
CS 5604: Information and Storage Retrieval
Term Project: Collection Management Tweets

Final Report

Faiz Abidi ∗, Shuangfei Fan †, and Mitchell Wagner ‡

Instructor: Dr. Edward A. Fox

Department of Computer Science, Virginia Tech, Blacksburg VA 24061

Dated: December 19, 2016

∗Electronic address: fabidi89@vt.edu; Corresponding author
†Electronic address: sophia23@vt.edu; Corresponding author
‡Electronic address: mitchw94@vt.edu; Corresponding author

1

Abstract

The goal over the 2016 Fall semester was to address the following problem statement:

“How can we best build a state-of-the-art information retrieval and analysis sys-
tem in support of the IDEAL (Integrated Digital Event Archiving and Library) [1]
and GETAR (Global Event and Trend Archive Research) [2] projects.”

The entire project was divided into six parts - Classification (CLA), Collection Manage-
ment Tweets (CMT), Collection Management Webpages (CMW), Clustering and Topic Analysis
(CTA), Front End (FE), and Solr (SOLR). This report documents the work done by the CMT
team.

To give a high-level view, we were responsible for processing 1.2+ billion tweets, including
data transfer, noise reduction, tweet augmentation, and storage via several technologies. The
processed tweets were to be used by other teams like the front end and the Solr teams to further
build the project. We were also responsible for building a social network (or set of networks)
for those tweets, along with their tweeters.

We utilized and built off of the work done by students in the previous semesters of this class.
Some of our project tasks included:

• Adding an incremental update feature in the tweets extraction process - Previously, this
update only happened in batches. This effectively entailed a wholesale, bulk update of
tweets from the MySQL database to HDFS [3]. We made this a dynamic process in which
new tweets get updated in the database incrementally every day

• Adding incremental loading from HDFS to HBase [4] - HDFS stores the cleaned tweets,
but we needed an efficient way to also load the new tweets coming in daily into the HBase
database.

• Removing noisy, irrelevant, or unwanted data (profanity words, irrelevant tweets, broken
links, etc.) - Although the existing system handled this problem to a certain extent, our
goal was to optimize those solutions for sequential updates, and further refine the tweets
with additional filtering if time permits.

We needed to research and understand the existing software pipeline before starting any
development work, including the technologies that we would be using to move and clean the
tweets. We also had to research other open source tools that could have been a better choice to
do this work.

In addition to the aforementioned tasks, our responsibilities also included building a social
networks of tweets. This entailed doing research into that space and determining what type of
graphs would be most appropriate. We also needed to research methods ascribing importance
to nodes and edges in our social networks once they were constructed, and analyze our networks
using these techniques. Finally, we had to closely collaborate with the other teams, especially
the front end and the Solr teams, who depended on our input to build their solution.

We worked with a small subset of data initially that served as a proof-of-concept that our
solution works. After that, we tested our solution with a bigger data set to see if our solution
scaled properly, and it did for a collection of 155000 tweets.

2

Contents

List of Tables 6

List of Figures 7

1 Requirements 9
1.1 Overview of the IDEAL and GETAR projects . 9
1.2 Current system setup . 11
1.3 Functionality . 12

1.3.1 Incremental database updates . 12
1.3.2 Tweet cleaning, noise reduction, and augmentation 13
1.3.3 Building a tweet and webpage social network 14

1.4 Input and output . 14
1.4.1 Input . 14
1.4.2 Output . 14
1.4.3 Collaborations . 14

1.5 Level of performance . 15
1.6 User support . 15

2 Overview of project effort 15
2.1 Project management . 15

2.1.1 Weekly meetings . 15
2.1.2 Communication . 15
2.1.3 File-sharing . 15

2.2 Problems and challenges faced . 15
2.2.1 Constraints . 15

2.3 Additional challenges . 16
2.4 Solutions developed . 16

2.4.1 First report . 16
2.4.2 Second report . 17
2.4.3 Third report . 17
2.4.4 Final report . 18

2.5 Future work . 19

3 Literature review 21
3.1 Database updates and backups . 21

3.1.1 Cold database backups . 22
3.1.2 Hot database backups . 23
3.1.3 Full backup . 23
3.1.4 Incremental backup . 24
3.1.5 Differential backup . 25

3.2 Incremental update from relational database to HDFS 26
3.2.1 Percona Toolkit . 26

3.3 Incremental update from HDFS to HBase . 27
3.4 Text cleaning and noise reduction . 27

3

3.4.1 Text cleaning . 27
3.4.2 Noise reduction . 27

3.5 Social networks . 30
3.5.1 The PageRank algorithm . 33

4 Design 35
4.1 Approach . 35
4.2 Tools . 35
4.3 Methodology . 35
4.4 Conceptual background . 35

5 Implementation 36
5.1 Timeline . 36
5.2 Details on the test data used for this project . 37
5.3 Deriving our solution . 38

5.3.1 Incremental database updates . 38
5.3.2 Noise reduction and cleaning . 45
5.3.3 Social network . 53

6 User manual 61
6.1 Incremental Update from MySQL to HDFS . 61

6.1.1 Transfer SQL data to the MySQL database 61
6.1.2 Use pt-archiver to transfer tweets to the ArchiveDB, and save to a file 62
6.1.3 Cleaning the text file of tweets . 64
6.1.4 Converting the CSV file into an Avro file and copying it to HDFS 65
6.1.5 Merging the Avro files on HDFS . 66

6.2 Incremental update from HDFS to HBase . 67
6.2.1 Preparing the pipeline . 67
6.2.2 Running our scripts . 67

6.3 Build social network . 68
6.3.1 Collect data . 68
6.3.2 Use Twitter API . 68
6.3.3 Build social network and compute importance factor 70
6.3.4 Visualization using NetworkX . 71

7 Developer manual 73
7.1 IDEAL/GETAR cluster architecture . 73
7.2 Module overviews . 73

7.2.1 MySQL database . 73
7.2.2 MySQL installation & operation . 76
7.2.3 Apache Hadoop . 77
7.2.4 Apache Hadoop installation & operation . 78
7.2.5 HDFS . 80
7.2.6 HDFS installation & operation . 81
7.2.7 Apache HBase . 82
7.2.8 Apache HBase installation & operation . 83

4

7.2.9 Apache Sqoop . 85
7.2.10 Apache Sqoop installation & operation . 85
7.2.11 Apache Pig . 87
7.2.12 Apache Pig installation & operation . 88
7.2.13 Pt-archiver installation & operation . 89
7.2.14 csv2avro . 90
7.2.15 csv2avro Installation & Operation . 90

7.3 Project installation . 92
7.4 Software versions . 96

7.4.1 MySQL to HDFS incremental update . 96
7.4.2 HDFS to HBase incremental update . 97
7.4.3 Social network . 97

7.5 File inventory . 98

8 Acknowledgments 99

9 Appendix 100
9.1 Table of acronyms . 100

References 101

5

List of Tables

1 Timeline of the work to be done . 36
2 Summary of ways to implement a MySQL-HDFS incremental update 39
3 Processing benchmark . 46
4 HBase schema, as defined by last year’s teams . 48
5 Table of acronyms used in this report . 100

6

List of Figures

1 Dataflow diagram of the IDEAL infrastructure [5] 11
2 Dataflow diagram for incremental update . 12
3 Example structure of a raw tweet record [6] . 13
4 Basic database backup overview [7] . 22
5 Full backup of data each time [8] . 23
6 Simple example to show full data backup . 23
7 Incremental updates [9] . 24
8 Differential backup overview [10] . 25
9 Comparing the three main types of backup options [11] 26
10 Example of spelling errors, ad-hoc abbreviations and improper casing in a chat record

[12] . 28
11 Social network formed amongst users of a social media website [13] 30
12 Social network based on bibliometrics for media economics [14] 31
13 Visualization of an entire collection from the previous group [15] 33
14 Cartoon illustrating the basic principle of PageRank. The size of each face is pro-

portional to the total size of the other faces which are pointing to it. [16] 34
15 Archive tweets and also save in file . 40
16 pt-archiver transfer statistics . 41
17 pt-archiver not able to handle newline characters causing it to break into a newline . 42
18 Hidden tab delimiters in the text file . 42
19 Avro files schema . 44
20 Tweet processing pipeline . 47
21 Potential asynchronous processing pipeline . 47
22 “tweet” column family . 50
23 “clean-tweet” column family . 51
24 “webpage” column family . 52
25 “doc-type” column family . 52
26 “tweet-topic” column family . 52
27 “tweet-cluster” column family . 53
28 Workflow for building social network . 53
29 The format of the tweets we collected from HBase 53
30 Examples of the tweets we collected from HBase . 54
31 Structure of the social network . 55
32 Visualization of the social network using NetworkX 59
33 Enlarged bottom part of the graph to see the blue nodes which represent URLs . . . 60
34 Transfer test SQL data into MySQL table . 62
35 Transfer tweets to the ArchiveDB, and a text file . 63
36 All tweets deleted from the original table, moved to the ArchiveDB, and a separate

file . 64
37 Clean the tweets files . 65
38 Different folders on the HDFS system for tweets coming from different tables on the

MySQL server . 65
39 Convert a CSV file into Avro file format . 66
40 Two Avro files to be merged on HDFS . 66

7

41 Merge the two Avro files on the HDFS file system 67
42 Running procces.sh . 68
43 Concatenating part files into a single CSV . 68
44 How to use Tweepy to extract useful information from Twitter 69
45 Providing a list of users and gathering data with Tweepy 70
46 The input of the script for building social network 70
47 The output of the script for building social network 71
48 The input of the script for visualization using NetworkX 71
49 The output of the script for visualization using NetworkX 72
50 A relational database model describing a relation between tweets, users, URLs, and

other entities [17] . 74
51 MySQL architecture overview [18] . 75
52 Useful commands for MySQL . 76
53 High level architecture of Hadoop [19] . 77
54 Useful commands for Hadoop . 79
55 HDFS architecture overview [20] . 80
56 Useful commands for HDFS . 81
57 HBase architecture [21] . 82
58 Useful commands for HBase . 84
59 Examples of importing and exporting data to HDFS using Sqoop 86
60 Workflow of Pig [22] . 87
61 Useful commands for Pig . 88
62 Simple word count example using Pig [23] . 89
63 Installing pt-archiver . 89
64 Simple usage of pt-archiver . 90
65 Installing csv2avro . 91
66 Using csv2avro . 91
67 Instructions for installing KVM: Part 1 [24] . 92
68 Instructions for installing KVM: Part 2 [24] . 93
69 Instructions for installing KVM: Part 3 [24] . 93
70 Downloading the Cloudera image for KVM . 94
71 Creating a VM using KVM . 94
72 Logging into the MySQL database on the Cloudera VM 95
73 Dumping the test SQL database into MySQL . 95
74 Example of hard-coded filename combined collection number parameters 97
75 The assignment of weights for calculating the user importance factors 98

8

1 Requirements

1.1 Overview of the IDEAL and GETAR projects

As aforementioned, the work that our team does this semester was to be approached in the context
of supporting the IDEAL and GETAR projects.

The IDEAL NSF grant’s abstract describes the project as follows [1]:

“The Integrated Digital Event Archive and Library (IDEAL) system addresses the need
for combining the best of digital library and archive technologies in support of stake-
holders who are remembering and/or studying important events. It extends the work at
Virginia Tech on the Crisis, Tragedy, and Recovery network (see http://www.ctrnet.net)
to handle government and community events, in addition to a range of significant natural
or manmade disasters. It addresses needs of those interested in emergency prepared-
ness/response, digital government, and the social sciences. It proves the effectiveness
of the 5S (Societies, Scenarios, Spaces, Structures, Streams) approach to intelligent in-
formation systems by crawling and archiving events of broad interest. It leverages and
extends the capabilities of the Internet Archive to develop spontaneous event collections
that can be permanently archived as well as searched and accessed, and of the Lucid-
Works Big Data software that supports scalable indexing, analyzing, and accessing of
very large collections.”

Similarly, the GETAR project is described as follows at http://eventsarchive.org/

“This project will devise interactive, integrated, digital library/archive systems coupled
with linked and expert-curated webpage/tweet collections, covering key parts of the
1997-2020 timeframe, supporting research on urgent global challenge events and initia-
tives. It will allow diverse stakeholder communities to interactively: collect, organize,
browse, visualize, study, analyze, summarize, and explore content and sources related
to biodiversity, climate change, crises, disasters, elections, energy policy, environmental
policy/planning, geospatial information, green engineering, human rights, inequality,
migrations, nuclear power, population growth, resiliency, shootings, sustainability, vi-
olence, etc. GETAR will leverage VT research on digital libraries, natural language
processing, HCI, information retrieval, machine learning, discovery analytics, and Web
archiving.”

For more on these projects, please see http://eventsarchive.org/

In order to best serve these projects, we had several major goals to accomplish by the end of the
semester. Here, we provide a list of the major project requirements that were crucial to the success
of our project.

1. Build an incremental update feature using Apache Sqoop or some other tool to load newly
collected tweets from the MySQL repositories that store them into HDFS.

2. Similarly, develop an incremental update feature to load new tweets from HDFS to HBase.

9

http://eventsarchive.org/
http://eventsarchive.org/

3. Build on the tweet cleaning and noise reduction processes developed by previous teams by
augmenting existing Pig scripts to incorporate more cleaning rules.

4. Clean tweets for teams downstream of us, and identify any additional information they would
like to see the tweets augmented with.

5. Design, in conjunction with the rest of the class, an HBase table, defining a flexible schema
that will allow the class as a whole to incorporate whatever information they would like into
our tweet collection.

6. Extract URLs from the tweets to make those available for other teams. This can be done in
several ways, including an asynchronous process that can iteratively process the entire tweet
collection, or a simple regex extraction.

7. Build a social network of tweets and webpages, and run algorithms on top of this network to
define the importance of the network entities.

10

1.2 Current system setup

Figure 1: Dataflow diagram of the IDEAL infrastructure [5]

Figure 1 shows the IDEAL/GETAR pipeline as it existed at the beginning of the semester. The
parts of the figure that are drawn in black are pieces of the pipeline that had already been imple-
mented; the items in blue are the areas that this semester’s class sought to address.

The pipeline for the system shown above is as follows: tweets are collected by various collection
tools (YourTwapperKeeper [25], Social Feed Manager [26], and the Digital Methods Initiative Twit-
ter Capture and Analysis Toolset [27]) and stored into a MySQL database (this is a simplification,
but sufficient detail for this overview). From here, tweets are transported to HDFS using Sqoop.
Finally, a batch job to load those tweets into HBase is performed, and other jobs can be run (such
as cleaning tweets or fetching additional supplemental information from Twitter).

Once the data has been stored into HBase, Solr is used to index the HBase collection and can be
connected to a front end system such as Blacklight [28] so that a GUI can be used to search and

11

otherwise analyze the collection.

