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(ABSTRACT)

Linear feedback control is considered for large systems of differential algebraic
equations arising from discretization of saddle point problems. Necessary
conditions are derived by applying the Maximum Principle and have the form
of constrained Riccati equations. We consider two approaches for solving the
feedback control problem as well as practical numerical methods. Numerical
studies using examples derived from a constrained heat equation and Stokes
equation confirms the effectiveness of the approaches we consider.
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Chapter 1

Introduction

1.1 Feedback Control for DAEs

A typical linear control problem involves a linear system of ordinary differ-
ential equations (ODE) of the form

x(t) = Az(t) + Bu(t), x(0) = zo. (1.1)

The main objective is to find u(+) in some admissible set that will minimize
a given functional cost. The standard Linear-Quadratic case involves no
explicit restriction on neither u(-) nor the final conditions for x(-), but rather
a quadratic cost functional of the form

T() = [ (0, Qu(0) + {u(0), Ru(v) .

where () is symmetric positive semi-definite and R is symmetric positive
definite. In the Linear-Quadratic problem, the objective is to find an optimal
u(+) that minimizes J(-) subject to the constraint (1.1). In the case where the
final time is infinite (7" = o0), the problem is called the Linear-Quadratic-
Regulator (LQR) problem.

The problem given above is well studied [11, 5, 10] and the solution is a
feedback control of the form w(t) = —K(t)x(t). The optimal gain K (t) is
given by K(t) = R'BTTI(t), where I1(t) is the solution to either the Riccati
Differential Equation (RDE), if T' < oo,

—1I(t) = ATII(t) + I(t)A — II(t)BR'BTII(t) + Q, IL(T) =0,
or the Riccati Algebraic Equation (RAE), if T' = oo,
0=ATTI+1IA —TIBR'BTTI + Q.
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Methods for solving these equations have been studied and different numer-
ical techniques devised [1, 5]. The main difficulty in solving these equations
is their stability and amount of computational work involved.

A common approach in finding an optimal control for systems of partial
differential equations (PDE), is to use some linearization of the PDE and
then finite difference or finite element discretization of the spatial domain.
The result is a system of linear ODEs and the control for that system can
be found with the techniques mentioned above. Under a reasonable set of
conditions the control for the ODE system will generate approximations of
the control for the PDE system.

The main focus of this thesis is another class of control problems. In the
discretization of PDE problems we often have equations of the form

Ei(t) = Ax(t) + Bu(t). (1.2)

When FE is invertible, the problem is equivalent to a problem of the form (1.1).
The case when E is singular gives rise to a coupled system of differential
and algebraic equations (DAE), also known as singular systems, descriptor
systems and semi-state systems among others [4]. The DAE system is not
equivalent to (1.1) and an alternative approach has to be taken.

The DAE system that we consider, has the form

E 0 .flfl(t) . AH Agl .flfl(t) B
<00><@@>—<Am 0 )\ m@ )T o el (13
where FE is symmetric positive definite. DAE systems with such structure,
come from discretization of saddle point problems. One example is the fi-

nite element approximation of Stokes and Oseen equations, another example
comes from solving a specific discretization of the heat equation.

1.2 Two Examples

1.2.1 Discretizations of Incompressible Flow Problems

The Stokes and Oseen equations are linearizations of the Navier-Stokes equa-
tions that model incompressible fluid flow. The Navier-Stokes equations are

1
0 = V-u.



The Stokes equations linearize Navier-Stokes around 0 and the Oseen around
prescribed incompressible flow U. Thus the Stokes equations are

1

0 = V-1,
and the Oseen equations are
1
Uy = ﬁAﬁ— (U,VYyu— (u,VYU — Vp
0 = V-au.

In all four cases u is a vector function for the velocity of the fluid in different
directions and p is the pressure. The second equation in the system above
is independent of time and corresponds to the algebraic term in the DAE.
The divergence term does not depend explicitly on p and thus the lower right
block of the DAE matrix is 0. The operator gradient acting on p and the
divergence operator acting in the constrained equation are adjoint, thus we
have the relationship between the two blocks in the DAE system, Ay = AL .
In addition, for the Stokes problem we have the weak form of the Laplacian
operator acting on u. Since the weak form is self-adjoint the matrix A;; will
be symmetric using Galerkin finite elements.

1.2.2 Heat Equation with Imposed BC Constraints

The heat equation is given by
u = Au.

If we wish to impose 0 boundary conditions, we can add an algebraic part to
the equation of the form
ulaq = 0,

where (2 is the specified domain. The second equation does not depend
explicitly on the time and thus it corresponds to the algebraic part of the
DAE system. In terms of finite elements, the above equation can be viewed
as minimizing over a set of test functions that do not vanish on the boundary

of the domain. Then the structure of the discrete equation will be consistent
with (1.3).

In both discretizations the matrix F is a symmetric positive definite mass
matrix. For the rest of the thesis, we shall assume that E has such form,
however, many of the results can extend to more general settings.



1.3 Literature Survey

The general structure of the DAE Linear-Quadratic control problem is dis-
cussed in many works including [2] and [6]. In [2], necessary conditions for the
optimal control are derived and the corresponding Riccati equations given.
The approach taken by [2] is to transform the general DAE system (1.2)
into a form similar to (1.3), then an assumption for the lower right block of
A is made. The assumption is that the block is invertible. Under that as-
sumption, equations for the control could be derived. If the assumption fails,
in general, the Riccati Differential Equation could have jump discontinuities
(impulses) and thus make it impossible to solve via any reasonable numerical
method.

The DAE system (1.3) fails the invertibility assumption, thus we cannot
directly apply the results from [2, 6]. In this thesis we substitute the in-
vertibility assumption with the assumption that the lower right part of the
block is 0, A3 = A and F is symmetric positive definite. In that case we
can show that there are no jump discontinuities in the Riccati equation and
feedback control can be derived.

The Riccati equation that gives the solution to (1.3) is different from the
standard Riccati equation. The structure of the standard Riccati equations
has been studied, and stable and efficient methods for solving (RAE) have
been devised [1, 5, 9]. Since the properties of the new Riccati Equation are
unknown, we would wish to convert it to or approximate it by a standard
Riccati Equation.

1.4 Our Approach

In this section, we describe our approach for solving the feedback control
problem. A popular approach for simulating these problems is to impose the
algebraic constraints using a penalty method approach [8]. Thus, instead of
equations of the form (1.3), we consider

<§ 8><§;8>:<i; fﬁ)(i;ﬁﬁ;%(ﬁ)uw (1.4)

for small values of e. The matrix M should be easily invertible (e.g. the
identity matrix, a sparse mass matrix, etc.). With this approximate system,
we now consider the control problem for



By () = <A11 _ %AglM‘lAgl) 21(6) + Bu(t), (1.5)

and seek u(t) = —K (t)z1(t).

There are many natural questions that arise:

e Does u, — u and if it does can we say that K, — K7

e Since the resulting system is still large, can we develop an efficient algo-
rithm that takes advantage of problem structure (such as sparsity) and
modern computer architectures (such as parallel computer clusters).

In Chapter 3, we answer the first question in the affirmative. This is also
seen in several numerical experiments in Chapter 5.

The discretization of a PDE can result in a very large sparse system of equa-
tions. We wish to look for a numerical method that solves standard Riccati
equations, takes advantage of sparsity and can be efficiently implemented for
a parallel architecture. This is an area with a large body of current research
[Reference|. The development of two efficient methods is discussed in Chap-
ter 4, where we discuss approaches based on Chandrasekhar equations and
the matrix sign function.

1.5 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 provides preliminary
results that follow from the structure of the DAE problem. Chapter 3 gives
a detailed derivation of the necessary condition for the DAE linear feedback
control problem and alternative ways to approximate the solution. Chapter
4 discusses ways to solve the standard Riccati equation for large systems
using sparse operations or parallel architecture. Chapter 5 provides numerical
results and finally we provide some conclusions in Chapter 6.



Chapter 2

Properties of the DAE system

In this chapter we consider a general differential algebraic equation (DAE)
system of the form

0 0 To(t) Ayp 0 za(t) )7 .
where E is symmetric positive definite and dim (ker(As;)) > 0. We wish to

address questions about the existence and uniqueness of the solution as well
as basic linear algebra results involving the A, = A% structure.

2.1  General Linear Algebra Results

In order to consider a control problem on any system of equations, we first
need a well posed system of equations. In order for (2.1) to be well posed, it
is necessary for AL to have full column rank.

Lemma 1 Rank
If system (2.1) is well posed, then AL has full column rank.

Proof: Let &1(-), 2(-) be the unique solution to (2.1). Assume to the con-
trary that ALp = 0 and p # 0. Let f : R — R be any scalar function
with f(0) = 0 and f # 0. Then given some initial conditions x1(0) = 9,
(2.1) will have unique solution &1(-) and xo(:). However, T1(t) = &1(t) and
To(t) = 2o(t) + f(t)p satisfies the same initial conditions and also satisfies
(2.1), this contradicts the well posedness assumption. Therefore, if AL p =0,
then p = 0.



Since it is a necessary condition for well posedness, for the rest of the thesis
we can assume AL, that has full column rank.

Given that F is symmetric positive definite, we observe the following result.
Lemma 2 Invertibility

If S has full column rank and if E is definite, then

STES is invertible.

Proof: Suppose STESx =0 for some vector x. Then
0= <STESx,:c> = (ESz, Sz) .

By the definite property of E, the above implies that Sx = 0. Since S has
full column rank, that implies that x = 0. Therefore, if STESx = 0, then
x = 0.Since the kernel of STES is trivial, STES is invertible.

The algebraic part of system (2.1) states that at any time ¢, z1(t) € ker(As).
We want to explore the properties of the kernel of As;.

Lemma 3 Orthogonality Lemma

l{:er(Am)J_rcmge(Agl)

Proof: Let ¢ € ker(Asy) and b € range(AL) ie. b = ALz for some x
and Agic = 0. Then (c,b) = <c, A§1x> = (Asic,z) = (0,¢) = 0. Thus
ker(As) Lrange(AL).

The above lemma can be extended to the following.

Lemma 4 Separation of the Null Space
If v L range(AL) then x € ker(As).

If v 1 ker(Ay) then x € range(AL)).

Proof: If x 1 range(AL), then T AL, = 0, therefore, Ayyx = 0. Thus we
have established the first proposition.
For the second part observe, that x = 0 s orthogonal to any subspace and s

in any subspace, so the proposition holds trivially for x = 0. Now suppose

7



r L ker(Ay), x # 0 and x & range(AL)). Then z can be split into x =
T, + z, where x, € range(AL)) and x, L range(AL)). By the first part of
this Lemma x, € ker(As), therefore since x L ker(As), x, = 0. Thus
r = x, € range(AL). Which gives a contradiction. Thus if v 1 ker(As),
then = € range(A%L)).

The kernel of Ay; plays important role in our analysis. In many places we wish
to form a matrix V' such that the columns of V' form a minimal orthonormal
basis for ker(As;). In practice we can form V' using SVD singular value
decomposition) or QR decomposition. We also need to form V so that V
form a basis for ker(Ay )t (i.e. V is orthogonal to V). Next we observe
some of the properties of such basis V.

Lemma 5 Invertibility Within the Kernel
If a,b € ker(As) and VTa = V7Tb,

then a =10

Proof: Since a,b € ker(As), a =Va, andb = Vb,. Then VTa=VTVa, =
a, and VI'b =VTVb = B,. Therefore, a, = b,, which implies a = b.

