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Mathematical Models of Hepatitis B Virus Dynamics during Antiviral
Therapy

Andrea Carracedo Rodriguez

(ABSTRACT)

Antiviral therapy for patients infected with hepatitis B virus is only partially efficient. The
field is in high demand for understanding the connections between the virus, immune re-
sponses, short-term and long-term drug efficacy and the overall health of the liver. A math-
ematical model was introduced in 2009 to help elucidate the host-virus dynamics after the
start of therapy. The model allows the study of complicated viral patterns observed in HBV
patients. In our research, we will analyze this model to determine the biological markers
(e.g. liver proliferation, immune responses, and drug efficacy) that determine the different
decay patterns. We will also investigate how such markers affect the length of therapy and
the amount of liver damage.
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Chapter 1

Introduction

Antiviral therapy for patients infected with hepatitis B virus is only partially efficient. The
field is in high demand for understanding the connections between the virus, immune re-
sponses, short-term and long-term drug efficacy and the overall health of the liver. Math-
ematical models can help elucidate the host-virus dynamics after start of therapy. Such
a model was introduced in 2009 by Dahari et al. to study the complicated viral patterns
observed after the start of therapy. They range from biphasic, triphasic, flat phase, to virus
rebound. In this thesis we use analytical and numerical techniques that provide connections
between the observed patterns, virus and host characteristics, drug efficacy and liver health.
The thesis is structured as follows: In chapter 2, we introduce biological background for
the hepatitis B virus, its outcomes and the available human intervention. In chapter 3, we
present background for the mathematical models of hepatitis B virus deveoped in the last
20 years, culminating with the Dahari model that is used in the thesis. In chapter 4 we give
an introduction to the numerical analysis methods that we will use to obtain information
about the model. In chapters 5 and 6 we present analytical and numerical results found from
analyzing the model. In chapter 7 we discuss our results and propose future directions.
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Chapter 2

Biological background

2.1 Hepatitis B infection

Hepatitis B is a dangerous liver disease spread all around the world with high rates of
infection in underdeveloped countries. About 350 million people have chronic HBV, up to
2 million die every year, making it the 9th leading cause of death. As much as 30% of the
world’s population was at some point infected with HBV [36]. The disease is caused by the
hepatitis B virus (HBV) which is transmitted through contact with the body fluids of an
infected person, during unprotected sexual relationships, and from an infected mother to
infant during delivery. Some of the improvements made towards prevention of hepatitis B
infection are testing blood donors and vaccinating newborns (we will give more details about
vaccination later in this chapter) [23, 31]. There have also been campaigns to make people
aware of the danger of this disease [23].

Infection with HBV can lead to either acute or chronic infections but the reason behind these
different outcomes is not known [50]. Most patients with chronic HBV are infected during or
soon after birth [50]. According with WHO, more than 90% of infected adults will recover
naturally within the first year of infection, and some of them will not even show symptoms
of the disease [23]. This is a dangerous aspect of hepatitis B infection since a person could
be infected but not be aware of it and, therefore, at a higher risk of transmitting the virus.

Hepatitis B infection leads to high virus production, up to 1010 copies per mL that last several
weeks during acute infection [43]. During this time, up to 90% of liver cells, hepatocytes,
gets infected [6, 33, 34, 45]. Liver damage is produced when the immune response kills the
infected hepatocytes [23]. Progress understanding such immune response has been made
studying the behavior of infected chimpanzees, woodchucks, ducks, and transgenic mice [43].
In particular, woodchucks with chronic infection develop hepatocellular carcinoma (HCC)
and liver cirrhosis similarly to humans which makes them useful for clinical trials [20].

2
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Experiments with woodchucks have shown that clearance of the virus can occur rapidly even
if most hepatocytes are infected [34, 19]. To explain this fact, Guo et al. [50] designed
a molecular study to identify the mechanisms that regulate virus clearance from infected
hepatocytes. Their results show that recovery is due to a high increase in the number of
CD8 T cells (which are the lymphocytes responsible for the cell-mediated immune system
responses). CD8 T cell elevation is correlated with the expression of cytokines (cell signaling
proteins) and killing of infected hepatocytes [50]. This has led to the conclusion that CD8 T
cell mediated immune response plays an important role during infection, being responsible for
both pathogenesis, and clearance. While it is accepted that hepatocyte death is CD8 T cell
mediated, the non-cytolitic roles of CD8 T cells are still under investigation. It is believed
that lymphocytes produce cytokines that cure infected cells and that newly regenerated
hepatocytes not only loose the virus but become immune to reinfection [50, 43].

It is well known that the liver has the ability to self-regenerate [17, 48, 18]. A patient
who overcomes acute HBV infection will restore their liver completely by mitotic division of
hepatocytes [48]. In patients with high liver loss due to chronic infection, a reserve population
of progenitor cells is activated (in addition to division of hepatocytes) to help liver regenerate
faster [13].

There is no specific treatment for patients with acute infections. As mentioned above, most
of these patients do not show any symptoms. For the ones who do suffer symptoms, such
as extreme fatigue, nausea, vomiting and abdominal pain, the treatment would include the
recovery of nutrients. Note that, although acute infection seems “easy” to overcome, there
are some few cases in which the liver of the patient fails causing death [29].

For chronic patients, there are several options for therapy but none of them is 100% efficient.
A summary is presented later in this chapter.

In this thesis, we will focus on the study of the dynamics of hepatitis B virus in patients
chronically infected and receiving drug therapy at the time of the study. These patients are
at high risk of developing liver cirrhosis or hepatocellular carcinoma (between 20% and 30%
cases [23]).

2.2 Vaccination

Since 1982 a vaccine against HBV infection has been available [49]. Today the group that
vaccination focuses on is the one with highest risk of developing chronic infection: children
less than 6 years old [23]. According to Trepo et al. [31], 40% of men and 15% of women
with HBV infection acquired at birth die of liver cirrhosis or hepatocellular carcinoma. The
optimal vaccination strategy is for newborns to receive the first dose within the first 24h
after birth and two boosters during their childhood. In 95% of the cases, the children will
be protected from infection for at least 20 years, and they may be immune for life [23]. As
a consequence, the number of liver cancer cases has diminished [36].
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To reduce the number of HBV infections even more, it is recommended to vaccinate other
high risk groups such as patients who require transplantations or dialysis, health-care work-
ers, travelers before visiting an endemic area, people in prisons, or people with multiple
sexual partners. [23]

The vaccine gives positive predictions about the eradication of the disease. However, it will
take some years before vaccination is available to everyone. This is why we need a good
therapy to cure patients that are already infected and have progressed to chronic disease.

