Technical Report TR-89-17

GUIDELINES FOR
SELECTING AND USING
SIMULATION MODEL
VERIFICATION TECHNIQUES

by
Richard B. Whitner and Osman Balci

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

15 August 1989

t An abridged version of this technical report will appear in Proceedings of the 1989
Winter Simulation Conference, Washington, D.C., December 4-6, 1989.

ABSTRACT

There is a lack of sufficient understanding and realization of the importance of simulation model
verification in the simulation community. The demands placed on the software which serves as a
computer-executable representation of a simulation model are increasing. In the field of software
engineering, there is an abundance of software verification techniques that are applicable for simula-
tion model verification. This paper is intended to reduce the communication gap between the soft-
ware engineering and simulation communities by presenting software verification techniques appli-
cable for simulation model verification in a terminology understandable by a simulationist. A
taxonomy of verification techniques is developed to guide the simulationist in selecting and using
such techniques. Characteristics, advantages, and disadvantages of verification techniques under
each category are described.

CR Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification;
D.2.5. [Software Engineering]: Testing and Debugging; 1.6.4 [Simulation and Modeling]: Model
Validation and Analysis

Additional Key Words and Phrases: Credibility assessment, model quality assurance, simulation
model verification, software verification

-ii-

1. INTRODUCTION

Software verification is @ major concern of today's software engineering community. It is a well
known fact among software developers that over 50 percent of the development effort and resources
go into the verification process. This process encompasses the entire software development life cycle
from inception to implementation.

In the area of simulation, verification is also a crucial process. The simulation model life cycle,
monitored by 13 credibility assessment stages {(CASs), has a much broader scope than does the gen-
eral software life cycle [Balci 1989]. This paper deals with the Programmed Model Verification
(PMV) which is one of the 13 CASs.

There is much confusion concerning the difference between validation and verification. Valida-
tion 1s substantiating that the input-output transformation of the model has sufficient accuracy in rep-
resenting the input-output transformation of the system. Whenever a model or model component is
compared with reality, validation is performed. Verification, on the other hand, is substantiating that
a simulation model is translated from one form into another, during its development life cycle, with
sufficient accuracy. PMYV is substantiating that the Programmed Model (the executable simulation
model) is translated from the simulation model specification (Communicative Model) with sufficient
accuracy. Validation deals with building the right model, verification deals with building the model
right [Boehm 1984].

The perfunctory view of the PMV has caused many simulation experts to overlook the area of
PMYV. Quite often, neither sufficient time nor resources are allocated for it. As one simulation study
from the aerospace industry admitted, PMV has not been thorough, “due primarily to the twin con-
straints of cost and schedule” [Innis et al. 1977]. As simulation models continue to grow in size and
complexity, the simulation community is beginning to recognize the dire need for engineering guali-
ty models. This awareness has been brought about in large part by the need to retain and maintain
the programmed models used for a simulation study for extended periods of time.

All software verification techniques are applicable to PMV. Only the usefulness and practicality
of the techniques may vary between the two domains. Some techniques which are not considered
practical software engineering verification alternatives serve model verification very well. Other
techniques serve both communities equally well, This paper is intended to reduce the communication
gap between the software engineering and simulation communities by presenting software verifica-
tion techniques applicable for PMV in a terminology understandable by a simulationist.

Section 2 presents a taxonomy for PMV techniques. Software verification techniques are

described for PMV in Section 3. Concluding remarks are given in Section 4.

2. ATAXONOMY FOR SIMULATION MODEL VERIFICATION TECHNIQUES

Programmed Model (executable simulation model) Verification is concerned with the accuracy
of transformation of the detailed model specification (communicative model) into the programmed
model. Techniques to perform verification can be categorized by the basis with which the accuracy
is justified. The taxonomy presented in this paper categorizes the verification process into six dis-
tinct verification perspectives: informal, static, dynamic, symbolic, constraint, and formal analysis.
The taxonomy is shown in Figure 1. It should be noted that some of these categories are very close
in nature and in fact have techniques which overlap from one category to another. There is, however,
a fundamental difference between each classification, as will be evident in the discussion of each.

Underneath each category, the techniques used to perform the verification are listed. The level
of mathematical formality of each category continually increases from very informal on the far left
to very formal on the far right. Likewise, the effectiveness of each increases from left to right. As
would be expected, the complexity also increases as the method becomes more formal. The two cate-
gories, dynamic analysis and constraint analysis, are instrumentation-based, i.., they utilize extrane-
ous information present in the code to assist and/or enhance the analysis, particularly in an automat-
ed sense. Automated analysis usually results in higher computer resource cost but lower human
IesSOUrce Cost.

The taxonomy provides a number of perspectives of PMV. In informal analysis, the perspective
of human 'reasoning and subjectivity is captured. Static analysis verifies on the basis of characteris-
tics evidenced in the code of the programmed model itself. Dynamic analysis captures the execution
behavior of the programmed model, while symbolic analysis justifies the selection of the dynamic
test sets and verifies the transformation of model inputs to outputs. Constraint analysis verifies con-
formance of the programmed model to model assumptions. Constraint analysis also serves as a vali-
dation reference by assuring that the model is functioning within the model domain. Formal analysis
provides the ultimate baseline for PMV efforts.

Table 1 summarizes a number of characteristics of the general nature of each category: (1) the
basis for verification, (2) the relative level of mathematical formality, (3) the complexity of the asso-
ciated techniques, (4) cost in terms of human time and effort, (5) cost with respect to computer
resources (¢.g., execution time, memory utilization, storage requirements, etc.), (6) the relative effec-
tiveness of the method in general, (7) whether or not the category is considered instrumentation-
based, and (8) the relative importance of the associated techniques to PMV. The comparison among
the categories (e.g., Level of Formality) is intended more to give a relative view among the spectrum

of categories rather than to measure against some known standard.

2

UOTIPU]

uononpa(ecso
QOUSIAJUT
UONBULIOJSURL], 1BIPAL]
SIUSTe]) AIBIPOI
SnNoR)) eplus-y
$$9UIIATI0)) JO JOOLJ

[BULIO

sanbrugaa, UoUBIPLIIA [3poy pawweidord 10 Awouoxe], v T dandiy

sisA[euy vonmreq

S1sATeuy Arepunog Bumderny 1ayJe-asne)

UORIASSY oAnonpuj sIsATeuy yigd

Burysoy) uonIessy uonnaXg JTMOqUIAS
Jnesjsue) dOqUIAG

Bunsa], uorssardoy
SwmI8nqo(q oroquiig
Furrjorg uonnooxyg
BupoIIOA UoTINOoYg
Suroery, vonnooxg
Suddngaq

Jumsay, sseng
Bunssf, xoq-ATgM
fumsa, x0q-yoerd
Sunsay, dn-woyiog
Sunsay, umop-dog,

IueuA(Q

Surpay) Loudsisuo)
SISA[euy MO[] BIR(T
SIsA[euy Jermonng
SISAJeuy onuewsg
SIsATeuy xuuig

MEIS

SANOINHOIAL NOILVOIMIYAA TAAON AININVIDONd

npny

MITAY
uonoadsuy opo)
ySnoxyrEem
Funysey) Jyseq

[euLIoyuyg

2qeUTENY JI AN
EEElIE S| YSTH ATA U3 A19A ySiyg ysig Y31y 03 uejaodwy
paseg
ON Sax ON SOX ON ON uonjBjuSmINI)SUY
a[qeureny jt YSTH A10A yS1H o3 ys1H 01
9soydiy 431y K10A o1 y3ig 21RISPON MNRIGPON ol SSAUAANRYH
Y31 0 1500 32an0S3)Y
MOT AISA Y3ty 91eIapOIA YSTE AI9A SIRISPON MOT AIIA Rmdwo))
ySryg SIRIIPOIN 32IN0SIY
YSTH A19A Y31 ysiy 01 2IBIOPOIN 01 MO yStH AIA uewing
YSTH A10A YS1H
yStH Ax0A o1 ySig ySig 01 MRIOPON SIBIOPOIA MO Lyxerdwo)
TEULION [euLio, ATOA TeuIog [ewIo [EWIOTU] Anreurioq
AIOA 0} [RULIO TeUIO] 01 TeULIOJu] 0} TeuIoJuy AIDA JO 1989
suondusnsse syied uoTNa9X9 [Opour senianoe wawdooas
$S3UIDALIOD T 21418 TOTM0XD mmo_a SndImo omawmﬁ UOHOX? [3POUI | SPOJ 20MOS RIS | " r g E_Ewﬁ_w uonIuyAQq
30 Jooxd yeonew fopows [emoe sroquiAs Jo uoneuuoy | SULIAP paroyIed QY3 JO SONSLIA] 30 JuowAopdurs oyl A103a1e)
~JYIBU [BULIO 30 uospredwo)) -suen oy SuizApeuy | SInsar Suizdreuy | -oereys Surzdfeuy | ydSnonp Swzdreuy
sisA[euy sisAjeuy sisffeuy sIsAfeuy sisAfeuy sisAfeuy
[eurioq yuIRIISU0D J[OqUIAS NBUAg mels [eaLiojuy

K1o3a1e)) Yoy Iopup) sonbuysa], AN Y} JO sousuaverey) °f dqeL

By applying verification techniques categorically, the modeler not only realizes a verified mod-
¢l, but also he has categorical evidence from a broad range of verification perspectives to substan-
tiate his claims. The taxonomy is beneficial to the modeler: (1) by categorically identifying tech-
niques which will allow him to verify the programmed model, and (2) by guiding the modeler with

an effective, well-organized format for assessing the credibility of simulation results.

3. TECHNIQUES FOR PROGRAMMED MODEL VERIFICATION

In this section, each category in the taxonomy is discussed in detail. The basis for each type of
verification is discussed, and techniques to perform the verification are presented. Advantages and

disadvantages of each are cited.

3.1 Informal Analysis

Informal analysis techniques are among the most commonly used verification strategies. Verifi-
cation by informal analysis is based on the employment of informal design and development activi-
ties. This category of analysis is referred to as informal because the tools and techniques used rely
heavily on human reasoning and subjectivity without stringent mathematical formalism — not
because of any lack of structure and formal guidelines for the use of the techniques. The informal
analysis approach is a very intuitive one.

Informal analysis involves evaluation of the model using the human mind. This can be done by
the modeler, a modeling team, a multidisciplinary study development group, or an independent test-
ing organization. It includes not only evaluating the resulting model for completeness, consistency,
and unambiguity of translation, but also seeks justification for the various design and development
decisions made. The evaluations can be made by mentally exercising the model, reviewing the logic
behind the algorithms and decisions, and examining the effects the various implementations will
have on the overall outcome of the model.

Because human reasoning is involved, informal analysis can provide a broad range of coverage,
simultaneously considering many dimensions of the study. For example, suppose a particular algo-
rithm is employed to generate random variates for a part of the programmed model. The algorithm is
fast and is known to be accurate. Through informal analysis, however, it may be determined that the
algorithm makes horrendous use of memory, making its use unacceptable for the simulation model.
Here the dimensions of execution speed, correctness and resource utilization within the range of the

given hardware are all being considered together.

