PRODUCT USABILITY AND PROCESS
IMPROVEMENT BASED ON USABILITY
PROBLEM CLASSIFICATION

by

Susan Lynn Keenan

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY
IN
COMPUTER SCIENCE
© Copyright 1996

APPROVED:
H Koy N Dol
H. Rex Hartson, Co-chair Denms G/}(afura Co-chair
/ , James D. Arthur Deborah Hix
v
// <F7A. N. Lee Robert S. Schulman

August, 1996
Blacksburg, Virginia

Keywords: Usability, Problem Classification, User-Interface Process Improvement

Cz2

SCSS)
NVe5Ho

A15
Rahe,

c.

PRODUCT USABILITY AND PROCESS IMPROVEMENT BASED ON USABILITY
PROBLEM CLASSIFICATION

by

Susan Lynn Keenan

H. Rex Hartson and Dennis G. Kafura, Co-chairs
Department of Computer Science

(ABSTRACT)

Although research and practice have shown that the success of a usability
engineering program depends on the identification and correction of usability problems,
these problems remain an underutilized source of information. Insufficient guidance
regarding the capture of usability problem data results in the loss of information during the
problem reporting phase as problem reports are often vague, imprecise, and incomplete. In
addition, the absence of a framework for understanding, comparing, categorizing, and
analyzing those problems, and their relationship to development context, not only
constrains product improvement, but hampers efforts to improve the user interface

development process.

A new taxonomic model (the Usability Problem Taxonomy) is presenied which
contributes to both product and process improvement. The Usability Problem Taxonomy
(UPT) is used to classify and organize usability problems detected on interactive software
development projects. Individual UPT categories are associated with two aspects of
development context: developer roles and skills, and development activities, methods, and

techniques.

Two studies were conducted during the course of this research. The first study
showed that the UPT can be used to classify usability problems reliably. Findings
indicated that level of agreement among classifiers (beyond chance agreement) was
statistically significant. Findings in the second study led to the identification of roles and

activities that address individual UPT categories as well as those that do not.

Procedures for using the UPT in both product and process improvement are
outlined. Examples are presented that illustrate how the UPT can be used to generate
higher quality problem descriptions and to group those problem descriptions prior to
prioritization and correction. In addition, steps that guide developers in diagnosing
weaknesses in the current user interface development process are enumerated. Possible
improvement strategies are presented that focus on the selection of specific development

activities and team members appropriate for a given project.

DEDICATION

This research is dedicated to four people, without whose help I would not have graduated.
To my husband, Dr. Mike Keenan, whose unfailing support kept me plugging away. To
my parents, Mrs. Dolores Crispen and Dr. Wayne Crispen, who insisted all along that I
would finish. And, to my dear friend, Ms. Karen Bowen, who generously contributed her

time, expertise, and equipment during my research.

iv

ACKNOWLEDGMENTS

I would like to thank Cindy Starks Hopeman, Tim Kilby, Jack Repenning, and
Paul Sawyer who volunteered their time to critique the data collection forms used to collect
data prior to the heuristic analysis. Thanks are due to the five participating, anonymous
software development organizations for their willingness to provide anecdotal and
quantitative information, usability problem reports and descriptions, videotapes, as well as
copies of the interactive-software products. I also would like to thank a group of 11
developers and academics for participating in the study without remuneration. Thanks are
also due to my two advisors, Dr. Dennis G. Kafura and Dr. H. Rex Hartson for bringing
their complementary viewpoints to a project that spanned two different areas of computer
science. I need to thank Dr. Robert S. Schulman for his help with the statistics and
presentation. Lastly, I would like to express my appreciation to Dr. J. A. N. Lee for his

continued support and encouragement throughout the research process.

TABLE OF CONTENTS

INTRODUCTION ..ottt 1
1.1 Background..........ccooeviiiiiiiiniiiiiiiiiiiiii e 1
1.2 Problem Statementccveiiieiniiiiiiiiiniiiiiii e 6
0 T € o | e 13
1.4 APPIOaCh....ciintiiit i e 13
1.4.1 Develop The Usability Problem Taxonomy.............c.ccoueee.e. 13
1.4.2 Reliability Of UPT Problem Classification.......................... 15

1.4.3 Association Of Categories With Development Context

Factors.....coovviniiiiiiiiiii 15

LS Summary......coooiiiiiiiiiiiiiiiiiiii e 16
RELATED WORKottt 17
2.1 DataGathering..7 18
2.1.1 Quantitative Data........cccoeveviiiiiiiiiiiiiiiiiiiieeere e, 18

2.1.2 Qualitative Data..........cooiiiiiiiiiiiiiiiiiie 23

2.1.3 DataTrackingcccvveiuiiniriiiuiiiiniininiiiiirieieieeneennenns 28

2.2 Data Classification......c..ccviuiiuiiniiiiniiiiiiiiiiiin e eeeaas 30
2.3 Data ANalySis ..o.ueuuintiniiniiiiiii e ee e e e rae e eas 39
2.4 Strategies Based On Data Classification And Analysis 42
2.5 SUMMATY ...ttt ettt ee e e e e e eneaanans 50
CONSTRUCTION OF THE USABILITY PROBLEM TAXONOMY 52
3.1 Initial Data COLleCHONc.iuinininiieiee it eiiereeeet e eeenaearaenenanss 52
3.2 Initial Data ANalysiS........cocueuiiiieiiiintieiiiieiieir e enaes 56

vi

3.3

34
3.5

4.1

4.2

43

3.2.1 Usability Heuristic Analysisccccvviiiiiiiiiiiniiinnnnen.
3.2.2 Conclusions Regarding Heuristic Analysisccc.ccvvueennn.
Development of the Usability Problem Taxonomy..........c....c.c.ee.....
3.3.1 Revisiting Usability Problem Data Subtypes............cccc.......
3.3.2 Clusters Of Problem Subtypes: The Usability Problem
TaXOnOmMYcoviniiiiiiiiiiiiiiii e

Strengths Of The Usability Problem Taxonomy..........ccoccureerrernee.

4.1.1 The UPT Reliability Studyccovivuiiiiiiiiiiiiiii.
4.1.2 Results Of The UPT Reliability Study..........ccocvevnininnnnnen..
4.1.3 Remarks About The UPT Reliability Study............c....coeeuee
4.1.4 UPT User Satisfaction Survey............ccoecoeiiiiiniceniecnnnnens
Product Improvement And The UPTc.covviiiiiiiiiiiiiiiieieanes
4.2.1 Two Critical InCidentsc.ccocveviviiiniiiiiiiiiiinninnee.
4.2.2 Problem Identification, Reporting, Analysis, And Correction
Without The UPTcciiiiiiiiiiiiiiiiiiiiiccceeee e
4.2.3 Using The UPT During Problem Reporting
4.2.4 Using The UPT After Problem Reporting..........cccceeernneeneee.
4.2.4.1 Using The UPT To Classify Problems After
Reporting.....c.cooeiiiiiiiiiiiiiiiiiiiiiiicne
4.2.4.2 The UPT As A Foundation For Analysis

THE UPT AND PROCESS IMPROVEMENT........ccccoovvmiiiiiiiiiinininnnnn.

5.1

The UPT Association Studycooevevniiiiiiiiineiiiiiiiiieneennenennes

vii

5.2 The Association Of Roles And Skills With UPT Categories............... 134
5.2.1 Association Of UPT Categories With Developer Roles............ 134
5.2.2 Comparing Responses On Roles Form 1 And Roles Form 2..... 143
5.3 The Association Of Activities, Methods, And Techniques With UPT
L0 1 (0] o 1N 149
5.4 A Comparison Of Roles And ACHVILIES......ccovvvmrreriicineecrnecinnenenn. 159
5.5 Process Improvement Using The UPTcoiiiiiiiiiiiiiniinn... 170
5.6 SUMMAIYociviiiniiiiiiiiiiii e 173
SUMMARY AND CONCLUSIONS ...ttt aeaeees 175
6.1 Step One: The Usability Problem Taxonomy (UPT)....................... 175
6.1.1 Summary Of UPT Development........c.ccceeuuumueerrrraenerennnns 176
6.1.2 UPT Evaluation......c..coccevenriniiiiniiniiiiiiiiiininininninennnnnn, 176
6.1.3 Contributions Of The UPTc.ccoovviiiiiiiiiiiiiiininn.. 178
6.1.4 Additional Discoveries Made During UPT Development.......... 178
6.2 Step Two: Associations Between UPT Categories And
Development CONtEXtc.ccvivrireureeinerineerenrereeerensessasessesnneanns 182
6.2.1 Summary Of The Association Study...........covvevieiiinennen... 182
6.2.2 Association Study Findings..........cccooeviiiiiiiiiininnininnnann, 183
6.2.3 Contributions Of The Association Study............c.ccevueinnen... 186
6.3 FinalRemarksccoocoiiiiiiiiiiiiiiiiiiiii 189
FUTURE WORK ...ttt 190
7.1 Additional Reliability Studies.........cccevevieiiiiiiiiiiiiiiiiiiieiiienn, 190
7.2 Refinements And Extensions To The UPT.........ccccccevvrvvuniininnnan 191
7.3 Information About Usability Problems..............cccoveiniiiiiiiinninin, 191
7.4 NewMethods.....cocooiiiiiiiiiiiiiiiiiiiiii e 192
TS TOOIS..uiiiiiiiiiiiiii e 192

viii

TN 11011 11 1 PPN 193

REFERENC ES.ttt ettt ettt eee e enenans 194
APPENDIX A: UPT Categories GloSSarycccvveiiiiieiiiiiiiiinieieeneineiinenae. 200
APPENDIX B: Roles Forms and GlOSSarycceveeernierriinrnieriinieieenernerneens 204
APPENDIX C: Activities Form and Glossarycccceviiiiiiiiiiiniiiiiniienneennnn. 211

APPENDIX D: Means And Standard Deviations For Roles Form 1 And The

Activities FOrmoooiiiiiiiiiiiii 225
D.1 Means And Standard Deviations For Roles Form 1..............c......... 226
D.2 Means And Standard Deviations For The Activities Form 234
2 . N PP 242

LIST OF FIGURES

Chapter 1
Figure 1.1. The impact of usability problems on product and process

1181100 (0131115 1| A TSPt 2
Figure 1.2. Three parts of the interactive-software development cycle. 3
Figure 1.3. Information loss in the interactive-software development cycle. 7
Figure 1.4. Product improvement using the Usability Problem Taxonomy........... 10
Figure 1.5. Product and process improvement using the Usability Problem

TaAXONOMY. ...ttt r e e eeeeenaeeanenneans 12
Figure 1.6. Simplified view of the Usability Problem Taxonomy (UPT).............. 14
Chapter
Figure 3.1. Hierarchical structure of the Usability Problem Taxonomy................ 76
Chapter
Figure 4.1. Dialogue box for disk initialization............ccocvviiiiiiiiiiiiiniiniiin. 104
Figure 4.2. Usability problem with the name field occurs during disk

INIHANZALON. «.euitetiiiiiiiii e 105
Figure 4.3. Error message for disk initialization............cccccccceiiiiniinniiiainnnnn. 105
Figure 4.4. Dataentry boX.ooeiimiiiiiiiiiiiiiiiiiiiiiiiiireiereieeeneeenn. 106
Chapter 5
Figure 5.1. The overlap among roles for visualness, language, and

MaNIPulation.covuiiiiiiiiiiiiiiii e 138

Figure 5.2.
Figure 5.3.
Figure 5.4.

Figure 5.5.
Figure 5.6.

The overlap among roles for task-mapping and task-facilitation........... 139
The overlap among roles for the artifact and task components............. 140
The overlap among activities for visualness, language, and

MANIPUIALION. ..ouuiniitiitii it e e e et ree e e 153
The overlap among activities for task-mapping and task-facilitation. 155
The overlap among artifact-oriented activities and task-oriented

Y03 8 A L0 (- J 156

Chapter 2
Table 2.1.
Table 2.2.

Chapter 3
Table 3.1.
Table 3.2.
Table 3.3.
Table 3.4.
Table 3.5.
Table 3.6.
Table 3.7.
Table 3.8.
Table 3.9.
Table 3.10.
Table 3.11.
Table 3.12.
Table 3.13.
Table 3.14.
Table 3.15.
Table 3.16.
Table 3.17.

LIST OF TABLES

Problem Severity Classification (PSC) values............c.ccoveviniinnnn. 36
Cost/importance table.coeveiiiiiiiiiiiiiiiiiie 49
Participant development projects.cooevevueiiiniiiiiiiniieiiinnennns 53
Levels of expertise of the intended user groups.cccevviinineen 53
Location, evaluators, and methods used........cccccovvvvunnerrcenrnennnnne 54
Usability HeUriStiCS.cvuuernieeiiinie i eereiiee e e 55
The reporting techniques and number of identified problems.............. 56
Number of problems categorized according to heuristic.................... 59
Subtypes for simple and natural dialogue.c.cceovviiiininininnn. 67
Subtypes for speak the users' language.covviiiiiiiiiieniinnn, 68
Subtypes for minimize users' memory load........c.cocevvivnvunnnnnennn. 68
Subtypes for COnSISteNnCY.......ocvuvviieiiiiiiiiiiiiiiiiii e 69
Subtypes for feedback.cccoveiiiiiiiiiiiii e 69
Subtypes for clearly marked exXits.cceeviieiiiiiiiiiiiiiiiinieaen... 70
Subtypes for ShOTtCULS.ovviiiiiiiieiiei i eireeereeeaernaes 70
Subtypes for precise, constructive error messages........oovvveeereennnnn.. 71
Subtypes for Prevent €ITorS.covvvieiuininiiiiiieieieiieienernenenns 71
Subtypes for Other.........cooiiiiiiiiiiiiiiiiiiiiec e ee, 72
The five primary categories with associated problem types................ 14

Chapter 4
Table 4.1.
Table 4.2.
Table 4.3.
Table 4.4.
Table 4.5.
Table 4.6.
Table 4.7.
Table 4.8.
Table 4.9.
Table 4.10.
Table 4.11.
Table 4.12.

Table 4.13.
Table 4.14.
Table 4.14.
Table 4.15.
Table 4.16.
Table 4.17.

Chapter 5
Table 5.1.
Table 5.2.

ClasSifler EXPEIIENCEvuetiniiniteiireiie et eiieteaeeaereeneneeneeneenenenns 82
Classifier EXPerienCecouvvuiieiniiuiiiiiiiiiiiiii i eneeaeae, 83
Distribution of problems over the five projects............ccccevevineenenen.. 84
Distribution of problems over the five projects.cccveveiieinnnen. 85
Distribution of previously examined problems.cccoceveiniininnns 86
Distribution of new problems..........c..ccvvviviiiiiiiiiniiiiiiinninnn, 86
Counts for the artifact component.ccccvveiieiiiiiiiiiiiiiniennen.. 88
Counts for the task COMPONENL.ccevvivriiiiiiiiiiiiiiiinrinneieaneenns 90
Counts for good and complete agreement.c.ceveiiviieiinennnnnn.. 91
Statistics for all 20 usability problems.cccoveviviiiiiiiniiiininnn, 95
Statistics for 10 usability problems examined previously (OLD).......... 95

Statistics for 10 usability problems not examined previously

NEW e et 96

Mean response per QUEStION........ccceceeruiiiririnniieieienniieeeaeesenenee 102
Mean response per classifier.coceveiiiiiiiiiiiii e 102
Problem classification for Disk Name critical incident...................... 114
Problem classification for Data Entry critical incident....................... 119
Distribution of problems across UPT categories.ccceeuennnnnn... 122

Distribution of problems across language, other wording

CALEROTICS. - .t tueennernneiseeeeaaeenranesteaeeaanaannessneeneaansennesonnsenes 124
Classifier EXPEIIENCEuiuvniniiiiiiiiiiiiiii e eiiieieena e eneeneas 130
Classifler EXPEriENCE ... vvuieeererereiieteeeeerreeeraeeraneransecnseennaeanns 131

Table 5.3.
Table 5.4.

Table 5.5.
Table 5.6.

Table 5.7.
Table 5.8.
Table 5.9.
Table 5.10.

Table 5.11.
Table 5.12.
Table 5.13.
Table 5.14.
Table 5.15.

Table 5.16.
Table 5.17.
Table 5.18.
Table 5.19.
Table 5.20.

Chapter 6
Table 6.1.

Interpretation of roles and skills results for Roles Form 1. 137
A comparison of roles for the artifact component, task component,

andoverall UPT.........cccoiiiiiiiiiiiiiiii 142
Paired t test values for each participant.ccccoveiiiiiiiiiiiin. 145

Mean responses for roles in Roles Form 1 also present in Roles

Form 2 (5 participants).ccoeviiiiiiiiiiiiiiiniiiiiiiiiniiieens 146
Mean responses for Roles Form 2 (5 participants)............ccceeviennenn 147
Types of activities on the Activities Form..................cooiiiiiinnin, 150
Interpretation of results from the Activities Form. 152

A comparison of activities for the artifact component, task

component, and overall UPT.cooiiiiiiiiiiiiiiiiiiiiiiiieeenns 158
A comparison of roles and activities for the visualness category. 160
A comparison of roles and activities for the language category............ 162
A comparison of roles and activities for the manipulation category....... 163
A comparison of roles and activities for the task-mapping category. 164

A comparison of roles and activities for the task-facilitation

(1 17:00) o 2 PP PP PPRP 165
A comparison of roles and activities for the artifact component. 166
A comparison of roles and activities for the task component............... 167
A comparison of roles and activities for the entire UPT structure. 168
Number of each type of activity associated with UPT categories.......... 169
Roles and activities that do not address UPT categories.................... 171
Summary of roles and activities that address UPT categories.............. 184

Xiv

Appendix D

Table D.1.
Table D.2.
Table D.3.
Table D .4.
Table D.5.
Table D.6.

Table D.7.

Table D.8.
Table D.9.

Table D.10.
Table D.11.
Table D.12.
Table D.13.
Table D.14.

Table D.15.

Table D.16.

Means and standard deviations for each role for visualness................ 226
Means and standard deviations for each role for language. 227
Means and standard deviations for each role for manipulation............. 228
Means and standard deviations for each role for task-mapping 229
Means and standard deviations for each role for task-facilitation 230

Means and means of standard deviations for each role for the artifact
(203 101 o103 1=3 ¢ | N 231

Means and means of standard deviations for each role for the task

COMMPONENL...utiuineninenenrnetneeeenteeerenraseeeeesaonessossasssesnsnsnns 232
Means and means of standard deviations for each role for the UPT. 233
Means and standard deviations for each activity for visualness............ 234
Means and standard deviations for each activity for language. 235
Means and standard deviations for each activity for manipulation......... 236
Means and standard deviations for each activity for task-mapping........ 237

Means and standard deviations for each activity for task-facilitation...... 238
Means and standard deviations for each activity for the artifact
COMPOMENT..uiuiniuieieniinitiiitittenetttiateteeeaereneneasasnsasasnsnsnsnas 239
Means and standard deviations for each activity for the task

(0 141 0103 = 1 PN 240

Means and standard deviations for each activity for the overall

XV

1 INTRODUCTION

1.1 Background

Although research and practice have shown that the success of a usability
engineering program depends on the identification and correction of usability problems,
these problems remain an underutilized source of information. Current methodology
focuses on encouraging developers to incorporate any user interface development activity
into the software process to raise the level of usability in a given product. Since this
approach has been reasonably successful in many development environments, little effort
has been placed on usability problem description, classification, and analysis, or on the
connections between usability problems and product and process improvement. This lack
of understanding not only constrains product improvement, but hampers efforts to improve

the user interface development process.

Utilizing information about usability problems can lead to both product and process
improvement efforts as illustrated in Figure 1.1. Usability problem classification and
analysis helps developers generate both local solutions that address one problem and global
solutions that address multiple problems. It also guides selection of team members,

activities, methods, and techniques appropriate for a given project.

Based on private communications of the author with many interactive-software
developers at several development organizations, usability problems and their relationship
to product and process improvement are not well understood. As a result, the contributions
illustrated in Figure 1.1 have not been realized. To investigate these possible contributions,

a deeper understanding of usability problems is required.

Product Improvement
helps generate ’ Usability Problem Correction:

e local solutions
Usability Problems global solutions
description
classification
analysis Process Improvement
T~ Development Context:

guides selection ——§»| team members (roles and skills)
activities, methods, techniques

Figure 1.1. The impact of usability problems on product and process improvement.

To better understand the relationship of usability problems to product and process
improvement, the relevant phases of the interactive software development cycle are
examined. One way to view the interactive software development cycle is illustrated in
Figure 1.2. This perspective divides the cycle into three parts. Part 1 occurs prior to
problem reporting and is comprised of four phases: team member and activity selection,
system design, evaluation, and problem identification. Part 2 focuses on problem reporting
(the written description of detected usability problems). Part 3 occurs after problems have
been reported and consists of two phases: product-oriented analysis and problem
correction. While other important development phases exist in the life cycle of a software
product (e.g., requirements, specification, software testing), only those phases directly

related to this research are included in Figure 1.2.

The cycle begins when team members and specific development activities, methods

and techniques are selected for a given project. As development proceeds, the system and

user interface are designed and evaluated. During evaluation, usability problems are
identified.

Part 1 .
Select team members, LEGEND 2
development activities, C 3 Activities :

methods and techniques @— Information

* mmmm Focus of this research
System (Re)Design S
* . Part 3
Evaluation Problem Correction
Problem Identification Product—Ori.ented
Analysis

USABILITY PROBLEM REPORTING AND DESCRIPTION

Figure 1.2. Three parts of the interactive software development cycle.

Part 2 of the cycle focuses on usability problem reporting. Problem reports can be
generated by employees (user interface evaluators, software developers, customer service
representatives) and by end users. The formality with which problems are reported varies
among organizations. Some developers record usability problem descriptions in a

database; others make less formal notations using pencil and paper.

The information generated by usability problem reporting impacts the success of
Part 3 of the development cycle. During the product-oriented analysis phase, developers

examine problem descriptions to:

* identify possible approaches to problem solutions,
* assess the cost to fix each problem,
* prioritize the problems in order of importance, and

* decide which problems will be corrected.

During the problem correction phase, product-oriented analysis is used in conjunction with
the problem descriptions to select a solution for each usability problem selected for
correction. The solutions are then channeled into the system design phase as the user

interface is re-designed.

Although the cycle in Figure 1.2 imposes a partial ordering on the phases (e.g.,
problem identification must occur prior to problem correction), the elapsed time between

phases may vary. For example, consider the timing of phases in the following scenarios.

* Developers practice participatory design and evaluate each user interface
component as it is designed. The design and evaluation phases occur
simultaneously.

* Developers use a formative evaluation technique to evaluate the user interface.
The evaluation phase occurs immediately after the design phase.

* Developers do not perform user interface evaluation. Usability problems are
phoned in from the field after the product has shipped. The problem
identification phase occurs during maintenance after the user interface has been

completed.

Regardless of the timing of individual user interface development activities,
organizations allocate significant resources prior to, and during, evaluation. These
expenditures include monies spent on usability laboratories, equipment, and usability-
related training for developers, as well as the time spent on user interface evaluation (e.g.,
inspection methods, user testing). Additional resources are expended when usability
problems are corrected and the user interface is redesigned. Since these resources are all
invested in problem identification and correction, the problem reporting phase becomes a

critical link in the development cycle.

Resources invested in user interface development activities do raise the level of
usability achieved in a software system [Hix 93] [Nielsen 93b]; however, the success of a
usability engineering program is limited by the quality of the problem descriptions. Since
the problem reporting phase has received little attention in current research and practice,
problem descriptions are often poorly written. Low quality descriptions do not translate
consistently into a successful redesign effort, and as a result, limit the return development

organizations realize on their investment.

1.2 Problem Statement

Despite the importance of usability problem descriptions to the success of a
usability engineering program [Jeffries 94], much information is lost during the problem
reporting and description phase. As illustrated in Figure 1.3, information is lost as
problems are reported, and then again as problems are reconstructed from the descriptions

and interpreted prior to correction.

This loss of information has two causes. .First, minimal guidance exists regarding
the capture of usability-problem data. Second, a framework has not been developed for
understanding, comparing, categorizing, and analyzing usability problems and their

relationship to development context.

Writing high quality problem reports is a difficult task. Evaluators, absorbed in
observing a user testing session, focus on critical incidents and, frequently, do not capture
all relevant information. The large amount of contextual information, user task complexity,
and time constraints complicate the reporting process. Limited evaluator expertise and
experience in both usability engineering and in problem description further compound this

problem.
As a result, problem reports are often vague, imprecise, and incomplete. An

examination of data collected by the author on five real-world development i)rojects

indicates that many developers do not include the following information in the descriptions:

* contextual information (e.g., user task),

» what happened, and

where it happened (location in the user interface).

Select team members, LEGEND ::
development activities, — L I
. Activities :

hni [

methods and techniques ¢ Information :
* mmmmm Focus of this research]

System (Re)Design <4

v

Evaluation

Problem Correction

v I

. . Product-Oriented
Problem Identificati
A oblem Identification alysis B

¢

Time People

P, I ot = T
ing 2%, | 2 Problem Yo,
Problem Reporting,

: A . i
P AR, A'Am@b % Reconstruction &
Qy, Description . . o
«.» Wy, Interpretation o A
,ow‘gm* "

v YJR‘.T.,.I.l.I,,.T.JCY

«‘%‘ LOSS OF INFORMATION

Figure 1.3. Information loss in the interactive software development cycle.

In addition, descriptions often focus on user reactions rather than what occurred or on
solutions rather than on the problem. Others do not distinguish between multiple problems

arising from one critical incident.

Inadequate problem reports contribute to the difficulty encountered by developers as
problems are interpreted and reconstructed prior to analysis. Information loss at this point
in the development cycle is exacerbated when problem interpretation and reconstruction are
attempted in a later development phase, a subsequent release, by team members not present

for the evaluation, or by developers at different physical locations.

The success of product-oriented analysis activities (problem prioritization, problem
selection for correction) depends on the quality of the information available about each

usability problem. During analysis, problem descriptions can be analyzed to determine the:

e frequency,
* severity,
e similarity, and

* clustering or grouping of the usability problems.

Let the amount and quality of information available during the evaluation and
problem identification phases be denoted by A (see Figure 1.3). Similarly, let the amount
and quality of information available during product-oriented analysis be denoted by B.
Then A represents all observational data available. B represents the information present in
the problem descriptions as well as information noted by developers as descriptions are

interpreted, reconstructed, and analyzed.

When the information available during product-oriented analysis is less than that
available during the evaluation and problem identification phases (B < A), the success of
analysis, problem correction, and re-design is jeopardized. Ideally, there should be more
information available during analysis than is available during evaluation (B > A).
However, an examination of real-world data indicates that, in practice, the information loss
during the problem description and reporting often results in B < A. At best, the surveyed
organizations were only able to achieve B = A for a subset of the problems identified on a

given software project.

To preserve the amount and quality of information available during evaluation, a
taxonomic model of usability problems is needed to help developers write high quality
problem descriptions (see Figure 1.4). To enable developers to capture critical information
about each observed usability problem, taxonomic categories that help developers think
about each problem must be identified. Categories currently used by researchers and

practitioners to classify usability problems are inadequate for this purpose.

While good problem descriptions are essential to analysis and correction, it is
equally important for developers to glean as much information as possible from the entire
set of usability problems detected on a given project. This additional data results from
problem comparison and analysis. The absence of a taxonomic model increases the
difficulty encountered by developers as (even well-written) problem descriptions are

compared and analyzed.

By comparing and analyzing sets of usability problems, developers can find global
solutions that may cost-effectively address multiple problems. Interviews with developers

at several organizations indicated that developers tend to focus on local solutions that

address individual problems rather than on global solutions. A taxonomic model that

contains problem categories that facilitate description and analysis can provide the

necessary structure for problem, and solution, comparison.

Select team members, LEGEND
development activities, .
methods and techniques — Achv1tl€§
<— Information
* mmmmm Focus of this research

System (Re)Design <4

v

Evaluation Problem Correction
Problem Identification Product-Ori‘ented
Analysis

*

Enhanced Problem
Reporting by
Classification

Usability
Problem
Taxonomy

Figure 1.4. Product improvement using the Usability Problem Taxonomy.

10

Although Figure 1.4 illustrates the contributions to be made by a taxonomic model
to a plan for product improvement, no clear associations exist between usability problems
and development context. This reflects current software practice, i.e., no method for
process decisions is based on collected usability data. Specifically, no recommendations
are provided that guide managers in the selection of team members based on their skills and

expertise or development activities appropriate for a given project.

A comprehensive framework for usability-related product and process
improvement, shown in Figﬁre 1.5, illustrates the dual function of a taxonomic model for
classifying usability problems. The taxonomic model can be used to improve the quality of
problem descriptions and guide analysis of usability-problem data. In turn, the analysis
can be used to assess the relative benefits of both global and local solutions. The analysis
can also be used in conjunction with development context to develop strategies for process
improvement. Since the success of many user interface development methods depends on
the developer's ability to report problems clearly and precisely, and the manager's ability to
formulate process-improvement strategies from project-to-project, research that advances

the level of understanding in this area is critical.

11

Select team members, LEGEND
—> development activities, CD Activities
methods and techniques < Information :
* mmmmm Focus of this research

System (Re)Design <

v

Evaluation Problem Correction
Problem Identification Product—Ori.ented
Analysis

3

Enhanced Problem
Reporting by
Classification

Usability
Problem *

Taxonomy

Process-Oriented ‘ Development
Analysis Context

Figure 1.5. Product and process improvement using the Usability Problem Taxonomy.

12

1.3 Goal

The goal of this research is to develop a framework for understanding, describing,
comparing, and analyzing usability problems and their relationship to development context.

The following two subgoals arise.

1. Develop a reliable, empirically-derived taxonomic model that categorizes (classifies)
usability problems.
2. Establish associations between usability-problem categories and two aspects of

development context, specifically development activities, and team roles and skills.

1.4 Approach

This section gives a brief overview of the three steps in this research project. First,
the Usability Problem Taxonomy was developed. Second, problem classification using the
Usability Problem Taxonomy (UPT) was shown to be reliable. Third, associations
between the Usability Problem Taxonomy and two development context factors (user
interface development activities, developer roles and skills) were identified. A detailed

description cf these steps can be found in Chapters 3, 4, and 5, respectively.

1.4.1 Develop The Usability Problem Taxonomy

An empirical study was undertaken to guide development of a taxonomic model of

usability problems. Five projects were surveyed at four real-world, interactive software

development organizations (see section 3.1). Six hundred and forty-five usability

13

problems detected on those projects were collected by the author and used in this research.
Initially, 406 of the 645 problems were examined and used to build the taxonomic model.

All 645 problems were used in the UPT reliability study described below.

The researcher began by categorizing each of the 406 usability problem descriptions
according to the usability heuristic(s) violated [Nielsen 90]. Four weaknesses of heuristic
analysis were identified (see section 3.2.1). Although it was concluded that the heuristics
were an inadequate classification tool, the analysis did provide an initial direction for the
development of the UPT. Specifically, usability problems classified within each heuristic

were re-examined and grouped according to commonalities among problems.

The Usability Problem Taxonomy, illustrated in Figure 1.6, was developed using
an iterative process that focused on identifying commonalities among the detected usability
problems. Five primary categories were identified: visualness, language, manipulation,
task-mapping, and task-facilitation. These five categories were grouped into two
components: the artifact component and the task component. The two components,
illustrated in Figure 1.6 correspond to the two dimensions of a usability problem. When
classifying usability problems using the UPT, each problem receives two classifications:

one in the artifact component and one in the task component.

Visualness

Artifact Language

UPT starting point: / Manipulation

classify problem in

both components .
Task-mapping
Task <

Task-facilitation

Figure 1.6. Simplified view of the Usability Problem Taxonomy (UPT).

14

1.4.2 Reliability Of UPT Problem Classification

A study was undertaken to show that, using the UPT, usability problems can be
classified reliably, i.e., a single problem would be classified the same way by different
classifiers. Seven classifiers were chosen from industry and academic development
environments. Each classified 20 randomly selected usability problems. A set of 10
usability problems was selected from the group of problems examined previously. The

remaining 10 were selected from the group of problems that had not been examined.

The seven classifiers categorized each usability problem using UPT forms that are
on the World Wide Web (contact the author for URL). Responses were analyzed using the

kappa statistic to assess the level of agreement among classifiers [Cohen 60] [Fleiss 71].
1.4.3 Association Of Categories With Development Context Factors

A second study was undertaken to identify associations between the five primary
UPT categories and two development context factors: development methods, techniques,
and activities (referred to as "activities"), and developer role and skills. Six experts from
industry and academic environments were selected to participate. Each was asked to assess
the degree to which various developer roles and skills, and individual development
activities could be used to address usability problems in each of the five primary categories
(for the purposes of this research, "address" means prevent, detect, think about, and/or -
correct). Developer roles and skills were based on developer background, training, and

expertise critical to both user interface and software engineering. Development activities

15

included those that focus on usability (user interface engineering) as well as those that

focus on the software (software engineering).

The mean and standard deviation of responses were used to assess the level of
agreement between experts. Roles and activities that could be used to address problems in
each UPT category were identified. Roles and activities that would definitely not address

individual categories were also identified.
1.5 Summary

This chapter discussed the impact that usability problems could have on interactive
software development. Although they currently contribute to raising the level of usability
achieved in the user interface, they remain an underutilized source of information. The
importance of a taxonomic model in both product‘ and process improvement was outlined.
Contributions to product improvement included improved problem description,
classification, and analysis. Contributions to process improvement included enabling
developers to use the taxonomy as a diagnostic tool to identify developers roles and skills
and development activities, methods, and techniques appropriate for a given project. The
approach to this research consisted of three steps: development of the UPT, a study that
showed that the UPT can be used to classify usability problems reliably, and a study in

which associations of roles and skills, and activities, with UPT categories were identified.

16

2 RELATED WORK

This research concentrates on usability-related product and process improvement
within the context of software development. Since plans for usability engineering are often
implemented by usability specialists, software engineers, and managers, a usability
engineering program must account for software engineering concerns, language, and
methodology. To formulate product and process improvement strategies that can be
understood and implemented by development team members with varying backgrounds and
expertise, techniques employed by researchers and practitioners in both communities must

be considered.

This chapter examines the similarities, commonalities, differences, and gaps among
the approaches used by software engineers and those used by usability specialists. Four

topics relevant to this research are explored:

* data gathering,
e problem classification,
* data analysis, and

» product and process improvement strategies.

Each of these areas is examined first from a software engineering viewpoint, and second,

from a usability engineering viewpoint. The two perspectives are then compared.

The chapter is organized in the following way. Data gathering is discussed in

section 2.1. Classification techniques used to categorize collected data are presented in

17

section 2.2. Data analysis is outlined in section 2.3. Strategies for interactive software
process and product improvement are covered in section 2.4. A brief summary is given in

section 2.5.

2.1 Data Gathering

This section examines three topics: quantitative data, qualitative data, and data
tracking techniques. Each topic is presented from a software engineering perspective as
well as a usability engineering perspective. Each discussion concludes with a comparison

of the two perspectives.

2.1.1 Quantitative Data

Software Engineering

While software engineers collect a variety of data, the following measures are most

commonly used in product and process improvement efforts [Grady 94] [Lamb 88]

[Pfleeger 91] [Pressman 87] [Sommerville 89]:

¢ design complexity (number of design modules suggested),
* code complexity (number of code modules),

e requirements complexity (number of object interfaces),

* discovered defects,

e discovered failures,

* cost-to-fix,

e time-to-fix, and

18

* number of modules affected by a proposed change.

The data are gathered by various team members at different points during the development
process. Design, code, and requirements complexity are assessed by software designers
and implementors. Defects and failures are discovered during testing before and after the
product has shipped. Defects are also detected by marketers when complaints are phoned
in from the field. Cost-to-fix and time-to-fix as well as the number of modules affected by

a proposed change are determined by software developers.

Quantitative usability metrics are used by usability experts to assess the level of
usability achieved in the product. Data are collected on many components of usability,
including: efficiency, learnability, memorability, ease of use, and user satisfaction [Nielsen

93b]. Types of usability measurements include:

» discovered defects (usability problems),

* number of times the user failed to complete a task [Nielsen 9b],

¢ time to task completion,

* number of subtasks that can be completed within a given time limit,
e number of user errors,

e error rate, and

 time for error recovery.

The data listed above are collected by various development team members. Usability

problems and task completion failure are observed by usability specialists, marketing

19

personnel, and software engineers. The time measures and error rates are generally noted

by usability specialists.