2.3 Treatment of chronic HBV infection

Chronic hepatitis B has been proven to be a difficult disease to overcome needing long
therapies in many cases. In general, for any viral infection, a long therapy could loose
effectiveness with time since the virus may develop resistance to the drugs. When a patient
is diagnosed with chronic HBV infection, if the patient is in the early stages of the disease and
the level of antigens is low, it may be better to wait until the virus replication and damage
of the liver is high. However, the decision depends on each patient’s personal situation and
predisposition to other diseases such as cirrhosis or HCC. [30]

There are currently seven approved drugs for the treatment of hepatitis B: two formulations
of interferon (IFN): conventional and pegylated IFN (PEG-IFN), and five nucleos(t)ide ana-
logues: lamivudine (LMV), telbivudine, adefovir, entecavir, and tenofovir [30]. Treatment
with a nucleos(t)ide is potent, it inhibits virus replication in most patients for at least 5
years [8]. However, it is not possible to predict how long the treatment will take (some
treatments are 5 years long) [8]. Also, all the nucleos(t)ide analogues are known to induce
drug resistance so, in most cases, treatment is delayed or stopped which frequently results
in a virus relapse [8]. Treatment using interferon is the most recommended [30] but it has
some downsides compared to tenofovir or entecavir: harder administration (injection vs pill),
higher cost, and more side effects. These side effects are so inconvenient for the patient that
IFN treatment usually stops after one year.

Mathematical models have proven useful for the understanding of virus and drug dynamics
under drug therapy in infections such as human immunodeficiency virus (HIV), hepatitis C
(HCV), and HBV [16, 32, 14, 39, 35, 9, 21]. To get a better understanding of the virus-host
dynamics, studies have combined clinical data with mathematical models. For example,
Guidotti et al. [7] showed that a strong immune response is the key to overcome the disease.
Similar studies have been made to understand the efficacy of drugs in curing hepatitis B.
For instance, Lewin et al. [44] have estimated 95% lamivudine efficacy in blocking new virus
production which can be increased to 99% when combined with famciclovir.

Clinical data has shown that, in the case of HBV patients undergoing therapy, most of the
virus decay profiles are biphasic [35, 9, 21]. Mathematical models applied to such data have
shown that for some patients drug therapy yields fast clearance of the virus whereas for other
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Figure 2.1: Different virus decay profiles observed in patients. [41]

patients the clearance is much slower [44]. Moreover, for some patients, the decay pattern
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of HBV DNA is more complex than the usual biphasic pattern [44]. As mentioned above, in
some cases treatment needs to be stopped. Then viral relapse is observed in most patients.
In figure 2.1, the circles represent the data from different patients and the lines suggest the
kind of virus behavior we observe. The kind of therapy and the studies they were taken from
in patients A-E are sumarize in table 2.1

Figure Therapy Reference
A lamivudine, famciclovir [44]
B pegylated interferon-α2a [15]
C adefovir dipivoxil [21]
D lamivudine, famciclovir [44]
E lamivudine [44]

Table 2.1: Therapy in patients from figure 3.3

In this thesis, we want to get a better understanding of the mechanisms behind the complex
virus dynamics seen during drug therapy in HBV infections. Such knowledge may help
improve treatment, by informing what drugs to use, when to start and when to stop.



Chapter 3

Mathematical background

3.1 Introduction

Mathematical models have been used in life sciences to interpret experimental data, to
understand the processes that produced that data, and even to test hypotheses and make
predictions [40]. In 1760 Daniel Bernoulli introduced the first mathematical method into the
field of epidemiology which showed that vaccination against smallpox was advantageous for
protection [4, 2]. Bernoulli’s results motivated the incorporation of mathematical models into
biological studies. In the field of epidemiology, mathematical modeling gave valuable insight
into the spread of a disease among humans and provided hypotheses for developing strategies
to control it. Nowadays mathematical models can describe the details of the chemistry in a
living being: interactions between pathogens, host cells, and immune system [28, 27]. Great
progress has been made towards understanding biological processes at the cellular level but
there are still complex mechanisms that need of more sophisticated models in order to be
completely understood [38].

3.2 Models of HBV infection

Mathematical modeling is a useful tool in the study of virus dynamics because it helps to
interpret the experimental results and to understand the underlying biological mechanisms
involved. The field of hepatitis B infection, in particular, has adopted it as an alternative way
of extracting information regarding virus characteristics, drug efficacy and immune responses
[38, 35, 21, 44, 41, 42]. Below, we summarize some of the models relevant for this thesis.

The simplest version of an in-host model for the interaction between liver cells (uninfected
and infected) and the virus is the one derived from diagram 3.1. Here T represents the
target uninfected cells (uninfected hepatocytes), I represents the infected cells (infected

7
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Figure 3.1: Diagram for the basic virus dynamics model

hepatocytes), and V represents the hepatitis B virus. This model was introduced by Perelson
[38] for the study of HIV infection and first used in HBV by Nowak et al. [35]. It considers
that target cells are infected at rate β and infection occurs by contact between target cells
and virus. It also assumes that infected cells die at a rate δ and produce virus at a rate p.
The virus dies at rate c. The liver produces new target cells and these may die before being
infected. We use s and dT to denote the constant production rate and the natural death
rate, respectively. Under this assumptions the model becomes

dT

dt
= s− βV T − dTT,

dI

dt
= βV T − δI,

dV

dt
= pI − cV.

In any mathematical model, stability analysis gives a general idea on how the model will
behave at equilibrium. This model has two equilibrium points, one in which the virus goes
extinct and one in which the virus persists. The measure that determines whether the
virus will disappear or not is called the basic reproductive number R0, and it represents the
number of new viruses arising from one virion in a naive target population. If R0 < 1 we have
stability of the disease free steady state, meaning virus and infected cell populations will die
out; if R0 ≥ 1 the infection persists. The analysis in [35] shows that the basic reproductive
ratio R0 is given by

R0 =
sβp

δdT c
.

This model predicts clearance of the virus for patients with strong antibody mediated immune
responses against free virus (high c) or strong cellular immune responses against infected cells
(high δ).
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Nowak et al. [35] fitted this model to HBV patients under lamivudine treatment under the
assumption that the therapy inhibits virus production completely. In terms of the model,
this implies that

dV

dt
= −cV,

and the virus decays exponentially, V (t) = V0e
−ct. This assumption was good for modeling

short term therapy but would not fit the virus data after a certain period of time. So an
improvement to their model was introduced by Tsiang et al. [21]. The new model does not
assume complete efficacy of the drug. Instead it introduces a new parameter ε to represent the
efficacy of the treatment on blocking virion production. The parameter range is 0 ≤ ε ≤ 1,
where ε = 0 means therapy has no effect on blocking virus production, and ε = 1 means
therapy completely blocks virus production. The model becomes

dT

dt
= s− βV T − dTT,

dI

dt
= βV T − δI,

dV

dt
= (1− ε)pI − cV,

with new basic reproductive number

R0 = (1− ε) sβp
δdT c

.

As before, when R0 < 1 the virus is cleaned. Therefore a big ε will account for viral clearance.
This model was applied to data from a large number of drug trials. HBV infected patients,
after the start of therapy, showed biphasic decay of the virus, most common behavior seen in
drug trials and treatments [35, 44, 21]. Some patients, however, show a more complex viral
decay with one or several shoulder phases before clearance. Lewin et al. [44] introduce some
changes in the model that predicted these special decays. Unlike HIV infected cells, infected
hepatocytes have the ability to recover due to the fact that the virus does not integrate,
and therefore can be eliminated. They denote this recovery rate by ρ. This was included in
[44] together with another parameter η which represents the efficacy of the drug in blocking
infection. Analogously to ε, the range for η is [0, 1]. The model becomes

dT

dt
= s− (1− η)βV T − dTT + ρI,

dI

dt
= (1− η)βV T − δI − ρI,

dV

dt
= (1− ε)pI − cV,
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and the new basic reproductive number becomes

R0 = (1− ε)(1− η)
sβp

dT c(ρ+ δ)
.