As another example, suppose a portion of an animated simulation is designed. In his desire to be
creative, the modeler designs a very colorful and detailed display which runs quickly and with low
resource utilization. Upon review, however, it may be determined that the design is ergonomically
unsatisfactory. The extensive use of color and detail detract from the information that is supposed to
be conveyed. Further, it may be determined that to realize the design would require coding practices
that are far too complex and unmanageable. Multiple dimensions, even very subjective ones, can be

captured through informal analysis. Several informal analysis techniques are discussed below.
3.1.1 Desk Checking

Desk checking is probably the most commeonly used verification technique. Simply put, desk
checking is the process of reviewing one's work to check its logic, consistency and completeness. It
is particularly useful in the early stages of design, before the task becomes unmanageable. Most
modelers perform a version of desk checking as they develop their model and then examine it to see
why it doesn't work. To be truly effective, desk checking should follow tighter guidelines than this.

First of all, desk checking should be performed before the model is tested. What this means is
that desk checking is not an execution debugging technique. Before energy is expended getting a
model into execution, it should be thoroughly desk checked.

Secondly, desk checking should be performed by a second party [Adrion et al. 1982]. This
enhances the completeness and reliability of the technique simply because the modeler often
becomes blinded to his own mistakes. The second party is much more likely to detect subtle errors.

The major obstacle to performing extensive desk checking is reluctance on the part of the mod-
eler to use it. This is because of the large investment in time that desk checking is perceived to
require. The modeler is much more anxious to get his design into execution than to write and review
code on paper first. Unfortunately, the long term results are usually predictable, typically with much
more time being spent later uncovering simple flaws in the design that have mushroomed into larger
problems. Simultaneously managing the keyboard, the text editor and the model coding process (as
many modelers no doubt do) is less effective than the singular tasks of design, coding, desk check-

ing, and keyboarding — in that order.
3.1.2 Walkthrough

Walkthroughs are a more formal approach to verification than desk checking. The walkthrough

is similar to desk checking in that the design and character of the model's code are examined in

6

detail. The logic of the model is analyzed, its consistency is verified, and its completeness deter-
mined. In an organized manner, the examiners walk through the details of the design or source code
to perform the verification; hence the term walkthrough.

Unlike the loose structure of desk checking, the walkthrough is carried out under specific guide-
lines. It is an organized activity of the modeling organization. There are many terms associated with
the concept of the walkthrough. Among such terms are code inspections, reviews, and audits, each of
which are discussed as separate activities in later sections. The term walkthrough itself has been
related to a variety of verification techniques, few of which have attained any measure of standardi-
zation. The exception is the structured walkthrough introduced by Yourdon [1985] and is what is
discussed below.

The walkthrough is carried out by a team of individuals associated with the development pro-
cess. The intent is to review and discuss the model in an effort to locate flaws in the design and/or
source code. The model in review can be a high-level specification, a detailed design, or even an
actual coded submodel of the programmed model. The walkthrough itself is the meeting of the team
members.

The walkthrough team is composed of the modeler and study peers, most of whom are in some
way familiar with and related to the simulation study. The walkthrough is a fact-finding venture. Its
outcome is intended to help the subsequent development and verification of the model. It is not a for-
um for rating modeler performance. As such, managers should be excluded from the activities of the
walkthrough. (The review, described later, opens avenues for managerial involvement.) Either the
manager or a member of the simulation project will establish the walkthrough team, depending on
the project organization.

Yourdon identifies several roles in a structured walkthrou gh: (1) the presenter, who most often
is the modeler; (2) the coordinator, who organizes, moderates, and follows up the walkthrough activ-
ities; (3) the scribe, who documents the events of the meeting; (4) the maintenance oracle, whose
responsibility is to consider long-term implications of the model; (5) the standards bearer, who is
concerned with adherance to standards; (6) a user representative to reflect the needs and concerns of
the sponsor; and (7) other reviewers as desired to give general opinions of the model (e.g., an audi-
tor). Though Yourdon specifies the several roles, many authors realize a workable group of as few as
three members [DeMarco 1979; Deutsch 1982; Adrion et al. 1982; Myers 1978,19791].

Before the meeting, the coordinator assures that the team members have all materials necessary.
The members study the materials prior to the walkthrough. During the meeting the presenter leads
the other members through the model. The model is typically “executed” by the walkthrough team

using a set of prepared test cases. The content and functionality of the model are presented and the

7

reviewers provide constructive criticism. The source code is examined for correctness, style, and
efficiency. Comments are made only to the point of identifying errors and questionable practices. It
is the responsibility of the modeler to digest these comments with an open mind and later seek to
resolve the issues. The events of the meeting are documented and maintained as part of the on-going
study documentation. As necessary, the modeler cycles back through the development process and at
some point in the future, reschedules another walkthrough.

The walkthrough provides several benefits to PMV. The first is early detection of errors. This
leads to higher quality and reduced development cost. It is a well-known fact among the software
engineering community that the cost of error correction grows dramatically as the development pro-
gresses. Another benefit is the documentation produced. The walkthrough documentation is useful
for tracking development progress as well as for depicting model design and fundamental assump-
tions. A third, and far-reaching, result of the walkthrough is the dissemination of information among
study members. The effects of this are several. The immediate effect is to distribute the sense of
responsibility for study success from the one to the many. In the ideal sense, peer pressure obligates
each to do his part to maintain excellence. The likelihood of someone recognizing and helping to
remove development slack is increased. Another effect is the sharing of technical information and
expertise among members. This effect has obvious merits. Still another benefit is the insurance pro-
vided. Should a team member unexpectedly leave the study in midstream, chances are good that a
significant portion of his work can be salvaged. All of these elements combine for improved quality

and increased likelihood of successful simulation, both in the present and in the future.

3.1.3 Code Inspection

Code inspections were introduced by Fagan [1976] as an alternative to walkthroughs. The code
inspection is intended to be a more formalized approach to reducing errors in model development.
To a large degree, the code inspection has obtained more standardization than the walkthrough. Its
sole primary purpose, as Dobbins [1987] states, is to remove defects as early in the development pro-
cess as possible. Defects are to be identified and their existence and nature documented. Dobbins
goes on to point out that there are several secondary purposes of the inspection process, among
which are to provide traceability of requirements to design, increase model quality, reduce develop-
ment cost, and improve the effectiveness of other aspects of the model life cycle. These are, accord-
ing to Dobbins, “all part of the effect of performing inspections properly and professionally.”

Buck and Dobbins [1983] identify three levels of the development process during which inspec-

tions are to be performed. These are at the high level design (Communicative Model Phase), the low

8

level design just prior to coding the model, and afier coding when a clean compilation has taken
place (prior to testing). These levels correspond to the I, I;, and I, inspections laid out by Fagan's
earlier work. It is significant to note that, along the same vein as other informal analysis techniques,
code inspections precede testing activities.

Fagan [1976] originally specified five distinct inspection phases: overview, preparation, inspec-
tion, rework, and follow-up. The inspection process has been refined and streamlined over the years,
but basically the phases are the same. Only the planning phase, prior to the overview, has been added
to the process [Dobbins 1987; Ackerman et al. 1983].

The inspection team is comprised of members who play particular roles. The moderator manag-
es the team and provides leadership. The moderator is responsible for all meeting logistics and coor-
dinates activities during the meeting. The designer is the developer (modeler) responsible for pro-
ducing the program design, while the coderlimplementor is the programmer (modeler) responsible
for translating the design to code. The fester is responsible for the testing activities of the model.
Although four members have been found to be a workable team size, the team may have more
members.

The logistics of the entire inspection process are established during the planning phase. At this
point the moderator confirms the inspection team, assures adequate materials are available for mem-
bers, reserves the inspection location, establishes the inspection schedule, and notifies team
members. '

During the overview the designer gives a brief description of the (sub)model to be inspected.
The model's purpose, logic, interfaces, eic. are introduced and necessary documentation distributed
to team members to study. With the notification of the inspection meeting, the preparation phase
begins. Time is given for the members to study the materials and prepare for their roles in the
upcoming meeting.

The inspection meeting follows an established agenda, conducted by the moderator. Following
introductions, a designated reader narrates the design as expressed by the designer. The purpose of
the reading is to identify and discuss previously undetected defects. Errors detected are documented
and classified according to their nature and severity. Care must be taken during the inspection to
keep the discussion on an impersonal level and the meeting conducted in a professional manner. This
is the responsibility of the moderator. Also the responsibility of the moderator is to prepare a written
report detailing the events of the meeting (to be done within a day following the inspection) and to
insure appropriate measures are taken in subsequent phases of the inspection process.

The designer or coder/fimplementor resolves problems during the rework phase and, if neces-

sary, re-inspection takes place. The follow-up phase is completed by the moderator to assure that all

9

defects have been corrected and the results documented. Usually there is a specifically defined exit
criteria which must be met.

A key factor in the success of the inspection process is the education of the team members in the
guidelines and expectations of the process. The code inspection is intended to be a more rigorous
alternative to the walkthrough, accomplishing this end primarily because the process is well-defined
and to a certain extent, standardized. With the increased formality, inspections tend to vary less and
produce more repeatable results. Like the walkthrough, the code inspection is effective for early
error correction, provides an excellent source of documentation, and removes responsibility for the

model from the individual and spreads it among the members of the team.

3.14 Review

The review is a technique similar in nature to the code inspection, but which is intended to give
management and study sponsors evidence that the development process is being done according to
stated system objectives [Hollocker 1987]. Its purpose is to evaluate the model in light of develop-
ment standards, guidelines, and specifications. As such, the review is a higher level technique more
concerned with the design stages of the life cycle. Reviews are frequently termed as “design”
TEVIews.

As opposed to walkthroughs and code inspections, which have more of a correctness determina-
tion flavor, reviews seek to ascertain tolerable levels of quality are being attained. The review team
is more concerned with design deficiencies and deviations from stated development policy than it is
with the intricate line-by-line details of the implementation. This does not imply that the review team
is free from the responsibility of discovering technical flaws in the model, only that the review pro-
cess is geared towards the early stages of the development cycle. The review is also intended to iden-
tify subjective aspects such as performance improvement and economic aspects. It would seek to
indicate that the preliminary and detailed programmed model designs are sufficiently valid, well-
designed, and effective representations of the real-world system. The formal review gives the model-
er evidence that the programmed model conforms to proven quality standards.

The review is conducted in a similar fashion as the code inspection and walkthrough. Each
review team member examines the model prior to the review. The team then meets to evaluate the
model relative to specifications and standards, recording defects and deficiencies. Ould and Unwin
[1986] provide a design review checklist depicting some of the critical points to look for in a design.
The result of the review is a document portraying the events of the meeting, deficiencies identified,

issues resolved by management, and review team recommendations [Hollocker 1987]. Appropriate

10

action may then be taken to correct any deficiencies.
3.1.5 Audit

The audit seeks to determine through investigation the adequacy of the overall development pro-
cess with respect to established practices, standards, and guidelines. The audit also seeks to establish
traceability within the development process. Given an error in a part of the model, the error should
be traceable to its source in the specification via its audit trail. The audit verifies that model evolu-
tion is proceeding logically and that it is evolving in accordance with stated requirements [Bryan and
Siegel 1987]. In doing so it gives visibility to the sponsor of what is being built, it provides a basis
for communication among study participants, and it helps the modeler assess the scope of the study.
This last item is particularly useful in helping the modeler avoid the Type III error, i.e., the error of
solving the wrong problem.