Although most of the data listed above are collected during user testing, some can
be collected using other methods. For example, lists of usability problems can be obtained
as user complaints are phoned in from the field after the product has shipped. Estimates for
the number of user errors and number of times the user failed to complete a task can

likewise be obtained over the phone as complaints are logged.

Quantitative data pertaining to the components of usability are also collected from
users through questionnaires. The questionnaires ask users to rate their reactions to
various system features and overall usability using a small scale (e.g., 1 to 9 where 1

represents an unfavorable response and 9 a favorable response, respectively [Hix 93]).

Although the quantitative measures used by usability engineers contribute
significantly to improving product usability, the number of available measures (and
techniques for obtaining them) is still modest. At this time, the measures focus primarily
on the user, task completion, and product usability. More research is needed to develop
additional measures that are equally useful at different stages during the product life cycle,

as well as measures that can be used to improve the user interface development process.

A Comparison of Perspectives

Although the first three software engineering measures (design, code, and
requirements complexity) may be applicable to user interface software and requirements, at

this time no evidence supports this hypothesis. In addition, the relationship of each metric

20

to usability and the user interface has not been demonstrated. Design complexity, based on
the number of calls from a given module (fanout), has been related to the probability of
defects in that module (i.e., fanout ** 2). This result has also not been investigated to

determine its applicability to usability problems and user interface software code modules.

In addition, no research has considered the three metrics in terms of the complexity
of the user interface. Some recent work in human-computer interaction has focused on the
development of a technique to determine the complexity of the user interface [Miller 94].
While this technique shows promise, little progress has been made that links user interface
complexity with either the complexity of the usability requirements or the level of usability

achieved in the final product.

Listing discovered defects as well as system failures is a useful technique in a user
interface context as well as in a software-engineering context. Current recommendations in
human-computer interaction focus on reporting usability problems separately from software
defects. However, interviews with software developers indicate that software defects and
usability problems are often not only combined in the same list, but contained in the same
problem report. While this approach indicates that, to many software developers, usability
and functionality are intertwined, this method of reporting problems has disadvantages.
These drawbacks affect the way usability is viewed within a development organization,
influence how usability problems are selected for correction, impact the design of a
potential solution, and make it difficult to use the usability problem data in process

improvement efforts.

Cost-to-fix and time-to-fix have been used successfully by both researchers and

practitioners in both communities. Especially in the context of the user interface these

21

measures can be difficult to assess. When a usability problem is detected prior to
implementation, it is virtually impossible to assign a cost-to-fix. In cases where the cost-
to-fix cannot be estimated, usability specialists consider the cost associated with not
correcting the problem. These metrics are valuable components of cost/benefit analysis,
and help developers distinguish between usability problems that must be corrected
immediately, and those which can be corrected in a later development phase [Meads 93]
[Nielsen 93a]. More research is needed to determine the best technique to derive these

metrics.

In a software engineering context, the number of modules affected by a proposed
change is a useful measure of the effort required to correct a problem. While it is useful in
procedural programs, it is especially useful in an object-oriented development project. In
this context, identifying the modules that received the most activity during design,
implementation, and testing can be used in redesign efforts as well as team structure [Henry
94]. While this metric may prove to be equally useful in a user interface context, no

research has investigated this area.

Although software engineers and usability engineers both recognize the need to
collect and analyze data to realize both product and process improvement, the approaches
used by the two communities are very different. Much research in software engineering
has been devoted to development improvement strategies based on software-product
metrics (McCall's software quality factors, Halstead's software science, and McCabe's
complexity measures [Pressman 87]), and more recently, software-process metrics [Henry
91] [Henry 93] [Humphrey 90]. Research in usability engineering has focused on usability
metrics that assess the level of usability achieved in the user interface of a given software

system [Hix 93].

22

While some software measures do include references to usability (McCall's
software quality factors, the SEI's Capability Maturity Model [CMM 93a] [CMM 93b],
usability is not the primary focus. Complexity measures could be applied to user interface
software, but their relationship to usability has not been investigated. Process measures
based on error rates, change data, and project management data are promising, but have not

yet been extended to include the user interface development process.

2.1.2 Qualitative Data

Software Engineering

Some qualitative data are gathered by software engineers. These data include
customer responses gathered during needs analysis interviews [Pfleeger 91], and prose
descriptions of bugs and suggested solutions. Although the qualitative data gathered
during needs analysis contributes to system requirements, they are not directly related to
this research effort. An examination of the literature revealed that recommendations do

exist for writing bug reports and suggested solutions [Lamb 88] .

The recommendations regarding the capture of qualitative, software engineering

data focus on classifying the report in one of three categories:
* no action necessary (the bug is either already being fixed or was not a problem to begin

with),

» asoftware change needed (the system does not meet the specified requirements), and

23

e achange request (system met the specified requirements, however, the requirements

need to be changed).

The recommendations also address the need to estimate the resources needed for the
requested change. Some developers list the modules affected by the proposed change in
the reports [Henry 94]. Developers collect the data and write the reports as defects are

noted during the testing and maintenance phases.

Usability Engineerin

Several types of qualitative data are used by usability engineers. Interviews and
focus groups conducted with end users provide useful qualitative information (i.e., with
respect to requirements gathering, user studies, user satisfaction, product assessment, and
verification of final acceptance) [Hix 93] [Schneiderman 87]. Although important in the

life cycle of a interactive software product, these data are not a related to this research.

Usability problem descriptions, however, are a critical component of this research
effort. Usability problems can be detected in many phases of the product life cycle
including design, evaluation, and maintenance. Research has focused on the development
of activities and techniques that can be used to detect usability problems. These activities
include participatory design, verbal protocol taking, co-discovery learning, cooperative
evaluation, inspection methods, and user testing. Although usability problems detected
using these methods are identified by user interface evaluators, marketers, software
developers, and end users, they are generally reported by evaluators, software developers,
and marketers. A new technique, the use of incident diaries, relies solely on the user to

describe problems that occur as the system is used and provide the necessary contextual

24

information (e.g., what time did problem occur, what started the problem, which help
facilities were investigated, how useful were the help facilities, the length of time spent

resolving the problem) [Macaulay 95].

Although the advances in user interface evaluation activities have been substantial,
little research has addressed problem reporting techniques. Few recommendations exist
that address how usability problems should be reported. Since generating concise,
informative, prose descriptions of usability problems and suggested solutions is critical in

the context of usability engineering, more emphasis must be placed on research in this area.

The lack of guidance regarding problem reporting contributes to the loss of
information between the problem identification and reporting phase and the problem
correction phase (see sections 1.1 and 1.2). To improve communication between user
interface evaluators/developers who identify the usability problems and developers who

correct those problems, it has been suggested that the following additional information be

provided [Jeffries 94]:

. various levels of abstraction of the problem description,

. proposed solution, separate from the problem description,

. justifications for each problem and each solution using usability principles, and
. trade-offs associated with multiple proposed solutions.

Achieving the appropriate level of abstraction in a problem description is difficult
for most developers. However, current research has shown that by incorporating the
appropriate level of abstraction in the problem description, the actual problem can be

differentiated from the observed symptom(s) and result in better solutions [Jeffries 94].

25

For example, a problem report that focuses on the user's objection to the placement of an
individual menu item within a menu [Jeffries 94] could result in a solution in which the
recommendation is made to move the specific menu item closer to the top of the menu. If,
in fact, the actual problem is more pervasive and requires a complete reorganization of all
menus and items within those menus, this description obscures identification of the actual
usability problem. This occurs because the level of abstraction in the problem description

is too fine and focuses on a very specific detail of the user interface.

Three primary advantages result from the separation of the problem and solution
descriptions. First, the problem description remains focused on the user and the task in
which the problem occurred. Second, false alarms (something reported as a problem, but
is not an actual problem) can be more easily detected. Third, developers can devise
multiple solutions to individual problems. Some solutions may be local and address one
problem. Others may be global and address multiple problems. Global solutions may be

comprehensive or system-wide.

While prose problem reports take more time to write and read, the additional
information they provide can be extremely useful. Including justifications for each problem
and each solution, as well as the trade-offs associated with each solution, caﬁ help
evaluators communicate more effectively with developers who have little background or

training in usability.

26

A Comparison of Perspectives

While both software engineers and usability engineers report problems, the type of
problems that are detected differ significantly (coding errors versus usability problems).
These differences impact the type of information that has been collected. Qualitative data
collected by software engineers are used to effect corrections in the software, and specific
aspects of bug reports (such as the modules affected by a change) are a significant
component of change management methodology. Since a focus on usability implies a
focus on the user, usability problem reports focus on user errors, user reactions, and
potential solutions. Research is needed to determine if the type of information collected

about bugs can be applied to usability problems.

Few techniques focus on effective usability problem reporting. The
recommendations discussed above are not widely used in practice as evidenced during
interviews with many interactive software developers. These recommendations suggest
that by using an appropriate level of abstraction, and separating the problem from the
solution, the actual problems will be revealed. While this guidance is promising,
identifying the appropriate level of abstraction is difficult for novice reporters [Jeffries 94].
No recommendations focus on problem reporters with varying levels of expertise. In
addition, usability problems cannot be characterized fully by an appropriate level of
abstraction. More research is needed to investigate other aspects of usability problems and

to determine if usability problem characteristics can guide problem reporting.

27

2.1.3 Data Tracking

Software Engineering

Software engineers track both product and process data throughout development
and maintenance [Henry 93] [Humphrey 90] [CMM 93a] [CMM 93b]. Two
recommendations that guide process data tracking [Humphrey 90] are also applicable to
product data. The first recommendation is to track items that are a natural result of the
development process and, as a result, do not impose a significant additional burden on
software developers. The second recommendation is to keep the tracking activity distinct
from the reviewing activity (tracking data requires evidence that an item is complete, e.g.,

that a defect has been completely corrected).

Software engineers track specific types of quantitative data that are associated with
product improvement. Product data include code size (lines of code), planned resources,

number of modules completed, tests successfully completed, and number of defects found.

Process measurements are important regardless of what kind of system is being
developed. These measures encompass project management data such as cost estimating,
staffing, scheduling, efficiency, and progress [Henry 93]. Other metrics, based on the
SEI's Capability Maturity Model, focus on measurements collected at the conclusion of
each activity and/or development phase [CMM 93a] [CMM 93b]. Additional process data

are based on rate charting, e.g., defect removal rate.

28

Usability Engineering

Although some usability engineers do track data throughout the product life cycle,
usability data tracking is still quite rare. The data are primarily related to product
improvement as little data related to the user interface development process have been
identified. Data that can be tracked include usability goals, usability specifications, results

of benchmark tasks, and usability problems.

One case study reported by Hewlett-Packard indicates that by using defect tracking,
life cycles, and usability goals, efficiency of the development process was improved and
product quality (including usability) increased [Rideout 91]. While this success story is
encouraging, more work is needed to identify which data are important to track in the

context of the user interface.

A Comparison of Perspectives

Research is needed to determine if the type of product data that are tracked by
software engineers can be applied successfully to the user interface and user interface
software. More work is needed to investigate how tracking usability problems can be used
in both product and process improvement. In addition, research is needed to determine if
important relationships exist between product data that pertain to user interface software

and product data that pertain to system usability.
In principle, process measures can and should be applied to user interface

development. Usability engineers are beginning to search for relationships similar to those

identified by software engineers; however, too few results exist. Not only is the impact of

29

user interface development activities difficult to measure, but no foundation exists on which

to assess relationships between process and product data relevant to the user interface.

2.2 Data Classification

To facilitate analysis, data are often categorized according to various classification
schemes. Taxonomies have proven to be important tools in empirical research, because a
close relationship often exists between the way errors are classified and the way their
occurrence is explained. In addition, the choice of classification scheme can impact how
easily the frequency or the consequence of an error can be reduced or minimized [Senders
91]. Each type of taxonomy suggests particular kinds of explanations that are based on the
focus the taxonomic categories. The explanations are often associated with strategies for

error reduction as well as those that minimize the consequences of errors.

This section first describes general classification techniques used by cognitive
psychologists to classify human error. Second, specific taxonomies used by software
engineers to classify software data are presented. Third, methods for error classification
used by usability engineers to classify usability problems are outlined. A comparison of

the two perspectives is then presented.

Cognitive Psychology

Cognitive psychologists have offered the following types of taxonomies in which to
classify human errors. These classification schemes are based on the "nature and source of

human error” [Senders 91].

30

. A phenomenological taxonomy classifies at a superficial level. This type of
taxonomy is based on events as they were observed. These taxonomies include
categories such as omissions, substitutions, or unnecessary repetitions. In terms of
a software system, applicable classes of events are recoverability, human error, or

machine error.

. A cognitive taxonomy classifies human errors in terms of perception, memory, and
attention. This kind of taxonomy is often viewed as a taxonomy of behavior and is

strongly supported in the literature on experimental psychology.

. Another level of taxonomy approaches error classification through classes based on

biases or deep-rooted tendencies of the subjects.

Binary taxonomies are also been used [Senders 91]. Two examples are given

below.
. Endogenous versus exogenous taxonomies classify events according to whether the
error was caused by something within the individual or by something in the

environment.

J Some phenomenological taxonomies classify errors according to slips (a good plan

but poor execution) versus mistakes (an incorrect intention) [Norman 88].

Taxonomies are often partitioned into various levels of analysis. These levels view each

error in the following ways: what happened, how it happened, and why it happened.

31

Software Engineering

Various taxonomies are used by software engineers to guide product and process

improvement efforts [Ostrand 84]. Software defects are classified according to:

* development phase the defect was discovered, i.e., requirements, design, coding, or
testing,

* activity performed when the defect was discovered,

* module size,

e module name,

* number of modules affected,

* system function,

e origin (development phase the defect was introduced),

* cause, and

e severity, and

e cost-to-fix.

wSroduc ol

Classifying defects according to the phase in which they were discovered allows
developers to analyze the development process. Developers analyze the data to determine if

additional activities should be incorporated into the current software process.

By classifying defects according to activity in which the defect was detected, the
effectiveness of individual development activities can be assessed [Weiss 79]. This
information can be used to identify improvements to made to the activities to maximize their

effectiveness [Henry 93].

32

Defect classification schemes based on module size, module name, number of
modules affected, or system function can impact system design or redesign. In addition,
these taxonomies have been used to guide system tests by identifying where defects are

most likely to be found [Myers 79].

Identifying the origin and cause of a defect helps developers track a causal chain of
events. If a documented development history is not available, identifying the origin of a
defect requires subjective judgments from the developer(s). Causal analysis techniques
(see section 2.3) ask developers to select one of several predetermined causes, or

summarize their opinions in one or two statements.

Software engineers also assess the severity, and cost-to-fix, of individual defects in
order to prioritize the defects prior to correction. Severity is captured by whether or not the
problem is superficial, produces incorrect output, or is considered a system failure. The
cost-to-fix is dependent on the life cycle phase in which the problem is detected, and is

often amplified in later life cycle phases [Pressman 87].

Usability Engineering

Some research in human-computer interaction has focused on classifying usability
problems to draw conclusions about the relative effectiveness of individual activities
methods [Brooks 94] [Desurvire 94] [Karat 94a] [Mack 94] [Nielsen 93b]. Four
classification schemes are used most frequently. These taxonomies classify usability

problems according to:

33

» whether or not the problem is a core problem or a non-core problems (a binary
taxonomy),

 the usability heuristic violated,

e severity rating, and

* location in the dialogue.
Each classification scheme is described briefly below.

A usability problem is classified as a core problem if it is associated with the portion
of the interface which is examined in depth during a heuristic evaluation. Non-core
problems are other problems identified during a cursory examination of the remaining parts
of the interface. Studies which have investigated the differences between inspection
methods and user testing have compared respective sets of core problems in an attempt to

identify and explain observable differences [Karat 92] [Karat 94a].

Some researchers and practitioners classify usability problems according to the
usability heuristic that is violated. The 10 commonly used usability heuristics are outlined

below:

e simple and natural dialogue,

* speak the users' language,

* minimize the users' memory load,
* consistency,

» feedback,

* clearly marked exits,

¢ shortcuts,

34

» precise and constructive error messages,
e prevent errors, and

¢ help and documentation [Nielsen 93b].

Various techniques exist for assessing the severity of a usability problem. Three

different techniques are presented below.

The first technique focuses on three factors: the frequency with which the problem
occurs, the impact of the problem, and the persistence of the problem [Nielsen 93b].

Using these three factors, developers/evaluators rate each problem from 0 to 4 as follows:

0 - not a usability problem,

1 - cosmetic problem, fixed only if extra time available,
2 - minor problem, attach low priority for fix,

3 - major problem, attach high priority for fix, or

4 - catastrophe, must be fixed prior to release.

This particular technique has been used in conjunction with usability inspection methods

such as heuristic evaluation.

The second technique assesses severity according to a three point scale: a minor
annoyance or confusion, a problem which caused an error, and a problem which caused a

task failure [Desurvire 94].

The third technique assesses severity by focusing on two factors: impact (on the

user) and frequency (percentage of users who experience the problem). The relationship

35

between these two factors is referred to as the Problem Severity Classification (PSC), and
is illustrated in Table 2.1 [Karat 92]!. The entries in the table are the numeric ratings that
are attached to each usability problem (1 represents the most severe, 3 represents the least

severe).

Table 2.1. Problem Severity Classification (PSC) values.

Frequency (% of users)
Impact High Moderate
Task High 1 1
Moderate 1 2
Low 2 3

If the problem is determined to be a "no action problem," it is assigned a value of 99.

Otherwise, it is assigned a value of 1, 2, 3.

Regardless of the techniques used to assign a severity rating to each usability
problem, severity ratings are used to classify usability problems detected on a given
software project. Developers use the ratings to identify which problems will be corrected
as well as when those problems will be corrected (which development phase or product

release).

Usability problems are also classified according to where their location in the user
interface, i.e., the specific point in the dialogue at which the problem occurred. One such

categorization distinguishes among problems found in a single location in the interface,

1 This table is taken from Table 1, page 401.

36

those found at two or more locations, problems with the overall structure, and those caused
by omissions [Nielsen 93b]. This categorization has been used to contrast effectiveness of
paper mock-ups with working prototypes and to determine if specific types of usability

problems are easier to detect than others.

A Comparison of Perspectives

Some of the classification schemes used by cognitive psychologists have been
applied to the user interface. Phenomenological taxonomies that are based on omissions,
substitutions, or unnecessary repetitions have been modified to examine the way in which
the user completes a task on a software system. Issues such as user perception, memory,
and attention (in a cognitive taxonomy) are important aspects of usability and are currently
the focus on much research in human-computer interaction. Error classification based on
biases or deep-rooted tendencies of the subjects have not been investigated by human-
computer interaction researchers and may not be as applicable to usability. Schemes which
classify errors as either endogenous or exogenous can be useful as developers choose

between training (endogenous errors) or system redesign (exogenous errors).

Although the levels of analysis (what happened, how it happened, and why it
happened) have been used to guide problem reporting, many of the taxonomies developed
by .psychologists have not been incorporated into the life cycle. In general, software
developers do not have the background or expertise to use these taxonomies efficiently or
effectively. Some of the classification techniques, such as slips versus mistakes, have not
provided developers with the information needed for problem correction [Vora 95]. In
addition, the taxonomic classes discussed above have not been linked to product

improvement activities or process improvement methodology. More research is needed to

37

determine if the approaches espoused by cognitive psychologists can be modified,

extended, or interpreted for use during product development.

Some of the classification techniques used by software engineers have been applied
to user interface development. Usability specialists also associate cost-to-fix to with when
a problem is detected during development. This type of analysis is then used to encourage

the introduction of user interface development activities early in the product life cycle.

Other taxonomies used by software engineers have not been applied to the user
interface. These include module size, module name, number of modules affected, origin,
and cause. Interviews with software developers indicated that sometimes usability
problems are classified according to system function and corrected when the associated
functional enhancement is implemented. More work is needed to determine if the
classification schemes used by software engineers can contribute to user interface

development process.

While the taxonomies currently used by usability engineers compare individual
evaluation techniques, they fail to provide sufficient information to guide both process and
product improvement. Research is needed to determine if techniques for classifying
software defects can be applied to usability problems, if new taxonomies for classifying
data can be discovered, and which classified data are relevant to process and product

improvement.

38

2.3 Data Analysis

While the classification of defects does provide interactive software developers with
a better understanding of system problems and potential solutions, further analysis of
classified product and process data can provide even greater understanding. This section
outlines approaches used by software engineers, usability engineers, and concludes with a

comparison of the approaches.

Software Engineering

Software engineers have developed many techniques for analyzing product and
process data. Many analysis scenarios focus on the data and classification schemes
outlined in sections 2.1 and 2.2. Two other important techniques are described here:

causal analysis and clustering analysis.

To develop a causal theory, relationships among the following types of information

need to be identified:

. explanations for its introduction,

. a description of the actual event (e.g., software defect),
. when the problem was identified,

. when it was introduced, and

. justifications for actions taken.

39

The four levels of inquiry used by psychologists to analyze human error can
contribute significantly to a causal theory [Senders 91]. The first level of inquiry (why the
error occurred) is directly linked to the explanation for its introduction. The second level
(what error occurred) corresponds to a description of the actual event. The third level
(which object was involved) may also be included in the description of the event. The
fourth level (to whom, where, and when it occurred) corresponds, in part, to when the

problem was identified and when it was introduced.

As causal relationships are identified, the results can be used to create techniques
and activities designed to eliminate error (process improvement), determine error rates and
identify sources of system unreliability, and provide a comprehensive context for the error

if the user's environment is included in the problem description.

If no causal mechanisms can be determined, then a software developer can do little
except study the statistics and examine circumstances under which error rates vary. This
cursory type of analysis will reveal consistent relationships between the frequency of errors
and individual development circumstances; however, it does not provide a rationale on

which to base long-term decisions spanning multiple development projects.

Causal analysis is a technique for identifying the cause of a software defect. As the
causal chain is tracked, a practical cause (the point(s) in the chain at which some action can
be taken) surfaces. Software engineers have used defect causal analysis to determine
when, and what, corrective actions are needed [Giblin 92] and have reported that defect
causal analysis reduced certain types of errors over subsequent releases of a given project

[Card 93].

40

Clustering analysis has also been used by software engineers to analyze problems
by investigating groups of problems. The classification schemes discussed in the previous
section provide the framework for this type of analysis. One important result discovered
during analysis was that software defects are generally found in close proximity to other
defects, i.e., that the probability that more errors exist in a program section is proportional
to the number of defects already detected in that section [Myers 79]. This observation has
enabled developers to focus testing efforts on sections of code (particular modules or
functions) which appear to be more error prone. This particular result has encouraged
software engineers to look for other ways in which defects might cluster, e.g.,

development phase discovered and development phase introduced [Giblin 92].

Usability Engineering

Some work in user interface development has focused on identifying clusters of
usability problems. Two of the classification schemes discussed in section 2.2 provide the
basis for this analysis: heuristic analysis [Nielsen 93b] and location in the dialogue.
Although usability problems have been analyzed according to heuristic, little research
addresses how the analysis is to be used in either product or process improvement. The
heuristic categories have not been linked to activities, methods, or techniques. Identifying
clusters of usability problems according to their location in the dialogue is similar to other
research efforts that have focused on classifying user errors according to tasks and
subtasks. This type of analysis has enabled developers to suggest appropriate corrections

that eliminate the errors in each cluster, i.e., for each task [Cox 94].

41

A Comparison of Perspectives

Research is needed to apply both causal and clustering analysis to usability. To
determine whether or not causal analysis will be an effective tool for user interface
developers, much data needs to be collected and analyzed. In particular, data and analysis
techniques are needed to determine if relationships identified by software developers hold
true for the user interface. For example, no evidence suggests that the probability that
usability problems exist in a given dialogue element is proportional to the number of
usability problems already detected in that element or that usability problems predicted by

experts cluster differently from problems observed during a user test [Mack 94].

Although usability problems have been analyzed for clustering according to
heuristic and location in the dialogue, more work is need to determine if clustering or
grouping can provide a more thorough understanding of usability problem characteristics
[Jeffries 94]. Statistical analyses can be used to determine if relationships exist between
clusters of usability defects or if relationships among clusters exist across projects and

application domains.

2.4 Strategies Based On Data Classification And Analysis
This section focuses on process and product improvement strategies used by

software engineers and those used by usability engineers. The section concludes with brief

comparison of strategies used by each community.

42

Software Engineering

Error data (quantitative and/or qualitative) are crucial to the success of both process
and product improvement. These data are often used to guide future development projects

[Ostrand 84] [Weiss 79] and can be used to determine:

. the effectiveness of current software development techniques,
. the success of new development methodologies,

. whether or not design goals were met,

. the effectiveness of the error detection techniques,

. the major sources of error,

. error rates, and

. trends in error statistics.

Tracking software error data contributes significantly to strategies which include project
estimation and progress monitoring. In addition, removing causes of major defects offers

the best short-term potential for guiding product improvement.

Error prediction is also an effective product improvement strategy [Senders 91].
Predictions can be made about types of errors, point probabilities (probability that

something will happen on a particular occasion), and changes in error rates.
Sound error prediction requires that both the timing of an error (when it will occur),

and its form be identified. Taxonomies chosen for this type of information are critical,

because a high correlation has been found between causality and taxonomic categories.

43

Taxonomies must be selected carefully as they influence the ease with which errors are

predicted, e.g., one that is too specific can interfere with prediction.

Software engineers have used several strategies based on error prediction to reduce
errors. One strategy is to predict the form an error will take so that the system design can
be improved to "absorb" the errors. A second strategy assumes that certain types of errors
can not be eliminated. It focuses design so that undesirable consequences of error (such as
frequency or severity) are reduced or minimized. A third strategy is not correct certain
classes of errors, but handle them through improved training sequences or tutorial chapters

in the user manual.

Cost/benefit analysis also can be used to develop and justify a product and process
improvement plan. Early work in evaluating development effort assumed that effort was
apportioned in the same way no matter what kind of project was being developed [Brooks
75]. Project development effort appeared to be distributed as follows: one-third on
planning, one-sixth on coding, one-quarter on unit and integration testing, and one-quarter
on system testing. Since observations from individual case studies differed with these
assumptions, development efforts across projects were compared. The results indicated
that the distribution of effort not only varied but was dependent on the level of difficulty

(project complexity).

Investigation into the variation in development effort resulted in several models in
which costs and productivity are compared. Two such models are COCOMO (which
actually consists of three separate models, one for each level of detail used in the estimates)
[Boehm 81] and the Pfleeger model (which allows the user to define any factor that affects

development cost) [Pfleeger 91].

Other approaches to cost/benefit analysis include models for short-and long-term
cost justification [Bias 94]. These approaches include a basic framework [Mayhew 94], a
business case approach [Karat 94b]; and approaches from three perspectives (vendor,

internal development project, and contractor) [Dray 94] [Ehrlich 94] [Mauro 94].

Usability Engineerin

Most experts agree that usability-related process and product improvement can be
achieved by performing any user interface development activity [Hix 93] [Nielsen 93b].
Some mappings between specific user interface development activities and individual life
cycle phases and the associated software engineering activities have been suggested [Curtis
92] [Mantei 88]. However, little guidance focuses on the selection of individual user
interface development activities or team member roles and skills appropriate for a specific
project. Current recommendations for developers beginning a usability engineering
program focus in three areas: discount usability engineering, comparison of user interface

development activities, and cost/importance analysis.

The "discount usability engineering" method utilizes a small set of less expensive
user interface development activities to reduce costs associated with user interface
development [Nielsen 89] [Nielsen 93b] [Nielsen 94a]. It is suggested that the activities

listed below be used during early stages of development when prototypes are available:
o user and task observation,

. scenarios,

. simplified thinking aloud, and

45

. heuristic evaluation.

Observing users performing work-related tasks at customer sites [Holtzblatt 93], and the
use of scenarios [Carroll 90] [Carroll 92] are techniques used prior to and during system
design. Simplified thinking aloud and heuristic evaluation are used to evaluate the level of
usability in a system's user interface. Although heuristic evaluation has been found to be
useful as an inspection method, greater success is achieved when usability experts and/or

domain experts perform the evaluation [Nielsen 94b].

Some recent research has focused on comparing and contrasting user interface
development activities in an effort to provide developers with sufficient information to
guide the selection and performance of individual activities. These efforts have examined
individual activities, types of activities (e.g., inspection methods versus user testing
methods), and the way in which those activities can be performed. Development activities
were examined from the following perspectives: types of usability problems, individual
evaluator versus groups of evaluators, and evaluator expertise. The results of these studies

are outlined below.

Inspection methods uncovered types of usability problems different than those
discovered during user testing [Desurvire 94] [Karat 94a] [Nielsen 93b] [Nielsen 94].
Analysis indicates that serious usability problems can be overlooked when inspection
methods are used. These problems often are classified as minor problems, but result in a
high level of frustration for the user. In addition, inspection methods do not enable
developers to predict final system acceptance or user preferences. However, these methods

do provide developers with an inexpensive way to detect some problems prior to

46

implementation and permit quick (and relatively inexpensive) evaluation of alternative

designs or alternative products for in-house use [Brooks 94].

Some research has focused on comparing usability problems detected by groups of
evaluators with usability problems detected by individual evaluators. Groups of evaluators
often obtain more reliable results than individual efforts at evaluation and tend to catch false
problem reports [Karat 92]. However, groups do not always catch as many unique
problems as a set of independent evaluators [Nielsen 94]. More work is needed to

determine if specific activities are more effectively performed by individuals or groups.

Several studies examined the impact of evaluator expertise on detected/predicted
usability problems [Desurvire 94] [Nielsen 93b]. Although non usability experts identified
some problems, better results were achieved by usability specialists. The best results were

achieved by individuals who were experts in both the application domain and usability.

One study compared various usability methods by asking thirteen usability
specialists to rate the impact of individual methods on the level of usability that could be

achieved in the final product [Nielsen 93b]. The top five methods were:

. iterative design,

. task analysis,

. empirical tests with real users,

. participatory design, and

. visit customer sites prior to design.

47

Although this study provides general guidance for developers by indicating which
activities were most useful, the conclusions that can be drawn are limited. First, various
developmental factors, e.g., organizational culture, were not taken into account. Second,
only usability specialists were surveyed and no indication of how much the level of
expertise impacted the conclusions was provided. Third, the survey did not differentiate
between participatory design activities or task analysis activities. Although the survey
results do provide guidance as to the category of activity, developers would still have to
decide which specific activity, within a category, would be most appropriate. Fourth, a
high statistical correlation existed between the ratings and the extent to which the methods

were actually used during development.

Cost/importance analysis is a product improvement technique which is used to
prioritize usability problems prior to correction [Hix 93]. This technique allows developers
to distinguish problems which must be corrected regardless of the cost from those which

can be corrected based on other criteria such as associated cost or impact on usability.

Developers using this method rate each problem according to the cost-to-fix and
relative importance to system usability. The cost-to-fix is given by three values: low,
medium, and high (which could be derived based on numerical estimates). These values
reflect the level of difficulty that will be encountered by developers when the problem is
corrected. The importance of the correction is evaluated similarly. A problem's importance
can be assessed by a thorough analysis of videotaped user testing sessions using metrics
such as the number of times a problem occurred, the delay for the user, or how widespread
a problem is. If inspection methods are used, the accuracy with which the importance is

estimated depends on the expertise of the developers/evaluators.

48

Usability problems detected on a given project are labeled and entered into a table

such as the one given in Table 2.2. Based on their placement in the table, problems are

selected for correction.
Table 2.2. Cost/importance table.
Problem Importance
Low Medium | High

Low

Cost

To Medium

Fix
High

Although cost/importance analysis has been used successfully, further investigation is
needed to increase the benefits. In particular, studies are needed to determine if assigning
costs to classes of usability problems will help developers as problems are selected for

correction.

Cost/benefit analysis is also used by usability engineers to justify and develop a
usability engineering program. One software engineering model discussed above
(COCOMO) was extended to include user interface development activities. It is used to
assess the costs and benefits of incorporating human factors in the software life cycle, and

outlines both tangible (and intangible costs as well as benefits [Mantei 88].
An alternative approach to cost/benefit analysis incorporates comparison of costs

and benefits associated with various sets of development activities. When the cost of

discount usability engineering, discussed in Section 2.4.2, was compared with costs

49

summarized above, it was found that the discount method substantially reduced the cost

without sacrificing the overall quality of the results [Nielsen 93b] [Nielsen 94a].

A Comparison of Perspectives

Software engineers have developed strategies for product and process improvement
based on defect causal analysis and defect clustering. Research is needed to determine if
causal analysis can be applied successfully to the user interface. Although current research
in usability problem clusters provides a good first step, more work is needed to determine

appropriate categories of usability problems.

Error prediction techniques used by software engineers also need to be extended to
include usability. Although usability specialists are beginning to use inspection methods to
predict the presence of individual usability problems, this type of data collection is not

widespread (see Section 2.4.2).

Obtaining a reliable cost/benefit model for the incorporation of human factors in the
software life cycle requires large amounts of historical project data collected over a variety
of projects [Mantei 88] [Thomas 95]. Thus far, information of this type has not been
collected, tracked, or analyzed. Much data are needed to examine the relative costs and

benefits associated with development individual activities.

2.5 Summary

Two bodies of work (software engineering and usability engineering) are relevant

to this research project. Four research topics were examined in each body of work: data

50

gathering, problem classification, data analysis, and improvement strategies. Each topic
was discussed first from a software engineering perspective and then from a usability
engineering perspective. Methods, techniques, and approaches used in each research
community were compared. Research that is needed to extend current results to include

usability were also presented.

51

3 CONSTRUCTION OF THE USABILITY PROBLEM
TAXONOMY

Chapter 3 describes how the Usability Problems Taxonomy (UPT) was developed.
Section 3.1 outlines initial data collection that occurred early in the research effort.
Analysis of that data is presented in section 3.2. Section 3.3 outlines how the data and
analysis were used to build the UPT. Section 3.4 examines four strengths of the UPT.

The findings presented in this chapter are summarized in section 3.5.

3.1 Initial Data Collection

Four software-development organizations agreed to provide data for this research.
The organizations, located in government and industry, are designated only as A, B, C,
and D to protect their identities and the proprietary nature of the data. The size of the
organizations ranged from large to small, as did the size of the development teams.
Developers at organizations A and B had access to pérsonnel with usability-related
expertise and performed various user interface development activities early in the
development process. One developer at organization C had limited experience in user
interface development and attempted some user interface development activities during
development. Developers at organization D focused on usability by performing user tests
to identify usability problems and determine the level of usability achieved in the software

system.
Five development projects were surveyed: one at A, one at B, two at C, and one at

D. The systems had been under development for at least one year. Each system has a

graphical user interface that allows the user to enter data or commands using the keyboard

52

and to use the mouse to directly manipulate objects on the screen. The systems spanned
several application domains. Projects B and C1 included hyperlinks for navigation. This

information is summarized in Table 3.1.

Table 3.1. Participant development projects.

Project Type Application domain Hyperlinks Usability
expertise
A Government Lab Computer-aided software No yes
engineering (CASE) tool
B Commercial Operating system with Yes yes
on-line help
Cl Contract On-line help Yes limited
C2 Contract Banking system No limited
D Commercial Network access system No evaluation only

The projects were designed for users with different levels of expertise. Two
projects (A and D) were intended for users who are expert in the respective application
domains. Projects B, C1, and C2 were developed for users with varying levels of
application domain expertise. The level of computer expertise likewise varied from project
to project. Three systems (B, C1, and C2) were designed for computer novices as well as

computer experts, while A and D were developed for a more restricted user group. See

Table 3.2.
Table 3.2. Levels of expertise of the intended user groups.
Project Domain expertise Computer expertise

A Expert Moderate to expert
B Novice to expert Novice to expert

Cl1 Novice to expert Novice to expert

C2 Novice to expert Novice to expert
D Expert Novice to moderate

33

Usability problems were identified (observed) on each of the five projects during
user interface evaluation. The usability problems for projects A, B, C2 and D were
identified on site at the development organization, those on project C1 were identified at
Virginia Tech using a copy of the system under development. Developers identified the
problems on projects B and D. The author and a colleague identified usability problems on
projects A and C1. The author, a colleague, and developers identified problems on project

C2. See Table 3.3.

Table 3.3. Location, evaluators, and methods used.

Project Location Evaluators Method
A On-site Author and colleague Expert evaluation
B On-site Developers User test
Cl1 Virginia Tech Author and colleague Expert evaluation
C2 On-site Author, colleague, and developers User test
D On-site Developers User test

Usability problems were identified during user testing with one user at a time, user
testing with two users at a time (co-discovery learning), and expert evaluation by the author
and a colleague. During the expert evaluation, three techniques were used: heuristic
evaluation [Nielsen 90], task-based evaluation, and object-based evaluation (a new
technique developed by the author). The steps used in the performance of each of these

techniques are outlined briefly below.