When R0 < 1 the virus will go extinct. Otherwise it persists.

As mentioned before, these HBV models evolved from models meant for HIV. But there are
important biological differences between HBV and HIV infections. For instance, most HBV
patients clear the virus under a strong immune response against the virus. A model that
does not account for drug therapy but that includes some of the important biological features
characteristic of HBV was introduced by Ciupe et al. [43]. A summary of the relations and
parameters included in this model is shown on diagram 3.2. Ciupe et al. [43] consider target
cells T , productively infected cells I, free virus V , immune effector cells E, and refractory
cells R. The effector cells represent immune cells capable of both killing and curing infected
cells. The population of refractory cells consists of recovered infected cells that can no longer
be infected or infected cells which do not produce a measurable amount of virus. Hepatocytes
proliferation is described by a logistic term with maximum proliferation rate r and carrying
capacity K. When target cells T are infected, they move into the infected cells population
I. Infected cells produce new virus at rate p and can either recover at rate ρ or die due to
killing by the effector cells E at rate µ. The effector cells are at steady state s/dE before
infection. Effector cells expand at rate α. The expansion is delayed. We model this, which
is modeled by a delay differential equation with interaction between I and E leading to E
expansion τ days later. The equations corresponding to this model are:

dT

dt
= rT

Ç
1− T + I +R

K

å
− βV T + ρRR,

dI

dt
= rI

Ç
1− T + I +R

K

å
+ βV T − ρIE − µIE,

dV

dt
= pI − cV,

dE

dt
= s+ αI(t− τ)E(t− τ)− dEE.

dR

dt
= ρIE + rR

Ç
1− T + I +R

K

å
− ρRR− µ1RE

This model is used to show the transition between acute and chronic hepatitis B disease. It
shows that the virus is cleared for strong immune response that cures cells and makes them
refractory to reinfection.

Dahari et al. [41] considers a simplified version of the model from Ciupe et al. [43] by
assuming interactions between target cells, one population of infected cells and the virus
population. To account for liver regeneration through rapid cell division, Dahari et al. [41]
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Figure 3.2: Diagram of the virus dynamics for the model accounting for two infected cell
populations and immune system effector cells.

included the proliferation of both target cells and infected cells, rT and rI respectively. This
proliferation was modeled by a logistic term, with per capita division at rates rT and rI ,
and carrying capacity K. Lastly, Dahari et al. [41] applied this model for the investigation
of drug treatment with η drug efficacy in blocking infection and ε grud efficacy in bloking
virion production. The model is:

dT

dt
= s+ rTT

Ç
1− T + I

K

å
− β(1− η)V T − dTT + ρI, (3.1)

dI

dt
= rII

Ç
1− T + I

K

å
+ β(1− η)V T − (δ + ρ)I, (3.2)

dV

dt
= (1− ε)pI − cV, (3.3)

and forms the basis of this thesis.

The addition of proliferative term in equations (3.1)-(3.2) is needed to account for rich
behavior observed among patients undergoing drug therapy. Among the observed virus
behavior are biphasic decays, triphasic decays, flat second phase, and rebound. Dahari et
al. [41] has considered several drug trials that show rich dynamics of viral decay. Results
from fitting the model to data in each pattern are shown on figure 3.3. In figure 3.3, the
experimental data is from figure 2.1 and the corresponding parameter values are in table 3.1.
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The data points in the figures are from Dahari et al. [41]. In the paper they also provide
the parameter values that fit such data. We use those parameter values to generate the
corresponding model’s solution and observe that indeed the model can predict the different
decay profiles.

Figure 3.3: Model (3.1)-(3.3) rise to different profiles.

Figure s dT β rT rI K δ ρ p c η ε
A 1 0.01 1× 10−10 3 0.6 1.9× 107 0.07 0 100 0.67 0.5 0.99934
B 1 2.7× 10−3 2.5× 10−7 0.9 0.2727 1.9× 107 0.22 0 5 0.7 0.5 0.991
C 1 5.3× 10−3 1.9× 10−6 0.8 0.2759 1.9× 107 0.25 0 1.4 0.18 0.2 0.9988
D 1 9× 10−4 6.6× 10−8 0.5 0.0694 1.9× 107 0.06 0 164 1 0.5 0.997

Table 3.1: Parameter values in figure 3.3



Chapter 4

Numerical background

It is well known that observation and theory are the two classical pillars of science. Over the
years, a new field of study has been developed and is considered now as the third pillar of
science. Such field is the computational science. The contribution of this new discipline is its
ability to use algorithms to simulate mathematical models. These algorithms can reconstruct
past events using inverse analysis or they can predict future outcomes given certain incomes.
Computational science can also illustrate complicated mechanisms, giving the researchers a
better opportunity to make and test hypotheses. For example, in the field we are focusing
here, viral dynamics, Institute for Computational Engineering and Sciences in University of
Texas has simulated the behavior of the HIV RT protein and this has helped researchers to
design therapeutic drugs [12].

In this thesis, we study a mathematical model for hepatitis B virus dynamics. This model
depends on 12 parameters, and the behavior of the model depends on the values of these
parameters. Our goal is to find the relationship between the parameter values and the
outcome of the system. In chapter 6, we will use numerical methods to try to attain this
goal. These numerical methods are based on forward modeling, which is widely use in
geophysics [52]. While an inverse problem obtains the values of the parameters that would
explain the data collected, forward modeling consists on using known values of parameters
to predict the outcome of the corresponding system. In addition to predicting the data, a
forward model should also explain how that data is generated. A more rigorous definition
of these concepts follows.

Consider a system
d~x

dt
= f(~x, θ, t)

where ~x is the time dependent state variable, θ are the parameters of the system and f is
the function that describes the change in the state variable.

Definition. Given a data set ~xd, finding a value θ∗ of the parameter domain such that the

13
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solution of
d~x

dt
= f(~x, θ∗, t)

fits ~xd represents an inverse problem.

Definition. Given the value of the parameters θd of the model, a forward problem predicts
certain properties of the solution ~x of

d~x

dt
= f(~x, θd, t). (4.1)

When using numerical methods, we always need to know how accurate our results are. Verifi-
cation and Validation studies (V& V) [46] help to establish how good a numerical simulation
is. Part of the validation process consists on comparing the numerical predictions with actual
data by taking in account experimental uncertainties and errors. Uncertainty quantification
(UQ) gives error bars to the predictions made by numerical simulations. Another goal of UQ
is to know what are the chances that a certain outcome actually happens. Such knowledge
gives a better understanding of risks taken when making a decision based UQ analysis. For
example, uncertainty analysis was used in 1994 by Blower and Dowlatabadi to study the be-
havior of a deterministic model of HIV transmission [11]. They determined the imprecision
of the solution ~x of (4.1) due to uncertainty on the parameters θd estimation.