Lemma 6 Kernel Identity
If v € ker(Ay) then VV©ix =2
Proof: Let x € ker(Asy), then let b = VVTx and by the properties of V,

b € ker(As1). Then multiply both sides by VT, follows that VIx = V7Tb.
Since both x,b € ker(Ayy) by the Kernel Invertibility Lemma 5, x = b.

2.2 DAE Properties

For a general linear system of differential algebraic equations we have the
following theorem [4]

Theorem 1 Well Posed General DAFE

Consider the DAFE system of the form
Ex(t) = Ax(t) + f(t),

where E is singular. The system if well posed if and only if all of the
following three conditions hold

8



i) det(sE — A) is not uniformly 0 for all s € R (we can take Laplace
transforms)

ii) the initial conditions are consistent with the algebraic constraint

iii) f(t) is differentiable.

For the purposes of the control problem we will assume that the initial con-
ditions are always consistent: Ay 29 = 0. Furthermore, in general we assume
that there is no forcing function (i.e. f(t) = 0). In some cases, the control
acts as a forcing function, but we will show that the optimal control is a
feedback control and thus it is differentiable.

We wish to use Theorem 1 to prove that any DAE system of the form (2.1),
where F is symmetric positive definite and AZ, has full column rank is well
posed.

Lemma 7 Well Posed DAE

If a DAE system has the form (2.1), with E being symmetric positive definite,
AL having full column rank and consistent initial conditions, then it is well
posed.

Proof: If det(sE — A) =0 for all s € R, then for every s, there is a vector

x(s) = (xlT,sz), so that x(s) is an eigenvector of sE — A corresponding to

the eigenvalue 0.
sE — All _Agl T 0
—Agl 0 ) -

If 11 = 0, then —AL xy = 0, therefore by the full rank of AL, xy, = 0,
therefore ||x|| = 0, therefore x is not an eigenvector. Thus, we take x1 # 0.
From Agyz1 = 0, we can conclude that x1 € ker(Asy). Since

(SE — All) r1 — Agll'g = 0,

we have that
vl (sE— An)xy — ol ALz, =0.

By Lemma 3, xT AL, = 0, therefore
(w7 Bar) - af Au, =
S\ E,I'l 1 Allxl =0.
Without loss of generality, we can assume that ||z1]| = 1, therefore

1
S (I‘,{E,fl) — l’{AHl’l > SX — HAUH?

9



where X\ is the smallest eigenvalue of E. This bound does not depend on x;
and since both A1 and E are constant matrizes, we can pick s big enough
so that

S (:B{E:Bl) — :B{Allatl >0

for all 1 € ker(Asy). Therefore we satisfy the condition in Theorem 1 and
the DAFE is well posed.

10



Chapter 3

Necessary Condition for DAE

Consider a system of Differential Algebraic Equations (DAE) of the form:

<§ 8><i28>:<ﬁ21 A§1><§QE§§>+<§>U@ (3.1)
21(0) =29  and  2,(0) = a9 (3.2)

This system can also be written in the form

Ellfl (t) = Allxl (t) + Agll'g(t) + Bu(t)
0 = Agll'l(t)

where F is symmetric, positive definite and AZ, has full column rank.

We wish to find the control u(-) that will minimize the quadratic cost func-
tional, with properties given in Chapter 1,

1 [e'9)
J() =5 [ @a). Qu(®) + (u(t). Ru(t) dt. (33)
It will be shown that the optimal control u(-) is linear feedback of the form
u(t) = —Kxq(t). (3.4)

The feedback matrix K can be determined as K = R~ BTII where II is the
solution to a Riccati equation. In this chapter we will discuss three ways of
finding the optimal gain K or, in particular, II. The first way is by directly
applying the Maximum Principle. The second is to perturb the original
system and convert it to a purely differential system. The third is to do a
change of variable and thus eliminate the algebraic part.

11



3.1 Direct Application
of the Maximum Principle

First we consider the case with finite time. Here we have the functional

Ter()wa)u() = 5 [ @6, Qu(0) + (u(0), Ru(t) d

that we wish to minimize subject to
t
Ex(t) — 29 — / Ay (1) + AL 2o (7) + Bu(r)dr = 0
0

Agll’l (t) = 0.

We can write the above as an optimization problem over a Banach space.
Let n corresponds to the dimension of the vector x;, [ corresponds to the
dimension of the vector x5 and m corresponds to the dimension of the control
u, then let

Xi = {r:R—R"ai() € C(0, 7]

)}
ng{:)s R — R x(-) € LY([0, )}
U= {u R — R™: () € L([0, )}
Zy ={z:R = R" () € C(0,T))} .
Therefore, the functional J(-) acts on

J: X1 xXexU— R.
Define the constraint function H(-) to be

~{ Bxi(t) = oY — [y Anaa (1) + Al 2o (7) + Bu(r)dr
Han(),2200) = A (1 )

Therefore, the constraint acts on
H: X x XoxU— Xy X Zs.
Using the above notation, we can write the minimization problem as
minimize J (x1(+), z2(+), u(+))
subject to H (xq(-), z2(-),u(:)) = 0.

Assuming that the minimum exists and that z3(-), z3(-) and u*(-) are opti-
mal, then according to the Lagrange Multiplier Theorem [11], there exist a

12



constant A\ and a bounded linear functional \* acting on A\* : X7 x Z, — R
so that the Lagrangian function

L(z1(), 22(), u()) = Ao (21(), w2(-), u(-)) + A°H (21(-), 22(-), ul-))

has a stationary point at z7(-), x3(-) and u*(-). Furthermore, A\j and \* are
not simultaneously zero. According to the Riesz Representation Theorem
[12], a bounded linear functional on the space of continuous functions over a
compact set can be represented as an integral with respect to unique Baire
measure. Baire measures on compact sets are generated by distribution func-
tions that are of bounded variation and continuous to the right. Thus, given
functional \*, there exists vector functions A} and A} so that

M (x1(+), (1)) = /OT d\T 2, () + /OT dAT* 2o (t).

Furthermore, we can chose A} and Aj so that Aj(7") = 0 and A5(7") = 0, be-
cause the distribution functions of Baire measures are unique up to a constant
(11, 12].

Using this notation we can rewrite the Lagrangian function as
1 T * *
L (1), (), u(t)) = 5/0 Ao (w1(t), Qe (2)) + Ag (u(t), Ru(t)) di

T t
b LN (Bt o~ [ () + Afaa(r) + Bulr)dr )

T
+ /(; d)\g*Agll'l (t)

The Lagrange Multiplier Theorem states that the Lagrangian function will
have a stationary point at the optimal control u*(-) and the optimal trajectory
xj(-)and x3(+). In other words, the variation of L in any arbitrary direction

(h(-),p(-),s(-)) € Xi x X x U

is zero. Note that in order to be consistent with initial conditions for z;(-),
we need to take variations in the direction of A(-) so that h(0) = 0.

Variations for x1(-) and xs(+) give us

T T t T
/0 NeaT* (1 QR(t)dt + /0 AT (Eh(t)— /0 Allh(T)dT> + /0 AT gy h(t) = 0,

T ¢
/ d\T* (/ Aglp(T)dT) = 0.
0 0

13



The above has to be true for all functions h(-) € X; with h(0) = 0 and thus
it will be true for all piecewise smooth functions with A(0) = 0. In this case,
we can integrate by parts in both expressions and obtain

T T T
/0 AT (4 Qh(t)dt — / AT (1) (Eh(t)—Auh(t)) dt — / A (£) Agy h(t)dt = 0

0 0

T
/ AT (1) AT p(#)dt = 0.
0

The second expression is true for all p(-) € X, and therefore by the Funda-
mental Lemma of Calculus of Variation (FLCV) [11]

AnAi(t) =0 (3.5)

almost everywhere in [0,7]. Furthermore, by right continuity of A\j(-) it is
true everywhere. Also by the FLCV the first expression is equivalent to

- (i) + 4550) = | CATANF) £ NQui (D) (3.6)

We wish to differentiate both sides of (3.6) and obtain a differential equation
for Aj(+) and A3(-). We know that Aj(-) and Aj(-) are functions of bounded
variation and thus differentiable almost everywhere, we can also conclude
that

“EA(8) = AT (1) + NQu(E) + AL A,

however, in order for us to have a differential equation, we also need to know
that

N = [ "\ (r)dr

The above will follow if we know that A\j(-) is an absolutely continuous func-
tion. To establish that result we need to go through several steps (for more of
the properties of absolutely continuous functions and functions of bounded
variations see [12]).

We can observe that on the right hand side of (3.6) we do indeed have an
absolutely continues function. Any linear combination of absolutely contin-
uous function is also absolutely continuous. Since F is non-singular we can
multiply (3.6) by £~' and obtain
t
— (N + B AR () = B /0 AT X (7) + NQat (7)dr.
Then we can multiply both sides by A, and using (3.5) we have
t
—AnET AL () = AnE7 [ ALN() +Qai(n)dr. (37)

14



By Lemmas 1 and 2, we have that Ay E~1AL is invertible and we can mul-
tiply (3.7) by — (Ay E~1As1) ™" and obtain

-1 t
Ny(t) = — (AnE ' AL) T Ay B /0 AT X (7) + NoQat (7)dr.

Each component of A\5(¢) is a linear combination of absolutely continuous
functions and consequently \o(-) is absolutely continuous. Therefore AT, \3(t)
is absolutely continuous and by (3.6) Ai(t) is absolutely continuous. Thus,
we have the differential algebraic equation

—EX{(t) = AT (t) + \Qa () + AR A3 (2) (3.8)

A Ai(t) =0 (3.9)

with final condition A\j(7") = 0. This is the equivalent of the co-state equation
for the purely differential problems.

The next question that naturally comes about is the regularity of the problem
or, in other words, can \g be equal to 07 Suppose the control problem is not
regular or in other words A\j = 0. Then the system (3.8) and (3.9) becomes

—EX;(t) = A\ (1) + A5 A5 (1) (3.10)
A Ni(E) = 0.

This system satisfies the structure of Lemma 7 and therefore it is well posed.
Given the final conditions A;(7") = 0, the solution to (3.10) will be \j(t) =0
and A5(t) = 0. Since \}(-) is absolutely continuous, Aj(-) = 0, therefore both
Ay = 0 and A\* = 0, which contradicts the Lagrange Multiplier Theorem.
Therefore, \jj # 0 and we have a regular problem.

We can take the co-state equation (3.8) and normalize it by A§, together
with the final conditions, we can determine A(-) and Aj(-). We obtained
this from the fact that the optimal trajectory is a stationary point of the
Lagrangian. The Lagrangian is also stationary in u*(-). Therefore, we can
take the variation of L(-) in u(-) in the direction of s(-) and obtain

T T ¢
/ ()T Rs(t)dt — / N < / BS(T)dT) —0
0 0 0
for all s(-) € U. Integrating the second term by parts, and since Aj(7") =0
T T
/ w(t)T Rs(t)dt + / AT*(£) Bs(t)dt = 0.
0 0

Since this is true for all integrable s(-), by (FLCV)
ut)'R+AT*(t)B = 0.

15



Since R is invertible
u(t) = =R BTN (1) (3.11)

for almost all ¢ € [0, 7.