Heuristic evaluation

Evaluators identified a small number of core (primary) tasks for the system under

evaluation. Using the set of heuristics in Table 3.4 as a guide, evaluators identified

usability problems as each core task was performed.

54

Table 3.4. Usability Heuristics.

Heuristic
Simple and natural dialogue
Speak the users' language
Minimize the users' memory load
Consistency
Feedback
Clearly marked exits
Shortcuts
Precise and constructive error messages
Prevent errors
Help and documentation

Task-based evaluation

For the portion of the system under evaluation, the evaluators listed all user tasks,
various paths through those tasks, and possible user errors (deviations from the task). The
evaluators identified usability problems encountered as they attempted each path through a

task as well as possible deviations from those paths.

Object-based evaluation

Evaluators listed each type of object (e.g., buttons, title bars, scroll bars, fields,
dialogue boxes, menus, icons, hyperlinks) present in the user interface. Taking one type
of object at a time, evaluators examined each individual object of that type throughout the

interface and identified usability problems associated with those objects.
A total of 645 usability problems were identified using the evaluation methods listed

in Table 3.3. Written problem descriptions were gathered from lists of usability problems

available in problem reports, notes taken during evaluation activities, a database of usability

55

problems, and reports that contained recommendations, solutions, and user preferences in
addition to problem descriptions. Since usability problems were identified using evaluation
activities performed on prototypes or specific system components, the number of usability
problems collected on each project (given in Table 3.5) does not reflect either the level of
usability achieved in the software system or the emphasis placed on usability at that

organization.

Table 3.5. The reporting techniques and number of identified problems.

Project Reporting techniques # Problems
A Notes containing list of problems 91
B Database containing problem descriptions 336
Cl Notes containing list of problems 89
C2 Notes containing list of problems 54
D Reports containing lists of problems 75

3.2 Initial Data Analysis

This section describes how heuristic analysis was used to classify the data
described in section 3.1. The section concludes with a discussion of the weaknesses of

heuristic analysis with respect to usability problem classification.

3.2.1 Usability Heuristic Analysis

Heuristic analysis was used to categorize (classify) two-thirds of the identified
usability problems. To classify a given problem, the problem description was compared to
each of the 10 heuristics listed in Table 3.4 above to determine if the presence of the
problem violated the premise of the heuristic. For example, if the user has instructed the

system to perform a lengthy operation and the system does not provide any feedback for

56

the user (e.g., message box, status bar), the problem would be classified as a feedback
problem, since needed feedback was missing. The violated heuristic, feedback , would be

recorded for this problem.

The meaning of each heuristic was derived from the actual words in Table 3.4 in
section 3.1. This differed slightly from the original interpretation for three of the 10
heuristics [Nielsen 94b]. A fourth heuristic, help and documentation, was judged to be
very vague. The interpretation for the three heuristics (speak the users' language,
shortcuts, and precise, constructive error messages) used in this research, as well as the

procedure used to classify a "help" problem, are discussed briefly below.

The original interpretation of the speak the users' language heuristic included mental
model and metaphor issues. Mental model and metaphor problems were not included in
this category for two reasons. First, these problems are not always due to the language
used in the user interface. Including them in a category about language obscures much of
their meaning. Second, mental model and metaphor issues are so important to usability that

they need to be considered separately.

The shortcuts heuristic included hypertext links and system-provided default
values. Since hypertext links are a recent innovation, much can be learned about usability
problems that occur with this particular navigational technique. Therefore, the decision
was made to separate these issues from other shortcut problems. Similarly, system default
values were distinguished from other shortcuts such as button access to menu functionality

and aliases. Problems with defaults were not adequately captured by the word "shortcuts."

57

The original interpretation of the precise, constructive error messages heuristic
included error recovery. The interpretation used in this research did not. Although a good
quality error message can help a user recover from a mistake, error recovery is about much
more than reading and interpreting a message. Error recovery includes such issues as easy
access to the part of the user interface in which the correction must be made. As in the two
cases discussed above, error recovery was not adequately captured by the words "precise,

constructive error messages."

Usability problems that occur when help or documentation was used would be
marked as help and documentation problems. They would then be categorized using the

remaining nine heuristics and the "other" category described below.

When a heuristic category could not be identified for a given usability problem, the
problem was labeled "other." This occurred when a problem corresponded to the excluded
meanings discussed above. It also occurred when the a problem could not be classified in
any heuristic category (e.g., naming conventions that are not meaningful enough, the
user's inability to discover direct manipulation, poorly displayed on-line help information,

and the picture on an icon is not meaningful to the user).

Usability problems from four of the five projects were categorized using heuristic
analysis. All of the problems identified on projects A, C1, and C2, and roughly half of the
problems identified on project B, were categorized using this method. None of the
problems identified on project D were categorized at this time. The problems were
categorized (analyzed) by either the author or the author and a colleague as outlined in Table
3.6 below.

58

Table 3.6. Number of problems categorized according to heuristic.

Project # Analyzed Analyzed by
A 91 of 91 Author and colleague
B 172 of 336 Author
Cl 89 of 89 Author and colleague
C2 54 of 54 Author and colleague
D 0of 75 None categorized
Total 406 of 645

The decision not to categorize all of the problems was made after 406 problems had
been classified. At that point, the author assessed the progress that had been made. It was
apparent that categorizing additional problems would not move the research forward and
that heuristic analysis was only an interim step in the research effort (specific reasons for
this determination are given in section 3.2.2). As a result, the decision was made not to
examine the remainder of the problems on project B nor any of the problems on project D.
This was a good decision, as usability problems that had not been previously examined

were needed for the UPT reliability study that is presented in Chapter 4.

In spite of the attempt to define the heuristics clearly and precisely, heuristic
analysis revealed weaknesses in the following areas: distinguishability, mutual
exclusiveness, completeness, and specificity. The 10 heuristic categories did not
adequately distinguish among different types of usability problems, i.e., different types of
problems were classified according to the same heuristic. In addition, the heuristic
categories were not mutually exclusive, i.e., individual problems were classified according
to more than one heuristic. The categories were not complete, i.e., a large number of
problems could not be classified according to any heuristic. And, the heuristics were not
specific enough, i.e., a large number of problems were classified according to various

heuristics, but were not adequately captured by those heuristics.

59

Each of the four weaknesses is examined below. Example problem descriptions are
used to illustrate each point. The descriptions, delineated by bullets, have been sanitized to

protect the proprietary nature of the data.
Distinguishability

The following two problems are both categorized as feedback problems; however,
they are very different problems (the first is visual, the second is about language). The

feedback heuristic does not distinguish between these two problems.

* During the Save operation, the mouse pointer shape does change from an arrow to an
hourglass, however, the hourglass is too small to see.
* The feedback message "Record added successfully to database. Transaction #

1243257978783323¢"."

The first feedback problem is related to non-message feedback and occurs because the
hourglass is not large enough to provide feedback information. The second feedback
problem occurs because the message contains unnecessary information (transaction

identification number).

The next two problems are both categorized as simple and natural dialogue
problems. Although they are very different problems (the first is a visual, layout problem,
the second is about task mapping), the simple and natural dialogue heuristic does not

distinguish between these two problems.

60

* The user must enter data in 10 fields in a dialogue box. Although the fields do not need
to be completed in a specific sequence, several users have complained that they are not
arranged on the screen in the order in which they would prefer to complete them.

* In adding a variable to a mathematics equation, the user progressed through many

dialogue boxes, each of which asked the user to enter only one piece of information.

The first problem is related to the visual layout of objects on the screen and occurs because
the arrangement of those objects is not natural to the user. The second problem occurs
because the user task was not mapped properly to the system, i.e., unnecessary steps were

added to the user task.

Mutual exclusiveness

The following two problems illustrate that the heuristic categories are not mutually
exclusive, i.e., a specific usability problem is correctly categorized in more than one

heuristic. Each of the following problems is classified according to two heuristics.

 Users did not know what the "OK" button meant.

This problem is classified as a clearly marked exits problem as well as a simple and natural
dialogue problem. The "OK" button is used to close a window and is considered to be an
exit mechanism. It is also a simple and natural dialogue problem in that the user does not
know how to complete the current step in the task. Consequently, the user cannot continue

to either the next step in the current task or begin the next task.

61

e Users do not want to use a menu to restore a window to its normal size from its

iconized state, i.e., users want window control buttons available on iconized windows.

This problem could be classified as a consistency problem (iconized window features are
not consistent with features available in non iconized windows), and as a shortcut problem

since shortcuts (control buttons) are not provided on the iconized windows.

Completeness

In addition to the problems that fit the excluded interpretations described earlier in
this section, many problems could not be classified according to any heuristic. The
following list provides examples of problems that cannot be classified using the heuristic

categories.

* The user wants to delete tables and entries in those tables.

* Once a variable's name has been saved, it cannot be changed.

* The font used on the column headers is too small for users to read easily.

» Users did not know they could select a word in a text entry field and type over it. They
backspaced over individual characters and retyped the word correctly.

* When a new row was added to a table too large to be entirely visible in a window, the

user had to scroll to find the newly added row.

The first three problems are related to missing system functionality, the inability of the user
to reverse an action, and the appearance of a text object, respectively. The last two are
about the inability of users to extend their current knowledge of direct manipulation to a text

object, and missing automation.

62

Recall that four types of problems normally classified in the speak the users'
language, shortcuts, and precise, constructive error messages heuristics were placed in the
"other" category because of the interpretation used in this research. While these four types
of problems did contribute to the large number of problems in this category, many other
types of problems were also included. As will be discussed in section 3.3.1, the "other"
category contains a total of 22 types of problems (18 in addition to these four). This
observation is made to provide perspective for the discussion of completeness, i.e.,
regardless of the interpretation of the heuristic categories (original or modified), the

categories are not complete.
Specificity

Many usability problems can be classified according to one or more heuristic
category; however, those heuristics do not adequately capture the actual usability problem.
The first three problems illustrate this weakness with respect to the consistency heuristic,

the fourth demonstrates this weakness with respect to the feedback heuristic.

* Most of the on-screen instructions in the Save window were formatted in 12 point,
bolded font. The user had trouble reading the last paragraph that was formatted in 7
point font, plain text.

* Default values in data entry fields are available in some windows but not others.

e The XXX window has a white background, but is not editable (the user interface is not

consistent with specifications which states that a white background implies editability).

63

These three problems are all classified as consistency problems. However, this heuristic
does not capture or describe the actual problems. In the first case, while the 12 point font
size is not consistently applied to all on-screen text, this problem is actually about a font
size that is too small to be read easily. The second problem indicates that default values are
not consistently placed in all data entry fields; however, within a specific window, it is also
a missing default values problem. The third problem describes an inconsistency between
the specifications and the user interface. Given the white background, the problem is better

described as a misleading visual cue.

* Although some feedback was present to indicate tabbing from field to field, the user

lost the sense of where she was on the screen.

This problem is classified as a feedback problem (the feedback is present but inadequate
since it is not noticeable enough). The feedback heuristic does not capture the entire

problem,; the problem is also about user's ability to navigate within a window.

3.2.2 Conclusions Regarding Heuristic Analysis

Heuristic analysis was investigated to determine if it could provide the basis for a
taxonomic model of usability problems that could be used in both product and process
improvement efforts. It was concluded that heuristic analysis would not contribute directly
to the goal of this research (see section 1.3). This section outlines the reasons for this

decision.

The heuristic categories are not an effective approach to building a taxonomy of

usability problems. The categories do not have four properties: distinguishability, mutual

exclusiveness, completeness, and specificity (see section 3.2.1). Distinguishability is
critical for developers to who want to use a taxonomy to characterize, and differentiate
among, various usability problems. Mutual exclusiveness is important for statistical
analyses that can be used to analyze a set of usability problems using the taxonomic
categories. Completeness is necessary so that developers can categorize all identified
problems. Specificity is equally important for developers who use a taxonomy to expose

the actual problem contained in a description.

In addition, the heuristics are not a cost-effective classification tool. Heuristic
analysis is not only time consuming but arduous. This is primarily due to the fact that the
heuristics are prescriptive. Since problem statements are descriptive, attempting to classify
them using a set of prescriptive categories requires a change of perspective for each
problem. The heuristics were derived from a set of usability guidelines. The guidelines
were developed to help user interface designers avoid usability problems or prevent them
from appearing in the user interface. It is difficult to use strategies for preventing usability

problems to describe those problems when they occur.

Although heuristic evaluation has been used to identify usability problems and
improve product usability, the heuristic categories do not support other aspects of product
improvement. The heuristics have not been shown to help developers write higher quality
descriptions. Since the heuristics categories are not mutually exclusive, some types of
statistical analysis of data categorized by heuristic are difficult and hard to interpret. The
heuristics also do not provide an adequate framework in which to compare and contrast
usability problems detected on a given project. As a result, they do not help developers

design and compare both local and global solutions.

65

In addition, the heuristics do not provide an effective approach to usability-related
process improvement. The heuristic categories are hard to interpret, i.e., the categories
cannot be linked to development context. Recall the two simple and natural dialogue
problems described under distinguishability in section 3.2.1. The simple and natural
dialogue heuristic does not provide any guidance for addressing those problems. The first
problem would be best corrected by a graphic designer, the second problem by a developer
who is either proficient in task analysis or requirements analysis, or is an expert in the
application domain. If, for example, 25% of the problems detected on a given project are
classified as simple and natural dialogue problems, this heuristic does not provide any
guidance with respect to the correction or prevention of those problems. Similarly, no clear
association exists between any of the individual heuristic categories and either team roles

and skills or development activities, methods, and techniques.

3.3 Development of the Usability Problem Taxonomy

This section describes how the heuristic analysis described in section 3.2 was used
to build the Usability Problem Taxonomy (UPT). Section 3.3.1 describes the process used
to examine problems categorized within each heuristic category. Section 3.3.2 outlines

how clusters of problem types were incorporated directly into the UPT.
3.3.1 Revisiting Usability Problem Data: Subtypes

Although the weaknesses of heuristic analysis described in Section 3.2 precluded
its use as the basis for a taxonomic model of usability problems, the classification proved to

be a productive first step in the construction of the Usability Problem Taxonomy. The

problems categorized within nine of the 10 heuristic categories were examined closely to

66

identify if commonalities and similarities existed among the problem descriptions (recall
that the tenth heuristic, help and documentation, was used only to mark a problem). The
problems placed in the "other" category (that could not be classified according to any

heuristic) were also examined.

Commonalities and similarities among problem descriptions were identified, and the
problems within each category were divided into various subtypes (subtype refers to a
group or cluster of usability problems within a category). A total of 74 subtypes were
identified. The subtypes for each heuristic are given in Tables 3.7 - 3.15. Table 3.16

contains subtypes identified for the "other" category.
The simple and natural dialogue category contains seven types of problems, listed
in Table 3.7. The subtypes vary from screen clutter (1), screen layout (5) and unnecessary

buttons (7), to wording (2) and task mapping (3, 4, 6).

Table 3.7. Subtypes for simple and natural dialogue.

Subtype | Simple and natural dialogue
1 screen clutter (dialogue too complex)
wording affects task completion, e.g., not knowing what the OK button does
poor overall mapping to users' tasks
poor mapping to sequence of user subtasks
inadequate screen layout (grouping related features, use of color, location of icons)
extra, unnecessary steps in task on system
unnecessary features and extra buttons

N wiN

Eight subtypes were observed for speak the user's language. These subtypes are
given in Table 3.8 and were concerned with language used in the user interface. The
subtypes focused on problems that occurred when clear, precise, application domain terms

were not used.

67

Table 3.8. Subtypes for speak the users' language.

Subtype | Speak the users' language

system terms not users' terms

nonstandard meanings for words

enforced naming conventions (limited user-defined word length)
laymen's terms, not domain terms

threatening terms

bossy terms

terms not meaningful

confusing terms

-1 Rl (=Y AV,] BN (VA1 | S] T

Table 3.9 contains the five subtypes for minimize users' memory load. These
subtypes described problems that were associated with the system's inability to help the
user complete the task without complications. For example, users progress more easily
through a sequence of subtasks if dialogue elements are displayed rather than hidden, if the
system describes the requirement format for input, makes generic commands available, and

ensures that object names are unique.

Table 3.9. Subtypes for minimize users' memory load.

Subtype | Minimize users' memory load

1 dialogue elements not displayed to user

2 system does not describe required format of user input or provide example

3 need generic commands (can be applied in multiple circumstances with similar results)
4 more than 1 item named too similarly, names on buttons and title bars do not provide

enough information
5 non displayed items (user must remember pathname, which fields are required and
optional)

Consistency issues arise frequently in the user interface, resulting in eleven
subtypes (see Table 3.10). The subtypes vary from the way the objects in the user
interface look (1) and where they are placed (2), to system responses (3 and 4) and naming

conventions (5). In addition, consistency issues arise with respect to object affordances

68

(6), interpretation of similar types of feedback (7), and the types of information presented
in an on-line help document (8). Subtypes 9, 10, and 11 have to do with the a consistent
approach to task structure (both within the given system and as it is compared with other

application software).

Table 3.10. Subtypes for consistency.

Subtype | Consistency

object look

object placement

mouse click results

system responses (to menu item selection, tab key, OK button)
naming (e.g., menu item and associated dialogue box title bar)
object affordances (and actions on those objects)

meanings of similar feedback

type of information presented (as in a glossary or page pane)
task structure

users' task expectations and system

system with user interfaces of other applications

jard 1=y V=1 [-1Y BN [N (V] ENg [[6] /S

Seven feedback subtypes are presented in Table 3.11. This heuristic contains
problems that occur when needed feedback is missing (1), when feedback is present but

inadequate in some way (2, 3, 4, 6, and 7), or feedback is present but unnecessary (5).

Table 3.11. Subtypes for feedback.

Subtype | Feedback

needed feedback missing_

feedback present but slows user down

feedback present but obscure (difficult to understand), insufficient
feedback present but misleading (tells user the wrong thing)
feedback present but unnecessary feedback

feedback present but not adequately persistent

feedback present but disturbing, threatening

R L= N L. B (98] [N) g

69

Three subtypes were observed for clearly marked exits. These subtypes, listed in
Table 3.12, focused on whether or not the system had an undo feature (1), provided clear
screen exits (2), and allowed the user to exit without an action (e.g., when a window does

not have a cancel button the user is forced to take an action to exit the window).

Table 3.12. Subtypes for clearly marked exits.

Subtype | Clearly marked exits
1 missing undo
2 unclear screen exit
3 exit without action or without prompting for no action (no cancel button)

no

Shortcut problems resulted when needed shortcuts were missing (1) or when the
shortcuts were present but inadequate (2). An example of a missing shortcuts problem
would be not having button access to a frequently used function embedded in a menu. An
example of problem with a shortcut in the user interface would be a key sequences for

menu item that is not intuitive, e.g., control p for copy. See Table 3.13.

Table 3.13. Subtypes for shortcuts.

Subtype | Shortcuts
1 shortcuts missing (abbreviations, function keys, double-clicking, button access to
system functions, macro facilities, aliasing capabilities, reusing interaction history)
2 shortcuts present but not good

The subtypes identified for precise, constructive error messages are listed in Table
3.14. These subtypes describe problems with language (1, 2, 3, and 4), those that may
impede the user's progress through a task (5), and those that do not facilitate error recovery
(6). Note that the first subtype below is similar to speak the users' language (7) which was

about language that was not meaningful.

70

Table 3.14. Subtypes for precise, constructive error messages.

Subtype | Precise, constructive error messages

unclear language

imprecise, rather than general or vague

does not help user solve the problem

impolite, blames user

multi-level messages (user can click for more information)
no link from error message to location in help system

(=23 A% B3 AN L8

Three subtypes were noted for prevent errors (see Table 3.15). Two very specific
subtypes (1 and 3) are about the lack of confirmation for user actions with consequences
and preventing errors that occur when the user clicks a mouse button. Subtype 2 is a more
general category of problems in which the system did not help guide the user through the

sequence of subtasks.

Table 3.15. Subtypes for prevent errors.

Subtype | Prevent errors
1 no user confirmation for actions with consequences
2 system does not guide user during task (shift user focus)
3 closeness of mouse clicks, extraneous clicks on buttons, mouse movement off menus

Commonalities among problems that could not be classified according to the
heuristics (other) yielded the 22 subtypes given in Table 3.16. These subtypes varied from
issues with available system functionality (1 and 6) and naming conventions that were not a
speak the users' language problem (3) to navigation (7) and direct manipulation problems
(8). Several subtypes had to do with on-line help information (14, 15, 16, 17, 18, and
19). As mentioned above, error recovery was included in this list (10). The remaining
subtypes (2, 4, 5, 9, 11, 12, 13, and 22) are concerned with whether or not the system

helps the user complete the task in an efficient manner. Note that subtypes 4, 10, 13, and

71

15 correspond to the four types of problems excluded from three heuristic categories

according to the interpretation for this research (see section 3.2.1).

Table 3.16. Subtypes for other.

Subtype | Other
1 flexibility - missing functionality
2 system slows user down, impedes performance (not directly involved in a specific, core
user task
3 naming conventions (not a speak the user's language problem, not required for task
completion, wording is just not meaningful enough)
4 reasonable defaults and reasonable system responses to an action, visibility
5 look and feel of the interface - placement, arena
6 flexibility - some functionality present, perhaps inadequate number of choices, ignoring
opportunity to make button responses appropriately context sensitive
7 navigation within a screen (field to field)
8 direct manipulation (user was unaware of, did not know about, discoverability)
9 menu organization (grouping features in a menu)
10 €ITOr Tecovery
11 organization of search topics in help search screen
12 visualness (aesthetic quality), ¢.g., font size, appearance, tab appearance
13 mental model and metaphors
14 missing information
15 missing hypertext link
16 organization and structure of information in on-line help text
17 wording (misleading on-screen instructions)
18 duplicate information
19 unnecessary, extraneous information displayed
20 icon (picture) design, non word names which are not meaningful enough to the user
21 users have trouble with new ideas - context menus
22 locus of control with user

3.3.2 Clusters Of Problem Subtypes: The Usability Problem Taxonomy

In the second step of an iterative process, the 74 subtypes were likewise examined
for commonalities and similarities. Commonalities were found to span multiple heuristic
categories. For example, speak the users' language problems could also be found in
feedback messages, error messages, on-screen text (instructions), and problems with
object names and labels. Likewise, the appearance of screen objects, the layout of those

objects, and non-message feedback were all focused on the appearance of the user

72

interface. Shortcuts and the user desiring an alternate path through a task as noted in

"other” (7) were also determined to be similar subtypes.

In addition, divisions between subtypes within a category were also investigated.
For example, consider feedback and speak the users' language (Tables 3.11 and 3.8,
respectively). Feedback issues focus on two areas: problems with non message feedback
and problems with feedback messages. Speak the users' language problems are divided
into problems that occurred with names and labels and problems with words used in prose

or text. The decision was made to keep such divisions separate.

Twenty-one problem types were identified. These problem types, given in Table
3.17 below, emerged as clusters or groupings of the 74 subtypes. An important
observation was that consistency issues occur in many different contexts. As a result,

consistency was included in each problem type.

The 21 problem types were again examined for clustering and were grouped into
five primary categories (Visualness, Language, Manipulation, Task-mapping, and Task-
facilitation). These primary categories are given in the "5 primary categories" column in

Table 3.17 below.

Note that each primary category contains specific problem types. Visualness
usability problems are about the user's ability to see objects in the user interface. Language
problems focus on the user's ability to understand the words (text objects) that are used in
the interface. Manipulation is concerned with the user's ability to understand visual cues

and directly manipulate user interface objects. Task-mapping problems focus on the

73

structure (mapping) of the user task on the system. Task-facilitation refers to the systems’

ability to help the user follow the task structure and complete the task.

Table 3.17. The five primary categories with associated problem types.

5 primary categories Problem types
Visualness Obiect (screen) layout

Object appearance

Object movement

Presentation of information/results

N on-message feedback
Language Naming/labeling

Feedback messages

Error messages

Other system messages

On-screen text

User-requested information/results

Manipulation Visual cues

Direct manipulation

Physical aspects
Task-mapping Interaction

Navigation

Functionalit

Task-facilitation Alternatives

Task/function automation
User action reversal

Keeping the user task on track

The five primary categories were again grouped into two components: the artifact
component and the task component. The artifact component contains three categories:
visualness, language, manipulation. The categories in the artifact component focus on
usability problems users experience with artifacts (objects) in the user interface. The task
component contains two categories: task-mapping and task-facilitation. The task
component focuses on usability problems users experience as they perform tasks on the
system (i.e., problems that occur as the user moves through a task). The two components
correspond to the two dimensions of a usability problem. Together, the two components

comprise the Usability Problem Taxonomy (UPT). Complete descriptions of each

74

component and the five primary categories can be found in Appendix A. These
descriptions, and additional definitions, are provided at a web site (contact the author for

the URL).

The hierarchical structure of the Usability Problem Taxonomy is illustrated in
Figure 3.1. The figure has four levels. The first level corresponds to the starting point and
contains the two component names. From the starting point, usability problem categories
branch to the right. Level 2 contains the five primary categories (this is an important level
in the UPT reliability study presented in Chapter 4 and in the association with development
context discussed in Chapter 5). Levels 3 and 4 contain the 21 problem types and two
additional subcategories. The two subcategories are other wording and cognitive aspects
(recognition). Other wording was added to distinguish prose and text problems from those
that occur with names and labels. Cognitive aspects (recognition) was added to separate
problems that were best described as physical aspects of direct manipulation from those that

pertained to visual cues and a general knowledge of direct manipulation techniques.

The problem types in levels 3 and 4 of Figure 3.1 actually contain lists of specific
examples of usability problems in that category. These detailed lists provide feedback to
the classifier that a problem has been classified correctly. These lists are not included in the

figure, but can be viewed at the URL given above.

75

R e e e T N e PIeSmSesesasesasESR eSS seSeSaSRSe aSeSRIeSesnSnInSeseTe S0 S
¢

: LEVEL1 ¢{: LEVEL2 { : LEVEL 3 t LEVEL4 :
: iy P : :
E’ : . f r Object (Screen) Layout : 1
i o Eos . :
f- . ? . [— Object Appearance 2 :
; P P e i .
, : ; [- Object Movement b .
: ! [~ Visualness ——t—— L .
: ; F.' i ¢ = Presentation of] :
5 o P Information/Results] d
: v Py : :
. s # % L_ Non-message Feedback . :
b vl P] .
— Artifact =} ! : Naming/Labeling : :
; il ; i
: ? - Language - 2= Feedback messages &
: ’ '. : — Error messages i
n vl Py Other wording] .
i s P v Other system messages s
. K Loy 3 5
4 P p Lo .. On-screen text .
. K L t— User-requested :
: e s 0 3+ Information/Results !
% UPT b Pl it .
' starting vls # % [Cognitive ™ Direct .
% point: b P Aspects t Manipulation .
¢ classify Sl P (Recognition) g :
: problem 2 & Manipulation — v :
:,: in both iy s o Visual Cues ;
:.: componenty . ; : : Physical ; : :
. Yl Pl Aspects 1 .
: i = | ; :
4 Yo P Interaction] .
) Yo Py it .
\ % — Task-mapping —£— Navigation i .
" I . (3 .
.' : ; + l—— Functionality E : .
o Lrad
1 . 3 ¢ [Altematives > :
:': : :: '.' —— Task/function Automation 3§ :
4 » L Task-facilitation —~—a I :
2 S ; 4 —— User Action Reversal v H
\ §t £ b :
: $oy :-: # b—— Keeping The Task on Track & .
y Vol L . .
(29 seneneneneenane o eceras e s e [T R N R T R L T N T T T

Figure 3.1. Hierarchical structure of the Usability Problem Taxonomy.

The Usability Problem Taxonomy (UPT) is a taxonomic model, based on problem
characteristics, in which usability problems can be classified. Although some words in the
UPT reflect user interface guidelines and heuristics, the taxonomy is not based on these

guidelines; it is based on problem descriptions. In addition, the UPT is not a cause-and-

76

effect model. While usability problems do have an effect on the user and task performance,

this model categorizes problem descriptions, not the impact on task performance.

Each usability problem is classified in the artifact component as well as the task
component. This concept is based on the premise that usability problems have two
dimensions (an artifact dimension and a task dimension). Hence, the artifact component
and the task component are not intended to be mutually exclusive but are used together to
describe two different aspects of an individual problem. Although the task-artifact
approach has been used during design [Carroll 91] [Carroll 92] [Preece 94], it has not been

applied to usability problems.

Within each component, however, the categories are mutually exclusive, i.e., a
usability problem is classified either as a visualness, language, or manipulation problem in
the artifact component, and a task-mapping or task-facilitation problem in the task
component. Extending that idea to levels 3 and 4, once a problem has been classified in a
primary category, it can only be classified in one subcategory or problem type. For
example, if a problem is classified in the artifact component as a visualness problem, then it
is classified as either an object layout, object appearance, object movement, presentation of
information/results, or non message feedback problem. Similarly, if the same problem is
classified as a task-mapping problem, then it can only be classified as an interaction,

navigation, or functionality problem.

Various factors affect the level within each component at which a problem can be
classified. These factors as well as instructions for problem classification are discussed in

section 4.1.

77

3.4 Strengths Of The Usability Problem Taxonomy

This section examines the UPT with respect to the four issues described in section

3.2.1: distinguishability, mutual exclusiveness, completeness, and specificity.

Distinguishabili

The UPT categories do distinguish among different types of usability problems,
i.e., different types of problems are not classified in the same category (level 2) or in the
same problem type (levels 3 and 4). However, the associated definitions may be elaborated

to ensure that classifiers with minimal training or expertise will be able to use the UPT

reliably (see Chapter 4).

Mutual exclusiveness

The UPT categories within each component are defined to be mutually exclusive,
hence the difficulties caused during statistical analysis of the heuristic categories do not
surface with the UPT-based analysis. Individual problems are classified only in one

artifact category and in one task category.

Completeness

The categories in level 1 of the Usability Problem Taxonomy (UPT) are arguably
complete. The user interface is comprised of artifacts which are used to complete user

tasks. Users experience problems as artifacts (user interface objects) are viewed, read, and

78

manipulated. Similarly, task-related problems occur because the mapping was inadequate

or because the system was not programmed to help the user complete the task.

The categories in the UPT were developed empirically and are based on problem
characteristics noted in the 406 problem descriptions that were examined during the
heuristic analysis. All problems could be classified. No new categories were needed in
level 2 to classify the full set of 645 usability problems (recall that 239 problems were not
examined prior to building the taxonomy). It is possible, however, that since only five
application domains were surveyed, analysis of usability problems identified in very
different application domains (e.g., virtual reality or software systems designed for the

physically challenged) may require the introduction of new problem types (levels 3 and 4).

Specificity

Since each UPT problem type contains many examples of usability problems in that
type, the categories are very specific. However, additional examples may be added to

further clarify the type of problems contained in each category.

3.5 Summary

Five development projects at four software-development organizations were
surveyed during this research project. A total of 645 usability problem descriptions were
collected from projects that spanned five different application domains. The projects were
intended for users with varying levels of application domain and computer related

expertise.

79

A subset (406) of the 645 usability problems were classified initially according to
the heuristic(s) violated. During this process, it was concluded that heuristic classification
was not an effective approach to building a taxonomy of usability problems. This

conclusion was reached for several reasons:

e four weaknesses related to using the heuristics as a classification scheme were
identified,
* the heuristic categories were determined to be prescriptive not descriptive, and

* no clear associations exist between the heuristic categories and development context.

An iterative process was used to reexamine the usability problems that had been
classified according to the heuristics. Seventy-four heuristic subtypes were identified and
again combined into 21 problem types. These problem types clustered in five primary
categories. The five primary categories were grouped into two components. The two
components were merged to form the Usability Problem Taxonomy. The UPT is
descriptive rather than prescriptive and does not exhibit the four weaknesses discussed for

heuristic analysis.

80

4 THE UPT AND PRODUCT IMPROVEMENT

This chapter examines how the Usability Problem Taxonomy can be used in
various product improvement activities. Section 4.1 presents a study that showed that the
UPT could be used to classify usability problems reliably. Section 4.2 examines UPT
classification and illustrates how the UPT can be used during problem reporting to improve
problem description and, during problem analysis, to organize usability problems and

suggest local and global solutions. A brief summary is given in section 4.3.

4.1 The Reliability Of The UPT And Its Use In Problem
Classification

This section discusses a study that was undertaken to assess the reliability with
which the UPT can be used to classify usability problems. Section 4.1.1 describes how
the study was conducted. Section 4.1.2 presents the results of the study. Section 4.1.3
contains remarks about the results of the reliability study. Section 4.1.4 discusses the

responses obtained on a UPT user satisfaction survey completed by each study participant.

4.1.1 The UPT Reliability Study

The purpose of this study was to show that the UPT can be used reliably by
interactive software developers and evaluators to classify usability problems. For the UPT
to be considered a reliable classification tool, different classifiers must classify a given
usability problem (or set of problems) similarly. In this context, reliability implies

repeatability.

81

Two decisions impacted the design of the UPT reliability study. The first decision
was to seek individual participants with a variety of backgrounds (industry, government, or
academic) as well as substantial experience in software and/or user interface engineering.
The second was to have the participants classify real-world usability problems selected

randomly from the surveyed projects.

Each classifier was given a packet of materials that contained UPT documentation,
instructions, and the list of problems. Each was asked to classify the problems in the
artifact component and the task component of the UPT and then return the responses to the

author. Classifiers participated at a location and time(s) of their choosing.

Classifiers

Seven classifiers from industry and academic development environments were
selected to participate. They had varying levels of experience in industry, government, and
academic environments. Classifier experience (in number of years) is summarized in Table

4.1.

Table 4.1. Classifier experience: number of years in industry, government, and academic

environments.
Classifier Industry Government Academic Total
1 5 - 20 25
2 10 3 15 28
3 11 - 6 17
4 10 - 8 18
5 1 5 12 18
6 - - 20 20
7 5 10 - 15

82

With the exception of classifier 6 (who had academic experience), each participant
had experience in both software and user interface development (see Table 4.2). In
addition, five classifiers use guidelines and heuristics regularly; the remaining two never
use guidelines nor heuristics. At the onset of the study, three classifiers had limited

exposure to the UPT; four had no prior experience with the UPT.

Table 4.2. Classifier experience: number of years in software and user interface

development.
Classifier Software Development User interface Development
1 5 10 - 15
2 5 12
3 11 3
4 9 1
5 12 4
6 5 -
7 7 6
Classification Materials

The materials sent to each classifier contained the following items: a tutorial,
sample problem classifications, Figure 3.1, a glossary of terms, and a list of 20 usability
problems. A brief description of the user task and type of system was included with each
usability problem description. Six of the seven classifiers used the World Wide Web
version of the UPT (contact the author for the URL). One classifier was unable to access
the World Wide Web and used a paper copy of the UPT. No time limit was placed on the
classification. The classifiers could classify the problems in any order, revisiting any given
problem as often as needed (potentially to modify an original classification). The goal was

to obtain the best classification possible (in the judgment of each classifier).

83

The List of Usability Problems

A set of 20 usability problems was randomly selected from the 645 problems that
had been collected from the five surveyed projects. The decision to use a set of size 20 was
a compromise between two factors. The sample had to be large enough to satisfy criteria
for statistical significance, yet small enough to limit the time spent by each classifier so that

their participation in, and completion of, the reliability study could be assured.

The number of problems randomly selected from each project for this study
approximated the percentage each project contributed to the total number of problems as
shown in Table 4.3. For example, consider project A. Three problems were randomly
selected from the 91 problems collected on project A (see columns "# for sample"” and "#
collected"). The three randomly selected problems represent 15% of the 20 sample
problems (see column "% of sample"). This closely approximates the contribution of
project A to the total number of collected problems, i.e., 91 of 645 or 14% given in column

"% collected."

Table 4.3. Distribution of problems over the five projects.

Project # For Sample % Of Sample # Collected % Collected
A 3 15 91 14
B 11 55 336 52
Cl 1 5 89 14
C2 2 10 54 8
D 3 15 75 12
Total 20 100 645 100

The exception to this selection rule occurred on project C1. Since project C1 was

an on-line help system and project B contained an on-line help system (recall the system

84

descriptions in section 3.1), the decision was made to limit the number of problems
selected from project C1. This ensured that the on-line help application domain was not
over-represented in the sample. Although project C1 contributed 14% of the total number
of collected problems, only one problem was randomly selected from project C1 which
corresponded to 5% of the sample. This decision impacted the number of problems
randomly selected from projects B, C2, and D. Note that the percentage of sample
problems selected from projects B, C2, and D in column "% of sample" are somewhat

higher than the respective values in the "% collected" column.