Hollocker [1987] contrasts the audit and the review. The audit is accomplished through a mix-
ture of meetings, observations, and examinations. It is performed by a single auditor. Auditing can

consist of other audits, reviews, and even some testing, and it is carried out on a periodic basis.

3.1.6 Advantages and Disadvantages of Informal Analysis

Informal analysis can be of great importance to PMV. Its techniques are valuable from the early
stages of Model Formulation throughout the entire programming process. In particular is the ability
of informal analysis techniques to evaluate the subjective and multifaceted aspects of the simulation
study. The success of a simulation study stems from the ability to achieve sufficiently correct simula-
tion results and as importantly, to convince the study sponsor that the simulation model is a suffi-
ciently accurate one. Insuring the acceptance of the many subjective aspects of the model cannot be
overlooked.

Besides the advantage of allowing human reasoning in the verification process, informal analy-
sis techniques are not difficult to perform and require virtually no computer resources. On the other
hand, the techniques used are very time consuming and require very high human resource allocation.
Because of their reliance on human evaluation they are prone to human error. Success depends on
the level of knowledge and expertise of the individual. The human time and effort required coupled
with the likelihood of error result in limited effectiveness of informal analysis. Though their effec-
tiveness improves as their gnidelines for use become more structured and formal, informal analysis

techniques cannot be relied upon in themselves to verify the programmed model.

11

3.2 Static Analysis

Static analysis is concerned with verification on the basis of characteristics of the static model
source code. Static analysis does not require execution of the model. Its techniques are very popular
and widely used, with many automated tools available to assist the analysis. The language compiler
is itself a static analysis tool. Static analysis can be performed throughout the entire simulation mod-
¢l development process.

Static analysis techniques can obtain a variety of information about the structure of the model,
coding techniques and practices employed, data and control flow within the model, syntactical accu-
racy, and internal as well as global consistency and completeness of implementation. The informa-
tion gathered can be used to generate test data for use with other types of analysis, can identify the
testing requirements for the various areas of the model, can be used to optimize the model's code,
and can even be used to instrument the model to enhance further analysis. Just as importantly, static
analysis results provide an indication of the principles used to meet the objectives of the software
development project [Arthur et al. 1986]. Knowing that the model is being engineered for quality
makes a strong statement for its verification.

Static analysis techniques vary in their degree of formality, ranging from informal to formal. For
instance, checking consistency among submodel interfaces would not be considered as mathemati-
cally formal as would certain techniques for performing model data flow analysis [Allen and Cocke
1976]. Static analysis is generally more complex than informal analysis but not as complex as the
other categories of anaiysis. The following sections explore the verification capabilities of static

analysis techniques.
3.2.1 Syntax Analysis

Any model that is to undergo translation from a higher form to a machine-readable form must
first pass a syntax check. This check assures that the mechanics of the language are being applied
correctly. This fundamental analysis of the source code is by far the most widely utilized verification
technique. It is unfortunate that most often this verification tool is utilized in the minimal way — get-
ting the source code to successfully compile.

During the course of a compilation, as the syntax is checked and 'the source statements “token-
ized,” a symbol table is built which describes in detail the elements, or symbols, which are being
manipulated in the model. This includes descriptions of all function declarations, type and variable

declarations, scoping relationships, interfaces, dependencies, and so on. The symbol table is the

12

“glue” which holds the compilation together, growing dynamically as the source code is scanned.
Obviously there is a wealth of information about the static model available in the symbol table. Just
listing the table itself is a tremendous source of documentation.

In addition to the symbol table, cross-reference tables are easily generated which provide such
information as called versus calling submodels, where each data element is declared, referenced and
altered, duplicate data declarations (how often and where occurring), and unreferenced source code.
Submodel interface tables reflect the actual interfaces of the caller and the called, particularly useful
when using a compiler that does not perform strict type checking nor verify external calls. Also read-
ily created are maps which relate the generated runtime code to the original source code. All of this
information is useful for documentation purposes. It is even more useful as the underpinnings for
debugging.

Another useful feature is the ability to reformat the source listing on the basis of its syntax and
semantics. This enforces a level of uniformity among all coded submodels, which in turn promotes
source code readability and ease of interpretation. Source code formatters, often referred to as “pret-
ty printers,” provide standard listing, clean pagination, and source code enhancement, such as high-
lighting of data elements (e.g., global variables, parameter variables, etc.) and marking of nested
control structures.

All of the above have obvious merits for documentation and display of the source model, and
even the model specifications. Fairley [1975,1976,1977,1978] extended the use of this information
to other areas of analysis as well. He suggested capturing the analysis history in a data base and
using it to drive and support other aspects of the verification process. A practical application of this
idea is inserting probes into the source to enhance testing. The static data gives information about
optimal placement of probes. Another example is the use of the symbol table and map to facilitate
symbolic debugging, i.e., debugging at the source code level. Just as important, collected static data,
later combined with model execution data, provides a powerful mechanism for verifying execution

results.

3.2.2 Semantic Analysis

Also occurring during source code translation is semantic analysis. Semantic analysis attempts
to determine the modeler's intent in writing the code. The goal is to obtain an accurate translation of
modeler's intentions, In truth, the only meaning which can be derived from the source code is that
which is self-evident in the code. It is dangerous to let the compiler make any other assumptions

about modeler's intentions. It therefore becomes beneficial, even to the point of being essential, to

13

tell the modeler what it is that he has specified in the source code (i.e., what his code means). The
same principle can be applied to specifications. It is then up to the modeler to verify that the true
intent is being reflected.

When the source code is being parsed during compilation, the target runtime system is most
likely being simulated. This allows the compiler to generate code which will perform the requested
tasks. As the meaning of the source code is derived, the corresponding runtime code is produced.
The symbol table is referenced to check that the data elements used fit the operation being per-
formed. A result of this inherent knowledge mechanism is the ability to determine what is and is not
being used, how often it is being used, and to a large degree in what manner it is being used. As in
syntax analysis, the harnessing of this information provides a healthy source of documentation.

Other benefits include locating variables which have been used but not initialized. This common
model programming error can be the source of great frustration. Another common source of prob-
lems that can be identified is function side-effects, i.¢., the actions of one operation intentionally or
unintentionally altering the value of a supporting data item. This can be detected by noting when and
where a variable gets changed. If a particular variable or code segment never gets used, chances are
good that this is a symptom of some deeper problem. An example might be a constant conditional
expression, or a variable that gets declared, may be even initialized, but never used again. Even if
there is no design error, space is being wasted and the situation will inevitably lead to later confu-
sion. This “dead code” is a prime target for optimization techniques which improve the performance
and quality of the model.

It is probably worth noting here that neither syntax analysis nor semantic analysis require com-
plete compilation in order to obtain their results. Most static analyzer tools simply apply the neces-
sary steps to extract the data, without attempting to translate the code. Some of the algorithms
required to accomplish some of these tasks can be rather complex [Allen and Cocke 1976].

Like the results of syntax analysis, semantic analysis results should be captured and maintained
to drive other parts of the verification process. The usefulness of this data will become self-evident

as dynamic analysis techniques are discussed later.
3.2.3 Structural Analysis

Structured design and development refers to the use of widely accepted techniques for con-
structing quality software. These techniques are all founded on a set of principles which are TECOg-
nized to be effective and comprehensive building blocks for software development. The principles

are based on the use of acceptable “control structures” from which the software will be built. The

14

three basic control structures are sequence, selection, and iteration.

Structural analysis examines the model's structure and determines if it adheres to structured
principles. This is accomplished by constructing a graph of the model control structure. This graph
defines model control flow and as such is called a control flow graph. The control flow graph is ana-
lyzed for anomalies, such as multiple entry and exit points, excessive levels of nesting within a struc-
ture, and questionable practices such as the use of unconditional branches (i.e., GOTOs). The anom-
alies can be flagged so that they may be scrutinized further, Many of today's high-level languages
are, by nature, structured. These structured languages not only encourage the use of structured pro-
gramming techniques, they increase the ability to perform structural analysis. Structural analysis
may also reveal commonalities of particular model structures. Steps may be taken to reduce the
structure if possible. The control flow graph is an effective verification document. It documents the
model’s control flow in a clear and concise way. A well-structured model naturally has a “clean-
looking™ control flow graph. A “clean” graph not only indicates a sound structure, it is casily under-
stood and readily accepted even by the layman. It is a graphic illustration of the saying, “a picture is

worth a thousand words.”

3.24 Data Flow Analysis

Data flow analysis is concerned with the behavior of the programmed model with respect to its
use of model variables. This behavior is classified according to the definition, referencing, and unref-
erencing of variables [Adrion et al. 1982], i.e., when variable space is allocated, accessed, and deal-
located. A data flow graph can be constructed to aid in the data flow analysis. The nodes of the
graph represent statements and corresponding variables. The edges represent control flow.

Data flow analysis can be used to detect undefined or unreferenced variables (much as in static
analysis) and, when aided by model instrumentation, can track minimum and maximum variable val-
ues, data dependencies, and data transformations during model execution. Tt is also useful in detect-
ing inconsistencies in data structure declaration and improper linkages among submodels [Rama-
moorthy and Ho 1977].

3.2.5 Consistency Checking

Consistency checking is essential to the integrity of the model. It is intended, as Saib et al.
[1977] put it, to prevent “apples being assigned to oran ges.” Consistency checking is concerned with

verifying that the model description does not contain contradictions. All specifications must be clear

15

and unambiguous so that each person viewing the model sees the same thing. All model components
must fit together properly. Consistency checking is also concerned with verifying that the data ele-
ments are being manipulated properly. This includes data assignment to variables, data use within
computations, data passing among submodels, and even data representation and use during model
input and output (e.g., input prompts and output descriptions accurately reflect the meaning and use
of the data). Much of consistency checking is accomplished by using the documentation produced by
syntax and semantic analysis (listings, cross-references, etc.) as material to guide code inspections
and walkthroughs. As the specification becomes more formally stated, more of the work can be auto-
mated. Data elements and interfaces can be checked as they are actually used to ensure their consis-
tent usage.

All studies should maintain as part of their specification and documentation a data dictionary.
The data dictionary defines the purpose and composition of each data item. By having the data dic-
tionary on-line in a data base during development, consistency checking can be greatly enhanced.
Language sensitive editors can query the dictionary each time a data element is declared or used,
verifying that conflicts do not occur. Additionally, the data dictionary serves as a cross-reference
source during compilation and similar analysis, and further aids subsequent phases of PMV.

Yet another perspective on consistency checking pertains to the cosmetic style with which lan-
guage elements are applied (e.g., naming conventions, use of upper, lower, and mixed case, etc.).
This perspective follows the same reasoning behind the creation of formatted listings with “pretty
printers”: cleaner presentation leads to ease of understanding. While seemingly a matter of taste with
little merit for attention, cosmetic consistency has a significant standardization effect. From stan-
dardization follows better understanding, from better understanding, improved likelihood of added
quality.