For convenience in notation, we can let A (t) = \i(t) and A\y(t) = A3(t), then
we have the co-state system

—EMN(t) = AT (1) + Qua(t) + AT Aa(t), (3.12)
Ani(t) =0, (3.13)
u(t) = —RBT A\ (1). (3.14)

Note that since x;(t) is smooth, the conditions of Lemma 7 an Theorem 1
are satisfied, therefore we have a well posed equation for A;(-). Together
with (3.1) we have a system of boundary value problems. Since we have an
explicit expression for u(-), we can substitute it in (3.1) and obtain

Ellfl (t) = Alll'l(t) + Agll'g(t) — BR_lBT)\l(t) (315)
Agll’l(t) = 0. (316)

Boundary conditions are x1(0) = z¥ and A(T) = 0. The system can be

written in matrix form
A —BRilBT A;Fl 0 1’1(t)
_ Q AL 0 AL Ar(?)
o A21 0 0 0 $2(t) ’ (317)
0 Aot 0 0 )\z(t)

E 0 0 a1 (t
0 —-E 0 Mt
0 0 0 do(t
0 0 0 Aa(t

If we substitute ¢ in the second and fourth equation by 7" — ¢, the structure
of the above system is consistent with the structure of Lemma 7. Therefore,
the above system is well posed.

oo oo
— — — —

3.2 Riccati Equation

In this section we wish to derive an explicit relation between x1(-) and A; (+) so
that the optimal control u(-) can be expressed explicitly as feedback control.

Conditions (3.13) and (3.16) simply force A;(-) and x;(+) to be in the kernel
of As;. Thus we can introduce a change of variable. Let the columns of V'
form an orthonormal basis for ker(As;), so that VIV = I. Using V and
given A\;(-) and x1(+), there are unique z(¢) and £(t) so that

ME)=Vet)  and  a(t) = VEQ®).
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We substitute these expressions in (3.12) and (3.15). Then
—EVi(t) = A[\Va(t) + QVz(t) + A% Ao ()

EVE(t) = AnVE®R) + AL 2o(t) — BRT'BTV 2(t).

If this system holds, then we can multiply both equations by V7 and obtain
a new system.

According to Lemma 3, when we multiply the boundary system by V7 we
have the new system

—VTEVi(t) = VTALV2(t) + VIQV 2(t)

VITEVE®) = VIALVEWR) — VIBRTIBTV 2(t).

For the system above there is a continuous differentiable operator f[() SO
that z(t) = II(t)VTEVE(t) and TI(¢) is symmetric positive semi-definite for
all ¢ [10]. Then we can rewrite this as a relationship between A;(-) and xy(-).

) =TOVTEVER) = M) = VIV Ex ().
To simplify notation, we multiply by F£
EM(t) = EVI()VTExy(t).

Therefore, we can let II(t) = EVII(t)VTE and thus we have the continu-
ous differentiable I1(-) so that EA;(t) = II(¢)x1(¢). Since II(¢) is symmetric
positive semi-definite, I1(¢) is symmetric positive semi-definite.

The next natural question is the uniqueness of I1(-). Both z; () and A (t) are
vectors in R", however, conditions (3.13) and (3.16) restrict z(t) and A (¢)
to a subspace of R", namely the kernel of As;. For the purpose of the control
problem, we are only interested in the action of II(¢) on that subspace, the
action of II(¢) on any vector orthogonal to ker(As;) is arbitrary. Given any
I1(-) so that

EX(t) =11(t)x (2),

we can give the optimal feedback control u(t) = —K(t)x1(t), where K(t) =
R'BTE~'I(t). Thus, II(-) is not unique and it is easy to see that the
general II(+) does not have to be differentiable.

For practical purposes, however, we look for the II(¢) with minimum norm.
The minimum norm II(-) maps any vector in ker(As)* to 0. In a physical
system, we usually have an approximation to the actual state. Ideally we
wish to distinguish between the error in measurement and the actual state.
From the DAE system we know that the algebraic constraint As;xy(t) = 0 is
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satisfied at every time ¢, therefore, if we read that the actual state is (),
then any part of 1 (¢) that is orthogonal to ker(Ay;), comes from an error in
measurement. We wish to find the I1(+) that will simply ignore any such error.
We can show that from any solution II(-), we can construct the minimum
norm solution in the following way.

Lemma 8 Mintmum Norm Lemma

If the columns of V' form an orthonormal basis for ker(As) and if 11(+) is such
that EXi(t) = T(t)x1(t), where z1(-) and A\ (-) satisfy the state and co-state
equations (3.17), the minimum norm I1*(-) is given by I1*(t) = II()V VT,

Proof: By the construction of V, if xLker(As), then II*(t)x = 0 for all
t. Therefore, 11*(-) satisfies the condition for minimum norm. It remains
to show that EXi(t) = II*(t)x,(t). Suppose x € ker(As), then by Lemma 6
VIV =z, therefore

T ()21 (1) = TOVVT 21 () = T2, () = EA(2).

According to the above lemma, if we have a I1(-), we can always theoretically
compute the minimum norm solution. In addition, a corollary of Lemma 8
is that the minimum norm II(+) is differentiable.

We wish to transform conditions (3.12), (3.13), (3.15) and (3.16) into a nec-
essary condition for II(-). Given that EA(t) = II(t)xy(t), we differentiate
both sides to obtain

EAi(t) = (t)xy () + TI(t)d (1)
Substituting the state and co-state equations we have
—I(t)2: (t) = AL B TI()a () + () B~ Apan (t)
—II(t)E'BR'B"E ' (t)ay (t) + () ET AL 2y (t) + AZ Mo (1) + Q (1),

Agll'l(t) =0 and A21E_1H(t)l’1(t) =0.

Using the condition that A\;(7") = 0, we impose the final condition II(7") =
0. The above equation is true for any z(-) with corresponding As(-) and
xo(+). Because of the algebraic restriction to x;(t) we cannot take the above
expression for any arbitrary vector in R", but only for those in ker(As).
Given the basis V', we can express z1(t) as x1(t) = V&(t). Then since &(+) is
arbitrary, we can write

() VE(t) = ALETIVE() + () E~ AnVE(H)
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~I(E'BR'BTET'I()VE®) + T EYAL 2y (t) + AL Mo (t) + QVE(H),
Ay ETMI(H)VE(t) = 0.

The other two terms of the equation xo(-) and A2(+) depend implicitly on £(+).
We can solve for z5(+) from (3.13) and (3.15) and differentiate the algebraic
constraint

Agll'l(t) =0 = Agli’l(t) =0.

Then given £(t), we can write the two equations as

( Ab;l _ggl ) ( szt) ) _ ( ApVE(t) — BR‘;BTE‘lﬂ(t)Vg(t) )

In this case D corresponds to 1 (-), but it practically is a redundant variable
since it does not explicitly appear anywhere else in the equations. We can
solve for D and have the equation for xo(t)

O = AglE_lAHVg(t) + AQlE_lAg‘le(t> - AngR_lBTE_IH(t)Vg(t)

According to Lemma 2, Ay E~1 AL is invertible and therefore we can explic-
itly solve for xs(t),

zo(t) = — (AnE~'AL) ' An ETTARVE()
+ (AuE'AL) ' Ay BRT'BTETII() VE(D).

Combining the equations above and since £(-) is arbitrary, we have the system
—H()V = ALET'I@)V + () E ALV

~T()E AL (A B AT Ay BT ALV
HII(t)E AL (Ap ET AT Ay BRT' BT EI()V
~II(t)E'BR'BTE'I(t)V + AL A(t) + QV,
0= Ay E~'I(t)V.
We can set \o(t) = A(t)&(t). We can do the same transformation we used
for x9(-) and obtain an explicit form for A(t) in terms of £(t) and TII(¢),
however, that will be impractical. The Riccati Equation at this stage is too
complicated to solve in an efficient numerical way. However, we can use the

above equation as an analytical tool. For this analytical purpose, we do not
need to express A(t) explicitly.

We do not have enough equations to solve for the system above. The reason
for that is that any differentiable TI(-) that gives EX;(t) = I1(¢)z1(t), will be
a solution to the above system. However, we look for a particular I1(¢) that
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will give us the minimum norm solution. Therefore, if we let V be a basis
for ker(As)*, we want

I)V =o0.
This completes the system with a sufficient number of equations.

We have a non-linear DAE Riccati system of equations and we wish to ex-
plore well posedness of the system. From the argument about the change of
variable in the co-state system, we know that there exists at least one solution
to the Riccati DAE without the minimum norm term. Furthermore, every
solution to the above system, gives a II(-), such that EAi(t) = II(t)x1(t) is
a solution to the state co-state system. We can verify this by substitution.
With the addition of the last equation, the above system gives us the unique
minimum norm solution. Therefore, the Riccati DAE system is well-posed
for any finite time interval [0, 7).

In a special case, the Riccati DAE can be simplified. If we assume that II(+)
is symmetric, then we observe the following.

Lemma 9 Range Relation

If Ay E 'z, =0 Vxy € ker(Asy) and 11 is  symmetric,
then range(IIE~'AL) C range(As).

Proof: Let b € range(TTIE~'AL), then b = TIE~' AL & for some &. If z €
ker(Aa), then

(b, ) = (MET'ALE ) = (€, Ap B~ Tla) = 0.

Therefore, range(IIE~YAL) L ker(Asy), and by Lemma 4 we can conclude
that range(IIE~1AL)) C range(AL)).

Therefore, given S(t) and symmetric II(¢), there exists S(t) so that
() E~P AL S(t) = AL S(1).
Then we can let A(t) = S(t) + A(t) and simplify the Riccati DAE to

~H()V = ALE'I@)V +UH)E ALV
—I(t)ET'BR'BTE'II(t)V + ALA(t) + QV,
0 = AyE ')V

The above system is smaller and simpler, however, it gives the necessary
condition for IT only if IT is symmetric. We know there is always a symmetric
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solution II(+), however, the minimum norm solution does not have to be
symmetric. Unless the minimum norm II(-) is symmetric, we cannot complete
the above system with the term I1(¢)V = 0 and we cannot create a well-posed
system.

We are interested in particular in the solution to the optimal regulator prob-
lem. The regulator problem can be expressed as the limit of the finite time
minimization problem as T' — oo. The optimal II for that problem will be
constant in time and satisfy [5, 11]

M= lim TI(),

where II(+) is the solution to the Riccati equation with final condition I1(0) =
0. If II exists it will satisfy

AL A=A BTV + TIE ALV (3.18)

~NE AL (A B AT T A B ALV
HIE AL (Ap B~ ALt Ay BRT' BT E7HILV,
—~HE'BR'BTEIIV +QV
Ay E7IV = 0. (3.19)

If IT is symmetric it is enough to consider
~ALA=AL B IV + TIE~ A V- (3.20)

—HE'BR'BTEMIV +QV
Ay ETMIV = 0. (3.21)
Furthermore, we wish for II to be of minimum norm, so that IIV = 0.

The algebraic Riccati equation is non-linear and therefore it can possibly
have multiple solutions. Only one of those solutions will be the limit of
the Riccati DAE as t — —oo (if that limit exists). If we have a regular
Riccati equation, we know that the solution has to be symmetric positive
semi-definite, however, in our case we cannot make any such assumptions.
Therefore, even if we can find all the solutions to the above system, we cannot
create a condition that will allow us to select the desired solution.