The 20 sample problems were divided into two sets of size 10. The first set of ten
problems was selected from the group of problems examined during heuristic analysis prior
to building the UPT (see section 3.2.1). These problems were selected from projects A, B,
C1, and C2 and their portions of the sample problems are given in the "old" column in
Table 4.4 below. The remaining 10 problems had not been previously analyzed and were

selected from projects B and D (see the "new" column in Table 4.4).

Table 4.4. Distribution of problems over the five projects.

Project Old New # Of Problems
A 3 0 3
B 4 7 11
Cl 1 0 1
C2 2 0] 2
D 0 3 3
Total 10 10 20

Two factors impacted the decision to select problems from both groups. Problems
were selected from the "old" group to ensure that a variety of application domains were

represented. Problems were selected from the "new" group to demonstrate that UPT

85

reliability did not depend on the whether or not the problems had been previously

examined.

The same selection rule was applied to each set of 10 problems, i.e., the number
selected from each project for the old group (and the new group) should approximate the
contribution of that project to the total. Recall from the discussion above that the one
exception to this rule was project C1 (the on-line help system). The number of problems
selected from each project is given in the "# old (sample)" column in Table 4.5 below.
These numbers approximate the contribution of each project to the total number of
previously analyzed problems (see the percentages given in columns "% old sample" and

"% old collected").

Table 4.5. Distribution of previously examined problems.

Project| # Old (Sample) % Old (Sample) | # Old Collected | % Old Collected
A 3 30 91 22
B 4 40 172 42
Cl 1 10 89 22
C2 2 20 54 13
Total 10 100 406 99

Similarly, the 10 new problems were randomly selected from projects B and D.
Seven problems were selected from project B. Three were selected from project D. Note
that the respective percentages given in columns "% new (sample)" and "% new collected”

in Table 4.6 are approximately equal.

Table 4.6. Distribution of new problems.

Project|# New For Sample| % New (Sample) | # New Collected | % New Collected
B 7 70 164 69
D 3 30 75 31

Total 10 100 239 100

86

The 20 problem descriptions were used as they were reported, i.e., they were
modified only to ensure the confidentiality of the surveyed organizations and products.
Some contextual information was also provided such as a brief description of the user task
that was being performed when the problem occurred, the type of user interface (e.g.,
GUI, command line, form, menu), and the type of software system (e.g., word processor,
database, on-line help). Dr. J. A. N. Lee verified that the changes required to protect
confidentiality did not modify the meaning, intent, amount, or quality of the information

available in the descriptions.

4.1.2 Results Of The UPT Reliability Study

The kappa statistic, K, was used in this study to assess the level of agreement
among classifiers in the artifact component as well as in the task component Figure 3.1
[Cohen 60] [Fleiss 71]. The kappa statistic was selected due to the categorical nature of the
data. Although the chi-square statistic measures association, for this work, the kappa
statistic was more appropriate as it measures agreement. The level of agreement was
computed only at level 2 of Figure 3.1 The decision to restrict the analysis to this level was
due to the limited sample size (20 problems). Although the number of observations in this
study were insufficient to calculate kappa at levels 3 and 4, showing UPT reliability at these

levels is planned as a future project (see section 7.1).

Summary of UPT Classifications

To compute x for the data collected in this study, two tables were constructed (one

for the categories in the artifact component and one for the categories in the task). The

87

tables contain the counts of the number of problems classified in each category, i.e., each
numeric entry in Tables 4.7 and 4.8 represents the number of times an individual problem
was classified in a specific category by the seven classifiers. Using problem 1 as an
example, first consider the artifact classifications in Table 4.7. One of seven classifiers
classified problem 1 as a visualness (V) problem, five classified it as a language (L)
problem, zero classified it as a manipulation problem (M), and one was unable to classify it
in any of the three artifact categories (Other). In Table 4.8, one classifier placed problem 1
in the task-mapping (TM) category, five placed it in the task-facilitation (TF) category, and

one was unable to classify it in any task category (Other).

Table 4.7. Counts for the artifact component.

Counts: Artifact

Problem # A\ L M Other | Agrmt
1 1 5 0 1 +
2 0 0 6 1 +
3 6 0 1 0 +
4 3 0 1 3
5 1 4 0 2
6 3 0 3 1
7 1 6 0 0 +
8 0 0 5 2 +
9 1 4 1 1
10 0 7 0 0 +4
11 0 7 0 0 ++
12 6 0 1 0 +
13 0 7 0 0 ++
14 2 3 2 0
15 0 0 7 0 ++
16 1 5 1 0 +
17 2 4 0 1
18 1 6 0 0 +
19 5 2 0 0 +
20 4 0 3 0_ |

Total 37 60 3] 12|

Pi 264 .429 221 .086

88

There are 140 classifications in the artifact table and 140 in the task table (seven
classifiers, 20 problems). The entries in the total line in Tables 4.7 and 4.8 represent the
total number of classifications in each UPT category. For example, in Table 4.8, 43 of the
140 task classifications were in the task-mapping category; 62 were in task-facilitation, and
35 problems were classified in the "other" category classifications by classifiers who were
unable to categorize those problems in the task component of the UPT. The pj line in
Tables 4.7 and 4.8 represents the proportion of problems classified in a given UPT
category (j varies over the categories and takes the following values: v, 1, m, tm, tf, and
other). For example, in Table 4.8, the proportion of problems classified as task-mapping
problems is 43 of 140 (ptm = .307). Similarly, the proportion of problems classified as
task-facilitation problems is 62 of 140 or (ptf = .443). The proportion of problems that
could not be classified in any task category is 35 of 140 or (pother = -25).

The entries in the "Agrmt" column in each table indicate those problems having
good agreement ("+") as well as complete agreement ("++"). Good agreement occurred
when five or six classifiers placed a problem in one category. Complete agreement
occurred when all seven classifiers categorized an individual problem the same way. For
the artifact classifications, classifiers had complete agreement on four problems (10, 11,
13, and 15). They had good agreement on nine problems (1, 2, 3, 7, 8, 12, 16, 18, and
19). Classifiers had good agreement on six of the 20 task classifications (problems 1, 5, 8,

16, 17, and 20). Note that no problems had complete agreement in the task classifications.

89

Table 4.8. Counts for the task component.

Counts: Task
Problem # ™ TF | Other | Agrmt

1 1 5 1 +
2 3 4 0
3 2 1 4
4 3 3 1
5 0 6 1 +
6 1 4 2
7 0 3 4
8 5 0 2 +
9 4 1 2
10 3 1 3
11 2 2 3
12 4 2 1
13 1 2 4
14 4 3 0
15 3 3 1
16 1 6 0 +
17 1 5 1 +
18 0 3 4
19 4 3 0
20 1 5 1 +

Total 43 62 35
Pi .307 443 25

In both tables, problem 1 through 10 are the "old" problems (prob!cms that had
been previously examined), 11 through 20 are the "new" problems (problems that had not
been previously examined). Casual inspection of the two tables indicates that problems
having good or complete agreement were located in both the old group as well as the new
group of problems. For the artifact classifications (Table 4.7), five problems having good
agreement were in the old group, four were in the new group of problems. One problem
having complete agreement in the artifact component was in the old group, three were in the
new group. For the task classifications (Table 4.8), three of six problems having good
agreement were in the old group, three were in the new group. The fact that problems

having good or complete agreement were spread through both groups demonstrates that

90

classifiers were able to use the UPT reliably to classify problems in both the "old" and

"new" groups.

Table 4.9 shows the number of problems having good or complete agreement in
each UPT category. Note that 7 of the 13 problems with good or complete agreement in
the artifact categories were classified as language problems. It is possible that the
classifiers recognized language problems more easily than either visualness or manipulation
problems. It is also likely that more language problems were contained in the sample than
other types of problems. Similarly, five problems having good agreement in the task
categories were classified as task-facilitation problems. This could be due to the classifiers'
recognizing task-facilitation problems more easily. However, based on the classifiers'
comments, it is more likely that the task-facilitation category was imbued with additional

meaning which resulted in the number of problems classified in that category.

Table 4.9. Counts for good and complete agreement.

Counts Artifact Task _
Agreement A" L M ™ TF
good (+) 3 4 2 1 S
complete(++) | O 3 1 0 0
Total 3 713 1| s

Classifiers agreed on only three of the 16 problems in both the artifact and the task
classification (problems 1, 8, and 16). This results in a proportion of .19 which indicates
that, on a problem-by-problem basis, good agreement in the artifact classification does not
necessarily result in good agreement in the task classification. It should also be noted that
the agreement on problem 1 was in the language and task-facilitation categories, agreement

on problem 8 was in the manipulation and task-mapping categories, and agreement on

91

problem 16 was in the language and task-facilitation categories. The fact that language and
task-facilitation categories were involved is not surprising given the values in Table 4.9

above.

Various factors influence the level of agreement among classifiers. These factors
include whether or not a problem description was vague or incomplete, classifier
experience with various application domains, and familiarity with the UPT (minimal UPT
training materials were made available to each classifier). Equally important is the fact that
the classifiers did not observe each problem as it occurred. These factors, discussed
further in section 4.1.2, can lead individual classifiers to interpret and classify problems

differently.

Computing Kappa

The kappa statistic, K, is the proportion of agreement after chance agreement is
removed from consideration. The kappa statistic was applied independently to both the
artifact component and the task component of the UPT. The following assumptions were

made [Cohen 60]:

» the 20 usability problems are independent,

* in the artifact component, the categories within each level are independent, mutually
exclusive, and exhaustive,

* in the task component, the categories within each level are independent, mutually
exclusive, and exhaustive, and

» the classifiers operate independently and are a priori judged equally competent to

perform the classifications.

92

To compute K, let

P = the proportion of problems in which the classifiers agreed, and

P = the proportion of problems for which agreement is expected by chance.

Then P — P represents the proportion of agreement beyond chance (the degree of

agreement actually attained in excess of chance). P will be greater than Pc when

nonchance factors are operating in the direction of agreement. The difference, P — Pg is
positive when the proportion of agreement is greater than chance, and is negative when

there is less than chance agreement.

The quantity 1 — Pc measures the maximum possible degree of agreement over

and above what would be predicted by chance. Dividing the difference P — P¢ by 1 —

P yields the kappa statistic:

Note that the upper limit of K is 1 and occurs when P is 1. Kappa is 0 when the

proportion of agreement equals chance.

The Hypothesis Tests

To test the null hypothesis that the classifications are random (kx = 0) against the

alternative hypothesis that the classifications are not random (x > 0), x is divided by its

93

standard error (standard deviation of x): ¥/SE(x). Under the null hypothesis, k/SE(x),
will be approximately distributed as a standard normal variate Z (by the Central Limit

Theorem).
The following six hypothesis tests were performed.

1. Test the null hypothesis that the classifications in the artifact component are random
versus the alternative hypothesis that there is more agreement than would be obtained
by random classification using all 20 problems.

2. Test the null hypothesis that the classifications in the task compoi*nent are random versus
the alternative hypothesis that there is more agreement than would be obtained by
random classification using all 20 problems.

3. Test the null hypothesis that the classifications in the artifact component are random
versus the alternative hypothesis that there is more agreement than would be obtained
by random classification using the 10 "old" problems.

4. Test the null hypothesis that the classifications in the task component are random versus
the alternative hypothesis that there is more agreement than would be obtained by
random classification using the 10 "old" problems.

5. Test the null hypothesis that the classifications in the artifact component are random
versus the alternative hypothesis that there is more agreement than would be obtained
by random classification using the 10 "new" problems.

6. Test the null hypothesis that the classifications in the task component are random versus
the alternative hypothesis that there is more agreement than would be obtained by

random classification using the 10 "new" problems.

94

Tests 1 and 2 focus on UPT reliability over the entire set of 20 problems. Tests 3 and 4
focus on UPT reliability for the 10 problems that had been examined previously. Tests 5
and 6 focus on UPT reliability for the 10 problems that had not been examined previously.

As each test was performed, the following values were computed: F, ﬁc, K, Z, and p (the
level of statistical significance).

The results of tests 1 and 2 are summarized in Table 4.10.

Table 4.10. Statistics for all 20 usability problems.

All 20 problems P ﬁc P — Pc X V/ P
1. Artifact .588 .31 278 .403 9.776 .000
2. Task 414 .353 061 .095 2.306 .011

For test 1, the null hypothesis is rejected with p essentially 0. There is sufficient evidence
to conclude that there is agreement greater than chance in the artifact component (for all 20
problems). For test 2, the null hypothesis is rejected with p = .011. There is sufficient
evidence to conclude that there is agreement greater than chance in the task component (for

all 20 problems).

The results of tests 3 and 4 are summarized in Table 4.11.

Table 4.11. Statistics for 10 usability problems examined previously (OLD).

10 old problems P I—Jc P — —P-c X Z P
3. Artifact .533 274 .259 .357 7.336 .000
4. Task 414 .34 .074 112 2.144 .016

95

For test 3, the null hypothesis is rejected with p essentially 0. There is sufficient evidence
to conclude that there is agreement greater than chance in the artifact component (for the
"o0ld" 10 problems). For test 4, the null hypothesis is rejected with p = .016. There is
sufficient evidence to conclude that there is agreement greater than chance in the task

component (for the "old" 10 problems).

The results of tests 5 and 6 are summarized in Table 4.12.

Table 4.12. Statistics for 10 usability problems not examined previously (NEW).

10 new problems P P c P—P c X YA p
5. Artifact .643 .366 229 437 6.442 .000
6. Task 414 372 .042 .068 1.018 .154

For test 5, the null hypothesis is rejected with p essentially 0. There is sufficient evidence
to conclude that there is agreement greater than chance in the artifact component (for the
"new" 10 problems). For test 6, while the null hypothesis would not be rejected at the .05
level of significance (with p = .154), it is important to note that x is positive. There is
some evidence to suggest that there may be agreement greater than chance in the task

component (for the "new" 10 problems).

4.1.3 Remarks About The UPT Reliability Study

This section discusses the results presented in section 4.1.2 and examines several
reasons for differences noted between UPT components. Four factors, outlined in section
4.1.2, that influence the level of agreement among classifiers using the UPT are examined

more closely. These factors were the lack of classifier experience with the specific

96

application domains, lack of familiarity with the UPT, the fact that the classifiers did not
observe each problem as it occurred, and vague and incomplete problem descriptions. This
section concludes with a brief discussion of the novelty of the UPT and how its newness
affected classification, in particular, how classifiers interpreted the structure of the UPT as

they classified usability problems.

The first factor, lack of classifier experience with the specific application domains,
can certainly affect the classifier's ability to understand and classify usability problems
noted on a given project. For example, consider an evaluator observing a user testing
session with a complex software package designed for a highly trained, expert user group.
Although the evaluator may understand artifact problems when they occur, the evaluator
may not understand usability problems that occur because of the way the tasks are mapped
to the system if he/she is not sufficiently familiar with the application domain. It is also
likely that this lack of understanding could result in an inappropriate task classification.
Since the demographic information collected on each classifier did not include expertise in
the five application domains from which the sample problems were selected, no
conclusions can be reached at this time. Investigating this possibility is a future project and

is described in section 7.1.

The second factor, lack of familiarity with the UPT, can also affect classification.
During a pilot study that preceded the reliability study described in section 4.1.2, it was
noted that classifiers became more comfortable with the taxonomy as the study progressed.
In the reliability study, the classifiers had minimal training on the UPT (training took the
form of a brief, 20 minute, written tutorial. It is assumed that with additional training,

classifiers will have an increased understanding of the categories and of problem

97

classification using the UPT. It is believed that additional training will improve the

reliability with which the UPT is used.

The third and fourth factors, that the classifiers did not observe each problem as it
occurred and vague and incomplete problem descriptions, also affect the classifiers' ability
to classify a problem appropriately. It is difficult to fully understand a usability problem
when the amount of contextual information available to the classifier is inadequate. As
discussed in section 1.2, many difficulties arise when developers attempt to use vague and
incomplete problem descriptions to raise the level of usability achieved in the user interface.
Some difficulties experienced by classifiers during the study that were attributed to poor

problem descriptions are outlined below.

Several classifiers commented on the quality of the 20 problem descriptions (recall
that although the real-world problem descriptions used in the study were sanitized to ensure
confidentiality, they were not modified in any other way). Comments from several
classifiers during, and after, the study indicated that they felt many of the problem
descriptions were vague, incomplete, and provided inadequate contextual information while
containing irrelevant information. Others noted that multiple problems were contained
within a single problem description. Individual classifiers chose to ignore certain phrases
within the descriptions and relied on their own experience and expertise to make
assumptions about the problems and the context in which those problems occurred. They
further indicated that the difficulty they experienced during problem interpretation impacted

their responses as they felt less sure of the appropriate classification.

One classifier indicated that the vagueness of the problem descriptions prevented a

thorough examination of the task component. This classifier commented, "I did not dive

98

into the task side too deeply. I think that this is because I did not have a full understanding
of the user interface and possible tasks that the user may perform. I think that if I used this
taxonomy in my own work, I would have a richer population within the task hierarchical

structure."

Several other reasons potentially impact the differences between the results for the
artifact and task components presented in section 4.1.2. These include the novelty of the

UPT and the sensitivity of each UPT component to the application domain.

The UPT is a new approach to thinking about usability problems, their description,
classification, and analysis. Traditionally, usability problems have been examined with
respect to guidelines, system functionality, and potential solutions. And, although a
theoretical foundation has been used to view systems within a task-artifact framework
[Carroll 91] [Carroll 92], this framework has not been applied to usability problem
classification or analysis. By capturing the two dimensions of a usability problem in the
artifact and task components, the UPT enables developers to focus on problem

characteristics instead of guidelines, functionality, and solutions.

Although the UPT captures both dimensions of a usability problem, its novel
approach (especially to the task dimension) affected classification. Two classifiers
remarked that they found classification in the artifact component easier than in the task
component. This response could have resulted from problem descriptions with a stronger
artifact component than task component (in the judgment of individual classifiers).
However, it is also likely that the classifiers found the characteristics of the visualness,
language, and manipulation categories in the artifact component intuitive and easy to

understand, but had difficulty in distinguishing between the task-mapping and task-

99

facilitation categories. Depending on their background and experience, it is possible that
the classifiers interpreted the task categories somewhat differently and, in particular,

imbued the task-facilitation category with additional meaning.

The two hypotheses mentioned above are supported by the values in the "Agrmt"
column in Tables 4.7 and 4.8. Recall from these two tables that the classifiers had good
agreement on 13 of 20 problems in the artifact classification, but in the task classification

had good agreement on only 6 of 20 problems.

In addition, the differences noted in the results for each component could be due to
the sensitivity of each component to the application domain. It is possible that the task
component is more, or less, sensitive to the application domain than the artifact component.
This hypothesis is based on the fact that the 10 old problems were selected from four
projects and the 10 new problems were drawn from two projects. Recall the p-values of
.016 for the 10 old problems (test 4) and .154 for the 10 new problems (test 6) in Tables
4.11 and 4.12, respectively. To determine if the task component is sensitive to application
domain, more research is needed which may result in expansion and refinement of the task
component so that the various aspects of problems due to tasks in differing application
domains are included. This type of investigation is a possible future project and is outlined

in section 7.1.

Regardless of the differences noted for the two components, usability problem
classification using the UPT was shown to be reliable (see section 4.1.2). The reliability
with which problems were classified in the artifact component did not vary regardless of
which problem set was tested. More variability existed among the task classifications

(recall that the level of agreement among the task classifications for the 10 old problems

100

was significant, whereas the level of agreement among the task classifications for the 10
new problems was not). However, since the kappa statistic remained positive for the set of
10 new problems, it is concluded that even in this case, there was some agreement after

correction for chance.

4.1.4 UPT User Satisfaction Survey

The seven classifiers were asked to rate the UPT in five areas by completing the
usefulness and satisfaction questionnaire. The classifiers were asked to evaluate how

strongly they agreed with each of the following five statements:

1. The UPT was easy to use.
The UPT was easy to understand.
The UPT was easy to learn.

The UPT was comprehensive (exhaustive).

W AW

The UPT is a useful tool for interactive software developers.
A four-point scale was used:

e 1, definitely do not agree,

e 2, somewhat agree,

* 3, agree for the most part, and

* 4, definitely agree.

The mean responses to the five questions are given in Table 4.13. As indicated in

the table, for the most part, classifiers agreed that the UPT was easy to learn, was

101

comprehensive (complete) and was considered to be a useful tool for interactive software
developers. One classifier commented that while the UPT was complete for the 20 problem
descriptions, that the UPT might not provide adequate coverage for other application

domains.

Table 4.13. Mean response per question.

Question Mean
1. The UPT was easy to use. 2.786
2. The UPT was easy to understand. 2.786
3. The UPT was easy to learn. 3.5
4. The UPT was comprehensive (exhaustive). 3
5. The UPT is a useful tool for interactive software developers. | 3.786

The mean response for each classifier is given in Table 4.14. Note that, with the
exception of classifier 6, the means vary from 3 to 3.8. These values indicate that six of
the seven classifiers were satisfied with the UPT. This is further corroborated by the
overall mean of 3.171. Individual comments, such as "I liked the breakdown into artifact

and task," and "This was educational” supported these findings.

Table 4.14. Mean response per classifier.

Classifier Mean
3.2
3.8
3.2
3
3
2.4
3.6

N[N |B | W [=

During the analysis of the responses to the usefulness and satisfaction

questionnaire, it was concluded that a different approach was needed to assess the UPT. In

102

particular, questions were needed that focused on the UPT as a conceptual model, as well
as questions that concentrated on the instantiation of the UPT on the World Wide Web.
Two classifiers did provide separate responses for the conceptual model and for the web

instantiation (in these cases, the two values were averaged).

The classifiers may have interpreted each of the five questions differently depending
on whether or not an individual question seemed to be more appropriate to the web version
or the conceptual model. For example, it is possible that classifiers interpreted question 2
with respect to the conceptual model and question 3 with respect to the UPT instantiation.
This hypothesis could explain the why the mean response for question 2 (the UPT is easy
to understand) is lower than the mean response for question 3 (the UPT is easy to learn).
Classifiers noted that the web document was well constructed; however, some difficulty
was experienced as they tried to understand the new approach to problem classification

embodied in the conceptual model.

4.2 Product Improvement And The UPT

This section outlines ways the UPT can be used to improve the level of usability
achieved in the user interface of a software product. The techniques illustrated in this
section were developed using the experiences of the author and several colleagues. Much
of the discussion throughout this chapter is based on two critical incidents (presented in
section 4.2.1), the problem reports associated with those incidents (presented in section
4.2.2), and solutions to those problems (also presented in section 4.2.2). Section 4.2.2
serves as a benchmark for the remainder of the chapter by examining problem reports and
solutions without using the UPT. Section 4.2.3 re-examines the usability problems for

each critical incident and discusses the benefits that could have been derived by using the

103

UPT during problem reporting. Section 4.2.4 outlines the advantages of using the UPT

after problem reporting to analyze usability data and identify patterns of usability problems.

4.2.1 Two Critical Incidents

This section presents two critical incidents. The two incidents occur on different
systems during specific tasks that are common tasks on each system. The first critical
incident occurs as a user is formatting a removable diskette using an operating system with
a graphical user interface. The second critical incident occurs when a user is attempting to

add a row to a table in a spreadsheet-like application.

DISK NAME CRITICAL INCIDENT

A user is attempting to format a removable diskette using an operating system with
a graphical user interface. After inserting the removable diskette in the floppy drive, the

dialogue box shown in Figure 4.1 is displayed.

Initializing disk will erase all information on disk.

T ——

Name

PEEISTEIEET SIS FIESIITISIIIIIS S

CANCEL ERASE

I ITIFFFIITIFTITS PIIETETFFIIIETS S

SASSSN
VRN
e

ANV

Figure 4.1. Dialogue box for disk initialization.

104

The user notes that the name field is fully highlighted and decides to enter a name
for the disk. She selects the disk name "dissertation data analysis" and attempts to type that
name in the name field. After the user types the "1" in "analysis," the computer beeps and
does not accept any additional characters for the name. The cursor (insertion point)
remains visible after the "I". The dialogue box seen by the user at this point is shown in

Figure 4.2.

Initializing disk will erase all information on disk.

dissertation data anal |
Name
FIIIEIEIIEIIIESEL [/ i bl il il i,
’ Z ’ 7
| CANCEL @ { ERASE [
?] 9 //
PIFIITTITITIIIEIS IITFITTFITFIIIII

Figure 4.2. Usability problem with the name field occurs during disk initialization.

The user attempts to enter the "ysis" in "analysis" three more times. The computer

beeps after each try. After the fourth beep, the message box shown in Figure 4.3 pops up

on the screen.

R e o S Ty

PR N

Disk names are limited to 22 characters in length.

by

SRR RO R TR

OK

Figure 4.3. Error message for disk initialization.

105

The user remarks that she does not like the beep and is frustrated to find that she must start

again with a new, abbreviated name.
DATA ENTRY CRITICAL INCIDENT

A user is attempting to entering information for a new student in a table containing
student records (one student per record, one record per row). Although the system has a
graphical user interface, the data cannot be entered directly in the table. The user must
select the "Add Row" menu item to display the data entry box illustrated in Figure 4.4. The

information entered in the data entry box corresponds to one row in the table.

Add A Student
Type

O In state

O Outofstate Name2

Namel

O Special status
Class

ONE NEW ROW ADDED!

Figure 4.4. Data entry box.

The user thinks about entering the following data: student name, student address,
class level (freshman, sophomore, junior, senior, graduate), and their residency status (in
state, out of state, special student status). The user notices that the label on the title bar did
not match the menu item that was selected ("Add Row"). He remarks that the size of the
labels is small and difficult to see. The user comments that the names "Type", "Namel",

and "Name2" are not meaningful to him. He is unable to distinguish the name field from

106

the address field. He also notices that the "Namel" label is much farther away from it's
associated field than the other labels. He wonders why the on-screen text says "One new
record added!" when he hasn't done anything yet and comments that it dominates the
dialogue box. He wants to enter the student's class but cannot recall the permissible

values.

4.2.2 Problem Identification, Reporting, Analysis, And Correction Without
The UPT

In current practice, developers identify and report problems that arise in critical
incidents such as the two presented above. Sometimes usability problem data is analyzed
prior to correction, other times it is not. Some current analysis techniques are informal and
result in a brief, cursory examination of the data. Other techniques are more structured
such as grouping by system function, grouping by heuristic violated, or ranking problems
according to cost-to-fix and importance. This section takes a real-world approach to the
two critical incidents in that the set of usability problems identified during the Disk Name
critical incident is not analyzed, the set is usability problems associated with the Data Entry
critical incident is analyzed. Note that to provide a benchmark for the remainder of this

chapter, the UPT is not used in this section.

DISK NAME CORRECTION SCENARIO

Depending on their level of expertise, evaluators observing the Disk Name critical

incident could report any or all of the following four problems.

107

1. The user did not like the beep.
The message box finally appeared after several beeps.

To correct the error, the user was forced to count the number of characters entered.

2w

Since the name field was fully highlighted and longer than the allowable length, the

user thought that disk names could be at least as long as the field.

An inexperienced evaluator may focus on problems 1 or 2, since they are the easiest to
observe and report. A more experienced evaluator may note problems 1 and 2, but also

report problems 3 or 4.

For this discussion, assume that all four problems have been reported. The
evaluators give the four prose problem descriptions to developers who design solutions for

each problem. The solutions are listed below.

1. Developers receiving problem description 1 (the user did not like the beep) decide to
solve the problem by including a user preference (option) that would allow the user to
set the volume of the beep.

2. Problem 2 (the message box finally appeared after several beeps) is addressed by
removing the delay in the appearance of the message.

3. A solution to problem 3 (to correct the error, the user must count the number of
characters entered) would involve adding new user interface functionality, e.g., having
the system count the characters as the user enters text in the name field.

4. Developers decide to address problem 4 (the name field was longer than the allowable
length, the user thought that disk names could be at least the field length) by providing
a better visual cue for the length of a disk name. One slot (underscore) will appear for

each allowable character position.

108

The four problem descriptions listed above do describe problems that should be addressed.
Implementing the four solutions above will correct those problems and raise the level of
usability achieved in this part of the user interface (the Disk Name dialogue box).
However, the developers did not recognize the real, underlying usability problem: the
system is not flexible enough to allow disk names of any length. Consequently, the

descriptions do not capture the real problem and it remains in the user interface.

DATA ENTRY CORRECTION SCENARIO

Many usability problems are noted during the Data Entry critical incident. Eight

possible problem reports are listed below.

1. The label on the title bar ("Add A Student") is not consistent with the name of the
menu item that was selected ("Add Row") to display the data entry box.

2. The size of the text used in the labels is small and difficult to see.

3. The user comments that the names "Type", "Namel", and "Name2" are not
meaningful.

4. The user is unable to distinguish the name field ("Name1") from the address field
("Name2").

5. The user had trouble understanding the words in the data entry box.

6. The field label "Namel" is much farther away from it's associated field than the
other labels.

7. In addition to the distraction caused by the size of the line "One new record

added!", the feedback provided by this on-screen text is premature as the record has

not been added at this point in the task.

109

8. The user cannot recall the permissible values for the class field.

Developers on this team perform some analysis prior to suggesting solutions for each of the
eight usability problems above. They look for commonalities and notice that problems 3
and 4 are different reports of the same basic problem: the field names were not meaningful
enough. Problem description 5 is vague, the developers cannot decide whether or not it
refers to the same problem as in descriptions 2 and 3. After further consideration, the
developers also count the number of problems associated with this data entry box and
observe that if an alternate form of data entry were designed and implemented (e.g., direct
manipulation of the rows in the table), that thé box could be eliminated. As a result, this
global solution would address all eight problems. Rather than correcting each individual

problem, they opt for implementing direct manipulation.
4.2.3 Using The UPT During Problem Reporting

As reported by the author and several colleagues in both academic and industry
development environments, using the UPT during an evaluation activity can help
developers write more accurate and complete problem descriptions. In current practice,
problem descriptions are frequently vague and incomplete, often containing multiple
problems and information about user reactions. This section examines how using the UPT
during problem reporting can improve problem descriptions. Each problem description

will be examined with respect to the following characteristics:
* clear (no ambiguity nor vagueness, no additional information is needed),

* precise (one description contains only one problem, multiple problems are not

contained in the same description),

110

* comprehensive (a description contains artifact and/or task information), and
* problem-centered (information about the user is clearly distinguished from information

about the problem).

In this section, the UPT is used to classify, and improve, the problem descriptions for the

two critical incidents described above.

USING THE UPT DURING THE DISK NAME CRITICAL INCIDENT

Assume that an evaluator is observing the Disk Name critical incident. Also assume
that the evaluator notes problem 1 first. He uses the UPT to focus on the artifact and task

aspects of each usability problem and to classify those problems during problem reporting.

Problem description 1 (the user did not like the beep) would be classified in the
artifact component as a visualness, non-message feedback problem since the beep is
feedback that the user was unable to enter a character. Although the problem description
focuses on the user's reaction to the beep, the non-message feedback category includes
problems that are due to distracting, annoying, and confusing feedback. The developer
realizes more detail was need in the problem description and recalls that the user was
confused about the beep. He modifies the problem description accordingly. The developer
attempts to classify problem description 1 in the task component, however, this problem
does not have a task dimension. The problem is not about the structure of the task on the
system or the ability of the user to follow that structure. Problem 1 is classified in the

deepest level of the artifact component, and therefore, has a strong artifact dimension.

111

The first version of the problem description was precise, i.e., only one problem
was contained in the description). However, it was not clear (additional information was
needed). The new version of the description is both clear and comprehensive (both the
artifact and task dimensions have been explored by the evaluator). In addition, it is now

problem-centered as the user reaction is distinguished from the actual problem.

The evaluator continues with problem description 2 (the message box finally
appeared after several beeps). He determines that this problem is a language, error
message problem that is due to the delay in the appearance of the message. As with
problem 1, the problem is classified in the deepest level in the artifact component (the
problem has a strong artifact dimension); there is no task component. Since no new
information was needed to classify this problem, the problem description was clear,

precise, problem-centered, and comprehensive prior to classification.

He examines problem description 3 (to correct the error, the user was forced count
the number of characters entered). Since the error message is clear and does help the user
solve the problem, there is no artifact component. However, it is classified as a task-
facilitation, user action reversal problem because the system places the burden for error
correction on the user and does not provide a mechanism for easy error recovery. It is
classified at the deepest level in the task component, and therefore, has a strong task

dimension.

Prior to classification, the problem description was clear, precise, and problem-
centered. However, as the description is classified in the UPT, both dimensions of the
problem are explored. The task classification produces a comprehensive description as

information is identified that supplements the original description.

112

Having thought about the task component of problem description 3, the evaluator
recognizes that he has focused on what the system did after the problem occurred, not on
the problem itself. He realizes that the usability problem occurred because the highlighted
name field was longer than the allowable length (problem description 4). He classifies this
as a manipulation, cognitive aspects, visual cues problem in the artifact component. In the
task component, the problem is classified as task-facilitation, keeping the task on track
problem since the system did not prevent user errors. This problem description is

classified at the deepest level in both components.

No additional information was needed to classify problem description 3 in either
component. Prior to classification, the description was clear, precise, and problem-
centered. After classification, the description is comprehensive in that it has been examined
from both an artifact perspective (visual cues) and from a task perspective (error

prevention).

The classifications for problem descriptions 1 through 4 are summarized in Table
4.14. A value of "artifact” in the "strong" column indicates that an individual problem has
a strong artifact dimension and was classified in the deepest level of the artifact component
of the UPT (problem descriptions 1 and 2). A value of "task" in the "strong" column
indicates that an individual problem has a strong task dimension and was classified in the
deepest level of the task component of the UPT (problem description 3). When both values

are listed, the problem was fully classified in each component (problem description 4).

113

Table 4.14. Problem classification for Disk Name critical incident.

Description Artifact Task Strong
1 Non-message feedback No task component Artifact
2 Error messages No task component Artifact
3 No artifact component User action reversal Task
4 Visual cues Keeping the task on track Artifact & Task

This scenario demonstrates how the problem reporting process becomes more
focused, and problem descriptions more clear, precise, problem-centered, and
comprehensive when the UPT is used during problem reporting. Although problem
descriptions 1 and 2 (user preferences regarding beeps and messages that do not appear
immediately) are problems that should be corrected, they do not begin to capture the real,
underlying problem in the critical incident: the user must know ahead of time that disk
names can only be 22 characters in length and must count characters as they are typed into
the field. Problem description 3 touches on the real problem; however, it is written from
the perspective of error recovery. Problem description 4 does capture more information
about the real problem. By using the UPT to classify each of the four problems, the
developer increases his level of understanding of the underlying problem (this is illustrated

as he progresses from description 1 to description 4).

USING THE UPT DURING THE DATA ENTRY CRITICAL INCIDENT

Assume that an evaluator is observing the Data Entry critical incident. She uses the
UPT to focus on the artifact and task aspects of each usability problem and to classify those
problems during problem reporting. For this example, the order in which the

classifications below are presented is not relevant to the discussion.

114

The evaluator notes problem 1 (the label on the title bar is not consistent with the
name of the menu item) and identifies it as a consistency problem. She then uses the UPT
to classify the problem. She notes that the UPT does not contain a consistency category
and examines the artifact component first. She recognizes that it is a language,
naming/labeling problem and finds that consistency issues related to naming and labeling
are included in this category. The problem is classified to the deepest level, and therefore,
has a strong artifact component. She then examines the task component. The problem is
not about task structure nor facilitation; there is no task component. Note that in this case,
prior to classification, the problem description was clear, precise, problem-centered, and

comprehensive as no additional information is needed to classify the problem.

Problem description 2 (the size of the text used in the labels is too small and is
difficult to see) is classified as a visualness, object appearance problem. The UPT category
is about problems with appearance and include the size of user interface objects (in this
case, a text object). Thus, the last part of the description, "is difficult to see", is
distinguished from the real problem since it describes the effect on the user. Problem
description 2 has a strong artifact component, but no task component. Prior to
classification, the problem description was clear, precise, and comprehensive. After
classification, it is also problem-centered as the effect on the user is distinguished from the

actual problem.

The evaluator attempts to classify problem description 3 (the names "Type",
"Namel", and "Name2" are not meaningful) in the artifact component. She recognizes that
the problem is about field labels that are not meaningful enough to the user. However, she
notices that problems in the naming/labeling category that are about meaningful labels refer

to one label at a time. The evaluator modifies description 3 by separating it into 3 separate

115

descriptions: one for each label name (3a, 3b, and 3c). Each new description is classified
as a language, naming/labeling problem. Each of these three problems have a strong

artifact component, but no task component.