As the CMT team, our work centered around the very beginning of this pipeline, which supported
the downstream work of analysis, indexing, and presentation to the user.

1.3 Functionality

1.3.1 Incremental database updates

In the IDEAL/GETAR system, two primary databases are used to store the collected tweets,
which are curated from various sources. The first is the ArchiveDB, which stores 1.2 billion tweets
collected since 2012. The other one is the CollectDB, a MySQL database which stores new tweets
collected each day. Various other collections for the IDEAL and GETAR projects encompass some
additional 100-million+ tweets, bringing the existing collection’s total size to around 1.375 billion
tweets (to see the current count, see http://hadoop.dlib.vt.edu).

The new tweets we collect each day should be transferred to HDFS and finally into HBase. In
the original pipeline, this is done via a Sqoop script, which is able to import all the data from the
relational database to HDFS in a batch operation. Unfortunately, this solution is untenable, as
there are 1.2+ billion tweets in the ArchiveDB, and it is still growing; we do not want to reprocess
it each day we add new data. Therefore, one of our tasks for the semester was the development of
an incremental update feature that allows us to obviate the need to reprocess the entire ArchiveDB
collection in full each time we wish to update our system with newly harvested tweets. This will
yield a huge performance gain over the current batch-processing setup.

After the data is imported from the MySQL databases to HDFS, we transfer the tweet data into
HBase. In the original pipeline, that is done via an Apache Pig Latin script. However, this too has
been implemented as a batch process, and needed to be re-implemented in an incremental fashion.

Figure 2: Dataflow diagram for incremental update

12

http://hadoop.dlib.vt.edu

1.3.2 Tweet cleaning, noise reduction, and augmentation

The tweets that the system collects are raw, unprocessed tweets directly from Twitter’s API. As
such, there is a lot of noise in the collection, including things like pornography or spam, that we
will be attempting to filter out automatically.

Outside of noise, there is a lot of work to be done to make the tweets usable from an information
retrieval perspective, and one of our tasks was to process the tweets into a usable format for
downstream teams in our pipeline. This included tasks as lemmatization, the removal of stop
words and non-ASCII characters, and other techniques as mentioned in the literature review in
section 3.

Finally, we wanted to augment these tweets by adding additional information to the data we have
collected. For example, we performed URL extraction and expansion, and appended this informa-
tion to the tweet record in HBase. Furthermore, we use Stanford’s natural language processing
libraries for analyses that include lemmatization and named entity recognition and extraction,
storing this information for each record as well [29]. Although we did not get to it in the course of
this semester, in the future we would also like to query Twitter for more metadata on older tweets,
and update our own databases accordingly.

Figure 3 shows the structure of a raw tweet where all of the useful information like tweet ID,
meaningful text, mentions and hashtags are highlighted.

Figure 3: Example structure of a raw tweet record [6]

13

1.3.3 Building a tweet and webpage social network

The idea behind building a social network is to connect every tweet, user, and webpage in a massive
graph to model the relationships among those entities. Ultimately, we wanted to be able to attach
some kind of importance value to each node in the graph. For example, tweets that have been
re-tweeted many times should theoretically be ranked higher than those that have only been re-
tweeted a few times or not at all. Tweets from heavily-followed entities like CNN should likewise
have a higher importance ranking than individual tweet accounts with a few followers.

There are many considerations that go into building such a graph, such as how one can infer
importance (see the literature review in section 3 for an extensive survey of these).

In addition to performing algorithmic analysis on the graph we build, we also developed a prelim-
inary visualization technique to provide system users with a graphical representation of the social
networks we build.

1.4 Input and output

This section summarizes what data our team receives from other teams and what data we provide
in turn.

1.4.1 Input

Our team sits at the front of the data pipeline for this project. As input, we take in MySQL
databases full of raw and newly-collected tweets harvested from various services.

1.4.2 Output

Every other team in the tweet-processing pipeline has downstream responsibilities that have to do
with the data that we provide them. We provide an HBase table that stores information on tweets
and webpages (one tweet or webpage per row in the table). Each row summarizes the information
present in a tweet or a webpage that the row represents, building on the work of previous teams.
We have added columns on top of what the team last semester kept track of to provide more utility
to the downstream teams.

1.4.3 Collaborations

Our team, as the entry point for the system, needed to collaborate with teams further down the
pipeline to ensure that they had the information that they need. Specifically:

1. Front End: This project required that our team communicate with the Front End team to
make sure that we were storing the information that they desire to show to the user. For
example, we wanted to know what they would like filtered out in tweets before they present
those to individuals using the system for tweet analysis.

2. Solr: The most direct interaction we had with the Solr team was through the HBase schema
that the class came together to design. It was important that both parties agreed on every-
thing about this schema.

14

3. CLA/CTA: The clustering and topic analysis groups both required tweets in a specific
format so that they could perform their respective analyses as effectively as possible. Our
team had to communicate with these teams to understand and provide this information.

4. CMW: Our team did not have much direct interaction with the CMW team, but as with
CLA/CTA, we wanted to provide them with the information that they needed.

1.5 Level of performance

Ideally, our work would enable an incremental update performed daily, during off-peak hours, which
would be completed in a timeframe of two hours or fewer.

1.6 User support

We aimed to integrate our solutions seamlessly with the existing system. One thing we were wary
of is making changes that were too extensive or trying to incorporate a feature that the rest of
the system may not be able to accommodate. This would obviously lead to a diminished user
experience resulting from reduced utility of the system, when we could focus attention on other,
more pertinent changes that are in line with the existing system and other teams working on the
project. For example, if we had made changes to the HBase schema that would affect the tools
developed by the previous semester teams to analyze the data stored in the HBase, it would add
negative instead of positive value to the entire system.

2 Overview of project effort

2.1 Project management

2.1.1 Weekly meetings

In addition to our regular class meetings, which presented the opportunity to interface with the
other teams in our class, we decided to hold two meetings a week to discuss status updates and to
work together on developing our project, including meeting impending deadlines and designing our
solutions.

2.1.2 Communication

Outside of class, we utilized email and Google Hangouts to coordinate.

2.1.3 File-sharing

To coordinate the sharing of our work, we took advantage of several technologies, including Google
Drive and Git (via a GitHub-hosted repository).

2.2 Problems and challenges faced

2.2.1 Constraints

As with any project, there are several constraints on the work that we produce. With specific
regard to collection management tweets:

15

1. Our solution needed to make use of the Hadoop cluster, employing parallel methods wherever
possible and adapting the Hadoop ecosystem to our needs.

2. Test collections and evaluation studies needed to be devised to ensure effective and usable
operations of the developed systems.

3. Frequent reports and presentations needed to be compiled to keep each project team up-to-
date with the current status of each team.

4. Our project needed to be completed in the course of a semester.

5. Maximizing the contributions of every group member and avoiding duplication of effort across
our team required us to get better at segmenting work into manageable chunks, working in
parallel with one another.

2.3 Additional challenges

In addition to the above constraints, we faced the following challenges:

1. Working within and understanding a pre-established ecosystem.

2. The distributed nature of project team responsibilities across the class, requiring a high level
of coordination and communication.

3. A number of class items like chapter presentations, chapter reviews, and report reviews require
a large amount of time in themselves to complete and needed to be balanced with project
work that will advance the state of the system.

4. Incomplete and fragmented documentation from the work of previous semesters. For exam-
ple, there was scant documentation regarding the last semester’s HBase schema, leaving us
to figure out what certain columns were used for, and the information that was included
was scattered across multiple team reports. Fortunately, we were able to reconstruct this
information through the advice of one of the project maintainers, in addition to browsing the
tables from last year to see the columns that existed in the database.

2.4 Solutions developed

2.4.1 First report

Up until our first report, we were mainly focused on understanding the pipeline, how everything
is connected in the system, and learning to access online resources provided by Sunshin Lee (one
of the current maintainers of the IDEAL/GETAR infrastructure as of the time of writing). A
significant portion of our time up to that point went toward reviewing the existing code base and
figuring out the project requirements, with the understanding that the majority of our challenges
requires in-depth research into the current infrastructure. This included interfacing with those who
worked on it before, as well as with the other teams in the class, each of which is working to develop
expertise in a particular subsection of the project.

To ameliorate the time constraints imposed by the necessity of reporting and testing, we devel-
oped a timeline to keep us on track.

16

2.4.2 Second report

By the time of the second report, our team had a much better grasp on the problems that we were
facing, and had done much of the basic research necessary to start formulating solutions.

1. We learned the fundamentals of Hadoop, HDFS, HBase, MySQL databases, Sqoop, Cloudera
Search, and some other minor things. A thorough knowledge of these technologies would be
needed to successfully complete the project. At the time of the second report, we still had a
bit to learn about how these technologies could work together in a pipeline,

2. We set up KVM [24] on one of the lab machines in Room 3050 Torgersen Hall. This machine
was more apt for spinning up a virtual machine (VM) since we wanted to allocate enough
memory and CPUs to it. Our personal laptops did not have capable-enough hardware.

3. We have assigned a static IP to the lab machine so that everyone in the team can access
the VM. Cloudera image “cloudera-quickstart-vm-5.3.0-0-kvm.qcow2” was used as the base
images for the VM.

4. Since creation of a social network of tweets is one of our tasks, we spent time reading about
the PageRank algorithm and reviewing the work of prior teams with regard to this project.
We were still in the process of understanding how we should build this network. We had
formulated some rough ideas, but we still had to do more research and anticipated a need for
further discussions with Sunshin and Dr. Fox.

5. We looked into the existing tweet cleaning scripts that already exist for this project. We were
still trying to figure out if we can/should add more filters in the code to further clean the
tweets.

By the end of the work cycle defined by this report, there were still several things that we
had yet to define. For example, we now recognized that the class as a whole was severely behind
with regards to defining a schema for HBase. One of our sub-goals for the next report was thus
embracing a more cohesive, integrated approach to the project, and finalizing specifics like these.

2.4.3 Third report

In the time between the second and the third report, we made substantial progress as a group
towards several of our main goals. As a class, we navigated the creation of a standard HBase
schema for the project. As a group, we began implementation of two of the major components of
our work for the semester and were in position to begin the implementation of the third.

1. We created an HBase table on the IDEAL/GETAR infrastructure for the class.

2. Incremental updates between our tweet-collection services onto our HDFS installation were
almost finished.

3. We created experimental tweet-cleaning scripts, and were in position to transition to popu-
lating HBase tables with those.

4. We developed a plan for the social network, and were about to begin testing and implemen-
tation.

For more on each of these endeavors, please see Section 5.

17

2.4.4 Final report

After our third report, we recognized that we were slightly off track from our self-imposed deadline
(please see Section 5 for more details). We began aggressive implementation to finalize our work
and integrate it all into a cohesive pipeline. Specifically, we:

1. Finished building the incremental update feature for tweets stored on the MySQL server to
the HDFS server. We gave a demo of this functionality to Dr. Fox, Sunshin, and Mohamed.
The complete implementation details are included in this report. Collections z 312 (155000
tweets) and z 703 (1 million+ tweets) were imported from the MySQL server to the HDFS
server in an incremental fashion.

2. Finished building the incremental update feature from HDFS to HBase. In conjunction with
the incremental update from MySQL to HDFS, we have formed a coherent ETL pipeline
that migrates the tweets from MySQL to HBase and enacts a processing pipeline on them
to augment the original records with additional information such as extracted hashtags and
entities identified by Stanford’s NLP library [29].

3. Processed, augmented, and incrementally uploaded the z 312 collection from HDFS into our
class’s HBase table (ideal-cs5604f16). In addition, we also processed and uploaded some
collections already on HDFS to HBase. These collections included z 1, z 3, z 20,21,23, z 24,
and z 312.

4. Finished designing the social network we wished to build from the collection, built a Python
program to build the network, and run the pipeline on a subset of tweets as a demonstration.
We used the z 3 collection for this purpose.

5. Delivered a final presentation of our work to the class.

6. Uploaded the entire code base to VTechWorks [30] along with the final project report.

18

2.5 Future work

While we have achieved success in delivering the core requirements of our project, including the
incremental updates, tweet processing pipeline, and social network, there are of course some en-
hancements that could be added on top of our work, including a few minor items that we could
not get to because of time constraints.

• Expanding the range of acceptable characters in tweets: A part of this pipeline
involved the removal of commas, double quotes, and non-ASCII characters from the text of
the tweets. We also had to replace null values with zeros in order to successfully convert the
CSV files into Avro files using csv2avro [31]. In future, we would like to have a mechanism
in which we do not have to do these insertions/deletions and preserve the text exactly as it
was pulled from the Twitter API.

• Convert all the MyISAM tables to InnoDB tables: Currently, all the MySQL tables
in the CollectDB and the ArchiveDB are using the MyISAM engine. These tables should
be converted to use the InnoDB engine. InnoDB engine is proven to perform better than
MyISAM engine [32]. One good source that we found that talks about this conversion can
be found in [33].

• More refined profanity scrubbing: While we have delivered a basic profanity-censoring
solution, it is not very flexible, simply scanning the text for instances of profane words and
replacing them, whether they be in URLs, hashtags, or the body of the tweet itself. In the
future, it would be convenient to remove the entire hashtag or URL if there is profanity in
them.

• HDFS to HBase pipeline optimization: We believe that the tweet processing pipeline
can be sped up significantly by increasing parallelization (the Java lemmatization and entity
recognition step was implemented serially as a proof-of-concept) and moving towards Apache
Spark for faster in-memory processing. For more on this, please see Section 5. Another point
of optimization would be a better design of the HBase schema as discussed in [34].

• Remove hard-coded values: Some values in our codebase, such as the names/locations of
files, are hard-coded to suit our own system. In the future, we would like to make these more
robust and flexible via script arguments.

• Implementation of asynchronous tweet augmentation programs: Unfortunately, the
two APIs that we were looking into from Google and Twitter (for geolocation services and
additional tweet information respectively) are severely rate-limited in the context of the size
of our collection. In the future, we would like to investigate ways to get around or work within
these rate limits.

• Including hashtags in the social network: We believe it would be beneficial to visualize
the relation of tweets, users, and webpages to hashtags in addition to the relations that we
have already defined for the former three entities.

• More advanced social network analysis: The equations we used for the social network
were ad-hoc, and the values we used were based on intuition rather than hard data. In the
end, we did not have time to run a more complex algorithm like PageRank, but we would like

19

to incorporate that algorithm and others like it moving forward. Additionally, we would like
to ensure that we utilize importance value calculations that are comparable between different
kinds of entities.

20

3 Literature review

This project entailed several components and touched on many concepts. To get a grasp on these,
our team reviewed the available literature in several areas. These include:

• Incremental Database Updates

• Noise Reduction

• Large Twitter-focused Social Networks

For a full explanation of the tasks we aimed to accomplish, please see Section 3: Requirements.
Further elaboration on the technologies that we utilized for this project can be found in Sections 7.

