KΓ such that 0 6∈ G and every g ∈ G is uniform. Also,

suppose that every overlap relation o(g1, g2, v) is either zero or has a t-representation for each pair

of g1, g2 ∈ G whose tips overlap by some v ∈ B.

Since K is a field we may assume, for convenience, that all elements of G are monic. The goal

is to show that every nonzero f ∈ 〈G〉 has a standard representation with respect to G. Since every

overlap relation r is in 〈G〉, it will follow that r also has a standard representation, proving the

theorem.

We first show that every element of 〈G〉 has a t-representation for some t. Let f ∈ 〈G〉 be nonzero

and uniform. Then since G generates 〈G〉, f can be written in terms of elements of G as

f =
∑
g∈G

qggpg

where qg, pq ∈ KΓ are uniform for all g ∈ G. Multiplying through the pairs of terms in each qg, pg,

this representation can be rewritten as

f =
∑
i∈I

αiuigivi

where αi ∈ K, ui, vi ∈ B, I is a finite index set, and the gi ∈ G are not necessarily distinct. If we

let s = maxi∈I {tip(uipivi)}, then f has an s-representation.

Now choose among all such possible representations of f the one with minimal s. This minimal

s must be tip(f), if f has a standard representation. To obtain a contradiction, we assume that

tip(f) < s.

We induct on the number ns of summands in the s-representation of f such that tip(uigivi) = s.

Since s does not occur in f , it must cancel in the representation. Hence, ns > 1. The inductive

hypothesis is that for all n < ns there is an s′-representation where s′ < s.

Benjamin J. Keller Appendix A 116

Suppose that ns = 2. Rewrite the representation of f as

f = α1u1g1v1 + α2u2g2v2 +
∑

j∈I\{1,2}
αjujgjvj

where tip(u1g1v1) = tip(u2g2v2) = s.

Since s does not occur in the third term of this representation, these tips cancel in

g = α1u1g1v1 + α2u2g2v2

= (α1u1g1v1 − α1LC (g1)tip(u1g1v1))

+(α2u2g2v2 − α2LC (g2)tip(u2g2v2)).

Therefore, tip(g) < s. Also, the maximum path of
∑
j∈I\{1,2}αjujgjvj must be less than s by the

assumption ns = 2.

Since s is canceled in g, it must be that α1LC (g1)tip(u1g1v1) = −α2LC (g2)tip(u2g2v2).

To reach the contradiction, we must show that g is either zero or has a t-representation for t < s.

By the assumption ns = 2, tip(u1g1v1) = tip(u2g2v2) = s, or equivalently u1tip(g1)v1 = u2tip(g2)v2.

Because G is tip-reduced, there are three cases that satisfy this property. The first case is that

tip(g1) and tip(g2) are disjoint, the second case is that tip(g1) overlaps with tip(g2), and the third

case is that tip(g2) overlaps with tip(g1). The second and the third case are symmetric, so we need

only consider the first and second cases.

For the first case, assume that tip(g1) and tip(g2) are disjoint. Hence we may write s =

u1tip(g1)wtip(g2)v2 for some w ∈ B. Define p1 = g1w and p2 = wg2. Since α = α1LC (g1) =

−α2LC (g2), it is easy to see that g = αu1o(p1, p2, w)v2. Lemma A.2 implies that o(p1, p2, w) has

a t-representation where t < cmw(tip(p1), tip(p2)) = tip(g1)wtip(g2). Therefore, g has a u1tv2-

representation where u1tv2 < u1tip(g1)wtip(g2)u2 = s, which gives the needed contradiction.

For the second case, suppose that tip(g1) overlaps tip(g2) by w. This implies

s = u1cmw(tip(g1), tip(g2))v2.

Let α = α1 = −α2. It follows that

g = αu1o(g1, g2, w)v2.

By assumption, o(g1, g2, w) is either zero or has a t-representation

o(g1, g2, w) =
∑
k∈K

u′kg
′
kv
′
k

Benjamin J. Keller Appendix A 117

for some t < cmw(tip(g1), tip(g2)). Assuming the overlap relation is not zero (in which case g is

zero), g has a u1tv2-representation where u1tv2 < u1cmw(tip(g1), tip(g2))v2 = s. As in the first

case, this contradicts the minimality of s.

For ns > 2, we assume that for all n < ns there is an s′-representation where s′ < s. To complete

the proof, assume that tip(u1g1v1) = tip(u2g2v2) = s. Then we can modify the representation of f

to

f = α1u1g1v1 −
α1

α2
u2g2v2 +

(
α1

α2
+ 1

)
u2g2v2 +

∑
j∈I\{1,2}

αjujgjvj.

Consider this representation as two pieces, one consisting of the first two summands together, and

other consisting of the last two summands together. Let f1 be the first part and f2 be the second.

Then each part has less than ns occurrences of s, and so, by the inductive hypothesis, has a s′-

representation for a possibly unique s′ < s. In particular, assume f1 has an s1-representation and f2

has a s2-representation. Letting s′′ be the maximum of s2 and s2, then f has a s′′-representation.

Since, s′′ < s this contradicts the minimality of s.

We have shown that s = tip(f). Therefore, every element f of 〈G〉 has a standard representation

with respect to G. By Lemma A.1 this means that G is a Gröbner basis. �

Theorem A.2 (Buchberger’s Second Criterion) Let F be a finite subset of KΓ such that ev-

ery f ∈ F is uniform, and let g1, g2 and p be uniform elements of KΓ such that tip(g1) and tip(g2)

overlap by v, and tip(p)|cmv(tip(g1), tip(g2)). Let w1 and w2 be the corresponding common multiples

of tip(p) with tip(g1) and tip(g2) respectively. In addition, assume the following conditions hold

1. The overlap relation of g1 with p has a t1-representation with respect to F for t1 < w1.

2. The overlap relation of p with g2 has a t2-representation with respect to F for t2 < w2.

Then there exists a t-representation for the overlap relation o(g1, g2, v) of g1 with g2 where t <

cmv(tip(g1), tip(g2)).

Proof Assume that

cmv(tip(g1), tip(g2)) = tip(g1)β

= αtip(g2)

= ltip(p)r

Benjamin J. Keller Appendix A 118

for α, β, l, r ∈ B. Also, let s1 be the longest common suffix of r and β, and s2 be the longest common

prefix of l and α, then β = β′s1, r = r′s1, α = s2α
′, and l = s2l

′ for some β′, α′, r′, l′ ∈ B.

Then the overlap relation of g1 with p is g1β
′ − lpr′, and the overlap relation of p with g2 is

l′pr − α′g2.

The overlap relation of g1, g2 with overlap v is

o(g1, g2, v) = g1β − αg2

= g1β − lpr + lpr − αg2

= (g1β
′ − lpr′)s1 + s2(l′pr − α′g2).

By condition 2, (g1β
′ − lpr′) has a t1-representation. Therefore, the relation (g1β

′ − lpr′)s1 has

a t1s1-representation for t1s1 < cmv(tip(g1), tip(g2)). By condition 2, s2(l′pr − α′g2) has an

s2t2-representation for s2t2 < cmv(tip(g1), tip(g2)). Choosing t = max{t1s1, s2t2}, we have that

o(g1, g2, v) has a t-representation where t < cmv(tip(g1), tip(g2)). �

Given Theorem A.1, Buchberger’s second criterion tells us which overlap relations do not need

to be computed directly. Assuming G is tip-reduced, any overlap relation o(p, q, v), formed from

p, q ∈ G, whose corresponding common multiple cmv(p, q) is divisible by the tip of some g ∈ G

(g 6= p and g 6= q) can safely be ignored. (The restriction on g can actually be loosened to the

condition that if g = p then it cannot be a prefix of cmv(p, q), and if g = q then it cannot be a suffix

of cmv(p, q).) The reason that the computation of o(p, q, v) can be avoided is that the division by

tip(g) implies that o(p, q, v) can be built from the overlap relations o(p, g, w1) and o(g, q, w2) or their

reduced form. The algorithms that use Buchberger’s second criterion are defined in Chapter 3.

Appendix B

Suffix Tree Insertion Algorithm

The algorithm for inserting a word into a suffix tree is described. This algorithm is an adaptation

of McCreight’s algorithm as described by Amir et al [2]. The primary change is that the algorithm

also finds right-overlaps (see Chapter 4) for the input word with words already in the tree.

The insertion algorithm (Figure B.1) takes a word w as an argument and inserts it into the tree

(rooted by root). The result of the algorithm is that the suffixes of w are inserted into the tree, and

a set R of right-overlaps is found. We assume that w is terminated by a special symbol ‘#’ that

does not match itself. In an implementation, either be a unique symbol is used for each input word,

or no terminating symbols are used.

For each suffix s of w, the insert algorithm inserts the suffix using ST Insert, and then finds

the right-overlaps for the previous suffix using Pattern Leaves. ST Insert returns a node t that

is the root of the subtree containing all patterns prefixed by the inserted suffix. Pattern Leaves

just searches this subtree and returns the identifiers for the corresponding words.

The variables v and pv refer to the locus of the head of the previous suffix inserted and its parent.

Both are initially given the root as their value. Once a suffix has been inserted their values may be

updated to other nodes by ST Insert. ST Insert handles assigning the suffix link of v for each

insertion but the final one. Therefore, if the previous suffix inserted was length one and v is not the

root, Insert assigns the suffix link to be the root. The next suffix of w is found by suffix(s), which

simply removes the first symbol of s.

The ST Insert algorithm (Figure B.2) is the algorithm described by Amir et al [2]. As before,

119

Benjamin J. Keller Appendix B 120

Insert(w). Modified McCreight insertion algorithm for suffix-tree.

INPUT: A word w to be inserted.
OUTPUT: A set R of right-overlaps.

1 R← ∅;
2 s← w;
3 v ← root;
4 pv ← root;
5 while (s 6= λ) do
6 begin
7 (v, pv, t)← ST insert(v, pv, s);
8 R← R ∪Pattern Leaves(t);
9 if (v 6= root ∧ |s| = 1) then
10 sufflink(v)← root;
11 s← suffix(s)
12 end
13 return R;

Figure B.1: Suffix Tree Insertion Algorithm.

the argument v is the head of the previous suffix, pv is the parent of v (if v is the root then pv = v),

and s is the suffix to be inserted. The results are the head v′ for s, the parent of v′ and a set of

nodes for finding right-overlaps (the set is either a singleton node, or is empty).

The algorithm uses the fact that head(wk+1) and head(wk) have the following relationship: if

head(wk+1) = aα for some symbol a and some possibly empty word α, then α is a prefix of head(wk).

So, if we have the locus of head(wk+1) we don’t have to scan the common prefix with the tree.

ST Insert decides how to handle the insertion. If v is the root, then the previous head was

empty. Therefore, the whole suffix must be scanned to find its locus in the tree. To do this, the

function Scan is called. Otherwise, there is prior information that can be used. If pv is the root,

then the arc from pv to v is the previous head. To find the next head, the first symbol must be

removed before calling the function Rescan. In the case where pv is not the root, the Rescan of

the previous head is begun from the locus of the first suffix of l(pv) found by following the suffix

link of pv.

The Scan algorithm (Figure B.3) is used when no information about prior suffixes is available

(or has been “used up” by the Rescan algorithm). Scan matches the suffix with the labels of the

arcs in the tree until the scan stops by either reaching a locus for the suffix, or reaches a node for

Benjamin J. Keller Appendix B 121

ST insert(v, pv, s). McCreight algorithm for inserting a suffix into tree.

INPUT: Locus v of previous head, its parent pv, and suffix s.
OUTPUT: Locus v′ of head of s, parent of v′ and set of nodes.

1 if (v = root) then
2 return Scan(v, v, s);
3 else
4 if (pv = root) then
5 β ← suffixlink (label(v));
6 return Rescan(v, pv, β, s);
7 else
8 β ← label(v);
9 return Rescan(v, suffixlink (pv), β, s);
10

Figure B.2: Algorithm for Insertion of a Single Suffix.

which no out-arc has a label matching the suffix.

The input to Scan is a node y of the tree and a suffix s. The algorithm returns the locus of the

head of s and a set containing the locus of s (minus the special tag character added to the end).

In addition to finding the locus of s, Scan also increments the pattern child counts of each node

encountered. If s is the full word w, then the counter for each node encountered is incremented,

otherwise the counter is left alone.

The scan of s is done by finding an arc from y to a child f whose label has a prefix α that is

also a prefix of s. If α is the label of the arc from y to f , then the prefix α is removed from s and

the process is repeated from f . Otherwise, if α is empty, there is no matching child and so a new

child v of y is added and the arc from y to v is labeled by s. If α is nonempty then the arc to f is

split by adding a child p of y (with arc labeled α) with children f and a new node v as a locus for

s. Note that Scan only returns a non-empty set containing the parent of the locus of s when the

label of the arc to the leaf for s is the special unique terminating symbol.

The Rescan algorithm (Figure B.4) is used when the previous head is non-empty. Aside from

inserting the suffix s, Rescan has the goal of setting the suffix link for the locus v of the previous

head. The inputs are the node v and the node x (found in ST Insert as the node pointed to by

the suffix link of the parent of v). The other two arguments are the words β and s, where β is a

Benjamin J. Keller Appendix B 122

Scan(y, s). Construct locus of head(s).

INPUT: A node y, and a suffix s.
OUTPUT: A node v locus of head(s), and set of nodes.

1 if (s is full pattern) then
2 c← 1;
3 else
4 c← 0;
5 count (y)← count (y) + c;
6 (f, α)← FindMatch(y, s);
7 while (α = label(f)) do begin
8 y ← f ;
9 count (y)← count (y) + c;
10 s← s \ α;
11 (f, α)← FindMatch(y, s);
12 end
13 if (α = #) then
14 child(y) ← child(y) ∪ {v};
15 label(v)← s;
16 if (s = #) then
17 return (v, {y});
18 else
19 return (v, {});
20 else
21 child(y) ← child(y) ∪ {p};
22 child(p)← child(y) ∪ {f, v};
23 count (p)← count (f);
24 label(p)← α;
25 label(v)← s \ α;
26 return (v, {});

Figure B.3: Scan Algorithm.

Benjamin J. Keller Appendix B 123

prefix of a path from x and s is the suffix being inserted.

The function Matching Child finds a child f of x whose arc matches β (since f is guaranteed

to exists, only the first symbols of β and arc label are needed to make the match). The first loop

of Rescan uses Matching Child to traverse the tree to find a path from x labeled by β. If the

loop ends with β equal to the matching arc label, then the corresponding node f is the target of

the suffix link of v, and scan is called to finish the insertion of s. Otherwise, the locus of β must be

constructed as in Scan.

Benjamin J. Keller Appendix B 124

Rescan(v, x, β, s). Construct suffix link of head(wk+1) where s = wk.

INPUT: Locus v of previous head, x, β, s
OUTPUT: Locus v′ of head of s, parent of v′ and set of nodes.

1 f ←MatchingChild(x, β);
2 α← label(f);
3 while (|α| < |β|) do begin
4 β ← β \ α;
5 x← f ;
6 f ←MatchingChild(x, β);
7 α← label(f);
8 end
9 if (|α| = |β|) then
10 suffix(v) ← f ;
11 return Scan(f, x, s \ l(x));
12 else begin
13 label(f)← α \ β;
14 s← s \ l(x);
15 label(d)← β;
16 count (d)← count (f);
17 child(x)← child(x) \ {f};
18 child(x)← child(x) ∪ {d};
19 child(d)← child(x) ∪ {f, w};
20 label(w)← s \ l(d);
21 suffix(v) ← d;
22 if (label(w) = #) then
23 return (d, {f});
24 else
25 return (d, {});
26 end

Figure B.4: Rescan Algorithm.

Appendix C

Problem Instances

C.1 Free Algebras

The problem instances in this section all come from free algebras. Some problems may include the

monomial 1 which is not valid in a path algebra. For the experiments, in the instances where 1

occurs, 1 was replaced by the single vertex (1).

C.1.1 A4 through A8

All five of these problems are from the free algebra Z p 〈a, b, c〉, where for the experiments p = 32117.

The generators each problem are given separately below.

A4

aa+ 5ab+ 7ac+ 11ba+ 2bb+ 31bc+ 19ca+ 13cb+ 23cc,

ab+ 5ac+ 7ba+ 11bb+ 2bc+ 31ca+ 19cb+ 13cc,

ac+ 5ba+ 7bb+ 11bc+ 2ca+ 31cb+ 19cc,

ba+ 5bb+ 7bc+ 11ca+ 2cb+ 31cc

125

Benjamin J. Keller Appendix C 126

A5

aa+ 5ab+ 7ac+ 11ba+ 2bb+ 31bc+ 19ca+ 13cb+ 23cc,

ab+ 5ac+ 7ba+ 11bb+ 2bc+ 31ca+ 19cb+ 13cc,

ac+ 5ba+ 7bb+ 11bc+ 2ca+ 31cb+ 19cc,

ba+ 5bb+ 7bc+ 11ca+ 2cb+ 31cc,

bb+ 5bc+ 7ca+ 11cb+ 2cc

A6

aa+ 5ab+ 7ac+ 11ba+ 2bb+ 31bc+ 19ca+ 13cb+ 23cc,

ab+ 5ac+ 7ba+ 11bb+ 2bc+ 31ca+ 19cb+ 13cc,

ac+ 5ba+ 7bb+ 11bc+ 2ca+ 31cb+ 19cc,

ba+ 5bb+ 7bc+ 11ca+ 2cb+ 31cc,

bb+ 5bc+ 7ca+ 11cb+ 2cc,

bc+ 5ca+ 7cb+ 11cc

A7

aa+ 5ab+ 7ac+ 11ba+ 2bb+ 31bc+ 19ca+ 13cb+ 23cc,

ab+ 5ac+ 7ba+ 11bb+ 2bc+ 31ca+ 19cb+ 13cc,

ac+ 5ba+ 7bb+ 11bc+ 2ca+ 31cb+ 19cc,

ba+ 5bb+ 7bc+ 11ca+ 2cb+ 31cc,

bb+ 5bc+ 7ca+ 11cb+ 2cc,

bc+ 5ca+ 7cb+ 11cc,

ca+ 5cb+ 7cc

A8

aa+ 5ab+ 7ac+ 11ba+ 2bb+ 31bc+ 19ca+ 13cb+ 23cc,

ab+ 5ac+ 7ba+ 11bb+ 2bc+ 31ca+ 19cb+ 13cc,

ac+ 5ba+ 7bb+ 11bc+ 2ca+ 31cb+ 19cc,

ba+ 5bb+ 7bc+ 11ca+ 2cb+ 31cc,

bb+ 5bc+ 7ca+ 11cb+ 2cc,

bc+ 5ca+ 7cb+ 11cc,

ca+ 5cb+ 7cc,

cb+ 5cc

Benjamin J. Keller Appendix C 127

C.1.2 Control Theory Problems

The following instances are examples from the paper by Helton and Wavrik on applying Gröbner

bases in control theory [31].

HWEB The alphabet for this instance is {x, x′, y, y′, (1− xy)−1, (1− yx)−1}.

xx′ − 1, (1− xy)−1xy − (1 − xy)−1 + 1,

x′x− 1, xy(1 − xy)−1 − (1 − xy)−1 + 1,

yy′ − 1, (1− yx)−1yx − (1 − yx)−1 + 1,

y′y − 1, yx(1 − yx)−1 − (1− yx)−1 + 1

HWRES The alphabet for the HWRES instance is {x, x′, (1− x)−1}.

xx′ − 1, (1− x)−1x− (1− x)−1 + 1,

x′x− 1, x(1− x)−1 − (1− x)−1 + 1

C.2 Other Free Instances

P4 The P4 instance is from the free algebra over the two letter alphabet {a, b}.

baa− aaa, aba− aa

P6 The P6 instance is from the free algebra over the three letter alphabet {a, b, c}.

ccc+ 2ccb+ 3cca+ 5bcc+ 7aca, bcc+ 11bab+ 13aaa

ELP The ELP instance is from the free algebra over the three letter alphabet {x, y, z}.

xxyy − xxzz, xyyz,

yyzz − yyxx, yzzx,

zzxx− zzyy, zxxy

C.3 Path Algebras

This section includes the path algebra instances (other than the mesh algebra instances) used in the

experimentation. Some of the path algebra problems were randomly generated and the parameters

used to generate them are given in the next section.

Benjamin J. Keller Appendix C 128

(1)

(5) (2)

(4) (3)

a12
a15

a51

a45

a41

a54

a34

a23

a13a31
a24a42

a52

a32

a43

a35a53

a14

a25

a21

Figure C.1: Quiver for CGL, CGL1, and CG5.

C.3.1 CGL and Derivatives

The following three problems are based on the complete graph K5 in Figure C.1.

CGL

a13a32− a12, a14a42− a12, a15a52− a12, a12a23− a13,

a14a43− a13, a15a53− a13, a12a24− a14, a13a34− a14,

a15a54− a14, a12a25− a15, a13a35− a15, a14a45− a15,

a23a31− a21, a24a41− a21, a25a51− a21, a21a13− a23,

a24a43− a23, a25a53− a23, a21a14− a24, a23a34− a24,

a25a54− a24, a21a15− a25, a23a35− a25, a24a45− a25,

a32a21− a31, a34a41− a31, a35a51− a31, a31a12− a32,

a34a42− a32, a35a52− a32, a31a14− a34, a32a24− a34,

a35a54− a34, a31a15− a35, a32a25− a35, a34a45− a35,

a42a21− a41, a43a31− a41, a45a51− a41, a41a12− a42,

a43a32− a42, a45a52− a42, a41a13− a43, a42a23− a43,

a45a53− a43, a41a15− a45, a42a25− a45, a43a35− a45,

a52a21− a51, a53a31− a51, a54a41− a51, a51a12− a52,

a53a32− a52, a54a42− a52, a51a13− a53, a52a23− a53,

a54a43− a53, a51a14− a54, a52a24− a54, a53a34− a54

Benjamin J. Keller Appendix C 129

CGL1

a13a32− a12, a14a42− a12, a15a52− a12, a13a32− a14a42,

a13a32− a15a52, a14a42− a15a52, a12a23− a13, a14a43− a13,

a15a53− a13, a12a23− a14a43, a12a23− a15a53, a14a43− a15a53,

a12a24− a14, a13a34− a14, a15a54− a14, a12a24− a13a34,

a12a24− a15a54, a13a34− a15a54, a12a25− a15, a13a35− a15,

a14a45− a15, a12a25− a13a35, a12a25− a14a45, a13a35− a14a45,

a23a31− a21, a24a41− a21, a25a51− a21, a23a31− a24a41,

a23a31− a25a51, a24a41− a25a51, a21a13− a23, a24a43− a23,

a25a53− a23, a21a13− a24a43, a21a13− a25a53, a24a43− a25a53,

a21a14− a24, a23a34− a24, a25a54− a24, a21a14− a23a34,

a21a14− a25a54, a23a34− a25a54, a21a15− a25, a23a35− a25,

a24a45− a25, a21a15− a23a35, a21a15− a24a45, a23a35− a24a45,

a32a21− a31, a34a41− a31, a35a51− a31, a32a21− a34a41,

a32a21− a35a51, a34a41− a35a51, a31a12− a32, a34a42− a32,

a35a52− a32, a31a12− a34a42, a31a12− a35a52, a34a42− a35a52,

a31a14− a34, a32a24− a34, a35a54− a34, a31a14− a32a24,

a31a14− a35a54, a32a24− a35a54, a31a15− a35, a32a25− a35,

a34a45− a35, a31a15− a32a25, a31a15− a34a45, a32a25− a34a45,

a42a21− a41, a43a31− a41, a45a51− a41, a42a21− a43a31,

a42a21− a45a51, a43a31− a45a51, a41a12− a42, a43a32− a42,

a45a52− a42, a41a12− a43a32, a41a12− a45a52, a43a32− a45a52,

a41a13− a43, a42a23− a43, a45a53− a43, a41a13− a42a23,

a41a13− a45a53, a42a23− a45a53, a41a15− a45, a42a25− a45,

a43a35− a45, a41a15− a42a25, a41a15− a43a35, a42a25− a43a35,

a52a21− a51, a53a31− a51, a54a41− a51, a52a21− a53a31,

a52a21− a54a41, a53a31− a54a41, a51a12− a52, a53a32− a52,

a54a42− a52, a51a12− a53a32, a51a12− a54a42, a53a32− a54a42,

a51a13− a53, a52a23− a53, a54a43− a53, a51a13− a52a23,

a51a13− a54a43, a52a23− a54a43, a51a14− a54, a52a24− a54,

a53a34− a54, a51a14− a52a24, a51a14− a53a34, a52a24− a53a34

Benjamin J. Keller Appendix C 130

CG5

a13a32− a14a42, a13a32− a15a52, a14a42− a15a52,

a12a23− a14a43, a12a23− a15a53, a14a43− a15a53,

a12a24− a13a34, a12a24− a15a54, a13a34− a15a54,

a12a25− a13a35, a12a25− a14a45, a13a35− a14a45,

a23a31− a24a41, a23a31− a25a51, a24a41− a25a51,

a21a13− a24a43, a21a13− a25a53, a24a43− a25a53,

a21a14− a23a34, a21a14− a25a54, a23a34− a25a54,

a21a15− a23a35, a21a15− a24a45, a23a35− a24a45,

a32a21− a34a41, a32a21− a35a51, a34a41− a35a51,

a31a12− a34a42, a31a12− a35a52, a34a42− a35a52,

a31a14− a32a24, a31a14− a35a54, a32a24− a35a54,

a31a15− a32a25, a31a15− a34a45, a32a25− a34a45,

a42a21− a43a31, a42a21− a45a51, a43a31− a45a51,

a41a12− a43a32, a41a12− a45a52, a43a32− a45a52,

a41a13− a42a23, a41a13− a45a53, a42a23− a45a53,

a41a15− a42a25, a41a15− a43a35, a42a25− a43a35,

a52a21− a53a31, a52a21− a54a41, a53a31− a54a41,

a51a12− a53a32, a51a12− a54a42, a53a32− a54a42,

a51a13− a52a23, a51a13− a54a43, a52a23− a54a43,

a51a14− a52a24, a51a14− a53a34, a52a24− a53a34

C.3.2 DCYC and ICYC

DCYC The quiver for the DCYC instance is shown in Figure C.2 and the relations are the

following.

abc+ di, id+ iaf, fi + fgc + bhi,

cab+ hg, ef + ebh, dg + deb+ afg,

bca+ fe, gh + gcd, he+ hia + cde

ICYC The quiver for the ICYC instance is shown in Figure C.3 and the relations are the following.

Benjamin J. Keller Appendix C 131

(1)

(2)

(3) (4)

dia c

b

e

f g

h

Figure C.2: Quiver for the DCYC Problem Instance.

(1)

(2) (3)

(7)

(5)(6)

(4)

b

ca
d

e
g

h

i

f

Figure C.3: Quiver for the ICYC Problem Instance.

Benjamin J. Keller Appendix C 132

(1)

(3)(4)

(5) (2)ab

c

d
e

f

gh

i

j

Figure C.4: Quiver for P5 Instance.

abcghi+ def, hidefg + hig, bcghid+ bcd,

hiabcg + hig, cghiab + cab

C.3.3 P5

The instance P5 is a Froebenius algebra (see Rotman [50] for a definition). The quiver is shown in

Figure C.4 and the relations are given below.

ac− bi, de− ca, fg − ed, hj − gf, ib − jh,

adfhia, dfhiad, fhiadf, hiadfh, iadfhi,

bjgecb, jgecbj, gecbjg, ecbjge, cbjgec

C.3.4 Binary Tree Quivers

The three problems BT7, BT31, and M39 are mesh algebra instances whose quivers are binary trees

(the first two), slightly modified trees (the latter).