The original problem description was clear and problem-centered; however,
multiple problems were contained in the one description. By using the UPT to examine
both dimensions of the problem, the resulting problem descriptions are precise and

comprehensive.

Problem description 4 (the user is unable to distinguish the name field, "Namel",
from the address field, "Name2") is also about labels. In this case, the labeling problem is
due to the similarity of names used for different fields. It is classified as a language,
naming/labeling problem and has a strong artifact component. There is no task component.
Prior to classification, problem description 4 was clear, precise, and problem-centered.

UPT classification affirms that it is also comprehensive.

Using the UPT to classify the fifth problem description (the user had trouble
understanding the words in the data entry box) emphasizes how vague and imprecise that
description is. The evaluator knows that the problem is classified as a language problem in
the artifact component. However, she is unable to determine whether the problem belongs
in the naming/labeling category or the other wording category (which contains problems
with on-screen text). To eliminate the vagueness from the problem description, she uses
the UPT do identify the necessary distinguishing information. This information would
specify whether the problem occurred because of a name(s) or label(s) or whether it
occurred because of other words used in the interface. If it is due to other wording, she

would specify further whether the problem occurred with a feedback message, an error

116

message, other types of system message, on-screen text, or user-requested

information/results.

Since description 5 is so vague and imprecise, she is not comfortable classifying the
problem in the task component. After adding the new information, the description would
be clear. If the new information reveals that multiple problems are contained within that
description, those problems would be separated into different descriptions. Then each
description would be precise and problem-centered. By using the UPT to explore both the
artifact and task components a higher quality, comprehensive problem description is

produced. The new description(s) would then classified in the task component.

Problem description 6 (the field label "Namel" is much farther away from it's
associated field than the other labels) can be considered a consistency problem, i.e., the
space between fields and labels is not the same throughout the dialogue box. Using this as
a guide, the problem is classified as a visualness, object (screen) layout problem. The
problem has a strong artifact component, and although layout problems are sometimes
indicative of poor task structure, there is no task component for this particular problem
because, in this case, placement of the field label is not related to task structure. Prior to
classification, the description was clear, precise, and problem-centered. UPT classification

affirms that it is also comprehensive.

The evaluator attempts to classify problem description 7 (in addition to the
distraction caused by the size of the line "One new record added!", the feedback provided
by this on-screen text is premature). She takes the first half of the description (the
distraction caused by the size of the line "One new record added!") and classifies it in the

artifact component as a visualness, object appearance problem. The first half of the

117

problem has a strong artifact component, but no task component. The second half of this
description (the feedback provided by this on-screen text is premature) is classified in the
artifact component as a language, feedback message problem. This half also has a strong
artifact component, but no task component. She realizes that the assumption of mutual
exclusion among artifact categories has been violated. She re-examines the problem
description and determines that the description contains two problems. She divides the two

problems into separate descriptions (7a and 7b).

Description 7a is clear and precise. By classifying this description in the object
appearance category, the effect on the user is distinguished from the actual problem and the
description is problem-centered. Description 7b is also clear, precise, and problem-
centered. Both descriptions contain sufficient information to be classified appropriately and

are comprehensive.

To classify problem description 8 (the user cannot recall the permissible values for
the class field), the evaluator examines the artifact component. The problem is not about
visualness, language, nor manipulation. She concludes that there is no artifact dimension
to this problem. The problem is about preventing user errors and minimizing the user's
memory load by providing a list of allowable values from which the user can select.
Therefore, she classifies in the task component as a task-facilitation, keeping the task on
track problem. Prior to classification, the problem description is clear, precise, problem-

centered, and comprehensive.
The classifications for problem descriptions 1 through 8 are summarized in Table

4.15. Note that each of the three problem descriptions that resulted from number 3 are

included (3a, 3b, and 3c). Problem description 5 has been classified as written initially,

118

prior to improving the description. As a result, the "strong" column contains the value
"vague artifact". This indicates that the vagueness of the problem description prevented
classification to the deepest level in the artifact component. The classification for problem
description 7 is based on the improved descriptions that resulted when the two problems in

the initial description were divided into two descriptions (7a and 7b).

Table 4.15. Problem classification for Data Entry critical incident.

Description Artifact Task Strong
1 Naming/labeling No task component Artifact
2 Object appearance No task component Artifact

3a Naming/labeling No task component Artifact
3b Naming/labeling No task component Artifact
3c Naming/labeling No task component Artifact
4 Naming/labeling No task component Artifact
5 Language No task component Vague Artifact
6 Obiject (screen) layout No task component Atrtifact
7a Object appearance No task component Artifact
7b Feedback message No task component Atrtifact
8 Keeping the task on track No artifact component Task

This scenario demonstrates how the UPT can be used during problem reporting to
improve the quality of individual problem descriptions. Although several of the original
problem descriptions were clear, precise, problem-centered, and comprehensive prior to
classification (1, 4, 6, and 8), the UPT enabled the evaluator to improve problem

descriptions 2, 3, 5, and 7.
4.2.4 Using The UPT After Problem Reporting
The UPT can also be used after problems have been reported to classify and

improve problem descriptions. In addition, the UPT can provide the foundation for

usability problem analysis with specific emphasis on identifying patterns of usability

119

problems. Identifying patterns of usability problems help developers design global

solutions that address multiple problems.
4.2.4.1 Using The UPT To Classify Problems After Reporting

As discussed in section 4.2.3, the UPT can help developers improve problem
descriptions by classifying problems during problem reporting. In particular, the examples
illustrated how the UPT can be used to focus problem identification (Disk Name critical
incident), to improve the clarity of a given description (Data Entry critical incident,
description 5), and, as illustrated by problem description 7 of the Data Entry critical
incident, to capture individual problems in separate descriptions. Other examples showed
how the UPT can help evaluators distinguish between information about the actual problem

and information about the user.

Although it is more effective to use the UPT during problem reporting, the UPT can
also be used after the reporting process has concluded to help developers improve problem
descriptions. In the example discussed in section 4.2.4.1, the improvements to problem
descriptions 3 and 7 could have been made after the evaluation as well as during problem
reporting. Recall that for problem 3, the categories that are about names and labels that are
not meaningful enough occur with one label at a time. The problem 7 example illustrated
how the mutual exclusiveness of the categories within one ’component can be used to
distinguish among problems. One additional example, discussed below, illustrates how the
two components can likewise be used to distinguish among multiple problems contained in

one description.

120

Assume that the problem reporting phase is complete. A developer has been
handed the following problem description for the Disk Name critical incident: "the error
message finally appeared after several beeps" with a message that indicated that "a
maximum of 22 characters are allowed in a disk name.”" The developer classifies the
problem description in the artifact component as a language, error message problem. In the
task component, the classification is task-facilitation, user action reversal. When these two
classifications are considered further, it is concluded that there are actually two problems in
the one description, i.e., in this case, the two categories do not describe two dimensions of
the same problem. That is, a problem that is due only to the delay in the appearance of the
message box is a very different from a problem that is about the absence of a mechanism
for easy error recovery. The developer would separate the problems into two different
descriptions and classify each along the other component. The first description has a
strong artifact component and would be classified in the task component. The second
description has a strong task component and would be classified in the artifact component.
The original problem description was clear problem-centered. The two new descriptions

are precise and comprehensive.

4.2.4.2 The UPT As A Foundation For Analysis

This section describes how the UPT can provide the foundation for identifying
patterns of usability problems. Patterns of usability problems can be used to guide the
identification of global solutions that address multiple problems. In addition, relating the
UPT to other aspects of the user interface, such as tasks and user interface objects, can
result in extensions to UPT analysis. Usability problem groupings within one UPT

category are examined first. Groupings across UPT categories are investigated next.

121

Groupings that require additional information are then presented. In each case, the pattern

of usability problems is used to identify global solutions.

GROUPINGS WITHIN ONE CATEGORY

Assume that evaluators identify 350 usability problems. The problems are
classified in the UPT and a distribution of problems over UPT categories is derived. Of the
artifact classifications, 35% are visualness, 40% are language, 5% are manipulation, and
20% do not have an artifact component. Of the task classifications, 28% are task-mapping,
30% are task-facilitation, and 42% do not have a task componerit. The distribution is

summarized in Table 4.16.

Table 4.16. Distribution of problems across UPT categories.

Category Percent
Visualness 35
Language 40

Manipulation 5

Other (Artifact) 20
Task-mapping 28
Task-facilitation 30
Other (Task) 42

The evaluators examine the problems in each category more closely. They find that
half of the visualness problems are about text that is too small. In addition, the developers
note that most of the task-mapping problems occur when the users are performing

arithmetic calculations using post-fix notation.

The developers identify two global solutions based on individual categories. The

first is to enlarge the size of all text in the user interface (this addresses roughly 17.5% of

122

the problems). Second, the developers decide to change the sequence of all calculation

subtasks from post-fix to in-fix. This will address the associated task-mapping problems.

If the developers had not analyzed the problems according to categories, they might
have addressed each problem (or just a subset of those problems) individually. If only a
subset of the visualness problems were corrected, some "too small” teXt would have
remained in the interface. In addition, depending on the programming language used
implement the user interface, it might be possible to address all font size problems with one
(or a few) corrections. If the problems have not been grouped, this type of approach could
not be used. Had the task-mapping problems not been grouped, they might have been
addressed individually. This could result in inconsistent corrections, i.e., some corrections
could have focused on in-fix notation, others might have focused on superficial changes to

help the user with post-fix notation.
GROUPINGS ACR ORIES

Developers can also identify groupings of problems across categories. Consider
the 40% in the language category in Table 4.16 above. Developers examine the problems
in this category and find that they have the following distribution: 25% are feedback
message problems, 20% are error message problems, 5% are system message problems,
30% are on-screen text problems, and 20% are user-requested information/results

problems. This distribution is presented in Table 4.17.

123

Table 4.17. Distribution of problems across language, other wording categories.

Other wording Percent
Feedback messages 25
Error messages 20
System messages)
On-screen text 30
User-requested information/results 20

Developers examine problems in the feedback, error, and system message problem
types. They determine that most of the problems in these categories have resulted from
using system terms rather than user task domain terms. They identify a global solution that

involves rewording the messages accordingly.

The example given above is based on a problem (using system terminology
inappropriately) that is common to the three message categories contained in other wording.
Because of the similarities among these three categories, the grouping was easy to detect.
Other patterns may exist among very different categories that are not as easily detected. For
example, possible groupings may be detected among an artifact and a task category (object
appearance and alternatives). Further investigation is needed to identify these patterns.

This is planned for a future project and is described in Chapter 7.

GROUPINGS THAT REQUIRE ADDITIONAL INFORMATION

To identify certain patterns of usability problems, additional information is needed.
This information includes the user task being performed and the user interface object that
was used when the problem occurred. The Disk Name critical incident illustrates how task
information can used to group problems. The Data Entry critical incident illustrates how

user interface object information is likewise used to identify patterns of usability problems.

124

Task information can be used with UPT classifications to identify global solutions.
Consider the Disk Name critical incident. Assume that all four problems were feponed,
i.e., none were eliminated from the list. If the four problems were grouped according to
the user task (disk initialization), two global solutions could be identified quickly that

would address the entire set of problems (either correct problem 4 or allow disk names to

be any length).

Although the two global solutions in the Disk Name critical incident outlined above
could be identified without the UPT, the UPT can be used to supplement task grouping in
several ways. First, lengthy or complex tasks may have a large number of associated
usability problems. In these instances, the UPT can contribute significantly to organizing
those problems. Second, UPT classification enables developers to more easily determine if
the problems are artifact problems or task problems. If the problems associated with a
given task are primarily artifact problems, the solution(s) may be very different than if
those problems have a strong task component. Third, UPT classification and analysis can
increase the level of understanding about tasks and the problems that occur during those

tasks.

Usability problems can also be grouped according to user interface object. As in
the task discussion above, the UPT can supplement grouping by object to identify global
solutions. Consider the eight problems classified in the Data Entry critical incident. The
problems occurred within the same dialogue box. If the problems had been grouped
according to the user interface object (the dialogue box), developers could identify a global

solution (use direct manipulation) that would address all eight problems.

125

When the UPT is used in conjunction with grouping by object, it is easier to
determine if most of the problems associated with a specific user interface object are artifact
problems or task problems. If they are artifact problems, developers must examine how
that object was constructed. If they are task problems, developers must think about how
that object was used. It is likely that very different solutions would be needed to correct the
artifact (or task) problems associated with a particular object. In addition, UPT
classification can help developers determine if the same type of problem has occurred many
times with many different objects of the same type (e.g. the font size of many different field
labels is too small or the status bar indicators used for several different, lengthy operations
is too narrow). By investigating how often the same type of problem occurs with the same

type of object, developers can identify more efficient solutions.

Additional research is needed to determine the nature of the relationships of UPT
categories with user tasks and various user interface objects. This is discussed briefly in

Chapter 7.

4.3 Summary

This chapter presented a reliability study which showed that the UPT can be used to
classify usability problems reliably. Since the components of the UPT correspond to the
two dimensions of a usability problem (artifact and task), each problem is classified in the
artifact component as well as the task component. Recall that the UPT has four levels and
that each category in levels 3 and 4 contains specific examples of usability problems in that

category. See Figure 3.1.

126

Although the objective is to classify a problem as deeply as possible in each
component of the hierarchical structure (levels 3 or 4), it is not always possible to classify a
problem in levels 2, 3 or 4. When problems can be classified in categories in levels 3 or 4,
they are matched with the specific examples of usability problems in those categories.
When usability problems are classified in categories in level 2 or some of the categories in
level 3, they are matched to definitions rather than specific examples. Recall problem
description 5 of the Data Entry critical incident (the user had trouble understanding the
words in the data entry box). This problem was matched to the definitions provided in the

language category, but could not be classified further.

Some problems cannot be fully classified. Problem descriptions frequently are
unclear, imprecise, and/or incomplete. Other problem descriptions may have either a

strong artifact or a strong task component and are classified deeply in only one component.

In the experience of the author and several colleagues, thinking about the two
dimensions of a usability problem helps developers isolate the major problem in a critical
incident, write more complete problem descriptions, eliminate vagueness, and reduce the
tendency to include multiple problems in one description. Evaluators are also able to
distinguish between the problem and user reactions, the effect on the user, and contextual
information. These conclusions were confirmed during a discussion with one usability
professional who indicated that a working knowledge of the UPT categories helped her

identify individual problems and report them clearly and precisely [Bowen 96].
While using the UPT during problem identification improves problem identification

and description, it does not guarantee that the real, underlying problems will be identified.

For example, consider the first problem description in the disk initialization critical incident

127

(user didn't like the beep). It is possible that after classifying that description in the UPT,
an inexperienced developer will still not recognize the underlying problem. Further

research is needed to develop a method for improved problem identification.

After usability problems have been identified and reported, the UPT can be used to
analyze those problems and identify patterns. Since patterns of usability problems are often
hard to detect among a large group of usability problems, UPT contributions during this
activity are substantial. Patterns of problems within a one category or across categories can
be identified easily. If cost or severity data is collected for each problem, developers can
investigate ways to prioritize the problems across categories as well as within individual
categories. In addition, the UPT can be used in conjunction with other types of groupings
(according to user task or user interface object) to characterize the problems associated with

each group and identify multiple solutions to those problems.

128

5 THE UPT AND PROCESS IMPROVEMENT

Three important concepts in software process improvement are data collection, data
analysis, and the association of that data to specific improvements. These three concepts
also apply to user interface process improvement. Recall that Chapter 4 presented the UPT
and discussed ways to use the UPT to classify, organize, and analyze usability problem
data. This chapter shows that usability problem data is an important component of user
interface process improvement, and illustrates how to relate types of usability problems to
specific improvements. The two types of improvements that are explored are based on the
two development context factors discussed in Chapter 1: developer factors (team member
roles and skills) and activity factors (activities, methods, and techniques). In particular,
this chapter relates types of usability problem data to improvements that can be made to the

development team as well as improvements that can be made to the development process.

This chapter presents the findings of a study undertaken to identify associations of
the five primary UPT categories with each of the two development context factors. The
study consisted of two parts: the Roles Evaluation and the Activities Evaluation. The
chapter is organized as follows. An overview of the study is discussed in section 5.1.
Section 5.2 presents the results of the Roles Evaluation in which developer roles were
associated with individual UPT categories. Section 5.3 presents the results of the Activities
Evaluation in which development activities were associated with individual UPT categories.
Section 5.4 compares and contrasts the results described in sections 5.2 and 5.3. Section
5.5 outlines a step-by-step procedure for process improvement in which the UPT is used as

a diagnostic tool. The results presented in this chapter are summarized in section 5.6.

129

5.1 The UPT Association Study

The purpose of this study was to identify associations between developer roles and
UPT individual categories, as well as between development activities, methods and

techniques and individual UPT categories.

Six experts in user interface engineering participated in the study. Each expert had
extensive experience (at least thirteen years) as a usability engineer, software engineer,
and/or human-computer interaction researcher in industry, government, and academic

environments. Their experience, in number of years, is summarized in Table 5.1.

Table 5.1. Classifier experience: number of years in industry, government, and academic

environments.
Expert Industry Government Academic
1 16 - 10
2 5 - 20
3 10 3 15
4 19 15 -
5 11 - 2.5
6 10 2 9

With the exception of expert 5, each participant had experience in both software and
user interface development (see Table 5.2). Expert 5 had experience as a researcher in both
industry and academia. In some cases, the number of years given in the columns in Table
5.1 overlapped. Five experts used guidelines and heuristics regularly; one used them
infrequently. At the onset of the study, one expert had limited exposure to the UPT; five

had no prior experience with the UPT.

130

Table 5.2. Classifier experience: number of years in software and user interface

development.
Expert Software Development User interface Development
1 9 7
2 10 15
3 S 12
4 10 15
5 - -
6 12 7

The materials sent to each expert contained the following items:

* instructions,

e UPT documentation,

¢ the hierarchical structure of the UPT as shown in Figure 3.1,
¢ Roles Form 1,

¢ Roles Form 2,

e Activities Form, and

 three glossaries (for Roles Form 1, Roles Form 2, and the Activities Form).

Roles Form 1 contains a list of both software engineering and usability engineering roles.
Roles Form 2 contains only those software engineering present on Roles Form 1. The
Activities Form contains software engineering and usability engineering development
activities, methods, and techniques. Roles Form 1, Roles Form 2, and the associated
glossaries are located in Appendix B, the Activities Form and associated glossary are in

Appendices C.

The participants were asked to perform two assessments. Each participant was first

asked to assess the degree to which individual roles and skills could address usability

131

problems in each of the five primary UPT categories (the Roles Evaluation); and second, to
assess the degree to which individual development activities, methods, and techniques
(henceforth referred to as activities) could address usability problems in each of the five

primary UPT categories (Activities Evaluation). The following scale was used:

0 No. This role, or activity, essentially does not address this category of usability
problem.

1 Moderate/somewhat. This role, or activity, might address this category of usability
problem.

2 Yes. This role, or activity, would address this category of usability problem.

For the purposes of this study, “address” meant prevent, think about, detect, predict,

and/or correct. The forms are given in Appendices B and C.

The responses associated with each UPT category and combinations of those
categories were analyzed using the mean and standard deviation. The mean is a measure of
central tendency of a set of data. The standard deviation is a measure of the variability of
that data (a small standard deviation indicates that the experts tended to agree). Recall that
the data sets examined in this chapter contain discrete values comprised of only zeros, ones
and twos. Due to the discrete data, the possible values contained in the sets of responses
on the Roles Forms and the Activities Form, and the relatively small sample size, the
standard deviations that were computed tended to specific, distinct values such as .204,

478, .574, .824, 917, and 1.417.

The means and standard deviations were interpreted in the following way. A large

mean (greater than or equal to 1.5), combined with a small standard deviation (less than or

132

equal to .6), is used to identify roles and activities that definitely address UPT categories.
A small mean (less than or equal to .5), combined with a small standard deviation (less than
or equal to .6), is used to identify roles and activities that definitely do not address UPT
categories. Roles and activities with means between .5 and 1.5 are not notable in terms of
this research since they are characterized by "Moderate/somewhat. This role, or activity,
might address this category of usability problems.” Likewise, roles and activities with

large standard deviations indicate that the experts did not tend to agree on a rating.

The interpretation of each pair of means and standard deviations is indicated by one
of the following five symbols: "+", "w+", a blank space, "w—", and "—". The meaning

of each symbol is given below:

"+" indicates that agreement existed among the respondents that a particular role could
be used to address usability problems in a given category (positive association, 1.e.,
the mean is greater than or equal to 1.5 with a standard deviation less than or equal
to .6),

”

w+" indicates that weak agreement existed that a particular role could be used to address
usability problems in a given category (weak positive association, i.e., the mean is
less than, but very close to, 1.5 and a standard deviation not much larger than .6),
blanks indicate that there was either no agreement (i.e., any mean paired with a
standard deviation greater than .6) or agreement that roles and activities only
moderately addressed individual UPT categories (i.e., the mean is greater than .5
and less than 1.5, with a standard deviation less than .6),

w—" indicates that weak agreement existed that a particular role could not be used to

address usability problems in a given category (weak negative association, i.e., the

133

mean is greater than, but very close to, .5 and a standard deviation not much larger
than .6), and

"—" indicates that agreement existed that a particular role could not be used to address
usability problems in a given category (negative association, i.e., the mean is less

than or equal to .5 with a standard deviation less than or equal to .6).

While the remainder of this chapter focuses on positive associations, some interesting
points will be noted about negative associations. Associations denoted by blanks will not

be considered.

5.2 The Association Of Roles And Skills With UPT Categories

This section presents the two different kinds of results obtained during the Roles
Evaluation. Section 5.1.1 examines the association of individual developer roles with UPT
categories. Section 5.1.2 examines the results obtained by comparing expert responses on
Roles Form 1 and Roles Form 2. This comparison is performed to determine whether or
not software engineering skills are viewed differently depending on the availability of
usability expertise (i.e., would a manager be more inclined to use a software engineering

role to address usability issues if no usability experts available).
5.2.1 Association Of UPT Categories With Developer Roles

In this section, responses of all six participants on Roles Form 1 are examined to
identify roles that definitely address usability problems in each UPT category as well as

those that address multiple categories of usability problems. Roles that do not effectively

address usability problems in the various categories are also identified.

134

A synopsis of the means and standard deviations computed from the responses on
Roles Form 1 is given in Table 5.3 below. Each cell in the table contains the interpretation
of the associated pair of means and standard deviations computed from the responses (zero,
one, or two). The columns labeled "V", "L", "M", "TM", and "TF" contain the
interpretation of the results for the responses in each of the five UPT categories (the means
and standard deviations for each pair of roles and categories are given in Tables D.1
through D.5 in Appendix D). The columns labeled "AC", "TC", and "UPT" present the
interpretation of results for the combined categories in the artifact component, the combined
categories in the task component, and the entire UPT structure, respectively (the means and

standard deviations are given in Tables D.6 through D.8 in Appendix D).

The original responses (raw data) were used to calculate the means and standard
deviations for each column. For example, the means and standard deviations for the
responses for the "V" column were based on the original responses for that category.
Likewise, the means and standard deviations for the "AC" column were calculated using
the original responses for the three artifact categories, i.e., the "AC" column was not based
on the means and standard deviations obtained for each individual category. Similarly, the
means and standard deviations for the "TC" column were calculated using the original
responses for the two task categories. The means and standard deviations for the "UPT"

column were based on the original responses for all five categories.
The information in the table is read as follows. Consider the roles of end user and

quality assurance. The role of end user addresses task-mapping usability problems (+), but

are only weakly associated with the task component (w+). Similarly, the role of quality

135

assurance does not address task-mapping problems (—) and is only weakly associated with

the task component (w—).

An examination of the rows in Table 5.3 reveals that three roles are strongly
associated with each of the individual categories, the two components, and the entire UPT:
human factors expert, user interface interaction designer, and user interface evaluator.
Similarly, two roles were identified for which a strong negative association exists for each
of the individual categories, the two components, and the entire UPT: software

documentor and software librarian.

Further examination reveals some surprising results. Consider the role of system
analyst. A strong positive association exists between this role and the task-mapping and
task-facilitation categories. This leads to a strong positive association in the task
component. Notice, however, that although a strong positive association is not noted in the
artifact categories, a strong positive association is noted for the entire UPT. This result is
attributed to the very high means (and small standard deviations) in the two task categories,
and the moderate mean and small standard deviation calculated for the artifact component
(the mean of 1.222 and standard deviation of .444 can be found in Appendix D, Table
D.6). Similarly, consider the role of marketer. A moderate association is observed for the
visualness category, a weak negative association is observed for the language category, a
strong negative association is observed for the manipulation category. However, the
strong negative association in the artifact component is due to the very low mean of .167
(and standard deviation of .408) in the manipulation category and the moderately low mean

of .833 (and standard deviation of .753) in the visualness category.

136

Table 5.3. Interpretation of roles and skills results for Roles Form 1.

Role v L M || TM| TF || AC TC || UPT
| cognitive psychologist + + w+
customer
end user + W+
graphic designer +
human factors specialist + + + + + + + + I
market analyst — — w— || w—

marketer w— | — w—]| — — — —4“
moderator (focus group)

problem domain expert + + +
quality assurance — W—
software specifier

software designer — — wW— wW— wW— wW— i
software documentor — — | — — — — — —
software implementor — — — wW— wW— wW—
software librarian — | — | — || — — — — —_—
software tester — — —
systems analyst + + + +
technical writer + + + w+ ||
user-interface interaction designer + + + + + + + +
user-interface software designer
user-interface software implementor
user-interface evaluator + + + + + + + +
user-interface documentor ﬂ'

Strong positive associations for the three artifact categories (visualness, language,
and manipulation) are captured in the Venn diagram in Figure 5.1 below. A strong positive
association exists between three roles (human factors specialist, user interface interaction
designer, and user interface evaluator) and each of the three artifact categories (these roles
are found in the intersection of the three ovals). Only one role is associated with just an
individual category: graphic designer with visualness. This association was expected,
since the skills of a graphic designer can be applied directly to visualness problems such as
object layout and appearance. Two roles are each associated with two categories: technical
writer with visualness and language, and cognitive psychologist with language and
manipulation. It was not unexpected that the role of technical writer was associated with

the language category (language issues are very important and the skills of a technical

137

writer can be directly applied to those issues). However, the association of technical writer
with visualness was surprising. The experts may have assumed that a technical writer
would have some expertise in textual layout and presentation. A clear link also exists
between the cognitive psychologist and language and manipulation problems. The skills of
cognitive psychologist include a knowledge of human memory limit’ations and the ability of

humans to recognize visual cues in the interface.

Note that in all Venn diagrams in this work, a region with no element indicates an
empty region. In Figure 5.1, three regions are empty: language "only", manipulation

"only", and the intersection of visualness and manipulation.

Disualness

graphic designer

human factors specialist
user interface interaction designer
user interface evaluator

Language Manipulation

cognitive psychologist

Figure 5.1. The overlap among roles for visualness, language, and manipulation.
Strong positive associations observed for the two task categories (task-mapping and

task-facilitation) are illustrated in Figure 5.2. A strong positive association exists between

five roles (human factors specialist, user interface interaction designer, user interface

138

evaluator, systems analyst, and problem domain expert) and both of the two task categories
(these roles are found in the intersection of the two ovals). The first three roles are the
same as the three that addressed all artifact categories in Figure 5.1 above. The remaining
two (systems analyst and problem domain expert) complement the original set of three
roles. The systems analyst has the skills to perform various systems analysis activities
which focus on necessary functionality, and, less directly, on user tasks. Similarly, the
problem domain expert has knowledge of the application domain (which is applied to user
tasks). The only role that is specifically applicable to one category is that of end user. The
end user can be very helpful in determining if tasks have been structured appropriately on

the system. No roles address only task-facilitation problems.

Task-mapping Task-facilitation

human factors specialist
user interface interaction designer
user interface evaluator
systems analyst
problem domain expert

Figure 5.2. The overlap among roles for task-mapping and task-facilitation.

It is interesting to note that the role of cognitive psychologist was not associated
with either task-mapping or task-facilitation. The skills that a cognitive psychologist bring
to a development team can certainly address cognitive aspects of tasks, yet the blanks in the
TM and TF columns in Table 5.3 indicate a lack of agreement that these skills would

contribute directly to improving the task structure.

139

The strong positive associations observed for the artifact component as a whole and
task component as a whole are illustrated in Figure 5.3. A strong positive association
exists between three roles (human factors specialist, user interface interaction designer, and
user interface evaluator) and each of the two components (note the intersection of the two
ovals). At this level, the role of technical writer was associated only with the artifact
component and the roles of systems analyst and problem domain expert were associated

only with the task component.

Some interesting observations can be made as Table 5.3, Figure 5.1, and Figure
5.2 are compared. Notice that although there was a strong positive association of the role
of cognitive psychologist with the language and manipulation categories (as shown in
Figure 5.1 above), it was only weakly associated with the artifact component (note the
"w+" in the UPT column of Table 5.3). Since the association was weak, it is not included
in Figure 5.3 below. The role of graphic designer is associated with visualness but not
associated with the artifact component because the skills of the graphic designer do not
extend to language issues and may be only indirectly related to the appearance of visual
cues (manipulation). Similarly, although the role of end user was strongly associated with
the task-mapping category, it is only weakly associated with the task component and

likewise is not included in the Venn diagram below.

Task

Artifact

human factors specialist
user interface interaction designer
user interface evaluator

problem domain expert

technical writer systems analyst

Figure 5.3. The overlap among roles for the artifact and task components.

140

Roles associated strongly with the overall UPT are given in the "Overall UPT"
column in Table 5.4. Table 5.4 compares the "Overall" roles with roles that are associated
with either the artifact component or task component only. The group of roles in the "Only
AC" column is the set difference between the roles in the artifact oval in Figure 5.3 and the
roles in the "Overall UPT" column in Table 5.4. Similarly, the group of roles in the "Only
TC" column is the set difference between the roles in the task oval in Figure 5.3 and the

roles in the "Overall UPT" column in Table 5.4.

For example, the role of technical writer is in the artifact oval in Figure 5.3, but it is
not in the "Overall UPT" column in Table 5.4. Therefore, it is placed in the "Only AC"
column in Table 5.4. Note that the role of human factors specialist is in the artifact oval in
Figure 5.3. However, since it is included in the "Overall UPT" column in Table 5.4, it is
not in the "Only AC" column in Table 5.4. Similarly, the role of problem domain expert is
in the task oval in Figure 5.3, but it is not in the "Overall UPT" column in Table 5.4.
Therefore, it is placed in the "Only TC" column in Table 5.4. Note that the role of systems
analyst is in the task oval in Figure 5.3. However, since it is included in the "Overall

UPT" column in Table 5.4, it is not in the "Only TC" column in Table 5.4.

The four roles that are considered the most "broadly" useful by the study
participants are given in the "Overall UPT" column in Table 5.4. Note that the primary
difference between Figure 5.3 and Table 5.4 is the movement of systems analyst from the
task component to the overall UPT column. Also note that the role of technical writer is
only weakly associated with the overall UPT, and therefore remains in the "Only AC"
column below. The role of cognitive psychologist, weakly associated with the artifact

component, is not associated with the overall UPT and does not appear in Table 5.4.

141

Table 5.4. A comparison of roles for the artifact component, task component, and overall

UPT.
Only AC Overall UPT Only TC
technical writer systems analyst problem domain expert

human factors specialist
user interface interaction designer

user interface evaluator

It is not surprising that three roles (human factors specialist, user interface
interaction designer, and user interface evaluator) were perceived to be useful in addressing
usability problems in each category since team members performing these roles have been
trained in human-computer interaction. While it is often more productive for the role of
user interface interaction designer to be performed by a different individual than the role of
user interface evaluator (a fresh view of the system can result in the identification of
additional usability problems), it is not absolutely necessary for these roles to be performed
by different people. Regardless of the number of people that assume the four roles listed
above, the roles would contribute significantly to a well rounded, multi disciplinary
development team. This is an important conclusion for development organizations not yet
sure of the value of usability engineering since this result indicates that the single, most
valuable, "all-around" addition to a development team would be a person trained in these

related areas.

The roles that were negatively associated with UPT categories were also identified.
A Venn diagram approach was used that was similar to that used for positively associated
roles. However, this approach did not provide any additional insight in distinguishing

among roles that were either weakly or strongly negatively associated with UPT categories.

142

The roles that were negatively associated with UPT categories are traditional
software engineering roles. Three roles were identified that were perceived to not be useful
in addressing any UPT category (marketer, software documentor, and software librarian).
The roles of quality assurance, software implementor, and software tester were negatively
associated with either an individual category or with the entire task component. Market
analyst and software designer were negatively associated with either with an individual

category or the with the entire artifact component.

Several roles received an interpretation of blank in Table 5.3. These are the roles of
customer, moderator (focus group), user interface software designer, user interface
software implementor, and user interface documentor. Recall that a blank interpretation
means that these roles were not associated (negatively or positively) with any category.
Contrast two of these roles (user interface software designer, user interface software
implementor) with software designer and software implementor. The two software roles
were negatively associated with most of the individual categories (with a weak negative
association with the overall UPT. This difference may be due to the perception that user
interface software designers and user interface software implementors have some
knowledge of the user interface and some background in usability whereas the individual
performing the two software roles do not. This result justifies the recommendation that

user interaction development be separated from software development [Hix 93].
5.2.2 Comparing Responses On Roles Form 1 And Roles Form 2

A second roles form (Roles Form 2) was designed to determine if the experts

would view the applicability of software engineering roles and skills to UPT categories

143

differently when usability specialists were not available. Roles Form 2 contains only the
software engineering roles and skills present on Roles Form 1 (recall that Roles Form 1
contains both software engineering and usability engineering roles and skills). This section
compares the responses on the two forms in an effort to determine if managers would use
specific software engineering roles to address usability problems in a given UPT category
if no usability specialists were available. The compared responses are for roles that are

present in both forms. Both forms can be found in Appendix B.

Five of six participants completed the two roles forms: Roles Form 1 and Roles
Form 2 (the sixth participant completed only Roles Form 1). To determine if there was a
significant difference between the responses on Roles Form 1 (sample 1) and the responses
on Roles Form 2 (sample 2), a paired t hypothesis test was performed. The paired t test
was used since the two samples are not independent (the same people completed each
form). A difference score, D, was calculated for each pair of responses for all five

participants (D = responseform? - responseform1)-

The null hypothesis, that the mean of the difference scores is not significantly
different from 0, was tested against the alternative hypothesis that the mean of the
difference scores is significantly different from 0. To compute the test statistic the sample
mean and standard deviation are needed. The sample mean of the difference scores is D=
.2092. The sample standard deviation is Sp = .58207. Computing the test statistic, t,
yields 6.4803 which results in a probability of p = .000. Since a two-tailed test was used,
a p value less than .025 is needed to reject the null hypothesis. Since .000 < .025, the null
hypothesis is rejected, i.e., it is concluded that at the o = .05 level of significance, the
difference scores are significantly different than 0. Since D is greater than O, the

responses on Roles Form 2 are higher than those on Roles Form 1.

144

Five additional paired t hypothesis tests were performed to determine if an
individual participant's responses were significantly different from 0. In each case, the null
hypothesis, that the mean of the difference scores for an individual participant is not
significantly different from 0, was tested against the alternative hypothesis that the mean of
the difference scores for that participant is significantly different from 0. The computed
values for each of the five tests are given in Table 5.5. The values for the overall paired t

test described above are also included.

Table 5.5. Paired t test values for each participant.

Participant D Sp t P Roles Form 2
higher
1 — _ — — —
2 .48 615 6.25 .000 yes
3 .14 .464 2.41 .008 yes
4 0 .586 0 .5 no
5 .12 .625 1.59 .056 no
6 31 .498 4.99 .000 €s
Overall .2092 .58207 | 6.4803 .000 _yes

Participants 2, 3, and 6 did have significantly different responses on Roles Form 2,
i.e., for participants 2, 3, and 6, the responses on Roles Form 2 are higher than those on
Roles Form 1. Participants 4 and 5 did not have significantly different responses on Roles
Form 2, i.e., for participants 4 and 5, the responses on Roles Form 2 are not higher than

those on Roles Form 1.

Recall that participant 1 completed Roles Form 1 but did not complete Roles Form
2. The following comment was made: "I would not change any of my responses from
Form 1. What is the purpose of two nearly identical forms?" Although this comment

indicates that the responses on Roles Form 2 would not have been different than those on

145

Roles Form 1, they cannot be included since the form was not filled in. The observations
about each individual participant as well as the overall result will be discussed further at the

end of this section.