3.1 Database updates and backups

For any given database, it is important to back it up. Backing up data makes sure that we do not
lose any data in cases where the primary database is lost, gets corrupted, or becomes inaccessible
for whatever reason. By definition, “Database backup is the process of backing up the operational
state, architecture and stored data of database software. It enables the creation of a duplicate
instance or copy of a database in case the primary database crashes, is corrupted or is lost.” [35].

There are two primary databases used to collect the tweets in this project, CollectDB and
ArchiveDB, in addition to several other smaller databases. Both of these databases are MySQL
instances and use the MyISAM engine [36] instead of the more common InnoDB engine [37]. We
feel that the choice of MyISAM over InnoDB is not a good one since InnoDB is proven to perform
better than MyISAM [32]. MyISAM is better than InnoDB in cases that involve a lot of reading
of data from the MySQL tables, but little writing of data into them. This is not the case in our
system, where the CollectDB is dynamically updated. As future work, we recommend that someone
should look into converting all of the MyISAM tables to InnoDB tables. [33] talks about how this
can be done, and though this process is going to be time consuming, we think that this needs to be
done sooner than later. We also had a brief conversation about this with Sunshin and he agreed
with our suggestion.

CollectDB collects tweets on a dynamic basis using the Twitter API. The ArchiveDB contains
the entire set of tweets collected up to the point that the CollectDB was last dumped into the
ArchiveDB. Both of these databases are backed up, but the tools that are currently used do not
incrementally back-up the data. This led us to do a literature review about the best practices of
backing up stored data using any Relation Data Base Management Systems (RDBMS).

The database backups help to safeguard and restore a database. Typically, these backups are
performed by some Relation Database Management System (RDBMS). The database administra-
tors can at any given point in time restore the entire database from the backup. The backups are
stored on a server that is physically kept away from the main server. The reason to do that is
that if there is a natural calamity like an earthquake, it won’t affect both the servers since they
will not be in the same physical location (Figure 4 summarizes the process of database backup and
subsequent restoration).

21

Figure 4: Basic database backup overview [7]

Sometimes, the backups are created to ensure compliance with government regulations so that
access to critical business data is not lost in case of a disaster like Hurricane Katrina [38]

Li and Xu discuss the backup mechanisms of the Oracle Database [39]. Some key aspects that
they mention are discussed below.

3.1.1 Cold database backups

In this type of backup, when the data is being backed up, the original database is closed. This
means that during the backup, no active transaction and block change movement can be done. In
other words, the original database will not be altered until the backup is done. There are two steps
to do a cold backup:

1. Shutdown the database

2. Use the operation system command to copy the files to other locations.

The obvious cost in the case of cold database backups is the cost of being offline. Until data
has been backed up, the services remain down. This solution will not work for many use-cases and
organizations. For example, for our applications, limited downtime is acceptable, but we want to
constantly be collecting tweets. For a heavily-trafficked e-commerce website, a downtime of seconds
could mean the loss of millions of dollars.

22

3.1.2 Hot database backups

As the name suggests, in this type of backup, the services running on the main database are not
interrupted when the backup happens. In the case of Oracle and MySQL databases, hot backups
can be further classified into physical and logical backups, whose difference lies in how the backup
is represented (raw file copies versus logical database structures, like the commands used to create
the table) [39] [40]. There are several methods of performing these backups, as discussed below.

3.1.3 Full backup

In a full backup, the entire database is backed up at regular intervals of time. Every time there
is even a slight change in the data set, the entire data set is copied to the backup database. This
means copying the original data + the change in data every time. An obvious disadvantage of this
approach is the need to copy the same data again and again, essentially wasting time, space, and
money.

Figure 5: Full backup of data each time [8]

Scheduling of these backups is also important for automation. It is preferred to compress the
data before starting the backup procedure to reduce the cost. In certain cases, these backups
are encrypted to secure against unauthorized access of data. MySQL does not natively provide
these functions. However, the enterprise Backup product can compress InnoDB backups, and also
supports encryption. [40]

Figure 6: Simple example to show full data backup

23

3.1.4 Incremental backup

An incremental backup can also be referred to as an “intelligent” backup. As a matter of fact,
only a small percentage of data changes in a database on a regular basis. To backup an entire
database even when only a single row has been added to a database is not cost effective. Again, a
full backup in such a scenario would entail wasted resources. Figure 7 shows from a high level view
how incremental backups work.

Figure 7: Incremental updates [9]

Incremental updates are initially based on a level 0 backup set. Fewer blocks get written compared
to a full backup, and therefore, it is faster and cheaper. Incremental updates can also reduce the
recovery time. Physical files are automatically backed up, in contrast to manual copy backup
operations.

A disadvantage of using incremental backups is increased restore time. This is because you
would need to gather the full backup of the data and then look for increments that have come in
since then. So, let us assume that you did a full backup on Monday, and incremental backups on

24

Tuesday, Wednesday and Thursday. To restore the backup on Friday, we would need all four backup
container files - Monday’s full backup plus the incremental backups done on Tuesday, Wednesday,
and Thursday. Comparing this approach to differential backup (discussed in the next section), we
will see that the restore time in differential backup in less.

3.1.5 Differential backup

A differential backup copies all the data that has been changed since the last full backup. Differential
backup preserves the data, and saves only the the difference in the data since the time the last full
backup was done [41].

Figure 8: Differential backup overview [10]

1. Pros

(a) The process of backing up data is much quicker as it only takes a copy of what has
changed.

(b) The copy of the backup takes less storage space compared to when a full copy is created.

2. Cons

(a) The size of the data differences grows with every backup. If there are too many cycles
before a full backup is done, at the end of it, the size of the archive can become very
big, making the entire process lengthy.

To give a quick overview of how the three types of backups work, please refer to Figure 9.

25

Figure 9: Comparing the three main types of backup options [11]

In our current IDEAL/GETAR system, we do not do incremental or differential updates. There
are trade-offs to choosing either of them. Based on our research, and knowing the needs and
the structure of the current system, we would recommend that differential update features be
incorporated into the current system. This can be future work, but we think it is important to add
this feature to the current pipeline soon.

3.2 Incremental update from relational database to HDFS

The Collection Management group in the Spring 2016 semester researched the possibility of using
Sqoop’s incremental import feature. By using the “lastmodified” mode, which requires a column
storing a data value about when each row was last updated, Sqoop will only import rows that were
updated after the specific date. The column should be set to the current time with every new
inserted row and an update to an existing row, so a row that does not have a modified column will
not be imported [6].

3.2.1 Percona Toolkit

Percona toolkit [42] is a useful tool to perform various MySQL and system tasks. It provides a
collection of advanced command-line tools for user tasks that are complicated and time consuming
to perform manually.

Percona toolkit is open-source. It was derived from the Maatkit [43] and Aspersa toolkits [44],
neither of which is under active development as of the time of writing. Percona toolkit scripts are
professionally developed, tested, and nicely documented. In spite of being open source, the company
behind the Percona toolkit also provides an enterprise version of the same. In the enterprise version,
they provide a variety of support to the end user.

Currently, the Percona toolkit provides 32 different command line tools that can be used on
MySQL databases. Each tool has its own purpose. The tool that is used in our current system is
called pt-archiver [45]. This tool archives rows from one MySQL table to another MySQL table.

26

In our case, it archives rows from the CollectDB to the ArchiveDB. The goal of pt-archiver is to
provide a low-impact job that pushes old data from one table to another table “without impacting
OLTP queries much” [45]. It can also archive rows to a table hosted on another database on another
server.

We can also extend pt-archiver via a plugin mechanism if needed. We can inject our own code
that can be useful in applying complex business rules, or building a custom data warehouse. An
important thing to note as mentioned on the Percona’s website is [45]:

“pt-archiver does not check for error [sic] when it commits transactions. Commits on
PXC can fail, but the tool does not yet check for or retry the transaction when this
happens. If it happens, the tool will die.”

Pt-archiver also does error handling in a graceful manner. So, if a user sends a SIGTERM while
the pt-archiver process is running, it will terminate the execution, and skip the optimize/analyze
phase.

3.3 Incremental update from HDFS to HBase

To make the incremental update process automatic, the Collection Management group from the last
semester used a cron job scheduler. This allows them to run their Pig scripts periodically. Cron be
configured such that data can be loaded onto HDFS and further imported into HBase automatically,
each step occurring in its own time window [6]. This eliminates the need for manually performing
these update functions.

3.4 Text cleaning and noise reduction

The first steps in any text analysis are text cleaning, which involves standardization of our input
data, and noise reduction, which entails making adjustments to the content of the text itself.

3.4.1 Text cleaning

The specific steps taken to clean and normalize text depend on the analysis one means to apply
to it. For text cleaning, Burton DeWilde [46] posted a blog, which talked about several things
we can do to clean dirty text. A decent, general-purpose cleaning procedure: a) removes digits,
non-ASCII characters, URLs, and HTML markup; b) standardizes white space and line breaks;
and c) converts all text to lowercase.

3.4.2 Noise reduction

The quality of texts from online sources for ontology engineering can vary anywhere between dirty
and clean. On the one hand, the quality of texts in the form of blogs, emails and chat logs, and
tweets can be extremely poor. The sentences in dirty texts are typically full of spelling errors,
ad-hoc abbreviations and improper casing. On the other hand, clean sources are typically prepared
and conformed to high standards. Examples of the latter include academic journals and scientific
publications. Texts of different quality will require different treatments during the pre-processing
phase, and dirty texts can be much more demanding to handle [12].

27

Figure 10: Example of spelling errors, ad-hoc abbreviations and improper casing in a chat record
[12]

There are three major types of noise in the dirty text that one needs to handle to allow for further
analysis. Figure 10 highlights the various spelling errors, ad-hoc abbreviations and improper casing
that occur much more frequently in chat records than in clean texts.

1. Spelling detection and correction

The first kind of noise is spelling errors. We need to detect spelling errors and correct or
account for them. For example, the misspelling of “teh” as “the” is a common typing mistake:
a system should be robust enough to recognize that the user likely means “the.” Depending
on the context (for example, live interaction), the system might also want to suggest to the
user the alternative spelling.

More information is usually required to select a correct replacement from a list of suggestions.
Two of the most studied classes of techniques are minimum edit distance and similarity key.
The minimum edit distance is the minimal number of insertions, deletions, substitutions, and
transpositions needed to transform one string into the other [47, 48].

For example, to change “wear” to “beard” will require a minimum of two operations, namely,
a substitution of ‘w’ with ‘b’, and an insertion of ‘d’. The second class of techniques is the

28

similarity key. The main idea behind it is to map every string into a key such that similarly
spelled strings will have identical keys. Hence, the key, computed for each spelling error, will
act as a pointer to all similarly spelled words in the dictionary [49].

2. Abbreviation expansion

Another type of noise is that of abbreviations. We need to recognize shorter forms of words
(e.g., “abbr.” or “abbrev.”), acronyms (e.g., “NATO”) and initialisms (e.g., “HTML”,
“FBI”), and expand them to their corresponding words. The work on detecting and expand-
ing abbreviations is mostly conducted in the realm of named-entity recognition and word-
sense disambiguation. There are many approaches to deal with this problem. The approach
proposed by [50] begins with the extraction of all abbreviations and definition candidates
based on the adjacency to parentheses. The algorithm proposed by [51] is based on rules and
heuristics for extracting definitions for abbreviations from texts.

3. Case restoration

The third kind of noise is word case heterogeneity. We need to detect or account for im-
proper/atypical casing in words and restore/recognize potential alternative casings. For ex-
ample, if a user types the name “jones” into a search engine, it is likely that they are looking
for information on individuals with the name “Jones,” which is naturally capitalized in En-
glish.

The approach proposed by [52] identifies sentence boundaries, disambiguates capitalized
words, and identifies abbreviations using a list of common words and a list of the most
frequent words appearing in sentence-starting positions.

In our project, in order to process the raw tweets for further analysis, we could make use of any
of the methods above. In the our class textbook, we found Chapter 2 is useful [53]. It describes
methods of word segmentation, true casing, and language detection in documents. According to the
report from last semester, the collection management group only cleaned the tweets by removing
non-ASCII characters, extracted hashtags, mentions, and URLs from tweet text. Figure 3 gives an
example of this. However, based on the demand from the rest of the class, we made modifications
to these processes, increasing the number of fields extracted from tweets and adding additional
noise reduction processes.

29

3.5 Social networks

Figure 11 shows a small social network formed amongst users of a social media website. Each node
represents a different user, and the edges represent the interaction between two users. One can
define what it means for two nodes to interact differently in the context of different social media.

Figure 11: Social network formed amongst users of a social media website [13]

A social network is formally defined as a set of social actors, or nodes, that are connected by
one or more types of relations. Nodes, or network members, are the units that are connected by
the relations whose patterns researchers study. The units are most commonly individuals, groups
or organizations, but in principle any units that can be connected to other units can be studied as
nodes, such as webpages, blogs, emails, instant messages, families, journal articles, neighborhoods,
classes, sectors within organizations, positions, or nations. Research in a number of academic fields
has shown that social networks operate on many levels, from families up to the level of nations,
and play a critical role in determining the way problems are solved, organizations are run, and the
degree to which individuals succeed in achieving their goals [14].

Social media include all the ways people connect to people through computation. Mobile devices,
social networks, email, texting, micro-blogging, and location sharing are just a few of the many ways

30

people engage in computer-mediated collective action. As people link, like, follow, friend, reply, re-
tweet, comment, tag, rate, review, edit, update, and text one another (among other channels) they
form collections of connections. These collections contain network structures that can be extracted,
analyzed and visualized. The result can be insights into the structure, size, and key positions in
these networks [54].

Figure 12: Social network based on bibliometrics for media economics [14]

The nodes in a social network are not restricted to people or users; we can create social networks
for any kind of data where there is relational information between nodes. Figure 12 shows a
complex graph regarding the co-citation network in the research field of media economics [12].
This graph makes it easy to see that documents such as Picard 89, Albarran 96, OwenWildman 92,
Scherer 7390, Litman 79, Lacy 89, Bagdikian 83/00, and so on, occupy more central positions in
the network, indicating that they are more important than others. This is reflected by the number
of links to these documents.

Reflected by the number of ties in the graph, we could see that there are more links to them

31

[14].

Social media networks form in Twitter around a wide range of terms. People talk about the
news of the day, celebrities, companies, technology, entertainment, and more. As each person uses
Twitter they form networks as they follow, reply to, and mention one another. The public can
access these connections, either through the text visible in each tweet or by utilizing the Twitter
API to request information such as the list of users that follow a specific tweet author. [55].

We can do a lot of analysis on the social networks, and can be very useful for further applications,
such as predictions and recommendations. Social network analysis (SNA) is the study of social
structure. Social network analysts are interested in how the individual is embedded within a
structure and how the structure emerges from the micro-relations between individual parts. Hence,
the greatest advantage of SNA is that it considers how the communication network structure of
a group shapes individuals’ cognition, attitude and behavior. As an approach to social research,
SNA displays four features: structural intuition, systematic relational data, graphic images and
mathematical or computational models [14].