3.2.6 Advantages and Disadvantages of Static Analysis

Most static analysis techniques have automated tools which support their use. As a result, the
human resource cost is appreciably low. Since model execution is not involved, computer resource
cost is moderate compared to instrumentation-based verification approaches. These techniques are
limited, however, in what they can actually verify. For instance, static analysis can verify that the
syntax used conforms to the defined syntax of the language. It can make conclusions about the
semantics of the model and inferences on aspects of the model's execution. It cannot insure that the
intentions of the modeler are being met nor can it algorithmically examine a model to determine its

execution behavior [Fairley 1978; Hopcroft and Ullman 1969]. Further, the basis for performing the

16

verification must be shown to be correct (e.g., the compiler must be correct).

Overall, static analysis has proven to be an effective verification method. Its strength lies in the
number of well-known techniques which are supported by a variety of commercially available tools,
most of which are highly antomated. Further, static analysis complements other methods of verifica-
tion, such as symbolic execution and execution profiling, to name a couple,

Especially important to the simulation study is the extensive documentation generated through
static analysis. Graphs which depict the model's logic and data flow are easily understood even
through the layman's eyes. The construction of the model can be shown to be structurally sound and

free of any anomalies which might arouse questions about the model's integrity.
3.3 Dynamic Analysis

Verification by dynamic analysis is accomplished by evaluating the model during its execution.
As the model is exercised, its behavior is observed and information about its execution gathered.

Testing and dynamic analysis are often considered one and the same. This is probably because
they both relate to exercising the model. However, their relationship is not to be misunderstood.
Dynamic analysis encompasses much more than model testing. There are a variety of other tech-
nigues which are concerned with model execution behavior. Symbolic debugging, execution tracing,
and execution monitoring are also dynamic techniques. Model testing is, however, the broadest area
of dynamic analysis and perhaps the most common means thought of for verifying execution behav-
ior. What more natural way to check if a model behaves as desired than to watch it execute?

Dynamic analysis is the traditional verification approach used by software developers. Because
of the proliferation of dynamic analysis techniques among developers, it is not surprising that as a
group these techniques are the most popular and commonly used. Techniques range from the ad hoc
to the carefully researched.

Effective dynamic analysis has a moderate to high level of complexity. One area of complexity
18 determining what to test and how to test it. This can be an ominous undertaking even for moder-
ately sized models (5,000 to 10,000 lines of code). The sheer number of execution paths a model
might take makes complete testing prohibitive, if not impossible. Deciding which testing approach to
take often becomes a battle of trade-offs between time and effort versus level of coverage obtained.
Fortunately, static analysis and symbolic analysis are helpful in determining the testing needs of the
various areas of the model. Instrumentation is also helpful in preparing the model for collecting exe-
cution information. Another complexity is interpreting the analysis results. Presenting the data in a

meaningful way is just one aspect of the problem. Applying the evidence to the goal of verification

17

is another.

The high computer resource needs of dynamic analysis should be obvious. The human resource
cost may not be so obvious. Some dynamic analysis techniques require continuous monitoring and
activity by the modeler. On-line debugging, for instance, requires a heavy investment in modeler
time. On the other hand, generating an execution trace requires little human effort at all. All dynamic
analysis techniques require time to analyze the execution results. Human resource cost may become
expensive. Like static analysis, most dynamic techniques are automated, with many well-known
tools and techniques for performing it available. By allowing the observation of model behavior,
dynamic analysis provides a good basis for verifying functional correctness.

Discussion of dynamic analysis techniques follows in the sections below.
3.3.1 Top-down Testing

As mentioned earlier, model testing is the broadest area of dynamic analysis. To be effective,
there needs to be a well-disciplined plan for applying testing. Most models’ testing needs are simply
too immense to approach testing in a haphazard manner. Myers [1979] uses a simple problem to
clearly illustrate how testing quickly mushrooms into an enormous task. Skeptics are advised to try
this self-assessment test! |

In a typical simulation study, the model will consist of several large submodels (or modules),
each of which may operate on a separate processor. Each of these submodels may contain more sub-
models (or units). For the model to become operational, all of these model components must be inte-
grated together. In addition to testing the individual models and submodels, the integration of the
model must be tested. This is known as integration testing. There are several approaches to testing.
Some approaches are directional, proceeding from one level of the model to another. Other
approaches are concerned with a particular view of the model, looking at what it produces or the
details of how it was built. In practice, multiple approaches are blended to achieve comprehensive
testing. Specific model designs often lend themselves to a particular approach. Thus, there is no cor-
rect approach. It is up to the modeler to decide which testing approach best fits a given situation,

To best understand top-down testing, one must discuss top-down model development. In top-
down development, the modeler defines a global picture of the model which he then breaks into sub-
models. For each submodel, the process is repeated. When the model has been designed, implemen-
tation begins at the global (top) level of the model. When that level has been developed, the modeler
similarly develops each submodel, until the model development is complete.

Top-down testing follows the same pattern as top-down development (although the two need

18

not parallel each other). Top-down testing would begin with testing the global model and then pro-
ceed to testing the submodels. When testing a given level, calls to sublevels are simulated using sub-
model “stubs.” A stub is a dummy model which has no other function than to let its caller complete
the call. Fairley [1976] lists the following advantages of top-down testing: (1) model integration test-
ing is minimized, (2) early existence of a working model results, (3) higher level interfaces are tested
first, (4) a natural environment for testing lower levels is provided, and (5) errors are localized to
new submodels and interfaces.

Some of the disadvantages of top-down testing are: (1) thorough submodel testing is discou-
raged (the entire model must be executed to perform testing), (2) testing can be expensive (since the
whole model must be executed for each test), (3) adequate input data is difficult to obtain (because
of the complexity of the data paths and control predicates), and (4) integration testing is hampered
(again, because of the size and complexity induced by testing the whole model). [Fairley 1976; Panzl
1976]

The opposite approach to top-down testing is bottom-up testing which is discussed below.
3.3.2 Bottom-up Testing

Bottom-up testing follows bottom-up implementation. In bottom-up implementation, the system
is coded from the submode! level up. As each submodel is completed, it is thoroughly tested. When
the submodels comprising a model have been coded and tested, the submodels are integrated and
integration testing is performed. This process is repeated until the complete model has been integrat-
ed and tested. The integration of completed submodels need not wait for all “same level” submodels
to be completed. Submodel integration and testing can be, and often is, performed incrementally.
With the bottom-up strategy, the model is constructed from supposedly correct components.

This strategy encourages extensive testing at the submodel level. Since most well-structured
models consist of many submodels, there is much to be gained by bottom-up testing. The smaller the
submodel and more limited its function, the easier and more complete its testing will be. Bottom-up
testing is particularly attractive for testing distributed systems.

One of the major disadvantages of bottom-up testing is the need for individual submodel drivers
1o test the submodels. These drivers, more commonly called test harnesses, simulate the calling of
the model and pass test data necessary to exercise the submodel. The task of developing hamnesses
for every submodel can be quite large. In addition, these harnesses may themselves contain errors.

Another disadvantage, as Panzl [1976] points out, stems from the fact that once tesﬁng rises

above the lower level submodels, bottom-up testing faces the same cost and complexity issues as

19

does top-down testing past the higher levels. In both strategies, exhaustive testing of the interior sub-
models to opposite-end submodels (e.g., in top-down testing, the lower level submodels) is costly
and difficult — if not impossible.

Mixed testing is a compromise to the top-down and bottom-up strategies. Under this approach,
bottom-up testing is performed on submodels that cannot be tested top-down with mere stubs. Exam-
ples of such submodels are /O models and interrupt handlers. The predominant technique in mixed
testing is the top-down strategy.

Regardless of whether the strategy is top-down or bottom-up, some sort of environment simula-
tion overhead is inherent. To be effective, the testing strategy must be well-planned and implement-
ed so that it checks as many situations as possible, evenly distributed throughout the model, with the

least incurred cost.
3.3.3 Black-Box Testing

Black-box testing is concerned with what the model or submodel does, i.e., what its function is.
Black-box testing, also called functional testing, views the model as a black box. The concern is not
what is in the box; rather, what is produced by the box. Testing of the model is accomplished by
feeding inputs to the model and verifying the corresponding outputs. The model specification is used
to derive test data [Myers 1979; Howden 1980].

It is virtually impossible to test all inputs to the model. Rather than verifying that the model pro-
duces the correct output for each input, the modeler is more interested in finding inputs that produce
incorrect outputs. Determining if the test set is complete is the main drawback to black-box testing
[Westley 1979]. Black-box testing is typically used at the global model level, when all of the sub-
models have been thoroughly tested with another approach.

3.3.4 White-Box Testing

As opposed to black-box testing, which tests the function of a model, white-box testing tests the
model based on its internal structure (how it was built). White-box testing uses data flow and control
flow graphs to verify the logic and data representations of the model. The focus of testing here is
breadth of coverage of model paths. As many execution paths as possible should be tested.

White-box testing is the most common mode of testing. It is the only reliable means of detecting
redundant code, faulty model structure, and special case errors [Westley 1979]. An effective test

plan determines which approach best fits the varied needs of the model and applies them according-

20

ly. In most cases, all approaches will be used in some way, blended together in a well-orchestrated,

concerted manner.

3.35 Stress Testing

A characteristic of simulation software is a dependency on time. Quite often real-time require-
ments and tight synchronization are involved. Testing these time-dependent situations is a difficult
task. Many testing techniques are not adequate for these particular needs.

An approach to time-sensitive testing needs is stress testing. Stress testing is similar in nature to
boundary analysis (see Section 3.5.3), with the critical parameter being time [Dunn 1987]. Stress
testing tests the model on the borders of its time critical components. It pushes the model to and
beyond its limits. As an example, consider a simulation model of a traffic intersection which speci-
fies a maximum arrival rate of 50 cars per minute in a lane. A typical stress test would be a lengthy
test forcing cars to arrive at or near the maximum arrival rate. In effect, the intersection becomes
flooded with cars and the model's response in this situation can be monitored. Another test might be
to exceed the maximum arrival rate for an extended period of time. If the model performs well under
both valid and invalid input conditions, the model is said to be robust. As Myers [1979] points out,
such tests are valuable because (1) such “never-will-occur” situations may, in reality, occur, and (2)
system response under such conditions is often indicative of errors that might occur under “normal”,
less stressful conditions.

Stress testing, while in no way considered an exhaustive testing technique, is valuable for giving
evidence (along the lines of strength in numbers) that a model will behave as desired if, after numer-
ous stressful tests have been performed, no errors arise. Lack of errors do not imply correctness;
however, stress testing provides an alternative to not having any functional evidence at all. It is
important that any test plan involving stress testing be strongly supported with a solid structural test-

ing program.

3.3.6 Debugging

Debugging is often confused with testing, much as testing is confused with verification. Testing
reveals the presence of errors, debugging finds them and removes them. Debugging is an expensive
technique. As Dunn [1987] points out, 10 minutes of testing can result in 10 hours of debugging.
Every effort should be made to remove defects before coding ever begins. Debugging, however, is

an inevitable step of the simulation model development life cycle.

21

Given that errors have been detected by testing, debugging involves locating the source of error,
determining the needs for correctin g the error, making the correction, and then retesting the model to
ensure successful modification. Probably the most difficult one of these tasks is isolating the true
source of the error. Frequently, what may appear to be the source of the error is but an extension of a
deeper problem. If the true source is not found, not only does the model remain incorrect, proposed
“solutions™ may in fact introduce other problems. The following sections discuss techniques which

make debugging more effective.