When investigating a model’s predictions numerically, it is important to note the difference
between errors and uncertainties. The American Institute of Aeronautics and Astronautics
(AIAA) [37] defines “error” as known deficiencies of the models or algorithms used and “un-
certainties” as a potential deficiency due to lack of knowledge. UQ focuses on characterizing
and reducing the uncertainties in applications, i.e., tries to determine how likely an outcome
is if some aspects of the system are not exactly known.

Uncertainties can be classified in two types: aleatory and epistemic [24]. The first is the
physical variability of the system under analysis. Epistemic uncertainty is potential defi-
ciency due to lack of knowledge. Epistemic uncertainty can arise from assumptions leading
to simplifications of the model of physical process under investigation.

When developing a mathematical model there are several simplifications or assumptions that
need to be made. When using numerical methods to analyze the model, a discretization is
introduced. Finally, when including uncertainty in a study, the analysis of such models
becomes more difficult. There are three main steps on this process: data assimilation, un-
certainty propagation and certification. Data assimilation focuses on characterizing specific
inputs, such as parameters, needed to simulate the model. There are several approaches on
how to find these values [10, 51, 25]. With probabilistic approaches, the goal is to determine
a probability distribution function (PDF) [47] for each input quantity. Once this is accom-
plished, uncertainty propagation study will determine the PDF of the output quantities.
Once the statistics are determined for each quantity of interest, validation is performed [3].
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In this thesis, UQ would be used to study forward uncertainty propagation. This is the
quantification of uncertainties in system output due to parametric variability. The goals
are to evaluate the reliability of the outputs and asses their probability distribution, and
the methods used to attain this goals are simulation-based methods such as Monte Carlo
simulations [1].

A type of Monte Carlo simulation is rejection sampling, also known as acceptance-rejection
method. It is a simple technique used to generate observations from a distribution. The
idea is running simulations a lot of times to get the distribution of the variable under study.
It works for any distribution in Rm and it relies on the fact that when sampling a random
variable, we only need to uniformly sample from the region of values it takes.

In these thesis, we are looking at qualitative outcomes such as virus decay profiles, and quan-
titative outcome such as time until virus clearance. In chapter 6, we define our parameters
PDFs by bounding their values between a maximum and a minimum and assuming they
are all equally probable. Then we choose the number N of simulations, generate N random
samples of parameter values, and classify them in terms of the output observed. We will
separate: stable from unstable behavior; biphasic viral decay from triphasic viral decay; and
fast from slow clearance.



Chapter 5

Analytical results

In this chapter, we describe the Dahari et al. model [41] on several levels. We start by
explaining the derivation. Then we perform stability analysis and give numerical results.
Lastly, we derive ways to characterize the parameter regions for the four different patterns
observed in the data.

The model is defined by equations (3.1)-(3.3) [41]. They consider three populations: unin-
fected hepatocytes or target cells T , infected cells I, and free virus V . The target cells are
produced at a constant rate s, die at a constant rate dT , and are infected by the virus at rate
β. Infected cells recover at rate ρ due to non-cytopathic immune responses [50], die at rate δ
due to cytopathic killing [7] and produce new virus at rate p. Both target and infected cells
proliferation is modeled by a logistic term with per capita maximal growth rates rT and rI
and carrying capacity K. The virus clearance is denoted by c. Dahari et al. [41] assume that
therapy with IFN and nucleot(s)ide analogs suppress virus replication by a factor (1 − ε)
where ε is the efficacy of drug in blocking virus production. Lewin et al. [44] consider that
lamivudine blocks target cell infection by a factor of (1 − η). The following equations and
table 5.1 summarize the assumptions:

dT

dt
= s+ rTT

Ç
1− T + I

K

å
− β(1− η)V T − dTT + ρI, (5.1)

dI

dt
= rII

Ç
1− T + I

K

å
+ β(1− η)V T − (δ + ρ)I, (5.2)

dV

dt
= (1− ε)pI − cV. (5.3)

Note that the range of values for both ε and η is [0, 1].

Our goal now is to find the relationship between the parameters in the model and the patterns
observed in the patient data: biphasic decay, triphasic decay, and rebound.

16
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Parameter Description Units
s constant hepatocyte production cell day−1 mL−1

dT hepatocyte death rate day−1

β infectivity rate mL virions−1 day−1

rT growth rate of hepatocytes day−1

rI growth rate of infected hepatocytes day−1

K liver size cells mL−1

δ killing rate of infected hepatocytes day−1

ρ recovery rate day−1

p virus production virions cell−1 day−1

c virus clearance day−1

η effectiveness of therapy in blocking infection
ε effectiveness of drug in blocking virion production

Table 5.1: Parameters of the model.

5.1 Initial condition

We will consider the infected steady state of the model without treatment as our initial con-
dition [26]. The equations defining such model are similar to (5.1)-(5.3); the only difference
is that the parameters due to drug therapy are zero, i.e., η = 0 and ε = 0 simplifying the
system to

dT

dt
= s+ rTT

Ç
1− T + I

K

å
− βV T − dTT + ρI, (5.4)

dI

dt
= rII

Ç
1− T + I

K

å
+ βV T − (δ + ρ)I, (5.5)

dV

dt
= pI − cV. (5.6)

Observe that the disease-free steady state is the same as for the model with therapy E1 =
(T1, 0, 0) where

T1 =
K

2rT

Ç
rT − dT +

 
(rT − dT )2 + 4

srT
K

å
.

The infected steady state E0 = (T0, I0, V0) is given by

βp

c

Ç
1−

Ç
rT
rI

+
βpK

crI

åå
T 2
0 +

Ç
δ

Ç
rT
rI

+
βpK

crI

å
− dT −

βpK

c

å
T0 + s = 0,
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I0 =

Ç
βpK

crI
− 1

å
T0 +K

Ç
1− δ

rI

å
,

V0 =
p

c
I0.

which exists for c(rI−rT )−βpK < 0. In general, rI < rT so this condition is easily satisfied.

We use this as initial condition for the model (5.1)-(5.3).

Figure 5.1: Behavior of the model without therapy for s = 1, ρ = 0, K = 1.9 × 107, dT =
0.01, p = 100, c = 0.67, β = 10−10, rT = 3, rI = rT/5, δ = 0.07.

In figure 5.1 we show a case in which, without therapy, the virus does not clear. So predictions
about the result of therapy would be made simulating model (5.1)-(5.3) with initial condition
being the final state observed.

5.2 Properties of the solution

In this section we will consider the system (5.1)-(5.3) subject to initial conditions

T (0) = T0 > 0, I(0) = I0 > 0, V (0) = V0 > 0, T (0) + I(0) ≤ K. (5.7)

Proposition 1. The solution V (t) of (5.1)-(5.3) subject to (5.7) is positive on [0, b) for
some b > 0.
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Proof. The partial derivatives of the right hand side of our system are bounded around t = 0.
Therefore the system is locally Lipschitz at t = 0 and solution exists and is unique on [0, b)
for some b > 0. Assume that there exists t1 ∈ (0, b) such that V (t1) = 0 and all variables
are positive on [0, t1). Then for all t ∈ [0, t1]

dV

dt
= (1− ε)pI − cV ≥ −cV,

and so

V (t1) ≥ V0e
−ct1 > 0,

a contradiction. Then V (t) > 0 for all t ∈ [0, t1].