BT7 This problem is a mesh algebra for the graph shown in Figure C.5, with the corresponding

relations shown below.

a12b21 + a13b31, b42a24, b73a37

a24b42 + a25b52 + b21a12, b52a25,

a36b63 + a37b73 + b31a13, b63a36,

Benjamin J. Keller Appendix C 133

(1)

(2)

(5)

(3)

(6)(4) (7)

a12 a13

a24 a37

b21 b31

a25 a36

b63b73b42b52

Figure C.5: Quiver for BT7 instance.

(4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14) (15)

(16) (20) (24) (26)

(2) (3)

(1)

(29)(19)(17) (21) (22)(18) (27) (28) (30) (31)(25)(23)

a613

a37

a12 a13

a24
a25

a510
a49

a48

a816

a817

a918

a919

a1020

a1021

a511
a612

a36

a714 a715

a1428a1326a1224

a1225 a1327 a1429

a1530 a1531

Figure C.6: Quiver for BT31 instance.

BT31 This problem is a mesh algebra for the graph shown in Figure C.6, with the corresponding

relations shown below.

Benjamin J. Keller Appendix C 134

a12b12 + a13b13, b816a816,

a24b24 + a25b25 + b12a12, b817a817,

a48b48 + a49b49 + b24a24, b918a918,

a510b510 + a511b511 + b25a25, b919a919,

a36b36 + a37b37 + b13a13, b1020a1020,

a612b612 + a613b613 + b36a36, b1021a1021,

a714b714 + a715b715 + b37a37, b1122a1122,

a816b816 + a817b817 + b48a48, b1123a1123,

a918b918 + a919b919 + b49a49, b1224a1224,

a1020b1020 + a1021b1021 + b510a510, b1225a1225,

a1122b1122 + a1123b1123 + b511a511, b1326a1326,

a1224b1224 + a1225b1225 + b612a612, b1327a1327,

a1326b1326 + a1327b1327 + b613a613, b1428a1428,

a1428b1428 + a1429b1429 + b714a714, b1429a1429,

a1530b1530 + a1531b1531 + b715a715, b1530a1530,

b1531a1531

M39 This problem is a mesh algebra for the graph shown in Figure C.7, with the corresponding

relations shown below.

Benjamin J. Keller Appendix C 135

(4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14) (15)

(16) (20) (24) (26)

(2) (3)

(1)

(29)(19)(17) (21) (22)(18) (27) (28) (30)(25)(23)

a613

a37

a12 a13

a24
a25

a510
a49

a48

a816

a817

a918

a919

a1020

a1021

a511
a612

a36

a714 a715

a1428a1326a1224

a1225 a1327 a1429

a1530 a1531

(32) (33) (34) (35) (36) (37) (38) (39)

a1632

a1732

a1833

a1933

a2034

a2134

a2235

a2335

a2436

a2536

a2838 a3039a2637

a2737 a2938

(31)
a3139

Figure C.7: Quiver for M39 instance.

a12b12 + a13b13, a1632b1632 + b816a816,

a24b24 + a25b25 + b12a12, a1732b1732 + b817a817,

a48b48 + a49b49 + b24a24, a1833b1833 + b918a918,

a510b510 + a511b511 + b25a25, a1933b1933 + b919a919,

a36b36 + a37b37 + b13a13, a2034b2034 + b1020a1020,

a612b612 + a613b613 + b36a36, a2134b2134 + b1021a1021,

a714b714 + a715b715 + b37a37, a2235b2235 + b1122a1122,

a816b816 + a817b817 + b48a48, a2335b2335 + b1123a1123,

a918b918 + a919b919 + b49a49, a2436b2436 + b1224a1224,

a1020b1020 + a1021b1021 + b510a510, a2536b2536 + b1225a1225,

a1122b1122 + a1123b1123 + b511a511, a2637b2637 + b1326a1326,

a1224b1224 + a1225b1225 + b612a612, a2737b2737 + b1327a1327,

a1326b1326 + a1327b1327 + b613a613, a2838b2838 + b1428a1428,

a1428b1428 + a1429b1429 + b714a714, a2938b2938 + b1429a1429,

a1530b1530 + a1531b1531 + b715a715, a3039b3039 + b1530a1530,

a3139b3139 + b1531a1531

Benjamin J. Keller Appendix C 136

(7)

(9) (8)(6)

(5) (4)

(3)

(1) (2)

a69 a38

a12

a21
a17

a71a61
a16

a89
a97

a96
a59

a95a65
a56

a54

a45

a98

a78

a23

a83

a48 a43
a34

a72
a27

a87
a32

a67 a79
a76

a28a82

a84a49
a94

Figure C.8: M1 Quiver.

C.3.5 M1 and Derivatives

All of the following are mesh algebra problem instances, and all use the same quiver, which is shown

in Figure C.8. The difference between them is how the paths in the relations cover the graph. All

instances are mesh algebras.

M1 The M1 instance includes all mesh relations for every node of the graph.

a12a21 + a17a71 + a16a61,

a32a23 + a34a43 + a38a83,

a54a45 + a56a65 + a59a95,

a21a12 + a23a32 + a27a72 + a28a82,

a43a34 + a45a54 + a48a84 + a49a94,

a61a16 + a65a56 + a67a76 + a69a96,

a71a17 + a72a27 + a76a67 + a78a87 + a79a97,

a82a28 + a83a38 + a84a48 + a87a78 + a89a98,

a94a49 + a95a59 + a96a69 + a97a79 + a98a89.

Benjamin J. Keller Appendix C 137

MBFS

a12a21 + a17a71 + a16a61, a43a34, a56a65,

a21a12 + a23a32 + a28a82, a71a17, a82a28,

a61a16 + a65a56 + a69a96, a32a23 + a34a43, a96a69.

MDFS

a21a12 + a23a32, a54a45 + a56a65, a12a21,

a32a23 + a34a43, a65a56 + a69a96, a79a97,

a43a34 + a45a54, a96a69 + a97a79 + a98a89, a89a98,

MT1

a17a71, a49a94, a71a17 + a76a67 + a78a87 + a79a97,

a28a82, a59a95, a82a28 + a83a38 + a87a78,

a38a83, a67a76, a94a49 + a95a59 + a97a79.

MT2

a17a71, a49a94, a71a17 + a76a67 + a78a87 + a79a97,

a28a82, a59a95, a82a28 + a83a38 + a87a78 + a89a98,

a38a83, a67a76, a94a49 + a95a59 + a97a79 + a98a89.

MT3

a17a71 + a16a61, a49a94 + a45a54, a71a17 + a76a67 + a78a87 + a79a97,

a28a82 + a23a32, a59a95 + a54a45, a82a28 + a83a38 + a87a78,

a38a83 + a32a23, a67a76 + a61a16, a94a49 + a95a59 + a97a79.

MT4

a12a21 + a16a61, a61a16 + a67a76 + a69a96, a21a12,

a43a34 + a45a54, a76a67 + a78a87, a34a43,

a54a45 + a59a95, a95a59 + a96a69, a87a78,

MTRI

a12a21 + a17a71, a43a34 + a48a84, a71a17 + a72a27 + a78a87 + a79a97,

a21a12 + a27a72, a56a65 + a59a95, a83a38 + a84a48 + a87a78 + a89a98,

a34a43 + a38a83, a65a56 + a69a96, a95a59 + a96a69 + a97a79 + a98a89.

Benjamin J. Keller Appendix C 138

(5) (8) (11) (14) (17)

(6) (9) (12) (15) (18)

(4) (7) (10) (13) (16)

d8 d12 d14d2

e3 e9 e12 e15

c8c2 c11

a13a1 a7 a10

c14(2)

(3)

(1)

(2)

(3)

(1)

d6

e6

c5

a4 a16

c17

d18

e18

b2 b8b4 b10 b14 b16

Figure C.9: Quiver of the MS Instance.

C.3.6 MS, MTB, MM

These three instances are mesh algebras defined in terms of graphs that have alternate paths of

length two from (almost) every node. The MS instance is the simplest, with the other two making

slight modifications of the graph. The relations for all three problem instances are sums of the

uniform paths of length two between distinct nodes.

MS The quiver for the MS instance is shown in Figure C.9 and the relations are given below. Note

that the nodes on the left and right sides of the diagram in Figure C.9 are the same (so the graph

forms a tube).

a1a4, a4a7 + b4b8, b2b4 + c2c5 + d2d6,

a7a10, a10a13 + b10b14, b8b10 + c8c11 + d8d12,

a13a16, a16a1 + b16b2, b14b16 + c14c17 + d14d18

e3e6, d6d8 + e6e9,

e9e12, d12d14 + e12e15,

e15e18, d18d2 + e18e3,

MTB The MTB instance is similar to the MS instance, except the quiver (Figure C.10) forms a

torus.

Benjamin J. Keller Appendix C 139

(5) (8) (11) (14) (17)

(6) (12) (18)

(4) (7) (10) (13) (16)

d8 d12 d14d2

e3 e9 e12 e15

c8c2 c11

a13a1 a7 a10

c14(2)

(1)

(2)

(1)

d6

e6

c5

a4 a16

c17

d18

e18

b2 b8b4 b10 b14 b16

(1) (1)(13)(7)

Figure C.10: Quiver of the MTB Instance.

(5) (8) (11) (14) (17)

(6) (9) (12) (15) (18)

(4) (7) (10) (13) (16)

d8 d12 d14d2

e3 e9 e12 e15

c8c2 c11

a13a1 a7 a10

c14(2)

(3)

(1)

(2)

d6

e6

c5

a4 a16

c17

d18

e18

b2 b8b4 b10 b14 b16

(3)

(1)

Figure C.11: Quiver of the MM Instance.

a1a4, a4a7 + b4b8, b2b4 + c2c5 + d2d6,

a7a10, a10a13 + b10b14, b8b10 + c8c11 + d8d12,

a13a16, a16a1 + b16b2, b14b16 + c14c17 + d14d18.

e3e6, d6d8 + e6e9,

e9e12, d12d14 + e12e15,

e15e18, d18d2 + e18e3,

MM The MM instance is also based on the MS instance. The difference is that the quiver (Fig-

ure C.11) is a moebius strip (the sequence of left and right nodes in the Figure is reversed on one-side

is reversed from the other side).

Benjamin J. Keller Appendix C 140

(2)

(3)(4)

(5)

(1) a

b

c

d
ef

g

Figure C.12: Quiver for A51E Problem Instance.

(2)

(3)(4)

(5)

(1)

b

c

ef

d

g a

Figure C.13: Quiver for A51H Problem Instance.

a1a4, a4a7 + b4b8, b2b4 + c2c5 + d2d6,

a7a10, a10a13 + b10b14, b8b10 + c8c11 + d8d12,

a13a16, a16e3 + b16d2, b14b16 + c14c17 + d14d18.

e3e6, d6d8 + e6e9,

e9e12, d12d14 + e12e15,

e15e18, d18b2 + e18a1,

C.4 Random Instances

All of the random instances were generated using the algorithms given in Appendix D. The param-

eters for generating these problems are given here.

C.4.1 A51E and A51H

The A51E and A51H instances were generated for the graphs shown in Figure C.12 and Figure C.13.

These graphs are modifications of a four node graph (from the A51 instance discussed in Chapter 5)

by adding a fifth node in different positions.

Both instances were generated with the same parameters (other than the graph). The parameters,

Benjamin J. Keller Appendix C 141

other than the graphs, are a seed of 97532791, an expected number of 2 polynomials in each uniform

equivalence class, expected number of 3 terms in a polynomial, and the expected number of 3 loops

in a path. In both instances, all monomial relations were removed.

C.4.2 AGS

The AGS instance has both a randomly generated graph and relations. The graph is acyclic and was

generated using the seed 1719133751, size 15, and an edge probability of 0.5. The resulting graph

has 58 arcs. The relations where generated using this graph with a seed of 97311519, an expected

number of 2 polynomials for each uniform equivalence class, expected polynomial length of 10, and

an expected number of 1 loop in a path. All monomial relations were then removed.

C.4.3 GL

The GL instance has both a randomly generated graph and relations. The graph is acyclic and was

generated using the seed 1719133751, size 30, and an edge probability of 0.5. The relations where

generated using this graph with a seed of 975332717, an expected number of 4 polynomials for each

uniform equivalence class, expected polynomial length of 4, and an expected number of 1 loop in a

path.

Appendix D

Problem Instance Generation

Some of the problem instances used in this research were randomly generated. A program that

generated random graphs and a program that generated random generating sets were used. Both

programs are written in Standard ML and are available (by ftp). The generation functions from

these programs are given below.

D.1 Graph generation

Three functions are used for generating graphs. Each generates a different (but not disjoint) class

of graphs. The function gen graph generates directed graphs possibly with loops but no multiple

edges; gen multigraph generates directed multigraphs (possibly with loops and multiple edges);

and gen acyclic generates directed graphs with no cycles (and no multiple edges or loops).

All three functions take three arguments. The first argument is the number of vertices, the second

argument is the probability, and the third function is the random number generator function. The

program used to generate graphs using these functions is distributed with the Opal system.

D.2 Generating Set Generation

142

Benjamin J. Keller Appendix D 143

fun gen graph (n, prob, rand) =
let

val i = ref 0 (* vertex counters *)
and j = ref 0
and p = ref 0.0 (* edge probability *)
and g = new graph n

in
i := 1;
while (!i <= n) do

(
j := 1;
while (!j <= n) do

(
if (!j <> !i) then

(
p := Random.norm ((rand ()));
if (!p <= prob) then

add arc(!i, !j, g)
else ()
)

else ();
j := !j + 1
);

i := !i + 1
);

g
end (* gen graph *)

Figure D.1: Graph Generation Function.

Benjamin J. Keller Appendix D 144

fun gen multigraph (n, prob, rand) =
let

val i = ref 0 (* vertex counters *)
and j = ref 0
and p = ref 0.0 (* edge probability *)
and g = new graph n

in
i := 1;
while (!i <= n) do

(
j := 1;
while (!j <= n) do

(
p := Random.norm ((rand ()));
while (!p <= prob) do

(
add arc(!i, !j, g);
p := Random.norm ((rand ()))
);

j := !j + 1
);

i := !i + 1
);

g
end (* gen multigraph *)

Figure D.2: Multigraph Generation Function

Benjamin J. Keller Appendix D 145

fun gen acyclic (n, prob, rand) =
let

val i = ref 0 (* vertex counters *)
and j = ref 0
and p = ref 0.0 (* edge probability *)
and g = new graph n

in
i := 1;
while (!i <= n) do

(
j := !i + 1;
while (!j <= n) do

(
p := Random.norm ((rand ()));
if (!p <= prob) then

add arc(!i, !j, g)
else ();
j := !j + 1
);

i := !i + 1
);

g
end (* gen acyclic *)

Figure D.3: Acyclic Graph Generation

fun gen coefficient (rand) =
let

val num primes = real(Primes.num())
val r = Random.norm (rand ())
val k = floor ((num primes - 1.0) * r)

in
Poly.Field.mkelem(Integer.makestring(Primes.nth k))

end

Figure D.4: Coefficient Generation Function.

Benjamin J. Keller Appendix D 146

fun successor list ([],g) = []
| successor list (sg,g) =
let

val l1 = ref sg
and l2 = ref sg
and w succ l = ref []
and succ list = ref []

in
while (!l1 <> []) do

(
w succ l := [];
l2 := sg;
while (!l2 < > []) do

(
if Graph.arcExists(hd(!l1),hd(!l2),g) then

w succ l := (hd(!l2) :: !w succ l)
else ();
l2 := tl(!l2)
);

if (!w succ l <> []) then
succ list := (hd(!l1),!w succ l) :: (!succ list)

else ();
l1 := tl(!l1)
);

!succ list
end (* successor list *)

Figure D.5: Function to Compute Set of Successors of Node.

fun successors (v,[]) = []
| successors (v,(h v,l)::t) =

if (v = h v) then l
else successors (v,t)

Figure D.6: Function to Compute Successors of Node in Graph.

Benjamin J. Keller Appendix D 147

fun gen path(s, t, sg, g, path pr, rand) =
let

fun select arc (s,t,rand) =
let

val l = Graph.arcList(s,t,g)
val r = Random.norm (rand ())
val num arcs = real (length l)
val k = floor (r * num arcs)
val kth label = List.nth (l,k)
val arc = Graph.Arc(kth label)

in
Poly.Path.mkpath(arc,g)

end
fun get neighbor (c,rand) =

let
val N = successors(c,sg)
val n = real (length N)
val r = floor (n * Random.norm (rand ()))

in
List.nth(N,r)
(* will raise Nth if no successors *)

end
val c = ref s
and pth = ref (Poly.Path.mkpath(s,g))
and p = ref 1.0

in

Figure D.7: Function to Generate Paths (Part One).

Benjamin J. Keller Appendix D 148

while (!p >= path pr) do
(
while (!c <> t) do

let
val next = get neighbor(!c,rand)
val arc = select arc (!c,next,rand)

in
pth := Poly.Path.compose(!pth,arc);
c := next

end;
p := Random.norm ((rand ()));
if (!p >= path pr) then

let
val next = get neighbor(!c,rand)
val arc = select arc (!c,next,rand)

in
pth := Poly.Path.compose(!pth,arc);
c := next

end
else ()
);

!pth
end (* gen path *)

handle List.Nth => Poly.Path.zero

Figure D.8: Function to Generate Paths (Part Two).

Benjamin J. Keller Appendix D 149

fun gen polynomial(s, t, sg, g, term pr, path pr, rand) =
let

val p = ref 0.0 (* term probability *)
and ply = ref (Poly.zero)

in
p := Random.norm ((rand ()));
while (!p >= term pr) do

let
val pth = gen path(s,t,sg,g,path pr,rand)
and k = gen coefficient(rand)
val m = Poly.mkmonomial(k,pth)

in
ply := Poly.addmon(m,!ply);
p := Random.norm (rand ())

end;
!ply

end

Figure D.9: Function to Generate Polynomials.

Benjamin J. Keller Appendix D 150

fun gen generating set (g, poly pr, term pr, path pr, rand,out str) =
let

val l = (Graph.listNodes g)
val i = ref l (* vertex counters *)
and j = ref l
and p = ref 0.0 (* poly probability *)
and Pset = ref (PS.emptyset())
and ply = ref Poly.zero
and ply p = ref Poly.zero
and sg’ = ref []
and sl = ref []
fun valid poly (p) =

not (Poly.eqzero(p))
andalso
not (Poly.length(p) = 1 andalso
Poly.Path.vertex(Poly.term(Poly.leadmon(p)))
)

fun print poly (p,g,os,c) =
if valid poly (p) then

Poly.pr(p,c,g,os)
else

()
in

Figure D.10: Function to Generate Polynomial Sets (Part One).

Benjamin J. Keller Appendix D 151

while (!i <> []) do
(
j := l;
while (!j <> []) do

(
p := Random.norm ((rand ()));
if (!p >= poly pr) then

(
sg’ := Graph.effective subgraph(hd(!i),hd(!j),g);
sl := successor list(!sg’,g);
if (!sl <> []) then

while (!p >= poly pr) do
(
ply := gen polynomial(hd(!i),hd(!j),

!sl, g,
term pr,
path pr,
rand);

print poly(!ply p,g,out str,”,”);
ply p := !ply;
p := Random.norm (rand ())
)

else ()
)
else ();
j := tl(!j)
);

i := tl(!i)
);
print poly(!ply p,g,out str,””)

end (* gen generating set *)

Figure D.11: Function to Generate Polynomial Sets (Part Two).

Appendix E

Experimental Results

E.1 Algorithm Experiments

E.1.1 Counts

152

Benjamin J. Keller Appendix E 153

Table E.1: Counts for Problem A4 Instance (Part One).
Reductions Cardinality

Configuration Order Total Zero Triples Basis

Eager, Deletion, Normal l 48 38 38 14
Eager, Deletion, Normal lr 48 38 38 14
Eager, Deletion, Shortest l 48 38 38 14
Eager, Deletion, Shortest lr 48 38 38 14
Eager, Reduction, Normal l 48 38 38 14
Eager, Reduction, Normal lr 48 38 38 14
Eager, Reduction, Shortest l 48 38 38 14
Eager, Reduction, Shortest lr 48 38 38 14
Hybrid, Reduction, Shortest l 48 38 45 14
Hybrid, Reduction, Shortest lr 48 38 45 14
Hybrid, Reduction, Normal l 48 38 45 14
Hybrid, Reduction, Normal lr 48 38 45 14
Lazy, Deletion, Normal l 48 38 80 14
Lazy, Deletion, Normal lr 48 38 80 14
Lazy, Deletion, Shortest l 48 38 80 14
Lazy, Deletion, Shortest lr 48 38 80 14
Lazy, Reduction, Shortest l 48 38 80 14
Lazy, Reduction, Shortest lr 48 38 80 14
Lazy, Reduction, Normal l 48 38 80 14
Lazy, Reduction, Normal lr 48 38 80 14
Eager, Deletion, Normal li 51 41 41 14
Eager, Deletion, Normal lv 51 41 41 14
Eager, Deletion, Shortest i 51 41 41 14
Eager, Deletion, Shortest li 51 41 41 14
Eager, Deletion, Shortest lv 51 41 41 14
Eager, Deletion, Shortest v 51 41 41 14
Eager, Reduction, Normal li 51 41 41 14
Eager, Reduction, Normal lv 51 41 41 14
Eager, Reduction, Shortest i 51 41 41 14
Eager, Reduction, Shortest li 51 41 41 14
Eager, Reduction, Shortest lv 51 41 41 14
Eager, Reduction, Shortest v 51 41 41 14

Benjamin J. Keller Appendix E 154

Table E.1: Counts for Problem A4 Instance (Part Two).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Hybrid, Reduction, Shortest i 51 41 47 14
Hybrid, Reduction, Shortest li 51 41 47 14
Hybrid, Reduction, Shortest lv 51 41 47 14
Hybrid, Reduction, Shortest v 51 41 47 14
Hybrid, Reduction, Normal li 51 41 47 14
Hybrid, Reduction, Normal lv 51 41 47 14
Lazy, Deletion, Normal li 51 41 80 14
Lazy, Deletion, Normal lv 51 41 80 14
Lazy, Deletion, Shortest i 51 41 80 14
Lazy, Deletion, Shortest li 51 41 80 14
Lazy, Deletion, Shortest lv 51 41 80 14
Lazy, Deletion, Shortest v 51 41 80 14
Lazy, Reduction, Shortest i 51 41 80 14
Lazy, Reduction, Shortest li 51 41 80 14
Lazy, Reduction, Shortest lv 51 41 80 14
Lazy, Reduction, Shortest v 51 41 80 14
Lazy, Reduction, Normal li 51 41 80 14
Lazy, Reduction, Normal lv 51 41 80 14
Eager, Deletion, Normal lri 60 49 49 15
Eager, Deletion, Normal lrv 60 49 49 15
Eager, Deletion, Shortest lri 60 49 49 15
Eager, Deletion, Shortest lrv 60 49 49 15
Eager, Reduction, Normal lri 60 49 49 15
Eager, Reduction, Normal lrv 60 49 49 15
Eager, Reduction, Shortest lri 60 49 49 15
Eager, Reduction, Shortest lrv 60 49 49 15
Hybrid, Reduction, Shortest lri 60 49 60 15
Hybrid, Reduction, Shortest lrv 60 49 60 15
Hybrid, Reduction, Normal lri 60 49 60 15
Hybrid, Reduction, Normal lrv 60 49 60 15
Lazy, Deletion, Normal lri 60 49 88 15
Lazy, Deletion, Normal lrv 60 49 88 15

Benjamin J. Keller Appendix E 155

Table E.1: Counts for Problem A4 Instance (Part Three).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Lazy, Deletion, Shortest lri 60 49 88 15
Lazy, Deletion, Shortest lrv 60 49 88 15
Lazy, Reduction, Shortest lri 60 49 88 15
Lazy, Reduction, Shortest lrv 60 49 88 15
Lazy, Reduction, Normal lri 60 49 88 15
Lazy, Reduction, Normal lrv 60 49 88 15
None, Deletion, Normal l 90 80 80 14
None, Deletion, Normal li 90 80 80 14
None, Deletion, Normal lr 90 80 80 14
None, Deletion, Normal lv 90 80 80 14
None, Reduction, Normal l 90 80 80 14
None, Reduction, Normal li 90 80 80 14
None, Reduction, Normal lr 90 80 80 14
None, Reduction, Normal lv 90 80 80 14
None, Deletion, Normal lri 99 88 88 15
None, Deletion, Normal lrv 99 88 88 15
None, Reduction, Normal lri 99 88 88 15
None, Reduction, Normal lrv 99 88 88 15
Eager, Deletion, Normal v 440 140 112 29
Eager, Deletion, Normal i 446 156 100 31
Eager, Reduction, Normal v 500 220 114 71
Hybrid, Reduction, Normal v 503 220 119 72
Eager, Reduction, Normal i 503 237 115 76
Lazy, Reduction, Normal v 504 220 332 71
Hybrid, Reduction, Normal i 507 236 129 76
Lazy, Reduction, Normal i 507 237 400 76
Lazy, Deletion, Normal v 556 215 358 29
Lazy, Deletion, Normal i 562 252 387 31
None, Deletion, Normal i 694 15 75 21
None, Reduction, Normal v 784 494 219 45
None, Reduction, Normal i 824 451 203 45
None, Deletion, Normal v 874 371 85 22

Benjamin J. Keller Appendix E 156

Table E.2: Counts for Problem A5 (Part One).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Eager, Deletion, Shortest lri 35 30 30 11
Eager, Reduction, Shortest lri 35 30 30 11
Hybrid, Reduction, Shortest lri 35 30 34 11
Lazy, Deletion, Shortest lri 35 30 44 11
Lazy, Reduction, Shortest lri 35 30 44 11
Eager, Deletion, Shortest l 40 33 33 12
Eager, Deletion, Shortest lr 40 33 33 12
Eager, Deletion, Shortest lrv 40 33 33 12
Eager, Deletion, Normal l 40 33 33 12
Eager, Deletion, Normal lr 40 33 33 12
Eager, Deletion, Normal lri 40 33 33 12
Eager, Deletion, Normal lrv 40 33 33 12
Eager, Reduction, Shortest l 40 33 33 12
Eager, Reduction, Shortest lr 40 33 33 12
Eager, Reduction, Shortest lrv 40 33 33 12
Eager, Reduction, Normal l 40 33 33 12
Eager, Reduction, Normal lr 40 33 33 12
Eager, Reduction, Normal lri 40 33 33 12
Eager, Reduction, Normal lrv 40 33 33 12
Hybrid, Reduction, Shortest l 40 33 39 12
Hybrid, Reduction, Shortest lr 40 33 39 12
Hybrid, Reduction, Shortest lrv 40 33 39 12
Hybrid, Reduction, Normal l 40 33 39 12
Hybrid, Reduction, Normal lr 40 33 39 12
Hybrid, Reduction, Normal lri 40 33 39 12
Hybrid, Reduction, Normal lrv 40 33 39 12
Lazy, Deletion, Normal l 40 33 52 12
Lazy, Deletion, Normal lr 40 33 52 12
Lazy, Deletion, Normal lri 40 33 52 12
Lazy, Deletion, Normal lrv 40 33 52 12
Lazy, Deletion, Shortest l 40 33 52 12
Lazy, Deletion, Shortest lr 40 33 52 12