3.3.7 Execution Tracing

Often times one of the best means of locating model defects is by “watching” the line-by-line
execution activity of the model. This technique is known as execution tracing. Tracing is a very pow-
erful means of verifying a model. The modeler can view the model’s execution, determine what fac-
tors cause the traversal of particular paths, follow model data flow, determine in what order data ele-
ments combine and how the data is treated, and so on. Tracing is like creating a window into the
execution environment. The modeler can see what is happening at specific locations in the model,
recreate the events of the simulation, and easily track the source of errors.

Execution tracing is most often associated with interpretive languages. Interpretive languages
offer source level tracing by simply displaying the source statement being interpreted at the given
moment. Quite often development will be done using an interpretive version of the source language,
then converting to a compiled version when development is complete. The tracing features and
closeness to the source code of interpretive languages make this an attractive alternative. In com-
piled languages, tracing can be facilitated via model instrumentation.

An execution trace can become very large very quickly. For this reason virtually all languages
with any trace capability provide a mechanism for turning tracing on and off. Some languages, either
directly or through instrumentation, pre-processing, etc., have facilities for generating traces only
when certain exceptions occur, when certain model states are realized, or at specified points in the
model code. Trace data can be displayed during execution or routed elsewhere for subsequent analy-
sis and use. Fairley [1975,1976] suggests maintaining the trace data in a data base in order to
enhance further verification activity.

Although execution tracing can be used to verify the model, other techniques are often easier to
use, with the same or greater effectiveness, Typically, tracing is used to aid debugging by isolating

known errors in the code.

22

3.3.8 Execution Monitoring

As a model executes, it is useful to monitor execution activity. Like tracing, execution monitor-
ing provides a description of what the model is doing during execution. However, instead of giving a
line-by-line account, monitoring gives information about activities and events which took place dur-
ing execution. Monitoring may provide information about how many times the model accessed a
section of storage, or how long it took to perform a certain task. It may tell how many times the
model was preempted by another job or how many times a page fault occurred (e.g., CPU utilization
and waiting time). Execution monitoring provides an added dimension of information about model
activity than does execution tracing.

Monitoring is accomplished by first instrumenting the code with statements or submodels to
perform the monitoring activity. When the simulation begins these submodels act as a shell around
the actual model, allowing it to execute as normal except as required to gather execution informa-
tion. In this way, hardware interrupts and other activities can be intercepted and processed as needed
before passing control to the model. Except for the degradation of performance, the activities of the
monitor are transparent. In order to minimize the execution slowdown, the monitoring may be done
in a statistical manner. Instead of capturing every detail of model execution, the monitor submodels
may take a sample at fixed intervals (say 20,000 times a second). During the interrupt, a quick
recording of model state is made. The greater the sample size, the more detailed and reliable the
result will be — at the expense of model execution speed.

Simulation models frequently involve distributed systems or real-time systems. Suppose, for
example, a chemical process being modeled uses a number of hardware devices which communicate
with each other via a message passing scheme. Messages are sent to a central dispatch processor,
which in turn forwards the message to the appropriate recciving‘device. A concern of the model
might be what percentage of the dispatcher's time is spent sending to, and receiving from, the various
devices. Because of its hardware sensitive nature, execution monitoring would be useful in verifying
these activities. Of course, for this example to be truly effective, care must be taken to ensure that
the activity of the monitor does not seriously alter the events of the simulation. The effective use of
execution monitoring constitutes a balance between the level of information obtained and the cost of

obtaining it.
3.3.9 Execution Profiling

Execution profiling is a technique similar to execution monitoring. Profiling, however, is not as

23

concerned with low level details as monitoring might be. Rather, profiling constructs a model profile
which views matters on a much higher plane, While a monitor might check the number of times a
communication signal was received, a profile would determine how many times the source code pro-
cedure which handles incoming signals was executed. The profile gives its results directly in terms
of the source definition. The monitor, on the other hand, is more likely to provide memory addresses
and port designations which will then have to be mapped to their source level equivalent.

Profiling requires instrumentation of the model to map the runtime code to the corresponding
Source statement. When execution takes place, the instrumented model counts the number of times
designated lines of the source code were executed or how often variables were referenced. A good
profiling tool will allow the modeler to specify what level of profiling should be done. Useful infor-
mation might be the number of times a submodel was entered, (i.e., how many times it was called),
the number of times each line in a submodel was encountered, or the number of times a set of varia-
bles was referenced (e.g., global variables). This information, coupled with the knowledge of the test
data that generated it, can verify proper control flow and data access, as well as show where the
model is spending its time and what improvements and/or corrections can/must be made.

Perhaps surprising to some, execution profiling tends to be more costly than execution monitor-
ing. This is because a count must be kept of each line or element designated. Each time a line is
encountered, execution must be interrupted and the count incremented. Since the profile is intended
to be an actual count, it cannot be aided with statistical methods to increase its performance. Further
slowdown occurs when mapping activity to the source level. Like monitoring, effective use of profil-

ing requires care and consideration.
3.3.10 Symbolic Debugging

Symbolic debugging is a technique which uses a debugging tool that allows the modeler to
manipulate model execution while viewing the model at the source code level. By setting “break-
points”, the modeler can control the conditions under which he interacts with the model. He may
want to interact with the entire model one step at a time, or, as is more commonly the case, at prede-
cided locations or under specified conditions. When using a debugger, the modeler is not merely a
spectator. He may alter model data values or cause a portion of the model to be “replayed”, i.e., exe-
cuted again under the same conditions (if possible). Typically, the modeler will utilize the informa-
tion from execution history generation techniques, such as tracing, monitoring, and profiling, to iso-
late a problem or its proximity. He will then proceed with the debugger to understand how and why

the error occurred.

24

The earliest debuggers operated at the machine level, or at best, the assembly level. Using the
debugger meant hours of tedious perusal of core dumps and conversion of hexadecimal codes. Cur-
rent state-of-the-art debuggers allow viewin g the runtime code as it appears in the source listing, set-
ting “watch” variables to monitor data flow, viewing complex data structures, and even communicat-
ing with asynchronous I/O channels. The use of symbolic debugging can greatly reduce the
debugging effort while increasing its effectiveness. Symbolic debugging allows the modeler to

locate errors and check numerous circumstances which lead up to the errors.

3.3.11 Regression Testing

By definition, life cycle implies change. As model development progresses the model is going
to evolve: evolve to incorporate design changes, evolve to correct mistakes. Verification is also a
continuous process, flowing with the tide of change. It is imperative, however, that verification not
get lost in this sea of change. PMV must be able to keep abreast of the ebbs and flows of
development,

When mistakes are corrected, the corrections often result in adverse side-effects to the existing
model. If care is not taken, the correction of an error in one place leads to an error in another. The
later in the life cycle error correction takes place, the greater the likelihood of harmful side-effects
occurring. Regression testing seeks to assure that model corrections do not initiate other problems.
Regression testing is usually accomplished by retesting the corrected model with a subset of the pre-
vious test sets used. This makes retaining and managing old test data essential. Successful regression
testing is as much a matter of planning and confi guration control (simulation project library manage-
ment, version control, traceability, etc.) as it is anything else. Thus a plan for performing regression
testing must be incorporated in the overall model design. Waiting until the first (sub)models begin

undergoing correction and revision is too late to think about re gression testing,

3.3.12 Advantages and Disadvantages of Dynamic Analysis

Dynamic analysis is not without its limitations. As alluded to carlier, the potential cost in human
resources can be very high. If not managed properly, dynamic analysis can needlessly consume the
time of the modeler. Secondly, dynamic analysis cannot show model correctness. It can only reflect
how the model behaves for a given set of test data. The possible test sets for a model can be infinite.
Thus complete testing is rendered impossible for virtually all practical models of any speakable size.

Adequate test coverage is a problem as well, The required scope of coverage broadens in exponential

25

fashion as the model increases in size. Dynamic analysis does not possess the capability to manage
this situation.

On the other hand, dynamic analysis techniques thoroughly document a given test execution. It
can provide conclusive proof that a model functioned as intended. Dynamically executing the model
is the only way to test (or “see”) how the model behaves on a given hardware, or when operating on
distributed hardware. The execution history not only enhances error detection and correction, it
serves as a reference of model structure which can be used to enhance and maintain the model. Com-
bining dynamic analysis with other verification techniques helps reduce some of the problems asso-

ciated with dynamic analysis.

3.4 Symbolic Analysis

As pointed out in the previous section, dynamic analysis' effectiveness is limited because of the
inability to verify all possible test cases. There is an approach to verification, however, that directly
addresses this particular problem.

Symbolic analysis is an approach to verification that provides symbolic inputs to a model and
produces expressions for the output which are derived from the transformation of the symbolic data
along model execution paths. The basis for the verification is the transformation of inputs to outputs
during execution. Symbolic analysis, like dynamic analysis, seeks to determine the behavior of the
model during execution. It is a formal way of determining cause and effect relationships within the
model. Some symbolic analysis techniques verify classes of input test data while others reduce the
verification needs through the generation of effective test data.

Because of its ability to deal with abstractions [Howden 1977] symbolic analysis is an effective
means of verifying specifications. Its usefulness during programming is self-evident.

The simulation model is constructed in accordance with certain assumptions about the system
being modeled. After the model is built, it undergoes experimentation. If the assumptions of the
model are violated during experimentation, the model may become invalid, even though the pro-
grammed model may function in a seemingly normal manner. As will be discussed in more detail
later, symbolic analysis, when used in conjunction with constraint analysis, is a powerful tool for

verifying conformance with model assumptions.

26

3.4.1 Symbolic Execution

Symbolic execution is the primary means of performing symbolic analysis. It is performed by
executing the model using symbolic values rather than actual data values for input. During execu-
tion, the symbolic values are transformed as defined by the model and the resulting expressions are
output.

When unresolved conditional branches are encountered, a decision must be made which path to
traverse. Once a path is selected, execution continues down the new path. At some point in time, the
execution evaluation will return to the branch point and the previously unselected branch will be tra-
versed. All paths eventually are taken.

The result of the execution can be represented graphically as a symbolic execution tree [King
1976; Adrion et al. 1982]. The branches of the tree correspond to the paths of the model. Each node
of the tree represents a decision point in the model and is labeled with the symbolic values of data at
that juncture. The leaves of the tree are complete paths through the model and depict the symbolic
output produced.

As Westley [1979] points out, a big advantage of symbolic execution is in showing path correct-
ness for all computations regardless of test data. One symbolic representation replaces a potentially
infinite number of actual test cases. There are other advantages.

Symbolic execution is also a great source of documentation [Osterweil 1983]. The resulting exe-
cution tree is in essence a symbolic trace of model function along its execution paths. Osterweil goes
on to state, however, that the most important use of symbolic execution is as an aid to assertion
checking, a type of constraint analysis. Constraint analysis verifies the model assumptions at critical
points in the model (e.g., decision points) and symbolic execution verifies the behavior along the
paths between constraint checks.