Neither the Riccati DAE nor the Algebraic Riccati Equations are practical
to solve for large systems. Therefore, we wish to try and approximate II, by
a solution to a regular Riccati equation.
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3.3 Perturbation of the System

The first alternative way of finding II is to perturb the original DAE system.
Given some small € > 0 and easily invertible matrix M, we perturb (3.1) to:

E 0 Lt‘l (t) o A11 Agl T (t) B
Then the system can be reduced to the purely differential form:
. 1 _
EIl(t) = (AH - EA%;M 1A21)x1(t) + Bue(t)

or equivalently:

#1(t) = (B Ay — B AL M A (1) + B Bug(1)

Note that our choice for the structure of J9-) gives us the familiar
1 oo
J{() = 5 [ @0, Qua(t) + (ut), Ru () dt.

The properties of control problem of the form (3.22) have been studied in
2, 6]. The control for (3.22) exists and is given by u.(t) = —K.x;(t), however,
the optimal gain K, is not unique. Bender and Laub give Riccati Equations
for the minimum norm solution, however, for our purpose, the minimum norm
gain for (3.22) may not be the minimum norm gain for (3.1). Therefore, we
try to find any feedback law for (3.22) and then use Lemma 8.

We can find an optimal II, for problem (3.22) by the following. For given
value of € we have a matrix 11, that satisfies:

FT(OI, + TL.F(e) - ILE'BR'BTE'I +Q =0,

1
where F(e) = E7'Ay; — EE_lAglM_lAm.

We will show that if IT = lim._,o I, exists, then II satisfies the Riccati equa-
tion (3.18), (3.19).

The existence of the limit depends upon the choice of M. In the case of
the Stokes problem, the divergence condition in the PDE itself could be
perturbed to

V- i+ep=0.
Thus, Galerkin finite element approximation lead to a symmetric positive
definite mass matrix M and in numerical experiments II, — II. In other
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experiments, M = I, was chosen and still convergence was still achieved.
However, not every choice of M gives convergence. If we perturb the Stokes
problem to V -4 — ep = 0, then II, diverges. The convergent perturbation to
the Stokes problem corresponds to adding artificial diffusion, while the diver-
gent one adds negative diffusion, which has no physical meaning. Therefore,
the choice of M is not arbitrary and has to be made based on insight from
the specific problem.

Convergence analysis for the perturbed system is given in Section 3.5.

3.4 Change of Variable

Another way to handle the problem is to perform a change of variables. The
constraint As z1(t) = 0 simply means that at any time z1(¢) € ker(Ay).
Thus, if the columns of matrix V' form an orthonormal basis for the ker(As;),
at each time, we can express x1(t) uniquely by z;(t) = V&(t) for some &(t).
We can substitute this decomposition in the original system for x4 (t),

We can multiply both sides of the equation by V7 and obtain

VIEVE() = VIALVE®R) + VTAL 2(t) + VT Bu(t).

By Lemma 3, VT AL = 0, therefore, we have the system,
VIEVE®) = VT ALVE®R) + VT Bu(t), (3.23)

for the new variable £(+). Initial conditions can be obtained by observing that
x1(0) € ker(As;). Thus our consistency assumption implies z;(t) = VE(t),
then £(0) = VTx1(0).

On this equation we can impose a corresponding cost functional:

T = 5 [T Ve, QVeEw) + (), Ru(e) di

or

Je(u(-)) = % /Ooo (&), VTQVE(®)) + (ult), Ru(t)) dt.

Since FE is positive definite and columns of V' form an irreducible basis, from
Lemma 2 VTEV is invertible. Therefore the system (3.23) is purely differ-
ential and since the weight in the cost functional, VT QV, is also symmetric
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positive semi-definite, the optimal control wug(¢) can be found of the form
(11, 5, 10]
ue(t) = —R*BTV(VTEV)T'TE(1),

where I' is symmetric positive semi-definite matrix that satisfies the Riccati
equation

VIALV(VIEV)T'IT + T(VTEV)'WWTALV —
~T(VI'EV)"'WTBR'B"V(VTEV)"'T + VTQV = 0.

The control computed in this way will be in terms of the new variable £(t)

and in order to convert it to control in terms of the original variable x(t) we
use the fact that V' is orthogonal and £(t) = VT (t). Therefore

u(t)= R'BTET'EV(VTEV) 'TV Tz, (t).
So the matrix Il for the original system is given by

.= EV{VTEV)'TVT.

Proof that the above II, will give an optimal control for the original DAE
system (3.1) (i.e. u(t) = uc(t)), is given in Section 3.6.

3.5 Convergence of the Perturbed System

First we consider the finite time case. Suppose M was chosen so that M
is symmetric positive definite, I1.(¢) — II(¢) and TI(-) is continuous for all

€ [0,77]. Since all II.(-) are continuous and since they converge pointwise
on a compact domain, they converge uniformly. If we let T" — oo and if the
perturbed systems are stabilizable, then Il (¢) will asymptotically converge
to some I, and therefore we can conclude that II.(-) — II(:) uniformly on
(—o0,0]. We assume that II.(-) — II(-) uniformly and we want to show that
for any fixed ¢, I1(¢) will satisfy the Riccati DAE given in Section 3.2.

Fix ¢t and then consider the limit I1(¢) = lim,_q [T ().

Lemma 10 Symmetric Positive Semi-Definite
II(t) = lir% 1. (t) is symmetric positive semi-definite.

Proof: Since each of the 11 .(t) is symmetric, symmetry is trivial.

7 () = im IT7 (¢) = lim I (t) = T1(2).

e—0
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Definiteness involves a little more work.
Letn >0 and x € R" be arbitrary. Define

AIL = I(t) — IL(t),

then All.(t) — 0 as € — 0. There exists § > 0 so that |AlL || < HI”HQ,
whenever |e| < §. Thus if 0 < € < ¢

(M(t)x, x) = ((t)z,z) + (ALE(E)x, x)

n 2
> 0- [z[|” = —n.
| [|?

Since n was arbitrary (I1(t)z, x) > 0 and since x was arbitrary I1(t) is positive
semi-definite. Thus T1(t) is symmetric positive semi-definite for any value of
te[0,7].

We know that I1.(7") = 0 for all € and we know that for all ¢ € [0, T, IL.(¢)
satisfies the Riccati Differential Equation

IL.(t) + FITL.(t) + II.()F. —IL#)E'BR'BTEI(t) + Q =0

1
where Fe = E_lAll - EE_lAglM_lAgl.

Equivalently:

IL.(t) + ALEI.(t) + TI.(H) E~* Ay — TI.(H) E'BRBTE~'I(t) + Q
_ % (ARM " A EIL() + L (O E- AR M Ay

If we take the limit on both sides, we have

11(t) + AL EMI(t) + IL(t) E~ Ay — II(t)ET*BR'BTEMI(t) + Q
1
= lim — (A3, M ™" Ay E'TL(t) + 1L (1) B~ AL M~ Ay )

e—0 €

The minimum norm solution to the Riccati DAE does not have to be sym-
metric. Since the limit II(-) is always symmetric it may not be the minimum
norm solution, however, we wish to show that the limit is a solution to the
Riccati DAE. Because of symmetry of II(+) it is enough to consider the fol-
lowing two equations

— AL\, = (TII(t) + AL E7MI(t) + TI(t) E~ Ay (3.24)
~II(H)E"'BR'BTE'I(t) + Q)xy,
AglE_IH(t)LUl = 0, (325)
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for all z; € ker(Az;). In other words, we want to show that for any x; €

ker(Asr), there exists Ag so that (3.24) and (3.25) hold.

A necessary condition for

1
lim = (A3, M~ Ay E7MI(¢) + () BT AL M Ay, ) = ()

0 €

to exist is that
lim (A M~ Ay E7MIL 4+ TLE ™ AG M~ Ayy) = 0,
thus AJ, M1 Ay B-TI() + TI(6) B~ A5 M~ Ay, = 0.

Lemma 11 Kernel Invariance

If AL M YAy E7MI(t) + () E~ AL, M~ Ayy = 0 then
E7'I(t)z, € ker(Ay) Va, € ker(Ag).
Proof: Let x1 € ker(As), then
(AT M~ Ay E7MI(E) + T1(1) B AR, M~ Agy ) 2y = 0.
But II(t)E~* AL, M~ Ay 1 = 0, therefore,
AL M Ay E7MI(t) 2y = 0.
Let ¢ = E7I(t)z,. Then consider
0= <A;M—1Aglc, c> = <M_1A21c, A216>.
Since M is positive definite Asic = 0, therefore,

c=E'I(t)x, € ker(Ay) Vi € ker(Ay).

(3.26)

According to Lemma 11, the limit II(¢) will satisfy condition (3.25). It re-
mains to show that it will satisfy condition (3.24). Condition (3.24) states
that for every x; € ker(As;) there is a Ay so that the equation holds true.

Lemma 12 Range of the Limit

1
If lim (AL M ™ A E7MI() + () E AL M~ Ay ) = (1),
e—0 ¢
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then S(t)x, € range(AL) Vo, € ker(Ay).
Proof: Let x1 € ker(As) and let € > 0 be arbitrary. Consider

1
- (AT M~ Apy BT () + () B AL M Ay ) .

It can be split into two parts. First it is obvious that

1 _ _
EA;M YAy E7'IL(t)x, € range(AL),

regardless of the choice of x1. Second part is
%HE(t)E_lAglM_lAglzl =0 since As;z; = 0.
Thus, for any arbitrary € > 0
% (AglM_lAglE_IHe(t) + Hg(t)E_lAglM_lAgl) z1 € range(AL)

and because subspaces of R" are complete, in the limit

S(t)x, € range(AL) Va, € ker(Ay).

Lemma 12 gives the existence of a Ay for all x; € ker(As), therefore,
condition (3.24) is satisfied. Combining the two results we know that if
II.(-) — II(:) point-wise on [0,7] and if II(-) is continuous, then the limit
I1(-) will satisfy the Riccati DAE and the convergence will be uniform.

We can consider the regulator problem by letting 7" — oo. In this case the
Riccati Equations have final conditions II.(0) = 0 and we will be interested
in the limit as t — —oo. If we assume that all II.(-) are bounded, converge
point-wise to a continuous II(-) on (—o0,0] and II(-) is bounded, then the
convergence is uniform and the limit I1(-) will satisfy the Riccati DAE. If we
let I, = lim;_._, [I.(¢), the optimal control for the DAE will be given by
u(t) = —R'BTE~lx,(t), where

II= th{n II(t) = lir% IL..
We can find II. by directly solving the standard Algebraic Riccati Equation

F'l, + ILF. -UE'BR'B'E'II. +Q =0

1
where 17E = E_lAll - EE_lAglM_lAgl.

Methods for solving the above equation are discussed in Chapter 4.
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Theorem 2 Epsilon Convergence

If11.(-) give the optimal feedback control for the perturbed system and if
I1(¢) = lim IT(¢)

e—0

exists, is bounded and continuous on the specified time interval, then II(-)
is symmetric positive semi-definite for all t and it satisfies the Riccati DAE
equation derived in Section 3.2. However, I may not be of minimum norm.

3.6 Equivalence of the Change of Variables

Consider the original control problem (3.1) and the Change of Variable con-
trol problem (3.23). If we do not look at either IT or I', we can give the
following result.

Lemma 13 Equivalence for the Controls

u*(+) is optimal control for the DAE system (3.1) if and only if it is optimal
control for Change of Variable system (3.23).