Benjamin J. Keller Appendix E 157

Table E.2: Counts for Problem A5 (Part Two).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Lazy, Deletion, Shortest lrv 40 33 52 12
Lazy, Reduction, Shortest l 40 33 52 12
Lazy, Reduction, Shortest lr 40 33 52 12
Lazy, Reduction, Shortest lrv 40 33 52 12
Lazy, Reduction, Normal l 40 33 52 12
Lazy, Reduction, Normal lr 40 33 52 12
Lazy, Reduction, Normal lri 40 33 52 12
Lazy, Reduction, Normal lrv 40 33 52 12
Eager, Deletion, Shortest i 42 34 34 13
Eager, Deletion, Shortest li 42 34 34 13
Eager, Deletion, Shortest lv 42 34 34 13
Eager, Deletion, Shortest v 42 34 34 13
Eager, Deletion, Normal li 42 34 34 13
Eager, Deletion, Normal lv 42 34 34 13
Eager, Reduction, Shortest i 42 34 34 13
Eager, Reduction, Shortest li 42 34 34 13
Eager, Reduction, Shortest lv 42 34 34 13
Eager, Reduction, Shortest v 42 34 34 13
Eager, Reduction, Normal li 42 34 34 13
Eager, Reduction, Normal lv 42 34 34 13
Hybrid, Reduction, Shortest i 42 34 41 13
Hybrid, Reduction, Shortest li 42 34 41 13
Hybrid, Reduction, Shortest lv 42 34 41 13
Hybrid, Reduction, Shortest v 42 34 41 13
Hybrid, Reduction, Normal li 42 34 41 13
Hybrid, Reduction, Normal lv 42 34 41 13
Lazy, Deletion, Normal li 42 34 67 13
Lazy, Deletion, Normal lv 42 34 67 13
Lazy, Deletion, Shortest i 42 34 67 13
Lazy, Deletion, Shortest li 42 34 67 13
Lazy, Deletion, Shortest lv 42 34 67 13
Lazy, Deletion, Shortest v 42 34 67 13

Benjamin J. Keller Appendix E 158

Table E.2: Counts for Problem A5 (Part Three).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Lazy, Reduction, Shortest i 42 34 67 13
Lazy, Reduction, Shortest li 42 34 67 13
Lazy, Reduction, Shortest lv 42 34 67 13
Lazy, Reduction, Shortest v 42 34 67 13
Lazy, Reduction, Normal li 42 34 67 13
Lazy, Reduction, Normal lv 42 34 67 13
None, Deletion, Normal l 59 52 52 12
None, Deletion, Normal lr 59 52 52 12
None, Deletion, Normal lri 59 52 52 12
None, Deletion, Normal lrv 59 52 52 12
None, Reduction, Normal l 59 52 52 12
None, Reduction, Normal lr 59 52 52 12
None, Reduction, Normal lri 59 52 52 12
None, Reduction, Normal lrv 59 52 52 12
None, Deletion, Normal li 75 67 67 13
None, Deletion, Normal lv 75 67 67 13
None, Reduction, Normal li 75 67 67 13
None, Reduction, Normal lv 75 67 67 13
Eager, Deletion, Normal v 201 89 64 21
Lazy, Reduction, Normal v 201 114 190 46
Eager, Reduction, Normal v 204 116 66 47
Eager, Reduction, Normal i 204 116 67 47
Hybrid, Reduction, Normal v 204 116 84 47
Hybrid, Reduction, Normal i 204 116 85 47
Eager, Deletion, Normal i 212 102 64 21
Lazy, Reduction, Normal i 214 118 213 47
Lazy, Deletion, Normal v 228 112 233 21
Lazy, Deletion, Normal i 272 135 232 19
None, Deletion, Normal v 336 137 99 13
None, Reduction, Normal i 351 252 110 34
None, Reduction, Normal v 356 238 109 33
None, Deletion, Normal i 465 238 95 15

Benjamin J. Keller Appendix E 159

Table E.3: Counts for Problem A6 (Part One).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Eager, Deletion, Shortest l 26 23 23 9
Eager, Deletion, Shortest lr 26 23 23 9
Eager, Deletion, Normal l 26 23 23 9
Eager, Deletion, Normal lr 26 23 23 9
Eager, Reduction, Shortest l 26 23 23 9
Eager, Reduction, Shortest lr 26 23 23 9
Eager, Reduction, Normal l 26 23 23 9
Eager, Reduction, Normal lr 26 23 23 9
Hybrid, Reduction, Shortest l 26 23 23 9
Hybrid, Reduction, Shortest lr 26 23 23 9
Hybrid, Reduction, Normal l 26 23 23 9
Hybrid, Reduction, Normal lr 26 23 23 9
Lazy, Deletion, Normal l 26 23 27 9
Lazy, Deletion, Normal lr 26 23 27 9
Lazy, Deletion, Shortest l 26 23 27 9
Lazy, Deletion, Shortest lr 26 23 27 9
Lazy, Reduction, Shortest l 26 23 27 9
Lazy, Reduction, Shortest lr 26 23 27 9
Lazy, Reduction, Normal l 26 23 27 9
Lazy, Reduction, Normal lr 26 23 27 9
None, Deletion, Normal l 30 27 27 9
None, Deletion, Normal lr 30 27 27 9
None, Reduction, Normal l 30 27 27 9
None, Reduction, Normal lr 30 27 27 9
Eager, Deletion, Shortest i 35 30 30 11
Eager, Deletion, Shortest li 35 30 30 11
Eager, Deletion, Shortest lri 35 30 30 11
Eager, Deletion, Shortest lrv 35 30 30 11
Eager, Deletion, Shortest lv 35 30 30 11
Eager, Deletion, Shortest v 35 30 30 11
Eager, Deletion, Normal li 35 30 30 11
Eager, Deletion, Normal lri 35 30 30 11

Benjamin J. Keller Appendix E 160

Table E.3: Counts for Problem A6 (Part Two).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Eager, Deletion, Normal lrv 35 30 30 11
Eager, Deletion, Normal lv 35 30 30 11
Eager, Reduction, Shortest i 35 30 30 11
Eager, Reduction, Shortest li 35 30 30 11
Eager, Reduction, Shortest lri 35 30 30 11
Eager, Reduction, Shortest lrv 35 30 30 11
Eager, Reduction, Shortest lv 35 30 30 11
Eager, Reduction, Shortest v 35 30 30 11
Eager, Reduction, Normal li 35 30 30 11
Eager, Reduction, Normal lri 35 30 30 11
Eager, Reduction, Normal lrv 35 30 30 11
Eager, Reduction, Normal lv 35 30 30 11
Hybrid, Reduction, Shortest i 35 30 34 11
Hybrid, Reduction, Shortest li 35 30 34 11
Hybrid, Reduction, Shortest lri 35 30 34 11
Hybrid, Reduction, Shortest lrv 35 30 34 11
Hybrid, Reduction, Shortest lv 35 30 34 11
Hybrid, Reduction, Shortest v 35 30 34 11
Hybrid, Reduction, Normal li 35 30 34 11
Hybrid, Reduction, Normal lri 35 30 34 11
Hybrid, Reduction, Normal lrv 35 30 34 11
Hybrid, Reduction, Normal lv 35 30 34 11
Lazy, Deletion, Normal li 35 30 44 11
Lazy, Deletion, Normal lri 35 30 44 11
Lazy, Deletion, Normal lrv 35 30 44 11
Lazy, Deletion, Normal lv 35 30 44 11
Lazy, Deletion, Shortest i 35 30 44 11
Lazy, Deletion, Shortest li 35 30 44 11
Lazy, Deletion, Shortest lri 35 30 44 11
Lazy, Deletion, Shortest lrv 35 30 44 11
Lazy, Deletion, Shortest lv 35 30 44 11
Lazy, Deletion, Shortest v 35 30 44 11

Benjamin J. Keller Appendix E 161

Table E.3: Counts for Problem A6 (Part Three).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Lazy, Reduction, Shortest i 35 30 44 11
Lazy, Reduction, Shortest li 35 30 44 11
Lazy, Reduction, Shortest lri 35 30 44 11
Lazy, Reduction, Shortest lrv 35 30 44 11
Lazy, Reduction, Shortest lv 35 30 44 11
Lazy, Reduction, Shortest v 35 30 44 11
Lazy, Reduction, Normal li 35 30 44 11
Lazy, Reduction, Normal lri 35 30 44 11
Lazy, Reduction, Normal lrv 35 30 44 11
Lazy, Reduction, Normal lv 35 30 44 11
None, Deletion, Normal li 49 44 44 11
None, Deletion, Normal lri 49 44 44 11
None, Deletion, Normal lrv 49 44 44 11
None, Deletion, Normal lv 49 44 44 11
None, Reduction, Normal li 49 44 44 11
None, Reduction, Normal lri 49 44 44 11
None, Reduction, Normal lrv 49 44 44 11
None, Reduction, Normal lv 49 44 44 11
Eager, Reduction, Normal i 79 54 39 20
Eager, Reduction, Normal v 79 54 39 20
Hybrid, Reduction, Normal i 79 54 39 20
Hybrid, Reduction, Normal v 79 54 39 20
Lazy, Reduction, Normal i 79 54 50 20
Lazy, Reduction, Normal v 79 54 50 20
Eager, Deletion, Normal v 80 51 39 11
Lazy, Deletion, Normal v 81 52 77 11
Eager, Deletion, Normal i 82 53 39 11
Lazy, Deletion, Normal i 83 54 69 11
None, Reduction, Normal i 109 90 48 17
None, Reduction, Normal v 109 90 48 17
None, Deletion, Normal i 145 121 67 11
None, Deletion, Normal v 153 127 59 11

Benjamin J. Keller Appendix E 162

Table E.4: Counts for Problem A7 (Part One).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Eager, Deletion, Shortest i 26 24 24 9
Eager, Deletion, Shortest l 26 24 24 9
Eager, Deletion, Shortest li 26 24 24 9
Eager, Deletion, Shortest lr 26 24 24 9
Eager, Deletion, Shortest lri 26 24 24 9
Eager, Deletion, Shortest lrv 26 24 24 9
Eager, Deletion, Shortest lv 26 24 24 9
Eager, Deletion, Shortest v 26 24 24 9
Eager, Deletion, Normal l 26 24 24 9
Eager, Deletion, Normal li 26 24 24 9
Eager, Deletion, Normal lr 26 24 24 9
Eager, Deletion, Normal lri 26 24 24 9
Eager, Deletion, Normal lrv 26 24 24 9
Eager, Deletion, Normal lv 26 24 24 9
Eager, Reduction, Shortest i 26 24 24 9
Eager, Reduction, Shortest l 26 24 24 9
Eager, Reduction, Shortest li 26 24 24 9
Eager, Reduction, Shortest lr 26 24 24 9
Eager, Reduction, Shortest lri 26 24 24 9
Eager, Reduction, Shortest lrv 26 24 24 9
Eager, Reduction, Shortest lv 26 24 24 9
Eager, Reduction, Shortest v 26 24 24 9
Eager, Reduction, Normal l 26 24 24 9
Eager, Reduction, Normal li 26 24 24 9
Eager, Reduction, Normal lr 26 24 24 9
Eager, Reduction, Normal lri 26 24 24 9
Eager, Reduction, Normal lrv 26 24 24 9
Eager, Reduction, Normal lv 26 24 24 9
Hybrid, Reduction, Shortest i 26 24 24 9
Hybrid, Reduction, Shortest l 26 24 24 9
Hybrid, Reduction, Shortest li 26 24 24 9
Hybrid, Reduction, Shortest lr 26 24 24 9

Benjamin J. Keller Appendix E 163

Table E.4: Counts for Problem A7 (Part Two).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Hybrid, Reduction, Shortest lri 26 24 24 9
Hybrid, Reduction, Shortest lrv 26 24 24 9
Hybrid, Reduction, Shortest lv 26 24 24 9
Hybrid, Reduction, Shortest v 26 24 24 9
Hybrid, Reduction, Normal l 26 24 24 9
Hybrid, Reduction, Normal li 26 24 24 9
Hybrid, Reduction, Normal lr 26 24 24 9
Hybrid, Reduction, Normal lri 26 24 24 9
Hybrid, Reduction, Normal lrv 26 24 24 9
Hybrid, Reduction, Normal lv 26 24 24 9
Lazy, Deletion, Normal l 26 24 27 9
Lazy, Deletion, Normal li 26 24 27 9
Lazy, Deletion, Normal lr 26 24 27 9
Lazy, Deletion, Normal lri 26 24 27 9
Lazy, Deletion, Normal lrv 26 24 27 9
Lazy, Deletion, Normal lv 26 24 27 9
Lazy, Deletion, Shortest i 26 24 27 9
Lazy, Deletion, Shortest l 26 24 27 9
Lazy, Deletion, Shortest li 26 24 27 9
Lazy, Deletion, Shortest lr 26 24 27 9
Lazy, Deletion, Shortest lri 26 24 27 9
Lazy, Deletion, Shortest lrv 26 24 27 9
Lazy, Deletion, Shortest lv 26 24 27 9
Lazy, Deletion, Shortest v 26 24 27 9
Lazy, Reduction, Shortest i 26 24 27 9
Lazy, Reduction, Shortest l 26 24 27 9
Lazy, Reduction, Shortest li 26 24 27 9
Lazy, Reduction, Shortest lr 26 24 27 9
Lazy, Reduction, Shortest lri 26 24 27 9
Lazy, Reduction, Shortest lrv 26 24 27 9
Lazy, Reduction, Shortest lv 26 24 27 9
Lazy, Reduction, Shortest v 26 24 27 9

Benjamin J. Keller Appendix E 164

Table E.4: Counts for Problem A7 (Part Three).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Lazy, Reduction, Normal l 26 24 27 9
Lazy, Reduction, Normal li 26 24 27 9
Lazy, Reduction, Normal lr 26 24 27 9
Lazy, Reduction, Normal lri 26 24 27 9
Lazy, Reduction, Normal lrv 26 24 27 9
Lazy, Reduction, Normal lv 26 24 27 9
Eager, Deletion, Normal i 28 25 24 9
Eager, Deletion, Normal v 28 25 24 9
Eager, Reduction, Normal i 28 25 24 9
Eager, Reduction, Normal v 28 25 24 9
Hybrid, Reduction, Normal i 28 25 24 9
Hybrid, Reduction, Normal v 28 25 24 9
Lazy, Reduction, Normal i 28 25 28 9
Lazy, Reduction, Normal v 28 25 28 9
Lazy, Deletion, Normal i 28 25 31 9
Lazy, Deletion, Normal v 28 25 31 9
None, Deletion, Normal l 29 27 27 9
None, Deletion, Normal li 29 27 27 9
None, Deletion, Normal lr 29 27 27 9
None, Deletion, Normal lri 29 27 27 9
None, Deletion, Normal lrv 29 27 27 9
None, Deletion, Normal lv 29 27 27 9
None, Reduction, Normal l 29 27 27 9
None, Reduction, Normal li 29 27 27 9
None, Reduction, Normal lr 29 27 27 9
None, Reduction, Normal lri 29 27 27 9
None, Reduction, Normal lrv 29 27 27 9
None, Reduction, Normal lv 29 27 27 9
None, Reduction, Normal i 35 32 28 9
None, Reduction, Normal v 35 32 28 9
None, Deletion, Normal i 42 39 31 9
None, Deletion, Normal v 42 39 31 9

Benjamin J. Keller Appendix E 165

Table E.5: Counts for Problem A8 (Part One).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Eager, Deletion, Shortest i 26 25 25 9
Eager, Deletion, Shortest l 26 25 25 9
Eager, Deletion, Shortest li 26 25 25 9
Eager, Deletion, Shortest lr 26 25 25 9
Eager, Deletion, Shortest lri 26 25 25 9
Eager, Deletion, Shortest lrv 26 25 25 9
Eager, Deletion, Shortest lv 26 25 25 9
Eager, Deletion, Shortest v 26 25 25 9
Eager, Deletion, Normal i 26 25 25 9
Eager, Deletion, Normal l 26 25 25 9
Eager, Deletion, Normal li 26 25 25 9
Eager, Deletion, Normal lr 26 25 25 9
Eager, Deletion, Normal lri 26 25 25 9
Eager, Deletion, Normal lrv 26 25 25 9
Eager, Deletion, Normal lv 26 25 25 9
Eager, Deletion, Normal v 26 25 25 9
Eager, Reduction, Shortest i 26 25 25 9
Eager, Reduction, Shortest l 26 25 25 9
Eager, Reduction, Shortest li 26 25 25 9
Eager, Reduction, Shortest lr 26 25 25 9
Eager, Reduction, Shortest lri 26 25 25 9
Eager, Reduction, Shortest lrv 26 25 25 9
Eager, Reduction, Shortest lv 26 25 25 9
Eager, Reduction, Shortest v 26 25 25 9
Eager, Reduction, Normal i 26 25 25 9
Eager, Reduction, Normal l 26 25 25 9
Eager, Reduction, Normal li 26 25 25 9
Eager, Reduction, Normal lr 26 25 25 9
Eager, Reduction, Normal lri 26 25 25 9
Eager, Reduction, Normal lrv 26 25 25 9
Eager, Reduction, Normal lv 26 25 25 9
Eager, Reduction, Normal v 26 25 25 9

Benjamin J. Keller Appendix E 166

Table E.5: Counts for Problem A8 (Part Two).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Hybrid, Reduction, Shortest i 26 25 25 9
Hybrid, Reduction, Shortest l 26 25 25 9
Hybrid, Reduction, Shortest li 26 25 25 9
Hybrid, Reduction, Shortest lr 26 25 25 9
Hybrid, Reduction, Shortest lri 26 25 25 9
Hybrid, Reduction, Shortest lrv 26 25 25 9
Hybrid, Reduction, Shortest lv 26 25 25 9
Hybrid, Reduction, Shortest v 26 25 25 9
Hybrid, Reduction, Normal i 26 25 25 9
Hybrid, Reduction, Normal l 26 25 25 9
Hybrid, Reduction, Normal li 26 25 25 9
Hybrid, Reduction, Normal lr 26 25 25 9
Hybrid, Reduction, Normal lri 26 25 25 9
Hybrid, Reduction, Normal lrv 26 25 25 9
Hybrid, Reduction, Normal lv 26 25 25 9
Hybrid, Reduction, Normal v 26 25 25 9
Lazy, Deletion, Normal i 26 25 27 9
Lazy, Deletion, Normal l 26 25 27 9
Lazy, Deletion, Normal li 26 25 27 9
Lazy, Deletion, Normal lr 26 25 27 9
Lazy, Deletion, Normal lri 26 25 27 9
Lazy, Deletion, Normal lrv 26 25 27 9
Lazy, Deletion, Normal lv 26 25 27 9
Lazy, Deletion, Normal v 26 25 27 9
Lazy, Deletion, Shortest i 26 25 27 9
Lazy, Deletion, Shortest l 26 25 27 9
Lazy, Deletion, Shortest li 26 25 27 9
Lazy, Deletion, Shortest lr 26 25 27 9
Lazy, Deletion, Shortest lri 26 25 27 9
Lazy, Deletion, Shortest lrv 26 25 27 9
Lazy, Deletion, Shortest lv 26 25 27 9
Lazy, Deletion, Shortest v 26 25 27 9

Benjamin J. Keller Appendix E 167

Table E.5: Counts for Problem A8 (Part Three).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Lazy, Reduction, Shortest i 26 25 27 9
Lazy, Reduction, Shortest l 26 25 27 9
Lazy, Reduction, Shortest li 26 25 27 9
Lazy, Reduction, Shortest lr 26 25 27 9
Lazy, Reduction, Shortest lri 26 25 27 9
Lazy, Reduction, Shortest lrv 26 25 27 9
Lazy, Reduction, Shortest lv 26 25 27 9
Lazy, Reduction, Shortest v 26 25 27 9
Lazy, Reduction, Normal i 26 25 27 9
Lazy, Reduction, Normal l 26 25 27 9
Lazy, Reduction, Normal li 26 25 27 9
Lazy, Reduction, Normal lr 26 25 27 9
Lazy, Reduction, Normal lri 26 25 27 9
Lazy, Reduction, Normal lrv 26 25 27 9
Lazy, Reduction, Normal lv 26 25 27 9
Lazy, Reduction, Normal v 26 25 27 9
None, Deletion, Normal i 28 27 27 9
None, Deletion, Normal l 28 27 27 9
None, Deletion, Normal li 28 27 27 9
None, Deletion, Normal lr 28 27 27 9
None, Deletion, Normal lri 28 27 27 9
None, Deletion, Normal lrv 28 27 27 9
None, Deletion, Normal lv 28 27 27 9
None, Deletion, Normal v 28 27 27 9
None, Reduction, Normal i 28 27 27 9
None, Reduction, Normal l 28 27 27 9
None, Reduction, Normal li 28 27 27 9
None, Reduction, Normal lr 28 27 27 9
None, Reduction, Normal lri 28 27 27 9
None, Reduction, Normal lrv 28 27 27 9
None, Reduction, Normal lv 28 27 27 9
None, Reduction, Normal v 28 27 27 9

Benjamin J. Keller Appendix E 168

Table E.6: Counts for Problem BT7 (Part One).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Eager, Deletion, Shortest l 10 5 5 12
Eager, Deletion, Normal l 10 5 5 12
Eager, Reduction, Shortest l 10 5 5 12
Eager, Reduction, Normal l 10 5 5 12
Hybrid, Reduction, Shortest l 10 5 5 12
Hybrid, Reduction, Normal l 10 5 5 12
Lazy, Deletion, Normal l 10 5 5 12
Lazy, Deletion, Shortest l 10 5 5 12
Lazy, Reduction, Shortest l 10 5 5 12
Lazy, Reduction, Normal l 10 5 5 12
None, Deletion, Normal l 10 5 5 12
None, Reduction, Normal l 10 5 5 12
None, Reduction, Normal l 10 5 5 12
Eager, Reduction, Normal v 31 12 12 17
Hybrid, Reduction, Normal v 31 12 16 17
Lazy, Reduction, Normal v 31 12 26 17
Eager, Deletion, Shortest lv 31 14 16 17
Eager, Deletion, Shortest v 31 14 16 17
Eager, Reduction, Shortest lv 31 14 16 17
Eager, Reduction, Shortest v 31 14 16 17
Eager, Deletion, Normal lv 31 14 17 17
Eager, Reduction, Normal lv 31 14 17 17
Hybrid, Reduction, Shortest lv 31 14 19 17
Hybrid, Reduction, Shortest v 31 14 19 17
Hybrid, Reduction, Normal lv 31 14 20 17
Lazy, Deletion, Shortest lv 31 14 29 17
Lazy, Deletion, Shortest v 31 14 29 17
Lazy, Reduction, Shortest lv 31 14 29 17
Lazy, Reduction, Shortest v 31 14 29 17
Lazy, Deletion, Normal lv 31 14 30 17
Lazy, Reduction, Normal lv 31 14 30 17
Eager, Deletion, Normal v 32 13 13 17

Benjamin J. Keller Appendix E 169

Table E.6: Counts for Problem BT7 (Part Two).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Lazy, Deletion, Normal v 32 13 35 17
Eager, Deletion, Normal lri 37 17 16 19
Eager, Reduction, Normal lri 37 17 16 19
Eager, Deletion, Shortest lri 37 17 17 19
Eager, Reduction, Shortest lri 37 17 17 19
Hybrid, Reduction, Shortest lri 37 17 20 19
Hybrid, Reduction, Normal lri 37 17 22 19
Lazy, Deletion, Shortest lri 37 17 38 19
Lazy, Reduction, Shortest lri 37 17 38 19
Lazy, Deletion, Normal lri 37 17 40 19
Lazy, Reduction, Normal lri 37 17 40 19
Eager, Deletion, Shortest lr 52 25 18 24
Eager, Reduction, Shortest lr 52 25 18 24
Hybrid, Reduction, Shortest lr 52 25 18 24
Eager, Deletion, Normal lr 52 25 19 24
Eager, Reduction, Normal lr 52 25 19 24
Hybrid, Reduction, Normal lr 52 25 19 24
Lazy, Deletion, Shortest lr 52 25 28 24
Lazy, Reduction, Shortest lr 52 25 28 24
Lazy, Deletion, Normal lr 52 25 30 24
Lazy, Reduction, Normal lr 52 25 30 24
Eager, Deletion, Normal lrv 55 25 19 26
Eager, Reduction, Normal lrv 55 25 19 26
Eager, Deletion, Shortest lrv 55 25 20 26
Eager, Deletion, Normal li 55 25 20 26
Eager, Reduction, Shortest lrv 55 25 20 26
Eager, Reduction, Normal li 55 25 20 26
Eager, Deletion, Shortest i 55 25 22 26
Eager, Deletion, Shortest li 55 25 22 26
Eager, Reduction, Shortest i 55 25 22 26
Eager, Reduction, Shortest li 55 25 22 26
Hybrid, Reduction, Normal lrv 55 25 22 26

Benjamin J. Keller Appendix E 170

Table E.6: Counts for Problem BT7 (Part Three).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Hybrid, Reduction, Shortest lrv 55 25 24 26
Hybrid, Reduction, Normal li 55 25 25 26
Hybrid, Reduction, Shortest i 55 25 26 26
Hybrid, Reduction, Shortest li 55 25 26 26
Lazy, Deletion, Shortest i 55 25 44 26
Lazy, Deletion, Shortest li 55 25 44 26
Lazy, Deletion, Shortest lrv 55 25 44 26
Lazy, Reduction, Shortest i 55 25 44 26
Lazy, Reduction, Shortest li 55 25 44 26
Lazy, Reduction, Shortest lrv 55 25 44 26
Lazy, Deletion, Normal lrv 55 25 45 26
Lazy, Reduction, Normal lrv 55 25 45 26
Lazy, Deletion, Normal li 55 25 47 26
Lazy, Reduction, Normal li 55 25 47 26
Eager, Deletion, Normal i 67 27 13 26
Eager, Reduction, Normal i 67 27 13 28
Hybrid, Reduction, Normal i 67 27 16 28
Lazy, Reduction, Normal i 67 27 28 28
Lazy, Deletion, Normal i 67 27 29 26
None, Deletion, Normal lr 140 81 54 36
None, Reduction, Normal lr 140 81 54 36
None, Reduction, Normal v 154 91 61 27
None, Deletion, Normal lv 154 97 84 27
None, Reduction, Normal lv 154 97 84 27
None, Deletion, Normal li 235 112 116 42
None, Reduction, Normal li 235 112 116 42
None, Deletion, Normal lrv 235 128 112 42
None, Reduction, Normal lrv 235 128 112 42
None, Deletion, Normal lri 260 146 171 35
None, Reduction, Normal lri 260 146 171 35
None, Reduction, Normal i 267 122 90 46
None, Deletion, Normal i 279 127 100 42
None, Deletion, Normal v 379 227 146 40

Benjamin J. Keller Appendix E 171

Table E.7: Counts for Problem BT31 (Part One).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

None, Deletion, Normal lr 14 6 5 37
None, Reduction, Normal lr 14 6 5 37
Eager, Deletion, Shortest lr 17 8 4 39
Eager, Reduction, Shortest lr 17 8 4 39
Hybrid, Reduction, Shortest lr 17 8 4 39
Lazy, Deletion, Shortest lr 17 8 4 39
Lazy, Reduction, Shortest lr 17 8 4 39
Eager, Deletion, Normal lr 17 8 5 39
Eager, Reduction, Normal lr 17 8 5 39
Hybrid, Reduction, Normal lr 17 8 5 39
Lazy, Deletion, Normal lr 17 8 5 39
Lazy, Reduction, Normal lr 17 8 5 39
Eager, Deletion, Normal v 31 12 9 41
Eager, Reduction, Normal v 31 12 9 41
Hybrid, Reduction, Normal v 31 12 13 41
Lazy, Deletion, Normal v 31 12 22 41
Lazy, Reduction, Normal v 31 12 22 41
Eager, Deletion, Shortest lv 31 14 15 41
Eager, Deletion, Shortest v 31 14 15 41
Eager, Deletion, Normal lv 31 14 15 41
Eager, Reduction, Shortest lv 31 14 15 41
Eager, Reduction, Shortest v 31 14 15 41
Eager, Reduction, Normal lv 31 14 15 41
Hybrid, Reduction, Shortest lv 31 14 18 41
Hybrid, Reduction, Shortest v 31 14 18 41
Hybrid, Reduction, Normal lv 31 14 18 41
Lazy, Deletion, Shortest lv 31 14 28 41
Lazy, Deletion, Shortest v 31 14 28 41
Lazy, Reduction, Shortest lv 31 14 28 41
Lazy, Reduction, Shortest v 31 14 28 41
Lazy, Deletion, Normal lv 31 14 29 41
Lazy, Reduction, Normal lv 31 14 29 41