32

Figure 13: Visualization of an entire collection from the previous group [15]

The cluster and the social network group in the Spring semester built the social network using
the accounts in original data as the nodes and the follow information and retweet information as
the edges. The result is a matrix of nodes and edges. The weight on the edges is the total number of
retweets between the nodes of an edge. They then used this information to produce a visualization,
via Gephi, as shown in Figure 13.

3.5.1 The PageRank algorithm

PageRank [56] is a famous algorithm that is used by Google to rank webpages in their search
engine results. Historically speaking, PageRank is named after Larry Page, co-founder of Google.
According to Google [57]:

PageRank works by counting the number and quality of links to a page to determine
a rough estimate of how important the website is. The underlying assumption is that

33

more important websites are likely to receive more links from other websites.

PageRank assigns a numerical weighting to each element of a hyperlinked set of documents.
The main goal is to measure the relative importance within the set. In the algorithm’s original
application, webpages are taken as nodes, and hyperlinks as edges. The rank value indicates how
important a particular page is. The PageRank of a page is defined recursively, and depends on the
number and metric of all pages that link to it.

A lot of research has gone into the PageRank algorithm since the original paper published by Page
and Brin [58]. A key goal is to find an effective way of identifying webpages that have attempted
to game PageRank scores by taking advantage of various aspects of the algorithm [16].

Figure 14: Cartoon illustrating the basic principle of PageRank. The size of each face is proportional
to the total size of the other faces which are pointing to it. [16]

34

4 Design

4.1 Approach

Our initial approach to this project focused on fully understanding the existing ecosystem of tools
and services that comprise the IDEAL and GETAR infrastructure, as integration with that work
is a major component of our project. This included meeting with the current system manager as
well as examining the documentation written by former project contributors, and having in-class
meetings with the other teams in our class.

4.2 Tools

Flow diagrams aided our understanding of the existing system allowing us to visualize the connec-
tions between the various components. They helped us get a quick grasp on how the current system
is structured, how work will be distributed across teams, and how the various software tools and
components that we utilize interact with each other.

4.3 Methodology

We set up a shared virtual machine for rapid prototyping of Sqoop and Pig scripts on small
collections of Twitter data curated for this task by our instructor. Once we were confident in
our methods, we transitioned to working on the IDEAL/GETAR cluster.

4.4 Conceptual background

From our conversations with our classmates and our instructor, we decided that the most immediate
area for us to focus on was moving the tweets into HBase, as this is the basis for any further
downstream analysis with this data. In the original IDEAL system this is a two-step process,
consisting of harvesting the tweets and storing them into a MySQL database and subsequent
transfers from there into HDFS and then into HBase. Our learning and research will mirror the
steps that this process entails.

After understanding and implementing the above storage pipeline, our next focus was on cleaning
the tweets by filtering out noise like profanity, to make data analysis on the tweets more easier and
more useful. Following this, our final efforts were directed toward utilizing the cleaned tweet data
to construct various social networks showing the relationships among Twitter users.

To achieve the goals stated in the previous paragraph, we divided up the work and attacked
the problem in parallel. While the ultimate pipeline depends on all of these tasks happening
sequentially, many of the software components and routines we needed to develop were nicely
segmented.

35

5 Implementation

To carry out our tasks, we made extensive use of open-source tools like Apache Pig, Hadoop,
csv2avro, avro-tools, NetworkX, Tweepy, and HBase, as well as database technologies like MySQL.
For more information on these, please see the included developer’s manual (see Section 7).

5.1 Timeline

Table 1: Timeline of the work to be done

Task Deadline Status Assigned To

1 Chapter presentation 9/06/16 Done All

2 Research Hadoop and
HDFS

9/13/16 Done All

3 Set up group Cloudera vir-
tual machine

9/20/16 Done Faiz

4 Research HBase and set up
an HBase database

9/25/16 Done All

5 Interim Report 1 9/20/16 Done All

6 Create MySQL database
on common machine with
existing IDEAL MySQL
schema

9/25/16 Done Faiz, Shuangfei

8 Learn Pig and document
learning process

9/25/16 Done Mitch, Shuangfei

9 Learn how to Load tweets
into our MySQL database

9/28/16 Done Faiz, Shuangfei

10 Modify MySQL schema to
incorporate requests from
other teams

9/28/16 Done Mitch, Faiz

11 Learn how to load tweets
into HDFS using Sqoop

10/01/16 Done Shuangfei, Mitch

12 Learn how to load tweets
from HDFS into HBase us-
ing Pig

10/05/16 Done Faiz, Mitch

13 Interact with sample data
using Pig/Sqoop

10/07/16 Done Mitch, Faiz

14 Interim Report 2 10/11/16 Done All

15 Develop incremental up-
date of tweets from MySQL
to HDFS

10/17/16 Done Faiz, Mitch

16 Research improvements to
existing scripts for tweet
cleaning/noise reduction

10/24/16 Done Shuangfei, Mitch

36

17 Develop incremental up-
date of tweets from HDFS
to HBase

10/27/16 Done Faiz, Mitch

18 Custom tweet cleaning &
augmentation Pig routine
designed

10/29/16 Done Mitch, Faiz

19 Research methods for
building tweet social
networks

10/31/16 Done Shuangfei, Faiz

20 Interim Report 3 11/3/16 Done All

22 Research methods to iden-
tify importance of docu-
ments and tweets

11/3/16 Done Shuangfei, Mitch

21 Build tweet social network 11/18/16 Done Shuangfei, Faiz

23 Run importance algorithm
on tweet social network for
indexing

11/25/16 Done Shuangfei, Mitch

24 Integrate developed
materials into IDEAL
infrastructure

11/29/16 Code submitted for review All

25 Final project
presentation

12/1/16 Done All

26 Final report and code
submission

12/8/16 Done All

5.2 Details on the test data used for this project

• Test data used: Dump of the table “z 312” from the CollectDB was given to us by Sunshin.
Later, Sunshin also provided a dump of the table “z 703” that had more than 1 million tweets.

• Type of data: Both the data sets used to test the incremental update feature from MySQL
to HDFS were SQL files.

• Size of the data: “z 312” is 58 megabytes in size and “z 703” is 589 megabytes in size.

• Number of rows and columns in the data: “z 312” has 155657 rows and 14 columns
and “z 703” has 1528869 rows and 14 columns.

• Number of words in the file: “z 312” has 5703802 words and “z 703” has 55691733 words.

• Properties of the data: Uncleaned, raw tweets collected using two Twitter APIs - twitter-
stream and twitter-search.

• Extracted data: We had to remove non-ASCII characters and misplaced return and newline
characters. We also replaced the null characters with zeros.

37

Once the data was extracted after cleaning it up, we stored each of the 14 columns in HBase
[4]. We also extracted more items from the text of the tweet, including hashtags, mentions,
and URLs. A more detailed document explaining what was extracted and stored in HBase
can be found in Figures 22, 23, 24, 25, 26, and 27.

5.3 Deriving our solution

5.3.1 Incremental database updates

Our work on this task this semester focused primarily on the two database updates that we were
supposed to re-implement in an incremental fashion (MySQL to HDFS and HDFS to HBase).

The central problem surrounding the incremental update for the MySQL to HDFS data transfer
was that we needed to somehow be able to keep track of which tweets had already been transferred.
We developed several potential solutions to this first problem:

1. We could have added a flag to the MySQL databases to indicate whether or not we have
added the rows (tweets) present in the database. New rows would be added with the flag set
to false. Then, when new tweets were added to the database, that flag would be set to true.
This would allow us to easily keep track of the data that needed to be transferred over to
HDFS. Such a setup would allow us to easily employ Sqoop’s incremental update feature (see
Section 3 for more details).

The disadvantage of this technique is that it would require the modification of the source
code of the applications running to collect tweets and populate our collection databases. While
one of them is an abandoned project (YourTwapperKeeper [25]), another is in fact undergoing
active development and customizing these applications could preclude easy merges of those
new updates. Sunshin is also apprehensive about this idea.

2. At present, tweets are added to the system in a batch update that moves everything from
the ArchiveDB to HDFS. A second route we explored was simply dumping the CollectDB to
the ArchiveDB and HDFS simultaneously, meaning that we would only add the new tweets,
not reconstruct the entire HBase table again. At present, the CollectDB is dumped daily to
the ArchiveDB via the tool pt-archiver, which performs the transfer to ArchiveDB by locking
tables from updates until the transfer of the table is complete. If we could stop the tweet
collection services from adding anything to the CollectDB, then in theory, we could dump
CollectDB after pt-archiver makes its own updates and simply send the dumped contents over
to HDFS. A potential issue would come in interrupting all of our tweet-collection services.

3. A third option we looked at was using pt-archiver to transfer the data into a temporary
database with copies of all of the data. This temporary database would be static and would
not receive any updates, avoiding issues with stopping our tweet-collection software. From
here, we would first transfer all the data to HDFS from this database and then dump the
contents to the ArchiveDB, allowing the original CollectDB to continue collecting tweets.

38

The downside to this solution is that transferring the tweets from the CollectDB to the
ArchiveDB is already slow (on the order of 1 hour, according to Sunshin) and this would
effectively double the time it would take to move tweets over. Ideally, this process would be
initiated daily, during off-hours for system users. Regardless, users of the system utilizing the
search interface should not be affected by this technique outside of the time it takes for new
tweets to populate the database (something that holds true for all the techniques we mention
here). An added benefit is that we would not have to stop collecting the tweets.

4. Another option we explored was to completely ignore the CollectDB and to use a MySQL com-
mand like mysqldbcompare to generate a list of differences between dumps of the ArchiveDB
and then move that data over to HDFS.

The cons of this approach would be that it is likely to be costly (our databases have over
1 billion tweets), but this approach seems fairly straightforward.

5. While researching about pt-archiver, we found that pt-archiver supports an extra flag called
“–file”. Using this flag, we can simultaneously archive the tweets, and save them in a text
file. This was good to know since this solution is what we finally implemented. Every time
pt-archiver archives the tweets, it spews out a text file of the tweets. We made use of this
text file of tweets to act as the delta update of tweets.

Table 2 summarizes the different solutions we had to build the MySQL to HDFS incremental
update feature along with the potential advantages and disadvantages.

Table 2: Summary of ways to implement a MySQL-HDFS
incremental update

Technique Pros Cons

Adding a flag to MySQL
tables

Very simple to utilize Sqoop’s
incremental update feature
from this point

Requires modifying the
ArchiveDB, and adding a new
column

Transfer everything in the Col-
lectDB to the ArchiveDB and
HDFS simultaneously

Very simple conceptually Requires stopping and re-
starting all tweet-collection
services

Intermediary database Fairly easy to implement Slow (requires two or more
hours to update)

ArchiveDB diff Relatively easier to implement Very slow (requires finding
the differences between two
databases with billions of
tweets. Also, requires storing
an extra backup of all tweets,
which is space-intensive

39

pt-archiver’s flag option to cre-
ate a text file for tweets

Easiest implementation The text file obtained needs
some data cleaning (removal
of non-ASCII characters, mis-
placed newline and return
characters, etc.)

Figure 15 shows a screenshot of the command we ran using pt-archiver to spew out a text file
of the tweets.

Figure 15: Archive tweets and also save in file

Running the above script does two things. First, it transfers the tweets from the “z 312” table
in the database named test faiz to a table called “Archives”. At the same time, a text file with the
name “2016-11-04-test faiz.z 312” gets generated. See Figure 16 for the details.

40

Figure 16: pt-archiver transfer statistics

Once we got the text file, we did not care about the new tweets being added to the ArchiveDB
since at this point, we were dealing only with the text file of the tweets created. This text file
served as the means to do the incremental update.

An important note about pt-archiver is that while it is archiving rows from one table to another,
it locks the source table. This makes sure that the table is not being updated while rows are being
archived from it. This is an important feature of pt-archiver as without this feature, building the
incremental update feature would have been more complicated.

Our next challenge was to parse this text file, and meaningfully extract the 14 columns in each
row. However, the text file we got from pt-archiver was badly structured. For example, a lot of
tweets had misplaced return and newline characters. In such cases, pt-archiver starts a newline
assuming it is a new row in the MySQL database. Figure 17 shows a screenshot of the problem.

41

Figure 17: pt-archiver not able to handle newline characters causing it to break into a newline

Every newline needed to start with either “twitter-search” or “twitter-stream” since those are
the names of the two APIs used to gather tweets, but in this case, it was starting from “FOX17”.
This made it difficult for us to parse the text file and extract all items appropriately. Ideally, each
row is supposed to have 14 items, which we wanted to store in a Python list, and then write out
to a CSV file. But because of these newline and carriage return characters, each row now did not
necessarily have 14 items.

Another peculiar thing to notice about this text file generated by pt-archiver was the use of the tab
delimiter. This tab delimiter was effectively hidden in that we could not see it by just concatenating
the file. However, when we observed this file under TextWrangler [59], a code editing software, we
could see these hidden delimiters. See Figure 18 for the screenshot showing the hidden tabs.

Figure 18: Hidden tab delimiters in the text file

Our first approach included removing all newline and carriage return symbols from the file using
some delimiter in the text file. We wrote a Python script to do that, but that also removed all the
newline characters at the end of each line, which we did not want. We wanted a newline character

42

at the end of each line so that there remain 14 items in each row.

We then tried to write one regular expressions for each of the 14 columns that would parse the
documents and separate the entire text based on the regular expressions. There were two issues
with this approach - a) this method involved writing 14 unique regular expressions that seemed like
an overkill; and b) it was difficult to come up with a perfect regular expression for the “text” field.
The raw text field contains a lot of non-ASCII and non-recognizable characters. These characters
were not letting us successfully create a generic regular expression for the “text” field.

Finally, what worked for us was writing a simple bash script that did a few things:

1. Remove every newline character. Newline characters can be “\n”, “\r\n”, or “\r”. This
effectively merged the entire document into a single line.

2. Insert a newline character before every occurrence of the word “twitter-search” and “twitter-
stream”. We did this based on the observation that the first column is always either “twitter-
search” or “twitter-stream”.

Once we cleaned the text file of the unnecessary newline and return characters, single and
double quotes, and replaced all the null characters with zeros, we converted this text file into a
CSV file. Our next job was to convert this CSV file into an Avro file [60]. Avro file format has its
advantages we discussed in section 3. Avro files have a schema stored in them along with the data.
It took us some time to actually understand what are these Avro files and where and how is the
schema defined. A part of the Avro files schema is shown in Figure 19.

43

Figure 19: Avro files schema

We used csv2avro [31], an open source tool, to convert the CSV file to an Avro file. For more
details on this tool, please refer to Section 3.