There are some problems with symbolic execution. Foremost is the issue of size. The execution
tree explodes in size as the model grows. If the model is structured, then this problem can be relieved
by analyzing subtrees of the model [Westley 1979]. Loops cause difficulties with symbolic execu-
tion. Since all paths must be traversed, loops make thorough execution impossible. This problem can
usually be resolved by inductive reasoning, with the help of constraint analysis [Westley 1979; Adri-
on et al. 1982]. Symbolic execution is also limited in its use with complex data structures because of
difficulties in symbolically representing particular data elements within the structure [Hausen and
Mullerburg 1983; King 1976; Ramamoorthy et al. 1976]. Since symbolic execution can be so diffi-
cult and cumbersome, its use is advocated only in systems with stringent reliability requirements

[Ould and Unwin 1986] — much like a simulation model.

27

34.2 Path Analysis

The path analysis testing strategy [Howden 1976] attempts to verify model correctness on the
basis of complete testing of all model paths. To perform path analysis, it is first necessary to deter-
mine the model's control structure (e.g., through structural analysis). This is followed by generating
test data which will cause select model paths to be executed. Symbolic execution can be used to
identify and group together classes of input data based on the symbolic representation of the model.
The test data is chosen in such a way as to provide the most comprehensive path coverage possible.
Among the coverage criteria sought are: (1) statement coverage, (2) node coverage (encounter all
nodes), (3) branch coverage (cover all branches from a node), (4) multiple decision coverage
(achieve all decision combinations at each branch point), and (5) path coverage (traverse all paths)
[Prather and Myers 1987]. By selecting appropriate test data, the model can be forced to proceed
through each path in its execution structure, thereby providing comprehensive testing.

In practice, only a subset of possible model paths are selected for testing. Recent work has
sought to increase the amount of coverage per test case or to improve the effectiveness of the testing
by selecting the most critical areas to test. The path prefix strategy [Prather and Myers 1987] is an
“adaptive™ strategy that uses previous paths tested as a guide in the selection of subsequent test
paths. Prather and Myers [1987] prove that the path prefix strategy achieves total branch coverage.

The identification of essential paths [Chusho 1987] is a strategy which reduces the path cover-
age required by nearly 40 percent. The basis for the reduction is the elimination of non-essential
paths. Paths which are overlapped by other paths are non-essential. The model contro! flow graph is
transformed into a directed graph whose arcs (called primitive arcs) correspond to the essential paths
of the model. Non-essential arcs are called inheritor arcs because they inherit information from the
primitive arcs. The graph produced during the transformation is called an inheritor-reduced graph.
Chusho presents algorithms for efficiently identifying non-essential paths and reducing the control
graph into an inheritor-reduced graph, and for applying the concept of essential paths to the selection
of effective test data.

34.3 Cause-Effect Graphing

Cause-effect graphing [Myers 1979] is a technique that aids in the testing of combinational
input data by providing systematic selection of input condition subsets. Cause-effect graphing is per-
formed by first identifying causes and effects stated in the model specification. Causes are input con-

ditions, effects are transformations of output conditions. The causes and effects are listed, and the

28

semantics are expressed in a cause-effect graph. The graph is annotated to describe special condi-
tions or impossible situations. Once the cause-effect graph has been constructed, a limited-entry
decision table is constructed by tracing back through the graph to determine combinations of causes
which result in each effect. The decision table is then converted into test cases.

A typical cause-effect graph and corresponding decision table will have numerous causes and
effects. For this reason, the submodel must be dissected into segments small enough to be workable.
This working size depends on the nature of the model. The outcome of cause-effect graphing is a rel-
atively small set of high-yield test cases, as well as a unique graphical description of the model,
Myers [1979] provides a very detailed example of canse-effect graphing,

344 Partition Analysis

Partition analysis [Richardson and Clarke 1985] is a means of verifying the consistency of a
model against its specification while at the same time generating comprehensive test data. It is,in a
sense, a method of submodel testing. Partition analysis is accomplished by (1) partitioning the model
domain into submodels, (2) comparing the elements and prescribed functionality of each submodel
specification with the elements and actual functionality of each submodel implementation, and 3)
deriving test data which will extensively test the functional behavior of the submodel.

Partitioning is done by decomposing both specification and implementation into functional rep-
resentatives. The decomposition is derived through the use of symbolic evaluation techniques, which
maintain algebraic expressions of model elements and show model execution paths. Once parti-
tioned, the functional representations are compared. These functional representations are the model
computations. Two computations are equivalent if they are defined for the same subset of the input
domain which causes a set of mode] paths to be executed, and if the result of the computations is the
same for each element within the subset of the input domain [Howden 1976]. Standard proof tech-
niques are used to show equivalence over a domain. When equivalence cannot be shown, partition
testing is performed to locate errors — or, as Richardson and Clarke [1985] state, to increase confi-
dence in the equality of the computations due to the lack of error manifestation. By involving both
the specification and the implementation in the analysis, partition analysis is capable of providing

more comprehensive test data coverage than other test data generation techniques.

345 Advantages and Disadvantages of Symbolic Analysis

In itself, symbolic analysis is an expensive method of verification. The generalizations of Input

29

data can be difficult to obtain and deriving the symbolic expressions can be an extremely complex
task. Even if the symbolic expressions can be derived, their complexity may render them meaning-
less. Human resource cost can easily become unreasonably high, both in deriving symbolic results
and in interpreting the results.

The effectiveness of symbolic analysis lies not in its standalone use, but as an auxiliary for other
verification methods. Cause-effect mapping and partition analysis, for example, can generate effec-
tive test data for use with dynamic analysis. Symbolic execution can verify classes of test data, mak-
ing dynamic analysis more effective in other areas of verification ~ areas where other methods may
be less effective or less practical. The complementary relation of symbolic analysis and constraint

analysis will be discussed in the following section.

3.5 Constraint Analysis

Early in the Simulation Model Development Life Cycle [Balci 1989], when the model is formu-
lated and specifications created, certain assumptions are made about the nature of the model. The
simulation model operates within fixed boundaries. The Conceptual Model (model specification)
details the constraints (boundaries, assumptions) on the model.

Constraint analysis verifies on the basis of comparisons between model assumptions and actual
conditions arising during model execution. It additionally provides a level of validation. Constraint
analysis has formal foundations, though not so formal as to be impractical to apply. Because of its
formality, it has very powerful verification capability. Short of formal proof of correctness, con-
straint analysis provides the highest degree of PMV. Assertion checking, inductive assertions, and

boundary analysis are the three techniques of Constraint Analysis which are discussed next.

35.1 Assertion Checking

Assertion checking verifies that the programmed model is performing according to its specifica-
tion. It does this by comparing actual model state information with intended model behavior. Asser-
tion checking accomplishes this by using assertions placed in the model to monitor model activity.

An assertion is a statement that should hold true as the programmed model executes. The pur-
pose of an assertion is to check what is happening against what the modeler assumes is happening.

Consider, for example, the following pseudo-code:

30

Base := Hrs * PayRate;
Gross := Base * (1 + BonusRate);

In just these two simple statements, many assumptions are being made. It is assumed that Hrs is
non-negative; the same is assumed for PayRate and BonusRate. If the assumption is not true, Gross
is meaningless, or even worse for some innocent employee, disastrous! Asserted code for this same

segment might look like:

Assert(Base > 0 and PayRate > 0 and BonusRate > 0);
Base := Hrs * PayRate;

Gross := Base * (1 + BonusRate);

Clearly, the assertion serves two important needs. First, the assertion statement verifies that the
model is functioning within its given domain. Secondly, the presence of the assertion statement doc-
uments the intentions of the modeler.

Aséertion statements which have been placed into the model's code as part of the runtime model
are called dynamic or executable assertions, Placing assertions into the code is a form of instrumen-
tation. This type of instrumentation is not likely to be automated. Placement of assertions requires
deliberation on the part of the modeler. The more formal the model specification, the easier this task
will be. Symbolic analysis is helpful in determining effective placement of assertions. Symbolic
analysis results in a graphical representation of model control flow, making it easier to locate effec-
tive places to put the assertions.

Assertion statements are typically entered into the source code as some form of comment. Most
languages do not provide assertion features. Some languages do, however, allow assertions to be
placed as comments in the source code and, through the use of a preprocessor, generate runtime
assertion checking code. The ideal situation is to have a language which includes an assertion state-
ment feature which can be activated at runtime as desired.

The idea of assertion features within a language dates back as far as 1972 when Satterthwaite
[1972] included an ASSERT statement in his version of Algol W. Other authors have published sim-
ilar work [Andrews and Benson 1979; Chow 1976; Fairley 1975; Hetzel 1973; Stucki and Foshee
1975). Taylor [1980] acknowledges the shortcomings of most languages in accommodating assertion
checking and provides a summary of suggested and recommended assertion features. These features
include such things as defining the scope of an assertion’s activity (locally, regionally, or globally),

the ability to quantify assertions (forall and exists operators), the ability to reference previous varia-

31

ble values, and the ability to control the support environment (which assertions are active, what
actions are taken on violation, features to control overhead, etc.). Even if a language does not include
such features, Taylor's list provides guidance for developing procedures to be embedded into the
code to perform the necessary assertion checking. The pseudo-code example above is written in such
a way as to suggest the presence of an Asserr procedure which is passed the result of the conditional
expression and can then take appropriate action. Stucki [1977] provides a thorough discussion on the
suggested use of assertions. Andrews and Benson [1979] extend the discussion to include the opera-
tors of first-order predicate calculus (implications, existence, and universal quantifiers mentioned
above),

Assertion checking is expensive to implement, Expense comes in both human and computer
resource cost. It is, however, a powerful verification technique. It provides the modeler a means to
verify conformance to model specifications. It also provides documentation of modeler's intentions
within the source code. When combined with symbolic analysis techniques such as symbolic execu-
tion, assertion checking becomes a very comprehensive means of verification. Assertions at the entry
and exit points of a submodel verify the transformation of input to output states. Symbolic analysis

can be used to verify what takes place between the assertions.

3.5.2 Inductive Assertions

The use of inductive assertions {Floyd 1967; Knuth 1968; Hoare 1969; Manna et al. 1973;
Reynolds and Yeh 1976] provides the most “formal” constraint analysis verification and is, in fact,
very close to formal proof of model correctness. This method requires the modeler to write input-to-
output relations for all model variables. These relations are then written as assertion statements and
placed into the model along model paths. The assertions are placed along the paths in such a way as
to divide the model into a finite number of “assertion-bound” paths, i.e., an assertion statement lies
at the beginning and end of each model path. The number of paths is made finite by placing an asser-
tion within each loop in the model. These paths correspond to the compile-time traversal of the mod-
el rather than the run-time traversal [London 1977]. Verification is achieved by proving that for each
path, if the assertion at the beginning of the path is true, and all statements along the path are execut-
ed, then the assertion at the end of the path is true. If all paths plus model termination can be proved,

by induction, the model is proved to be correct.

32

3.5.3 Boundary Analysis

A model’s input domain can usually be divided into classes of input data (known as equivalence
classes) which cause the model to function the same way. For example, a traffic intersection model
might specify that the probability of a left turn in a three-way turning lane is 0.2, the probability of a
right turn is 0.35, and the probability of continuing straight is 0.45. The modeler incorporates this
into the model using a series of conditional branches which branch on a value produced by a random
number generator. The random number generator produces numbers in the range 0 < m < 1. In
effect, the model contains three separate equivalence partitions here: 0<m<0.2, 0.2<rn<0.55, and
0.55«<rn<1. Each test case from within a given partition (i.e., class) will have the same effect on the
model.