Proof: Suppose that u*(+) is an optimal control for DAE (3.1) and not an
optimal control for Change of Variable (3.23), then there is ¢*(-) so that

Je(q™(1)) < Je(u™(1))-
Then we can consider the trajectory x1,(-) given by the solution to
Eiy,(t) = Az (t) + Aaixa(t) + Bg*(t).
0 = Ag214(1).

Since q*(-) # u*(-)

J(w () < J(q" ().
If we let x1,(+) be the solution to (3.1) corresponding to the optimal control
u*() and if we let x1,(t) = VE,(t) and z1,(t) = VE(t), then & (-) and
€u(+) are the trajectories in (3.23) corresponding to ¢*(-) and u*(-). But the
functional Je(-) was defined so that Je(u(-)) = J(u(-)), therefore

Je(q" () = Je(w' ().

This is a contradiction and therefore u*(-) is optimal control for Change of
Variable (3.23).
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Suppose that u*(-) is optimal control for Change of Variable (3.23) and not
optimal for DAE (3.1), then there is ¢*(-) so that

J(q" () < J(W'(-)).
By construction of Je(-), Je(u(-)) = J(u(-)), therefore

Je(q" () < Je(u™ ().

However, u*(-) is optimal control for (3.23) and thus

Je(q" () = Je(w' ().

This is a contradiction and therefore u*(-) is optimal control for DAE (3.1).

If we consider the case with finite time, the new system (3.23) has unique
optimal control [11, 5, 10]. Therefore, by Lemma 13 there is unique control
to DAE (3.1).

For the regulator problem with 7' = oo, the change of variable system has
a unique control if and only if it is stabilizable [11, 5|. Therefore,DAE (3.1)
has a unique control if and only if Change of Variable (3.23) is stabilizable.

The optimal control for (3.23), in the finite time case is given by
ug(t) = —R'BT"V(VTEV)'D(t)(t),

where I'(+) is the solution to a Riccati Differential Equation. Given I'(+), we
can define TI(t) = EV(VTEV)™'T'(¢+)V?. Then the optimal control for (3.1)
will be given by

u(t) = —R™'BTE7'I(t)a(t).

By construction of II(+) and by the properties of V', I1(-) will be the minimum
norm solution.

The optimal control for the Change of Variable system, in the regulator case
is given by
u(t) = —R'BTV(VTEV)T¢(t),

where I' is the symmetric positive definite solution to a Riccati Algebraic
Equation. The minimum norm II that will give the control for the DAE
system is given by

IM=EVVTEV) TV,
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3.7 Summary of the Optimal Control Re-
sults

Given a DAE system of the form (3.1), we know that the optimal control is
given by
u(t) = —R'BTE~lx(t).

The optimal II is not unique, however, there is a minimum norm solution
that is the one that we need for practical purposes.

The optimal minimum norm II can be found from a system of Riccati DAE
or Riccati Algebraic equations. Both systems are impractical for two reasons.
The first reason is that they require the computation of some redundant terms
or involve complicated matrix multiplication so they can be computationally
very expensive. The second reason is that there are no good numerical ways
developed for finding the solution of an Riccati Algebraic equation of that
form.

There are alternative ways to compute the optimal gain. We consider two of
these. The first is to perturb the original system by some small € and have an
approximate optimal II. The advantage of this method is that if the matrices
involved in the DAE are sparse, the Riccati Equation for the optimal II can
be solved in terms of sparse operations. The first disadvantage is that it only
gives an approximation to an optimal II. The second disadvantage is that
even if the approximation converges to a solution of the Riccati DAE, it may
not converge to the minimum norm solution.

The second way to compute the optimal II is to do a change of variables
and compute the control for the resulting purely differential system. The
advantage of this method is that it gives the exact minimum norm II. One
disadvantage is that a basis for ker(As;) has to be computed, which can be
computationally very expensive. Another disadvantage is that even if the
original system is sparse the new system is always dense and the Riccati
equation will have to be solved using dense matrix operations.
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Chapter 4

Riccati Solver

4.1 Chandrasekhar Algorithm

4.1.1 Description of the Algorithm

Given a system of differential equations
&(t) = Az(t) + Bu(t).

A is an n X n matrix, B is an n X m matrix, z(-) is a vector function z : R —
R" and u(-) is a vector function u : R — R™. We wish to find an optimal
control u*(+) that minimizes the functional

J(u(-) = /OT (x(t), Qu(t)) + (u(t), Ru(t)) dt.

We assume () is a symmetric positive semi-definite matrix and R is a sym-
metric positive definite matrix. The optimal control has the linear feedback
form

wi(t) = —K (t)x(t).

The optimal gain K(-) can be determined by K (t) = R~!B*TI(t), where TI(¢)
is the solution to the Differential Riccati Equation (DRE)

—II(t) = ATTI(t) + II(t)A — TI(t) BR ' BT1I(t) + Q, (4.1)

with final condition II(7") = 0 [5].

The matrix function II(-) is symmetric positive semi-definite at each time ¢.
Thus for practical purposes, if we wish to solve the DRE we need to solve
a system of @ differential equations. However, we are only interested
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in finding the optimal gain K(-), which for many practical applications has
a much smaller dimension. Thus, we are actually interested in solving for
m X n functions that will give us the optimal gain K (-). If m < n, then the
DRE solves for many more equations than we actually need.

The Chandrasekhar Method for solving DRE takes advantage of the structure
of the problem when m < n [11, 1, 5]. The method is derived by looking at

~K(t) = —R'BTTI(¢).
Differentiating both sides we obtain a differential equation for K(-),
—K(t) = —R7'BTII(¢).

Final conditions can be obtained from the final conditions for II(7'), therefore
K(T) = 0. Then we need a way to rewrite II(¢). If we take (4.1) and
differentiate once, we have

—1I(t) = ATTI(t) + [I(t)A — 1I(t)BR* BTTI(t) — I1(t) BR~' BTTI(1),
which can be factored as
~1i(t) = (A - BR—lBTH(t))T M1(t) +T1(t) (A= BR™'BTI(t)) .
Since K (t) = R~'BTII(t), we can substitute
—1I(t) = (A — BK(t))" 11(t) + II(t) (A — BK(t)).

We can look at the above as a differential equation with final conditions

II(T) = Q. Then we can let U(-) be the solution to the differential equation
~U(t) = (A= BK())" U(t)
with final condition U(T") = I. Then
~I1(t) = U(1)QU™ (¢),

which can be verified by differentiation. The positive definite matrix ) can
be factorized into Q = CTC, and we define

L(t) = CUT(t).
Therefore —I1(t) = LT(t)L(t). Thus we find a differential equation for L(-)

—L(t) = CUT(t) = CUT(t) (A— BK(t)) = L(t) (A — BK(t)).
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The final condition can be derived from the initial condition for U(-), there-
fore L(T) = C. In this way, we have developed a system of differential
equations

—K(t)=R'BTLT(t)L(t) (4.2)

—L(t) = L(t) (A— BK(t)) (4.3)
with final conditions

K(T)=0 L(T)=C. (4.4)

The system (4.2), (4.3), (4.4) is called the Differential Chandrasekhar Equa-
tion (DCE). The total number of equations to be solved is (m + p) x n,
where p = rank(Q). In many practical applications, we are not interested
in minimizing all the state variables of x(-), but rather a small number of
observations. If p < n we have (m + p) < n. In this case it is significantly
more efficient to solve the DCE as opposed to the DRE.

4.1.2 Numerical Solution

In this section we will introduce a good numerical method for solving (4.2),
(4.3), (4.4).

Equations (4.2), (4.3) and (4.4) are integrated backwards in time, but for
simplicity in notation, we can remove the negative signs before the derivatives
and integrate forward in time (¢ — T —t). Then given time steps t;, where

to =0 and t;;1 = t; + At, we want to generate sequence of solutions K; and
Li so that K() = 0, LQ = (C and KZ ~ K(tl), LZ ~ L(tz)

The structure of the DCE introduces many difficulties for most standard
ODE integrators. Stability is the main issue for any explicit method. In
many practical applications At has to be taken very small and the equations
take too long to integrate to be practical. If we use an implicit method, we
have to solve a system of non-linear equation at each step, which in itself can
be very unstable and time consuming.

A very efficient numerical method for solving (4.2), (4.3), (4.4) was proposed
by Banks and Ito [1]. The main observation is that K(-) only depends on
the values of L(-) and that L(-) depends linearly on L(-). Given At and the
approximate solutions K; and L; up until ¢,, we can use an explicit method
to find Kn+1 as a guess for K, ;. Then using Kn+1 we can approximate (4.3)
by

L(t) = L(t) (A = BKnp1)

Using the above formula we can take a step with an implicit method to find
the next step L,,1. The advantage is that for the implicit step we will only
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have to solve a linear system. Once we have L, ,; we can take an implicit
step and find the next iterate K, 1.

The specific explicit and implicit method used at each step can vary. Banks
and Ito [1] used second order Adams-Bashford method for the explicit step
and second order Adams-Moulton for the implicit steps. The advantage of
this combination is very high stability. The disadvantage is that it is only
second order. In numerical experiments a combination of fifth order Adams-
Bashford Adams-Moulton methods resulted in better accuracy but decreased
stability.

4.2 Optimized Newton Method

4.2.1 Chandrasekhar as Initial Guess to Newton

The Chandrasekhar method is very attractive when we wish to solve an op-
timization problem for finite time, however, it looses some of its advantages,
when 7" — oo. If the cost functional that we wish to minimize is given by

Ju() = [ @0, Qu(t) + (u(t), Ru(t)) dt
then the optimal control is given by u*(t) = —Kx(t), where
K = lim K1)

The function K(-) is the solution to (4.2), (4.3), (4.4) with 7" = 0. If we
wish to numerically integrate K (-), we need to integrate up until some very
large time f so that ||L(f)|| < tol. The problem is that both the numerical
error (accuracy) and the stability of any method depend on the length of
the interval over which we integrate. Therefore, if ¢ is very large, low order
stable method may give poor accuracy, while high order methods will become
unstable.

The solution to this problem, as proposed by Banks and Ito [1], is to in-
tegrate K () until some moderate ¢ and then use K (#) as initial guess for
Newton iteration. The Newton iteration for the Algebraic Riccati Equation
is guaranteed to converge quadratically to the solution, if (A — BK)) is sta-
ble [1, 5]. The algorithm uses K; as initial guess, which is obtained from
partially integrating the DCE. On each step of the Newton iteration, the
solution to a Lyapunov system is required.

The main disadvantage of this method is the cost of finding the solution of
Lyapunov Equations. Factorization of an n x n dense matrix is required at
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every step and the solution is a large matrix II. Banks and Ito propose an
alternative iteration, which is derived from the standard one, but generates a
sequence of iterates for the gain K; and only requires the solution to several
linear systems. The only computationally expensive part of that algorithm
is the solution to a linear system of the form X (I —rA+rBK;) = RHS,
where r is a step size prescribed to speed convergence. There are many
efficient methods to solve linear systems. Banks and Ito used standard LU
factorization, however, if the size of the system is too large, iterative methods
could give better performance.

4.2.2 Sparse Systems

Large control systems usually come from the discretization of PDE system
using some form of finite difference or finite element method. In those cases
the matrix A would be either sparse or A = E~'A, where both F and A
are sparse. Since the algorithm proposed by Banks and Ito uses only linear
solvers we can take advantage of the sparsity.