The minimum block size of the HDFS filesystem on the cluster is 256 megabytes. This meant
that even a 1 byte file stored on HDFS will consume 256 megabytes of space. In our case, since we
were implementing an incremental update feature, the size of these Avro files was small. For our
test data (“z 312” table), it was a 49 megabytes file in size. Hence, 201 megabytes of space would

44

effectively be wasted. This problem will only get worse as we get more data from the Twitter APIs
and we do more incremental updates.

Based on our conversation with Sunshin on November 3 in the class, we decided to look into
merging the Avro files. It was not as simple as just concatenating the two CSV files since it
also involves the schema. After doing some research and failing to merge the Avro files using
PiggyBank[61], we made use of the avro-tools [60] to merge two Avro files.

Thus, we were successful in implementing the incremental update feature of tweets from the
MySQL database to the HDFS server. Refer to Section 6 for more details on this.

5.3.2 Noise reduction and cleaning

After discussion with the CLA team, we realized that we had a greater role in the actual cleaning
of the data than previously thought.

The previous work done by last year’s collection management team seemed to do only very basic
cleaning, like the removal of curse words. However, CLA asked us to do analytic processing on the
tweets, like lemmatization, in curating a final, clean version of tweet source text. Our discussions
with the CTA team revealed that they would like something similar. CLA mentioned that Stanford
has some open source tools available for NLP that looked like they might be useful for this task
and others (like automatically identifying named entities in text).

Further investigation revealed that Sunshin had several working scripts for these items that he
kindly shared with us for the completion of our project, including code that uses the Stanford tools.
Unfortunately, these tools were inefficient and did not cover the full extent of functionality that
we would ultimately need to provide. We wound up using them as convenient starting points in
pursuit of our own solutions.

In the end, we utilized a combination of Apache Pig Latin (per the recommendation of Sunshin),
Java, and Python to implement the processing pipeline. This is divided into three stages, each
done on the granularity of a single collection:

1. The initial read would be done on a temporary Avro file stored in HDFS as a result of the
incremental update from MySQL to HDFS. This read will load the information from the raw
tweet into the tweet column family in our class’s HBase table. Additionally, it would initialize
various other columns in the clean-tweet column family to an empty string to simplify later
processing.

2. The second step of the pipeline utilizes a Java program that draws on Stanford’s CoreNLP
suite and the HBase Java API to scan our table for tweets that have not been lemmatized (i.e.,
tweets where the lemmatized column in the clean-tweet column family is an empty string),
and utilizes the CoreNLP code to lemmatize the tweets and extract named entities from them.
This step is currently performed serially, and would be a major target for optimization in the
future.

45

3. The final step in this pipeline is additional cleaning and tweet augmentation. We again scan
the HBase table for tweets with specific fields that have not been initialized, filtering out the
rest. With these remaining tweets, we use a combination of Apache Pig Latin and Python
to extract information like hashtags and mentions, and prepare the body of each tweet for
the downstream groups (essentially, we populate most of the clean-tweet columns described
in Figure 23. This step is somewhat sluggish (please see Table 3 for more details).

4. Once this pipeline has finished, we merge the temporary Avro file with the Avro file archive
for the entire collection, as described previously.

The core of this pipeline can be seen in Figure 20.

Table 3: Processing benchmark

Collection: 312 (Water Main Break)

Number of Tweets: 155657

Initial Step (Duration): 2 minutes

Lemmatization Step (Duration): 33 minutes

Cleaning Step (Duration) 27 minutes

In the future, there are several options that could potentially speed up the processing as de-
scribed above. These are enumerated below:

1. One could use the Java APIs to read from the Avro file directly rather than scan HBase for
valid rows within each column. Scanning HBase still takes a large amount of time, even if we
avoid re-processing tweets in the table by filtering some of them out.

2. The Java step is currently run serially: making that a parallel process that works on separate
parts of the table would offer a linear speed-up.

3. Another option would be forgoing Java entirely for the lemmatization and cleaning steps: the
CLA group utilized Apache Spark [62] for processing in their own work this semester, including
lemmatization and the removal of stop words. We refer to their report on VTechWorks for
more details on this process. As Spark processes data in-memory, avoiding needless writes
and reads to disk, it can offer a significant reduction in overhead.

4. Finally, the use of Python for several of the cleaning steps is likely inimical to program
execution speed. Converting to Java or using native Pig functions could potentially be faster.

46

Figure 20: Tweet processing pipeline

Additionally, we developed a conceptual framework to implement asynchronous updates that
builds upon the rest of our work, as seen in Figure 21.

Figure 21: Potential asynchronous processing pipeline

We store multiple versions of cleaned tweet data for the various teams. CLA and CTA, for
example, asked for stop word removal, to improve tweet classification and clustering. On the other
hand, the FE team does not desire us to remove stop words (a decision informed by our textbook,
which states that the trend in modern search engines has been to use fewer and fewer stop words)
[53].

One item that we ran out of time to do was conduct meaningful experiments with our solutions.

47

Table 4: HBase schema, as defined by last year’s teams

Column Family Column

clean tweet clean text

clean tweet collection

clean tweet hashtags

clean tweet urls

clean tweet collection

clean tweet hashtags

clean tweet urls

clean tweet mentions

tweet archivesource

tweet created at

tweet from user

tweet from user id

tweet geo coordinates 0

tweet geo coordinates 1

tweet iso language code

tweet profile image url

tweet source

tweet time

tweet to user id

tweets topics probability list

tweets topics topic label

clean web text clean profanity

clean web collection

clean web urls

clean web lang

clean web domain

clean web title

doctype doctype

cf cf sim scores

cf cf sim tweets

clustered-tweets cluster-label

clustered-tweets doc-probability

classification relevance

One major issue we encountered in this project is the lack of a coherent schema from last year’s
Collection Management team [6]. The above schema, taken from last year’s Solr team, provided us
with a basis on which to build a new schema. Please see Figures 22, 23, 24, 25, 26, and 27 to learn
more about the schema that we have developed in conjunction with this year’s class.

48

As a result of our difficulties reconstructing last year’s schema, our team put a great focus on
curating comprehensive documentation on the schema our class will develop. We emphasized the
importance of this endeavor in our interactions with the rest of the teams.

It is important to note that HBase is a NoSQL data store, with more flexibility than a traditional
MySQL database [34]. In effect, you can think of the database as a giant key-value store, where
a row is identified by a unique key, which links to a set of column families which each contain
any number of columns. While the column families have to be defined up front, the columns can
be defined on the fly (hence the importance of documenting a standard schema) [34]. It is not
necessary for every row in HBase to have a value for every column family, whereas in a traditional
MySQL database, every row has exactly the same number of columns, with some left empty as
need be. These sparse datasets can waste a huge amount of space in traditional databases, but
HBase is optimized to handle cases like these [34].

The tables below are, mostly, self-explanatory, but the latter three table columns might seem a
bit confusing. These are primarily the purview of the Solr and Front End teams, with “stored”
and “indexed” being Solr terms and “facets” a part of search interface vocabulary. As such, these
columns are mostly outside the scope of the CMT team’s own project.

The row key of each tweet in the table is the tweet’s collection number, concatenated with the
tweet’s ID via a hyphen. For a webpage, the key is the page’s URL. For simplicity’s sake, all of the
data stored in HBase is stored as a chararray.

49

Figure 22: “tweet” column family

50

Figure 23: “clean-tweet” column family

51

Figure 24: “webpage” column family

Figure 25: “doc-type” column family

Figure 26: “tweet-topic” column family

52

Figure 27: “tweet-cluster” column family

5.3.3 Social network

The main goal of this task was to develop a query-independent importance methodology for the
system’s tweets and web pages based on a graph of these entities that we create. This social network
includes interactions between users, tweets, and URLs, with each of the latter serving as nodes in
our graph.

There are four subsets in the workflow for this task, which are shown in Figure 28.

Figure 28: Workflow for building social network

1. Data collection

The first step is the collection of data. We use CSV files for the inputs, so we need to extract
cleaned tweets from HBase into a CSV file. Sunshin provided us a Pig script for downloading
files to CSV from HBase and we made some modifications based on that to extract files that
contains the columns we need for building the social network. The format of the tweet we
downloaded from HBase is shown in Figure 29.

Figure 29: The format of the tweets we collected from HBase

In Figure 30, we also provided some example tweets we extracted from HBase based on the
format we defined in Figure 29.

53

Figure 30: Examples of the tweets we collected from HBase

2. Creating the social network For the social network, we needed to construct a graph
G(V,E), where V is the set of nodes and E is the set of edges. We first needed to define the
nodes and edges based on our demand. Since we wanted to include as much information as
we can in the social network, we decided to include the following three kinds of nodes in the
node set V for the social network.

(a) Users:

Users are one of the most important factors in the social network, serving as active
entities that have interactions with one another via tweets, retweets, mentions, following,
and more.

(b) Tweets:

Tweets are the primary source of entity-entity interaction in our social network, serving
to connect URLs and users. Tweets can also be important in and of themselves, with
interactions forming between tweets.

(c) URLs:

The URLs also include some useful information (such as source quality) that we could
use to help rank tweets in queries.

For the edge set E, we need to consider all possible interactions between and among those
three kinds of nodes. After some research, we found that there are basically four categories of
interactions between these nodes. We listed them below and explained how we obtain them.

(a) User-to-user edges:

These edges are undirected edges between users, and are based on Twitter retweets (RT)
and mentions (@). If we find a tweet that mentions another user in it, we will add an
edge between the user who wrote the tweet and the user who is mentioned in that tweet.
Additionally, if we find a tweet that retweets another, we will add an edge between the
user who retweeted the tweet and the user who wrote the original tweet.

(b) Tweet-to-tweet edges:

These edges are undirected edges between tweets, and are based on Twitter retweets
(RT). If we find a tweet that retweets another, we will add an edge between those two
tweets.

54

(c) User-to-tweet edges:

These edges connect users to tweets and are undirected. If a user writes a tweet, then
there is an edge between this user and the tweet he wrote.

(d) Tweet-to-URL edges:

These edges connect tweets and URLs and are undirected. If a tweet includes an URL,
then there is an edge between this tweet and the URL it includes.

Figure 31 shows the structure of the social network as we defined above. The blue circles
represent URLs, the green circles represent tweets and the red circles represent users. We
decided to use undirected edges to represent the interactions between nodes for simplicity of
calculation. That said, a strong case could be made for the use of directed edges, especially
in the case of retweet relations.

Figure 31: Structure of the social network

3. Calculate importance factor (IF) The intuition behind creating the social network is to
help improve the performance of queries. Therefore, after building up the whole structure
of the social network, the next job is to derive appropriate algorithms to assign weights to
each node in the network, reflecting that node’s relevant importance. We have no information
about the query, so the importance value we compute will only use the social network graph.

(a) Calculate users importance factors

In order to rank users, one must first identify the features that they wish to rank on.
According to the user information that we can extract using the Twitter API, we decided
to use the following five categories of features to rank users:

55

i. Followers count (c(followers)):
Indicates the number of followers of users.

ii. Friends count (c(friends)):
Indicates the number of friends of users.

iii. Statuses count (c(statuses)):
Indicates the number of tweets (including retweets) issued by users.

iv. Favorites count (c(favorites)):
Represents the total number of favorite clicks received by users.

v. Listed count (c(listed)):
Represents the number of public lists that this user is a member of.

The user importance factor is calculated by the summation of all the attributes mul-
tiplied by the weights as shown in Equation 1.

IF(user) =w1 × c(followers) + w2 × c(friends)+

w3 × c(statuses) + w4 × c(favorites) + w5 × c(listed)
(1)

With this Equation 1 in hand, we need to assign weights to each feature. Since what
we did is task-independent, it’s hard to define an objective to optimize the weights.
Therefore, we assign the weights manually based on our knowledge of the importance
of each feature we used, reflecting the attributes that we feel should have the greatest
importance.

We think that c(followers), c(friends) and c(favorites) are more important than the
other two features, because if you received a lot of favorites, or you have many friends,
or you have many followers, it means that you are connected to more people than others,
which makes you more likely to play an important role in the social network.

What’s more, we assign a lower weight to the statuses count (which keeps track of the
number of tweets a user issues) than the list count (which is the number of lists that
others have put a user on) because creating a large volume of tweets is not as important
as the user-vetting mechanism of being added to a list (which confers a sense of authority
on that user). Therefore, the final equation we used to calculate the important factors
for users is shown in Equation 2.

IF(user) =0.25× c(followers) + 0.25× c(friends)+

0.1× c(statuses) + 0.25× c(favorites) + 0.15× c(listed)
(2)

We scale the importance factor to [0, 1] for intuitive comparison of nodes in the network.

(b) Calculate URLs importance factors

For ranking URLs, we just simply count how many times each specific URLi is mentioned
in all of the tweets in the whole collection c(URLi). In order to compare these nodes to
the other nodes in the social network, we normalize the importance value by dividing it

56

by the sum of the count of all URLs
∑

k c(URLk). The equation we used to define the
importance factor of URLs is shown in Equation 3.

IF(URLi) =
c(URLi)∑
k c(URLk)

(3)

(c) Calculating tweets importance factors

In order to rank tweets, we decided to take advantage of the social network and use
the user and the URL connected to the tweet to compute the importance factor of
tweets. Considering the following two facts: 1) if the user who posts the tweet has high
importance factor, the tweet he posts will also tend to have a high importance factor;
2) If the URL included in a tweet has a high importance factor, then the tweet will
also tend to have a high importance factor. Therefore, the tweet importance factor is
calculated by the summation of those two importance factors multiplied by the weights
as shown in Equation 4.

IF(tweet) = w1 × IF(user) + w2 × IF(URL) (4)

Finally, having derived Equation 4, we need to assign weights to the importance factor of
the user who posted the tweet and the importance factor of the URL that is mentioned
in the tweet (IF(URL) = 0 if the tweet does not include any URL). We presume that
the importance factor of a user should be weighted more highly than the importance
factor of URLs, so we assign the weights shown in Equation 5 to calculate the important
factors for tweets.

IF(tweet) = 0.7× IF(user) + 0.3× IF(URL) (5)

(d) Importance factor summary

To conclude our overview of the importance factor calculations, we now point out a few
issues with the methods we have discussed, and areas where they could be improved. To
begin, each of the equations used to derive an importance value is somewhat simplistic
and takes into account only a node’s direct neighbors, as opposed to nodes in neigh-
borhoods many steps away, which PageRank and similar algorithms consider [56]. This
was done for simplicity, but our method might not capture as much information about
the network as a result. An additional point of concern would be the comparability of
the different importance values for tweets, URLs, and users, and the interpretation of
each such value. The normalization of the values for users and URLs means that the
vast majority of each kind of entity will have very small values. Specifically for URLs,
the importance factor will have an inverse relationship with the size of the collection we
perform the analysis on, as intuitively, many URLs are likely to be unique, and even
those that get repeated will be a small proportion of the total URLs shared. Hence, it
might not make sense to add this raw value to user importance to derive the importance
value for a tweet. Rather, some sort of adjustment to the URL value might be required
before doing so. Finally, an argument could be made that a tweet’s importance factor
should not include consideration of URLs it mentions, as the more popular a URL is,
the more tweets mention it, and the less important any single one of them becomes to
the URL’s network connectivity.