Boundary analysis is a technique that tests the activity of the model using test cases on the boun-
daries of input equivalence partitions. Test cases are generated just within, on top of, and just outside
of the partition boundaries [Myers 1979]. In the example given above, rather than arbitrarily select-
ing test cases from each of these equivalence classes, the modeler would, using boundary analysis,
generate test cases at the edges of each class. Such test cases might be 0.0, 0.000001, 0.199999, 0.2,
and so on. In addition to generating test data on the basis of input equivalence classes, it is also use-
ful to generate test data which will cause the model to produce values on the boundaries of output
equivalence classes [Myers 1979]. The underlying rationale for this technique as a whole is that the
most error-prone test cases lie along the boundaries [Ould and Unwin 1986]. Notice that an invalid
value was among the test values listed in the example above. This relates directly to the concept dis-
cussed in stress testing (Section 3.3.5).

The primary difficulty in boundary analysis lies in determining the boundaries of the equiva-
lence classes. The example above was trivial. Typical, “real-life” simulation models will involve
much more effort to establish their boundaries, with each model having its own special conditions to

consider.
3.54 Advantages and Disadvantages of Constraint Analysis

Constraint analysis techniques find their origins in the predicate calculus. The assertions them-
selves are model predicates. The activity between entry and exit assertions is the transformation of
the predicates. However, the ability to state and place assertions effectively relies in large part on
formal model specification. Creating a formal specification is a difficult task. Using assertions is fur-

ther complicated by the lack of assertion capabilities in programming languages. Most languages

33

provide no facility for performing assertion checking. Yet another drawback is high human resource
cost. Likewise, computer resource cost is very high, primarily because the instrumented model suf-
fers performance degradation.

On the other hand, constraint analysis is a very effective method of verification. Assertions
placed in the source code provide a good source of documentation., Further, constraint analysis can
actually verify that the model {(or some subset thereof) is functioning correctly, i.e., in accordance
with its specification. This is essential in simulation studies.

The programmed model is not simply a software package designed to provide some range of
capability. It is a representation of a real entity. It is designed to provide information about the Sys-
temn it represents. It must not simply function correctly, it must produce sufficiently valid results, as
stated in its specification. Consider, for example, a decision-support system used by a stock market
analyst to make predictions and recommendations concerning market activity, When the analyst
needs help in interpreting data, he consults the system, which responds with the appropriate interpre-
tation on the basis of an underlying model. Suppose, however, that some constraint of the model is
violated. The decision-support program may function correctly by evaluating the data in the proper
manner. Unfortunately, the results given are invalid — mathematically correct, but invalid for the giv-
en model. From this it is seen that the programmed model has an added dimension of verification
need.

This leads to another aspect of the programmed model not common to other software. The exe-
cution lifetime of the programmed model is spent in the experimentation process. Its on-going pur-
pose is to represent some other entity for the sake of making statements about that entity. A single
violated assumption, undetected, invalidates the entire study. Obviously, this is not the same situa-
tion as with the employee who gets a garbage paycheck because of a bad input. The employee will
quickly point out that some assumption was violated. The simulation model will not. It is clear that
PMV needs are high. Using the assertion checking technique, the modeler can be assured that the
model is operating within its bounds: conversely, when it is not, the modeler will know. By being
able to make this statement, the modeler builds evidence to support acceptance of the model.

The ramifications of not verifying adherance to assumptions are too great for the serious model-
€r not to employ constraint analysis. The claim that the technique is too expensive is simply not jus-
tified. Computer resource cost has long since exceeded human resource cost. Constraint analysis
may require more execution time, but it more than makes up for it: (1) by reducing the need to iterate
back through the life cycle (e.g., to redo an entire set of experiments), and (2) by enhancing the cred-
ibility of the model.

34

3.6 Formal Analysis

Formal analysis completes the spectrum of PMV methods. Formal analysis is, as the name
implies, based on formal mathematical proof of correctness, If attainable, formal proof of correctness
is the most effective means of verifying software. Unfortunately, “if attainable” is the overriding
point with regard to formal analysis. Current state-of-the-art model proving techniques are simply
1ot capable of being applied to even the simplest general modeling problems. However, formal tech-
niques serve as the foundation for other verification techniques and will be covered here for the sake
of completeness. Among the prevalent terms heard when mentioning formal analysis are: (1) proof
of correctness, (2) predicate calculus, (3) predicate transformation, (4) A-calculus, (5) inference, (6)
logical deduction, and (7) induction.

The use of the term correct with respect to PMV and software verification in general is a rela-
tive rather than absolute term. When one speaks of model correctness, he means that the model
meets its specifications. Formal proof of correctness corresponds to expressing the model in a pre-
cise notation and then mathematically proving (1) that the executed model terminates and (2) that it
satisfies the requirements of its specification [Backhouse 1986]. |

The A-calculus [Church 1951; Stoy 1977, Barendregt 1981] is a system for transforming the
programmed model into formal expressions. The A-calculus is a string-rewriting system and the
model itself can be considered as a large string. The A-calculus specifies rules for rewriting strings,
i.e., the model, into A-calculus expressions. Using the A-calculus, the modeler can formally express
the model so that mathematical proof techniques can be applied.

The predicate calculus provides rules for manipulating predicates. A predicate is a combination
of simple relations, such as completed_jobs >steady_state_length. A predicate will either be true or
false. The programmed model can be defined in terms of predicates and manipulated using the rules
of the predicate calculus. The predicate calculus forms the basis of all formal specification languages
[Backhouse 1986]. Predicate transformation [Dijkstra 1975] provides a basis for verifying model
correctness by formally defining the semantics of the model with a mapping which transforms. model
output states to all possible model input states. This representation provides the basis for proving
whether or not the model is correct (if it has transformed initial states to termination states properly).

Inference, logical deduction, and induction are simply acts of Justifying conclusions on the basis
of premises given. An argument is valid if the steps used to progress from the premises to the con-
clusion conform to established rules of inference. (These rules were developed by the German math-
ematician Gentzen). Inductive reasoning is based on invariant properties of a set of observations

(assertions are invariants since their value is defined to be true). A typical inductive argument would

35

be one similar to the one given in the previous section for inductive assertions: given that the initial
model assertion is correct, it stands to reason that if each path progressing from that assertion can be
shown to be correct, and subsequently each path progressing from the previous assertion is correct,
etc., then the model must be correct if it terminates. There are formal induction proof techniques for
the intuitive explanation Jjust given,

Several authors provide detailed coverage of formal analysis, among which are [Berg et al.
1982; Backhouse 1986; Dijkstra 1976; Hoare 1969; Knuth 1968, 1969; Polya 1954; Stoy 1977; Yeh
1977].

3.6.1 Advantages and Disadvantages of Formal Analysis

Attaining proof of correctness in a realistic sense is not possible with current technology, The
complexity of the task is simply too great. Setting up a proof for even a simple model is an expen-
sive, time-consuming undertaking. Completing the proof would be Just as intense. The matter is fur-
ther complicated by non-mathematical considerations such as machine dependencies and other relat-
ed idiosynchrosies, However, the advantage of realizin g probf of correctness — complete PMV — is

S0 great that when the capability is realized, it will revolutionize the verification of software.
4. CONCLUDING REMARKS

There is a definite problem within the simulation community concerning PMV. There is a lack
of understanding and appreciation of PMV, and there is a shortage in the literature of techniques and
guidelines for performing PMV.

For many modelers, the verification process ends the moment the model specification is relegat-
ed to the software engineering group for programming, then validation resumes when the pro-
grammed model is returned for experimentation. Unfortunately, the modeler and the programming
team each have their own (colliding) assumptions about how the verification is to be managed. The
lack of communication between the two groups is one of the major contributors to increased testing
requirements and cost. For modelers who must create the programmed model themselves, PMV is
simply viewed as debugging the code. This view has been shown to be extremely inaccurate.

While there is ample literature on software verification, that literature is targeted towards the
software engineer. The overwhelming majority of simulation practitioners are nor software engi-
neers, do not speak the software engineering “language,” and thus do not reap the benefits of verifi-

cation technology available from the software engineering field. Not only is the current simulation

36

community affected, newcomers to the field are affected by not getting adequate exposure to PMV.
The modeler needs to recognize the full scope of the PMV process, needs techniques which satisfy
PMV needs, and needs guidelines for applying the techniques to perform PMV.

This paper fills those voids in a number of ways, the first by contributing the Taxonomy for Pro-
grammed Model Verification Techniques. The taxonomy provides a comprehensive picture of the
PMYV process; the modeler can quickly grasp the scope of PMV. The taxonomy is more than just a
two-dimensional picture of verification techniques. It is actually a six-dimensional depiction of the
verification domain. This multi-dimensionality occurs because of the potential overlap of a tech-
nique into several categories. For example, it is possible for a technique to be informal, static, and
symbolic all at the same time, such as the intuitive reduction of model structure using its symbolic
execution tree. The expected effectiveness and power of a technique will generally increase as the
technique falls within more formal categories of the taxonomy. Formality — and corresponding vert-
fication effectiveness — increases from left to right across the taxonomy; likewise, one would expect
the cost to increase from left to right, which it does. Using the taxonomy, the modeler can identify
techniques with which to perform PMV, and is illuminated to the character of, the relationships
among, and the advantages and disadvantages of the verification techniques. This is helpful not only
in applying individual techniques, but also in providing guidance for planning and directing the
PMV process. The taxonomy provides a very broad base from which the modeler can establish
expansive evidence of model credibility. Such a resource as this taxonomy has not heretofore been
provided in the literature,

The extensive review of software verification techniques — adapted to the terminology of the
simulation modeler — provides additional substance to the taxonomy by explaining in familiar terms
the mechanics of the various verification techniques. Even the many software developers who have
yet to understand the software verification process will find these resources invaluable.

The emphasis of this paper is on performing PMV in an effort to increase model credibility,
This paper fills a real void that exists in the simulation model life cycle literature. It is important to
note, however, that PMV is but one of 13 CASs in the simulation model life cycle. It cannot be
emphasized enough that the other aspects of the life cycle must not be overlooked.

In the utopian sense, the automation-based paradigm [Balzer et al. 1983] would vastly reduce (if
not eliminate) the need for PMV by providing the ability to generate the model directly from the
model specification. Until that paradigm is realized, however, PMV is an inevitable step of the life
cycle of a simulation study, and this paper provides guidelines needed to make that process under-
stood and manageable.

The taxonomy developed in this paper provides a bridge for the simulation community to share

37

the wealth of verification technology available in the software engineering domain. The taxonomy
and techniques presented herein provide a clear view of how to approéch programmed model verifi-
cation in terms that the modeler is comfortable with. Additionally, the modeler is given insight into
how to apply the verification techniques for assessing the credibility of simulation models. Future
research will be directed towards the task of identifying techniques which are uniquely applicable to
PMYV, and determining unique properties of, or special means of applying, techniques for the verifi-

cation of simulation models.

REFERENCES

Adrion, W.R., M.A. Branstad, and J.C. Chemiavsky (1982), “Validation, Verification, and Testing
of Computer Software,” Computing Surveys 14,2 (June), 159-192.

Allen, F.E. and J. Cocke (1976), “A Program Data Flow Analysis Procedure,” Communications of
the ACM 19, 3 (Mar.), 137-147.