Recall that the overall paired t test for all pairs of observations resulted in the
conclusion that the mean of the difference scores for all participants was significantly
different from 0. To further investigate the relationship between the responses on Roles
Form 1 and Roles Form 2, the mean responses for each role and each of the five primary
UPT categories were calculated. The mean responses for how well each role in Roles
Form 1 (that is also present in Roles Form 2) addresses usability problems in each of the
five primary UPT categories are given in Table 5.6. The mean responses for how well
each role in Roles Form 2 addresses usability problems in each of the five primary
categories are presented in Table 5.7. Since only five participants completed the two
forms, the means in both tables are based on those five opinions.

Table 5.6. Mean responses for roles in Roles Form 1 also present in Roles Form 2 (5
participants).

ROLES FORM 1 v L M ™™ TF
customer 0.6 0.6 0.6 0.8 0.6
market analyst 0.8 0.4 0.2 1.2 0.6
marketer 0.8 0.6 0 0.6 0
problem domain expert | 1.2 1.6 0.8 1.8 1.6
quality assurance 0.8 0.6 0.4 0.4 0.8
software specifier 0.8 0.8 0.8 1.4 1
software designer 0.4 0.4 0.6 0.8 0.6

software documentor 0.2 0.6 0.2 0.4 0.2
software implementor 0.4 0.4 0.6 0.2 0.4

software librarian 0 0 0.2 0.2 0.2
software tester 0.6 0.6 0.6 0.6 0.6
systems analyst 1.2 1.4 1.2 2 1.6
technical writer 1.6 1.8 1.2 1.2 1.2

146

Table 5.7. Mean responses for Roles Form 2 (5 participants).

ROLES FORM 2 \4 L M T™ TF
customer 0.8 1 0.8 1.2 0.8
market analyst 1.2 1 0.8 1.2 0.8
marketer 1 0.8 0.6 0.8 0.4
problem domain expert 1.8 2 1.4 2 1.8
quality assurance 0.8 0.8 0.6 0.4 0.4
software specifier 1 1 1 1.4 1
software designer 0.8 0.8 0.6 1 0.8
software documentor 0.6 0.6 0.4 0.6 0.4
software implementor 1 0.8 1 0.6 0.6
software librarian 0.2 0 0 0.4 0
software tester 0.6 0.6 0.8 0.8 0.4
systems analyst 1.8 1.8 1.4 2 1.6
technical writer 1.4 1.8 1.4 1.6 1.4

Casual inspection of the entries in the two tables shows that the mean responses in
Table 5.7 for Roles Form 2 are somewhat larger than the mean responses in Table 5.6 for
Roles Form 1. This is not surprising given the results of the overall paired t test described
above. To determine if a linear relationship exists between the entries in each table,
Pearson’s coefficient of correlation, r, was computed. The calculation yieldedr=.9. Asr
varies between -1 and 1, a value of .9 indicates that there is a strong positive linear
relationship between the entries in Table 5.6 and the entries in Table 5.7. In view of this
large positive correlation, it can be concluded that knowledge of a participant's response to
a category on Roles Form 1 would give a strong indication as to their response to the
corresponding category on Roles Form 2. When this result is examined in the context of
the overall paired t test, it can be concluded also that the responses on Roles Form 1

differed from the responses on Roles Form 2 by a consistent amount.
The results of the overall paired t test and the strong positive linear relationship

indicated by Pearson's coefficient of correlation seem to indicate that experts believe that

specific software engineering roles would be used to address usability problems in a given

147

UPT category if there were no usability specialists available. However, other factors may

also have influenced these results. Some possible factors are given below.

1. In retrospect, the amount of demographic information collected on each participant
was too limited and not sufficiently specific. Although the participants’ background
and experience qualified them as experts in the field, it is possible that their
backgrounds influenced their responses. For example, it is possible that
participants with a stronger software engineering background responded differently
than those with a stronger usability engineering background. Given the limitations
of the demographic data, it was not possible to analyze the responses with respect

to background or experience.

2. The instructions in the packet given to the six participants indicated that Roles Form
1 was to be completed just prior to Roles Form 2. Since the participants were not
monitored as they completed the forms, there is no guarantee that the forms were

completed in the same order. The order of completion could affect the responses.

3. Even if Roles Form 1 was completed just prior to Roles Form 2, it was the same
type of form with the same instructions. Higher responses on the second form may
be due to the participants tiring and possibly becoming more generous as they

repeat the same process on the same questions.

4. Although the overall t test indicated that the mean of the difference scores was
significantly different from 0, two of the five individual tests indicated that there
was no substantial difference in the mean of the difference scores for those

participants (4 and 5). When this observation is combined with participant 1's

148

comments regarding the blank Roles Form 2, it appears that individual expert

opinions did vary.

5. The size of the sample can affect the significance of the results from a hypothesis
test. For the paired t test, the test statistic is t = (D — pp) / (SD / v/n). This
equation can be rewritten as t = [(vn) (D — D)1/ (SD). Since the square root of
the sample size, n, is a factor in the numerator of the test statistic, the larger the
sample size, the larger the value for t. When t becomes large, the results of a
hypothesis test can often be considered statistically significant; however, there may

be no practical significance that can be attached to those results [Schulman 92].

The results of the overall hypothesis test indicate that the responses on Roles Form 2 are
higher than those on Roles Form 1, i.e., that managers view software engineering roles
differently if usability engineers were unavailable. However, for the reasons discussed

above, this conclusion cannot be put forward with confidence.

5.3 The Association Of Activities, Methods, And Techniques With UPT

Categories

This section presents the results from the Activities Evaluation. Responses of all
six participants on the Activities Form are examined to identify activities that definitely
address usability problems in each UPT category as well as those that address multiple
categories of usability problems. Activities that do not effectively address usability
problems in the various categories are also identified. The means and standard deviations
computed from the responses on the Activities Form are given in Tables D.9 through D.16

in Appendix D.

149

A total of 38 development activities were included on the Activities Form which is
given in Appendix C. The 38 activities were grouped by type as shown in Table 5.8. Note

that the number of activities in each group varied.

Table 5.8. Types of activities on the Activities Form.

Type of Activity Abbreviation Number
system analysis SA 11
guidelines G 3
design D 4
design representation techniques DRT 5
inspection methods I 7
user testing activities UT 8

A synopsis of the means and standard deviations computed from the responses on
the Activities Form is given in Table 5.9 below (see Tables D. 9 through D.16 in Appendix
D for the means and standard deviations). Each cell contains the interpretation of the
associated pair of means and standard deviations. Recall that the categories in the artifact
component are labeled "V", "L", and "M", those in the task component are labeled "TM"
and "TF", and the combined artifact categories, the combined task categories, and the entire
UPT structure are labeled "AC", "TC", and "UPT", respectively. Similar to the discussion
in section 5.2.1, the original responses were used to calculate the means and standard

deviations for each column in Table 5.9.

An examination of the rows in Table 5.9 reveals some surprising results. Consider
the three guidelines activities: use commercial style guides, use customized style guides,
and use general interface guidelines. Note that a strong positive association exists for each
guidelines activity and the visualness and manipulation categories as well as for the artifact

component. However, a strong mean of 2 and standard deviation of O for visualness, a

150

mean of 1.667 and a standard deviation of .816 for language, and a mean of 2 and standard
deviation of 0 for manipulation result in the strong association of use customized style
guides with the entire UPT. Also note that although a strong positive association exists for
use general interface guidelines and each of the artifact categories, that this activity is not
associated with the UPT (note the small mean of 1.167 and standard deviation of .983, and
the small mean of 1 and standard deviation of .894 for the task-mapping and task-

facilitation categories, respectively).

Strong positive associations between activities and the three artifact categories
(visualness, language, and manipulation) are captured in the Venn diagram in Figure 5.4
below. A strong positive association exists between nine activities and each of the three
artifact categories (these activities are found in the intersection of the three ovals). These
nine activities include one guideline activity, two design activities, three inspection
activities, and three user testing activities. No systems analysis activities (SA) were noted
that address problems across the artifact categories, possibly because many system analysis
activities are focused on tasks. In addition, no design representation techniques (DRT) are

associated with the three artifact categories.

151

Table 5.9. Interpretation of results from the Activities Form.

Activity

TF

‘System - Analysis (SA) -~ -

JVJMMHTM

Contextual Inquiry

AC

TC

UPT

Focus Groups

Functional Analysis

Learn Application Domain

Learn Competing Systems

Systems Analysis

System Requirements & Specifications

W+

W+

Task/Function Allocation

Usability Requirements & Specifications

User Analysis

User Site Visits

‘Guidelines (G) =

Use Commercial Style Guides

Use Customized Style Guides

Use General Interface Guidelines

‘Design Activities (D)

High-fidelity Prototyping

Low-fidelity Prototyping

Participatory Design

Usage Scenarios

‘PDesign Representation. .~
“Techniques(DRT) '

Behavioral Design Representation

Knowledge & Model Based

Object Orientation

State Transition Diagrams

Usage Scenarios, Use Cases

Inspection Methods (I)

Cognitive Walkthrough

Consistency Inspections

Feature Inspection

GOMS Analysis

Guideline Reviews, Heuristic Evaluation

Pluralistic Walkthroughs

Standards Inspections

User Testing Activities (UT)

Alpha Tests

Beta Tests

Co-discovery

Critical Incident Taking

Structured Interviews

Testing User Performance

W+

User Preference

Verbal Protocol Taking

152

Three activities address both visualness and manipulation problems: usability
requirements and specifications (SA), use commercial style guides (G), use customized
style guides (G). Four activities are associated with only the language category. Of those
four, three are system analysis activities (learn application domain, user site visits, and
participatory design), one is a user testing activity (structured interviews). It is not
unexpected that these four activities were associated with the language category. Each
activity focuses on either the application domain, the user's environment, or the user (all of
which are related to the appropriate use of language in the user interface). In addition, note
that three different systems analysis activities are associated with the visualness, language,
and manipulation categories; however, there are no system analysis activities in the

intersection.

Disualness

use general interface guidelines (G)
high-fidelity prototyping (D)
low-fidelity prototyping (D)
consistency inspections (I)
guideline reviews, heuristic evaluation (I)
pluralistic walkthroughs (I)
co-discovery (UT)

critical incident taking (UT)
verbal protocol taking (UT)

Language usability req's & spec's (SA)
use commercial style guides (G)

use customized style guides (G)

learn application domain (SA)
user site visits (SA)
participatory design (D)
structured interviews (UT)

Manipulation

Figure 5.4. The overlap among activities for visualness, language, and manipulation.

153

Strong associations were noted between 10 activities and the two categories in the
task component. These activities are illustrated in the intersection of the two ovals in
Figure 5.5 below. The 10 activities included two system analysis, three design, one design
representation technique, one inspection method, and three user testing activities. It is not
unexpected that task/function allocation is associated with both task-mapping and task-
facilitation. Developers performing this activity examine the user's role as well as the
system's role in a given task. Note that no guidelines activities were associated with the
two categories in the task component. This is due to the very few guidelines that address

user tasks.

Seven activities were strongly associated only with task-mapping, possibly the
most difficult aspect of user interface design. Three were system analysis activities (focus
groups, learn application domain, and system requirements and specifications). Only one
design method (usage scenarios) was associated with task-mapping. It is surprising that
usage scenarios (D) was not also associated with task-facilitation since scenarios can be
used to explore the user's ability to follow the task structure and return to the task path
when a deviant path has been taken. The one inspection method associated only with task-

mapping, feature inspections, only checks individual system features.

It is not surprising that testing user performance is associated directly with task-
facilitation because performance issues are directly related to the user's ability to follow the
task structure through to completion. Although system requirements and specifications
(SA) are weakly associated with task-facilitation (see Table 5.9), no désign techniques

focus specifically on the system's ability to facilitate task completion.

154

Task-mapping Task-facilitation

contextual inquiry (SA)
task/function allocation (SA)
high-fidelity prototyping (D)
low-fidelity prototyping (D)
participatory design (D)
usage scenarios, use cases
(DRT)

pluralistic walkthroughs (I)
co-discovery (UT)

critical incident taking (UT)
verbal protocol taking (

focus groups (SA)
learn application domain(SA)
system req's & spec's (SA)
user site visits (SA)
usage scenarios (D)
feature inspection (I)
structured interviews (UT)

testing user performance (UT)

Figure 5.5. The overlap among activities for task-mapping and task-facilitation.

Activities that have been associated strongly with each component are illustrated in
the Venn diagram in Figure 5.6. Six activities are strongly associated with both
components. Of those six, two are design, one is an inspection method, and three are user
testing. Surprisingly, no systems analysis activities nor design representation techniques
are illustrated in the intersection. And, since guidelines activities were not associated with
either task category in Figure 5.5 above, it is not unexpected that they are present only in
the artifact side of Figure 5.6. The one inspection method included only for the artifact
component is consistency inspections. No inspection methods are associated with the task

component. Current consistency inspections do not often address task consistency issues.

155

Task

Artifact

contextual inquiry (SA)
task/function allocation (SA)

usability req's and spec's (SA) high-fidelity prototyping (D)

use commercial style guides (G) low-fidelity prototyping (D) learn application domain (SA)
use customized style guides (G) pluralistic walkthroughs (I) system req's and spec’s (SA)
use general interface guidelines (G) co-discovery (UT) participatory design (D)
consistency inspections (I) critical incident taking (UT)

usage scenarios (D)

guideline reviews, heuristic evaluation (I) usage scenarios, use cases (DRT)

verbal protocol taking (UT)

Figure 5.6. The overlap among artifact-oriented activities and task-oriented activities.

Figure 5.6 illustrates that for the task component, developers have several activities
that can be pcrformed at specific points during development (analysis, design, and testing).
However, few "intermediate" activities are noted that can be performed between analysis
and design, and between design and testing. Only one systems analysis activity, several
guidelines, design, inspection, and testing activities can be used to address problems in the

artifact component.

Comparing Table 5.9, Figure 5.4 and Figure 5.5, it is observed that although
task/function allocation was associated with visualness as well as with both categories in
the task component, it is on the task "side" in Figure 5.6. Similarly, learning about the
application domain and participatory design address language problems, but are on the task
side of Figure 5.6 (participatory design is weakly associated with the artifact component).
Although user site visits and testing user perforrﬁance were not included in Figure 5.6, they

were weakly associated with the task component (see Table 5.9). Structured interviews

156

were associated with language problems as well as task-mapping problems; however, the

values for the means and standard deviations did not place them in Figure 5.6.

Activities associated strongly with the overall UPT are given in the "Overall UPT"
column in Table 5.10. Table 5.10 compares the "Overall" activities with activities that are
associated with either the artifact component or task component only. The group of
activities in the "Only AC" column is the set difference between the activities in the artifact
oval in Figure 5.6 and the activities in the "Overall UPT" column in Table 5.18. Similarly,
the group of activities in the "Only TC" column is the set difference between the activities in

the task oval in Figure 5.6 and the activities in the "Overall UPT" column in Table 5.1’8.

For example, "usability requirements and specifications" is in the artifact oval in
Figure 5.6, but it is not in the "Overall UPT" column in Table 5.19. Therefore, it is placed
in the "Only AC" column in Table 5.10. Note that "use customized style guides" is in the
artifact oval in Figure 5.6. However, since it is included in the "Overall UPT" column in
Table 5.10, it is not in the "Only AC" column in Table 5.10. Similarly, "contextual
inquiry" is in the task oval in Figure 5.6, but it is not in the "Overall UPT" column in Table
5.1 8 Therefore, it is placed in the "Only TC" column in Table 5.10. Note that
"participatory design" is in the task oval in Figure 5.6. However, since it is included in the

"Overall UPT" column in Table 5. 19 it is not in the "Only TC" column in Table 5.10.

The nine activities that are considered the most "broadly" useful by the study
participants are given in the "Overall UPT" column in Table 5.10. Note that although
system requirements and specifications are weakly associated with the overall UPT, no
other system analysis activities nor design representation techniques have been associated

with usability problems in any UPT category. It is not unexpected that the activities that are

157

associated only the task component are primarily system analysis activities. Those that
address the artifact component are divided between one analysis activity, two guidelines

activities, and one inspection method.

Table 5.10. A comparison of activities for the artifact component, task component, and

overall UPT.
Only AC Overall UPT Only TC
usability req's & use customized style guides (G) contextual inquiry (SA)
spec's (SA)
use commercial style high-fidelity prototyping (D) learn application domain (SA)
guides (G)
use general interface low-fidelity prototyping (D) system req's & spec's (SA)
guidelines (G)
consistency inspections (I) participatory design (D) task/function allocation (SA)
guideline reviews, heuristic evaluation (I) usage scenarios (D)
pluralistic walkthroughs (T) usage scenarios,
use cases (DRT)
co-discovery (UT)
critical incident taking (UT)
verbal protocol taking (UT)

Seven activities are not associated (positively or negatively) with any category or
combination of categories. These include two are- system analysis activities (learn
competing system and user analysis), one design representation technique (knowledge and
model based), one inspection method (cognitive walkthroughs), and three user testing
activities (alpha tests, beta tests, and user preferences). All guidelines and design activities
are associated positively with some (or all) UPT categories. It is significant that learning
about competing systems was not associated with any category since that activity can help
developers learn about the way similar functionality has been presented to the user and can

be used to anticipate usability problems with that functionality. Although user analysis can

158

help developers focus the level of user interface complexity, at this time, user analysis is

not related directly to types of usability problems.

Several activities were negatively associated with UPT categories. In the systems
analysis group, recall that focus groups were positively associated with task-mapping, but
have a weak negative association with manipulation problems. Systems analysis is
negatively associated with visualness and manipulation (weak), and task/function allocation
is negatively associated with visualness. It was not unexpected that behavioral design
representation (including GOMS analysis) as well as state transition diagrams were
negatively associated with the visualness category. In addition, feature inspections were
negatively associated with each category in the artifact component. This is due to the fact
that feature inspections do not focus on identifying artifact problems. Although behavioral
design representation techniques and GOMS analysis (as an inspection method) have made
an important contribution to the theory of human-computer interaction, these techniques did
not fare well in this study, i.e., they were perceived not to be useful in addressing
visualness problems and language problems and were not associated (either positively or
negatively) with the manipulation, task-mapping, or task-facilitation categories. See Table

5.9.
5.4 A Comparison Of Roles And Activities

This section compares and contrasts the roles and activities that were positively
associated with usability problems in each of the five primary UPT categories as well as

roles and activities that were negatively associated with those categories. Roles and

activities considered to be weakly associated with UPT categories are not included in the

159

discussion. Roles and activities that are associated with problems in each component as

well as those that address all types of problems are also examined.

Table 5.11 contains the list of roles and activities that can be used to address
visualness usability problems. There are five roles and one systems analysis activity, three
guidelines activities, two design activities, three inspection methods, and three testing
methods. Human factors specialists, user interface interaction designers, and user interface
evaluators each have training that would allow them to perform most of the identified
activities. Two activities might require additional training: heuristic evaluation and
pluralistic walkthroughs. The graphic designer can contribute during prototyping;
however, there is no other activity that specifically draws on the skills of a graphic
designer. In addition, technical writers are not trained in any of the activities. As
mentioned in section 5.3, technical writers may have been included in this list for the
purpose of layout text on the screen. Like the graphic designer, the technical writer could

then contribute during prototyping.

Table 5.11. A comparison of roles and activities for the visualness category.

VISUALNESS

Roles Activities Type

human factors specialist usability requirements/specifications SA

user interface interaction designer

user interface evaluator use commercial style guides G

graphic designer use customized style guides G

technical writer use general interface guidelines G
high-fidelity prototyping D
low-fidelity prototyping D
consistency inspections I
guideline reviews, heuristic evaluation I
pluralistic walkthroughs I
co-discovery uT
critical incident taking UT
verbal protocol taking UT

160

Table 5.12 contains the list of roles and activities that can be used to address
language usability problems. There are two systems analysis activities, one guidelines
activity, three design activities, no design representation techniques, three inspection
methods, and four testing methods. The roles of human factors specialist, user interface
interaction designer, and user interface evaluator were associated with the usability
problems that are about the language used in the user interface. Team members performing

these three roles can perform most of the activities without additional training.

The two remaining roles (technical writer and cognitive psychologist) are not well
matched to the activities in Table 5.12. The role of technical writer is critical because
language issues are a very important factor in system usability. Yet, there are no activities
for which the technical writer is trained, and no activities in which the technical writer could
be involved easily. Similarly, although cognitive psychologists are often trained in
usability, they bring very different skills to the development team. Cognitive psychologists
can also impact word usage; however, there are no activities that have been designed

specifically to utilize this expertise.

161

Table 5.12. A comparison of roles and activities for the language category.

LANGUAGE

Roles Activities Type

human factors specialist learn application domain SA

user interface interaction designer user site visits SA

user interface evaluator

cognitive psychologist use general interface guidelines G

technical writer
high-fidelity prototyping D
low-fidelity prototyping D
participatory design D
consistency inspections I
guideline reviews, heuristic evaluation I
pluralistic walkthroughs I
co-discovery UT
critical incident taking UT
structured interviews uT
verbal protocol taking UT

Table 5.13 contains the list of roles and activities that can be used to address
manipulation usability problems.
psychologist, human factors specialist, user interface interaction designer, and user
interface evaluator were associated with the usability problems that are about the way the
user manipulates objects in the user interface. Note that one systems analysis activity, three
guidelines activities, two design activities, no design representation techniques, three
inspection methods, and three testing methods were included. With the exception of the
cognitive psychologist, the roles and activities listed below are well matched. While the

skills of a cognitive psychologist are appropriate for addressing manipulation issues, such

as visual cues, there are no activities for which this expertise is required.

162

It is not surprising that the roles of cognitive

Table 5.13. A comparison of roles and activities for the manipulation category.

MANIPULATION

Roles

Activities

Type

human factors specialist

user interface interaction designer
user interface evaluator

cognitive psychologist

usability requirements/specifications

use commercial style guides
use customized style guides

SA

use general interface guidelines

high-fidelity prototyping
low-fidelity prototyping

U0 aao

—_

consistency inspections
guideline reviews, heuristic evaluation
pluralistic walkthroughs

—

co-discovery
critical incident taking
verbal protocol taking

SS9

Table 5.14 contains the list of roles and activities that can be used to address task-
mapping usability problems. The six roles were associated with the usability problems that
occur because of the way the user tasks are mapped to the system. Three of the roles (end
user, problem domain expert, systems analyst) were not associated with any artifact
category, but could be used to address usability problems that are about user tasks. It is
interesting that the role of moderator was not included, yet focus groups were associated
with the task-mapping category. This may have occurred because the skills that a
moderator possesses do not address task-mapping usability problems (the moderator's
skills are focused on running a group discussion). However, since this activity is
associated with this category, a role is needed that can be used to identify task-mapping

problems while participating in the focus group.
There are six systems analysis activities, no guidelines activities, four design

activities, one design representation technique, two inspection methods, and four testing

methods. Human factors specialists, user interface interaction designers, and user interface

163

evaluators are trained to perform the usability-related activities listed below. In addition to
participating in the testing activities, the end user can contribute to contextual inquiry, focus
groups, helping explain the application domain, system requirements and specifications,
user site visits, and participatory design. The problem domain expert and systems analyst

could likewise contribute to many of these same activities.

It is significant to note that the list of activities in Table 5.14 includes both usability-
related systems analysis activities (that can be performed by usability experts) and
traditional software engineering systems analysis activities (that can be performed by
software engineers). The coverage in both roles and activities is indicative of the
importance of building a system with the right functionality in which users' tasks are

structured appropriately in the user interface.

Table 5.14. A comparison of roles and activities for the task-mapping category.

TASK-MAPPING

Roles Activities Type
human factors specialist contextual inquiry SA
user interface interaction designer focus groups SA
user interface evaluator learn application domain SA
end user system reqs./specs. SA
problem domain expert task/function allocation SA
systems analyst user site visits SA

high-fidelity prototyping D
low-fidelity prototyping D
participatory design D
usage scenarios D

usage scenarios, use cases DRT

P—

feature inspection
pluralistic walkthroughs

—

co-discovery

critical incident taking
structured interviews
verbal protocol taking

5555

164

Table 5.15 contains the list of roles and activities that can be used to address task-
facilitation usability problems. Note that there are two systems analysis activities, no
guidelines activities, three design activities, one design representation technique, one
inspection method, and four testing methods. While the roles and activities for task-
facilitation are matched similarly to those of task-mapping, it is signiﬁcaht to note that
participatory design is included as an activity; however, the role of end user is not
associated with this category. User involvement in the design process is the basis for
participatory design. Of the roles listed, it is possible that the problem domain expert could

perform the role of user during this activity.

Table 5.15. A comparison of roles and activities for the task-facilitation category.

TASK-FACILITATION

Roles Activities Type

human factors specialist contextual inquiry SA

user interface interaction designer task/function allocation SA

user interface evaluator

problem domain expert high-fidelity prototyping D

systems analyst low-fidelity prototyping D
participatory design D
usage scenarios, use cases DRT
pluralistic walkthroughs I
co-discovery UuT
critical incident taking uT
testing user performance uT
verbal protocol taking UT

Table 5.16 compares the roles and activities associated with the artifact component.
With the exception of the role of technical writer (which is not associated with a specific
activity that addresses artifact usability problems), note that a good mapping exists between

roles and activities. Also note that only one systems analysis activity is present and no

165

design representation techniques have been associated with usability problems classified in

the artifact component.

Table 5.16. A comparison of roles and activities for the artifact component.

ARTIFACT COMPONENT

Roles Activities Type

human factors specialist usability req's. & spec's. SA

user interface interaction designer

user interface evaluator use commercial style guides G

technical writer use customized style guides G
use general interface guidelines G
high-fidelity prototyping D
low-fidelity prototyping D
consistency inspection I
guidelines review, heuristic evaluation I
pluralistic walkthroughs I
co-discovery uT
critical incident taking uT
verbal protocol taking UT

The roles and activities that address problems in the task component are given in
Table 5.17 below. As mentioned above, the skills of the problem domain expert and
systems analyst are only directly applicable to some of the activities in the list. However,
there is good coverage between the roles associated with the task component and the

activities that can be performed.

166

Table 5.17. A comparison of roles and activities for the task component.

TASK COMPONENT

Roles Activities Type

human factors specialist contextual inquiry SA

user interface interaction designer task/function allocation SA

user interface evaluator learn about application domain SA

problem domain expert system req's. & spec's. SA

systems analyst
high-fidelity prototyping D
low-fidelity prototyping D
participatory design D
usage scenarios D
usage scenarios, use cases DRT
pluralistic walkthroughs I
co-discovery UT
critical incident taking UT
verbal protocol taking UT

It is significant that the role of cognitive psychologist was not associated with either

UPT task category. This kind of expertise could be used to address task problems,

especially task-facilitation problems that are about error prevention and the user's ability to

recover from errors when they occur. Cognitive psychologists often contribute through

research rather than practice. For cognitive psychologists to become an integral part of the

development team, more research is needed to develop activities that utilize their expertise.

A final inspection of the roles and activities data reveals four critical roles and nine

important activities for the entire UPT structure. These roles and activities are presented in

Table 5.18 below. Three of these roles (human factors specialist, user interface interaction

designer, and user interface evaluator) were associated with every UPT category. Note that

the role of systems analyst was included primarily because of the importance of user tasks

to overall system acceptance.

167

The nine activities focus on guidelines, design, and evaluation (inspection and user
testing). Not only are design representation techniques absent from this list, but no specific
systems analysis activities are listed that utilize the system analyst's skills. In addition, the
activity "pluralistic walkthroughs" is associated with every UPT category; however, users
participate in this activity, and the role of user is not associated with the UPT (in fact, the

role of end user was only associated with the task-mapping category).

Table 5.18. A comparison of roles and activities for the entire UPT structure.

ACROSS UPT

Roles Activities Type

human factors specialist use customized style guides G

user interface interaction designer

user interface evaluator high-fidelity prototyping D

systems analyst low-fidelity prototyping D
participatory design D
guideline reviews, heuristic evaluation I
pluralistic walkthroughs I
co-discovery uT
critical incident taking UT
verbal protocol taking UT

In the above discussion, the number of activities (of each type) identified for each
category was mentioned briefly. These results are summarized in Table 5.19 below. The
row totals indicate how many times a specific type of activity is associated with individual
UPT categories. For example, consider the two row totals that are lower than the others
(guidelines and design representation techniques). A row total of 11 means that individual
guidelines activities (there were three on the Activities Form) were associated 11 times with
individual UPT categories and combinations of those categories. Similarly, a row total of
three for design representation techniques means that individual techniques included on the

Activities Form (there were five) were associated only three times with UPT categories.

168

A low row total can be interpreted as follows: individual activities of that type were
associated minimally with several categories. The guidelines activities were associated
minimally with language (1), task-mapping (0), task-facilitation (0), the task component
(0), and the UPT (1). Design representation techniques were likewise minimally associated

with all categories.

A count of zero or one (in a specific cell) indicates that developers do not have a
choice of activities to apply to usability problems within a given category. For example,
developers wanting to use a system analysis activity to address artifact problems have only
one to choose from. Similarly, developers have no design representation techniques that
address problems in the artifact component. To provide developers with a choice of

activities in each type, new activities are needed.

Table 5.19. Number of each type of activity associated with UPT categories.

Activity \ L M |TM | TF || AC | TC || UPT | Total

systems analysis 1 2 1 6 2 1 4 0 17
guidelines activities 3 1 3 0 0 3 0 1 11
design activities 2 3 2 4 3 2 4 3 23
design representation techniques | 0 0 0 1 1 0 1 0 3

inspection methods 3 3 3 2 1 3 1 2 18
testing methods 3 4 3 4 4 3 3 3 27
Total 12 13 12 17 11 12 13 9 99

Throughout this chapter, roles and activities that do not address usability problems
in specific UPT categories (and combinations of those categories) were identified. These
results are summarized in Table 5.20 below. The roles and activities listed in Table 5.20
received a strong negative rating by the experts ("—"). Roles and activities with a weak

negative rating ("w—")were not included.

169

With the exception of market analyst, the roles that were negatively associated with
UPT categories were traditional software engineering roles. Market analysts may also
examine the prospective product from a usability perspective. Although some software
engineering activities were included in the list below, several usability engineering activities
were also negatively associated with specific categories2. For example, feature inspections
and behavioral design representation techniques do not address visualness problems.

Usage scenarios and use cases do not address manipulation problems.

5.5 Process Improvement Using The UPT

The UPT can be used as a diagnostic tool for usability-related process

improvement. A step-by-step procedure that can be used by managers and developer is

outlined below.

1. Make a list of activities that have been performed (or will be performed) on a given
development project.

2. Make a list of the roles and skills of development team members (this list should

also include skills and expertise that the development team has access to during
development).

3. Classify each usability problem in the UPT. This yields an artifact classification
and a task classification for each problem.

4. Obtain a distribution of problems over the three primary categories in the artifact

component of the UPT. Obtain a distribution of problems over the two primary

2 It should be noted that the Activities Form in Appendix C contains more usability engineering
activities than software engineering activities.

170

categories in the task component of the UPT. Note those categories that contain a

large percentage of problems.

Table 5.20. Roles and activities that do not address UPT categories.

NEGATIVE ASSOCIATION
Category Roles Activities
visualness software designer systems analysis (SA)
software documentor task/function allocation (SA)
software implementor behavioral design reprs'n (DRT)
software librarian state transition diagrams (DRT)
feature inspection (I)
GOMS analysis (I)
language market analyst state transition diagrams (DRT)
software designer feature inspection (I)
software documentor GOMS analysis (I)
software implementor
software librarian
manipulation market analyst functional analysis (SA)
marketer usage scenarios, use cases (DRT)
software documentor feature inspection (I)
software librarian
task-mapping quality assurance consistency inspection (I)
software documentor standards inspection (I)
software implementor
software librarian
software tester
task-facilitation marketer standards inspection (I)
software documentor
software librarian
software tester
artifact component marketer task/function allocation (SA)
software documentor feature inspection (I)
software librarian
task component marketer standards inspection (I)
software documentor
software librarian
software tester
UPT marketer
software documentor
software librarian

Compare the skills available during development with the roles and skills needed to
address problems in the categories that contain a large percentage of problems.

Identify additional roles and skills that are needed to address those problems.

171

6. Compare the activities currently performed during development with the activities
that can be used to address problems in the categories that contain a large percentage
of problems. Identify activities that could be incorporated into the development
process to address those problems.

7. Examine the roles, skills, and activities that, in the opinion of the experts, do not
address specific UPT categories. If these roles, skills, and activities are currently
used during development, do not expect them to address specific categories of

usability problems.

This procedure can be performed during and after development. If it is performed
during development, process improvement can be effected before the product is completed.
If it is performed after development, process improvements can be incorporated on the next

development effort.

The results presented in this chapter can be used to focus process improvement in
two ways. First, a set of roles and a set of activities can be identified that will address
usability problems in specific UPT categories or multiple categories. Second, roles and
activities that do not address problems in specific categories can likewise be identified.
These two results are important as they help managers and developers choose the right

roles and activities for a given development effort.

172

5.6 Summary

This chapter presented the findings of a study designed to identify associations
between developer roles and skills and the UPT, as well as associations of development
activities, methods, and techniques with the UPT. Both positive and negative associations

were identified.

Four roles were associated with the entire UPT structure: human factors specialist,
user interface interaction designer, user interface evaluator, and systems analyst. Two
additional roles (technical writer and problem domain expert) were identified for the artifact

and task components, respectively.

Nine activities were found to address the entire UPT structure. Note that no
systems analysis activities were included; however, there were one guidelines activity,
three design activities, two inspection methods, and three user testing activities (see Table
5.10). The systems analysis activities were associated primarily with the task component,

guidelines activities were associated primarily with the artifact component.

The roles and activities with strong positive associations were compared. Gaps and
inconsistencies were identified, i.e., roles with no corresponding activity, activities with no
associated role. For example, the role of systems analyst was not paired with any of the

nine activities (see Table 5.18).
To determine if software engineering roles can be used to address usability

problems if usability experts are not available, six experts were asked to assess the degree

to which various roles and skills could address problems in individual UPT categories.

173

The experts completed two forms (Roles Form 1 and Roles Form 2). Roles Form 1
contained both software engineering and usability engineering roles. Roles Form 2
contained only software engineering roles found on Roles Form 1. The instructions for
Roles Form 2 assumed that no usability experts were available. The responses on Roles
Form 2 were found to be significantly higher than the corresponding responses on Roles
Form 1. However, several factors that could have influenced the significance of this result
were discovered and discussed. As a result, the conclusion was reached that although the
there was a significant difference in the responses, there may not be any practical

importance that can be attached to the result.

In addition, a step-by-step procedure for using the UPT as a diagnostic tool for
usability-related process improvement was outlined. This procedure is based on the results
obtained during the Roles Evaluation and the Activities Evaluation. It enables managers
and developers to identify weaknesses in the user interface development process. The
results presented in this chapter can then be used to formulate strategies for process
improvement that are based on the addition of individual roles and skills to the development

team and incorporating specific development activities into the software process.

174

6 SUMMARY AND CONCLUSIONS

This research developed a taxonomic model for understanding, describing,
comparing, and analyzing usability problems, and a framework for understanding the
relationship of usability problems to development context. The work was divided into two
steps. Step one involved the development of an empirically-derived taxonomic model in
which usability problems were classified, and evaluation of the taxonomy's reliability in
classification. Step two focused on establishing associations between taxonomic categories
and two aspects of development context: developer factors (roles and skills) and activity
factors (development activities, methods, and techniques). This chapter summarizes the
approach taken during each step, presents the findings of each step, and outlines the
contributions from each step. Other discoveries are also discussed. The chapter concludes

with a few brief remarks about this research effort.

6.1 Step One: The Usability Problem Taxonomy (UPT)

This section summarizes the development and evaluation of the Usability Problem
Taxonomy and outlines the contributions of the UPT as well as additional discoveries that
were made during the development of the UPT. The organization is as follows. Section
6.1.1. describes the approach used to develop the UPT. Section 6.1.2 outlines the
findings of the UPT evaluation. Section 6.1.3 presents the contributions of the UPT.

Section 6.1.4 describes other discoveries that were made during this step.

175

6.1.1 Summary Of UPT Development

Five projects were surveyed at four real-world, interactive software development
organizations. A total of 645 usability problem descriptions were collected from those five
projects. The problems were identified during usability evaluations conducted by the
author, a colleague, and/or developers. Of the 645 descriptions, 406 were analyzed
heuristically, i.e., classified according to the usability heuristic(s) violated. Heuristic
analysis did not impact UPT development directly; however, it was used to organize the

406 descriptions for the next phase in taxonomy construction.