Benjamin J. Keller Appendix E 172

Table E.7: Counts for Problem BT31 (Part Two).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Eager, Deletion, Normal lri 37 17 14 43
Eager, Reduction, Normal lri 37 17 14 43
Eager, Deletion, Shortest lri 37 17 16 43
Eager, Reduction, Shortest lri 37 17 16 43
Hybrid, Reduction, Normal lri 37 17 18 43
Hybrid, Reduction, Shortest lri 37 17 19 43
Lazy, Deletion, Shortest lri 37 17 36 43
Lazy, Reduction, Shortest lri 37 17 36 43
Lazy, Deletion, Normal lri 37 17 38 43
Lazy, Reduction, Normal lri 37 17 38 43
None, Deletion, Normal lri 38 15 26 40
None, Reduction, Normal lri 38 15 26 40
None, Deletion, Normal v 41 15 19 40
None, Reduction, Normal v 41 15 19 40
None, Deletion, Normal lv 41 16 28 40
None, Reduction, Normal lv 41 16 28 40
None, Deletion, Normal l 196 88 102 83
None, Reduction, Normal l 196 88 102 83
Eager, Deletion, Shortest l 208 100 78 99
Eager, Deletion, Normal l 208 100 78 99
Eager, Reduction, Shortest l 208 100 78 99
Eager, Reduction, Normal l 208 100 78 99
Hybrid, Reduction, Shortest l 208 100 79 99
Hybrid, Reduction, Normal l 208 100 79 99
Lazy, Deletion, Normal l 208 100 119 99
Lazy, Deletion, Shortest l 208 100 119 99
Lazy, Reduction, Shortest l 208 100 119 99
Lazy, Reduction, Normal l 208 100 119 99
None, Deletion, Normal lrv 212 68 116 83
None, Reduction, Normal lrv 212 68 116 83
None, Deletion, Normal i 212 76 24 83
None, Reduction, Normal i 212 76 24 83

Benjamin J. Keller Appendix E 173

Table E.7: Counts for Problem BT31 (Part Two).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

None, Deletion, Normal li 212 76 115 83
None, Reduction, Normal li 212 76 115 83
Eager, Deletion, Normal i 224 108 23 107
Eager, Reduction, Normal i 224 108 23 107
Hybrid, Reduction, Normal i 224 108 23 107
Lazy, Deletion, Normal i 224 108 36 107
Lazy, Reduction, Normal i 224 108 36 107
Eager, Deletion, Normal lrv 224 108 76 107
Eager, Reduction, Normal lrv 224 108 76 107
Eager, Deletion, Normal li 224 108 79 107
Eager, Reduction, Normal li 224 108 79 107
Eager, Deletion, Shortest i 224 108 80 107
Eager, Deletion, Shortest li 224 108 80 107
Eager, Reduction, Shortest i 224 108 80 107
Eager, Reduction, Shortest li 224 108 80 107
Eager, Deletion, Shortest lrv 224 108 88 107
Eager, Reduction, Shortest lrv 224 108 88 107
Hybrid, Reduction, Normal lrv 224 108 89 107
Hybrid, Reduction, Normal li 224 108 92 107
Hybrid, Reduction, Shortest i 224 108 100 107
Hybrid, Reduction, Shortest li 224 108 100 107
Hybrid, Reduction, Shortest lrv 224 108 104 107
Lazy, Deletion, Shortest i 224 108 180 107
Lazy, Deletion, Shortest li 224 108 180 107
Lazy, Reduction, Shortest i 224 108 180 107
Lazy, Reduction, Shortest li 224 108 180 107
Lazy, Deletion, Normal lrv 224 108 181 107
Lazy, Reduction, Normal lrv 224 108 181 107
Lazy, Deletion, Shortest lrv 224 108 182 107
Lazy, Reduction, Shortest lrv 224 108 182 107
Lazy, Deletion, Normal li 224 108 184 107
Lazy, Reduction, Normal li 224 108 184 107

Benjamin J. Keller Appendix E 174

Table E.8: Counts for Problem M39 (Part One).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Eager, Deletion, Shortest i 0 0 0 0
Eager, Deletion, Shortest l 0 0 0 0
Eager, Deletion, Shortest li 0 0 0 0
Eager, Deletion, Shortest lrv 0 0 0 0
Eager, Deletion, Normal i 0 0 0 0
Eager, Deletion, Normal l 0 0 0 0
Eager, Deletion, Normal li 0 0 0 0
Eager, Deletion, Normal lrv 0 0 0 0
Eager, Reduction, Shortest i 0 0 0 0
Eager, Reduction, Shortest l 0 0 0 0
Eager, Reduction, Shortest li 0 0 0 0
Eager, Reduction, Shortest lrv 0 0 0 0
Eager, Reduction, Normal i 0 0 0 0
Eager, Reduction, Normal l 0 0 0 0
Eager, Reduction, Normal li 0 0 0 0
Eager, Reduction, Normal lrv 0 0 0 0
Hybrid, Reduction, Shortest i 0 0 0 0
Hybrid, Reduction, Shortest l 0 0 0 0
Hybrid, Reduction, Shortest li 0 0 0 0
Hybrid, Reduction, Shortest lrv 0 0 0 0
Hybrid, Reduction, Normal i 0 0 0 0
Hybrid, Reduction, Normal l 0 0 0 0
Hybrid, Reduction, Normal li 0 0 0 0
Hybrid, Reduction, Normal lrv 0 0 0 0
Lazy, Deletion, Normal i 0 0 0 0
Lazy, Deletion, Normal l 0 0 0 0
Lazy, Deletion, Normal li 0 0 0 0
Lazy, Deletion, Normal lrv 0 0 0 0
Lazy, Deletion, Shortest i 0 0 0 0
Lazy, Deletion, Shortest l 0 0 0 0
Lazy, Deletion, Shortest li 0 0 0 0
Lazy, Deletion, Shortest lrv 0 0 0 0

Benjamin J. Keller Appendix E 175

Table E.8: Counts for Problem M39 (Part Two).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Lazy, Reduction, Shortest i 0 0 0 0
Lazy, Reduction, Shortest l 0 0 0 0
Lazy, Reduction, Shortest li 0 0 0 0
Lazy, Reduction, Shortest lrv 0 0 0 0
Lazy, Reduction, Normal i 0 0 0 0
Lazy, Reduction, Normal l 0 0 0 0
Lazy, Reduction, Normal li 0 0 0 0
Lazy, Reduction, Normal lrv 0 0 0 0
None, Deletion, Normal i 0 0 0 0
None, Deletion, Normal l 0 0 0 0
None, Deletion, Normal li 0 0 0 0
None, Deletion, Normal lrv 0 0 0 0
None, Reduction, Normal i 0 0 0 0
None, Reduction, Normal l 0 0 0 0
None, Reduction, Normal li 0 0 0 0
None, Reduction, Normal lrv 0 0 0 0
None, Deletion, Normal lr 14 6 5 37
None, Reduction, Normal lr 14 6 5 37
Eager, Deletion, Shortest lr 17 8 4 39
Eager, Reduction, Shortest lr 17 8 4 39
Hybrid, Reduction, Shortest lr 17 8 4 39
Lazy, Deletion, Shortest lr 17 8 4 39
Lazy, Reduction, Shortest lr 17 8 4 39
Eager, Deletion, Normal lr 17 8 5 39
Eager, Reduction, Normal lr 17 8 5 39
Hybrid, Reduction, Normal lr 17 8 5 39
Lazy, Deletion, Normal lr 17 8 5 39
Lazy, Reduction, Normal lr 17 8 5 39
Eager, Deletion, Normal v 31 12 9 41
Eager, Reduction, Normal v 31 12 9 41
Hybrid, Reduction, Normal v 31 12 13 41
Lazy, Deletion, Normal v 31 12 22 41

Benjamin J. Keller Appendix E 176

Table E.8: Counts for Problem M39 (Part Three).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Lazy, Reduction, Normal v 31 12 22 41
Eager, Deletion, Shortest lv 31 14 15 41
Eager, Deletion, Shortest v 31 14 15 41
Eager, Deletion, Normal lv 31 14 15 41
Eager, Reduction, Shortest lv 31 14 15 41
Eager, Reduction, Shortest v 31 14 15 41
Eager, Reduction, Normal lv 31 14 15 41
Hybrid, Reduction, Shortest lv 31 14 18 41
Hybrid, Reduction, Shortest v 31 14 18 41
Hybrid, Reduction, Normal lv 31 14 18 41
Lazy, Deletion, Shortest lv 31 14 28 41
Lazy, Deletion, Shortest v 31 14 28 41
Lazy, Reduction, Shortest lv 31 14 28 41
Lazy, Reduction, Shortest v 31 14 28 41
Lazy, Deletion, Normal lv 31 14 29 41
Lazy, Reduction, Normal lv 31 14 29 41
Eager, Deletion, Normal lri 37 17 14 43
Eager, Reduction, Normal lri 37 17 14 43
Eager, Deletion, Shortest lri 37 17 16 43
Eager, Reduction, Shortest lri 37 17 16 43
Hybrid, Reduction, Normal lri 37 17 18 43
Hybrid, Reduction, Shortest lri 37 17 19 43
Lazy, Deletion, Shortest lri 37 17 36 43
Lazy, Reduction, Shortest lri 37 17 36 43
Lazy, Deletion, Normal lri 37 17 38 43
Lazy, Reduction, Normal lri 37 17 38 43
None, Deletion, Normal lri 38 15 26 40
None, Reduction, Normal lri 38 15 26 40
None, Deletion, Normal v 41 15 19 40
None, Reduction, Normal v 41 15 19 40
None, Deletion, Normal lv 41 16 28 40
None, Reduction, Normal lv 41 16 28 40

Benjamin J. Keller Appendix E 177

Table E.9: Counts for Problem P5 (Part One).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Eager, Reduction, Normal l 69 43 22 41
Eager, Reduction, Normal lr 69 43 22 41
Eager, Reduction, Shortest l 69 43 22 41
Eager, Deletion, Normal l 69 43 22 41
Eager, Deletion, Normal lr 69 43 22 41
Eager, Deletion, Shortest l 69 43 22 41
Eager, Reduction, Shortest lr 69 43 25 41
Eager, Deletion, Shortest lr 69 43 25 41
Hybrid, Reduction, Shortest lr 69 43 25 41
Hybrid, Reduction, Normal l 69 43 27 41
Hybrid, Reduction, Normal lr 69 43 27 41
Hybrid, Reduction, Shortest l 69 43 27 41
Lazy, Reduction, Shortest lr 69 43 274 41
Lazy, Deletion, Shortest lr 69 43 274 41
Lazy, Reduction, Normal l 69 43 301 41
Lazy, Reduction, Normal lr 69 43 301 41
Lazy, Reduction, Shortest l 69 43 301 41
Lazy, Deletion, Normal l 69 43 301 41
Lazy, Deletion, Normal lr 69 43 301 41
Lazy, Deletion, Shortest l 69 43 301 41
Eager, Reduction, Shortest lv 122 75 36 62
Eager, Reduction, Shortest v 122 75 36 62
Eager, Deletion, Shortest lv 122 75 36 62
Eager, Deletion, Shortest v 122 75 36 62
Eager, Reduction, Normal lv 122 75 39 62
Eager, Deletion, Normal lv 122 75 39 62
Eager, Reduction, Normal li 122 75 40 62
Eager, Deletion, Normal li 122 75 40 62
Eager, Reduction, Shortest i 122 75 43 62
Eager, Reduction, Shortest li 122 75 43 62
Eager, Deletion, Shortest i 122 75 43 62
Eager, Deletion, Shortest li 122 75 43 62

Benjamin J. Keller Appendix E 178

Table E.9: Counts for Problem P5 (Part Two).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Hybrid, Reduction, Shortest lv 122 75 53 62
Hybrid, Reduction, Shortest v 122 75 53 62
Hybrid, Reduction, Normal li 122 75 55 62
Hybrid, Reduction, Normal lv 122 75 56 62
Hybrid, Reduction, Shortest i 122 75 64 62
Hybrid, Reduction, Shortest li 122 75 64 62
Lazy, Reduction, Shortest i 122 75 556 62
Lazy, Reduction, Shortest li 122 75 556 62
Lazy, Deletion, Shortest i 122 75 556 62
Lazy, Deletion, Shortest li 122 75 556 62
Lazy, Reduction, Shortest lv 122 75 629 62
Lazy, Reduction, Shortest v 122 75 629 62
Lazy, Deletion, Shortest lv 122 75 629 62
Lazy, Deletion, Shortest v 122 75 629 62
Lazy, Reduction, Normal li 122 75 648 62
Lazy, Reduction, Normal lv 122 75 648 62
Lazy, Deletion, Normal li 122 75 648 62
Lazy, Deletion, Normal lv 122 75 648 62
Eager, Reduction, Shortest lri 130 79 36 66
Eager, Deletion, Shortest lri 130 79 36 66
Eager, Reduction, Normal lri 130 79 39 66
Eager, Reduction, Normal lrv 130 79 39 66
Eager, Deletion, Normal lri 130 79 39 66
Eager, Deletion, Normal lrv 130 79 39 66
Eager, Reduction, Shortest lrv 130 79 43 66
Eager, Deletion, Shortest lrv 130 79 43 66
Hybrid, Reduction, Normal lrv 130 79 53 66
Hybrid, Reduction, Normal lri 130 79 55 66
Hybrid, Reduction, Shortest lri 130 79 55 66
Hybrid, Reduction, Shortest lrv 130 79 63 66
Lazy, Reduction, Shortest lrv 130 79 611 66
Lazy, Deletion, Shortest lrv 130 79 611 66

Benjamin J. Keller Appendix E 179

Table E.9: Counts for Problem P5 (Part Three).

Reductions Cardinality
Configuration Order Total Zero Triples Basis

Lazy, Reduction, Shortest lri 130 79 697 66
Lazy, Deletion, Shortest lri 130 79 697 66
Lazy, Reduction, Normal lri 130 79 712 66
Lazy, Reduction, Normal lrv 130 79 712 66
Lazy, Deletion, Normal lri 130 79 712 66
Lazy, Deletion, Normal lrv 130 79 712 66
Eager, Deletion, Normal i 136 85 32 62
Eager, Reduction, Normal i 139 88 33 66
Hybrid, Reduction, Normal i 139 88 33 66
Lazy, Reduction, Normal i 139 88 163 66
Lazy, Deletion, Normal i 141 90 188 62
Eager, Deletion, Normal v 142 90 32 62
Eager, Reduction, Normal v 148 96 34 67
Hybrid, Reduction, Normal v 148 96 34 67
Lazy, Reduction, Normal v 148 96 168 67
Lazy, Deletion, Normal v 153 101 204 62
None, Reduction, Normal l 468 442 301 41
None, Reduction, Normal lr 468 442 301 41
None, Deletion, Normal l 468 442 301 41
None, Deletion, Normal lr 468 442 301 41
None, Reduction, Normal li 984 937 648 62
None, Reduction, Normal lv 984 937 648 62
None, Deletion, Normal li 984 937 648 62
None, Deletion, Normal lv 984 937 648 62
None, Reduction, Normal i 1069 1018 163 66
None, Reduction, Normal v 1070 1018 168 67
None, Reduction, Normal lri 1097 1046 712 66
None, Reduction, Normal lrv 1097 1046 712 66
None, Deletion, Normal lri 1097 1046 712 66
None, Deletion, Normal lrv 1097 1046 712 66
None, Deletion, Normal i 1541 1478 303 61
None, Deletion, Normal v 1618 1553 313 62

Benjamin J. Keller Appendix E 180

E.1.2 Times

Table E.10: Times for Problem A4 (Part One).
Configuration Order Times (seconds) Total

Init. Comp. Set Reduction Time

Hybrid, Reduction, Normal l 0.0410 3.5322 0.0973 3.6704
Hybrid, Reduction, Shortest l 0.0410 3.5351 0.0991 3.6752
Hybrid, Reduction, Shortest lr 0.0435 3.5701 0.1006 3.7142
Hybrid, Reduction, Normal lr 0.0485 3.5717 0.1011 3.7213
Lazy, Reduction, Normal l 0.0304 3.7042 0.1019 3.8365
Lazy, Reduction, Shortest lr 0.0338 3.7082 0.1016 3.8437
Lazy, Reduction, Shortest l 0.0286 3.7143 0.1028 3.8457
Lazy, Deletion, Normal l 0.0331 3.7286 0.1027 3.8645
Lazy, Deletion, Shortest lr 0.0355 3.7253 0.1042 3.8650
Lazy, Deletion, Shortest l 0.0293 3.7400 0.1025 3.8718
Lazy, Reduction, Normal lr 0.0336 3.7597 0.0987 3.8920
Lazy, Deletion, Normal lr 0.0355 3.7682 0.1036 3.9073
Hybrid, Reduction, Shortest v 0.0465 4.1214 0.1178 4.2857
Lazy, Reduction, Shortest v 0.0358 4.1770 0.1173 4.3301
Lazy, Reduction, Shortest i 0.0420 4.2084 0.1185 4.3689
Eager, Deletion, Normal l 0.0525 4.2263 0.1052 4.3840
Hybrid, Reduction, Normal li 0.0570 4.2124 0.1210 4.3904
Eager, Deletion, Shortest l 0.0491 4.2370 0.1045 4.3907
Eager, Deletion, Shortest lr 0.0585 4.2369 0.1037 4.3991
Lazy, Reduction, Normal li 0.0462 4.2365 0.1177 4.4004
Eager, Deletion, Normal lr 0.0588 4.2645 0.1102 4.4335
Eager, Reduction, Normal l 0.0496 4.2801 0.1038 4.4336
Lazy, Deletion, Shortest v 0.0339 4.2815 0.1214 4.4368
Eager, Reduction, Shortest l 0.0490 4.3015 0.1039 4.4544
Lazy, Reduction, Shortest lv 0.0369 4.3127 0.1212 4.4708

Benjamin J. Keller Appendix E 181

Table E.10: Times for Problem A4 (Part Two).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Hybrid, Reduction, Shortest i 0.0531 4.2969 0.1216 4.4716
Hybrid, Reduction, Shortest lv 0.0475 4.3039 0.1205 4.4719
Eager, Reduction, Normal lr 0.0540 4.3169 0.1065 4.4775
Hybrid, Reduction, Normal lv 0.0506 4.3335 0.1237 4.5078
Lazy, Reduction, Normal lv 0.0384 4.3549 0.1197 4.5130
Lazy, Deletion, Shortest i 0.0437 4.3648 0.1241 4.5325
Lazy, Reduction, Shortest li 0.0438 4.3861 0.1214 4.5513
Hybrid, Reduction, Shortest li 0.0537 4.3754 0.1234 4.5524
Lazy, Deletion, Normal li 0.0490 4.4086 0.1232 4.5808
Eager, Reduction, Shortest lr 0.0565 4.4221 0.1067 4.5853
Lazy, Deletion, Shortest lv 0.0364 4.4348 0.1252 4.5963
Lazy, Deletion, Normal lv 0.0361 4.4994 0.1247 4.6603
Lazy, Deletion, Shortest li 0.0471 4.5374 0.1287 4.7131
Eager, Deletion, Shortest v 0.0586 4.6234 0.1199 4.8019
Eager, Deletion, Shortest i 0.0646 4.6677 0.1210 4.8533
Eager, Deletion, Normal li 0.0650 4.7672 0.1192 4.9514
Eager, Reduction, Shortest v 0.0584 4.7731 0.1214 4.9529
Eager, Deletion, Shortest lv 0.0599 4.7659 0.1417 4.9675
Eager, Reduction, Shortest i 0.0649 4.8395 0.1231 5.0275
Eager, Deletion, Shortest li 0.0656 4.8927 0.1244 5.0827
Eager, Deletion, Normal lv 0.0608 4.9266 0.1226 5.1100
Eager, Reduction, Shortest lv 0.0597 4.9259 0.1248 5.1105
Eager, Reduction, Normal li 0.0655 4.9266 0.1224 5.1145
Eager, Reduction, Shortest li 0.0672 4.9649 0.1267 5.1588
Eager, Reduction, Normal lv 0.0608 5.0607 0.1258 5.2472
Lazy, Reduction, Normal lrv 0.0457 5.5288 0.1476 5.7221

Benjamin J. Keller Appendix E 182

Table E.10: Times for Problem A4 (Part Three).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Hybrid, Reduction, Normal lrv 0.0592 5.6169 0.1481 5.8242
Hybrid, Reduction, Shortest lrv 0.0567 5.6828 0.1538 5.8933
Lazy, Reduction, Shortest lrv 0.0515 5.7039 0.1485 5.9039
Lazy, Deletion, Normal lrv 0.0476 5.7680 0.1518 5.9674
Lazy, Deletion, Shortest lrv 0.0482 5.8333 0.1579 6.0393
Lazy, Reduction, Shortest lri 0.0424 5.9514 0.1503 6.1441
Hybrid, Reduction, Shortest lri 0.0547 6.0071 0.1513 6.2131
Hybrid, Reduction, Normal lri 0.0563 6.0499 0.1486 6.2548
Lazy, Reduction, Normal lri 0.0446 6.1114 0.1489 6.3049
Lazy, Deletion, Normal lri 0.0434 6.2436 0.1556 6.4425
Lazy, Deletion, Shortest lri 0.0413 6.3268 0.1540 6.5221
Eager, Deletion, Shortest lrv 0.0687 6.3920 0.1521 6.6128
Eager, Deletion, Normal lrv 0.0692 6.5925 0.1522 6.8140
Eager, Deletion, Shortest lri 0.0656 6.6386 0.1472 6.8513
Eager, Reduction, Shortest lrv 0.0699 6.6315 0.1575 6.8590
Eager, Reduction, Normal lrv 0.0699 6.8467 0.1546 7.0711
Eager, Reduction, Shortest lri 0.0657 6.8629 0.1508 7.0794
Eager, Deletion, Normal lri 0.0661 6.9330 0.1478 7.1469
Eager, Reduction, Normal lri 0.0621 7.2829 0.1532 7.4982
Eager, Deletion, Normal i 0.0621 822.7675 0.1274 822.9570
Lazy, Deletion, Normal i 0.0459 875.6408 0.1239 875.8106
Hybrid, Reduction, Normal i 0.0549 914.6888 0.1164 914.8601
Lazy, Reduction, Normal i 0.0448 962.6742 0.1133 962.8323
Eager, Reduction, Normal i 0.0659 964.2230 0.1128 964.4017
Eager, Deletion, Normal v 0.0595 965.1622 0.1232 965.3449
Eager, Reduction, Normal v 0.0589 976.5486 0.1103 976.7178
Lazy, Deletion, Normal v 0.0340 1013.7048 0.1166 1013.8554
Lazy, Reduction, Normal v 0.0364 1056.0256 0.1085 1056.1705
Hybrid, Reduction, Normal v 0.0489 1068.0977 0.1216 1068.2682

Benjamin J. Keller Appendix E 183

Table E.11: Times for Problem A5 (Part One).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Lazy, Reduction, Shortest lri 0.0600 1.3778 0.0623 1.5002
Hybrid, Reduction, Shortest lri 0.0795 1.4040 0.0648 1.5483
Lazy, Deletion, Shortest lri 0.0617 1.5135 0.0660 1.6412
Hybrid, Reduction, Shortest l 0.0431 1.5627 0.0657 1.6715
Lazy, Reduction, Shortest l 0.0283 1.5821 0.0644 1.6748
Hybrid, Reduction, Normal l 0.0431 1.5686 0.0645 1.6762
Lazy, Reduction, Normal l 0.0289 1.5922 0.0660 1.6870
Lazy, Deletion, Shortest l 0.0289 1.6000 0.0673 1.6963
Lazy, Deletion, Normal l 0.0294 1.6144 0.0663 1.7102
Lazy, Reduction, Shortest lr 0.0462 1.6050 0.0673 1.7185
Hybrid, Reduction, Normal lr 0.0586 1.5955 0.0661 1.7202
Lazy, Reduction, Normal lr 0.0446 1.6092 0.0666 1.7203
Hybrid, Reduction, Shortest lr 0.0594 1.6193 0.0656 1.7443
Lazy, Deletion, Shortest lr 0.0472 1.6294 0.0690 1.7456
Lazy, Deletion, Normal lr 0.0490 1.6432 0.0684 1.7605
Eager, Deletion, Shortest lri 0.1202 1.5867 0.0632 1.7701
Eager, Reduction, Shortest lri 0.1205 1.6191 0.0647 1.8043
Lazy, Reduction, Normal lrv 0.0613 1.9142 0.0766 2.0521
Lazy, Reduction, Shortest lrv 0.0636 1.9467 0.0824 2.0927
Hybrid, Reduction, Normal lrv 0.0770 1.9587 0.0789 2.1146
Eager, Deletion, Shortest l 0.0629 2.0152 0.0679 2.1460
Eager, Deletion, Normal l 0.0627 2.0144 0.0711 2.1482
Eager, Reduction, Normal l 0.0617 2.0279 0.0687 2.1582
Eager, Reduction, Shortest l 0.0616 2.0322 0.0685 2.1623
Lazy, Deletion, Shortest lrv 0.0652 2.0238 0.0855 2.1745
Hybrid, Reduction, Shortest lrv 0.0775 2.0345 0.0813 2.1932
Eager, Deletion, Shortest lr 0.0875 2.0384 0.0701 2.1960
Lazy, Reduction, Normal lri 0.0466 2.0884 0.0764 2.2114

Benjamin J. Keller Appendix E 184

Table E.11: Times for Problem A5 (Part Two).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Eager, Reduction, Shortest lr 0.0868 2.0603 0.0717 2.2189
Eager, Reduction, Normal lr 0.0822 2.0698 0.0694 2.2214
Hybrid, Reduction, Normal lri 0.0613 2.1014 0.0777 2.2404
Lazy, Deletion, Normal lrv 0.0644 2.1042 0.0846 2.2532
Lazy, Deletion, Normal lri 0.0485 2.1569 0.0817 2.2872
Hybrid, Reduction, Shortest v 0.0540 2.1654 0.0865 2.3059
Eager, Deletion, Normal lr 0.0823 2.1653 0.0704 2.3180
Lazy, Reduction, Shortest v 0.0370 2.2036 0.0857 2.3264
Lazy, Reduction, Shortest i 0.0625 2.1842 0.0901 2.3368
Lazy, Deletion, Shortest v 0.0386 2.2422 0.0876 2.3683
Hybrid, Reduction, Shortest lv 0.0569 2.2434 0.0871 2.3873
Lazy, Reduction, Normal li 0.0683 2.2324 0.0880 2.3888
Lazy, Reduction, Shortest lv 0.0393 2.2630 0.0879 2.3901
Hybrid, Reduction, Normal li 0.0835 2.2265 0.0871 2.3970
Lazy, Deletion, Normal li 0.0701 2.2364 0.0930 2.3995
Hybrid, Reduction, Normal lv 0.0586 2.2681 0.0877 2.4143
Lazy, Reduction, Shortest li 0.0639 2.2598 0.0919 2.4156
Hybrid, Reduction, Shortest i 0.0768 2.2565 0.0893 2.4226
Hybrid, Reduction, Shortest li 0.0795 2.2562 0.0953 2.4309
Lazy, Reduction, Normal lv 0.0410 2.3071 0.0867 2.4348
Lazy, Deletion, Shortest lv 0.0412 2.3273 0.0908 2.4593
Lazy, Deletion, Shortest i 0.0655 2.2662 0.1284 2.4602
Eager, Deletion, Normal lrv 0.1008 2.3020 0.0792 2.4819
Lazy, Deletion, Normal lv 0.0439 2.3664 0.0922 2.5025
Lazy, Deletion, Shortest li 0.0679 2.3494 0.0996 2.5170
Eager, Deletion, Shortest lrv 0.1024 2.3372 0.0828 2.5224