In both the integration of the Chandrasekhar system and the Newton itera-
tion that follows, we have to solve a system of equations of the form

X (I —dA + dBf() — RHS.

K is some approximation to the optimal gain, d depends on At or the size of
the step in the Lyapunov solver and RH S is some matrix on the right hand
side of the equation. The number of equations that need to be solved depends
on the size of L(:) in DCE or the size of K in the Newton iteration. For
simplicity of the argument, we can assume that we have only one equation.
Therefore, if A is sparse and if B is a thin matrix (i.e. m < n), then the

action of (I — dA+dBK ) onto X can be found very efficiently using O(nm)

number of operations. If A = F~'A then we can rewrite the equation as:
7 (E - dA+dEBK) = RHS.
The solution X will be given by X = ZFE.

A sparse system of equations can be efficiently solved by some Krylov itera-
tive solver.

4.2.3 Advantages and Disadvantages

The main advantage of the above method is that it minimizes computational
cost by only finding the optimal gain K. The explicit solution to the Al-
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gebraic Riccati Equation is never formed. The method is also very stable.
In addition, it can easily take advantage of possible sparsity in the control
system.

The first disadvantage of the method is that it is only efficient when both
m < n and p < n hold. If we have a large number of controls, or if we
wish to control a large number of components of the system, then the above
method will loose its advantage.

The second disadvantage comes from the fact that the method will not be
easily parallelized. Even though the action of the operator BK onto a vector
requires only O(mn) number of operations, the matrix BK is essentially
dense, which may require a large communication overhead.

4.3 Matrix Sign Method

The method described in sections (4.1) and (4.2) looses its advantages when
@ has full rank or A is large and dense. In addition it is hard to parallelize.
Thus, alternative methods are being developed to exploit modern computing
architectures.

The Matrix Sign Method for Riccati equations is a promising alternative.
Matrix Sign is an iterative method that requires only a series of linear solves.
The linear systems are all symmetric indefinite and there are efficient al-
gorithms that take advantage of the problem structure. A disadvantage of
those linear systems is that they are all dense even if the input matrices from
the Riccati problem are sparse. The main advantage of the algorithm is that
it offers possibilities for efficient paralellization.

4.3.1 Description of the Algorithm
We define the Matrix Sign Function as follows [9]:
Definition 1 Matriz Sign Function
Given matriz 7,
sign (Z) = klim Zy,

where

Zo=2  and  Za=5 (Z+ 20

|~
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In actual computation of the sign of a matrix, the iteration
1 —1

can be replaced by:
171
A Z—l)
k+1 2<Ck kT sy |,

were the sequence ¢ is chosen to speed convergence. A good choice is
cr = det(Zk)% where n is the size of Z. Computation of the determinant
of a matrix can be expensive, because it requires a factorization, however
in practice, the factorization is already available from the computation of
Z; ' Introduction of ¢; can dramatically decrease the number of iterations
required for the problem to converge. In test problems ¢, decreased the
number of iterations by 30 — 40%.

The Matrix Sign Function has many properties. The one most useful in
solving the Riccati equation is given by the fact that if

B N T\,
Z_H<O P)H,

where eigenvalues of N have negative real part (stable) and eigenvalues of P
have positive real part (unstable), then

sign(Z) = H< _éN ](; )H_l,

where [y is the identity matrix with dimensions corresponding to N, and Ip
is the identity matrix with dimensions corresponding to P [9].

The above property can be used to construct a method for finding the solution
to the control problem. Given the differential equation

&(t) = Az(t) + Bu(t)

with some initial condition x(0) = zo. We seek an optimal feedback control
that minimizes

J() = [ 0. Qult) + (ult), Ru(t) dt

where () is symmetric positive semi-definite and R is symmetric positive
definite. According to the Maximal Principle [5] the optimal control is given
by u(t) = —Kx(t), where the optimal gain K is given by K = R™'BTII. If
(A, B) is a stabilizable pair [5], then the operator II is the unique positive
semi-definite solution to the Algebraic Riccati Equation

ATTI+ TTA —TIBR'BTII+ Q = 0.
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The closed loop system is therefore given by
i(t) = (A— BR™'BII) x(t)

where the matrix
F= (A — BR—lBTH)

is stable.

Since F is stable and since the matrix W = BR™'BT is symmetric positive
semi-definite, the Lyapunov Equation

FV+VF'+W =0 (4.5)

has a unique symmetric solution V' [10]. If n is the size of the control problem
(i.e. the size of A), we can define the 2n x 2n matrix U as

U= ( _AQ _—/Vl‘; ) . (4.6)

Using the solution to the Lyapunov equation, U can be factorized as

g (1 -V F 0 [-VII V
“\mr-nv){o —F7 - 1)

We can observe that

I -V I—-VII V g
I I-1v - )

Then we can apply the properties of the Matrix Sign Function to obtain

= (350) (3 )15 )

' | VII -V
5([2714-szgn(U)) = ( —([ -1V -1V ) .

Note that the two columns of the system differ by —II. Thus if we represent

and

1 . _ St S
3 (o, + sign(U)) = < Sy So ) ,

we can recover II by solving

512 Sll
M=
(2)n=-(2)
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It can be shown that if (A, B) is stabilizable, then the above system has a
unique solution [7, 9].

From a computational point of view, U is a non-symmetric dense matrix and
computation of its inverse can be very expensive. While we cannot change the
density of U an alternative iteration that involves only symmetric matrices

can be devised. Let J = (—Ign)%. Then

J:(_(}n %)andJU:(:g _MéT). (4.7)

Thus —J = J~! = J7 and JU is a symmetric matrix. If Uy = U and U, are
the iterates from the matrix sign iteration, then we know that

1 _
Uk+1 — 5 (Uk+Uk 1) .
If we multiply each step by J we obtain
1 _ 1 14—
TV = 5 (JUs + JUY) = 5 (JUs+ JUT 1)
If Z,, = JU, and if Zy = JU,, then
1 _ 1 _
L1 = 3 (Zk + JZ; IJ) =5 (Zk — JTZk IJ) )

Zy is symmetric, then if Zj, is symmetric so is Z;, ' and so is J¥ Z;'.J. Since the
sum of two symmetric matrices is symmetric, Zy,; is symmetric. Therefore

by induction all the iterates Z; are symmetric an they converge to Jsign(U).
To speed convergence we can use ¢y, = det(Z; ).

Finally the Matrix Sign Method for solution of the Riccati Equation is given

by the following;:
A W

1/1
Zk+1 = - <—Zk - ckJTZ,;1J> y
2 Cr

Set

Let Zy = JU and iterate

where ¢, = det(Zk)ﬁ. We iterate until some desired convergence tolerance

is reached. Then if
7 _ Zn Ziz
Loy Ly
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the solution to the Riccati Equation is given by

L2 M- I, — Z»n
Zig + I —Zn 7

which can be found in the least square sense by Q)R factorization.

For finding the limit of the iteration Z;, we need a good way for solving
symmetric indefinite systems. Since at each step the right hand side of the
system (i.e. J) is of size 2n, we would wish to factorize Z; and then use the
factorization to solve for all the columns of Z; *J.

4.3.2 Linear Symmetric Indefinite Solver

Given an indefinite matrix A, we wish to solve the system Ax = b via some
factorization of A. One of the most basic matrix factorizations is A = LU,
where L is lower triangular and U is upper triangular matrix. In practice
this factorization is useful for only a number of special cases, such as when
A is diagonally dominant. In general the A = LU factorization is unstable.
To make it stable, we use A = PTLU where P is a permutation matrix. In
a special case, however, when A is symmetric, there exists the factorization
A = LDLT, where D is a diagonal matrix with the eigenvalues of A and L is
lower triangular. The advantage of this factorization is that only L needs to
be computed using the lower half of A and thus A = LDL” requires only half
the work of A = LU. A disadvantage is that we cannot simply permute A by
some matrix P, because the new matrix PA may not be symmetric. Thus
when permuting, we need to use symmetric permutations PAPT. Therefore
the permuted symmetric factorization is given by:

A=Pr'LDLTP

For the case when A is definite we can easily take the square root of D and
have A = PTLLT P for the positive case and A = —PTLLT P for the negative
case. The above is called the Cholesky factorization and the algorithm is
numerically stable for positive and negative definite matrices.

The case where the matrix A is indefinite, the factorization A = PTLDLTP
is unstable. It is easy to see using

A:<$é>. (4.8)

For this matrix the factorization A = PTLDLT P does not exist. A is in-
vertible (in fact A=' = A), however, the eigenvalues of A are —1,1. Thus
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A = PTLDLTP cannot be used for general symmetric indefinite matrices.
The solution to this problem was proposed by Bunch and Kaufman in 1976
[3]. In the Bunch Kaufman algorithm the factorization A = PTLDLTP,
where D is block diagonal matrix consisting of 1 x 1 and 2 x 2 blocks. It
can be shown that the above factorization is stable and the 2 x 2 blocks of
D correspond to pairs of positive/negative eigenvalues of A.

The basic idea of the Bunch-Kaufman algorithm faces the problems with
pivoting at each step. In order to preserve symmetry of the matrix A and to
be able to work only on its lower half, we need to use symmetric permutation
PAPT. In other words, whenever we permute the i, rows of A, we need
to also permute the 7, j columns. Thus the symmetry is preserved; however,
this strategy has some limitations. Every element that is originally on the
diagonal of A, after the permutation must stay on the diagonal and if it is not
on the diagonal it cannot move to the diagonal. Thus it may not be possible
to select a stable pivot from the diagonal alone. This is illustrated by the
example (4.8), all diagonal entries are 0 and thus they cannot be used for
pivots. Bunch-Kaufman gives a pivoting strategy which at each step selects
a stable pivot, by not only looking at the diagonal entries but also at the off-
diagonal entries. In case the first off-diagonal element at step ¢ is sufficiently
bigger than the diagonal element, the 2 x 2 block can be used as a stable
pivot. For the inverse of 2 x 2 matrix there is very easy explicit formula.

The Bunch-Kaufman pivoting strategy is that at each step a decision about
the pivot is made based on the following rules. In the elimination of column
J check for the following cases:

D1: |Ajj| > Oé‘Aij|, Wherej <1< N, |AU‘ = mCLJZ']iV:j+1|Akj|
D2: the conditions D1 and D4 do not hold, use A;;
D3: the 1 x 1 pivot from A;; will be stable

D4: the 2 x 2 pivot from columns ¢, j will be stable

For the case of D1 no interchange is required. The optimal value of a has
been computed by Bunch in his original paper and a = HT\/ﬁ. Note that
in actual experiments for matrices exhibiting our structure (4.7), we found
that when o was too far from a,,, the solver was unstable. For the case D3,
an interchange between row/columns i, j is required and the newly obtained
1 x 1 pivot will be stable. In the D4 case if no stable pivot can be obtained
from the diagonal, a 2 x 2 block will be formed from the diagonal and the first

off-diagonal element. Two symmetric interchanges will have to be performed,
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however, both j, 7 + 1 columns will be eliminated. For the 2 x 2 pivot to be
stable, if the pivot is represented as:

. dlc
Sy

the stability conditions are explicitly ¢ > « maz(dy,ds). Thus det(D) < 0,
the pivot leads to stable factorization and is an indefinite diagonal block.
The condition D2 can lead to an unbounded L and modified Bunch-Kaufman
algorithm has been developed. However, the stability of the standard Bunch-
Kaufman algorithm is sufficient for most application and is the version we
implemented for our Matrix Sign Algorithm.