Proposition 2. If max{rT , rI} > min{dT , δ}, then the solution (T (t), I(t)) of (5.1)-(5.3)
subject to (5.7) remains bounded on [0, b) for some b > 0.

Proof. Let F (t) = T (t) + I(t). Then

dF

dt
= s+ (rTT + rII)

Ç
1− F

K

å
− dTT − δI. (5.8)

Consider (5.8), let rmax = max{rT , rI} and let dmin = min{dT , δ}. Then

dF

dt
≤ s+ rmaxF

Ç
1− F

K

å
− dminF

= s+ (rmax − dmin)F − rmax
K

F 2

= −rmax
K

(F −X)(F − Y ),

where
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X =
rmax − dmin +

 
(rmax − dmin)2 +

4srmax
K

−2s
,

Y =
rmax − dmin −

 
(rmax − dmin)2 +

4srmax
K

−2s
.

Then

∫
dF

(F −X)(F − Y )
≤
∫
−rmax

K
dt

1

X − Y
ln |F −X|+ 1

Y −X
ln |F − Y | ≤ −rmax

K
t

∣∣∣∣∣F −XF − Y

∣∣∣∣∣ ≤ exp

Ç
−(X − Y )rmax

K
t

å
.

and, since rmax > dmin,

F (t) ≤
X − Y exp

(
− (X−Y )rmax

K
t
)

1− exp
(
− (X−Y )rmax

K
t
) .

Note that X − Y > 0, and so F (t) is bounded. Since T (t) and I(t) are positive on (0, b) we
obtain that T (t) and I(t) are bounded.

Proposition 3. The solution (T (t), I(t)) of (5.1)-(5.3) subject to (5.7) is positive on [0, b)
for some b > 0.

Proof. We use F to show that T and I are positive.

Consider (5.8), let rmin = min{rT , rI} and let dmax = max{dT , δ}. Assume that there exists
t1 ∈ (0, b) such that F (t1) = 0 and all variables are positive on [0, t1). Assume also that T
and I are bounded on [0, t1), i.e., there exist M1 and M2 such that T (t) ≤M1 and I(t) ≤M2

for all t ∈ [0, t1). Then for all t ∈ [0, t1]
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dF

dt
≥ rminF

Ç
1− F

K

å
− dmaxF

≥ rminF

Ç
−M1 +M2

K

å
− dmaxF

= −c̃F, c̃ > 0

and so

F (t1) ≥ F0e
−c̃t1 > 0

a contradiction. Then F (t) > 0 for all t ∈ [0, t1]. Since we assume all the variables positive
on [0, t1), this implies that both T (t) and I(t) are positive for all t ∈ [0, t1].

Proposition 4. If max{rT , rI} > min{dT , δ}, then the solution V (t) of (5.1)-(5.3) subject
to (5.7) remains bounded on [0, b) for some b > 0.

Proof. If I(t) is bounded on [0, b), then there exists a number M > 0 such that

M ≥ (1− ε)p sup
t∈[0,b)

I(t).

Then for any t ∈ [0, b) we have

dV

dt
= (1− ε)p− cV ≤M − cV,

and so

V (t) ≤ max

®
V0,

M

c

´
.

5.3 Stability analysis

System (5.1)-(5.3) has two steady states: the disease-free steady state E1 = (T1, 0, 0) with
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T1 =
K

2rT

Ç
rT − dT +

 
(rT − dT )2 + 4

srT
K

å
;

and the infected steady state E2 = (T2, I2, V2) with

T 2
2

AD

KrI
− T2

Ç
rTB − dT − A(1−B) + ρ

Ç
A

rI
− 1

åå
− ρK(1−B)− s = 0

I2 =

Ç
A

rI
− 1

å
T2 + (1−B)K, and

V2 = (1− ε)p
c
I2,

where A = (1− η)(1− ε)βp
c
K, B =

δ + ρ

rI
, and D = A+ rT − rI .

In order for the disease to disapear, we need the first steady state E1 to be stable. To
find the conditions that guarantee the stability of E1, we impose that the eigenvalues of the
corresponding Jacobian matrix have negative real parts.

Proposition 5. The free disease steady state is locally asymptotically stable if R0 < 1, where

R0 =
(1− ε)(1− η)pβT1

c(ρ+ δ)
+
rI

Ç
1− T1

K

å
ρ+ δ

(5.9)

Proof. The Jacobian matrix for the system is

J =

â
rT

Ç
1− 2T + I

K

å
− β(1− η)V − dT −rT

T

K
+ ρ −β(1− η)T

−rI
I

K
+ β(1− η)V rI

Ç
1− T + 2I

K

å
− ρ− δ β(1− η)T

0 (1− ε)p −c

ì
,

which evaluated at E1 becomes:

J =

â
rT − dT − 2rT

T1
K

−rT
T1
K

+ ρ −β(1− η)T1

0 rI − rI
T1
K
− ρ− δ β(1− η)T1

0 (1− ε)p −c

ì
,



23

has eigenvalues

λ1 = −
 

(rT − dT )2 + 4
srT
K

λ2,3 =
rI − c− δ − ρ

2
−rI

2

T1
K
±
√

(c+ δ + ρ− rI)2
4

+ (1− η)(1− ε)βpT1 + c

Ç
rI − δ − ρ− rI

T1
K

å
Note that λ1 is always negative and, if R0 < 1, then λ2,3 are also negative.

Proposition 6. E2 is locally asymptotically stable when R0 > 1.

Proof. The proof is messy. We present numerical examples in Figure 5.2.

As sown in 5.2, when R0 > 1 virus persists whereas if R0 < 1 virus goes extinct.

R0 < 1 R0 > 1

T
I

V

Figure 5.2: We observe extinction of the virus when R0 < 1 and persistance of the virus
when R0 ≥ 1. Left: R0 = 1.3716× 10−4. Right: R0 = 2.6973.
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5.4 Drug efficacy

Our stability results obtained in the previous section stated in terms of a critical drug efficacy
[41]. The overall drug efficacy εtot, that combines the effectiveness of therapy in blocking
infection and virion production, is

1− εtot = (1− η)(1− ε).

The critical drug efficacy is

εc = 1− c((δ + ρ)K + rI(T1 −K))

pβKT1
.

If εtot > εc, then the model predicts clearance of the virus. This condition is equivalent to
our R0 < 1 condition. Dahari et al. argue that the model not only predict clearance of the
virus for εtot > εc but the decay is continuous, meaning it will be a biphasic or triphasic
decay. If εtot < εc then therapy is not efficient enough and so flat phases and rebounds may
occur.