Benjamin J. Keller Appendix E 185

Table E.11: Times for Problem A5 (Part Three).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Eager, Reduction, Normal lrv 0.1008 2.3762 0.0806 2.5576
Eager, Deletion, Normal lri 0.0843 2.4393 0.0785 2.6021
Eager, Reduction, Shortest lrv 0.1033 2.4212 0.0861 2.6106
Eager, Reduction, Normal lri 0.0856 2.5037 0.0807 2.6700
Eager, Deletion, Shortest v 0.0820 2.5704 0.0871 2.7395
Eager, Deletion, Shortest i 0.1026 2.5719 0.0931 2.7677
Eager, Deletion, Normal li 0.0999 2.5924 0.0905 2.7827
Eager, Deletion, Shortest li 0.1057 2.6370 0.0935 2.8363
Eager, Reduction, Normal li 0.1026 2.6546 0.0926 2.8498
Eager, Reduction, Shortest lv 0.0820 2.6981 0.0912 2.8712
Eager, Deletion, Normal lv 0.0844 2.7137 0.0895 2.8876
Eager, Deletion, Shortest lv 0.0880 2.7205 0.0892 2.8977
Eager, Reduction, Shortest li 0.1076 2.7053 0.0961 2.9090
Eager, Reduction, Shortest v 0.0804 2.7663 0.0901 2.9368
Eager, Reduction, Normal lv 0.0858 2.7849 0.0906 2.9614
Eager, Reduction, Shortest i 0.1061 2.7633 0.0986 2.9680
Hybrid, Reduction, Normal i 0.0811 42.8628 0.0898 43.0337
Lazy, Reduction, Normal v 0.0388 44.0198 0.0838 44.1424
Eager, Deletion, Normal i 0.0981 44.7913 0.0925 44.9819
Hybrid, Reduction, Normal v 0.0566 46.0504 0.0835 46.1905
Eager, Reduction, Normal i 0.0994 47.5199 0.0890 47.7083
Lazy, Reduction, Normal i 0.0641 48.6772 0.0836 48.8249
Eager, Deletion, Normal v 0.0820 49.6946 0.0925 49.8690
Lazy, Deletion, Normal v 0.0420 50.6951 0.0925 50.8296
Eager, Reduction, Normal v 0.0829 54.6354 0.0917 54.8100
Lazy, Deletion, Normal i 0.0669 76.3032 0.0939 76.4641

Benjamin J. Keller Appendix E 186

Table E.12: Times for Problem A6 (Part One).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Lazy, Reduction, Shortest l 0.0327 0.9034 0.0419 0.9779
Lazy, Reduction, Normal l 0.0322 0.9066 0.0416 0.9804
Lazy, Deletion, Normal l 0.0335 0.9061 0.0435 0.9832
Lazy, Deletion, Shortest l 0.0347 0.9100 0.0430 0.9876
Hybrid, Reduction, Normal l 0.0497 0.8991 0.0399 0.9888
Hybrid, Reduction, Shortest l 0.0497 0.9018 0.0406 0.9921
Lazy, Reduction, Shortest lr 0.0614 0.9007 0.0422 1.0042
Lazy, Reduction, Normal lr 0.0594 0.9128 0.0437 1.0159
Lazy, Deletion, Shortest lr 0.0623 0.9111 0.0450 1.0184
Hybrid, Reduction, Shortest lr 0.0759 0.9006 0.0438 1.0204
Lazy, Deletion, Normal lr 0.0615 0.9232 0.0461 1.0307
Hybrid, Reduction, Normal lr 0.0767 0.9123 0.0428 1.0318
Eager, Deletion, Shortest l 0.0906 1.0170 0.0438 1.1513
Eager, Deletion, Normal l 0.0914 1.0173 0.0443 1.1529
Eager, Reduction, Normal l 0.0900 1.0249 0.0447 1.1596
Eager, Reduction, Shortest l 0.0908 1.0262 0.0439 1.1609
Eager, Deletion, Normal lr 0.1143 1.0354 0.0451 1.1949
Eager, Reduction, Normal lr 0.1160 1.0430 0.0455 1.2045
Eager, Deletion, Shortest lr 0.1257 1.0366 0.0449 1.2071
Eager, Reduction, Shortest lr 0.1241 1.0457 0.0459 1.2157
Lazy, Reduction, Shortest v 0.0462 1.3069 0.0617 1.4148
Lazy, Reduction, Shortest i 0.0817 1.2898 0.0624 1.4339
Lazy, Deletion, Shortest v 0.0486 1.3342 0.0616 1.4444
Hybrid, Reduction, Shortest v 0.0730 1.3245 0.0612 1.4587
Lazy, Reduction, Normal lv 0.0501 1.3526 0.0640 1.4668
Lazy, Reduction, Normal li 0.0861 1.3184 0.0640 1.4685

Benjamin J. Keller Appendix E 187

Table E.12: Times for Problem A6 (Part Two).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Hybrid, Reduction, Shortest i 0.0988 1.3148 0.0627 1.4763
Lazy, Deletion, Shortest i 0.0835 1.3362 0.0650 1.4848
Lazy, Reduction, Shortest li 0.0838 1.3421 0.0640 1.4898
Lazy, Deletion, Shortest lv 0.0509 1.3764 0.0637 1.4909
Hybrid, Reduction, Shortest lv 0.0721 1.3612 0.0616 1.4949
Lazy, Reduction, Shortest lri 0.0595 1.3734 0.0630 1.4960
Hybrid, Reduction, Normal li 0.1076 1.3324 0.0652 1.5052
Lazy, Reduction, Normal lrv 0.0780 1.3680 0.0621 1.5082
Lazy, Reduction, Normal lri 0.0608 1.3853 0.0634 1.5096
Lazy, Deletion, Normal lv 0.0559 1.3898 0.0654 1.5111
Lazy, Deletion, Normal li 0.0893 1.3721 0.0661 1.5275
Hybrid, Reduction, Normal lv 0.0812 1.3835 0.0638 1.5285
Hybrid, Reduction, Shortest li 0.1035 1.3639 0.0646 1.5321
Lazy, Deletion, Shortest li 0.0873 1.3829 0.0679 1.5382
Hybrid, Reduction, Normal lri 0.0806 1.3976 0.0643 1.5426
Hybrid, Reduction, Shortest lri 0.0799 1.3983 0.0644 1.5426
Lazy, Reduction, Shortest lrv 0.0792 1.4042 0.0661 1.5495
Lazy, Deletion, Shortest lri 0.0633 1.4215 0.0663 1.5512
Lazy, Deletion, Normal lri 0.0655 1.4314 0.0659 1.5628
Hybrid, Reduction, Normal lrv 0.1011 1.4024 0.0629 1.5664
Lazy, Deletion, Normal lrv 0.0816 1.4190 0.0659 1.5665
Lazy, Deletion, Shortest lrv 0.0821 1.4611 0.0674 1.6107
Hybrid, Reduction, Shortest lrv 0.0989 1.4487 0.0653 1.6129
Lazy, Reduction, Shortest lv 0.0477 1.5595 0.0640 1.6712
Eager, Deletion, Shortest v 0.1132 1.5448 0.0630 1.7210

Benjamin J. Keller Appendix E 188

Table E.12: Times for Problem A6 (Part Three).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Eager, Deletion, Shortest i 0.1467 1.5339 0.0643 1.7448
Eager, Reduction, Shortest v 0.1128 1.5872 0.0640 1.7640
Eager, Deletion, Shortest lv 0.1154 1.5886 0.0623 1.7664
Eager, Deletion, Normal li 0.1424 1.5739 0.0654 1.7817
Eager, Deletion, Shortest li 0.1496 1.5762 0.0666 1.7924
Eager, Reduction, Shortest lv 0.1155 1.6180 0.0642 1.7976
Eager, Reduction, Shortest i 0.1493 1.5819 0.0672 1.7984
Eager, Deletion, Normal lri 0.1166 1.6173 0.0651 1.7990
Eager, Deletion, Normal lv 0.1168 1.6345 0.0658 1.8171
Eager, Deletion, Normal lrv 0.1419 1.6259 0.0626 1.8304
Eager, Reduction, Normal lri 0.1160 1.6557 0.0651 1.8368
Eager, Reduction, Normal li 0.1433 1.6274 0.0679 1.8387
Eager, Reduction, Shortest li 0.1518 1.6209 0.0675 1.8402
Eager, Reduction, Normal lv 0.1164 1.6710 0.0655 1.8530
Eager, Deletion, Shortest lrv 0.1516 1.6521 0.0665 1.8702
Eager, Reduction, Normal lrv 0.1433 1.6712 0.0653 1.8798
Eager, Reduction, Shortest lri 0.1206 1.7017 0.0661 1.8884
Eager, Deletion, Shortest lri 0.1205 1.7182 0.0641 1.9028
Eager, Reduction, Shortest lrv 0.1526 1.8261 0.0700 2.0487
Lazy, Reduction, Normal i 0.0813 2.4901 0.0624 2.6338
Lazy, Deletion, Normal i 0.0845 2.6476 0.0660 2.7981
Lazy, Reduction, Normal v 0.0473 2.6879 0.0631 2.7983
Lazy, Deletion, Normal v 0.0494 2.8089 0.0645 2.9228
Hybrid, Reduction, Normal i 0.1006 2.7758 0.0635 2.9399
Hybrid, Reduction, Normal v 0.0712 2.9647 0.0617 3.0976
Eager, Deletion, Normal i 0.1377 3.2461 0.0657 3.4496
Eager, Deletion, Normal v 0.1130 3.5952 0.0650 3.7732
Eager, Reduction, Normal i 0.1390 3.6068 0.0660 3.8119
Eager, Reduction, Normal v 0.1143 3.8084 0.0680 3.9906

Benjamin J. Keller Appendix E 189

Table E.13: Times for Problem A7 (Part One).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Lazy, Reduction, Shortest l 0.0390 0.7123 0.0422 0.7936
Lazy, Reduction, Normal l 0.0384 0.7158 0.0445 0.7987
Lazy, Deletion, Shortest l 0.0456 0.7197 0.0415 0.8068
Lazy, Deletion, Normal l 0.0398 0.7273 0.0417 0.8087
Hybrid, Reduction, Normal l 0.0677 0.7084 0.0408 0.8169
Hybrid, Reduction, Shortest l 0.0686 0.7090 0.0406 0.8183
Lazy, Reduction, Shortest lr 0.0749 0.7277 0.0427 0.8453
Lazy, Reduction, Normal lr 0.0734 0.7358 0.0444 0.8537
Lazy, Deletion, Shortest lr 0.0770 0.7400 0.0434 0.8604
Hybrid, Reduction, Shortest lr 0.0974 0.7218 0.0412 0.8604
Lazy, Deletion, Normal lr 0.0764 0.7496 0.0440 0.8700
Hybrid, Reduction, Normal lr 0.0980 0.7340 0.0420 0.8740
Lazy, Reduction, Shortest v 0.0605 0.8601 0.0520 0.9727
Eager, Deletion, Normal l 0.1324 0.8093 0.0418 0.9835
Eager, Deletion, Shortest l 0.1329 0.8127 0.0430 0.9886
Eager, Reduction, Shortest l 0.1312 0.8177 0.0422 0.9911
Eager, Reduction, Normal l 0.1316 0.8169 0.0436 0.9921
Lazy, Deletion, Shortest v 0.0611 0.8774 0.0549 0.9934
Lazy, Reduction, Normal v 0.0606 0.8900 0.0508 1.0014
Lazy, Reduction, Shortest lv 0.0613 0.8933 0.0515 1.0061
Hybrid, Reduction, Shortest v 0.0847 0.8727 0.0501 1.0074
Lazy, Reduction, Normal lv 0.0657 0.8967 0.0519 1.0144
Lazy, Deletion, Shortest lv 0.0635 0.9129 0.0535 1.0300
Lazy, Reduction, Shortest i 0.0988 0.8823 0.0511 1.0321
Lazy, Deletion, Normal v 0.0634 0.9190 0.0523 1.0348
Hybrid, Reduction, Normal v 0.0858 0.9085 0.0504 1.0447
Lazy, Reduction, Shortest lrv 0.1018 0.8887 0.0545 1.0450
Hybrid, Reduction, Shortest lv 0.0865 0.9087 0.0512 1.0464

Benjamin J. Keller Appendix E 190

Table E.13: Times for Problem A7 (Part Two).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Lazy, Deletion, Normal lv 0.0665 0.9259 0.0541 1.0465
Eager, Deletion, Normal lr 0.1647 0.8379 0.0440 1.0466
Lazy, Reduction, Normal i 0.0983 0.9005 0.0503 1.0491
Eager, Reduction, Normal lr 0.1640 0.8469 0.0436 1.0544
Hybrid, Reduction, Shortest i 0.1202 0.8839 0.0510 1.0550
Hybrid, Reduction, Normal lv 0.0892 0.9145 0.0513 1.0550
Lazy, Reduction, Normal lrv 0.0996 0.9023 0.0538 1.0557
Lazy, Deletion, Shortest i 0.1010 0.9082 0.0537 1.0629
Lazy, Reduction, Normal li 0.1023 0.9102 0.0522 1.0646
Eager, Deletion, Shortest lr 0.1868 0.8385 0.0453 1.0706
Lazy, Reduction, Shortest li 0.1002 0.9184 0.0525 1.0711
Eager, Reduction, Shortest lr 0.1814 0.8466 0.0458 1.0738
Lazy, Reduction, Normal lri 0.0709 0.9513 0.0529 1.0751
Lazy, Deletion, Shortest lrv 0.1068 0.9158 0.0559 1.0785
Lazy, Deletion, Normal lrv 0.1016 0.9282 0.0559 1.0856
Hybrid, Reduction, Shortest lrv 0.1282 0.9096 0.0538 1.0915
Hybrid, Reduction, Shortest li 0.1252 0.9175 0.0535 1.0962
Hybrid, Reduction, Normal i 0.1248 0.9226 0.0515 1.0989
Lazy, Deletion, Shortest li 0.1035 0.9411 0.0545 1.0991
Lazy, Deletion, Normal li 0.1099 0.9381 0.0543 1.1023
Hybrid, Reduction, Normal lrv 0.1275 0.9244 0.0531 1.1050
Hybrid, Reduction, Normal li 0.1283 0.9261 0.0510 1.1054
Lazy, Deletion, Normal i 0.1026 0.9477 0.0555 1.1058
Lazy, Deletion, Normal lri 0.0740 0.9791 0.0551 1.1082
Lazy, Deletion, Shortest lri 0.0712 0.9812 0.0566 1.1090
Hybrid, Reduction, Normal lri 0.0945 0.9691 0.0541 1.1177

Benjamin J. Keller Appendix E 191

Table E.13: Times for Problem A7 (Part Three).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Hybrid, Reduction, Shortest lri 0.0949 0.9696 0.0534 1.1179
Eager, Deletion, Shortest v 0.1576 0.9371 0.0510 1.1457
Eager, Reduction, Shortest v 0.1588 0.9640 0.0523 1.1750
Eager, Deletion, Shortest lv 0.1601 0.9668 0.0522 1.1791
Eager, Deletion, Normal v 0.1529 0.9862 0.0522 1.1913
Eager, Deletion, Normal lv 0.1606 0.9919 0.0534 1.2059
Eager, Deletion, Shortest i 0.2087 0.9472 0.0518 1.2077
Eager, Reduction, Shortest lv 0.1605 0.9955 0.0523 1.2083
Eager, Reduction, Normal v 0.1529 1.0024 0.0532 1.2084
Eager, Deletion, Normal i 0.1859 0.9858 0.0519 1.2237
Eager, Reduction, Normal lv 0.1569 1.0183 0.0540 1.2293
Eager, Deletion, Normal lrv 0.1890 0.9875 0.0532 1.2296
Eager, Deletion, Shortest lrv 0.2090 0.9688 0.0541 1.2319
Eager, Deletion, Shortest lri 0.1636 1.0160 0.0544 1.2340
Eager, Deletion, Normal li 0.1895 0.9989 0.0514 1.2398
Eager, Deletion, Normal lri 0.1555 1.0324 0.0539 1.2419
Eager, Deletion, Shortest li 0.2113 0.9792 0.0516 1.2420
Eager, Reduction, Shortest i 0.2117 0.9814 0.0515 1.2446
Eager, Reduction, Shortest lri 0.1621 1.0411 0.0553 1.2585
Eager, Reduction, Normal lrv 0.1905 1.0142 0.0539 1.2585
Eager, Reduction, Shortest lrv 0.2092 1.0028 0.0539 1.2659
Eager, Reduction, Normal lri 0.1530 1.0642 0.0541 1.2712
Eager, Reduction, Shortest li 0.2130 1.0114 0.0530 1.2774
Lazy, Reduction, Shortest lri 0.0679 1.1589 0.0560 1.2828
Eager, Reduction, Normal li 0.1966 1.0362 0.0553 1.2881
Eager, Reduction, Normal i 0.1893 1.0535 0.0570 1.2997

Benjamin J. Keller Appendix E 192

Table E.14: Times for Problem A8 (Part One).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Lazy, Reduction, Normal l 0.0509 0.5731 0.0416 0.6657
Lazy, Reduction, Shortest l 0.0505 0.5761 0.0411 0.6678
Lazy, Deletion, Shortest l 0.0512 0.5832 0.0421 0.6764
Lazy, Deletion, Normal l 0.0512 0.5839 0.0422 0.6774
Hybrid, Reduction, Shortest l 0.0836 0.5671 0.0427 0.6934
Lazy, Reduction, Normal lr 0.0913 0.6041 0.0421 0.7375
Lazy, Deletion, Normal lr 0.0912 0.6119 0.0434 0.7465
Lazy, Reduction, Shortest lr 0.0967 0.6091 0.0435 0.7493
Lazy, Deletion, Shortest lr 0.0954 0.6110 0.0451 0.7514
Hybrid, Reduction, Shortest lr 0.1232 0.5850 0.0437 0.7519
Eager, Deletion, Shortest l 0.1897 0.6331 0.0445 0.8673
Eager, Deletion, Normal l 0.1904 0.6364 0.0440 0.8707
Eager, Reduction, Normal l 0.1889 0.6388 0.0441 0.8717
Eager, Reduction, Shortest l 0.1885 0.6430 0.0449 0.8764
Lazy, Reduction, Normal v 0.0686 0.7739 0.0511 0.8935
Lazy, Reduction, Shortest v 0.0681 0.7805 0.0526 0.9012
Lazy, Deletion, Shortest v 0.0693 0.7899 0.0527 0.9119
Lazy, Deletion, Normal v 0.0718 0.7908 0.0526 0.9152
Lazy, Reduction, Shortest lv 0.0694 0.8000 0.0528 0.9221
Hybrid, Reduction, Shortest v 0.0997 0.7776 0.0506 0.9279
Lazy, Reduction, Normal lv 0.0718 0.8053 0.0521 0.9293
Eager, Deletion, Normal lr 0.2307 0.6680 0.0457 0.9443
Lazy, Deletion, Shortest lv 0.0711 0.8204 0.0541 0.9455
Eager, Reduction, Normal lr 0.2299 0.6715 0.0466 0.9480
Lazy, Deletion, Normal lv 0.0747 0.8251 0.0548 0.9546
Hybrid, Reduction, Shortest lv 0.1010 0.8088 0.0519 0.9617
Eager, Deletion, Shortest lr 0.2629 0.6584 0.0447 0.9661
Eager, Reduction, Shortest lr 0.2615 0.6659 0.0455 0.9729

Benjamin J. Keller Appendix E 193

Table E.14: Times for Problem A8 (Part Two).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Lazy, Reduction, Normal i 0.1222 0.8018 0.0521 0.9762
Lazy, Reduction, Shortest i 0.1254 0.8034 0.0534 0.9823
Lazy, Reduction, Normal lrv 0.1209 0.8194 0.0545 0.9948
Lazy, Reduction, Shortest lrv 0.1248 0.8179 0.0543 0.9970
Lazy, Reduction, Normal lri 0.0824 0.8654 0.0552 1.0029
Hybrid, Reduction, Shortest i 0.1543 0.7965 0.0525 1.0034
Lazy, Reduction, Shortest lri 0.0818 0.8693 0.0543 1.0053
Lazy, Deletion, Shortest i 0.1298 0.8234 0.0552 1.0084
Lazy, Deletion, Normal i 0.1275 0.8291 0.0552 1.0118
Lazy, Reduction, Normal li 0.1269 0.8369 0.0522 1.0160
Lazy, Reduction, Shortest li 0.1295 0.8348 0.0519 1.0162
Lazy, Deletion, Normal lrv 0.1261 0.8461 0.0559 1.0282
Lazy, Deletion, Shortest lrv 0.1303 0.8446 0.0548 1.0298
Hybrid, Reduction, Shortest lrv 0.1569 0.8246 0.0533 1.0348
Lazy, Deletion, Shortest lri 0.0839 0.8952 0.0563 1.0354
Hybrid, Reduction, Shortest lri 0.1133 0.8713 0.0550 1.0396
Hybrid, Reduction, Shortest li 0.1580 0.8309 0.0521 1.0410
Lazy, Deletion, Normal li 0.1346 0.8581 0.0541 1.0468
Eager, Deletion, Normal v 0.2083 0.7869 0.0533 1.0485
Lazy, Deletion, Shortest li 0.1322 0.8649 0.0541 1.0512
Eager, Reduction, Normal v 0.2087 0.8088 0.0529 1.0704
Eager, Deletion, Shortest v 0.2153 0.8151 0.0520 1.0824
Eager, Reduction, Shortest v 0.2146 0.8377 0.0559 1.1082
Eager, Deletion, Shortest lv 0.2168 0.8393 0.0539 1.1099
Eager, Deletion, Normal i 0.2475 0.8136 0.0536 1.1148
Lazy, Deletion, Normal lri 0.0862 0.9772 0.0569 1.1203

Benjamin J. Keller Appendix E 194

Table E.14: Times for Problem A8 (Part Three).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Eager, Deletion, Normal lv 0.2153 0.8640 0.0541 1.1334
Eager, Reduction, Shortest lv 0.2163 0.8648 0.0533 1.1344
Eager, Reduction, Normal i 0.2543 0.8357 0.0537 1.1437
Eager, Reduction, Normal lv 0.2157 0.8837 0.0551 1.1544
Eager, Deletion, Normal lri 0.2067 0.9125 0.0539 1.1731
Eager, Deletion, Shortest lri 0.2285 0.8963 0.0536 1.1784
Eager, Deletion, Shortest i 0.2931 0.8340 0.0540 1.1812
Eager, Deletion, Normal lrv 0.2549 0.8751 0.0558 1.1859
Eager, Deletion, Normal li 0.2549 0.8837 0.0546 1.1931
Eager, Deletion, Shortest lrv 0.2879 0.8529 0.0567 1.1975
Eager, Reduction, Shortest lri 0.2281 0.9161 0.0548 1.1990
Eager, Reduction, Normal lri 0.2083 0.9411 0.0540 1.2034
Eager, Deletion, Shortest li 0.2964 0.8654 0.0545 1.2162
Eager, Reduction, Shortest i 0.2973 0.8645 0.0550 1.2168
Eager, Reduction, Normal lrv 0.2569 0.9052 0.0570 1.2191
Eager, Reduction, Shortest lrv 0.2906 0.8844 0.0566 1.2316
Eager, Reduction, Shortest li 0.3001 0.8883 0.0565 1.2449
Eager, Reduction, Normal li 0.2577 0.9411 0.0583 1.2571

Benjamin J. Keller Appendix E 195

Table E.15: Times for Problem BT31 (Part One).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Lazy, Reduction, Shortest lr 0.1418 0.3733 0.2621 0.7772
Lazy, Reduction, Normal lr 0.1376 0.3838 0.2622 0.7836
Lazy, Deletion, Shortest lr 0.1421 0.3903 0.265 0.7974
Lazy, Deletion, Normal lr 0.142 0.3969 0.2652 0.8041
Hybrid, Reduction, Shortest lr 0.1432 0.4384 0.2646 0.8462
Hybrid, Reduction, Normal lr 0.1453 0.4399 0.265 0.8502
Eager, Deletion, Shortest lr 0.2626 0.4731 0.3049 1.0405
Eager, Deletion, Normal lr 0.2637 0.4881 0.3063 1.058
Eager, Reduction, Shortest lr 0.2782 0.4862 0.3295 1.094
Eager, Reduction, Normal lr 0.2765 0.5011 0.3261 1.1037
Eager, Deletion, Shortest v 0.2722 10.5592 0.4205 11.2519
Eager, Deletion, Shortest lv 0.2712 10.663 0.4242 11.3585
Eager, Deletion, Normal lv 0.2831 10.7481 0.4216 11.4528
Eager, Deletion, Normal v 0.2832 10.7953 0.4208 11.4992
Lazy, Reduction, Shortest v 0.145 11.0627 0.3814 11.5891
Lazy, Reduction, Shortest lv 0.1475 11.0601 0.3845 11.5921
Eager, Reduction, Shortest v 0.2856 10.9174 0.4504 11.6533
Lazy, Reduction, Normal lv 0.1468 11.2268 0.3853 11.7588
Eager, Reduction, Shortest lv 0.2864 11.1093 0.4496 11.8453
Lazy, Reduction, Normal v 0.147 11.422 0.379 11.948
Eager, Reduction, Normal lv 0.2949 11.2005 0.4535 11.9489
Eager, Reduction, Normal v 0.2906 11.3476 0.4486 12.0868
Hybrid, Reduction, Shortest v 0.1533 12.5389 0.4029 13.0951
Lazy, Reduction, Normal l 0.154 11.8096 1.1763 13.1399
Lazy, Reduction, Shortest l 0.1566 11.9266 1.1838 13.2669
Hybrid, Reduction, Normal lv 0.1539 12.8132 0.4067 13.3738
Hybrid, Reduction, Shortest lv 0.154 12.839 0.4049 13.3978
Hybrid, Reduction, Normal l 0.2035 12.133 1.1927 13.5292

Benjamin J. Keller Appendix E 196

Table E.15: Times for Problem BT31 (Part Two).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Hybrid, Reduction, Shortest l 0.1986 12.1417 1.1982 13.5386
Lazy, Deletion, Shortest v 0.1486 13.0957 0.4139 13.6582
Hybrid, Reduction, Normal v 0.1565 13.1148 0.4012 13.6726
Lazy, Deletion, Shortest lv 0.1495 13.3429 0.4154 13.9078
Lazy, Deletion, Normal lv 0.1515 13.3689 0.4136 13.9341
Lazy, Deletion, Shortest l 0.1563 12.8366 1.2024 14.1954
Lazy, Deletion, Normal l 0.1623 12.8582 1.202 14.2226
Lazy, Deletion, Normal v 0.15 13.6746 0.4127 14.2373
Lazy, Reduction, Normal i 0.1544 21.4526 1.9464 23.5534
Hybrid, Reduction, Normal i 0.2048 23.5898 2.019 25.8136
Lazy, Reduction, Shortest i 0.1566 24.5842 1.9444 26.6851
Lazy, Deletion, Normal i 0.1609 24.5954 2.0589 26.8152
Lazy, Reduction, Shortest li 0.1582 24.7653 1.962 26.8855
Eager, Deletion, Normal i 0.8284 23.9538 2.1489 26.9311
Lazy, Reduction, Shortest lrv 0.1578 24.9391 1.9266 27.0235
Hybrid, Reduction, Shortest i 0.2036 25.374 2.0166 27.5942
Hybrid, Reduction, Shortest li 0.2044 25.4512 2.0317 27.6873
Hybrid, Reduction, Shortest lrv 0.2044 25.7527 1.9975 27.9546
Eager, Reduction, Normal i 0.8633 25.3023 2.2916 28.4573
Lazy, Deletion, Shortest i 0.1644 28.1052 2.0511 30.3207
Lazy, Deletion, Shortest li 0.1648 28.3279 2.0671 30.5599
Lazy, Deletion, Shortest lrv 0.1645 28.4601 2.032 30.6566
Hybrid, Reduction, Normal li 0.2024 28.763 2.0306 30.996
Hybrid, Reduction, Normal lrv 0.2059 28.9052 1.9994 31.1105
Lazy, Reduction, Normal lrv 0.1608 29.8247 1.9161 31.9016
Lazy, Reduction, Normal li 0.1557 30.2217 1.9588 32.3362
Eager, Deletion, Shortest lri 0.2738 33.9856 0.727 34.9864
Eager, Deletion, Normal lri 0.2866 34.4148 0.8263 35.5278