57

4. Visualization

Since we were responsible for constructing the social network, visualization of the network
was a natural extension of our work. To that end, we did some research into visualization
tools that our team or the front-end team can use to visualize sub-graphs. We decided to
use NetworkX, because we were familiar with NetworkX and it was easier for us to use it to
visualize the results.

NetworkX is a Python language software package for the creation, manipulation, and study
of the structure, dynamics, and function of complex networks. With NetworkX you can load
and store networks in standard and nonstandard data formats, generate many types of random
and classic networks, analyze network structure, build network models, design new network
algorithms, draw networks, and much more. Since we were using Python to create the social
network, it was easy to use NetworkX to do some simple visualization of sub-graphs [63].

Finally, we used NetworkX to visualize the social network we built and the results are shown
in Figure 32. In Figure 32, the green circles represent tweets, the red circles represent users
and the blue circles represent URLs. We use the importance factor of each node to decide
the size of that node, so the bigger the node is, the more important it is.

To construct Figure 32, we used 300 tweets from Collection z 3. In the graph, there are:

• 300 tweet nodes

• 158 user nodes

• 110 URL nodes

Additionally, there are:

• 73 user-user edges

• 54 tweet-tweet edges

• 300 user-tweet edges

• 140 tweet-URL edges

58

Figure 32: Visualization of the social network using NetworkX

In Figure 32, it is hard to see the blue circles and the reason is that in this tweet collection,
there are only a few URLs that are common across tweets. Therefore, based on our algorithm,
the importance value for most of the URLs are very small, which makes the blue nodes hard
to see. Figure 33 shows a zoomed in version of Figure 32 to make it possible to see the URL
nodes.

59

Figure 33: Enlarged bottom part of the graph to see the blue nodes which represent URLs

60

6 User manual

We present a user’s manual for those who might use the project results, access our data sets, or
leverage the processing our team is studying are provided in this section.

6.1 Incremental Update from MySQL to HDFS

6.1.1 Transfer SQL data to the MySQL database

We assume here that you have access to the test MySQL data that was given to us by Sunshin.
We have provided a copy of this that can be found in [64].

Our scripts contain some hard-coded values for base paths of the files that we save to. This
would need to be changed per user system design and requirements.

If you are looking to run these scripts locally first instead of on a cluster, that should be okay.
Just make sure that you have MySQL installed on your machine (see section 7.2.2 for installation
instructions), and download our script from GitHub.

Use “insert sample data in MySQL.bash” to transfer the test SQL data to a MySQL database.
To run this script, follow what is shown in Figure 34

61

https://github.com/mitchwagner/CMT/blob/master/Tweets_Update_Incremetal_HDFS/insert_sample_data_in_MySQL.bash

Figure 34: Transfer test SQL data into MySQL table

6.1.2 Use pt-archiver to transfer tweets to the ArchiveDB, and save to a file

We assume that you are working on a computer that has pt-archiver installed on it (see section
7.2.13 for the install instructions).

Use “transfer data using pt-archiver.bash” to transfer tweets from a given table to the ArchivesDB
table. This script also simultaneously creates a text file for the tweets. We use this file to do the
incremental update of tweets from the MySQL server to the HDFS. See Figure 35 on how to run
this script.

62

https://github.com/mitchwagner/CMT/blob/master/Tweets_Update_Incremetal_HDFS/transfer_data_using_pt-archiver.bash

Figure 35: Transfer tweets to the ArchiveDB, and a text file

Figure 36 shows that all the tweets in the original table get deleted when they are moved to the
ArchiveDB. Pt-archiver locks the table it works on. This makes sure that the concerned table does
not get dynamically updated while pt-archiver works on it. The text file created for the tweets is
used for the incremental update to HDFS.

63

Figure 36: All tweets deleted from the original table, moved to the ArchiveDB, and a separate file

6.1.3 Cleaning the text file of tweets

You need to run a single bash script to remove unnecessary newline characters, and insert newline
characters at the end of each line. We also removed single quotes, and double quotes from every
line since their presence was making it difficult to convert CSV files into Avro files.

Use “cleanup tweets.bash” to perform cleaning of the text file of the tweets. See Figure 37 on
how to run this script.

64

https://github.com/mitchwagner/CMT/blob/master/Tweets_Update_Incremetal_HDFS/cleanup_tweets.bash

Figure 37: Clean the tweets files

The argument you provide to this script is the file generated by pt-archiver as discussed in
Section 6.1.2.

6.1.4 Converting the CSV file into an Avro file and copying it to HDFS

The cleaned CSV file obtained in Section 6.1.3 first needs to be converted into an Avro file format.
We assume here that csv2avro[31] is already installed on the system.

Based on the name of the file, the Avro files need to be put at specific locations on HDFS. For
example, a part of the file name shown in Figure 39 is “z 312”. We need this part to understand
where to put this file on the HDFS file system. Figure 38 shows the different locations where an
Avro file can be put on the HDFS system in our system.

Figure 38: Different folders on the HDFS system for tweets coming from different tables on the
MySQL server

65

Use “convert csv avro.bash as shown in Figure 39 to convert the CSV file into an Avro file.
This script also copies the file from the MySQL server to the HDFS server to it correct location.

Figure 39: Convert a CSV file into Avro file format

6.1.5 Merging the Avro files on HDFS

Sunshin informed us that the block size of the HDFS system on the cluster is 256 megabytes. This
means that even if you want to store a 1 megabyte file on the HDFS system, it will occupy 256
megabytes, essentially wasting 255 megabytes.

We needed to come up with a solution that merges the Avro files on the HDFS system to save
disk space. Figure 40 shows two Avro files on the HDFS file system. We use Avro Tools [65] to do
the same.

Figure 40: Two Avro files to be merged on HDFS

Use “merge avro.bash as shown in Figure 41 to merge the two Avro files into one big Avro file.
The files are deleted after being merged.

66

https://github.com/mitchwagner/CMT/blob/master/Tweets_Update_Incremetal_HDFS/convert_csv_avro.bash
https://github.com/mitchwagner/CMT/blob/master/Tweets_Update_Incremetal_HDFS/merge_avro.bash

Figure 41: Merge the two Avro files on the HDFS file system

This completes the incremental update feature from the MySQL server to HDFS.

6.2 Incremental update from HDFS to HBase

This section describes how to build and use the scripts provided in our GitHub repository [64] for
the incremental update from HDFS to HBase. It is assumed that these scripts are enacted on the
temporary Avro file created in Section 6.1, before it is merged.

6.2.1 Preparing the pipeline

Our pipeline requires that the Hadoop ecosystem components discussed in the report are installed,
as well as Python 2.6.6. Additionally, while most of the pipeline consists of Pig and bash scripts,
a component of it (the lemmatization and Stanford named entity recognition step) is implemented
as a Java program that must be built. Please see Section 7 for more details on software specifics.

This Java program is managed by Gradle [66], and can be found under the directory /tweet-
processing/nlp/ in the code that we have included with this submission. To build the project, run
the command “gradle build.” The resulting jar file will be built and saved to
/tweet-processing/nlp/build/libs/. To add this jar to the pipeline, move it to the folder /tweet-
processing/pipeline/.

6.2.2 Running our scripts

With the jar file in place, one can now run a simple bash script to process process tweets: the
file /tweet-processing/pipeline/process.sh. This file is configured to work on the IDEAL/GETAR
system: instructions on how to accommodate another system are included in Section 7.

The script we have developed takes three arguments: the name of an HBase table, and two
collection numbers of the collections to be processed (inclusive). The scripts that process.sh calls
use these collection numbers to derive the location of an Avro file on our HDFS instance (these
locations are hard-coded, and should be changed according to the system design of the user).

67

Figure 42: Running procces.sh

6.3 Build social network

This section describes how to use the script for building a social network from a collection, as well
as how to visualize the results.

6.3.1 Collect data

We developed a simple script using the Apache PiggyBank [61] to access our HBase table and save
the result as a CSV on HDFS. This script can be found in our files under /tweet-processing/csv-
download/.

In this script, a couple of hard-coded values specific to our system have been used to specify the
range of tweets to scan in HBase. An additional hard-coded value has been used to specify the
name under which to save the CSV on HDFS. These values need to be modified according to the
desires of the users of our code.

This scripts writes to HDFS a folder consisting of a number of files representing parts of the true,
complete CSV. Concatenating these files yields the complete CSV for further analysis.

Figure 43: Concatenating part files into a single CSV

6.3.2 Use Twitter API

We developed a script for collecting useful information for users from Twitter using Tweepy [67].
Tweepy is open-source, hosted on GitHub, and enables Python to communicate with the Twitter
platform and use its API. Using Tweepy, we can easily extract useful information we need from
Twitter. This script can be found in our files under /social-network/ named twitter api.py. The
red box in Figure 44 shows the range of information that Tweepy can gather from Twitter.

68

Figure 44: How to use Tweepy to extract useful information from Twitter

In our code, we have included a script called tweetsSN.py for calculating the importance factor
of users. One can use it directly by providing a list of user ids as input. The red box in Figure
45 shows us providing such a list, and using it to extract user-based information from Twitter.

69

Figure 45: Providing a list of users and gathering data with Tweepy

6.3.3 Build social network and compute importance factor

We also use tweetsSN.py to build our social network and compute the importance factors of the
social network entities. The input of this function should be a CSV file downloaded from HBase
which should include basic tweet information including tweet id, user name, from user id, tweet,
url(detailsabove). Along with the CSV file, you also need to provide field names to help identify
the meaning of each column. Figure 46 demonstrates the use of this file. The field names you
should identify are shown by the blue box in Figure 46.

Figure 46: The input of the script for building social network

70

Figure 47: The output of the script for building social network

This script will output two files: the node list (including importance factors), and the edge list.
In order to run this script, you also need to identify the names of the output files. Foe example,
we use “nodescsvfile.csv” for the node list and “edgecsvfile.csv” for the edge list, as shown in the
red and blue boxes in Figures 47.

6.3.4 Visualization using NetworkX

Once you get the node list and edge list, you can then pass the results to visualization.py,
which we developed to visualize the results using NetworkX. The inputs of this script are exactly
the outputs of the tweetsSN.py script. You can change the file name of the node list by modifying
the file name (Figure 48). We normalized the importance factor to [0, 1]; it is hard to visualize if we
use the importance factor directly to set the size of the nodes in NetworkX. Therefore, we multiply
the importance factor by a factor of 10, 000 to obtain the size for each node.

Figure 48: The input of the script for visualization using NetworkX

Also, you should put the file name of the edge list in the red box shown in Figure 49.

71

Figure 49: The output of the script for visualization using NetworkX

72

7 Developer manual

We present a developer’s manual for those who want to understand our data and code and incor-
porate changes or make enhancements for their own purposes. We will review the technologies that
we use in this project, giving a brief introduction to them at first and then diving more into their
details and implementation.

7.1 IDEAL/GETAR cluster architecture

Our project is implemented on a 20-node + 1 (Solr node) computing cluster, for 88 CPU cores,
704GB of RAM, and 154.3TB of storage. More specifically:

• The Solr node has 8 Intel Xeon cores, and 64GB of RAM.

• The remaining nodes each have Intel i5 (Haswell) 4-core processors and 32GB of RAM.

• The cluster head node has 6TB of storage.

• The remaining nodes have 3TB + 4TB apiece.

• We maintain an 8.3TB NAS Backup.

We utilize Cloudera Hadoop 5.6.0 (CAP program).

7.2 Module overviews

There are many parts of the IDEAL [1] and GETAR [2] projects. For a broad overview of the
system architecture, see Figure 1. Below are some parts of the bigger architecture components that
concern us as the CMT team.

7.2.1 MySQL database

A relational database management system (RDBMS) is a database management system (DBMS)
that is based on the relational model. Relational database management systems were introduced in
the 1970’s. RDBMSs avoid the navigation model employed by old DBMSs. The relational model
has relationships between tables using primary keys, foreign keys and indexes. Thus, the fetching
and storing of data become faster than the old navigational model. RDBMSs are widely used
by enterprises and developers for storing complex and large amounts of data. The most popular
RDBMSs are MS SQL Server, DB2, Oracle and MySQL [68]. Figure 50 shows a relational database
model of describing a relation between tweets, users, URLs, and other entities.

73

Figure 50: A relational database model describing a relation between tweets, users, URLs, and
other entities [17]
.

MySQL databases consist of any number of tables, made up of rows and columns, that store
data. A user that has been given CREATE and DROP permissions on a database can create and
remove tables of that database. The CREATE TABLE command simultaneously creates the table
and defines its structure (although the structure of the table can later be changed using the ALTER
TABLE command).

74

Figure 51: MySQL architecture overview [18]

In this project, we also collect tweets using the YTK [25] tool, which collects tweets directly from
Twitter and stores them into a MySQL database.

There are many advantages of using MySQL. Some of them are outlined below [69].

1. Scalability and flexibility - The MySQL database server provides the ultimate in scalability,
sporting the capacity to handle deeply embedded applications with a footprint of only 1MB
to running massive data warehouses holding terabytes of information [69].

2. High performance - A unique storage-engine architecture allows database professionals to
configure the MySQL database server specifically for particular applications, with the end
result being amazing performance results [69].

3. Robust transactional support - MySQL offers one of the most powerful transactional database
engines on the market. Features include complete ACID (atomic, consistent, isolated, durable)
transaction support, unlimited row-level locking, distributed transaction capability, and multi-
version transaction support where readers never block writers and vice-versa [69].

4. Strong data protection - Because guarding the data assets of corporations is the number one
job of database professionals, MySQL offers exceptional security features that ensure absolute
data protection. In terms of database authentication, MySQL provides powerful mechanisms
for ensuring only authorized users have entry to the database server, with the ability to block

75

users down to the client machine level being possible. Finally, backup and recovery utilities
provided through MySQL and third party software vendors allow for complete logical and
physical backup as well as full and point-in-time recovery [69].

7.2.2 MySQL installation & operation

1. Installation: Follow the steps on http://dev.mysql.com/doc/refman/5.7/en/installing.html
to download and install MySQL. Pick the version number for MySQL Community Server you
want and the platform you want.

2. Operation: Some useful commands for using MySQL are shown in Figure 52.

Figure 52: Useful commands for MySQL

There are many good tutorials on learning MySQL. One useful can be found on YouTube
[70].