5.5 Analytical approximation of the solution

The goal of this research is to find parameter regions that explain the differences seen in the
data from patients undergoing combination therapy, in particular the biphasic and triphasic
patterns. Since we have a good analytical understanding of what parameters allow for V to
go extinct, i.e. R0 < 1, we first investigated if the local linear approximation of the solution
at V = 0, I = 0, T = T1 can match the non-linear solution. Briefly, the linear approximation
around (T1, 0, 0) has the form:

V (t) = c1e
λ1t + c2e

λ2t + c2e
λ2t

where

λ1 = −rT − dT

λ2 =
−(ρ+ c+ δ) +

»
(ρ+ c+ δ)2 − 4(ρ+ δ)c+ 4βpK(1− ε)(1− η)

2

λ3 =
−(ρ+ c+ δ)−

»
(ρ+ c+ δ)2 − 4(ρ+ δ)c+ 4βpK(1− ε)(1− η)

2

If |λ1| 6= |λ2| ≈ |λ3|, then we would expect to observe a biphasic decay. If |λ2| = 0 and
|λ3| < |λ1| then we expect to see a triphasic decay with a flat region.



25

The length D1 of the first phase decay is given by the time at which the curves c1e
λ1t and

c2e
λ2t intersect

D1 =
ln c2 − ln c1
λ1 − λ2

.

Similarly, the duration D2 of the second phase is

D2 =
ln c3 − ln c2
λ2 − λ3

.

To calculate the length D3 of the third phase, consider certain tolerance τ under which the
virus is assumed to be extinct. Then

D3 =
ln τ − ln c3

λ3
.

Here τ = 3× 10−4 per mL. Briefly, a 70kg person has on average 3L of blood. We normalize
1 virion in that concentration to get the limit of extinction of V to be 1/3L= 3× 10−4 virion
per mL.

The linear approximation approach was used by Lewin et al. [44]. This method is sometimes
useful for determining the slopes of the two or three phase decay. Indeed, in figure 5.3
the slope of the first decay is -0.7 and λ3 is -0.6703. For most cases, however, the linear
approximation is not a good proxy for the length of the decay. Indeed, in figure 5.3 D3 = 43.8
Since we want to determine general conditions for biphasic vs. triphasic patterns, we will
approach this using numerical methods.
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Figure 5.3: Parameter values as in table 6.1 with rT = 1.49, rI = 0.386, δ = 0.0679, ε = 0.785.



Chapter 6

Numerical results

The analytical results are sufficient for separating the virus decay from virus rebound. In-
deed, as seen in section 5.1, for R0 > 1 the virus rebounds, while for R0 < 1, virus goes
extinct (see figure 5.2). The analytical results cannot, however, tell us what kind of extinc-
tion or persistent patterns are obtained. In this chapter, we derive a numerical method for
investigating this using the techniques described in chapter 4. We will start by determining
the parameters that give viral extinction.

Since we know that the virus will go extinct when R0 < 1, we looked for the behavior of the
model when varying all the parameters satisfying R0 < 1. Then, we separated the parameter
values that give biphasic behavior from those that give triphasic behavior (see figure 6.1 for
an example).

The model has twelve parameters. This number makes it very difficult to study their impact
on the solution. Therefore we reduced the dimension of the parameter space to make the
study feasable. Previous studies by Nowak et al. [35], Lewin et al. [44], Dahari et al. [41] and
Ciupe et al. [42] explained what parameters can be fixed based on literature information.
The parameters that mostly influence the transition between biphasic and triphasic patterns
are (rT , rI , δ, ε). We vary these and fixed the rest to values obtained from the literature
(see table 6.1 for details).

Next, we investigated the ranges for (rT , rI , δ, ε) that are needed for virus extinction,
meaning, for the system to be stable at the free-disease state. This is given analytically by
equation (5.9).

We start with the following ranges for the four parameters:

27
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Figure 6.1: This two examples, with choice of parameters from [41], show the evolution of
the three populations with time when decay of virus is biphasic (left) and when the decay is
triphasic (right).

Parameter Description Value Reference
s production rate of T 1 cell/d/mL [41]
dT death rate of T 0.01 /d
β rate of infection 10−10 mL/virions/d [42]
K natural level of target cells 1.9× 107 cells/mL [41]
ρ recovery rate of I 0 /d [41]
p virus production 100 virions/cell/d [43]
c virus clearance 0.67 /d [35]
η effectiveness of therapy in blocking infection 0.5 [44]

Table 6.1: Fixed values of the parameters.

0.2 < rI , rT < 4,

0.01 < δ < 0.1,

0.7 < ε < 1.

(6.1)

This means that healthy and infected cell populations produce on average between 0.2 and
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4 offsprings per day; the infected cells half life ranges between 7 and 69 days; and the drug
is at least 70% efficacious. We use this as a starting point to create biphasic and triphasic
patterns. This ranges were chosen by inspection of virus decay for several samples. Outside
of these ranges, the virus clearance might not be observed either because R0 ≥ 1 and so
there is no clearance at any time, or because clearance takes a long time to happen; and we
do not want therapy to last more than one year.

6.1 Biphasic vs. Triphasic

The next step was to create a large number of samples, solve the system for each set, and
separate the result into biphasic and triphasic. The fixed parameter values are as in table
6.1. The varying parameters are the production of target and infected cells, killing rate of
infected cells and the effectiveness of therapy in blocking virion production with ranges given
by (6.1).

Now we would like to know what parameter regions give rise to biphasic and triphasic. This
may help optimize the therapy. The patient does not need to go through treatment during
the flat phase since the drugs will not help with virus clearance. Knowing how long this phase
lasts gives us an estimate on how long the patient can rest from treatment. A first intuition
is that triphasic cases are “worst” since we have a phase in which the patient situation does
not improve under therapy. We will discuss later how this factors in, but some triphasic
cases are better than biphasic.

One of the challenges at this stage, was finding a clear definition of triphasic behavior; when
do we say that we have an intermediate flat phase. Part of the code we used determines
when the virus presents a flat phase and how long it lasts.

6.1.1 Determining phase behavior

Recall that our system has the form

d~x

dt
= f(~x, θ, t)

where ~x = (T, I, V ) is the time-dependent state variable, θ = (rT , rI , δ, ε) are the varying
parameters, and

f(~x, θ, t) =

â
s+ rTT

Ä
1− T+I

K

ä
− βV T − dTT + ρI

rII
Ä
1− T+I

K

ä
+ βV T − (δ + ρ)I

pI − cV

ì
.
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where {s, dT , β,K, ρ, p, c, η} are fix parameters with values as in table 6.1.

For each {rT , rI , δ, ε} sample, we generate solutions of (5.1)-(5.3) that give the biphasic and
triphasic patterns seen in patient data. Below we present the formal definition of biphasic
and triphasic behavior for a solution V (t) of (5.1)-(5.3). We choose parameter samples for
which R0 < 1.

Definition. We say that a solution V (t) of (5.1)-(5.3) has biphasic behavior if

dV

dt
< 0

for all t > 0.

Definition. We say that there is a flat phase when a solution V (t) of (5.1)-(5.3) satisfies

dV

dt
= 0

for some t1 ≤ t ≤ t2.

Definition. We say that a solution V of (5.1)-(5.3) has triphasic behavior when it presents
a flat phase, i.e.,

dV

dt
< 0, 0 < t < t1,

dV

dt
= 0, t1 < t < t2,

dV

dt
< 0, t2 < t.