Benjamin J. Keller Appendix E 197

Table E.15: Times for Problem BT31 (Part Three).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Eager, Reduction, Shortest lri 0.2856 35.242 0.7225 36.2501
Eager, Reduction, Normal lri 0.2989 35.6484 0.7426 36.6899
Lazy, Deletion, Normal lrv 0.164 34.5595 2.0317 36.7552
Lazy, Deletion, Normal li 0.1647 34.6847 2.0697 36.9191
Lazy, Reduction, Normal lri 0.1472 36.4436 0.7332 37.324
Lazy, Reduction, Shortest lri 0.1468 36.5219 0.7612 37.43
Hybrid, Reduction, Normal lri 0.1552 41.688 0.7258 42.569
Hybrid, Reduction, Shortest lri 0.1553 41.9505 0.7586 42.8645
Lazy, Deletion, Normal lri 0.1513 43.1049 0.7165 43.9727
Lazy, Deletion, Shortest lri 0.1508 43.7201 0.797 44.668
Eager, Deletion, Shortest l 0.6833 52.8854 1.1773 54.746
Eager, Reduction, Shortest l 0.7147 53.5832 1.161 55.4589
Eager, Reduction, Normal l 0.7164 53.5831 1.1677 55.4672
Eager, Deletion, Normal l 0.6827 53.9543 1.2678 55.9048
Eager, Deletion, Shortest i 0.6211 67.9186 1.8804 70.4201
Eager, Deletion, Shortest li 0.6274 68.603 1.9191 71.1495
Eager, Deletion, Shortest lrv 0.6253 69.5065 1.8911 72.0229
Eager, Reduction, Shortest lrv 0.6525 69.5562 1.8548 72.0636
Eager, Reduction, Shortest i 0.6531 69.9353 2.001 72.5895
Eager, Reduction, Shortest li 0.6523 71.4303 1.9703 74.0529
Eager, Deletion, Normal li 0.836 95.6068 1.9381 98.3808
Eager, Deletion, Normal lrv 0.853 95.7256 1.907 98.4855
Eager, Reduction, Normal lrv 0.8876 95.9664 1.8983 98.7523
Eager, Reduction, Normal li 0.8693 96.0827 1.9383 98.8904

Benjamin J. Keller Appendix E 198

Table E.16: Times for Problem BT7 (Part One).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Eager, Deletion, Normal l 0.0498 0.12 0.0467 0.2165
Eager, Deletion, Normal lr 0.0468 1.2747 0.1046 1.426
Eager, Deletion, Normal lv 0.0519 1.2435 0.1013 1.3967
Eager, Deletion, Normal lrv 0.0486 1.7766 0.1296 1.9548
Eager, Deletion, Normal li 0.0489 1.7753 0.1278 1.952
Eager, Deletion, Normal lri 0.0506 1.5809 0.1161 1.7476
Eager, Deletion, Normal v 0.0512 1.2828 0.1003 1.4344
Eager, Deletion, Normal i 0.0486 1.1999 0.1236 1.3721
Eager, Deletion, Shortest l 0.0488 0.1197 0.0475 0.216
Eager, Deletion, Shortest lr 0.0486 1.3431 0.1044 1.4961
Eager, Deletion, Shortest lv 0.0486 1.2073 0.1003 1.3562
Eager, Deletion, Shortest lrv 0.0455 1.5908 0.1283 1.7646
Eager, Deletion, Shortest li 0.0452 1.5501 0.122 1.7173
Eager, Deletion, Shortest lri 0.0483 1.4991 0.1143 1.6616
Eager, Deletion, Shortest v 0.0486 1.206 0.1006 1.3552
Eager, Deletion, Shortest i 0.046 1.5498 0.1214 1.7172
Eager, Reduction, Shortest l 0.0476 0.1185 0.0483 0.2144
Eager, Reduction, Shortest lr 0.045 1.2374 0.1059 1.3883
Eager, Reduction, Shortest lv 0.0479 1.2074 0.1034 1.3587
Eager, Reduction, Shortest lrv 0.0456 1.4961 0.1286 1.6703
Eager, Reduction, Shortest li 0.0448 1.541 0.1299 1.7157
Eager, Reduction, Shortest lri 0.0474 1.4959 0.1172 1.6605
Eager, Reduction, Shortest v 0.0499 1.201 0.1016 1.3525
Eager, Reduction, Shortest i 0.0464 1.5349 0.1293 1.7105
Eager, Reduction, Normal l 0.0485 0.1204 0.0481 0.217
Eager, Reduction, Normal lr 0.0472 1.2619 0.105 1.4141
Eager, Reduction, Normal lv 0.0503 1.2437 0.109 1.403
Eager, Reduction, Normal lrv 0.0484 1.7611 0.1303 1.9398

Benjamin J. Keller Appendix E 199

Table E.16: Times for Problem BT7 (Part Two).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Eager, Reduction, Normal li 0.0479 1.7782 0.1297 1.9558
Eager, Reduction, Normal lri 0.0498 1.5892 0.1203 1.7594
Eager, Reduction, Normal v 0.052 1.2719 0.101 1.4248
Eager, Reduction, Normal i 0.048 1.1937 0.1255 1.3672
Hybrid, Reduction, Normal l 0.0257 0.1133 0.038 0.177
Hybrid, Reduction, Normal lr 0.0378 0.6481 0.0957 0.7816
Hybrid, Reduction, Normal lv 0.0275 1.1126 0.0974 1.2375
Hybrid, Reduction, Normal lrv 0.0398 0.9111 0.1111 1.062
Hybrid, Reduction, Normal li 0.0409 0.9396 0.1158 1.0964
Hybrid, Reduction, Normal lri 0.0275 1.4073 0.1206 1.5553
Hybrid, Reduction, Normal v 0.0273 1.1987 0.0986 1.3245
Hybrid, Reduction, Normal i 0.0403 1.0949 0.1143 1.2496
Hybrid, Reduction, Shortest l 0.0266 0.1166 0.0391 0.1823
Hybrid, Reduction, Shortest lr 0.0373 0.6498 0.0939 0.7809
Hybrid, Reduction, Shortest lv 0.0275 1.0575 0.0988 1.1839
Hybrid, Reduction, Shortest lrv 0.0369 0.8215 0.113 0.9713
Hybrid, Reduction, Shortest li 0.0371 0.8372 0.115 0.9893
Hybrid, Reduction, Shortest lri 0.0306 1.3284 0.1121 1.4712
Hybrid, Reduction, Shortest v 0.0277 1.0464 0.0987 1.1728
Hybrid, Reduction, Shortest i 0.0377 0.8368 0.1148 0.9893
Lazy, Deletion, Normal l 0.0216 0.1013 0.0384 0.1613
Lazy, Deletion, Normal lr 0.0268 0.6083 0.0937 0.7288
Lazy, Deletion, Normal lv 0.0262 1.1335 0.0972 1.2569
Lazy, Deletion, Normal lrv 0.031 0.9645 0.1171 1.1126
Lazy, Deletion, Normal li 0.0305 1.0107 0.1157 1.1569
Lazy, Deletion, Normal lri 0.0256 1.4159 0.1136 1.5551
Lazy, Deletion, Normal v 0.0251 1.3566 0.0984 1.4801
Lazy, Deletion, Normal i 0.0298 1.0627 0.1167 1.2093

Benjamin J. Keller Appendix E 200

Table E.16: Times for Problem BT7 (Part Three).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Lazy, Deletion, Shortest l 0.0208 0.0987 0.0384 0.1579
Lazy, Deletion, Shortest lr 0.0262 0.6042 0.094 0.7244
Lazy, Deletion, Shortest lv 0.0247 1.0615 0.101 1.1871
Lazy, Deletion, Shortest lrv 0.0287 0.8215 0.1157 0.9658
Lazy, Deletion, Shortest li 0.0285 0.8197 0.1165 0.9647
Lazy, Deletion, Shortest lri 0.0252 1.3839 0.1141 1.5232
Lazy, Deletion, Shortest v 0.0255 1.054 0.1002 1.1797
Lazy, Deletion, Shortest i 0.0275 0.8174 0.1165 0.9614
Lazy, Reduction, Normal l 0.0196 0.0994 0.0371 0.1561
Lazy, Reduction, Normal lr 0.023 0.5783 0.0946 0.6958
Lazy, Reduction, Normal lv 0.0217 1.0215 0.0903 1.1335
Lazy, Reduction, Normal lrv 0.0265 0.8786 0.1091 1.0142
Lazy, Reduction, Normal li 0.0261 0.9104 0.1138 1.0503
Lazy, Reduction, Normal lri 0.0209 1.279 0.1088 1.4086
Lazy, Reduction, Normal v 0.0214 1.1502 0.0904 1.2621
Lazy, Reduction, Normal i 0.0251 0.9421 0.1143 1.0815
Lazy, Reduction, Shortest l 0.0196 0.0976 0.0372 0.1544
Lazy, Reduction, Shortest lr 0.0221 0.5731 0.0946 0.6898
Lazy, Reduction, Shortest lv 0.0206 0.9733 0.0897 1.0836
Lazy, Reduction, Shortest lrv 0.0245 0.7694 0.115 0.9089
Lazy, Reduction, Shortest li 0.0232 0.7706 0.1136 0.9074
Lazy, Reduction, Shortest lri 0.0217 1.2532 0.1075 1.3825
Lazy, Reduction, Shortest v 0.0205 0.9573 0.089 1.0668
Lazy, Reduction, Shortest i 0.0231 0.7658 0.1135 0.9024

Benjamin J. Keller Appendix E 201

Table E.17: Times for Problem M39 (Part One).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Eager, Deletion, Normal l 0.2069 0.0002 0.3075 0.5146
Eager, Deletion, Normal lr 0.2961 0.5182 0.3696 1.184
Eager, Deletion, Normal lv 0.3173 13.106 0.4854 13.9086
Eager, Deletion, Normal lrv 0.217 0.0002 0.3186 0.5358
Eager, Deletion, Normal li 0.2179 0.0002 0.3181 0.5362
Eager, Deletion, Normal lri 0.3216 44.2162 0.9418 45.4796
Eager, Deletion, Normal v 0.3148 12.9398 0.4928 13.7474
Eager, Deletion, Normal i 0.2162 0.0002 0.3187 0.5352
Eager, Deletion, Shortest l 0.2091 0.0002 0.3053 0.5146
Eager, Deletion, Shortest lr 0.294 0.5057 0.3686 1.1684
Eager, Deletion, Shortest lv 0.3066 12.8815 0.4844 13.6726
Eager, Deletion, Shortest lrv 0.2164 0.0002 0.3189 0.5355
Eager, Deletion, Shortest li 0.2177 0.0002 0.3204 0.5383
Eager, Deletion, Shortest lri 0.307 40.2696 0.8213 41.398
Eager, Deletion, Shortest v 0.3055 12.5886 0.4805 13.3746
Eager, Deletion, Shortest i 0.2162 0.0002 0.3193 0.5357
Eager, Reduction, Shortest l 0.2264 0.0002 0.3391 0.5657
Eager, Reduction, Shortest lr 0.312 0.5202 0.3992 1.2314
Eager, Reduction, Shortest lv 0.3241 13.2994 0.5173 14.1409
Eager, Reduction, Shortest lrv 0.2355 0.0009 0.3536 0.5901
Eager, Reduction, Shortest li 0.2375 0.0002 0.3517 0.5894
Eager, Reduction, Shortest lri 0.3256 41.9637 0.8671 43.1565
Eager, Reduction, Shortest v 0.3235 13.2809 0.5154 14.1199
Eager, Reduction, Shortest i 0.2352 0.0002 0.35 0.5854
Eager, Reduction, Normal l 0.2262 0.0002 0.3423 0.5688
Eager, Reduction, Normal lr 0.3114 0.5335 0.3957 1.2406
Eager, Reduction, Normal lv 0.3401 13.4152 0.5168 14.2721
Eager, Reduction, Normal lrv 0.2428 0.0002 0.3486 0.5916

Benjamin J. Keller Appendix E 202

Table E.17: Times for Problem M39 (Part Two).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Eager, Reduction, Normal li 0.2362 0.0004 0.3504 0.587
Eager, Reduction, Normal lri 0.3431 48.3829 1.051 49.7771
Eager, Reduction, Normal v 0.3402 13.5339 0.5137 14.3879
Eager, Reduction, Normal i 0.2352 0.0002 0.351 0.5865
Hybrid, Reduction, Normal l 0.1748 0.0002 0.2535 0.4285
Hybrid, Reduction, Normal lr 0.1758 0.4718 0.3198 0.9674
Hybrid, Reduction, Normal lv 0.1901 15.6689 0.4643 16.3232
Hybrid, Reduction, Normal lrv 0.1869 0.0002 0.2673 0.4544
Hybrid, Reduction, Normal li 0.1888 0.0002 0.2688 0.4578
Hybrid, Reduction, Normal lri 0.1901 48.8861 0.876 49.9522
Hybrid, Reduction, Normal v 0.1868 16.0138 0.4594 16.6601
Hybrid, Reduction, Normal i 0.1866 0.0002 0.2734 0.4603
Hybrid, Reduction, Shortest l 0.1735 0.0002 0.2552 0.429
Hybrid, Reduction, Shortest lr 0.1763 0.4693 0.3182 0.9637
Hybrid, Reduction, Shortest lv 0.188 15.6898 0.4655 16.3434
Hybrid, Reduction, Shortest lrv 0.1874 0.0002 0.2678 0.4554
Hybrid, Reduction, Shortest li 0.1879 0.0002 0.2702 0.4583
Hybrid, Reduction, Shortest lri 0.1903 47.0328 0.8163 48.0395
Hybrid, Reduction, Shortest v 0.1875 15.366 0.4587 16.0123
Hybrid, Reduction, Shortest i 0.1864 0.0002 0.2686 0.4553
Lazy, Deletion, Normal l 0.1727 0.0002 0.2568 0.4297
Lazy, Deletion, Normal lr 0.1725 0.4325 0.3208 0.9258
Lazy, Deletion, Normal lv 0.1828 16.2722 0.4756 16.9306
Lazy, Deletion, Normal lrv 0.1839 0.0002 0.2774 0.4615
Lazy, Deletion, Normal li 0.1848 0.0002 0.2766 0.4616
Lazy, Deletion, Normal lri 0.1836 49.9161 0.886 50.9858
Lazy, Deletion, Normal v 0.1831 16.5993 0.4656 17.2479
Lazy, Deletion, Normal i 0.1839 0.0002 0.2746 0.4587

Benjamin J. Keller Appendix E 203

Table E.17: Times for Problem M39 (Part Three).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Lazy, Deletion, Shortest l 0.1728 0.0002 0.2562 0.4293
Lazy, Deletion, Shortest lr 0.1725 0.428 0.3194 0.9199
Lazy, Deletion, Shortest lv 0.1832 16.1608 0.4777 16.8216
Lazy, Deletion, Shortest lrv 0.1831 0.0002 0.2754 0.4588
Lazy, Deletion, Shortest li 0.1844 0.0002 0.2769 0.4615
Lazy, Deletion, Shortest lri 0.1849 49.881 0.8921 50.9581
Lazy, Deletion, Shortest v 0.1829 15.8043 0.4667 16.4539
Lazy, Deletion, Shortest i 0.1851 0.0002 0.2764 0.4617
Lazy, Reduction, Normal l 0.1688 0.0004 0.2522 0.4214
Lazy, Reduction, Normal lr 0.1701 0.412 0.3134 0.8955
Lazy, Reduction, Normal lv 0.1812 13.843 0.4394 14.4637
Lazy, Reduction, Normal lrv 0.1801 0.0004 0.2658 0.4463
Lazy, Reduction, Normal li 0.1811 0.0004 0.2655 0.447
Lazy, Reduction, Normal lri 0.1806 42.2499 0.8165 43.2471
Lazy, Reduction, Normal v 0.1794 13.9506 0.4369 14.5669
Lazy, Reduction, Normal i 0.1795 0.0004 0.267 0.4469
Lazy, Reduction, Shortest l 0.168 0.0004 0.2561 0.4246
Lazy, Reduction, Shortest lr 0.1691 0.4087 0.3138 0.8915
Lazy, Reduction, Shortest lv 0.1795 13.6142 0.4404 14.2341
Lazy, Reduction, Shortest lrv 0.1781 0.0004 0.2652 0.4438
Lazy, Reduction, Shortest li 0.1806 0.0004 0.2667 0.4478
Lazy, Reduction, Shortest lri 0.1783 47.5508 1.0062 48.7352
Lazy, Reduction, Shortest v 0.1776 13.3498 0.4359 13.9633
Lazy, Reduction, Shortest i 0.1796 0.0004 0.2647 0.4447

Benjamin J. Keller Appendix E 204

Table E.18: Times for Problem P5 (Part One).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Eager, Deletion, Normal l 0.2898 3.147 0.2455 3.6823
Eager, Deletion, Normal lr 0.2854 3.1865 0.2489 3.7209
Eager, Deletion, Normal lv 0.3011 12.0897 0.4108 12.8016
Eager, Deletion, Normal lrv 0.3467 13.1878 0.439 13.9735
Eager, Deletion, Normal li 0.3235 11.8829 0.4113 12.6177
Eager, Deletion, Normal lri 0.2957 13.0373 0.4416 13.7746
Eager, Deletion, Normal v 0.3437 10.6436 0.4084 11.3957
Eager, Deletion, Normal i 0.369 10.5025 0.4164 11.2879
Eager, Deletion, Shortest l 0.2907 3.1527 0.2438 3.6871
Eager, Deletion, Shortest lr 0.294 3.0764 0.248 3.6184
Eager, Deletion, Shortest lv 0.2903 8.8417 0.4099 9.5419
Eager, Deletion, Shortest lrv 0.2942 11.09 0.4463 11.8305
Eager, Deletion, Shortest li 0.2956 10.042 0.4144 10.7519
Eager, Deletion, Shortest lri 0.2872 10.3493 0.4392 11.0758
Eager, Deletion, Shortest v 0.2884 8.8435 0.4071 9.539
Eager, Deletion, Shortest i 0.2947 10.0542 0.4079 10.7569
Eager, Reduction, Normal l 0.2874 3.2103 0.2513 3.749
Eager, Reduction, Normal lr 0.2868 3.2456 0.2494 3.7818
Eager, Reduction, Normal lv 0.3034 12.2261 0.4156 12.9451
Eager, Reduction, Normal lrv 0.3467 13.3324 0.4497 14.1289
Eager, Reduction, Normal li 0.3287 12.2201 0.417 12.9658
Eager, Reduction, Normal lri 0.2946 13.2255 0.4431 13.9632
Eager, Reduction, Normal v 0.3478 10.9766 0.4103 11.7347
Eager, Reduction, Normal i 0.3744 10.7836 0.4109 11.5689
Eager, Reduction, Shortest l 0.2876 3.136 0.2496 3.6732
Eager, Reduction, Shortest lr 0.2966 3.0632 0.2499 3.6096
Eager, Reduction, Shortest lv 0.2861 8.7993 0.4149 9.5004
Eager, Reduction, Shortest lrv 0.2963 11.0981 0.4813 11.8757

Benjamin J. Keller Appendix E 205

Table E.18: Times for Problem P5 (Part Two).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Eager, Reduction, Shortest li 0.2978 10.0922 0.4165 10.8065
Eager, Reduction, Shortest lri 0.2866 10.182 0.4408 10.9095
Eager, Reduction, Shortest v 0.2865 8.8622 0.4153 9.5641
Eager, Reduction, Shortest i 0.2964 9.9902 0.4167 10.7032
Hybrid, Reduction, Normal l 0.1234 1.6647 0.2224 2.0105
Hybrid, Reduction, Normal lr 0.1265 1.6636 0.2222 2.0123
Hybrid, Reduction, Normal lv 0.1389 4.7442 0.375 5.258
Hybrid, Reduction, Normal lrv 0.137 5.2272 0.4027 5.7669
Hybrid, Reduction, Normal li 0.1392 4.5265 0.3764 5.0421
Hybrid, Reduction, Normal lri 0.1366 5.1348 0.4004 5.6718
Hybrid, Reduction, Normal v 0.1672 7.1297 0.3717 7.6686
Hybrid, Reduction, Normal i 0.1856 6.7866 0.3745 7.3467
Hybrid, Reduction, Shortest l 0.1215 1.6688 0.2242 2.0145
Hybrid, Reduction, Shortest lr 0.1231 1.5804 0.2251 1.9287
Hybrid, Reduction, Shortest lv 0.1223 4.0859 0.3736 4.5819
Hybrid, Reduction, Shortest lrv 0.1228 4.811 0.4007 5.3345
Hybrid, Reduction, Shortest li 0.1237 4.2614 0.38 4.7652
Hybrid, Reduction, Shortest lri 0.1231 4.6428 0.3976 5.1635
Hybrid, Reduction, Shortest v 0.1212 4.062 0.3767 4.5599
Hybrid, Reduction, Shortest i 0.1239 4.2627 0.3757 4.7624
Lazy, Deletion, Normal l 0.3087 7.6637 0.2261 8.1985
Lazy, Deletion, Normal lr 0.2999 7.7544 0.2264 8.2807
Lazy, Deletion, Normal lv 0.3554 48.4368 0.3792 49.1715
Lazy, Deletion, Normal lrv 0.4445 59.4846 0.4106 60.3397
Lazy, Deletion, Normal li 0.4407 47.1942 0.381 48.0159
Lazy, Deletion, Normal lri 0.3474 59.3448 0.411 60.1032
Lazy, Deletion, Normal v 0.5056 21.9209 0.3794 22.8059
Lazy, Deletion, Normal i 1.0706 20.3236 0.3817 21.7759

Benjamin J. Keller Appendix E 206

Table E.18: Times for Problem P5 (Part Three).

Configuration Order Times (seconds) Total
Init. Comp. Set Reduction Time

Lazy, Deletion, Shortest l 0.3085 7.658 0.2285 8.195
Lazy, Deletion, Shortest lr 0.3142 7.1285 0.2289 7.6716
Lazy, Deletion, Shortest lv 0.31 38.4376 0.3788 39.1264
Lazy, Deletion, Shortest lrv 0.3131 48.5854 0.4124 49.3109
Lazy, Deletion, Shortest li 0.3119 37.6739 0.385 38.3708
Lazy, Deletion, Shortest lri 0.411 48.8554 0.4144 49.6808
Lazy, Deletion, Shortest v 0.3101 38.4175 0.3793 39.1069
Lazy, Deletion, Shortest i 0.3157 37.7159 0.3788 38.4104
Lazy, Reduction, Normal l 0.3078 7.6662 0.2193 8.1933
Lazy, Reduction, Normal lr 0.3019 7.7381 0.2196 8.2596
Lazy, Reduction, Normal lv 0.3469 47.2212 0.3709 47.939
Lazy, Reduction, Normal lrv 0.4271 58.1344 0.396 58.9575
Lazy, Reduction, Normal li 0.4248 46.019 0.3699 46.8136
Lazy, Reduction, Normal lri 0.3358 58.0609 0.3986 58.7953
Lazy, Reduction, Normal v 0.4735 19.0497 0.3675 19.8907
Lazy, Reduction, Normal i 0.9966 18.5482 0.3694 19.9142
Lazy, Reduction, Shortest l 0.3065 7.661 0.2189 8.1863
Lazy, Reduction, Shortest lr 0.3102 7.0389 0.2238 7.5729
Lazy, Reduction, Shortest lv 0.3094 38.2502 0.3694 38.929
Lazy, Reduction, Shortest lrv 0.3125 48.5249 0.4043 49.2417
Lazy, Reduction, Shortest li 0.3113 37.6128 0.3719 38.296
Lazy, Reduction, Shortest lri 0.3097 49.0567 0.3978 49.7642
Lazy, Reduction, Shortest v 0.3075 38.4302 0.3686 39.1064
Lazy, Reduction, Shortest i 0.3119 37.7616 0.3707 38.4442

Benjamin J. Keller Appendix E 207

E.2 Order Experiments

Benjamin J. Keller Appendix E 208

Table E.19: Counts for Admissible Order Comparison with Problem A4.
Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 12.74 0.39 47 37 934 TRUE
1 l 18.89 0.53 44 34 1321 TRUE
1 li 12.79 0.39 47 37 934 TRUE
1 lri 19.13 0.59 56 45 1334 TRUE
1 lrv 22.24 0.66 56 45 1397 TRUE
1 lv 11.69 0.36 47 37 922 TRUE
1 v 11.65 0.36 47 37 922 TRUE
2 i 12.38 0.39 47 37 934 TRUE
2 l 19.31 0.53 44 34 1321 TRUE
2 li 12.42 0.39 47 37 934 TRUE
2 lri 19.46 0.59 56 45 1334 TRUE
2 lrv 21.14 0.64 56 45 1397 TRUE
2 lv 12.11 0.37 47 37 922 TRUE
2 v 12.14 0.36 47 37 922 TRUE
3 i 12.75 0.4 47 37 934 TRUE
3 l 19.16 0.53 44 34 1321 TRUE
3 li 12.49 0.39 47 37 934 TRUE
3 lri 19.5 0.59 56 45 1334 TRUE
3 lrv 21.29 0.64 56 45 1397 TRUE
3 lv 12.11 0.37 47 37 922 TRUE
3 v 12.01 0.37 47 37 922 TRUE
4 i 12.07 0.37 47 37 934 TRUE
4 l 19.82 0.55 44 34 1321 TRUE
4 li 12.12 0.38 47 37 934 TRUE
4 lri 20.84 0.62 56 45 1334 TRUE
4 lrv 21.09 0.64 56 45 1397 TRUE
4 lv 12.44 0.37 47 37 922 TRUE
4 v 12.4 0.38 47 37 922 TRUE
5 i 12.72 0.4 47 37 934 TRUE
5 l 19.02 0.53 44 34 1320 TRUE
5 li 12.8 0.4 47 37 934 TRUE
5 lri 19.25 0.6 56 45 1334 TRUE
5 lrv 22.28 0.67 56 45 1397 TRUE
5 lv 12.04 0.37 47 37 922 TRUE
5 v 11.73 0.36 47 37 922 TRUE

Benjamin J. Keller Appendix E 209

Table E.20: Counts for Admissible Order Comparison with Problem A5.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 4.38 0.28 38 30 480 TRUE
1 l 7.21 0.33 36 29 747 TRUE
1 li 4.36 0.28 38 30 480 TRUE
1 lri 5.11 0.28 36 29 540 TRUE
1 lrv 6.44 0.31 36 29 607 TRUE
1 lv 4.06 0.25 38 30 475 TRUE
1 v 4.06 0.24 38 30 475 TRUE
2 i 4.33 0.26 38 30 480 TRUE
2 l 7.42 0.34 36 29 753 TRUE
2 li 4.35 0.27 38 30 480 TRUE
2 lri 5.06 0.27 36 29 540 TRUE
2 lrv 6.22 0.31 36 29 607 TRUE
2 lv 4.19 0.25 38 30 475 TRUE
2 v 4.18 0.25 38 30 475 TRUE
3 i 4.31 0.28 38 30 480 TRUE
3 l 7.36 0.33 36 29 753 TRUE
3 li 4.33 0.27 38 30 480 TRUE
3 lri 5.04 0.28 36 29 540 TRUE
3 lrv 6.22 0.31 36 29 607 TRUE
3 lv 4.18 0.25 38 30 475 TRUE
3 v 4.19 0.24 38 30 475 TRUE
4 i 4.19 0.26 38 30 480 TRUE
4 l 7.59 0.35 36 29 753 TRUE
4 li 4.21 0.27 38 30 480 TRUE
4 lri 5.21 0.29 36 29 540 TRUE
4 lrv 6.19 0.31 36 29 607 TRUE
4 lv 4.23 0.25 38 30 475 TRUE
4 v 4.21 0.26 38 30 475 TRUE
5 i 4.35 0.28 38 30 479 TRUE
5 l 7.51 0.35 36 29 753 TRUE
5 li 4.34 0.28 38 30 479 TRUE
5 lri 5.89 0.31 36 29 540 TRUE
5 lrv 6.42 0.32 36 29 607 TRUE
5 lv 4.09 0.24 38 30 475 TRUE
5 v 4.07 0.25 38 30 475 TRUE