The factorization algorithm is described in the graph below:

Li : Lj+1
Aj bj : :
A% Aj+L

Figure 4.1: Ilustration of Bunch-Kaufman Algorithm

Given the lower triangular part of the matrix A, we eliminate the columns
of A and over write them with the columns of L. At step j the 1...5 —1
columns of A have been eliminated: L; represents the first j columns of L and
A, represents the remaining part of A that has yet to be factorized. A pivot
D; is chosen via the Bunch-Kaufman pivoting strategy and the necessary
interchanges of the A; and L; are performed. All the interchanges are stored
in a permutation vector P (not shown on figure). Then the block b below
the pivot D; is updated by [ = 0D} ! The remaining part A7 is updated to
A = A — ID;I". Depending on whether a 1 x 1 or 2 x 2 block was used
on the next step L;4q or L o is L; concatenated with [ and A ; or Aj.o is
A%, The pivots D; are stored in a separate vector . When the algorithm
terminates the lower part of A is now L and we have the permutation vector
P and the block diagonal D.

The next stage of the Matrix Sign Algorithm is the inversion of A. We are
interested in computing JZA~'J. Using the Bunch-Kaufman Algorithm, we
have already computed the factorization A = PTLDL" P. Thus:

JEA ) = PP LD L P = STDTS, (4.9)
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where S = L~'PJ. During this stage, it is enough to compute only S
and then compute the product. This gives much better performance than
explicitly computing L=7. The main advantage is that .J is very sparse, it
has only one non-zero element per column/row and P is only a permutation
of the rows. This sparsity can be used in the implementation of LS = PJ.
The lower-triangular solve fills all the entries of a vector below the first non-
zero entry. Therefore, the solve requires only about half of the work needed
for a dense solve. S is a lower triangular matrix with permuted columns.
Since D is block diagonal with 1 x 1 and 2 x 2 blocks the inverse can be
computed explicitly and efficiently. If we solve directly for LT the resulting
matrix will be full despite the partial sparsity of S. If we compute STD~1S,
the sparsity of S can be used efficiently. One of the best implementations
of Bunch-Kaufman on a single processor is given by LAPACK, their code,
however, does not take advantage of potential sparsity of the right hand side
vectors. Our code written to take advantage of the sparsity can outperform
LAPACK by more than a factor of two.

Given the factorization A = PTLDLT P, we note that det(P) = £1 and L is
lower triangular with ones on the main diagonal det(L) = 1. Thus:

[det(A)| = |det(P") det(L™) det(D) det(L) det(P)| = |det(D)].
Since D is block diagonal with the blocks denoted by D;, we can compute
(det(A)] = det(D)| = TIE_, |det(D;) .

For large problems this number can easily exceed machine precision, however,

we only need to find ¢ = \det(D)ﬁ. This the product can be computed in
several parts and the power can be applied on every sub product separately.

At the end of each step, having computed ¢ = |det(D)|% and B = JTA71J,
the next iterate ¢ simply given by:

A<—%<1A—03>

c

Note that the number of operations required to do each of the three stages of
an iteration is of order O(n?). On a single processor, however, the distribution
of compute time is approximately 2 : 3 : 1. Thus the solve for L stage is by
far the most expensive one.

4.3.3 Parallel Implementation

A parallel implementation of the Bunch-Kaufman algorithm for distributed
memory architectures is not included in any standard parallel package. We
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implemented the Bunch-Kaufman algorithm specifically in the case of the
Matrix Sign Method. For main reference we used [13]. This reference pro-
vides a description of the parallel algorithm. However, the authors of [13]
consider only the case when we have a few right hand sides. Since in our case
we have to solve for all 2n columns of J we had to modify the algorithm.
As shown in the single processor example, the solve stage of the algorithm
requires the largest amount of work, thus sparsity of the right hand side had
to be used to its fullest potential. Furthermore the trade off between the
increased time for factorization versus the decreased time for the solve is in
general justified.

The most expensive part in the factorization of the matrix is the number of
symmetric exchanges that have to be made. For every row interchange, a
column interchange has to be performed, so it seems that twice the work of
an LU interchange has to be performed. However, since A is symmetric and
since we are working only on the lower half of A, the amount of information to
be exchanged is the same as LU. The amount of computational work needed,
however, is half of that of LU, so the ratio of communication to computation
in Bunch-Kaufman algorithm is twice that of LU. Thus the communication
becomes the bottleneck of the factorization.

The optimal way of distributing memory in linear algebra is to use a logical
grid of processors. Thus the matrix A will be split into blocks and distributed
among processors on the grid. The cyclic scheme used by [13] is optimal for
the factorization stage When a large number of right hand sides have to
be solved, it is better to use a scheme with larger blocks. In the current
implementation, on a processor grid of 4 processors, a matrix A will be
distributed as shown in Figure 4.2. A will be located below the diagonal
line.

Figure 4.2: Mlustration of Bunch-Kaufman Algorithm

In the implementation of the algorithm, special attention has to be paid to
the triangular solve stage. In its essence the tri-diagonal solve is a sequential
algorithm and cannot be parallelized. However, it can be pipelined. Thus
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at each moment several right hand sides are in different stages of the solve.
Processors on the diagonal will solve for the next entries of some vectors,
while processors off the main diagonal will form local sums needed by the
diagonal processors to form the next entries of other vectors.

The last stage of the solve is of the form of B = STD~'S. A matrix inner
product like this one is very expensive due to communication cost. Thus full
use of partial sparsity has to be made. Because of the enormous communica-
tion cost, this last part takes longer than either the tri-diagonal solve or the
factorization. Only D~! can be computed in parallel with very little cost,
because of the block diagonal structure of D.

The parallel implementation of the above algorithm was done on UNIX plat-
forms, in particular Linux and OSX, using the GNU gcc C compiler. The
systems were parallel machines build on the cluster model, using distributed
memory and MPI for the inter processor communication procedures.

4.3.4 Numerical Results for Matrix Sign Method

The first problem is of size 1000. Thus, at each step we have to factorize a
matrix of size 2000 x 2000 and solve for 2000 right hand side equations. The
Matrix Sign took 15 iterations to converge to desired tolerance 1.e —12. The
time per iteration includes the factorization, solve and forming STD~S, as
described in the implementation section. On two processors the solver took
53sec per iteration. The total run time was 20min including the time to load
the data across the processor cluster and solve the final least square problem
using Q)R factorization.

The second problem has size 2000 and requires the solution of systems of
equations of size 4000. The method converged in approximately 17 iterations
to the desired tolerance. Below is a table with the time per iteration required
for 4, 9 and 16 processors (see Table 4.1).

An algorithm is perfectly parallel if t X p = const, where t is the execution
time and p is the number of processors. Strazdins [13] argues that perfect
paralellization is impossible for the Bunch-Kaufman algorithm. In our case
the task is even more complicated because of the large number of right hand
sides.

For a problem of size 3000 we obtain the results in Table 4.2.

Based on the above results, we can make the following observations. The
first observation is based on the improvement of time versus the number
of processors used. The relative difference between a hypothetical perfect
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Table 4.1: Benchmarks for Matrix Sign Method - size 2000

number of processors | time
4 4.Tmin
9 3.1min
16 2.3min

Table 4.2: Benchmarks for Matrix Sign Method - size 3000

number of processors time
4 15.3min
9 8.6min

implementation and our implementation decreases. The second is that as
the problem size increases the amount of work increases of order O(n?), as
expected.

For a problem with size 5000 on 9 processors, the program requires 37.8min
per iteration. For a problem with size 8000 on 9 processors, the time per
iteration is 2.48h. Due to technical difficulties, more than 9 processors could
not be used.

The above experiments were simply testing the solver. A control problem
with size 3882 converged using 6 processors in 7.5 hours. If the same prob-
lem is loaded in Matlab, the LQR command gives an error that there is not
enough memory on a machine with 1GB RAM. The problem can be solved
with the Chandrasekhar algorithm on a single machine in 3 weeks. The 3882
problem was solved with a less efficient implementation of the algorithm.
Currently a better implementation is under construction. The new imple-
mentation will be able to solve the problem in approximately 5.5h, however,
it is not yet stable enough to generate meaningful results.

All the above examples were run on a Beowulf Linux cluster. The Virginia
Tech SystemX supercomputer give approximately 30% better performance.

4.4 Iterative Refinement

The methods described above are ways to create numerical approximations to
the solution to a Riccati Equation and all numerical methods are imperfect.
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Given a numerical method, there is always a problem for which the method
will fail to converge. In order to achieve optimal results, we sometimes have
to use combinations of methods.

The Matrix Sign Method is the most unstable method, among the methods
we discussed so far. In order for the Matrix Sign to be backwards stable,
it needs to be coupled with iterative refinement [7]. If we wish to solve the
ARE

0=ATTI +TIA —TIBR'BTTI + Q,

we can use Matrix Sign Method to obtain an approximate II. We can define
AII as IT = IT 4+ AIL. We let the residual Hg., be

Hpes = ATII+ ITA — IBR'B"II + Q.
Then, we can derive the equation for AIl as
0= (A~ BR'B'MI) AIL+AI (A~ BR™'BII) - ALLBR ™' B" All+ Hg,.

The new equation is another Riccati Equation. The key assumption is that if
IT is close to II, then (A — BR_lBTH) will be stable matrix and the residual

ARE will be better conditioned and thus easier to solve. Gardiner [7] says:

A common misconception is that it does not matter what method
is used to solve the correction equation. In fact the achievable
accuracy does depend on the method.

Gardiner describes an example in which the Matrix Sign Method plus Newton
iterations give ten more significant digits than the Matrix Sign Method by
itself. Given an approximate II, obtained by the Matrix Sign Method, we
can derive the residual Riccati Equation and use the Chandrasekhar Method
and/or the Modified Newton Method as described by Banks and Ito.

The Matrix Sign Method is in general the most unstable method, however,
Chandrasekhar and Newton can also show instabilities. In a numerical ex-
periment with a very ill-conditioned Riccati problem, the Matlab LQR com-
mand gave residual with norm approximately 2.3. The LQR command is
based on the Newton Methods and even though the Newton Method is gen-
erally considered the best method available, iterative refinement with LQR
again, fails to improve the residual. An iterative refinement step with Matrix
Sign method gave residual of order 1.e —12. In order for a good approximate
solution to be obtained, we may have to use all three methods together.

Banks and Ito give a good way to use Chandrasekhar solution as initial guess
to a Newton iteration. In general, if we wish to find a solution to ARE using
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Chandrasekhar alone, we may have to integrate Chandrasekhar to a very
large time ¢, which may give poor accuracy and/or stability. If we partially
integrate Chandrasekhar, then we want to use the approximate gain K as
initial guess of some form for the Matrix Sign Method. There are two ways to
do that. The first way is to observe that the residual Hg., is approximately
I1() for some ¢. From the derivation of the Chandrasekhar equations we
know that II(t) = L7 (t)L(t), therefore, if we integrate Chandrasekhar until
some time t* and if K ~ K(t*) and L ~ L(t*), we can solve the following
ARE

0= (A~ BK) Al 4+ Al (A - BK) ~ AIIBR'B"AIl + L"L.