We start with 8×106 different {rT , rI , δ, ε} data sets generated randomly between boundaries
(6.1). We solve the system and keep the samples with R0 < 1, 0 < T < K, 0 < I < K,
and 0 < V < 1010. We applied these definitions to separate our random generated samples
between biphasic and triphasic. In the graphs shown in this chapter, we represent biphasic
samples in black and triphasic samples in blue. Furthermore, for triphasic samples, we have
different shades of blue that correspond with the length of the flat phase; the darker the blue
point is the longer the flat phase is for that sample.

We obtained 230,083 triphasic samples and 788133 biphasic samples some of which are shown
in figure 6.2. We found that biphasic behavior occurs more often than triphasic behavior.
There is a clear difference between the region that defines biphasic behavior and the region
that gives triphasic behavior. The region for triphasic seems to form an envelope around the
region for biphasic. We found the projections of this 3D plot onto the planes and observed
that the ratio rT/rI was an important factor for the behavior of the model, rather than the
individual rT and rI values.
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Figure 6.2: (rT , rI , δ) parameters that give triphasic (left) and biphasic (right) virus decay.

We then generated samples with: free δ ∈ [0.01, 0.1], free ε ∈ [0.7, 1], and fixed rT/rI ; free
rT/rI ∈ [0.05, 20], free ε ∈ [0.7, 1], and fixed δ; free rT/rI ∈ [0.05, 20], free δ ∈ [0.01, 0.1],
and fixed ε. Results are shown in figure 6.3, 6.4, 6.5, respectively. These graphs show the
relationship between δ− ε, rT/rI − ε and rT/rI − δ as well as the biphasic-triphasic regions.
The samples accepted had R0 < 1 and initial conditions [T0, I0, V0] such that

1e5 < T0 < 1.9e7

0 < I0 < 1.9e7

0 < V0 < 1e10.

Note that the initial conditions have changed to make sure we start with enough healthy
hepatocytes.

In figures 6.3, 6.4, 6.5, we can clearly see the difference between the triphasic region and the
biphasic region. Also note that at the shared boundary of the regions, the triphasic samples
have very short flat phase, i.e., they are close to be biphasic. For the three cases, all rejected
samples satisfy the restriction on the initial condition but not R0 < 1. This means that
samples are rejected because the corresponding model will not show clearance of the virus.

Fixed rT/rI = 5.
In figure 6.3, we observe that our code rejected samples with δ < 0.055. Therefore, in order
for the free-disease steady state to be stable we need δ > 0.055. We see that the region that
guarantees stability is clearly divided into two regions: blue (triphasic) and black (biphasic).
We have triphasic viral decay only if 0.05 < δ < 0.065 although for ε close to 1 (ε > 0.95)
most samples in such δ-interval are already biphasic. Also, for δ > 0.065 we only obtain
samples corresponding to biphasic decay of the virus. Biologically, this means that low killing
of infected cells (δ < 0.055) leads to virus persistence, independently of drug efficacy. This
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Figure 6.3: Biphasic vs. Triphasic with rT/rI = 5

is, therapy will not be successful if the immune response is weak. On the other hand, high
killing of infected cells (δ > 0.065), i.e., strong immune response guarantees biphasic decay
of the virus. For intermediate killing rates of infected cells (0.055 < δ < 0.065) high drug
efficacy (ε > 0.98) will give biphasic virus decay whereas triphasic decay is predicted for low
drug efficacy (ε < 0.8).

Figure 6.4: Biphasic vs. Triphasic with fix δ = 0.08

Fixed δ.
In figure 6.4 we see a similar picture to the one in figure 6.3. First, samples for which
the ratio is less than 2-2.5 are rejected because R0 < 1. This means that virus will not
clear if the proliferation of target cells is not, at least, double the proliferation of infected
cells. We observe triphasic if 2.5 < rT/rI < 4 and biphasic if rT/rI > 4. If drug efficacy
is high enough, ε > 0.95, we observe some overlap since we can get biphasic samples for
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2.5 < rT/rI < 4. Biologically, if healthy hepatocytes do not proliferate at least twice as fast
as infected hepatocytes, then the disease will persist no matter how efficacious the drugs are.
But if healthy hepatocytes’ growth rate is higher (more than quadruple) than the infected
hepatocytes’ growth rate, then the model predicts virus clearance in a biphasic manner.

Figure 6.5: Biphasic vs. Triphasic with fix ε = 0.7

Fixed ε.
The relation between rT/rI and δ is not as simple as the relation ε − δ or ε − rT/rI ; the
regions are not defined by vertical bands anymore. We can say that samples are rejected for
rT/rI . 2 whereas the samples give biphasic virus decay if rT/rI & 6.5. In the in-between
region we find the “decaying triphasic band”, of width approximately 1.5-2, that separates
a lower region of rejected samples from an upper region of biphasic samples. Biologically,
we see again that, to overcome the disease, the growth rate of hepatocytes needs to be at
least twice higher than the growth rate of infected hepatocytes and immune response cannot
be weak. Then our prediction gradually changes from triphasic to biphasic decays based
on whether both the ratio between healthy and unhealthy hepatocyte production and the
hepatocyte killing increase.

The summary of the information shown in figures 6.3, 6.4, 6.5, is that the domain of param-
eter values is split in three regions: low parameter values give no virus clearance; there is
an intermediate band that give triphasic behavior; and high parameter values give biphasic
behavior. Our results suggest that the effectiveness ε in blocking virion production does not
play an important role on determining the outcome of our model; as long as drug efficacy is
“reasonably” good enough (ε > 0.7) all behaviors might be observed. We will see in the next
section how high drug efficacy is necessary for fast virus clearance. We observed that δ and
rT/rI cannot be both low or else virus clearance will not occur, i.e., we need a strong immune
response to kill infected cells. We noted that the ratio rT/rI is always greater than one; this
means that the healthy cells need to proliferate faster than the infected ones. While the
killing rate can take a large range of values for the biphasic case, its values are high for low
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proliferation ratio in the triphasic case. The high killing rate is in the patient’s disadvantage.
However high proliferation ratio compensates for it and helps liver regenerate.

6.2 Clearance time

Now that we know the difference between biphasic and triphasic in terms of the parameters,
we want to know what parameters give a “good” behavior from a biological point of view. So
far we have only asked for viral decrease. Now, we do not want a patient to be on drugs for
longer than a year, so we want the virus to be cleared fast (in less than a year). This is why
the next step on our study is finding out what parameter values give a short clearance time.
To do so, we generated parameter samples in the same ranges but with two fix parameters
and used an ODE solver to record the value of the virus at each time from 0 to 2000. We
then checked the first time for which V ≤ 3 × 10−4 = 1 virion per mL and consider that
is the time at which we have clearance of the virus, since we assume the virus distributes
through 3L of blood.

We generated samples with: free rT/rI ∈ [0.05, 20] and fix δ, ε; free δ ∈ [0.01, 0.1] and fix
rT/rI , ε; free ε ∈ [0.7, 1] and fix rT/rI , δ. Since a lot of samples were rejected, we changed
the acceptance condition of the initial values [T0, I0, V0] to

0.2K < T0 + I0 < K

0 < T0 < 1.9e7

0 < I0 < 1.9e7

0 < V0 < 1e10.