Benjamin J. Keller Appendix E 210

Table E.21: Counts for Admissible Order Comparison with Problem A51E.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 25.07 0.02 3 0 385 TRUE
1 l 90.05 0.01 15 3 1797 TRUE
1 li 55.57 0.01 17 3 727 TRUE
1 lri 126.02 0.01 19 4 1937 TRUE
1 lrv 59.19 0.02 17 1 930 TRUE
1 lv 133.32 0.01 15 3 1780 TRUE
1 v 141.39 0.01 11 1 1116 TRUE
2 i 23.65 0.01 10 2 382 TRUE
2 l 20.12 0.01 10 2 395 TRUE
2 li 26 0.01 10 2 395 TRUE
2 lri 68.7 0.01 12 3 1369 TRUE
2 lrv 70.18 0.01 12 3 1376 TRUE
2 lv 21.91 0.01 10 2 390 TRUE
2 v 27.26 0.02 11 2 458 TRUE
3 l 18.96 0.01 9 1 425 TRUE
3 li 118.55 0.01 19 4 1879 TRUE
3 lri 20.08 0.01 10 2 444 TRUE
3 lrv 84 0.01 17 4 1634 TRUE
3 lv 20.29 0.01 9 1 411 TRUE
3 v 172.42 0.02 2 0 2501 TRUE
4 i 1026.69 0.01 19 1 3468 TRUE
4 l 40.38 0.01 11 1 702 TRUE
4 li 145.22 0.01 24 4 2082 TRUE
4 lri 48.48 0.01 15 3 596 TRUE
4 lrv 44.94 0.01 15 3 597 TRUE
4 lv 143.51 0.01 24 4 2077 TRUE
5 l 54.56 0.01 16 1 958 TRUE
5 li 103.31 9.14 24 4 1713 FALSE
5 lri 46.13 0.01 16 3 612 TRUE
5 lv 59.07 0.01 16 1 935 TRUE
5 lrv 137.48 0.01 23 4 2130 TRUE

Benjamin J. Keller Appendix E 211

Table E.22: Counts for Admissible Order Comparison with Problem A51H.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 l 36.15 34.99 26 6 1553 FALSE
1 li 37.18 36.73 23 3 1314 FALSE
1 lri 39.2 42.09 26 6 1464 FALSE
1 lrv 41.32 37.77 23 3 1312 FALSE
1 lv 43.22 46.49 26 6 1524 FALSE
2 i 59.14 33.75 23 3 1150 FALSE
2 l 43.79 23.46 23 3 1228 FALSE
2 li 51.81 27.89 23 3 1213 FALSE
2 lri 58.14 61.88 25 5 1964 FALSE
2 lrv 65.81 51.68 26 6 1918 FALSE
2 lv 62.05 34.99 23 3 1187 FALSE
3 i 61.52 1240.03 20 0 1775 FALSE
3 l 39.59 24.48 27 7 1394 FALSE
3 li 47.65 53.82 29 9 1834 FALSE
3 lri 40.3 26.59 27 7 1343 FALSE
3 lrv 47.63 48.55 29 9 1877 FALSE
3 lv 43.5 31.26 27 7 1365 FALSE
4 l 45.08 24.41 23 3 1228 FALSE
4 li 63.69 60.07 24 4 1981 FALSE
4 lri 48.22 28.85 23 3 1189 FALSE
4 lrv 47.86 28.57 23 3 1191 FALSE
4 lv 66.73 62.62 26 6 2009 FALSE
5 i 215.82 764.51 22 2 1692 FALSE
5 l 32.41 24.05 23 3 1084 FALSE
5 li 61.42 64.98 24 4 2012 FALSE
5 lri 33.21 31.51 23 3 1068 FALSE
5 lrv 57.78 55.13 24 4 1797 FALSE
5 lv 42.09 34.41 25 5 1239 FALSE

Benjamin J. Keller Appendix E 212

Table E.23: Counts for Admissible Order Comparison with Problem A6.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 3.07 0.2 31 26 379 TRUE
1 l 2.94 0.13 22 19 357 TRUE
1 li 3.05 0.19 31 26 379 TRUE
1 lri 3.79 0.2 31 26 405 TRUE
1 lrv 3.57 0.21 31 26 410 TRUE
1 lv 2.91 0.18 31 26 372 TRUE
1 v 2.9 0.17 31 26 372 TRUE
2 i 3.01 0.18 31 26 379 TRUE
2 l 2.99 0.14 22 19 357 TRUE
2 li 3 0.19 31 26 379 TRUE
2 lri 3.32 0.19 31 26 405 TRUE
2 lrv 3.44 0.21 31 26 410 TRUE
2 lv 2.98 0.18 31 26 372 TRUE
2 v 3 0.18 31 26 372 TRUE
3 i 3 0.19 31 26 379 TRUE
3 l 2.87 0.13 22 19 357 TRUE
3 li 3.01 0.19 31 26 379 TRUE
3 lri 3.31 0.19 31 26 405 TRUE
3 lrv 3.46 0.2 31 26 410 TRUE
3 lv 3.05 0.18 31 26 372 TRUE
3 v 2.99 0.18 31 26 372 TRUE
4 i 2.94 0.18 31 26 379 TRUE
4 l 2.95 0.13 22 19 357 TRUE
4 li 2.92 0.19 31 26 379 TRUE
4 lri 4.03 0.21 31 26 405 TRUE
4 lrv 3.41 0.21 31 26 410 TRUE
4 lv 3.04 0.18 31 26 372 TRUE
4 v 3.04 0.18 31 26 372 TRUE
5 i 3.04 0.17 31 26 379 TRUE
5 l 2.95 0.14 22 19 357 TRUE
5 li 3.05 0.19 31 26 379 TRUE
5 lri 3.27 0.18 31 26 405 TRUE
5 lrv 3.57 0.21 31 26 410 TRUE
5 lv 2.94 0.18 31 26 372 TRUE
5 v 2.9 0.18 31 26 372 TRUE

Benjamin J. Keller Appendix E 213

Table E.24: Counts for Admissible Order Comparison with Problem AGS.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 3.31 4.09 27 3 315 TRUE
1 l 3.06 2.73 31 2 250 TRUE
1 li 4.17 3.48 31 3 309 TRUE
1 lri 3.45 2.83 32 3 261 TRUE
1 lrv 4.06 3.38 32 3 307 TRUE
1 lv 4.12 3.28 31 2 250 TRUE
1 v 2.81 2.85 27 1 204 TRUE
2 i 1.91 3.04 21 1 195 TRUE
2 l 2.89 2.64 30 2 242 TRUE
2 li 3.86 3.1 32 3 270 TRUE
2 lri 4.21 2.93 33 4 297 TRUE
2 lrv 4.68 3.69 32 3 324 TRUE
2 lv 3.95 2.94 31 4 281 TRUE
2 v 2.19 2.3 17 3 198 TRUE
3 i 2.13 2.59 19 3 158 TRUE
3 l 3.79 3.01 32 3 281 TRUE
3 li 4.37 3.32 32 4 296 TRUE
3 lri 4.1 3.32 33 3 273 TRUE
3 lrv 4.38 3.77 36 5 295 TRUE
3 lv 3.89 3.09 30 2 258 TRUE
3 v 3.45 3.71 26 1 268 TRUE
4 i 1.08 2.68 13 1 133 TRUE
4 l 4.18 3.64 35 5 306 TRUE
4 li 3.54 2.84 29 2 228 TRUE
4 lri 4.59 4.02 36 5 329 TRUE
4 lrv 4.3 3.38 33 3 284 TRUE
4 lv 3.78 3.34 29 2 266 TRUE
4 v 1.96 2.08 12 1 151 TRUE
5 i 1.96 3.39 17 1 216 TRUE
5 l 3.6 2.82 33 4 294 TRUE
5 li 3.33 2.95 31 2 248 TRUE
5 lri 5.16 3.32 35 5 349 TRUE
5 lrv 2.84 2.93 31 3 225 TRUE
5 lv 4.5 3.28 35 5 324 TRUE
5 v 3.47 3.07 29 3 243 TRUE

Benjamin J. Keller Appendix E 214

Table E.25: Counts for Admissible Order Comparison with Problem BT7.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 1.44 0.28 55 25 61 FALSE
1 l 0.31 0.1 10 5 27 TRUE
1 li 1.44 0.28 55 25 61 FALSE
1 lri 2.1 0.25 37 17 128 FALSE
1 lrv 1.43 0.29 55 25 59 FALSE
1 lv 1.84 0.25 31 14 121 FALSE
1 v 1.95 0.25 31 14 121 FALSE
2 i 2.42 0.22 32 16 172 FALSE
2 l 1.15 0.26 38 20 87 FALSE
2 li 2.45 0.21 32 16 172 FALSE
2 lri 1.56 0.28 56 27 71 FALSE
2 lrv 1.32 0.23 42 21 75 FALSE
2 lv 1.4 0.27 48 24 61 FALSE
2 v 1.41 0.27 48 24 61 FALSE
3 i 3.17 0.33 49 26 184 FALSE
3 l 1.27 0.25 52 28 79 FALSE
3 li 3.18 0.33 49 26 184 FALSE
3 lri 1.47 0.3 47 24 67 FALSE
3 lrv 1.63 0.28 56 27 80 FALSE
3 lv 2.28 0.28 51 27 141 FALSE
3 v 2.25 0.26 51 27 141 FALSE
4 i 2.29 0.27 51 27 141 FALSE
4 l 0.31 0.1 10 5 27 TRUE
4 li 2.29 0.27 51 27 141 FALSE
4 lri 1.66 0.29 56 27 81 FALSE
4 lrv 2.46 0.38 43 19 172 FALSE
4 lv 1.14 0.23 42 21 58 FALSE
4 v 1.14 0.23 42 21 58 FALSE
5 i 2.47 0.31 41 21 158 FALSE
5 l 1.27 0.25 52 28 79 FALSE
5 li 2.46 0.31 41 21 158 FALSE
5 lri 1.44 0.28 55 25 61 FALSE
5 lrv 1.35 0.23 42 21 75 FALSE
5 lv 1.54 0.28 55 25 74 FALSE
5 v 1.58 0.31 55 25 74 FALSE

Benjamin J. Keller Appendix E 215

Table E.26: Counts for Admissible Order Comparison with Problem CG5.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 24.25 1.52 553 444 1530 FALSE
1 l 25.19 1.4 400 344 2443 FALSE
1 li 23.42 1.44 553 444 1530 FALSE
1 lri 40.25 2.17 754 556 2786 FALSE
1 lrv 34.63 1.84 746 545 2180 FALSE
1 lv 20.94 1.42 464 403 1726 FALSE
1 v 20.92 1.41 464 403 1726 FALSE
2 i 23.07 1.36 501 427 1919 FALSE
2 l 17.84 1.16 350 305 1932 TRUE
2 li 23.04 1.36 501 427 1919 FALSE
2 lri 30.92 1.76 633 522 2406 FALSE
2 lrv 29.97 1.72 607 495 2290 FALSE
2 lv 21.79 1.37 497 428 1710 FALSE
2 v 21.68 1.37 497 428 1710 FALSE
3 i 25.38 1.57 500 425 1961 FALSE
3 l 16.39 1.12 326 284 1704 TRUE
3 li 23.44 1.45 500 425 1961 FALSE
3 lri 32.72 1.7 657 568 2541 FALSE
3 lrv 37.19 1.93 673 578 2461 FALSE
3 lv 20.67 1.32 460 391 1487 FALSE
3 v 20.32 1.3 460 391 1487 FALSE
4 i 25.83 1.42 572 500 2168 FALSE
4 l 19.35 1.17 353 302 1912 FALSE
4 li 26.11 1.47 572 500 2168 FALSE
4 lri 30.93 1.72 639 528 2272 FALSE
4 lrv 28.55 1.54 634 543 2055 FALSE
4 lv 21.54 1.29 494 417 1654 FALSE
4 v 21.51 1.28 494 417 1654 FALSE
5 i 24.37 1.39 522 446 2000 FALSE
5 l 14.08 0.96 268 234 1385 FALSE
5 li 24.21 1.39 522 446 2000 FALSE
5 lri 39.7 1.84 742 558 3035 FALSE
5 lrv 34.34 1.74 672 564 2563 FALSE
5 lv 28.38 1.5 569 484 2419 FALSE
5 v 28.19 1.5 569 484 2419 FALSE

Benjamin J. Keller Appendix E 216

Table E.27: Counts for Admissible Order Comparison with Problem CGL.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 1.04 0.13 68 65 59 TRUE
1 l 5.31 0.61 296 279 652 TRUE
1 li 5.78 0.64 296 274 687 TRUE
1 lri 5.45 0.61 296 279 652 TRUE
1 lrv 5.75 0.64 296 274 687 TRUE
1 lv 5.41 0.61 296 279 652 TRUE
1 v 0.65 1.59 26 23 168 TRUE
2 i 0.56 0.27 27 23 76 TRUE
2 l 5.12 0.57 280 264 630 TRUE
2 li 5.77 0.62 296 276 688 TRUE
2 lri 5.62 0.61 296 279 671 TRUE
2 lrv 5.8 0.62 296 275 674 TRUE
2 lv 5.76 0.62 296 277 677 TRUE
2 v 0.27 0.19 19 18 32 TRUE
3 i 0.14 0.37 11 11 69 TRUE
3 l 4.88 0.53 280 264 632 TRUE
3 li 5.35 0.58 296 276 685 TRUE
3 lri 5.15 0.56 296 279 668 TRUE
3 lrv 5.52 0.58 296 276 673 TRUE
3 lv 5.1 0.57 296 279 663 TRUE
3 v 0.19 0.16 17 16 31 TRUE
4 i 0.34 0.16 19 17 33 TRUE
4 l 5.58 0.6 296 279 666 TRUE
4 li 6.25 0.66 312 291 723 TRUE
4 lri 5.84 0.62 296 277 665 TRUE
4 lrv 5.88 0.62 296 276 673 TRUE
4 lv 5.84 0.61 296 278 662 TRUE
4 v 0.39 0.2 19 17 41 TRUE
5 i 0.29 0.19 20 18 43 TRUE
5 l 5.58 0.6 312 292 695 TRUE
5 li 5.39 0.6 296 276 686 TRUE
5 lri 5.67 0.6 312 293 710 TRUE
5 lrv 6.1 0.64 312 290 728 TRUE
5 lv 5.65 0.59 312 293 711 TRUE
5 v 0.49 0.16 32 28 48 TRUE

Benjamin J. Keller Appendix E 217

Table E.28: Counts for Admissible Order Comparison with Problem CGL1.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 1.04 0.13 68 65 59 TRUE
1 l 5.36 0.61 296 279 652 TRUE
1 li 5.8 0.65 296 274 687 TRUE
1 lri 5.48 0.62 296 279 652 TRUE
1 lrv 5.79 0.65 296 274 687 TRUE
1 lv 5.45 0.61 296 279 652 TRUE
1 v 0.63 1.57 26 23 168 TRUE
2 i 0.58 0.26 27 23 77 TRUE
2 l 5.15 0.58 280 264 630 TRUE
2 li 5.73 0.62 296 276 688 TRUE
2 lri 5.62 0.62 296 279 671 TRUE
2 lrv 5.8 0.61 296 275 674 TRUE
2 lv 5.79 0.62 296 277 677 TRUE
2 v 0.27 0.19 19 18 32 TRUE
3 i 0.15 0.37 11 11 69 TRUE
3 l 4.92 0.53 280 264 632 TRUE
3 li 5.33 0.58 296 276 685 TRUE
3 lri 5.15 0.55 296 279 668 TRUE
3 lrv 5.42 0.57 296 276 673 TRUE
3 lv 5.12 0.57 296 279 663 TRUE
3 v 0.2 0.15 17 16 31 TRUE
4 i 0.34 0.16 19 17 33 TRUE
4 l 5.57 0.61 296 279 666 TRUE
4 li 6.27 0.65 312 291 723 TRUE
4 lri 5.91 0.61 296 277 665 TRUE
4 lrv 5.87 0.62 296 276 673 TRUE
4 lv 5.87 0.6 296 278 662 TRUE
4 v 0.39 0.2 19 17 41 TRUE
5 i 0.29 0.19 20 18 43 TRUE
5 l 5.9 0.62 312 292 695 TRUE
5 li 5.38 0.57 296 276 686 TRUE
5 lri 5.72 0.6 312 293 710 TRUE
5 lrv 5.87 0.6 312 290 728 TRUE
5 lv 5.76 0.57 312 293 711 TRUE
5 v 0.55 0.18 32 28 48 TRUE

Benjamin J. Keller Appendix E 218

Table E.29: Counts for Admissible Order Comparison with Problem DCYC.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 6.91 0.59 108 71 520 TRUE
1 l 7.57 0.7 135 69 599 TRUE
1 li 12.78 1.03 170 93 879 TRUE
1 lri 11.13 0.96 162 88 719 TRUE
1 lrv 13.57 1.02 192 109 849 TRUE
1 lv 9.28 0.76 136 71 669 TRUE
1 v 9.12 0.83 135 74 698 TRUE
2 i 6.7 0.79 118 72 504 TRUE
2 l 13.07 1.03 173 104 867 TRUE
2 li 9.36 0.81 150 89 667 TRUE
2 lri 11.15 0.98 167 95 838 TRUE
2 lrv 10.64 0.98 155 83 737 TRUE
2 lv 10.87 1 159 92 849 TRUE
2 v 6.45 0.53 101 61 488 TRUE
3 i 9.81 0.91 154 95 741 TRUE
3 l 8.12 0.74 144 90 746 TRUE
3 li 8.84 0.87 148 80 673 TRUE
3 lri 12.22 1.02 177 107 848 TRUE
3 lrv 9.43 0.9 162 97 685 TRUE
3 lv 12.59 0.93 184 118 1031 TRUE
3 v 6.81 0.59 119 80 481 TRUE
4 i 6.82 0.59 95 55 563 TRUE
4 l 8.3 0.77 146 88 697 TRUE
4 li 10.9 0.88 164 87 714 TRUE
4 lri 8.04 0.81 136 77 602 TRUE
4 lrv 9.67 0.85 153 83 689 TRUE
4 lv 11.26 0.89 178 107 781 TRUE
4 v 8.93 0.78 130 81 641 TRUE
5 i 9.36 0.73 116 75 745 TRUE
5 l 8.99 0.71 146 79 700 TRUE
5 li 12.03 0.91 168 87 752 TRUE
5 lri 8.84 0.83 150 85 640 TRUE
5 lrv 14.27 1.08 188 116 1004 TRUE
5 lv 9.47 0.86 147 77 678 TRUE
5 v 13.06 0.97 169 97 954 TRUE

Benjamin J. Keller Appendix E 219

Table E.30: Counts for Admissible Order Comparison with Problem ELP.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 3.52 0.24 99 85 142 TRUE
1 l 1.48 0.11 59 52 84 TRUE
1 li 3.28 0.24 99 85 142 TRUE
1 lri 1.47 0.11 59 52 87 TRUE
1 lrv 2.79 0.22 93 79 124 TRUE
1 lv 1.48 0.1 59 52 84 TRUE
1 v 1.47 0.12 59 52 84 TRUE
2 i 3.1 0.23 99 85 138 TRUE
2 l 1.49 0.11 59 52 84 TRUE
2 li 3.17 0.23 99 85 138 TRUE
2 lri 1.47 0.12 59 52 87 TRUE
2 lrv 2.8 0.21 93 79 121 TRUE
2 lv 1.48 0.11 59 52 84 TRUE
2 v 1.47 0.11 59 52 84 TRUE
3 i 1.43 0.12 59 52 84 TRUE
3 l 2.72 0.2 93 79 111 TRUE
3 li 1.44 0.11 59 52 84 TRUE
3 lri 3.68 0.22 116 102 166 TRUE
3 lrv 1.44 0.12 59 52 87 TRUE
3 lv 2.74 0.21 93 79 117 TRUE
3 v 2.76 0.2 93 79 117 TRUE
4 i 3.1 0.23 99 85 136 TRUE
4 l 1.49 0.11 59 52 84 TRUE
4 li 3.07 0.23 99 85 136 TRUE
4 lri 1.49 0.12 59 52 87 TRUE
4 lrv 2.79 0.22 93 79 119 TRUE
4 lv 1.48 0.11 59 52 84 TRUE
4 v 1.47 0.11 59 52 84 TRUE
5 i 1.45 0.11 59 52 84 TRUE
5 l 2.74 0.2 93 79 111 TRUE
5 li 1.55 0.12 59 52 84 TRUE
5 lri 3.72 0.22 116 102 167 TRUE
5 lrv 1.48 0.12 59 52 87 TRUE
5 lv 2.77 0.21 93 79 119 TRUE
5 v 2.76 0.21 93 79 119 TRUE

Benjamin J. Keller Appendix E 220

Table E.31: Counts for Admissible Order Comparison with Problem HWEB.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 2095.89 126.73 557 457 31839 FALSE
1 l 0.55 0.07 33 26 83 TRUE
1 li 2216.38 341.73 557 457 39582 FALSE
1 lri 1754.78 14.18 587 487 26742 FALSE
1 lrv 41132.8 354.12 562 462 545810 FALSE
1 lv 4996.49 14.32 587 487 57256 FALSE
1 v 0.27 0.05 17 13 38 TRUE
2 i 0.64 0.05 28 20 85 TRUE
2 l 1382.26 10.73 575 475 21351 FALSE
2 li 3618.24 9.99 567 467 44409 FALSE
2 lri 1451.14 10.69 575 475 21351 FALSE
2 lrv 19362.2 10.19 573 473 268246 FALSE
2 lv 1450.76 10.7 575 475 21351 FALSE
2 v 0.31 0.04 19 13 41 TRUE
3 i 0.55 0.05 29 22 78 TRUE
3 l 1299.1 10.44 574 474 21258 FALSE
3 lri 1299.08 9.88 574 474 21258 FALSE
3 lv 1399.07 10.43 574 474 21258 FALSE
3 v 0.32 0.04 19 13 41 TRUE
4 i 0.34 0.05 20 15 51 TRUE
4 lri 1309.95 9.96 570 470 20895 FALSE
4 lrv 1016.29 9.41 564 464 16440
4 v 0.29 0.04 19 13 41 TRUE
5 i 0.34 0.05 20 15 51 TRUE
5 lri 1291.5 9.66 570 470 20895 FALSE
5 lrv 3311.5 9.58 564 464 40210 FALSE
5 v 0.29 0.04 19 13 41 TRUE

Benjamin J. Keller Appendix E 221

Table E.32: Counts for Admissible Order Comparison with Problem HWRES.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 0.1 0.02 12 10 16 TRUE
1 l 0.09 0.02 12 10 16 TRUE
1 li 0.09 0.03 12 10 16 TRUE
1 lri 0.1 0.02 12 10 16 TRUE
1 lrv 0.09 0.02 12 10 16 TRUE
1 lv 0.1 0.02 12 10 16 TRUE
1 v 0.1 0.02 12 10 16 TRUE
2 i 0.1 0.02 12 10 16 TRUE
2 l 0.1 0.02 12 10 16 TRUE
2 li 0.1 0.02 12 10 16 TRUE
2 lri 0.1 0.02 12 10 16 TRUE
2 lrv 0.1 0.02 12 10 16 TRUE
2 lv 0.1 0.02 12 10 16 TRUE
2 v 0.11 0.02 12 10 16 TRUE
3 i 0.1 0.02 12 10 16 TRUE
3 l 0.09 0.02 12 10 16 TRUE
3 li 0.1 0.02 12 10 16 TRUE
3 lri 0.1 0.02 12 10 16 TRUE
3 lrv 0.1 0.02 12 10 16 TRUE
3 lv 0.09 0.02 12 10 16 TRUE
3 v 0.1 0.03 12 10 16 TRUE
4 i 0.1 0.02 12 10 16 TRUE
4 l 0.1 0.02 12 10 16 TRUE
4 li 0.09 0.03 12 10 16 TRUE
4 lri 0.11 0.02 12 10 16 TRUE
4 lrv 0.09 0.02 12 10 16 TRUE
4 lv 0.1 0.02 12 10 16 TRUE
4 v 0.1 0.02 12 10 16 TRUE
5 i 0.11 0.02 12 10 16 TRUE
5 l 0.09 0.02 12 10 16 TRUE
5 li 0.1 0.02 12 10 16 TRUE
5 lri 0.09 0.02 12 10 16 TRUE
5 lrv 0.09 0.02 12 10 16 TRUE
5 lv 0.1 0.02 12 10 16 TRUE
5 v 0.1 0.02 12 10 16 TRUE

Benjamin J. Keller Appendix E 222

Table E.33: Counts for Admissible Order Comparison with Problem ICYC.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 2.07 0.26 40 23 62 TRUE
1 l 0.93 0.17 29 20 46 TRUE
1 li 2.23 0.28 48 33 124 TRUE
1 lri 1.02 0.17 29 20 53 TRUE
1 lrv 2.22 0.29 48 33 124 TRUE
1 lv 1.01 0.17 29 20 52 TRUE
1 v 0.8 0.17 25 17 38 TRUE
2 i 1.57 0.23 40 27 58 TRUE
2 l 2.18 0.3 48 33 125 TRUE
2 li 1.73 0.24 40 27 73 TRUE
2 lri 2.59 0.3 54 37 135 TRUE
2 lrv 1.86 0.21 40 25 80 TRUE
2 lv 1.7 0.24 40 27 83 TRUE
2 v 1.69 0.23 40 27 76 TRUE
3 i 1.63 0.22 40 27 58 TRUE
3 l 2.43 0.29 54 38 139 TRUE
3 li 1.68 0.23 40 27 71 TRUE
3 lri 2.48 0.28 54 38 139 TRUE
3 lrv 1.68 0.23 40 27 71 TRUE
3 lv 2.5 0.3 54 38 137 TRUE
4 l 2.39 0.29 54 38 139 TRUE
4 li 2.48 0.3 54 38 137 TRUE
4 lri 1.88 0.25 40 27 71 TRUE
4 lrv 1.67 0.24 40 27 71 TRUE
4 lv 2.46 0.3 54 38 137 TRUE
5 l 1.59 0.23 39 26 75 TRUE
5 li 2.3 0.27 47 30 106 TRUE
5 lri 1.59 0.23 39 26 68 TRUE
5 lrv 2.56 0.29 54 37 137 TRUE
5 lv 1.59 0.23 39 26 66 TRUE
5 v 1.54 0.23 39 26 55 TRUE

Benjamin J. Keller Appendix E 223

Table E.34: Counts for Admissible Order Comparison with Problem M1.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 1338.13 5.37 29 16 3373 FALSE
1 l 2.03 0.31 12 6 110 TRUE
1 li 1341.35 5.34 29 16 3373 FALSE
1 lri 8.4 2.06 40 16 349 FALSE
1 lrv 26.39 3.89 23 12 496 FALSE
1 lv 183.05 1.99 29 16 1491 FALSE
1 v 182.6 1.99 29 16 1491 FALSE
2 i 158.04 5.1 78 40 1289 FALSE
2 l 0.57 0.18 6 3 30 TRUE
2 li 158.51 5.07 78 40 1289 FALSE
2 lri 25.4 2.87 47 24 556 FALSE
2 lrv 25.42 4.23 57 27 588 FALSE
2 lv 113.74 2.83 62 34 1189 FALSE
2 v 112.51 2.83 62 34 1189 FALSE
3 i 236.33 4.74 71 39 1931 FALSE
3 l 0.44 0.18 6 3 28 TRUE
3 li 236.68 4.75 71 39 1931 FALSE
3 lri 49.88 3.57 68 37 969 FALSE
3 lrv 50.73 4.13 87 40 945 FALSE
3 lv 41.95 3.52 53 23 695 FALSE
3 v 41.78 3.51 53 23 695 FALSE
4 i 98.1 3.32 62 34 1052 FALSE
4 l 0 0.1 0 0 0 TRUE
4 li 98.35 3.33 62 34 1052 FALSE
4 lri 30.5 4.97 53 25 739 FALSE
4 lrv 28.34 5.76 49 24 623 FALSE
4 lv 72.45 2.8 70 37 1071 FALSE
4 v 73.3 2.91 70 37 1071 FALSE
5 i 81.34 3.46 87 47 1048 FALSE
5 l 0.56 0.17 6 3 32 TRUE
5 li 81.79 3.48 87 47 1048 FALSE
5 lri 40.49 6.83 56 26 866 FALSE
5 lrv 21.93 2.71 53 25 517 FALSE
5 lv 86.61 2.88 67 32 1095 FALSE
5 v 86.16 2.87 67 32 1095 FALSE