Andrews, D.M. and J.P. Benson (1979), “Using Executable Assertions for Testing,” In Proceedings
of the Thirteenth Asilomar Conference on Circuits, Systems, and Computers, Pacific Grove,
Calif., pp. 302-305.

Arthur, JD., R.E. Nance, and S.M. Henry (1986), “A Procedural Approach to Evaluating Software
Development Methodologies: The Foundation,” Technical Report TR 86-24, Department of
Computer Science, Virginia Tech, Blacksburg, Va., Sept.

Backhouse, R.C. (1986), Program Construction and Verification, Prentice-Hall International (UK)
Ltd, Great Britain.

Balci, O. (1989), “How to Assess the Acceptability and Credibility of Simulation Results,” In Pro-
ceedings of the 1989 Winter Simulation Conference (W ashington, D.C., Dec. 4-6). IEEE, Piscat-
away, N.J., to appear.

Balzer, RM., T.E. Cheatham, and C. Green (1983), “Software Technology in the 1990's: Using a
New Paradigm,” Computer 16, 11 (Nov.), 39-45,

Barendregt, H.P, (1981), The Lambda Caleulus: Its Syntax and Semantics, North-Holland, New
York, NY.

Berg, HK, W.E. Boebert, W.R. Franta, and T.G. Moher (1982), Formal Methods of Program Verifi-
cation and Specification, Prentice-Hall, Englewood Cliffs, N.J.

Boehm, B.W. (1984), “Verifying and Validating Software Requirements and Design Specifications,”
IEEE Software 1, 1 (Jan.), 75-88.

38

Bryan, W.E. and S.G. Siegel (1987), “Software Configuration Management-A Practical Look,” In
Handbook of Software Quality Assurance, G.G. Schulmeyer and J.I. McManus, Eds., Van Nos-
trand-Reinhold Company, New York, N.Y., pp. 211-247.

Buck, R.D. and J.H. Dobbins (1983), “Application of Software Inspection Methodology in Design
and Code,” In Software Validation: Inspection, Testing, Verification, Alternatives, Proceedings
of the Symposium on Software Validation (Dar mstadt, FRG, Sept. 25-30), Hans-Ludwig Hau-
sen, Ed., pp. 41-56.

Chow, R.S. (1976), “A Generalized Assertion Language,” In Proceedings of the Second Internation-
al Conference on Software Engineering, San Francisco, Calif., pp. 392-399,

Church, A. (1951), “The Calculi of Lambda-Conversion,” Anngls of Mathematical Studies 6, Prince-
ton University Press, Princeton, N.J.

Chusho, T. (1987), “Test Data Selection and Quality Estimation Based on the Concept of Essential
Branches for Path Testing,” IEEE Transactions on Software Engineering SE-13, 5 (May), 509-
517.

Deutsch, M.S. (1982), Software Verification and Validation: Realistic Project Approaches, Prentice-
Hall, Englewood Cliffs, N.J.

DeMarco, T. (1979), Concise Notes on Software Engineering, Yourdon Press, New York, N.Y.

Dijkstra, E.W, (1975), “Guarded Commands, Non-determinacy and a Calculus for the Derivation of
Programs,” Communications of the ACM | 8, 8 (Aug.), 453-457.

Dijkstra, E.W. (1976), A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N.J.

Dobbins, J.H. (1987), “Inspections as an Up-Front Quality Technique,” In Handbook of Software
Quality Assurance, G.G. Schulmeyer and J.I. McManus, Eds., Van Nostrand-Reinhold Compa-
ny, New York, N.Y., pp. 137-177.

Dunn, R.H. (1987), “The Quest for Software Reliability,” In Handbook of Software Quality Assu-
rance, G.G. Schulmeyer and J 1. McManus, Eds., Van Nostrand-Reinhold Company, New York,
N.Y,, pp. 342-384.

Fagan, M.E. (1976), “Design and Code Inspections to Reduce Errors in Program Development,”
IBM Systems Journal 15 » 3, 1976, 182-211.

Fairley, R.E. (1975), “An Experimental Program-Testing Facility,” IEEE Transactions on Software
Engineering SE-1, 4, 350-357.

Fairley, R.E. (1976),.“Dynamic Testing of Simulation Software,” In Proceedings of the 1976 Sum-

mer Computer Simulation Conference (Washington, D.C,, July 12-14). Simulation Councils, La
Jolla, Calif., pp. 708-710.

Fairley, R.E. (1977), “A New Approach to Software Verification and Validation,”In Proceedings of
the 1977 Summer Computer Simulation Conference, Chicago, 1i1., pp. 709-712,

Fairley, R.E. (1978), “Tutorial: Static Analysis and Dynamic Testing of Computer Software,” Com-
puter 11,4 (Apr.), 14-23,

Floyd, R.W. (1967), “Assigning Meaning to Programs,” Proceedings of the American Mathematical
Society Symposium in Applied Mathematics | 9, pp. 19-31.

39

Hausen, H.L. and M. Mullerburg (1983), “An Introduction to Quality Assurance and Control of Soft-
ware,” In Software Validation: Inspection, Testing, Verification, Alternatives, Proceedings of
the Symposium on Software Validation (Darmstadt, FRG, Sept. 25-30), Hans-Ludwig Hausen
Ed., pp. 3-9.

Hetzel, W.C. (1973), Program Test Methods, Prentice-Hall, Englewood Cliffs, N.J.

Hoare, C.A.R. (1969), “An Axiomatic Basis for Computer Programming,” Communications of the
ACM 12, 10 (Oct.), 576-583.

Hoillocker, C.P, (1987), “The Standardization of Software Reviews and Audits,” In Handbook of
Software Quality Assurance, G.G. Schulmeyer and J.1. McManus, Eds., Van Nostrand-Reinhold
Company, New York, N.Y., pp. 211-266.

Hopcroft, I.E. and 1.0. Ullman (1969), Formal Languages and Their Relations to Automata, Addi-
son-Wesley, Reading, Mass.

Howden, WE. (1976), « eliability of the Path Analysis Testing Strategy,” IEEE Transactions on
Software Engineering SE-2, 3 (Sept.), 208-214.

Howden, W.E. (1977), “Symbolic Testing and the DISSECT Symbolic Evaluation System,” IEEE
Transactions on Software Engineering SE-3,4 (July), 266-278.

Howden, WE. (1980), “Functional Program Testing,” JEEE Transactions on Software Engineering
SE-6, 2, 162-169.

Innis, G.S., S. Schlesinger, and R.J. Sylvester (1977), “Model Certification — Varying Views from

Different Specialties,” In Proceedings of the 1977 Summer Computer Simulation Conference,
Chicago, I11., pp. 695-698.

King, J.C. (1976), “Symbolic Execution and Program Testing,” Communications of the ACM | 9,17
(July), 385-394,

Knuth, D.E. (1968), The Art of Computer Programming Vol. I F undamental Algorithms, Addison-
Wesley, Reading, Mass.

Knuth, D.E. (1969), The Art of Computer Programming Vol, II: Seminumerical Algorithms, Addi-
son-Wesley, Reading, Mass,

London, R.L. (1977), “Perspectives on Program Verification,” In Current Trends in Programming
Methodology, Vol. 2, R. Yeh, Ed., Prentice-Hall, Englewood Cliffs, N.J., pp. 151-172.

Manna, Z., §. Ness, and J. Vuillemin (1973), “Inductive Methods for Proving Properties of Pro-
grams,” Communications of the ACM 16, 8 (Aug.), 491-502.

Myers, G.J. (1978), “A Controlied Experiment in Program Testing and Code Walkthroughs/
Inspections,” Communications of the ACM 21,9 (Sept.), 760-768.

Myers, G.J. (1979), The Art of Software Testing, John Wiley & Sons, New York, N.Y.

Osterweil, L. (1983), “Integrating the Testing, Analysis and Debugging of Programs,” In Software
Validation: Inspection, Testing, Verification, Alternatives, Proceedings of the Symposium on
Software Validation (Darmstadt, FRG, Sept. 25-30), Hans-Ludwig Hausen, Ed., pp. 73-101.

Ould, M.A. and C. Unwin (1986), Testing in Software Development, Cambridge University Press,
Great Britain,

40

Panzl, D.J. (1976), “Test Procedures: A New Approach to Software Verification,” In Proceedings of
the 2nd International Conference on Sofiware Engineering, San Francisco, Calif,, pp. 477-485.

Polya, G. (1954), Induction and Analogy in Mathematics, Princeton University Press, Princeton, N.J.

Prather, R.E. and JP. Myers, Jr. (1987), “The Path Prefix Software Testing Strategy,” IEEE Trans-
actions on Software Engineering SE-13,7 (July), 761-766.

Ramamoorthy, C.V. and S.F. Ho (1977), “Testing Large Software with Automated Software Evalua-
tion Systems,” In Current Trends In Programming Methodology, Vol. 2, R. Yeh, Ed., Prentice-
Hall, Englewood Cliffs, N.J., pp. 112-150.

Ramamoorthy, C.V., SF. Ho, and W.T. Chen (1976), “On the Automated Generation of Program
Test Data,” JEEE Transactions on Software Engineering SE-2,4 Dec.), 293-300.

Reynolds, C. and R.T. Yeh (1976), “Induction as the Basis for Program Verification,” IEEE Trays-
actions on Software Engineering SE-2, 4, 244-252.

Richardson, D.I. and L.A. Clarke (1985), “Partition Analysis: A Method Combining Testing and
Verification,” IEEE Transactions on Software Engineering SE-11 » 12 (Dec.), 1477-1490,

Saib, S.H., I.P. Bénson, and R.A. Melton (1977), “A Methodology for Program Verification,” In
Proceedings of the Summer Computer Simulation Conference, Chicago, I11., pPp. 713-720.

Satterthwaite, E. (1972), “Debuggine Tools for High Level Languages,” Software — Practice and
Experience 2, 3, 197-217.

Stoy, J.E. (1977), Denotational Semantics - The Scour-Strachy Approach to Programming Language
Theory, MIT Press, Cambridge, Mass.

Stucki, L.G. (1977), “New Directions in Automated Tools for Improving Software Quality,” In Cur-
rent Trends in Programming Methodology, Vol. 2, R. Yeh, Ed,, Prentice-Hall, Englewood
Cliffs, N.J., pp. 80-111.

Stuck_i, L.G. and G.L: Foshee (1975), “New Assertion Concepts for Self-Metric Software Valida-

tion,” In Proceedings of the I nternational Conference on Reliable Software, Los Angeles, Calif,,

Taylor, R.N. (1980), “Assertions in Programming Languages,” SIGPLAN Notices 15, 1, 105-114,

Westley, AE. (1979), Infotech State of the Art Reporr: Software Testing, Volume |- Analysis and
Bibliography, Infotech International Limited, Maidenhead, Berkshire, England. f

Yeh, R.T. (1977, “Verification of Programs by Predicate Transformation,” In Current Trends in
Programming Merhodology, Vol. 2, R, Yeh, Ed., Prentice-Hall, Englewood Cliffs, N.J,, Pp.
228-247.

Yourdon, E. (1985), Structured Walkthroughs, 3rd Edition, Yourdon Press, New York, N.Y.

41 o