Then the optimal gain for the original ARE problem will be given by K =
K + R™'BTAII. This method is good for obtaining the remainder of the
solution to the Chandrasekhar integration, however, it will carry over any
numerical error accumulated in the integration until t*. In order to achieve
better accuracy, a higher order method could be used in the Chandrasekhar
integration, however, it will decrease stability.

Chandrasekhar and modified Newton methods both give only an approxima-
tion to the optimal gain K. Matrix Sign Method computes II, which is the
solution to an ARE, therefore, given a guess K we need a way to approximate

IT so that we can derive a regular refinement equation and use the Matrix
Sign Method. If we are given K and if (A — BK ) is stable, then II is given

as the solution to the Lyapunov Equation [1, 10]
ANT A ~ A~ o7
(A- BK) T+T(A-BK)+K"REK +Q =0.

The solution to the above equation can be computationally expensive, but it
will give us a good way to approximate Il and thus use Matrix Sign Method
as refinement to both Chandrasekhar and Modified Newton Method.

The Chandrasekhar Method can also be used as refinement method to either
Newton or Matrix Sign. Given a Riccati equation of the form

0= (A~ BR™B"M) AIL+AI (A~ BR™B"Il)~ATIBR ™ B" Al Hp.

we wish to factor Hp.s = CTC and solve Chandrasekhar equations with
AK(0) = 0 and L(0) = C. The Chandrasekhar Method is most efficient,
when C' is a small matrix (i.e. rank of Hpges is small). Numerically Hg.s can
have full rank, however, we may only consider the eigenvalues of Hg.s that
are bigger than some tolerance. If most of the eigenvalues of Hg., are small,
we can use some form of SVD factorization to ignore those eigenvalues and
obtain a small C.
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Practical application sometimes result in ill-conditioned ARE equations. In
that case, we have to use a combination of methods to find a good approxi-
mation to the optimal K. Chandrasekhar, Newton and Matrix Sign Methods
can be used together to achieve better stability and accuracy.

49



Chapter 5

Numerical Results

5.1 Simple 5 x 5 Problem

We consider the simple 5 x 5 DAE

100/0 0 2 -1 0] 1 -2 1
01 0[00 1 2 —1|-1 2 0
00 1|0 0 <x1)_ 0 -1 2| 1 2 <x1>+ 0 |u
000]0o0|\" 1 -1 1] 0 0 2 0
00000 2 2 2] 0 0 0

We are interested in minimizing the cost

J() = [ Galt), T (0) + fult), 1u(®) dt.

We take the initial condition to be 29 = (1,1,0)". The DAE system is
unstable, if we solve numerically using the Backward-Euler method with
At = 5o, from 0 until ¢ = 20, we have that [2(20)| = O(10°) and J(0) =
O(10'7).

We want to find the optimal gain K so that u(t) = —Kuz4(t) is the optimal
control that will stabilize the system and minimize J(-). Next we apply the
three methods discussed in Chapter 3.

Using the Matlab SVD command we obtain

—0.7071067811 0.6139366992 —0.3508300576

—0.7071067811 B —0.6139366992  0.3508300576
V= V= .
0 0.4961486256  0.8682376064
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With V and V we can solve the Riccati DAE using Backward-Euler method
with time step At = ﬁ until the difference between two successive iterates
is less than 1.e-8. Newton’s method was used at each step to solve the non-

linear equation. The solution obtained is

2.22474382870834 2.22474382870834 0

2.22474382870834 2.22474382870834 0
IT= .
0 0 0

The minimum norm solution in this case is symmetric positive definite. The
optimal gain is

K = ( 2.22474382870834 2.22474382870834 0 ) .

If we simulate the DAE with control u(t) = —Kx(t), we obtain that
2(20)]| = 9.1515e-011  and  J(u(t)) = 8.89366090338702.

The feedback control stabilized the system and gave small finite cost.

Next we try to obtain the optimal gain by solving the Riccati equation for
the Change of Variable system. The system is a 1 x 1 differential system and
using Matlab LQR command we find the II for the DAE system to be

2.22474487139159 2.22474487139159 0
I, = | 2.22474487139159 2.22474487139159 0
0 0 0

The II from Riccati DAE and the Change of Variable agree in the first six
significant digits. The error is ||II —II,|| = 4.1707e-006. The error in the
optimal gain is |K — K, || = 2.0854e-006. Simulating the DAE with u(t) =
Ko (t) gives ||2(20)]] = 9.1513¢-011 and J(u(t)) = 8.89366089886046.

The difference between the two methods is in the range of round-off error.
This confirms the theoretical prediction made in Chapter 3.

Next we wish to apply the penalty method. We use M = I3. Below is a
table with values for the difference between II(€) and the optimal gain given
by the Change of Variable method (see Table 5.1).

Convergence of II(¢€) to II, appears to be linear. It is interesting to note that
after € = 1.e-3, the improvement on ||z(20)|| and J(-) seems to be negligible.
For this example II(¢) converges to the minimum norm solution II.
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Table 5.1: Convergence of the Perturbation Method - Symmetric I1

€

[TT(e) — I, |

[2(20)]]

J(u(-))

l.e-2
l.e-3
l.e-4
1l.e-5

5.6500e-002
5.6000e-003
5.5885e-004
2.5880e-005

8.3581e-011
9.0694e-011
9.1431e-011
9.1505e-011

8.89367515544928
8.89365926322830
8.89366070511796
8.89366087918493

Table 5.2: Convergence of the Perturbation Method - Non-Symmetric I1

e | [[M(e) — 1T

1L, (€) — T

(20)]]

J(u(-))

l.e-2
l.e-3
l.e-4
l.e-5

4.4848296022
4.4529856446
4.4498389566
4.4495246601

7.05532e-002
6.98470e-003
7.03365e-004
7.59718e-005

2.7015e-007
2.9171e-007
2.9394e-007
2.9416e-007

13.3646229193
13.3644460035
13.3644374951
13.3644367346

A more interesting example is when we change the system to

2.0 00 0 2 -1 0] 1 -2 1
010[/00 . 1 2 —1|-1 2 0
00 100 (?’1): 0 -1 2| 1 2 <x1>+ 0 |u
000]0o0[\" T -1 1] 0 0 2 0
000[00 2 2 21 0 0 0

The structure is still consistent, but £ is not simply the identity. The optimal
IT given by both the Riccati DAE and the Change of Variable is

) |

As predicted by the theory, the optimal II is not symmetric. The norm of
the solution at ¢ = 20 and the cost until ¢ = 20 are

4.44948765257459 4.44948765257459 0O
IT = | 2.22474382628730 2.22474382628729 0
0 0 0

|2(20)|| = 2.9418¢-007  and  J(u(t)) = 13.3644.

If we apply the penalty method, TI(e) cannot possibly converge to II, be-
cause I1(e) converges to a symmetric solution and II is not symmetric. Using
Lemma 8, we can obtain a minimum norm solution IL,(¢). Table 5.2 describes
the numerical experiments.
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Table 5.3: Convergence of the Perturbation Method - Heat Equation

N € =le-1 € =le-2 € =1le-3 € =le-4 € =1le-5 € =1le-6

4 6.5027e-3 6.5993e-4 6.6117e-5 6.6130e-6 6.6131e-7 6.6131e-8
8 6.5025e-3 6.5991e-4 6.6115e-5 6.6128¢e-6 6.6129e-7 6.6130e-8
16 | 6.5024e-3 6.5990e-4 6.6115e-5 6.6128e-6 6.6129¢e-7 6.6129e-8
32 | 6.5024e-3 6.5990e-4 6.6115e-5 6.6127e-6 6.6129e-7 6.6129¢-8
64 | 6.5024e-3 6.5990e-4 6.6115e-5 6.6127e-6 6.6129e-7 6.6128e-8
128 | 6.5024e-3 6.5990e-4 6.6115e-5 6.6128e-6 6.6129e-7 6.6141e-8

5.2 Heat Equation

The next numerical experiment is done with the one dimensional heat equa-
tion
v (t, ) = pug,(t, ) + b(x)u(t).

The boundary conditions of the heat equation can be written as the algebraic

constraint
v(t,0) =0=wo(t,1).

We can consider discretized version of the equation with finite element method
that has the DAE form discussed in Chapters 2 and 3. We can also discretize
the heat equation by imposing the boundary conditions on the finite element
basis and obtain a purely differential system. Therefore, we have two ways
to approximate the optimal gain K, one is using the well developed theory of
purely differential equations and another is using our theory of DAE systems.
We apply the penalty method and observe the convergence rate in Table 5.3.

We can see that the gains obtained from the penalty method approximation
converges to the optimal gain approximately linearly. It is interesting to note
that the convergence seems to be independent from the mesh size. This may
be only a property of the heat equation or perhaps a property of the penalty
approximation in general.

5.3 Stokes Flow

We consider the two dimensional incompressible fluid flow over a cavity as
shown in the picture below (Fig 5.1). The blue nodes represent the inflow
and outflow boundary, where the fluid enters and exits the domain. The red
nodes represent non-slip boundary, the fluid is at rest at the boundary. The
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green nodes represent the part of the boundary that we can control. We can
control the normal tension to the fluid. Our goal is to minimize a quadratic
functional cost and () puts weight only on the velocity of the fluid inside the

cavity.
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Figure 5.1: The Mesh for Flow over Cavity

We apply the penalty method with € = 1.e — 4. The resulting problem has
size 3882. The gain was computed using the matrix sign method on a parallel

machine using 6 nodes.
(5.2) and (5.3).

The gain in x and y direction is shown in figures

Figure 5.2: The Computed Gain in X Direction
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Figure 5.3: The Computed Gain in Y Direction
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Chapter 6

Conclusions

We considered optimal linear-quadratic feedback control for differential alge-
braic equations that come from the discretizations of saddle point problems.
We derived necessary conditions for the optimal control and Riccati equa-
tions for the optimal gain. Since the Riccati equations were impractical, we
considered two alternative ways of finding the optimal gain. The first way is
approximating the gain via a penalty method and the second way is perform-
ing a change of variable to obtain a purely differential system. Both methods
convert the impractical Riccati equation to a standard Riccati equation. We
considered ways for solving large scale sparse regular Riccati equations based
on the Chandrasekhar and matrix sign methods. We gave numerical exam-
ples.

Future work will consists of further exploration of the properties of the DAE
systems and the approximate ways for finding the optimal control. Here are
some of the questions that we hope to answer in the future:

- We showed that the minimum norm II does not have to be symmetric,
however, in the examples we considered, it was always positive semi-
definite. We wish to show that either II is always positive semi-definite
or find an example where that fails.

- Numerical examples suggest that the approximate optimal gains com-
puted by the penalty method converge linearly. We wish to prove that
property analytically.

- The Change of Variable method has better potential than the penalty
method, because it directly computes the minimum norm optimal gain.
The main problem of the Change of Variable is that the basis for
ker(As;) has to be computed. We can compute the basis using SVD or
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QR factorizations, both of which are very computationally expensive.
We wish to explore alternatives to SVD and QR. In addition we wish
to explore potential ways to preserve sparsity.

The matrix sign method for standard Riccati equations is an attractive
method because it can be easily parallelized. The main problem of the
method is its stability. We wish to explore ways to efficiently combine
matrix sign and the Newton method and thus improve stability.

We wish to run more numerical experiments involving fluid flow. We
wish to consider larger and more complicated domains as well as denser
meshes.
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