Benjamin J. Keller Appendix E 224

Table E.35: Counts for Admissible Order Comparison with Problem MBFS.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 2.14 0.39 72 34 64 FALSE
1 l 0.35 0.14 10 5 29 TRUE
1 li 2.13 0.39 72 34 64 FALSE
1 lri 2.55 0.5 40 16 133 FALSE
1 lrv 2.46 0.55 66 29 105 FALSE
1 lv 7.46 0.43 29 15 328 FALSE
1 v 6.87 0.41 29 15 328 FALSE
2 i 7.12 0.54 52 27 331 FALSE
2 l 1.3 0.34 38 20 68 FALSE
2 li 7.09 0.54 52 27 331 FALSE
2 lri 3.48 0.66 65 27 134 FALSE
2 lrv 2.91 0.49 45 22 152 FALSE
2 lv 2.63 0.46 58 26 95 FALSE
2 v 2.65 0.46 58 26 95 FALSE
3 i 1.96 0.3 44 22 113 FALSE
3 l 1.17 0.28 21 13 86 TRUE
3 li 1.97 0.29 44 22 113 FALSE
3 lri 3.13 0.47 34 15 177 FALSE
3 lrv 3.19 0.58 72 36 136 FALSE
3 lv 2.65 0.42 42 19 143 FALSE
3 v 2.64 0.41 42 19 143 FALSE
4 i 2.28 0.43 43 20 93 FALSE
4 l 2.47 0.42 52 28 156 FALSE
4 li 2.29 0.43 43 20 93 FALSE
4 lri 2.47 0.43 45 22 130 FALSE
4 lrv 2.45 0.53 57 26 119 FALSE
4 lv 4.94 0.61 58 31 251 FALSE
4 v 4.93 0.62 58 31 251 FALSE
5 i 2.74 0.44 42 19 140 FALSE
5 l 3.12 0.58 32 18 226 FALSE
5 li 2.74 0.44 42 19 140 FALSE
5 lri 3.23 0.58 72 36 145 FALSE
5 lrv 3.41 0.55 56 27 166 FALSE
5 lv 2.56 0.51 57 26 107 FALSE
5 v 2.57 0.5 57 26 107 FALSE

Benjamin J. Keller Appendix E 225

Table E.36: Counts for Admissible Order Comparison with Problem MDFS.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 1.24 0.22 33 14 52 FALSE
1 l 0.74 0.17 30 6 46 FALSE
1 li 1.24 0.22 33 14 52 FALSE
1 lri 0.74 0.17 30 6 46 FALSE
1 lrv 1.19 0.21 33 14 50 FALSE
1 lv 0.73 0.16 30 6 46 FALSE
1 v 0.73 0.16 30 6 46 FALSE
2 i 1.87 0.36 68 30 71 FALSE
2 l 0.55 0.19 24 10 31 FALSE
2 li 1.87 0.37 68 30 71 FALSE
2 lri 2.55 0.43 62 25 110 FALSE
2 lrv 1.64 0.38 55 26 72 FALSE
2 lv 2.17 0.38 59 28 112 FALSE
2 v 2.14 0.37 59 28 112 FALSE
3 i 2.24 0.42 73 34 99 FALSE
3 l 0.91 0.22 38 11 57 FALSE
3 li 2.26 0.42 73 34 99 FALSE
3 lri 1.83 0.44 51 24 83 FALSE
3 lrv 2.64 0.43 62 26 133 FALSE
3 lv 1.69 0.36 65 27 66 FALSE
3 v 1.68 0.36 65 27 66 FALSE
4 i 1.55 0.32 61 30 62 FALSE
4 l 1.5 0.36 37 18 88 FALSE
4 li 1.73 0.35 61 30 62 FALSE
4 lri 2.17 0.39 64 27 86 FALSE
4 lrv 1.82 0.44 51 24 79 FALSE
4 lv 2.34 0.4 73 38 109 FALSE
4 v 2.41 0.42 73 38 109 FALSE
5 i 2.49 0.4 66 30 123 FALSE
5 l 0.59 0.2 18 7 38 FALSE
5 li 2.47 0.4 66 30 123 FALSE
5 lri 1.75 0.32 46 24 76 FALSE
5 lrv 1.71 0.37 62 26 62 FALSE
5 lv 2.68 0.41 64 32 133 FALSE
5 v 2.95 0.43 64 32 133 FALSE

Benjamin J. Keller Appendix E 226

Table E.37: Counts for Admissible Order Comparison with Problem MM.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 1.72 0.67 44 22 63 TRUE
1 l 1.46 0.72 36 18 72 TRUE
1 li 1.73 0.68 44 22 63 TRUE
1 lri 1.26 0.58 28 14 65 TRUE
1 lrv 1.4 0.63 28 14 69 TRUE
1 lv 1.66 0.68 44 22 59 TRUE
1 v 1.66 0.69 44 22 59 TRUE
2 i 1.1 0.53 42 15 20 FALSE
2 l 0.42 0.39 18 5 7 TRUE
2 li 1.09 0.53 42 15 20 FALSE
2 lri 0.61 0.4 21 8 16 TRUE
2 lrv 1.16 0.58 44 22 31 TRUE
2 lv 1.61 0.57 49 23 50 FALSE
2 v 1.62 0.57 49 23 50 FALSE
3 i 2.78 0.84 82 32 61 FALSE
3 l 0.22 0.26 10 1 1 TRUE
3 li 2.76 0.82 82 32 61 FALSE
3 lri 0.17 0.21 9 2 4 TRUE
3 lrv 0.21 0.23 10 3 5 TRUE
3 lv 2.09 0.76 59 25 61 FALSE
3 v 2.07 0.76 59 25 61 FALSE
4 i 1.33 0.55 38 20 54 TRUE
4 l 0.2 0.25 9 1 1 TRUE
4 li 1.32 0.54 38 20 54 TRUE
4 lri 1.85 0.8 51 26 67 TRUE
4 lrv 1.79 0.69 58 28 52 FALSE
4 lv 0.83 0.4 30 15 31 TRUE
4 v 0.82 0.4 30 15 31 TRUE
5 i 0.13 0.19 8 1 1 TRUE
5 l 2.63 0.89 62 27 113 FALSE
5 li 0.13 0.18 8 1 1 TRUE
5 lri 4.27 1.16 92 40 143 FALSE
5 lrv 0.2 0.23 11 2 3 TRUE
5 lv 3.52 1.01 79 32 124 FALSE
5 v 3.6 1.05 79 32 124 FALSE

Benjamin J. Keller Appendix E 227

Table E.38: Counts for Admissible Order Comparison with Problem MS.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 3.99 0.91 60 36 165 TRUE
1 l 4.63 1.18 60 36 254 TRUE
1 li 4.01 0.9 60 36 165 TRUE
1 lri 5.06 1.23 60 36 254 TRUE
1 lrv 4.65 1.23 60 36 236 TRUE
1 lv 3.92 0.89 60 36 158 TRUE
1 v 3.9 0.91 60 36 158 TRUE
2 i 1.02 0.52 41 16 16 FALSE
2 l 0.44 0.4 18 5 7 TRUE
2 li 1.04 0.51 41 16 16 FALSE
2 lri 1.78 0.62 46 24 57 FALSE
2 lrv 1.89 0.67 46 22 58 TRUE
2 lv 0.91 0.43 26 12 29 TRUE
2 v 0.9 0.44 26 12 29 TRUE
3 i 2.5 0.77 78 31 55 FALSE
3 l 0.3 0.26 13 3 3 TRUE
3 li 2.37 0.73 78 31 55 FALSE
3 lri 0.22 0.22 11 3 5 TRUE
3 lrv 0.36 0.28 16 6 10 TRUE
3 lv 1.27 0.6 46 19 34 FALSE
3 v 1.27 0.6 46 19 34 FALSE
4 i 3.07 0.7 48 28 138 TRUE
4 l 0.19 0.23 9 1 1 TRUE
4 li 3.08 0.7 48 28 138 TRUE
4 lri 2.73 0.73 50 26 113 TRUE
4 lrv 2.33 0.71 67 37 82 FALSE
4 lv 0.61 0.4 24 10 22 TRUE
4 v 0.65 0.4 24 10 22 TRUE
5 i 0.13 0.2 8 1 1 TRUE
5 l 4.58 1.34 72 34 230 FALSE
5 li 0.14 0.18 8 1 1 TRUE
5 lri 4.03 1.09 90 38 117 FALSE
5 lrv 0.2 0.24 11 2 3 TRUE
5 lv 3.31 0.88 83 35 95 FALSE
5 v 3.33 0.88 83 35 95 FALSE

Benjamin J. Keller Appendix E 228

Table E.39: Counts for Admissible Order Comparison with Problem MT1.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 21.34 0.79 28 15 575 FALSE
1 l 2.22 0.5 69 36 107 FALSE
1 li 21.44 0.8 28 15 575 FALSE
1 lri 2.49 0.52 69 33 96 FALSE
1 lrv 8.39 1.13 33 16 348 FALSE
1 lv 2.58 0.46 69 33 86 FALSE
1 v 2.6 0.44 69 33 86 FALSE
2 i 3.77 0.49 47 26 122 FALSE
2 l 2.79 0.73 47 25 184 FALSE
2 li 3.81 0.48 47 26 122 FALSE
2 lri 4.06 0.88 44 20 188 FALSE
2 lrv 3.3 0.63 38 19 168 FALSE
2 lv 3.82 0.6 62 32 123 FALSE
2 v 3.8 0.59 62 32 123 FALSE
3 i 3.02 0.47 62 30 98 FALSE
3 l 4.8 0.51 36 17 249 FALSE
3 li 2.98 0.44 62 30 98 FALSE
3 lri 3.37 0.74 42 19 151 FALSE
3 lrv 2.72 0.52 62 30 119 FALSE
3 lv 15.84 0.75 46 24 436 FALSE
3 v 15.79 0.75 46 24 436 FALSE
4 i 12.17 0.83 45 23 415 FALSE
4 l 2.04 0.44 39 21 117 FALSE
4 li 12.22 0.82 45 23 415 FALSE
4 lri 3.7 0.74 62 32 175 FALSE
4 lrv 5.61 1.15 37 17 267 FALSE
4 lv 1.72 0.28 47 24 58 FALSE
4 v 1.7 0.28 47 24 58 FALSE
5 i 21.18 0.82 51 27 602 FALSE
5 l 2.11 0.44 47 26 114 FALSE
5 li 21.33 0.86 51 27 602 FALSE
5 lri 3.52 0.95 56 25 167 FALSE
5 lrv 4.15 0.76 42 21 191 FALSE
5 lv 3.07 0.44 62 30 104 FALSE
5 v 3.06 0.44 62 30 104 FALSE

Benjamin J. Keller Appendix E 229

Table E.40: Counts for Admissible Order Comparison with Problem MT2.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 100.98 1.29 29 16 1186 FALSE
1 l 3.46 0.78 69 36 183 FALSE
1 li 101.2 1.28 29 16 1186 FALSE
1 lri 4.14 0.84 69 33 180 FALSE
1 lrv 9.63 0.92 23 12 297 FALSE
1 lv 4.52 0.64 69 33 150 FALSE
1 v 4.53 0.64 69 33 150 FALSE
2 i 6.09 0.67 47 26 161 FALSE
2 l 4.06 0.95 31 18 233 FALSE
2 li 6.11 0.69 47 26 161 FALSE
2 lri 10.65 1.89 33 14 359 FALSE
2 lrv 9.36 2.05 37 17 396 FALSE
2 lv 7.57 0.84 62 32 210 FALSE
2 v 7.5 0.85 62 32 210 FALSE
3 i 4.54 0.65 62 30 140 FALSE
3 l 0 0.06 0 0 0 TRUE
3 li 4.38 0.59 62 30 140 FALSE
3 lri 7.77 1.81 33 14 320 FALSE
3 lrv 3.88 0.72 62 30 169 FALSE
3 lv 42.5 1.17 37 18 704 FALSE
3 v 43.01 1.18 37 18 704 FALSE
4 i 25.78 1.68 42 19 470 FALSE
4 l 2.51 0.52 39 21 131 FALSE
4 li 23.72 1.54 42 19 470 FALSE
4 lri 7.18 1.17 62 32 300 FALSE
4 lrv 9.42 2.15 33 14 344 FALSE
4 lv 3.62 0.44 47 24 112 FALSE
4 v 3.59 0.44 47 24 112 FALSE
5 i 49.89 1.14 52 27 879 FALSE
5 l 2.89 0.54 47 26 146 FALSE
5 li 49.95 1.13 52 27 879 FALSE
5 lri 4.83 1.57 33 14 208 FALSE
5 lrv 12.17 1.81 35 16 397 FALSE
5 lv 3.54 0.44 47 24 112 FALSE
5 v 3.53 0.43 47 24 112 FALSE

Benjamin J. Keller Appendix E 230

Table E.41: Counts for Admissible Order Comparison with Problem MT3.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 67.9 1.19 29 16 1055 FALSE
1 l 0.53 0.21 18 9 37 TRUE
1 li 68.15 1.2 29 16 1055 FALSE
1 lri 5.05 0.62 69 36 221 FALSE
1 lrv 11.4 1.6 33 16 387 FALSE
1 lv 5.53 0.68 69 36 232 FALSE
1 v 5.47 0.68 69 36 232 FALSE
2 i 4.1 0.7 70 36 184 FALSE
2 l 0.33 0.11 6 3 20 TRUE
2 li 4.09 0.69 70 36 184 FALSE
2 lri 6.68 1.28 44 20 268 FALSE
2 lrv 7.41 1.58 65 34 323 FALSE
2 lv 10.73 0.97 69 38 350 FALSE
2 v 10.81 0.98 69 38 350 FALSE
3 i 14.88 0.98 64 35 364 FALSE
3 l 0.19 0.09 6 3 12 TRUE
3 li 14.76 0.97 64 35 364 FALSE
3 lri 6.47 1.3 64 32 249 FALSE
3 lrv 3.86 0.65 55 29 179 FALSE
3 lv 12.63 0.84 61 34 336 FALSE
3 v 12.61 0.84 61 34 336 FALSE
4 i 8.5 0.93 61 32 292 FALSE
4 l 0.39 0.17 12 6 24 TRUE
4 li 8.6 1 61 32 292 FALSE
4 lri 6.42 1.11 65 31 276 FALSE
4 lrv 8.44 1.66 45 22 351 FALSE
4 lv 6.25 0.78 73 40 270 FALSE
4 v 6.19 0.77 73 40 270 FALSE
5 i 50.72 1.27 64 35 746 FALSE
5 l 0.27 0.1 6 3 19 TRUE
5 li 51.3 1.3 64 35 746 FALSE
5 lri 7.06 1.33 55 26 293 FALSE
5 lrv 8.36 1.42 64 34 331 FALSE
5 lv 15.13 1.01 66 35 369 FALSE
5 v 15.22 1.01 66 35 369 FALSE

Benjamin J. Keller Appendix E 231

Table E.42: Counts for Admissible Order Comparison with Problem MT4.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 2.05 0.32 38 15 91 FALSE
1 l 2.02 0.48 56 21 114 FALSE
1 li 1.93 0.3 38 15 91 FALSE
1 lri 2.32 0.44 62 23 107 FALSE
1 lrv 1.82 0.39 40 15 89 FALSE
1 lv 2.32 0.41 57 20 91 FALSE
1 v 2.33 0.41 57 20 91 FALSE
2 i 2.86 0.45 66 28 146 FALSE
2 l 1.69 0.45 44 17 100 FALSE
2 li 2.84 0.45 66 28 146 FALSE
2 lri 1.54 0.34 50 17 39 FALSE
2 lrv 1.98 0.4 48 20 91 FALSE
2 lv 2.53 0.4 46 18 128 FALSE
2 v 2.52 0.41 46 18 128 FALSE
3 i 2.46 0.36 48 23 114 FALSE
3 l 2.01 0.52 63 23 94 FALSE
3 li 2.17 0.33 48 23 114 FALSE
3 lri 1.87 0.53 50 18 82 FALSE
3 lrv 2.77 0.41 37 17 158 FALSE
3 lv 2.33 0.48 69 27 74 FALSE
3 v 2.34 0.48 69 27 74 FALSE
4 i 2.15 0.37 57 28 111 FALSE
4 l 0.63 0.17 16 7 42 FALSE
4 li 2.15 0.37 57 28 111 FALSE
4 lri 2.22 0.48 56 23 82 FALSE
4 lrv 1.25 0.3 48 15 35 FALSE
4 lv 3.46 0.46 54 24 159 FALSE
4 v 3.14 0.42 54 24 159 FALSE
5 i 1.84 0.34 49 22 75 FALSE
5 l 1.16 0.29 25 12 86 FALSE
5 li 1.84 0.34 49 22 75 FALSE
5 lri 2.97 0.48 49 21 148 FALSE
5 lrv 2.15 0.36 47 21 92 FALSE
5 lv 2.54 0.46 64 24 91 FALSE
5 v 2.56 0.45 64 24 91 FALSE

Benjamin J. Keller Appendix E 232

Table E.43: Counts for Admissible Order Comparison with Problem MTB.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 4.02 0.91 60 36 165 TRUE
1 l 4.63 1.18 60 36 254 TRUE
1 li 4 0.91 60 36 165 TRUE
1 lri 5.03 1.23 60 36 254 TRUE
1 lrv 4.68 1.26 60 36 236 TRUE
1 lv 3.91 0.91 60 36 158 TRUE
1 v 3.91 0.9 60 36 158 TRUE
2 i 1.04 0.52 41 16 16 FALSE
2 l 0.44 0.4 18 5 7 TRUE
2 li 1.12 0.54 41 16 16 FALSE
2 lri 1.79 0.64 46 24 57 FALSE
2 lrv 1.73 0.65 46 22 58 TRUE
2 lv 0.91 0.43 26 12 29 TRUE
2 v 0.9 0.43 26 12 29 TRUE
3 i 2.36 0.73 78 31 55 FALSE
3 l 0.29 0.27 13 3 3 TRUE
3 li 2.36 0.73 78 31 55 FALSE
3 lri 0.21 0.22 11 3 5 TRUE
3 lrv 0.37 0.27 16 6 10 TRUE
3 lv 1.27 0.61 46 19 34 FALSE
3 v 1.37 0.67 46 19 34 FALSE
4 i 3.28 0.73 48 28 138 TRUE
4 l 0.18 0.24 9 1 1 TRUE
4 li 3.12 0.7 48 28 138 TRUE
4 lri 2.99 0.75 50 26 113 TRUE
4 lrv 2.33 0.71 67 37 82 FALSE
4 lv 0.6 0.39 24 10 22 TRUE
4 v 0.61 0.39 24 10 22 TRUE
5 i 0.13 0.19 8 1 1 TRUE
5 l 4.57 1.33 72 34 230 FALSE
5 li 0.14 0.18 8 1 1 TRUE
5 lri 4.49 1.16 90 38 117 FALSE
5 lrv 0.2 0.23 11 2 3 TRUE
5 lv 3.32 0.89 83 35 95 FALSE
5 v 3.31 0.89 83 35 95 FALSE

Benjamin J. Keller Appendix E 233

Table E.44: Counts for Admissible Order Comparison with Problem MTRI.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 161.53 1.78 29 16 1454 FALSE
1 l 0.68 0.22 18 9 45 TRUE
1 li 161.55 1.77 29 16 1454 FALSE
1 lri 7.34 0.76 69 36 279 FALSE
1 lrv 10.26 1.23 23 12 313 FALSE
1 lv 6.28 0.81 69 36 258 FALSE
1 v 6.24 0.82 69 36 258 FALSE
2 i 43.76 1.46 55 27 626 FALSE
2 l 0.44 0.16 12 6 28 TRUE
2 li 43.78 1.47 55 27 626 FALSE
2 lri 13.42 1.92 69 33 380 FALSE
2 lrv 15.94 2.54 37 17 493 FALSE
2 lv 7.01 0.96 71 37 266 FALSE
2 v 6.96 0.95 71 37 266 FALSE
3 i 26.45 1.49 54 28 638 FALSE
3 l 0.26 0.15 10 5 17 TRUE
3 li 26.45 1.47 54 28 638 FALSE
3 lri 14.39 1.45 55 29 377 FALSE
3 lrv 9.2 1.54 64 31 332 FALSE
3 lv 9.22 1.26 40 16 285 FALSE
3 v 9.16 1.24 40 16 285 FALSE
4 i 35.57 1.21 60 33 585 FALSE
4 l 0.23 0.11 6 3 15 TRUE
4 li 35.69 1.24 60 33 585 FALSE
4 lri 8.79 2.03 67 32 349 FALSE
4 lrv 6.18 1.51 62 29 233 FALSE
4 lv 20.18 1.5 56 28 495 FALSE
4 v 20.16 1.51 56 28 495 FALSE
5 i 15.5 1.23 76 41 362 FALSE
5 l 0.33 0.16 10 5 21 TRUE
5 li 15.66 1.27 76 41 362 FALSE
5 lri 11.84 2 41 21 388 FALSE
5 lrv 13.17 1.13 39 21 345 FALSE
5 lv 6.78 1.1 59 31 245 FALSE
5 v 6.76 1.1 59 31 245 FALSE

Benjamin J. Keller Appendix E 234

Table E.45: Counts for Admissible Order Comparison with Problem P4.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 0.1 0.01 6 5 9 TRUE
1 l 0.1 0.01 6 5 14 TRUE
1 li 0.09 0.02 6 5 9 TRUE
1 lri 0.1 0.02 6 5 14 TRUE
1 lrv 0.1 0.01 6 5 9 TRUE
1 lv 0.09 0.02 6 5 14 TRUE
1 v 0.12 0.01 6 5 19 TRUE
2 i 0.12 0.01 6 5 19 TRUE
2 l 0.09 0.02 6 5 9 TRUE
2 li 0.1 0.01 6 5 14 TRUE
2 lri 0.09 0.02 6 5 9 TRUE
2 lrv 0.09 0.02 6 5 14 TRUE
2 lv 0.09 0.02 6 5 9 TRUE
2 v 0.09 0.02 6 5 9 TRUE

Benjamin J. Keller Appendix E 235

Table E.46: Counts for Admissible Order Comparison with Problem P5.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 7.13 0.89 122 75 284 TRUE
1 l 2.82 0.46 69 43 182 TRUE
1 li 6.71 0.85 122 75 284 TRUE
1 lri 7.02 0.81 130 79 216 TRUE
1 lrv 7.02 0.83 130 79 216 TRUE
1 lv 6.66 0.91 122 75 296 TRUE
1 v 6.69 0.91 122 75 296 TRUE
2 i 7.53 0.93 130 79 280 TRUE
2 l 2.81 0.44 65 41 192 TRUE
2 li 7.52 0.93 130 79 280 TRUE
2 lri 6.74 0.81 128 78 220 TRUE
2 lrv 5.87 0.76 130 82 199 TRUE
2 lv 5.89 0.83 135 87 270 TRUE
2 v 5.9 0.85 135 87 270 TRUE
3 i 6.15 0.76 130 83 260 TRUE
3 l 2.82 0.44 65 41 192 TRUE
3 li 6.09 0.76 130 83 260 TRUE
3 lri 6.92 0.87 136 83 167 TRUE
3 lrv 7.16 0.86 135 82 191 TRUE
3 lv 6.89 0.89 149 95 244 TRUE
3 v 6.91 0.89 149 95 244 TRUE
4 i 6.88 0.89 149 95 248 TRUE
4 l 3.05 0.5 69 43 182 TRUE
4 li 6.8 0.88 149 95 248 TRUE
4 lri 6.91 0.83 133 81 188 TRUE
4 lrv 7.01 0.83 130 79 218 TRUE
4 lv 6.9 0.91 122 75 320 TRUE
4 v 7.18 0.94 122 75 320 TRUE
5 i 6.96 0.89 149 95 248 TRUE
5 l 3.02 0.5 69 43 182 TRUE
5 li 6.91 0.89 149 95 248 TRUE
5 lri 7.05 0.86 136 83 171 TRUE
5 lrv 7.12 0.85 133 81 175 TRUE
5 lv 6.1 0.76 130 83 260 TRUE
5 v 6.34 0.78 130 83 260 TRUE

Benjamin J. Keller Appendix E 236

Table E.47: Counts for Admissible Order Comparison with Problem P6.

Alpha. Admiss. Comp. Reduction Total Zero Simple Finite
Order Order Time Time Reductions Reductions Reductions

1 i 223.76 2.81 42 6 1395 TRUE
1 l 2.43 0.19 24 10 108 TRUE
1 li 224.63 2.82 42 6 1395 TRUE
1 lri 1.89 0.14 27 6 64 TRUE
1 lrv 22.14 1.68 48 4 400 TRUE
1 lv 2.49 0.17 38 6 77 TRUE
1 v 2.52 0.16 38 6 77 TRUE
2 i 0.5 0.11 8 0 22 TRUE
2 l 254.77 1.65 30 5 814 TRUE
2 li 0.5 0.11 8 0 22 TRUE
2 lri 14.24 3.62 22 2 244 TRUE
2 lrv 0.36 0.07 6 2 15 TRUE
2 lv 78.31 4.58 30 2 704 TRUE
2 v 78.03 4.57 30 2 704 TRUE
3 i 46.15 3.74 26 2 596 TRUE
3 l 0.38 0.15 4 2 30 TRUE
3 li 46.3 3.76 26 2 596 TRUE
3 lri 0.36 0.08 6 2 15 TRUE
3 lrv 7.07 4.16 25 3 187 TRUE
3 lv 0.54 0.12 8 1 23 TRUE
3 v 0.54 0.11 8 1 23 TRUE
4 i 6.84 0.31 52 8 142 TRUE
4 l 0.72 0.14 8 0 19 TRUE
4 li 6.89 0.31 52 8 142 TRUE
4 lri 13.11 0.61 30 2 281 TRUE
4 lrv 4.24 0.41 49 5 105 TRUE
4 lv 1.96 0.34 17 1 63 TRUE
4 v 1.91 0.34 17 1 63 TRUE
5 i 3.53 0.21 41 7 112 TRUE
5 l 27.09 0.89 33 6 487 TRUE
5 li 3.54 0.21 41 7 112 TRUE
5 lri 15.52 1.58 45 4 284 TRUE
5 lrv 2.39 0.17 35 6 78 TRUE
5 lv 250.81 3.11 42 5 1237 TRUE
5 v 249.71 3.08 42 5 1237 TRUE

VITA

Benjamin J. Keller was born in Iowa City, Iowa on July 6, 1964. Mr. Keller received his Bachelor

of Science degree in Computer Science in December of 1986 from Western Kentucky University. In

September of 1990, Mr. Keller completed his Master of Science in Computer Science at Virginia

Tech by defending his thesis An Algebraic Model of Software Evolution. After a semester at the

University of Iowa, Mr. Keller returned in the Spring of 1991 to Virginia Tech to finish his Ph.D.

studies. Mr. Keller has joined the faculty of Montana Tech of the University of Montana in Butte,

Montana.

237