The UPT was developed using a bottom-up, iterative empirical approach. The
problem descriptions were organized according to the heuristic(s) they violated, as well as
one additional category for descriptions that could not be classified according to any
heuristic. The problems were then reexamined and grouped according to commonalities.
A hierarchical structure emerged among the groups of problems. The hierarchical
structure, the UPT, contains two components (artifact and task), five primary categories,
and 21 subcategories. The two components of the UPT correspond to two autonomous
dimensions of a usability problem. During classification, each problem is classified in the

artifact component and in the task component.

6.1.2 UPT Evaluation

A controlled study was undertaken that showed that the UPT can be used reliably to
classify usability problems to level 2 of the taxonomy (recall that level 2 contains the five
primary categories of visualness, language, manipulation, task-mapping, and task-

facilitation). Seven classifiers from industry, government, and academic development

176

environments with substantial interactive software development expertise participated in the
study by classifying 20 usability problems that were randomly selected from the group of
645 problems. Ten of the 20 problems had been analyzed by the author prior to the onset
of the study (these were selected from the 406 that had been examined previously). The
remaining 10 had not been analyzed previously and were selected randomly from the 239

that had been examined previously.

To demonstrate UPT reliability, the kappa statistic, K (the proportion of agreement
after chance agreement is removed from consideration), was used to assess the level of
agreement among classifiers. Three pairs of hypothesis tests were performed (six tests in
all). One test in each pair was based on the artifact component and one was based on the
task component. The first pair of tests was based on all 20 problems. The second pair of
tests was based on the 10 problems that had been previously examined (referred to as
"old"). The third pair was based on the 10 problems that had not been previously

examined (referred to as "new").

The findings of the UPT reliability study showed that the UPT can be used to
classify usability problems reliably to level 2 (the level of the five primary categories). The
first pair of tests (all 20 problems) showed that there was agreement greater than chance in
the artifact classifications (x = .403) and the task classifications (x = .095). Likewise, the
second pair of tests (the 10 "old" problems) showed that there was agreement greater than
chance in both the artifact classifications (x = .357) and the task classiﬁcaﬁ;)ns (x=.112).
The third pair of tests (the 10 "new" problems) showed that there was agreement greater
than chance in the artifact classifications (x = .437), but for the task classifications, the test
did not show that there was agreement greater than chance. Instead, the last test showed

that there was some evidence to suggest that there may be agreement greater than chance in

177

the task component (x = .068). However, the level of agreement is not statistically

significant at the .05 level of significance.

Several factors were identified that impacted the findings discussed above. These
factors included lack of classifier experience with the application domains from which the
problems were selected, lack of familiarity with the UPT, the fact that the classifiers did not
observe each problem as it occurred, and vague and incomplete problem descriptions. In
addition, the novelty of the UPT and its approach to problem classification (especially in
the task component) also affected the classification. Therefore, in practical application,
with training and increased familiarity, the reliability with which tl;e UPT can be used to

classify usability problems should be greater than that found in this study.
6.1.3 Contributions Of The UPT

The primary contribution of step one in this research project is the development of
the UPT, a taxonomic model for classifying usability problems reliably. The UPT enables
developers and evaluators to understand, describe, compare, and analyze usability
problems. The model was built empirically and is comprised of descriptive categories.
Each category contains explanations and descriptions of the type of problems it contains as

well as descriptions of the type of problems it does not contain.
6.1.4 Additional Discoveries Made During UPT Development

Additional discoveries were made by the author during the development of the
UPT. These additional discoveries relate to new evaluation methods, heuristic

classification, four properties of a classification scheme, four characteristics of usability

178

problem descriptions, using the UPT to generate higher quality problem descriptions, and

data organization and analysis. Each discovery is described briefly below.

Object-based Evaluation

Object-based evaluation is a recent inspection method developed by the author that
focuses on problems associated with specific user interface objects. Each type of user
interface object is examined one at a time. Problems are noted and associated with a
specific type of object. This method was developed during an initial data collection effort
in which usability problems were identified on a real-world development project by the

author and a colleague.

Using this inspection method is advantageous for several reasons. First, it is easy
to learn. Second, it is less expensive than user testing activities. Third, it focuses on
problems with the artifacts in the user interface. Additional research is needed to compare
this method with other inspection methods and to determine if it can be used to detect task-

related usability problems.

Heuristic Classification, The UPT. And Four Properties Of A Classification Scheme

Four important properties of a classification scheme were discovered empirically
during heuristic analysis. These properties are distinguishability, mutual exclusiveness,
specificity, and completeness. It was concluded that the usability heuristics were not an

effective classification scheme since the heuristics did not satisfy these four properties.

179

To examine the UPT with respect to these four properties, the author classified all
645 usability problems on the five development projects. Distinguishability is satisfied for
these problems, i.e., different types of problems were not classified in the same category or
in the same problem type. The UPT categories are defined to be mutually exclusive, i.e.,
for the 645 problems, this property was never violated. The UPT also satisfies the
specificity property. Each category contains many examples of specific usability problems
that would be classified in that category as well as examples of problems that would not be
classified in that category. And, the UPT categories are arguably complete (to level 2
containing the five primary- categories). The five primary categories capture problems users
have viewing, reading, and manipulating artifacts in the interface as well as problems
related to task structure and the user's ability to complete the task. No new primary
categories were needed to classify the 645 usability problems. It should be noted that
additional subcategories may be needed for application domains very different from those
surveyed, e.g., virtual reality software, or systems for the physically challenged. The

conclusion that the UPT satisfies these properties was arrived at empirically by the author.

Four Characteristics Of Usability Problem Descriptions

Four important characteristics of a high quality problem description were identified
empirically (by the author) during classification of the 645 usability problems. The four
characteristics are clarity, precision, comprehensiveness, and problem-centeredness.
Descriptions lacking these characteristics are not only vague and incomplete, but often
contain information that describes the effect on the user and user reactions. Low quality
descriptions are difficult to understand, think about, compare, and analyze. It is also
difficult for developers to take low quality descriptions and consistently generate good

solutions that raise the level of usability in the user interface.

180

Better Problem Descriptions

According to the experience of the author and several colleagues, a working
knowledge of UPT categories helps developers write problem descriptions that are clear,
precise, comprehensive and problem-centered. By thinking about the artifact and task
dimensions of each usability problem as well as the UPT categories, necessary information

that may be overlooked is captured in the problem description.

Several examples were presented in Chapter 4 that illustrate how the UPT can
improve problem descriptions. Because using the UPT during problem identification and
description helps developers and evaluators write higher quality problem descriptions, the

loss of information described in Chapter 1 is minimized (see section 1.2).

Data Organization And Analysis

The UPT provides new ways to organize and identify patterns of usability
problems. Classification results in groupings according to category. Groupings across
categories can also identified (e.g., consistency issues across categories). The UPT can
also be used with additional kinds of information (user tasks, user interface objects) to
group usability problems. These new organizational strategies can be used to develop
solutions for individual problems as well as solutions that address multiple problems

simultaneously.

In current practice, usability problems are prioritized prior to correction. The

groupings provided by the UPT can be used formulate new prioritization strategies.

181

Usability problems can be prioritized by category, within each category, and across

categories.

6.2 Step Two: Associations Between UPT Categories And
Development Context

This section summarizes a study in which associations between UPT categories and
two development context factors were identified and outlines the findings and contributions
of that study. This section is organized as follows. Section 6.2.1. describes the
association study. Section 6.2.2 outlines the findings of the study. Section 6.2.3 presents

the contributions made during the study.

6.2.1 Summary Of The Association Study

A study was undertaken in which associations between each of the five primary
UPT categories and two aspects of development context (developer roles and skills, and
development activities, methods, and techniques) were identified. Six experts with
extensive usability expertise and industry experience participated in this phase of the
research. Each assessed the degree to which individual roles or activities addressed
problems in each of the five primary UPT categories (level 2 of Figure 3.1). For the
purposes of this study, addressed meant prevent, think about, detect, predict, and/or

correct.
The mean and standard deviation of the responses were analyzed. The means and

standard deviations were interpreted as follows: strong positive association, weak positive

association, no association, weak negative association, and strong negative association.

182

Pairs of means and standard deviations were grouped according to the interpretation so that
roles and activities that do address usability problems in a given category or combination of
categories are distinguished from those roles and activities that do not address usability

problems in a given category.

6.2.2 Association Study Findings

The findings in this study are summarized in Table 6.1. The entries in the table are
the roles and activities for which a strong positive association with UPT categories was
noted. The categories and combinations of those categories are given in the leftmost
column. UPT categories are abbreviated as follows: visualness (V), language (L),
manipulation (M), artifact component (AC), overall UPT (UPT), task component (TC),
task-mapping (TM), and task-facilitation (TF). The rightmost column (type) contains
abbreviations for the type of activity on that line in the table. For example, learn application

domain is a system analysis activity (SA).

The role and activity columns in the middle of Table 6.1 can be interpreted in the
following way. The roles or activities listed for the five primary categories at level 2 are
applied only to those categories (V, L, M, TM, TF), e.g., the role of graphic designer is
related to visualness problems and the activity "learn application domain" is related only to
language problems. The roles or activities listed for the each component (AC and TC) are
related to the entire component, i.e., the role of technical writer is related to the artifact
component while the activity of "contextual inquiry " is related to the task component. The
roles or activities listed for the overall UPT address problems in both components, e.g., the
role of a human factors specialist and the activity " use customized style guides" can be

used to address both artifact and task related problems.

183

Table 6.1. Summary of roles and activities that address UPT categories.

Category Role Activity Type
A\ graphic designer
cognitive psychologist learn application domain - SA
L user site visits SA
participatory design D
structured interviews
M cognitive psychologist
|
technical writer usability req's & spec's SA
AC use commercial style guides G
use general interface guidelines G
consistency inspections I
systems analyst use customized style guides G
human factors specialist high-fidelity prototyping D
user interface interaction designer low-fidelity prototyping D
user interface evaluator participatory design D
UPT guideline reviews, heuristic evaluation I
pluralistic walkthroughs I
co-discovery uT
critical incident taking uT
verbal protocol taking UT
problem domain expert contextual inquiry SA
learn application domain SA
TC system req's & spec's SA
task/function allocation SA
usage scenarios D
usage scenarios, use cases DRT
end user focus groups SA
™ user site visits SA
feature inspections I
structured interviews uT
TF testing user performance uT

Approached from a slightly different perspective, if a manager wants to add one
role to the development team to address problems in the language category, he/she can
choose from either cognitive psychologist (in the language row), technical writer (in the

artifact component row), or from human factors specialist, user interface interaction

184

designer, user interface evaluator (in the UPT row). The manager would not choose the
role of systems analyst since this role is only strongly associated with the task component
(see Figures 5.1 and 5.2). If the manager wants to add one activity to the development
process that addresses problems in the task-mapping category, he/she can choose from
either focus groups, user site visits, feature. inspections, or structured interviews (in the
task-mapping row), any one of the six activities listed in the task component row, or any

one of the nine activities in the UPT row.

Roles that do not address UPT categories were also identified. The roles for which
a negative association was noted are traditional software engineerihg roles. Three roles
were not associated with any UPT category (marketer, software documentor, software
librarian). Additional roles were associated negatively with either an individual category or
with an entire component. These roles were quality assurance, software implementor and
software tester for the task component, and market analyst and software designer for the

artifact component.

Similarly, activities that do not address UPT categories were noted. No guidelines
activities were associated with the two categories in the task component. In addition, the
activities for which a negative association was noted include both traditional software
engineering and user interface engineering activities. These include systems analysis,
behavioral design representation, feature inspections, and GOMS analysis (as an inspection

method).

185

6.2.3 Contributions Of The Association Study

The association study contributes in three ways. First, this study provides the first
direct link between specific types of usability problems and two development context
factors. Second, a step-by-step procedure was developed that uses the UPT as a diagnostic
tool to identify weaknesses in the current software process and outline process
improvement strategies. Third, gaps and inconsistencies detected between roles and

activities serve as a guide to future research. Each contribution is discussed briefly below.

This study provides the first direct link between specific types of usability problems
and two development context factors: developer roles and skills, and development
activities, methods, and techniques. This link shows that usability problem data is an
important component of user interface process improvement. Developers can now use data
available on every interactive software project to identify strategies for adjusting the
composition of the development team and improving the interactive software development

process.

A step-by-step procedure was developed that uses the UPT as a diagnostic tool to
identify weaknesses in the current software process. Incremental process improvement
strategies are then formulated that are based on selecting team members and development
activities appropriate for a specific development project. To formulate a process
improvement strategy, a manager or developer would first use the UPT to classify usability
problems detected on a given development project. He/she would then identify the UPT
categories that contain the largest number of problems. Based on the identified categories,
the manager selects new roles and/or activities that can be used to address problems in

those specific categories.

186

By comparing the roles and activities for which a strong positive association exists
with UPT categories, gaps and inconsistencies were detected. The primary gaps and

inconsistencies are outlined below:

. Three roles were associated with individual categories (graphic designer, cognitive
psychologist, and technical writer), yet no activities have been designed specifically

to take advantage of the skills and expertise of each role.

. Pluralistic walkthroughs were associated strongly with each of the five primary
categories; however, the end user participates in this activity when it is performed
during development, yet this role was associated only with the task-mapping

category.

. Participatory design was associated with three categories: language, task-mapping,
and task-facilitation. The role of end user is important in the performance of this
particular activity, yet this role was not associated with either language or task-
facilitation. This may be due to type of role the end user plays during participatory

design.

. Although GOMS analysis is an important contribution to the theory of human-
computer interaction, it was not perceived by the experts to be useful in addressing
visualness and language problems and was not associated (either positively or

negatively) with manipulation, task-mapping, or task-facilitation problems.

187

. Few design representation techniques were perceived by the experts to address

usability problems in individual UPT categories.

. Task-related user interface design is perceived by many to be one of the most
difficult aspects of user interface development. As a result, several systems
analysis activities, design activities, and testing activities were strongly associated
with the task component. However, no guidelines activities, only one design
representation technique, and one inspection method are believed to address this
component. While developers have several activities that can be performed at
specific points during task-related development (analysis, design, and testing),
there are few "intermediate" activities that can be performed between analysis and

design, and design and testing.

. Only one systems analysis activity was associated with the categories in the artifact

component (usability requirements and specifications).

This study showed that although specialized roles such as graphic designer,
technical writer, cognitive psychologist, and end user are perceived to be important (each
was associated with individual UPT categories), there is no clear way to utilize these skills
on a development team. The study also indicated that, at the present time, the roles of
human factors specialist, user interface interaction designer, and user interface evaluator are
considered to be valuable roles in practice. Not only were they associated with every UPT
category and combination of those categories, but they have the background and training to

perform the user interface development activities given in each list.

188

6.3 Final Remarks

This research reaffirmed the importance of empiricism in software engineering and
human-computer interaction research. Empiricism was an integral aspect of this research
effort as real-world data and experience were incorporated into both steps of this project.
By working with industry, government, and academia, not only were relevant concerns
identified, but invaluable quantitative and qualitative data were provided. These data were
obtained from participants as they commented on the UPT and its usefulness as well as on

the roles and activities selected for the association study.

This research has contributed significantly to furthering the science of human-
computer interaction. The gaps and inconsistencies detected between roles and activities
outline areas for future research. The directions for future research, including specific

projects already underway, are described briefly in Chapter 7.

189

7 FUTURE WORK

This work provides the foundation for many different types of research projects.
This chapter outlines these projects. Section 7.1 describes additional reliability studies
planned for the UPT. Refinements and extensions to the UPT are described in section 7.2.
Section 7.3 examines projects that investigate using the UPT to organize different types of
information about usability problems. Further investigation of a new user interface
inspection method (described in section 3.1) is outlined in section 7.4. Plans already
underway for a toolset based on the UPT are outlined in section 7.5. These projects are ‘

summarized briefly in section 7.6.

7.1 Additional Reliability Studies

An additional reliability study is planned to assess the level of agreement achieved
in UPT categories in levels 3 and 4 (see Figure 3.1). Although sufficient data were
collected for the reliability study on levels 1 and 2 of the UPT described in section 4.1, a
larger data set is needed to assess the level of agreement in levels 3 and 4 of the UPT (the
samples in each category in levels 3 and 4 must be sufficiently large). Possible approaches

include enlarging the number of classifiers, the number of usability problems, or both.

Other reliability-related projects are also under consideration. One project focuses
on whether or not the reliability of the artifact and task components is sensitive to the
application domain. Others are planned that investigate the effect of classifier expertise,

knowledge of the application domain, and familiarity with the UPT on UPT reliability.

190

7.2 Refinements And Extensions To The UPT

To improve UPT reliability, refinements are planned that focus on category names
and explanations provided in the UPT document. Classifier comments made during the
reliability study indicate that some terminology used in the task component needs to be
reexamined and possibly modified. In particular, the name "task-facilitation" may need to
be changed to prevent classifiers from imbuing that category with additional meaning (see
discussion in section 4.1.3). In addition, the concepts in the task component were so new
to classifiers (even those with significant usability expertise), that additional explanations
and examples are needed to further clarify this component. Additional explanations and
examples are also needed for two categories in the artifact component: presentation of
information/results (in visualness) and user-requested information/results (in language,

other wording).

Extensions to the UPT web document are planned that will raise the level of
usability achieved in the UPT version on the World Wide Web. Plans are underway to
provide a search engine for the glossary, include additional definitions, and improve the

user's access to individual UPT categories via the "fast page."

7.3 Information About Usability Problems

The UPT can be used to organize various types of information about usability
problems. Information of interest includes problem severity, the cost associated with
problem correction, and an assessment of problem importance. As this information is

collected, it can be organized according to UPT categories. Problem distributions based on

191

severity, cost, and importance across UPT categories can then be calculated. One such
project is nearing completion. This particular project compares and contrasts problem

distributions across development organizations, projects, and application domains.

7.4 New Methods

One new inspection method was developed early in this research (object-based
evaluation). This evaluation method focused on user interface objects (see section 3.1).
One project will compare the types of problems detected using object-based evaluation with
the kinds of problems detected using other user interface evaluation methods. Additional
projects focus on the development of data analysis techniques that can be associated with

this method.

7.5 Tools

Plans are underway for an entire toolset that allows developers to use the UPT to
classify usability problems and collect classification data on line. The web version of the

UPT will be interfaced to individual tools that can

store the classification data in a database,
* access that data,

¢ summarize the data,

 statistically analyze the data, and

» display summary and analysis results.

192

Additional functionality will include the collection of information relevant to object-based

evaluation.

7.6 Summary

The results obtained during this research effort provide the basis for many, varied
future projects. Several projects focus on the UPT. Some of ‘the;e projects investigate
UPT reliability at levels 3 and 4, while others concentrate on clarifying UPT terminology
and explanatory information. Additional projects are planned that will improve the level of
usability achieved in the web version of the UPT. Three other directions for future
research are likewise based on the UPT. These include developing new usability problem

analysis techniques, new evaluation methods, and a UPT toolset.

193

REFERENCES

[Basili 87] Basili, Victor, R. and Rombach H. D. "Tailoring the Software Process to
Project Goals and Environments". Proceedings of the 9th International Conference
on Software Engineering. 1987.

[Bias 94] Bias, Randolph G., and Deborah J. Mayhew, Editors. Cost-Justifying
Usability. Academic Press, Inc. Boston. 1994. :

[Boechm 81] Boehm, B. W. Software Engineering Economics. Prentice-Hall.
Englewood Cliffs, New Jersey. 1981.

[Borenstein 91] Borenstein, Nathaniel S. Programming as if People Mattered.
Princeton University Press. 1991.

[Bowen 94] Bowen, Karen C., and H. Rex Hartson. "An Evaluation of KMS".
Internal document to become a technical report. Department of Computer Science.
Virginia Tech. September, 1994.

[Bowen 96] Bowen, Karen C. Personal communication. May, 1996.

[Brooks 75] Brooks, Fred. P., Jr. The Mpythical Man-Month. Addison-Wesley.
Reading, Massachusetts. 1975.

[Brooks 94] Brooks, Patricia. "Adding Value to Usability Testing". Usability
Inspection Methods. Edited by Jakob Nielsen and Robert L. Mack. John Wiley &
Sons, Inc. 1994. pages 255-272.

[Card 93] Card, David H. "Defect-causal Analysis Drives Down Error Rates". IEEE
Software. July, 1993. pages 98-99.

[Card 83] Card, S. K., Moran, T. P., and Newell, A. The Psychology of Human-
Computer Interaction. Hillsdale, NJ. Erlbaum. 1983.

[Carroll 90] Carroll, J. M. and Mary Beth Rosson. "Human-computer interaction
scenarios as a design representation". Proceedings of the IEEE HICSS-23. 23rd
Hawaii international Conference on System Sciences. Vol. II. pages 555-561.

[Carroll 91] Carroll, J. M., Kellogg, W. A., and Mary Beth Rosson. "The task-artifact
cycle." Designing Interaction: Psychology at the Human-Computer Interface.
Cambridge University Press, Cambridge, U.K. pages 74-102.

[Carroll 92] Carroll, J. M. and Mary Beth Rosson. "Getting around the task-artifact

cycle: How to make claims and design by scenario". ACM Transactions on
Information Systems. Vol. 10. pages 181-212.

194

[Carroll 95] Carroll, J. M. (editor) "Introduction: The Scenario Perspective on System
Development." Scenario-Based Design: Envisioning Work and technology in
System Development. John Wiley & Sons, Inc. New York 1995.

[Cohen 60] Cohen, Jacob. "A Coefficient of Agreement for Nominal Scales."
Educational and Psychological Measurement. Vol. XX. No. 1. 1960. pages 37-
46.

[CMM 93a] "Capability Maturity Model". CMU/SEI-93-TR-24. 1993.
[CMM 94b] "CMM Practices". CMU/SEI-93-TR-25. 1993.

[Cox 94] Cox, Mary E. and Paige O'Neal. "UPAR Analysis: Dollar Measurement of
a Usability Indicator for Software Products". Cost-Justifying Usability. Edited by
Randolph G. Bias and Deborah J. Mayhew. Academic Press. Boston. 1994.
pages 145-158.

[Curtis 92] Curtis, Bill and Bill Hefley. "Defining a Place for Interface Engineering".
IEEE Software. March, 1992. pages 84-86.

[Desurvire 94] Desurvire, Heather W. "Faster, Cheaper!! Are Usability Inspection
Methods as Effective as Empirical Testing?". Usability Inspection Methods.
Edited by Jakob Nielsen and Robert L. Mack. John Wiley & Sons, Inc. 1994.
pages 173-202.

[Dray 94] Dray, Susan M. and Clare-Marie Karat. "Human Factors Cost Justification
of an Internal Development Project". Cost-Justifying Usability. Editors: Bias,
Randolph G., and Deborah J. Mayhew. Academic Press, Inc. Boston. 1994.
pages 111-122.

[Dumas 94] Dumas, Joseph S. and Redish, Janice C. A Practical Guide to Usability
Testing. Ablex Publishing Corporation. Norwood, New Jersey, 1994.

[Ehrlich 94] Ehrlich, Kate, and Janice Anne Rohn. "Cost Justification of Usability
Engineering: A Vendor's Perspective". Cost-Justifying Usability. Editors: Bias,
Randolph G., and Deborah J. Mayhew. Academic Press, Inc. Boston. 1994.
pages 71-110.

[Fleiss 71] Fleiss, Joseph L. "Measuring Nomial Scale Agreement Among Many
Raters." Psychological Bulletin. Vol. 76. No. 5. 1971. pages 378-382.

[Giblin 92] Giblin D. "Defect Causal Analysis: A Report From The Field".
Proceedings of the ASQC Second International Conference on Software Quality.
October, 1992. pages 1 - 5.

[Gould 85] Gould, John D. and Clayton Lewis. "Designing for Usability: Key
Principles and What Designers Think". Communications of the ACM. March,
1985. Vol. 28, No. 3. pages 300-311.

[Grady 94] Grady, Robert B. "Successfully Applying Software Metrics". IEEE
Computer. September, 1994. Vol. 27. No. 9. pages 18-25.

195

[Grudin 91] Grudin, Jonathan. "Interactive Systems: Bridging the Gaps Between
Developers and Users". IEEE Computer. April, 1991. pages 59-69.

[Heitmeyer 93] Heitmeyer, Constance L. and Bruce G. Labaw. "Consistency
Checks for SCR-Style Requirements Specifications". Naval Research Laboratory
Report. NRL/FR/5540--93-9586. December 31, 1993.

[Heitmeyer 95] Heitmeyer, Constance L., Bruce G. Labaw, and Daniel Kiskis.
"Consistency Checking of SCR-Style Requirements Specifications". To appear in
Proceedings, International Symposium on Requirements Engineering. York,
England. March 26-27, 1995.

[Heninger 80] Heninger, Katliryn L. "Specifying Software Requirements for Complex
Systems: New Techniques and Their Application”. IEEE Transaction on Software
Engineering. Vol. SE-6. No. 1. January, 1980. pages 2-13.

[Henry 91] Henry, Joel E., Susan L. Keenan, Michael A. Keenan, and Sallie Henry.
"An Assessment Method for Small Organizations". Proceedings of the 1st
International Software Quality Assurance Conference. October, 1991.

[Henry 92] Henry, Joel E. Personal communication. March, 1992.

[Henry 93] Henry, Joel E. An Integrated Approach to Software Process Assessment.
PhD Dissertation. Department of Computer Science. Virginia Polytechnic Institute
and State University. May, 1993.

[Henry 94] Henry, Joel E. Personal communication. 1994.

[Hix 93] Hix, Deborah and H. Rex Hartson. Developing User Interfaces Ensuring
Usability Through Product & Process. John Wiley & Sons, Inc. New York.

1993.
[Hix 94] Hix, Deborah. Personal communication. December 16, 1994.
[Holtzblatt 93] Holtzblatt, K. and H. Beyer. "Contextual design: Integrating

customer data into the design process." Bridges Between Worlds, INTERCHI '93.
Tutorial. Notes 6. Editors: Ashlund, S., K. Mullet, A. Henderson, E. Hillnagel,
and T. White)

[Humphrey 90] Humphrey, Watts S. Managing the Software Process. Addison-
Wesley Publishing Company. Menlo Park, California. 1990.

[Jeffries 91] Jeffries, Robin, Miller, James R., Wharton, Cathleen, and Uyeda, Kathy
M. User Interface Evaluation In The Real World: A Comparison of Four
Techniques. CHI '91 Proceedings, pages 119-124.

[Jeffries 94] Jeffries, Robin. "Usability Problem Reports: Helping Evaluators
Communicate Effectively with Developers". Usability Inspection Methods. Edited
by Jakob Nielsen and Robert L. Mack. John Wiley & Sons, Inc. 1994. pages
273-294.

196

[Karat 92] Karat, Clare-Marie, Robert Campbell, and Tarra Fiegel. "Comparison of
Empirical Testing and Walkthrough Methods in User Interface Evaluation".
Human Factors in Computing Systems. CHI '92 Conference Proceedings.
Monterey, California. May, 1992. pages 397-404.

[Karat 93] Karat, Clare-Marie. "Usability Engineering in Dollars and Cents". IEEE
Software. May, 1993. pages 88-89.

[Karat 94a] Karat, Clare-Marie. "A Comparison of User Interface Evaluation
Methods". Usability Inspection Methods. Edited by Jakob Nielsen and Robert L.
Mack. John Wiley & Sons, Inc. pages 203-235.

[Karat 94b] Karat, Clare-Marie. "A Business Case Approach to Usability". Cost-
Justifying Usability. Editors: Bias, Randolph G., and Deborah J. Mayhew.
Academic Press, Inc. Boston. 1994. pages 45-70.

[Keenan 94a] Keenan, Susan L., H. Rex Hartson, and Dennis G. Kafura. "Making the
Most of Detected Usability Problems Through Usability Defect Analysis". To be
published in the Proceedings of 38th Annual Meeting of the Human Factors and
Ergonomics Society. Nashville, Tennessee. October 24-28, 1994.

[Keenan 94c] Keenan, Susan L. and Karen C. Bowen. "An Evaluation of the SCRtool A
Tool for Specifying, Checking, Simulating, and Verifying Formal Requirements".
Internal report to the Information Technology Division of the Naval Research
Laboratory. February, 1995.

[Labaw 94] Labaw, Bruce. Personal communication. December , 1994.
[Labaw 95] Labaw, Bruce. Personal communication. January, 1995.

[Lamb 88] Lamb, David Alex. Software Engineering: Planning for Change. Prentice
Hall. New Jersey. 1988.

[Macaulay 95] Macaulay, Linda. Human-Computer Interaction for Software
Designers. International Thomason Computer Press. London. 1995.

[Mack 94] Mack, Robert and Frank Montaniz. "Observing, Predicting, and Analyzing
Usability Problems". Usability Inspection Methods. Edited by Jakob Nielsen and
Robert L. Mack. John Wiley & Sons, Inc. 1994. pages 295-339.

[Mantei 88] Mantei, Marilyn M. and Toby J. Teorey. "Cost/Benefit Analysis for
Incorporating Human Factors in the Software Life Cycle". Communications of the
ACM. Vol. 31. No. 4. April, 1988. pages 428-439.

[Mauro 94] Mauro, Charles L. "Cost-Justifying Usability in a Contractor Company".

Cost-Justifying Usability. Editors: Bias, Randolph G., and Deborah J. Mayhew.
Academic Press, Inc. Boston. 1994. pages 123-142.

197

[Mayhew 94] Mayhew, Deborah J. and Marilyn Mantei. "A Basic Framework for Cost-
Justifying Usability". Cost-Justifying Usability. Editors: Bias, Randolph G., and
Deborah J. Mayhew. Academic Press, Inc. Boston. 1994. pages 9-44.

[Meads 93] Meads, Jon. Personal communication. 1993.

[Miller 94] Miller, Ralph R. "The Interface Development Engineering Methodology".
Internal Document. Computer Sciences Corporation. 1994.

[Mrazek 92] Mrazek, Deborah and Michael Rafeld. "Integrating Human Factors on a
Large Scale: "Product Usability Champions"". Human Factors in Computing
Systems. CHI '92 Conference Proceedings. Monterey, California. May, 1992.
pages 565-570.

[Myers 79] Myers, Glenford J. The Art of Software Testing. John Wiley & Sons,
New York. 1979.

[Nielsen 89] Nielsen, Jakob. "Usability Engineering at a Discount". Designing and
Using Human-Computer Interfaces and Knowledge Based Systems. Eds. G.
Salvendy and M. J. Smith. Elsevier Science Publisher B.V. Amsterdam. 1989.
pages 394-401.

[Nielsen 93a] Nielsen, Jakob. Personal communication. 1993.

[Nielsen 93b] Nielsen, Jakob. Usability Engineering. Academic Press, Inc. San Diego,
California. 1993.

[Nielsen 94a] Nielsen, Jakob. "Guerrilla HCI: Using Discount Usability Engineering to
Penetrate the Intimidation Barrier". Cost-Justifying Usability. Edited by Randolph
G. Bias and Deborah J. Mayhew. Academic Press, Inc. Boston. 1994. pages
245-272.

[Nielsen 94b] Nielsen, Jakob and Robert L. Mack (editors). Usability Inspection
Methods. John Wiley & Sons, Inc. New York. 1994.

[Nielsen 90] Nielsen, Jakob and Molick, R. "Heuristic evaluation of user interfaces."
Proceedings ACM CHI'90 Conference. Seattle, WA. pages 249-256.

[Norman 88] Norman, Donald A. The Design of Everyday Things. Currency
Doubleday. New York. 1988.

[Ostrand 84] Ostrand, Thomas J. and Elaine J. Weyuker. Collecting and Categorizing
Software Error Data in an Industrial Environment". The Journal of Systems and
Software. Vol. 4. 1984. pages 289-300.

[Pfleeger 91] Pfleeger, Shari Lawrence. Software Engineering The Production of
Quality Software. Macmillan Publishing Company. New York. 1991.

[Poltrock 89] Poltrock, Steven E. "Innovation in User Interface Development: Obstacles

and Opportunities”". Human Factors in Computing Systems. CHI '89 Conference
Proceedings. pages 191-195.

198

[Potosnak 89] Potosnak, Kathleen. "Management: The key to success". IEEE Software.
Vol. 6. No. 2. March, 1989. pages 86-88.

[Preece 94] Preece, Jenny, Yvonne Rogers, Helen Sharp, David Benyon, Simon
Holland, and Tom Carey. Human-Computer Interaction. Addison-Wesley
Publishing Company. Reading, Massachusetts. 1994.

[Pressman 87] Pressman, Roger S. Software Engineering A Practitioner's
Approach Second Edition. McGraw-Hill, Inc. New York. 1987. .

[Rideout 91] Rideout, Tom. "Changing Your Methods From the Inside". IEEFE
Software. May, 1991. pages 99-100, 111.

[Rosson 96] Rosson, Mary Beth. Personal Communication. May, 1996.

[Schneiderman 87] Schneiderman, Ben. Designing the User Interface Strategies for
Effective Human-Computer Interaction. Addison-Wesley. Reading,
Massachusetts. 1987.

[Schulman 92] Schulman, Robert S. Statistics in Plain English with Computer
Applications. Chapman & Hall. New York. 1992.

[Senders 91] Senders, John W., and Neville P. Moray (Analyzed and Synthesized by).
Human Error: Cause, Prediction, and Reduction. Lawrence Erlbaum Associates.
Hillsdale, New Jersey. 1991.

[Sommerville 89] Sommerville, Ian. Software Engineering. Addison-Wesley
Publishing Company. New York. 1989.

[Thomas 95] Thomas, John C. "Usability Engineering in the Year 2020". To appear in
Advances in HCI. Vol. 5.

[Vora 95] Vora, Pawan. Classifying user Errors in Human-Computer Interactive
Tasks, Common Ground, Usability Professional Association, Vol. 5, No. 2 (May,
1995), page 15.

[Weiss 79] Weiss, David. M. "Evaluating Software Development by Error Analysis:
The Data from the Architecture Research Facility". The Journal of Systems and
Software. Vol. 1. 1979. pages 57-70.

[Whiteside 88] Whiteside, John, John Bennett, and Karen Holtzblatt. "Usability
Engineering: Our Experience and Evolution". Handbook of Human-Computer
Interaction. Edited by H. Helander. Elseview Science Publishers. 1988. pages
791-817.

[Wiklund 94] Wiklund, Michael E. "Introduction". Usability in Practice How
Companies Develop User-Friendly Products. AP Professional. Boston. 1994.

199

APPENDIX A: UPT Categories Glossary

Glossary For Five Primary Categories

sability Problems In The Artifact Component

An artifact usability problem is any difficulty encountered by the user when they
view, read, or manipulate objects present in (or missing from) the user interface (buttons,
scroll bars, data entry fields, icons, hypertext links, menus, ménu items, title bars,
windows, and dialogue boxes, on-screen text). Although these problems can impede a
user's progress through the task, the focus is on difficulties with specific user interface

objects, not movement through the task.

Visualness Usability Problems

Visualness usability problems are concerned with the way the user interface looks,
not how well user tasks are mapped to the system. These problems occur when users have

trouble with the

» visual aspect of screen layout (position, proximity, number of user interface
objects, grouping related features, use of white space, consistent object
placement),

» visual and audio aspect of object appearance (readable font size on button
labels, pictures used on icons, visual aspect of colors and shape, including

graying out an object, inconsistent appearance), and

200

» visual aspect of object movement.

This category also includes problems with the visual aspect of information provided in on-

line help and tutorials, and results of user queries.

Language Usability Problems

Language usability problems occur when the user has trouble understanding the
words that are used in the user interface. This may be due to the lack of user task domain
terms (user-centered language), imprecise and inconcise words, and inconsistent use of

words. These problems occur when users experience difficulties with

» words used as names on objects (such as buttons, title bars, field labels), and
» words used in phrases and sentences in system messages (feedback, error), on-

screen text (on-screen instructions), on-line help, and tutorials.

Manipulation Usability Problems

A manipulation problem occurs when the user has trouble with some aspect of
manipulating objects on the user interface. This type of problem occurs when the user has

trouble
* recognizing, understanding, and interpreting visual cues,

» with missing or inconsistent visual cues,

e discovering when or how direct manipulation can be used, and

201

* that involves the user's ability to use the mouse and its buttons to directly
manipulate objects (speed of cursor tracking, triple clicking, depressing multiple

mouse buttons simultaneously).
sability Problems In The Task Component

A task usability problem focuses on the user's movement through a task. They
include difficulties with the way tasks are mapped to the system (task structure), available

system functionality, and whether or not the system facilitates (eases) task completion.
Task-mapping Usability Problems

Task-mapping usability problems afe concerned with how well user tasks are
mapped to the system. This category includes problems that occur when relevant user
tasks are not included in the mapping. These problems focus on the structure of the task,
the number and sequence of sub tasks, the functionality to support the task, and the user's

ability to navigate within the system. These problems occur when the user has trouble with

* the interaction (possibly due to the lack of user-centered task mapping,
cognitively direct task mapping, mental models, metaphors, task structure,
sequence of subtasks, number of steps to task completion),

e navigation (techniques include hypertext or hypergraphic links, buttons,
windows, menu items),

» available or missing underlying system functionality (core or non-user interface

functionality).