76

7.2.3 Apache Hadoop

Apache Hadoop [71] is a popular tool used for distributed storage and processing. It is an open
source software package that is being actively developed by a large community of users, and is
designed to efficiently store and process very large data sets on clusters of computers formed from
commodity hardware. The heart of Hadoop is called Hadoop Distributed File System (discussed
in the next section), but the ecosystem actually consists of several modular components:

1. Hadoop Common - all the libraries and utilities are stored here.

2. HDFS - HDFS is a distributed file system designed to store large collections of data efficiently.

3. Hadoop YARN - this is responsible for managing the compute resources in the cluster. It can
be thought of as a job scheduler that manages the compute resources.

4. Hadoop MapReduce - Hadoop’s processing backend is called Hadoop MapReduce. As its
name suggests this software framework implements the MapReduce [72] programming model
developed to process very large data sets. When a particular job is submitted to a Hadoop
cluster, the components of the ecosystem divide the necessary work up into small pieces.
These small pieces are then distributed in manageable chunks to the cluster’s nodes, and the
results of each computation are merged together in subsequent aggregation.

Figure 53: High level architecture of Hadoop [19]

Historically, Hadoop’s concept came from the Google File System [73] paper published in 2003.
Another paper from Google on MapReduce [74] was published, and it was in 2006 that work on
the Hadoop project started.

77

There are many advantages of using Hadoop. Some of them are outlined below.

1. Scalability - Hadoop can scale to huge amounts of data effortlessly. It can store and distribute
big data in a cluster made up of hundreds of nodes working in parallel. Relational databases
like MySQL, etc. will not scale like this. This parallel execution of data enables Hadoop to
run applications on thousands of nodes involving exabytes of data.

2. Economical to use - scaling up data using relational databases is not cost-effective. Storing
large amounts of data in such databases is costly. Hadoop’s HDFS is much more economical
to use by businesses.

3. Flexible - Hadoop can process structured and unstructured data. This enables businesses to
derive useful information from data sources like emails, social media, fraud detection, etc.

4. Fast - since Hadoop distributes the workload onto different nodes in a cluster, the data
processing is very fast. This parallel execution is directly proportional to the number of
nodes in the cluster. As a fun fact, in 2009, Yahoo! used Hadoop to sort one terabyte of data
in 62 seconds [75]!

5. Fault tolerant - this is another important aspect of Hadoop. If at any given point in time, one
node fails in the cluster, the master node of Hadoop reassigns its work to some other node.
This way, the entire job does not fail, and there is no data lost either.

7.2.4 Apache Hadoop installation & operation

Hadoop version 5.6.0 is currently being used by the project to process the 1.2 billion tweets.

1. Installation:

To install Hadoop on a single node cluster, please follow the instructions mentioned on the
Hadoop website [76].

2. Operation:

Some useful Hadoop commands that we have been using in our project are given below.

78

Figure 54: Useful commands for Hadoop

To learn more about Hadoop, we recommend watching the video posted by HortonWorks
[77].

79

7.2.5 HDFS

The Hadoop Distributed File System (HDFS) is a Java-based distributed file system designed for
storing large amounts of data reliably across networked machines. As part of the Apache Hadoop
framework, it leverages technologies like Apache YARN to act as a redundant and fault-tolerant
data-storage solution that can be run on commodity hardware [78].

Figure 55: HDFS architecture overview [20]

HDFS implements a traditional hierarchical file system designed around a master-slave architec-
ture. A single NameNode serves as a master server that manages the file system name space and
serves as an intermediary between clients and the file system itself. Files are stored as a sequence of
blocks across slave machines (known as DataNodes) and replicated across machines for redundancy.
Both block size and replication factor can be set on a per-file basis [79].

HDFS provides a shell interface that lets users interact with the file system in a manner very
similar to that of other shells like bash. For example, it supports the traditional ls and mkdir
commands.

80

Additionally, HDFS provides several API options, including a native Java API and a C wrapper
for it, allowing for programmable interaction with the system [79][80].

The IDEAL/GETAR system leverages HDFS to store tweets on the order of billions. Apache
Sqoop is used to pull those tweets from an external MySQL database into HDFS in the Avro file
format, an efficient format for data serialization [60]. Additionally, an HBase database sits on top
of HBase, utilizing its capabilities to store cleaned tweets and webpages for indexing and other
analysis. Through the use of Apache Pig, the data in the Avro files can be loaded into this larger
database.

7.2.6 HDFS installation & operation

1. Installation: For the installation of HDFS, please refer to the instructions for the installation
of Hadoop. When you install Hadoop, it will install HDFS.

2. Operation: Some useful commands for using HDFS are shown in Figure 56.

Figure 56: Useful commands for HDFS

There are many good tutorials on learning HDFS. One can be found on YouTube [81].

81

7.2.7 Apache HBase

Apache HBase is an open source project modeled after Google’s Big Table [82]. It is written in
Java, and is a part of Apache Hadoop. It runs on top of HDFS. It is a non-relational distributed
database, unlike RDBMSs like MySQL. It is written in Java.

Figure 57: HBase architecture [21]

Some characteristics and advantages of using HBase are as follows.

1. Fault tolerant - HBase duplicates data across the cluster. Thus, if one node goes down, data
is not lost. It automatically takes care of load-balancing of tables. It also provides high
availability meaning that it has a very high up-time ratio.

2. Fast Operations - The lookup time in HBase tables is very fast and almost real time. It also
does in-memory caching, which speeds up data transfers as well.

3. Flexible - it supports a wide array of use cases. It is also easy to read the metrics of HBase
using something like Ganglia [83].

4. Usability - it also provides Java APIs as well as REST gateway APIs.

82

It makes most sense to use HBase when one has billions of rows and columns in a table. In the
case of small data sets, it makes more sense to use a RDBMS that runs on a single server. HBase
stores key-value pairs in a columnar fashion and provides low latency access to small amounts of
data within a big data set.

There are certain limitations on using HBase, as described below:

1. It can not be used for transactional applications or where there is a need for relational analysis.

2. You cannot communicate with it in the manner you would normally communicate with a SQL
database. It does not support cross joins, etc.

3. You typically cannot use HBase with more complicated query patterns where you are using
lots of ‘joins’ to extract data.

7.2.8 Apache HBase installation & operation

HBase is a column-oriented NoSQL database that runs on top of HDFS. It is well-suited for sparse
datasets, which are common in dealing with big data, and provides for the storing of databases with
billions of rows and millions of columns. Much in the same way HDFS and Hadoop have master
nodes that keep track of slaves, HBase utilizes a master node to store portions of tables across a
network of machines [84].

Columns in HBase are grouped together into column families that are stored together on the
filesystem. System tuning and storage specifications are done at the column family level, and
families must be declared up front during the schema definition. Column families should logically
group columns that likely have a similar access pattern [85].

1. Installation: Follow the steps on the website [86] to download and install HBase.

2. Operation: There are many useful things that you can do using HBase. We have listed some
of the basic ones below in Figure 58.

83

Figure 58: Useful commands for HBase

There are many good tutorials on learning HBase. One can be found on YouTube [87].

84

7.2.9 Apache Sqoop

Sqoop is a tool designed to transfer data between Hadoop and relational database servers. It is
used to import data from relational databases such as MySQL or Oracle to Hadoop HDFS, and
export from the Hadoop file system to relational databases. It is provided by the Apache Software
Foundation [88].

The Sqoop import tool imports individual tables from an RDBMS to HDFS. Each row in a table
is treated as a record in HDFS. All records are stored as text data in text files or as binary data
in Sequence files. The export tool exports a set of files from HDFS back to an RDBMS. The files
given as input to Sqoop contain records, which are called as rows in the table. Those are read and
parsed into a set of records and delimited with a user-specified delimiter [88].

One of the main benefits of Sqoop is that it automatically implements parallel data transfers
with built-in fault-tolerance, which is important when transferring even moderate amounts of data.

There are many good tutorials on learning Sqoop. One which we found useful is a Sqoop user
guide [89].

7.2.10 Apache Sqoop installation & operation

Apache Sqoop is a tool designed for efficiently transferring bulk data between Apache Hadoop and
structured datastores such as relational databases. In this project, we will use Sqoop to transfer
data from relational DB to HDFS.

1. Installation: Follow the steps on the website [90] to download and install Sqoop.

2. Operation: Figure 59 shows three examples of how to import and export data to HDFS.

85

Figure 59: Examples of importing and exporting data to HDFS using Sqoop

There are many good tutorials on learning Sqoop. One can be found on YouTube [91].

86

7.2.11 Apache Pig

Pig is an Apache project that is used for creating programs that use Hadoop or Spark [62] to run.
Users can make use of the platform through the Pig Latin language designed for it. Pig Latin
scripts can run in MapReduce fashion, Apache Tez, or Apache Spark [23]. Pig Latin can also be
extended using User Defined Functions. These functions can be written in JavaScript, Python,
Ruby, or Groovy, and then called directly from the language.

Historically, Pig was developed at Yahoo Research Labs in 2006 to run MapReduce jobs on very
large datasets. In 2007, the Pig code repository moved into the Apache Software Foundation.

There are many advantages of using Pig. Some of them are given below [92].

• Ease of programming - coding in Pig is relatively simple, and it is easy to achieve parallel
execution of simple tasks. Pig code is easy to maintain, write, and understand.

• Optimization opportunities - the tasks are optimized automatically, which allows users to
focus on semantics rather than efficiency.

• Extensibility - just like many other high-level programming languages, Pig also allows custom
user functions to do specific kinds of data processing.

Figure 60: Workflow of Pig [22]

87

7.2.12 Apache Pig installation & operation

Pig is used in this project for data cleaning and data transfer.

1. Installation: Follow the steps mentioned on the Tutorials Point website [93] to download
and install Pig.

2. Operation: There are many useful things that you can do using Pig. We have listed some
of the basic ones below. We also include a simple word count example using Pig in Figure 62.

Figure 61: Useful commands for Pig

To learn more about Pig, please watch this video tutorial by HortonWorks [94].

88

Figure 62: Simple word count example using Pig [23]

7.2.13 Pt-archiver installation & operation

Pt-archiver [45] is used in this project for archiving the rows from the CollectDB to the ArchiveDB.

1. Installation: pt-archiver comes in a toolkit provided by Percona. Its installation is depicted
in Figure 63.

Figure 63: Installing pt-archiver

2. Operation: There are many options that you can use with pt-archiver. Two simple examples
are shown in Figure 64.

In the first example, pt-archiver archives all rows from the “oltp server” using database “test”,
and table “tb1” to the destination server “olap server”. In addition to archiving the rows
to a new table, it also saves the archived rows in a file. Note that the rows from the source
database will be deleted in this case after transferring them to the destination database.

89

In the second example, pt-archiver deletes all the orphan rows left in the source database
using a “WHERE” clause. The users can customize this clause as they see fit. See Figure 64
for two working examples.

Figure 64: Simple usage of pt-archiver

7.2.14 csv2avro

To convert CSV files to Avro files, we are making using of an open source tool called csv2avro[31].
We decided on this tool after many failed attempts to convert CSV files to Avro files using
PiggyBank[61], and avroStorage[95].

7.2.15 csv2avro Installation & Operation

1. Installation: You need to clone the git repository from [31], and install it on your system.
You do not need to compile the package from source unless you know what you are doing.
See Figure 65 for details.

90

Figure 65: Installing csv2avro

2. Operation: There are some extra flags that you can pass while running csv2avro. Figure 66
shows the flags that we passed while running this tool.

Figure 66: Using csv2avro

The schema file needs to be passed, along with the delimiter and the line-ending character.
The flag “–bad-rows” keeps a record of any row that can not be parsed because of the presence
of any invalid characters.

91

7.3 Project installation

We installed KVM [24] on one of our lab machines to create a virtual machine. We followed the
steps in Figures 67, 68, and 69.

Figure 67: Instructions for installing KVM: Part 1 [24]

92

Figure 68: Instructions for installing KVM: Part 2 [24]

Figure 69: Instructions for installing KVM: Part 3 [24]

Once we had KVM running, we downloaded the Cloudera image, which was to be used by the
virtual machine.

93

Figure 70: Downloading the Cloudera image for KVM

Next, we spun up a VM using virsh.

Figure 71: Creating a VM using KVM

94

Figure 72: Logging into the MySQL database on the Cloudera VM

We then loaded the dump of SQL data we received from Sunshin into our MySQL database
running on our virtual machine. We created a test database called “test small data”.

Figure 73: Dumping the test SQL database into MySQL

95

7.4 Software versions

We provide a list of the software versions we used for development.

• CentOS, release 6.7

• OpenJDK, version 1.7.0 101

• PiggyBank, version 0.12.0

• Apache Pig, version 0.12.0-cdh5.6.0

• Stanford CoreNLP, version 3.4.1 (required to work with Java 7)

• HBase Java API, version 1.2.3

• avro-tools, version 1.8.1

• MySQL, version 5.7.16

• Hadoop version 2.6.0-cdh5.6.0

• pt-archiver, version 2.2.19

• csv2avro, version 1.3.1

• Python 2.6.6

7.4.1 MySQL to HDFS incremental update

All the code that deals with the incremental update feature from the MySQL server to the HDFS
server can be found in the sub-folder called “Tweets Update Incremetal HDFS” in our GitHub
repository that can be found in [64]. The scripts are fairly well documented with comments in
them, but some things to take care of while running the scripts are:

1. We are using pt-archiver to generate the text file for the tweets. If pt-archiver undergoes some
update, make sure to update the version of the pt-archiver installed on your system as well.
If some old flags are replaced by newer ones then the script called “transfer data using pt-
archiver.bash” will need to be altered.

2. Our script called “cleanup tweets.bash” removes all the non-ASCII, newline, double quote,
and comma characters. If the tweets have some other unknown character, this script will fail
to process those rows. In that case, a file called bad.rows is generated with the line number
that has the invalid character. In such a scenario, our script will need to be augmented to
take care of the newly found invalid characters.

3. Each Avro file needs to be put on a specific location on HDFS. In our script called, “con-
vert csv avro.bash”, we have hard-coded the base path on the HDFS system as “/collections/tweets-
705”. In case the base path changes on the HDFS system, this hard-coded value in the script
will also need to be changed.

96

4. We use the open source tool called csv2avro to convert CSV files into Avro files. If csv2avro
gets updated, make sure to update it on your system as well. Our script called “con-
vert csv avro.bash” may also need to be altered in case of any major update to csv2avro.

5. Avro files need to be merged on the HDFS system. We use avro-tools version 1.8.1. We have
not tested our script with any other versions. We believe newer versions should not break it,
but if they do, our script called, “merge avro.bash” will also need to be altered.

7.4.2 HDFS to HBase incremental update

There are a number of improvements that can be made to the scripts in our tweet processing
pipeline. These include:

1. Making the scripts more flexible: we currently have hard-coded values (for example, the
directory that will eventually be concatenated with the collection number that we pass some
scripts). It would be beneficial to make these arguments that can be passed to the scripts

2. Implementing error handling via checking error codes.

3. Re-implementing the pipeline using different technologies, such as Apache Spark, for faster
processing [62].

It is likely that individuals wishing to use our code will need to adapt at least some part of
it to their own system. For example, the path to the Avro file that the individuals use might be
different, or they might not be using collection numbers in their own work in the manner that we
are (Figure 74).