Biologically, this condition means that we accept the samples for which the liver has enough
cells to fully regenerate and overcome the disease.

In figures 6.6, 6.7, 6.8 we include some of the resulting figures showing the relation between
parameter values and virus clearance time. The “good” samples are the ones for which the
virus is cleared in less than one year.

Note on figure 6.6: The graphs present very light blue points following the triphasic samples.
These points are far from the biphasic part of the graph. This seems to contradict our
analysis: the lighter the blue the closer to biphasic behavior. Based on inspection of such
samples, we hypothesize that the virus decay for these samples presents another flat phase.
Since more work needs to be done to analyze these samples, we will not include them in the
following discussion.

Clearance vs. rT/rI.
We see in figure 6.6 that again the ratio rT/rI must be greater than one to obtain good
results. We observe, in general, biphasic samples clear faster than triphasic samples. In
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any case, the higher the ratio is, the faster the clearance occurs. Note that the samples
shown have drug efficacy 0.9 or 0.95 and killing rate of infected cells 0.06 or 0.08 per day.
However, in neither case, not even when production of hepatocytes is 8 times faster than
the production of infected cells, we predict virus clearance in less than a year. The following
analysis of the figures 6.7 and 6.8 will clarify what is needed for fast clearance.

Figure 6.6: Clearance time vs. rT/rI

Left: δ = 0.06, ε = 0.9. Right: δ = 0.08, ε = 0.95.

Clearance vs. δ.
The description of the relationship clearance-δ is similar to the one for clearance-ratio made
above in that the larger the parameter value is, the fater the virus clears. In this case we do
observe samples for which the virus is expected to clear in less than a year of therapy. For
such outcome, we need a high rate of killing of infected cells (δ > 0.095). Therefore, as we
suggested earlier, drugs alone are not sufficient and a strong immune response is beneficial.
This is corroborated by our next analysis (figure 6.8).

Clearance vs. ε.
Figure 6.8 agrees with the natural asumption that the more efficacious treatment is, the
faster clearance we obtain. Note that if δ = 0.05, clearance occurs when ε is almost 1 (at
least 0.9999). That means that a weak immune response would require treatment to be
almost 100% efficient in blocking virion production in order to get virus clearance. The
right graph in figure 6.8 shows that if there is strong immune response (δ > 0.07) and if
target cells production is higher than infected cells production (rT/rI > 5) then therapy
with “reasonable” efficacy (ε > 0.95) will give a good outcome.



36

Figure 6.7: Clearance time vs. δ

Left: rT/rI = 3, ε = 0.9. Right: rT/rI = 5, ε = 0.7.

Figure 6.8: Clearance time vs. ε

Left: rT/rI = 3, δ = 0.06. Right: rT/rI = 6, δ = 0.07.

6.3 Liver damage

As mentioned earlier, during drug therapy the immune response is active as well. While HBV
does not itself lead to liver loss, the hepatocytes die due to cytopathic immune responses
[5]. The liver has the ability to regenerate [53]. If at any moment the liver is reduced to
less than 25% then the patient dies [22]. For every sample we have used in this chapter,
we checked the amount of liver cells at each time of treatment with the condition T + I <
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0.2× 13.6× 106 = 2.72× 106. The results were positive for all cases; all samples predict that
the subject would survive since they would never lose more than 20% of their liver at any
point throughout therapy.

6.4 Discussion

Dahari et al. provide a model (5.1)-(5.3) that explains complex virus decay of HBV patients
undergoing therapy. Here we extend their analytical analysis and investigated the parameter
space that gave rise to the observed patterns of decay.

From the analytical analysis, we have the R0 condition that differentiates virus decay from
virus rebound or virus with final flat phase. We have focused our numerical analysis on
differentiating biphasic from triphasic decay. The figures in this section suggest that the
parameter values that predict biphasic decay of the virus is separated from the region that
predicts triphasic behavior.

In terms of clearance time, we found that strong immune response is needed for virus to
decay below limit of detection in less than a year. Moreover, production rate of healthy
hepatocytes has to be at least double the production of infected hepatocytes. In general, the
figures show that the shortest clearance time corresponds to the biphasic samples. Therefore,
if we could define the parameter region that gives biphasic behavior then we have the region
that predicts the best outcomes.



Chapter 7

Final notes

Hepatitis B is a dangerous disease that affects people all over the world and causes millions
of deaths every year. There exists a successful vaccine, but it is not available worldwide so
its effects in eradicating the virus will take some years. Until then, we need to improve the
therapies available for infected patients. There are seven approved drugs for the treatment
of patients with Hepatitis B. Several studies explain the effects of these drugs and shed some
light on how treatment should proceed depending on each patients characteristics. Over
the years, mathematical models and their analysis have helped understand the biological
interactions behind hepatitis B infection, persistence or clearance following therapy. One of
the unanswered questions regards the relationship between the pattern of virus decay and
the success of the treatment. Dahari et al. developed a model that can predict the different
viral decay patterns: biphasic decay, triphasic decay, stepwise decay, flat second phase, and
rebound. The outcome of the model depends on the value of twelve parameters. In this
thesis we have focused on analyzing this model and determining how the parameter values
could affect the strategy for treatment.

Our analytical results give a condition to separate the possible viral decay profile into two
groups: virus persistence and virus clearance. If R0 in (5.9) is bigger than 1 then the decay
profile is either rebound or second flat phase. If R0 is less than 1 then the decay profile
is biphasic, triphasic, or stepwise decay. This condition can be rewritten in terms of drug
efficacy, with εtot > εc implying viral clearance and εtot ≤ εc implying viral rebound. Our
predictions match when referring to biphasic decay, triphasic decay, virus rebound, and
second flat phase. In this study, we focus then on finding the difference between biphasic
and triphasic decay. Future work may include differentiating these from stepwise decay.

When numerically investigating the model, we determined that, although twelve parameters
affect the model solution, only four of them seem to determine the differences in decay
profiles. These parameters are the drug efficacy ε in blocking virion production, the killing
rate δ of infected cells, and the ratio rT/rI of growth rate of healthy and infected hepatocytes.
Numerical results showed that the parameter space where the disease free equilibrium is
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stable, is divided between samples with biphasic and triphasic viral decay. We have also
shown that the region in the parameter space that gives fast virus clearance is a subset of
the region that gives biphasic decay.

We were able to confirm what other papers had suggested related with treatment success
[41]. If the treatment is almost 100% effective in blocking virion production then, as long as
the disease-free steady state is stable, we will get biphasic decay and fast clearance of the
virus. If we relax our condition on drug effectiveness to a more reasonable level of 90%, then
we predict that strong immune response is needed for clearance. Moreover, the production
of healthy hepatocytes must at least double the production of infected cells. Our numerical
results have given us a clear definition of the parameter ranges that predict good outcome,
when several parameter values stay fix.

In summary, we have investigated a model of hepatitis B dynamics under drug therapy.
Using analytical techniques we determined when the virus will be cleared or persist. Using
numerical techniques, we predicted the types of viral decay. Our results provide a framework
for the virological and immunological factors involved in a successful drug therapy. Such
knowledge can inform drug design.
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