202

Task-facilitation Usability Problems

Task-facilitation usability problems have to do with how well the system assists
task completion (eases task performance). Task-facilitation problems occur when the
system does not help the user follow the task structure, use the task structure more
efficiently, return to the task after diverging, nor access functionality in a way that is more

suitable for him/her. These problems occur when the user has trouble with

» user preferences (e.g., customization of tool bar, title bar or window color),

» shortcuts (e.g., key sequences, shortcut icons, aliases, macro facilities),

» task/function automation (which tasks are performed by user, and which
functions are performed by the system, includes locus of control),

e default values,

* keeping the user task on track (includes guiding the user to the next part of the
task),

* user action reversal,

* error recovery, and

* error prevention.

203

APPENDIX B: Roles Forms and Glossary

Roles Form 1

ARTIFACT TASK
USABILITY PROBLEMS USABILITY PROBLEMS
Team Role Visualness | Language | Manipulation Task- Task-

mapping | facilitation

cognitive psychologist
customer
end user

| graphic designer
human factors
specialist
market analyst
marketer
moderator (focus
STOUPS)
problem domain expert
quality assurance
software specifier
software designer
software documentor
software implementor
software librarian
software tester
systems analyst
technical writer
user-interface
interaction designer
user-interface software
designer
user-interface software
implementor
user-interface evaluator
user-interface
documentor

204

Roles Form 2

ARTIFACT TASK
USABILITY PROBLEMS USABILITY PROBLEMS
Team Role Visualness | Language | Manipulation Task- Task-
mapping | facilitation
customer
market analyst
marketer

problem domain expert
quality assurance
software specifier
software designer
software documentor
software implementor
software librarian
software tester

systems analyst
technical writer

205

Glossary For Roles Forms

Application (Problem) Domain Expert

Has in-depth knowledge in the application area (information processing,

mathematics, simulation, word processing) in which the system is being built. .
Cognitive Psychologist
Skilled in extracting, representing, and reasoning about mental representations and
processes involved in user tasks. Are familiar with theoretical memory and
attention, perception, learning, and problem-solving. Also skilled in the collection
and interpretation of verbal protocol data. Could have some familiarity with social
and motivational influences in individual cognition.
Customer
Purchases the software. May or may not also use the software system.

End User

Users who utilizes the software to perform job activities. May or may not purchase

the software.

206

Graphic Designer

Use skills to devise various aspects of the appearance of a user interface. This

includes icons, desktop, dialogue boxes, and window borders.

Human Factors Specialist
Strong background in the "systems" approach to design and development. This
approach includes activities like function allocation, task analysis, requirements
analysis, and test and evaluation. The focus is on user-centered design, with strong
emphasis in human physical and cognitive limitations and capabilities. Also has an
understanding of controlled experimental designs and statistical analysis.

Market Analyst
Determines needs of user groups. Performs user analysis.

Marketer
Deals with end users during maintenance phase of software life cycle. Often is the

intermediary between the users and the developers. May accumulate a list of

usability problems during maintenance after product has shipped.

207

Moderator (Focus Groups)
Conducts group discussions to determine user-interface requirements. Conducts
group discussions after the user interface has been implemented to acquire end-user
feedback on level of usability achieved in the system.

Quality Assurance Personnel

Ensures that the system is not delivered unless it is of acceptable quality. Ensures

that all process activities have been performed before product is shipped.

Software Specifier

Uses software requirements analysis to specify system behavior (may include user-

interface behavior).

Software Designer

Generates a system-level description of what the system is to do. Can use software

specifications to design system.

Software Documentor

Writes internal documentation for software systems.

208

Software Implementor
Implements (codes) software system using design document and specifications.
Software Librarian
Prepares and stores documents that are used during the life of the system (e.g.,
requirements specification, design descriptions, program documentation, training
manuals, test schedules). Also can enters, compiles, link, and do preliminary
testing of code written by other programmers.

Software Tester

Conducts various tests (module, integration, system, alpha, beta) to catch errors in

the code that have been previously overlooked.

Systems Analyst
Analyzes an organization and identifies its processing and information
requirements. Works with customers to build discrete requirements from user
wants.

Technical Writer

Writes external documentation (user’s guides/manuals) for software systems.

209

User-Interface Interaction Designer

Designs the interaction (dialogue) that the user has with the system.

User-Interface Software Designer

Responsible for the overall design of the software that supports the user interface.

Translates the interaction design into an interface software design.

User-Interface Software Implementor

Implements (codes) the user-interface software design.

User-Interface Evaluator

Evaluates the level of usability achieved in the user interface. May use inspection

methods (e.g., cognitive walkthroughs, heuristic evaluation) and/or user testing.

User-Interface Documentor

Documents the development history of the user interface from iteration to iteration.

210

APPENDIX C: Activities Form and Glossary

Activities Form

ARTIFACT TASK
USABILITY PROBLEMS USABILITY PROBLEMS
Systems Analysis | Visualness | Language | Manipulation Task- Task-

mapping | facilitation

Contextual Inquiry,
Job Analysis,

Needs Analysis,

Task Analysis,
Work-Flow Analysis
Focus Groups
Functional Analysis
(internal view of
functions)

Learn About
Application Domain
Learn About Existing/
Competing Systems
Systems Analysis
System Requirements/
Specifications
Task/Function
Allocation (which tasks
performed by user,
which functions
performed by system)
Usability
Requirements/
Specifications

User Analysis

(user profiles,

user class definitions)
User Site Visits

211

ARTIFACT TASK
USABILITY PROBLEMS USABILITY PROBLEMS

Guidelines Visualness | Language | Manipulation Task- Task-
mapping | facilitation

Use Commercial Style
Guides (look and feel
of individual user-
interface objects

or artifacts)

Use Customized Style
Guides (consistency)

Use General Interface
Guidelines
(know the user...)

ARTIFACT TASK
USABILITY PROBLEMS USABILITY PROBLEMS

Design Activity | Visualness | Language | Manipulation Task- Task-
mapping | facilitation

High-fidelity
(interactive)
Prototyping
(software-based
prototypes)

Low-fidelity (static)
Prototyping

(paper prototypes,
screen mock-ups)

Participatory Design

Usage Scenarios

212

ARTIFACT TASK
USABILITY PROBLEMS USABILITY PROBLEMS

Design Visualness | Language | Manipulation Task- Task-
Representation mapping | facilitation
Techniques

Behavioral Design
Representation
(CLG, GOMS,
TAG, UAN)
Knowledge & Model
Based (e.g. UIDE)
Obiject Orientation
State Transition
Diagrams (including
concurrent state

| diagrams)

Usage Scenarios,

Use Cases

ARTIFACT TASK
USABILITY PROBLEMS USABILITY PROBLEMS

Inspection Visualness | Language | Manipulation Task- Task-
Methods mapping | facilitation

Cognitive Walkthrough
(Jogthru)
Consistency
Inspections

Feature Inspection
GOMS Analysis
Guideline Reviews,
Heuristic Evaluation
Pluralistic
Walkthroughs
Standards Inspections

213

ARTIFACT TASK
USABILITY PROBLEMS USABILITY PROBLEMS

User Testing Visualness | Language | Manipulation Task- Task-
Activity mapping | facilitation

Alpha Tests

Beta Tests

Co-discovery

Critical Incident Taking
(positive and negative
incidents)

Structured Interviews
(gather user opinions)

Testing User
Performance (using
benchmark tasks)
User Preference
(Satisfaction)
Questionnaires

Verbal Protocol
Taking (thinking
aloud studies,

possibly retrospective)

214

GLOSSARY FOR ACTIVITIES FORM

Systems Analysis Definitions

Contextual Inquiry, Job Analysis, Needs Analysis, Task Analysis, Work-

Flow Analysis

Contextual Inquiry is performed on site. Developers talk with and observe real
users performing real tasks. Needs Analysis is used to determine that a new system
is needed. Task Analysis is a user-interface analysis activity in which the
procedures users employ to perform work tasks are identified, categorized, and
defined. Job Analysis and Work-Flow Analysis performed to determine how user

tasks fit into the work environment.

Focus Groups

Discussion groups conducted to obtain user feedback on the concept and proposed

interface. Focus groups rely on discussions and questionnaires.

Functional Analysis

Process of identifying the major activities of a system. Provides developers with an

internal view of system functions.

215

Learn About Application Domain

Is performed to determine needed functionality and appropriate, user-centered

language.

Learn About Existing/Competing Systems

Enables comparison of proposed system with competing systems.

Systems Analysis

Preliminary investigation during which the objective, constraints, and scope of the

system are identified. Activity seeks to understand the system's existing

environment, document its functionality, and determine the new system's

requirements.

System Requirements/Specifications

System design requirements are written in a specific format (specification

document) that states what the product must do.

Task/Function Allocation (performed by user or by system)

Analysis determines which tasks will be performed by the user (manual) and which

functions will be performed by the system (automated).

216

Usability Requirements/Specifications

Establishes quantitative usability goals that are used as a guide for knowing when

an interface is "good enough."

User Analysis (user profiles, user class definitions)

Determines user characteristics and produces a user profile(s).

User Site Visits

Developers visit user sites.

Guidelines Definitions

Use Commercial Style Guides

Helps with "look and feel" of the user interface and the objects (artifacts) on the
interface. Commercial style guides typically produced by one organization or
vendor, made commercially available, and provides a concrete and useful
framework for design. Includes description of specific interaction style or object

and guidance of when and how to use a particular interaction style or object.

217

Use Customized Style Guides
Helps maintain consistency throughout the user interface, possibly across products.
Customized style guide is produced internally for a particular interface development
project or set of projects.

Use General Interface Guidelines (know the user...)
Helps keep the focus on the user during specification and design. Examples: know
the user, practice user-centered design, prevent user errors, keep locus of control

with the user, be consistent, keep it simple, recognize rather than recall, and use

informative feedback.

Design Activity Definitions
High-fidelity (interactive) Prototyping

A prototyping strategy in which the prototype is a software-based. Uses iterative

refinement.
Low-fidelity (static) Prototyping

A prototyping strategy in which the prototype is constructed out of paper, includes

screen mock-ups. Uses iterative refinement.

218

Participatory Design

End users are included in the design process (often design meetings) to provide

insights.

Systems Design

Development activity that synthesizes the requirements identified during the analysis

stage into a new system blueprint. Process of reassembling the components and

functions identified during analysis.

Usage Scenarios

Usage scenarios (story line of users performing tasks on the system) can be used as

a design technique and as a documentation technique used to record design history.

Design Representation Techniques Definitions

Behavioral Representation

Formal user-task oriented technique for specifying the behavior of the user

interface. Examples:
Command Language Grammar (CLG)

Goals, Operators, Methods, And Selection (GOMS)
Keystroke Level Model

219

Task Action Grammar (TAG)
User Action Notation (UAN)

Knowledge & Model Based

Technique consists of objects, attributes, action, and pre-and post-conditions on
actions that form a declarative description of an interface. From these descriptions,
alternative interfaces can be generated for the same underlying functionality.

Examples:

User Interface Development Environment (UIDE)

Object Orientation

A methodology that analyzes, designs, and constructs a system's object classes,

methods, and attributes. Focuses on objects in the user interface and actions that

can be performed on those objects.

State Transition Diagrams (including concurrent state diagrams)

Networks of user-interface states which identify all actions possible in that state and

to which state each action leads. Represents control flow in asynchronous

interaction using a set of graphical, state diagrams which represent the interface.

220

Usage Scenarios, Use Case

A usage scenario is a story line for each task to be performed on the system. A use
case is an instantiation of the user in the system. Developers work step-by-step, in
writing, through every scenario a system will be expected to perform, internally and

externally.

Inspection Methods Definitions
Cognitive Walkthrough (jogthru)
Using an explicitly detailed procedure, simulates a user's problem-solving process
at each step in the human-computer dialogue. Checks to see if the simulated user's
goals and memory for actions can be assumed to lead to the next correct action.
Consistency Inspections
Designers representing multiple projects inspect an interface to see whether it does
things in a way that is consistent with their own designs. Aimed at evaluating

consistency across the family of products that has been evaluated by an inspection

team.

221

Feature Inspection

Focus on the function delivered in a software system (whether the function, as
designed, meets the needs of intended end users). Involves evaluation of a function

and the design of that function. Focuses on the usefulness of interface function.

Formal Usability Inspections

Similar to code inspection methods. User interface is inspected individually by

team members, then merge findings at a team meeting.

GOMS Analysis

For certain tasks, can model the goals the user had, the methods available in the
system to satisfy these goals, and the operator sequences that are followed. Can be

used to predict how long a user task will take.

Guideline Reviews, Heuristic Evaluation

Guideline reviews are inspections where an interface is checked for conformance
with a comprehensive list of usability guidelines. Heuristic evaluation involves
having usability specialists judge whether each dialogue element conforms to
established usability principles. Often, the most important parts of the user

interface are examined and compared to a list of heuristics.

222

Pluralistic Walkthroughs

Meetings where users, developers, and human factors people step through a
scenario, discussing usability issues associated with dialogue elements involved in

the scenario steps.

Standards Inspections

An expert of some interface standard inspects the interface for compliance. Aimed

at increasing the degree to which a given interface is in the range of other systems

on the market that follow the same standards.

User Testing Activity Definitions

Co-discovery
More than one user tests (uses) the system at the same time or an evaluator and a
participant work to together to uncover usability problems. The users verbalize
about what they are doing to each other.

Critical Incident Taking (both positive and negative incidents)
Both positive and negative critical incidents are recorded during user testing

session. A critical incident is something that happens while a participant is working

that has a significant effect.

223

Structured Interviews

Typically held after the testing session to gather users’ opinions about a software

system. Consists of preplanned questions that the evaluator asks each participant.
Testing Using Benchmark Tasks

Designed to gather objective measurements with respect to user performance (time

to task completion, error rate). A test performed to ensure that system interfaces are

easy to learn and user and that they support the desired level of user productivity.

Typically conducted to determine where users are most prone to make errors, to

evaluate user reactions, and to assess productivity.

User Preference (satisfaction) Questionnaires

User completes a questionnaire designed to capture subjective information about

user satisfaction.

Verbal Protocol Taking (retrospective , thinking aloud studies)

Users’ comments with respect to what happened during the session are recorded

during or after (retrospective) a user testing session.

224

APPENDIX D: Means And Standard Deviations For Roles
Form 1 And The Activities Form

Appendix D is divided into two sections. Section D.1 presents the means and
standard deviations (SD) of responses that associate each role with UPT categories. The
means and standard deviations of responses for the five primary categories are given in
Tables D.1 through D.5. Tables D.6, D.7, and D.8 give the means and standard deviations
for roles and the artifct component, the task component, and the overall UPT. Section D.2
presents the means and standard deviations (SD) of responses that associate each activity
with UPT categories. The means and standard deviations of responses for the five primary
categories are given in Tables D.9 through D.13. Tables D.14, D.15, and D.16 give the
means and standard deviations for activities and the artifct component, the task component,

and the overall UPT.

The interpretation of each pair of means and standard deviations is given in the
column labeled "Intp." Recall that the interpretation is either a strong positive association
(+), a weak positive association (w+), no association (blank), a weak negative association

(w—), or a strong negative association (—).

225

D.1 Means And Standard Deviations For Roles Form 1

Table D.1. Means and standard deviations for each role for visualness.

Visualness and role Mean| SD |Intp
cognitive psychologist 1.333 | 0.816
customer 0.833 | 0.983
end user 1.5 0.837

| graphic designer 2 0 +
human factors specialist 1.833 | 0.408 +
market analyst 0.833 | 0.753
marketer 0.833 | 0.753
moderator (focus group) 1 1
problem domain expert 1.167 | 0.753
quality assurance 0.667 | 0.816
software specifier 0.667 | 0.816
software designer 0.333 | 0.516 | —
software documentor 0.167 | 0.408 | —
software implementor 0.333 | 0.516 | —
software librarian 0 0 —
software tester 0.5 0.837
systems analyst 1.167 | 0.408
technical writer 1.667 | 0.516 +
user-interface interaction designer 2 0 +
user interface software designer 1 1.095
user interface software implementor 0.833 | 0.983
user interface evaluator 1.833 | 0.408 +
user interface documentor 1.167 | 0.753

226

Table D.2. Means and standard deviations for each role for language.

Language and role Mean| SD |Intp
cognitive psychologist 1.5 0.548 +
customer 0.833 | 0.983
end user 1.5 | 0.837
graphic designer 0.833 | 0.408
human factors specialist 1.833 | 0.408 | +
market analyst 0.5 0.548 | —
marketer 0.667 | 0.516 | w—
moderator (focus group) 1 1
problem domain expert 1.5 0.837
quality assurance 0.5 0.837
software specifier 0.667 | 0.816
software designer 0.333 | 0.516 | —
software documentor 0.5 0.548 | —
software implementor 0.333 | 0.516 | —
software librarian 0 0 —
software tester 0.5 0.837
systems analyst 1.333 | 0.516
technical writer 1.833 | 0.408 +
user interface interaction designer 2 0 +
user interface software designer 0.833 | 0.983
user interface software implementor | 0.833 | 0.983
user interface evaluator 1.833 | 0.408 +
user interface documentor 1.167 | 0.753

227

Table D.3. Means and standard deviations for each role for manipulation.

Manipulation and role Mean| SD |Intp
cognitive psychologist 1.5] 0548 | +
customer 0.833 | 0.983
end user 1.5 0.837
“graphic designer 1.167 | 0.753
human factors specialist 1.833 | 0.408 | +
market analyst 0.333 | 0.516 | —
marketer 0.167 | 0.408 [—
moderator (focus group) 0.6 | 0.894
problem domain expert 0.833 | 0.753
quality assurance 0.333 | 0.816
software specifier 0.667 | 0.816
software designer 0.5 0.837
software documentor 0.167 | 0.408 | —
software implementor 0.5 0.837
software librarian 0.167 | 0.408 | —
software tester 0.5 0.837
systems analyst 1.167 | 0.408
technical writer 1.333 | 0.816
user interface interaction designer 2 0 +
user interface software designer 1.167 | 0.983
user interface software implementor | 0.667 | 0.816
user interface evaluator ' 1.833 | 0.408 +
user interface documentor 1 0.632

228

Table D.4. Means and standard deviations for each role for task-mapping .

Task-mapping and role Mean| SD |[Intp
| cognitive psychologist 1.5 0.837
customer 1 0.894
end user 1.667 | 0.516 +
graphic designer 1 0.894
human factors specialist 2 0 +
market analyst 1.167 | 0.753
marketer 0.667 | 0.516 | w—
moderator (focus group) 1.2 | 0.837
problem domain expert 1.667 | 0.516 +
quality assurance 0.333 | 0.516 | —
software specifier 1.333 | 0.516
software designer 0.667 | 0.516 | w—
software documentor 0.333 | 0.516 | —
software implementor 0.167 | 0408 { —
software librarian 0.167 | 0.408 | —
software tester 0.5 0.548 | —
systems analyst 2 0 +
technical writer 1.167 | 0.753
user interface interaction designer 2 0 +
user interface software designer 1.167 | 0.983
user interface software implementor 0.667 | 0.816
user interface evaluator 1.833 | 0.408 +
user interface documentor 1 0.632

229

Table D.5. Means and standard deviations for each role for task-facilitation .

Task-facilitation and role Mean| SD |Intp
| cognitive psychologist 1.5 0.837
customer 0.833 | 0.983
end user 1.5 0.837
| graphic designer 0.833 | 0.408
human factors specialist 2 0 +
market analyst 0.667 | 0.516 | w—
marketer 0.167 | 0408 | —
moderator (focus group) 0.8 0.837
problem domain expert 1.5 0.548 +
quality assurance 0.667 | 0.816
software specifier 1 0.632
software designer 0.5 0.837
software documentor 0.167 | 0.408 | —
software implementor 0.333 | 0.816
software librarian 0.167 | 0.408 | —
software tester 0.5 0.548 | —
systems analyst 1.667 | 0.516 | +
technical writer 1.167 | 0.753
user interface interaction designer 2 0 +
user interface software designer 1.167 | 0.983
user interface software implementor | 0.667 | 0.816
user interface evaluator 1.667 | 0.516 +
user interface documentor 1 0.632

230

Table D.6. Means and means of standard deviations for each role for the artifact
component.

Artifact component and role | Mean | Mean | Intp
SD
cognitive psychologist 1.444 | 0.637 | w+
customer 0.833 | 0.983
end user 1.5 0.837
| graphic designer 1.333 | 0.387

human factors specialist 1.833 | 0.408 +
market analyst 0.556 | 0.606 | w—
marketer 0.556 | 0.559 | —
moderator (focus group) 0.867 | 0.965

roblem domain expert 1.167 | 0.781
quality assurance 0.5 0.823
software specifier 0.667 | 0.816
software designer 0.389 | 0.623 | w—
software documentor 0.278 | 0.455 | —
software implementor 0.389 | 0.623 | w—
software librarian 0.056 | 0.136 | —
software tester 0.5 0.837
systems analyst 1.222 | 0.444
technical writer 1.611 | 0.58 +
user interface interaction designer 2 0 +
user interface software designer 1 1.021
user interface software implementor 0.778 | 0.928
user interface evaluator 1.833 | 0.408 +
user interface documentor 1.111 | 0.713

231

Table D.7. Means and means of standard deviations for each role for the task component.

Task component and role Mean| SD |Intp
cognitive psychologist 1.5 0.837
customer 0.917 | 0.939
end user 1.583 | 0.677 | w+

_graphic designer 0917 | 0.651

human factors specialist 2 0 +
market analyst 0.917 | 0.635
marketer 0.417 | 0462 | —
moderator (focus group) 1 0.837
‘problem domain expert 1.583 | 0.532 +
quality assurance 0.5 0.666 | w—
software specifier 1.167 | 0.574
software designer 0.583 | 0.677 | w—
software documentor 0.25 | 0.462 | —
software implementor 0.25 | 0.612 | w—
software librarian 0.167 | 0.408 | —
software tester 0.5 | 0.548 | —
systems analyst 1.833 | 0.258 +
technical writer 1.167 | 0.753

user interface interaction designer 2 0 +
user interface software designer 1.167 | 0.983

user interface software implementor 0.667 | 0.816

user interface evaluator 1.75 | 0.462 +
user interface documentor 1 0.632

232

Table D.8. Means and means of standard deviations for each role for the UPT.

UPT and role Mean| SD |Intp

cognitive psychologist 1.467 | 0.717
customer 0.867 | 0.965
end user 1.533 | 0.773
graphic designer 1.167 | 0.493
human factors specialist 1.9 0.245 +
market analyst 0.7 0.617
marketer 0.5 0.52 | —
moderator (focus group) 0.92 | 0.914

roblem domain expert 1.333 | 0.681

uality assurance 0.5 0.761
software specifier 0.867 | 0.72
software designer 0.467 | 0.645 | w—
software documentor 0.267 | 0.458 | —
software implementor 0.333 | 0.619 | w—
software librarian 0.1 0245 | —
software tester 0.5 0.721
systems analyst 1.467 | 0.37 +
technical writer 1.433 | 0.649 | w+
user interface interaction designer 2 0 +
user interface software designer 1.067 | 1.006
user interface software implementor 0.733 | 0.883
user interface evaluator 1.8 0.43 +
user interface documentor 1.067 | 0.681

233

D.2 Means And Standard Deviations For The Activities Form

Table D.9. Means and standard deviations for each activity for visualness.

| Mean| SD

Visualness and activity
System Analysis (SAy

Contextual Inquiry

Focus Groups 1 0.632
Functional Analysis 0.333 | 0.816

Learn Application Domain 1 0.632

Learn Competing Systems 1.333 | 0.516
Systems Analysis 0.5 0.548 —
System Requirements & Specifications 0.6 0.894
Task/Function Allocation 0.167 | 0.408 —
Usability Requirements & Specifications 1.5 0.548 +
User Analysis 1 0.632

User Site Visits 1 0.632
Guidelines (G} =~
Use Commercial Style Guides
Use Customized Style Guides
Use General Interface Guidelines 1.667 | 0.516 +
Design Activities (D) i
High-fidelity Prototyping
Low-fidelity Prototyping
Participatory Design
Usage Scenarios

Design Representation Techniques(DRT) = ==
Behavioral Design Representation
Knowledge & Model Based

Object Orientation

State Transition Diagrams

Usage Scenarios, Use Cases
Inspection -Methods (I) = =
Cognitive Walkthrough

Consistency Inspections

Feature Inspection

GOMS Analysis

Guideline Reviews, Heuristic Evaluation
Pluralistic Walkthroughs

Standards Inspections

User - Testing Activities (UT) = =
Alpha Tests

Beta Tests

Co-discovery

Critical Incident Taking

Structured Interviews

Testing User Performance

User Preference

Verbal Protocol Taking

234

Table D.10. Means and standard deviations for each activity for language.

Language and_activity | Mean | §_L)_L Intp

‘System: Analysis (SA) . 0 __ e
Contextual Inquiry 1.367 | 0.753

Focus Groups 1.167 | 0.408
Functional Analysis 0.333 | 0.816

Learn Application Domain 1.667 | 0.516 +
Learn Competing Systems 1.333 | 0.516
Systems Analysis 0.833 | 0.408

System Requirements & Specifications 0.6 0.894
Task/Function Allocation 0.167 | 0.408
Usability Requirements & Specifications 1.333 | 0.516

User Analysis
User Site Visits —_—
Guidelines - (G) L
Use Commercial Style Guides
Use Customized Style Guides
Use General Interface Guidelines
Design Activities (D)
High-fidelity Prototyping
Low-fidelity Prototyping
Participatory Design
Usage Scenarios
Design Representation Techniques(DRT) =
Behavioral Design Representation
Knowledge & Model Based
Object Orientation
State Transition Diagrams
Usage Scenarios, Use Cases
Inspection Methods (I)
Cognitive Walkthrough
Consistency Inspections
Feature Inspection
GOMS Analysis
Guideline Reviews, Heuristic Evaluation
Pluralistic Walkthroughs
Standards Inspections
User Testing Activities (UT)
Alpha Tests
Beta Tests
Co-discovery
Critical Incident Taking
Structured Interviews
Testing User Performance
User Preference
Verbal Protocol Taking

235

Table D.11. Means and standard deviations for each activity for manipulation.

Manipulation and activity
-System ‘Analysis {(SA) ‘
Contextual Inquiry
Focus Groups
Functional Analysis
Learn Application Domain
Learn Competing Systems
Systems Analysis
System Requirements & Specifications

Task/Function Allocation

Usability Requirements & Specifications
User Analysis

User Site Visits - —
Guidelines (G) . o

Use Commercial Style Guides
Use Customized Style Guides
Use General Interface Guidelines
Design . Activities (D)

| High-fidelity Prototyping
Low-fidelity Prototyping
Participatory Design

Usage Scenarios

Design * Representation Techniques(DRT)
Behavioral Design Representation
Knowledge & Model Based

Obiject Orientation

State Transition Diagrams

Usage Scenarios, Use Cases
Inspection Methods (I)

| Cognitive Walkthrough

Consistency Inspections

Feature Inspection

GOMS Analysis

Guideline Reviews, Heuristic Evaluation
Pluralistic Walkthroughs

Standards Inspections

User Testing Activities (UT)
Alpha Tests

Beta Tests

Co-discovery

Critical Incident Taking

Structured Interviews

Testing User Performance

User Preference

Verbal Protocol Taking

236

Table D.12. Means and standard deviations for each activity for task-mapping.

Task-mapping and activity - | Mean

Contextual Inquiry 1.833
Focus Groups 1.5 0.548 +
Functional Analysis 1 0.632
Learn Application Domain 1.833 | 0.408 +
Learn Competing Systems 1.333 | 0.516
Systems Analysis 1.333 | 0.516
System Requirements & Specifications 1.6 0.548 +
Task/Function Allocation 1.667 | 0.516 +
Usability Requirements & Specifications 1.333 | 0.816
User Analysis 1.333 | 0.516
User Site Visits — 1.667 | 0.516
Guidelines = (G): = - e e
Use Commercial Style Guides 0.5 | 0.837
Use Customized Style Guides 1 0.894
Use General Interface Guidelines 1.167 | 0.983

| Design - Activities (D) S ey
High-fidelity Prototyping
Low-fidelity Prototyping
Participatory Design

Usage Scenarios
Design Representation: Techniques(DRT)
Behavioral Design Representation
Knowledge & Model Based

Object Orientation

State Transition Diagrams

Usage Scenarios, Use Cases
Inspection Methods (I) '

Cognitive Walkthrough

Consistency Inspections

Feature Inspection

GOMS Analysis

Guideline Reviews, Heuristic Evaluation
Pluralistic Walkthroughs

Standards Inspections

User Testing Activities (UT) = .= =
Alpha Tests

Beta Tests

Co-discovery

Critical Incident Taking
Structured Interviews
Testing User Performance
User Preference

Verbal Protocol Taking

237

Table D.13. Means and standard deviations for each activity for task-facilitation.

Task-facilitation and activity | Mean
‘Systéem Analysis (SA) o
Contextual Inquiry
Focus Groups
Functional Analysis 0.833 | 0.753
Learn Application Domain 1.333 | 0.516
Learn Competing Systems 1.167 | 0.753
Systems Analysis 1 0.632
System Requirements & Specifications 1.4 0.548 w+
Task/Function Allocation 1.5 0.548 +
Usability Requirements & Specifications 1.5 | 0.837
User Analysis 1.167 | 0.753

User Site Visits

Guidelines (G): .
Use Commercial Style Guides
Use Customized Style Guides 1.167 | 0.753
Use General Interface Guidelines
Design _Activities (D)
High-fidelity Prototyping
Low-fidelity Prototyping 1.833 | 0.408 +
Participatory Design
Usage Scenarios
Design Representation Techniques(DRT)
Behavioral Design Representation
Knowledge & Model Based

Object Orientation

State Transition Diagrams

Usage Scenarnos. Use Cases

Inspection Methods (I)

Cognitive Walkthrough

Consistency Inspections

Feature Inspection

GOMS Analysis

Guideline Reviews, Heuristic Evaluation
Pluralistic Walkthroughs

Standards Inspections

User Testing Activities (UT)
Alpha Tests

Beta Tests

Co-discovery

Critical Incident Taking

Structured Interviews

Testing User Performance

User Preference

Verbal Protocol Taking

238

Table D.14. Means and standard deviations for each activity for the artifact component.

Artlfact component and actwntj
S stem ‘Analysis (SA) = :

Contextual Inquiry

Focus Groups

Functional Analysis

Leamn Application Domain

Learn Competing Systems

Systems Analysis

System Requirements & Specifications

Task/Function Allocation

Usability Requirements & Specifications

User Analysis

User Site Visits

Guidelines (G)

Use Commerc1a14tyle Guxdcs —

Use Customized Style Guides

Use General Interface Guidelines
Design Activities (D)

High-fidelity Prototyping

Low-fidelity Prototyping

Participatory Design

Usage Scenarios

Design Representation Techniques(DRT) =

Behavioral Design Representation

Knowledge & Model Based

Object Orientation

State Transition Diagrams

Usage Scenarios, Use Cases 591

Inspection Methods (1) .
| Cognitive Walkthrough 1.444 | 0.879

Consistency Inspections 1.611

Feature Inspection 0.333

GOMS Analysis 0.611

Guideline Reviews, Heuristic Evaluation 1.778

Pluralistic Walkthroughs 1.667

Standards Inspections 1.278 .

User Testing Activities (UT) - L

Alpha Tests 1 167

Beta Tests 1.167 .

Co-discovery 1.889 | 0.172

Critical Incident Taking 1.833 | 0.408

Structured Interviews 1.222 | 0.529

Testing User Performance 1.222 | 0.828

User Preference 1 0.894

Verbal Protocol Taking 1.778 | 0.444

239

Table D.15. Means and standard deviations for each activity for the task component.

Task component and activity [Mean| SD | Intp
‘System ‘Analysis (SA) - .
Contextual Inquiry 1.833 | 0.408 +
Focus Groups 1.25 | 0.59
Functional Analysis 0.917 | 0.693
Learn Application Domain 1.583 | 0.462 +
Learn Competing Systems 1.25 | 0.635
Systems Analysis 1.167 | 0.574
System Requirements & Specifications 1.5 0.548 +
Task/Function Allocation 1.583 | 0.532 +
Usability Requirements & Specifications 1.417 | 0.827
User Analysis 1.25 | 0.635
User Site Visits 1.417
Guidelines (G):7. 0 v e
Use Commercial Style Guides 0.667
Use Customized Style Guides 1.083 | 0.824
Use General Interface Guidelines 1.083
Design Activities (D) St b L
High-fidelity Prototyping 1.917 | 0.204 +
Low-fidelity Prototyping 1.917 | 0.204 +
Participatory Design 1.667 | 0.478 +
Usage Scenarios 1.667 +
Design Representation Techniques(DRT) = :
Behavioral Design Representation 1.271 | 0.644
Knowledge & Model Based 1.167 | 0.753
Object Orientation 1.083 | 0.785
State Transition Diagrams 1.167 | 0.956
Usage Scenarios, Use Cases 1.833 | 0.258 +
Inspection Methods (I) Al e
Cognitive Walkthrough 1.333 | 0.516
Consistency Inspections 0.667 | 0.65 W—
Feature Inspection 1.333 | 0.478
GOMS Analysis 0.917 | 0.824
Guideline Reviews, Heuristic Evaluation 1.083 | 0.693
Pluralistic Walkthroughs 1.583 | 0.532 +
Standards Inspections 0.5
User Testing Activities (UT) "~ iR
Alpha Tests 1.167
Beta Tests 1.167 | 0.574
Co-discovery 1.917 | 0.204 +
Critical Incident Taking 1.833 | 0.408 +
Structured Interviews 1.333 | 0.478
Testing User Performance 1.5 0.692 w+
User Preference 1.083 | 0.52
Verbal Protocol Taking 1.667 | 0.516 +

240

Table D.16. Means and standard deviations for each activity for the overall UPT.

UPT and activity | Mean| SD | Int
System ‘Analysis: (SA) -
Contextual Inquiry
Focus Groups
Functional Analysis
Learn Application Domain
Learn Competing Systems
Systems Analysis :
System Requirements & Specifications 0.96 | 0.686 w+
Task/Function Allocation 0.833 | 0.583
Usability Requirements & Specifications 1.467 | 0.647
User Analysis
User Site Visits
‘Guidelines: - (G). ¢ o0
Use Commercial Style Guides
Use Customized Style Guides
Use General Interface Guidelines ‘ 1.367 | 0.698
Design _Activities (D) -
High-fidelity Prototyping
Low-fidelity Prototyping
Participatory Design
Usage Scenarios
Design Representation Techniques(DRT) =
Behavioral Design Representation
Knowledge & Model Based
Obiject Orientation
State Transition Diagrams
Usage Scenarios, Use Cases
Inspection Methods (I)
Cognitive Walkthrough
Consistency Inspections
Feature Inspection
GOMS Analysis
Guideline Reviews, Heuristic Evaluation
Pluralistic Walkthroughs
Standards Inspections
User_Testing Activities (UT)
Alpha Tests
Beta Tests
Co-discovery
Critical Incident Taking
Structured Interviews
Testing User Performance
User Preference
Verbal Protocol Taking

241

VITA

Susan L. Keenan received her BA in mathematics from Christopher Newport
University in May, 1983, and an MS in operations research from the College of William
and Mary in May, 1985. She then accepted a teaching position at Dickinson College in
Carlisle, Pennsylvania. During her four years at Dickinson, she attended Shippensburg
University and earned an MS in computer science. At the completion of her masters degree
in May of 1989, Susan decided to return to school as a full-time PhD student. She

graduated from Virginia Tech in December, 1996, with a PhD in computer science.

During her stay at Virginia Tech, she received the Goff award for teaching
excellence. Her dissertation research was funded, in part, by the Graduate Research
Development Project at Virginia Tech. Supplementing her education, she worked as a
usability-consultant for the Naval Research Laboratory in Washington, DC. She is a

member of the ACM and SIGCHI.

In August of 1996, Susan will become a member of the computer science faculty at
Columbus State University in Columbus, Georgia. There she will teach both
undergraduate and graduate level courses, and supervise masters students' research

projects.

dian i Franan_

242