Figure 74: Example of hard-coded filename combined collection number parameters

A final thing to be aware of is that our processing pipeline assumes that the Avro files are
following the schema given by 19.

7.4.3 Social network

There are some improvements that can be made to the scripts for building social network and we
list some of those below:

1. For computing the importance factor for URLs, we just use the number of times the URL is
mentioned in a tweet. However, we believe that it would be more useful if we were able to in-
clude some content-based features in the calculation for the importance factor. Alternatively,
employing an algorithm like PageRank might allow us to garner a greater global insight of
the entity’s importance.

97

2. We could improve the method for assigning the weights for each feature used in calculating
the importance factor of users and tweets. Right now we just assign the weights manually
based on our understanding, which is shown in Figure 75, but it would be better to do this
in a more data-driven fashion.

Figure 75: The assignment of weights for calculating the user importance factors

3. At the moment, our code is dependent on Tweepy, so if Tweepy changes and we want to
continue using the updated version or take advantage of the new features, we might have to
account for that. Removing this dependence might be useful in a long-term project such as
the IDEAL/GETAR projects.

In case you have any questions that remain unanswered, feel free to contact us. We would be
happy to help. Our contact details can be found on the first page of this report.

7.5 File inventory

The following is a list of files that we have included in our VTechWorks submission.

• Final project report

• Final project presentation

• Final project code: a full copy of the code we have developed for this project is available at:

https://github.com/mitchwagner/CMT

98

https://github.com/mitchwagner/CMT

8 Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No.
IIS-1619028 and Grant No. IIS-1319578.

99

9 Appendix

9.1 Table of acronyms

Table 5: Table of acronyms used in this report

Acronym Meaning

IDEAL Integrated Digital Event Archiving and Library

GETAR Global Event and Trend Archive Research

CLA Classification Team

CMT Collection Management Team (Tweets)

CMW Collection Management Team (Web Pages)

CTA Clustering and Topic Analysis Team

FE Front End Team

SOLR Solr Team

DBMS Database Management System

RDBMS Relational Database Management System

YTK YourTwapperKeeper

100

References

[1] E. A. Fox, K. Hanna, A. L. Kavanaugh, S. D. Sheetz, D. J. Shoemaker, et al., “Integrated Digi-
tal Event Archiving and Library (IDEAL).” http://grantome.com/grant/NSF/IIS-1319578,
2014. (accessed 12-19-2016).

[2] “Global Event and Trend Archive Research (GETAR).” http://www.eventsarchive.org/

sites/default/files/GETARsummaryWeb.pdf, 2016.

[3] “HDFS Architecture Guide.” https://hadoop.apache.org/docs/r1.2.1/hdfs_design.

html, 2016. (accessed 12-19-2016).

[4] Apache, “Welcome to Apache HBase.” http://hbase.apache.org, 2016. (accessed 12-19-
2016).

[5] S. Lee, “Data Flow Diagram of the IDEAL Infrastructure.” CS 5604 Class Website, 2016.

[6] Y. Ma and D. Nan, “Collection Management for IDEAL.” http://vtechworks.lib.vt.edu/

handle/10919/70930, 2016. (accessed 12-19-2016).

[7] Oracle, “Database Backup.” www.oracle.com, 2016. (accessed 12-19-2016).

[8] “Full backup of data.” http://www.databasethink.com/mysql/backup/help/backup-type/

images/full-backup.jpg, 2016. (accessed 12-19-2016).

[9] “Commvault Advanced Backup.” https://documentation.commvault.com/commvault/v10/

article?p=products/db2/backup_adv.htm, 2016. (accessed 12-19-2016).

[10] “Differential backup.” http://sysinfotools.com/blog/wp-content/uploads/2013/07/

Differential-backup.png, 2016. (accessed 12-19-2016).

[11] “Different types of data backups.” http://searchdatabackup.techtarget.com/

definition/differential-backup, 2016. (accessed 12-19-2016).

[12] W. Wong, W. Liu, and M. Bennamoun, “Enhanced integrated scoring for cleaning dirty texts,”
arXiv preprint arXiv:0810.0332, 2008.

[13] “Touch Graph.” http://www.touchgraph.com/news, 2016. (accessed 12-19-2016).

[14] B. Furht, Handbook of social network technologies and applications. Springer Science & Busi-
ness Media, 2010.

[15] T. S. Vishwasrao, Saket and L. Tang, “CS5604: Clustering and Social Networks for IDEAL.”
http://vtechworks.lib.vt.edu/handle/10919/70947, 2016. (accessed 12-19-2016).

[16] Wikipedia, “PageRank Algorithm.” https://en.wikipedia.org/wiki/PageRank, 2016. (ac-
cessed 12-19-2016).

[17] “Free Source Code – Twitter Database Server: MySQL Database Schema.” http://140dev.

com/tutorial_images/twitter_database.png, 2016. (accessed 12-19-2016).

101

http://grantome.com/grant/NSF/IIS-1319578
http://www.eventsarchive.org/sites/default/files/GETARsummaryWeb.pdf
http://www.eventsarchive.org/sites/default/files/GETARsummaryWeb.pdf
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hbase.apache.org
http://vtechworks.lib.vt.edu/handle/10919/70930
http://vtechworks.lib.vt.edu/handle/10919/70930
www.oracle.com
http://www.databasethink.com/mysql/backup/help/backup-type/images/full-backup.jpg
http://www.databasethink.com/mysql/backup/help/backup-type/images/full-backup.jpg
https://documentation.commvault.com/commvault/v10/article?p=products/db2/backup_adv.htm
https://documentation.commvault.com/commvault/v10/article?p=products/db2/backup_adv.htm
http://sysinfotools.com/blog/wp-content/uploads/2013/07/Differential-backup.png
http://sysinfotools.com/blog/wp-content/uploads/2013/07/Differential-backup.png
http://searchdatabackup.techtarget.com/definition/differential-backup
http://searchdatabackup.techtarget.com/definition/differential-backup
http://www.touchgraph.com/news
http://vtechworks.lib.vt.edu/handle/10919/70947
https://en.wikipedia.org/wiki/PageRank
http://140dev.com/tutorial_images/twitter_database.png
http://140dev.com/tutorial_images/twitter_database.png

[18] “Sun and MySQL: How It Stacks Up for Developers.” http://www.oracle.com/technetwork/
articles/java/mysql-acq-139875.html, 2016. (accessed 12-19-2016).

[19] “Hadoop Architecture.” https://opensource.com/sites/default/files/resize/images/

life-uploads/hadoop-HighLevel_hadoop_architecture-640x460.png, 2016. (accessed 12-
19-2016).

[20] “HDFS Architecture Guide.” http://hadoop.apache.org/docs/r1.2.1/images/

hdfsarchitecture.gif, 2013. (accessed 12-19-2016).

[21] “HBase Architecture.” http://www.cloudera.com, 2016. (accessed 12-19-2016).

[22] “Pig High-level View.” http://hadoopmag.com/wp-content/uploads/2014/04/PIG-2_

html_m212e6cdd.png, 2016. (accessed 12-19-2016).

[23] “Pig (programming tool).” https://en.wikipedia.org/wiki/Pig_(programming_tool),
2016. (accessed 12-19-2016).

[24] “Kernel Virtual Machine.” http://www.linux-kvm.org/page/Main_Page, 2016. (accessed
12-19-2016).

[25] “yourTwapperKeeper.” https://github.com/540co/yourTwapperKeeper, 2013. (accessed
12-19-2016).

[26] “Social Feed Manager: Helping researchers and archivists build social media collections.”
http://gwu-libraries.github.io/sfm-ui/, 2016. (accessed 12-19-2016).

[27] “Digital Methods Initiative - Twitter Capture and Analysis Toolset.” https://github.com/

digitalmethodsinitiative/dmi-tcat, 2016. (accessed 12-19-2016).

[28] “Blacklight - A multi-institutional open-source collaboration building a better discovery plat-
form framework.” http://projectblacklight.org/, 2016. (accessed 12-19-2016).

[29] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky, “The
Stanford CoreNLP natural language processing toolkit,” in Association for Computational
Linguistics (ACL) System Demonstrations, pp. 55–60, 2014.

[30] “VTechWorks.” https://vtechworks.lib.vt.edu/, 2016. (accessed 12-19-2016).

[31] “csv2avro - Convert CSV files to Avro .” https://github.com/sspinc/csv2avro, 2016. (ac-
cessed 12-19-2016).

[32] “Comparison of MySQL database engines.” https://en.wikipedia.org/wiki/Comparison_

of_MySQL_database_engines, 2016. (accessed 12-19-2016).

[33] MySQL, “Converting Tables from MyISAM to InnoDB.” http://dev.mysql.com/doc/

refman/5.7/en/converting-tables-to-innodb.html, 2016. (accessed 12-19-2016).

[34] A. Khurana, “Introduction to HBase Schema Design.” https://www.usenix.org/system/

files/login/articles/login1210_khurana.pdf, October 2012. (accessed 12-19-2016).

102

http://www.oracle.com/technetwork/articles/java/mysql-acq-139875.html
http://www.oracle.com/technetwork/articles/java/mysql-acq-139875.html
https://opensource.com/sites/default/files/resize/images/life-uploads/hadoop-HighLevel_hadoop_architecture-640x460.png
https://opensource.com/sites/default/files/resize/images/life-uploads/hadoop-HighLevel_hadoop_architecture-640x460.png
http://hadoop.apache.org/docs/r1.2.1/images/hdfsarchitecture.gif
http://hadoop.apache.org/docs/r1.2.1/images/hdfsarchitecture.gif
http://www.cloudera.com
http://hadoopmag.com/wp-content/uploads/2014/04/PIG-2_html_m212e6cdd.png
http://hadoopmag.com/wp-content/uploads/2014/04/PIG-2_html_m212e6cdd.png
https://en.wikipedia.org/wiki/Pig_(programming_tool)
http://www.linux-kvm.org/page/Main_Page
https://github.com/540co/yourTwapperKeeper
http://gwu-libraries.github.io/sfm-ui/
https://github.com/digitalmethodsinitiative/dmi-tcat
https://github.com/digitalmethodsinitiative/dmi-tcat
http://projectblacklight.org/
https://vtechworks.lib.vt.edu/
https://github.com/sspinc/csv2avro
https://en.wikipedia.org/wiki/Comparison_of_MySQL_database_engines
https://en.wikipedia.org/wiki/Comparison_of_MySQL_database_engines
http://dev.mysql.com/doc/refman/5.7/en/converting-tables-to-innodb.html
http://dev.mysql.com/doc/refman/5.7/en/converting-tables-to-innodb.html
https://www.usenix.org/system/files/login/articles/login1210_khurana.pdf
https://www.usenix.org/system/files/login/articles/login1210_khurana.pdf

[35] Techopedia, “Database Backup.” https://www.techopedia.com/definition/29388/

database-backup, 2016. (accessed 12-19-2016).

[36] “The MyISAM Storage Engine.” http://dev.mysql.com/doc/refman/5.7/en/

myisam-storage-engine.html, 2016. (accessed 12-19-2016).

[37] “The InnoDB Storage Engine.” http://dev.mysql.com/doc/refman/5.7/en/

innodb-storage-engine.html, 2016. (accessed 12-19-2016).

[38] Wikipedia, “Hurricane Katrina.” https://en.wikipedia.org/wiki/Hurricane_Katrina,
2016. (accessed 12-19-2016).

[39] Q. Li and H. Xu, “Research on the backup mechanism of Oracle database,” in Environmental
Science and Information Application Technology, 2009. ESIAT 2009. International Conference
on, vol. 2, pp. 423–426, IEEE, 2009.

[40] MySQL, “MySQL 5.7 Manual.” http://dev.mysql.com/doc/refman/5.7/en, 2016. (accessed
12-19-2016).

[41] Wikipedia, “Differential backup.” https://en.wikipedia.org/wiki/Differential_backup,
2016. (accessed 12-19-2016).

[42] Percona, “Percona - the database performance experts.” https://www.percona.com/, 2016.
(accessed 12-19-2016).

[43] “Maatkit Toolkit.” https://sourceforge.net/projects/maatkit/, 2016. (accessed 12-19-
2016).

[44] “Aspersa Toolkit.” https://github.com/true/aspersa-mirror, 2016. (accessed 12-19-
2016).

[45] “pt-archiver - Percona Toolkit.” https://www.percona.com/doc/percona-toolkit/2.1/

pt-archiver.html, 2016. (accessed 12-19-2016).

[46] “Introduction to Natural language Processing.” http://bdewilde.github.io/blog/

blogger/2013/04/16/intro-to-natural-language-processing-2/, 2013. (accessed 12-19-
2016).

[47] F. J. Damerau, “A technique for computer detection and correction of spelling errors,” Com-
munications of the ACM, vol. 7, no. 3, pp. 171–176, 1964.

[48] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions and reversals,” in
Soviet physics doklady, vol. 10, p. 707, 1966.

[49] K. Kukich, “Techniques for automatically correcting words in text,” ACM Computing Surveys
(CSUR), vol. 24, no. 4, pp. 377–439, 1992.

[50] M. S. Hearst, “A simple algorithm for identifying abbreviation definitions in biomedical text,”
2003.

103

https://www.techopedia.com/definition/29388/database-backup
https://www.techopedia.com/definition/29388/database-backup
http://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://en.wikipedia.org/wiki/Hurricane_Katrina
http://dev.mysql.com/doc/refman/5.7/en
https://en.wikipedia.org/wiki/Differential_backup
https://www.percona.com/
https://sourceforge.net/projects/maatkit/
https://github.com/true/aspersa-mirror
https://www.percona.com/doc/percona-toolkit/2.1/pt-archiver.html
https://www.percona.com/doc/percona-toolkit/2.1/pt-archiver.html
http://bdewilde.github.io/blog/blogger/2013/04/16/intro-to-natural-language-processing-2/
http://bdewilde.github.io/blog/blogger/2013/04/16/intro-to-natural-language-processing-2/

[51] Y. Park and R. J. Byrd, “Hybrid text mining for finding abbreviations and their definitions,”
in Proceedings of the 2001 conference on empirical methods in natural language processing,
pp. 126–133, 2001.

[52] A. Mikheev, “Periods, capitalized words, etc.,” Computational Linguistics, vol. 28, no. 3,
pp. 289–318, 2002.

[53] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. New
York, NY, USA: Cambridge University Press, 2008.

[54] “How we analyzed Twitter social media networks with NodeXL.” http://www.pewinternet.

org/files/2014/02/How-we-analyzed-Twitter-social-media-networks.pdf, 2016. (ac-
cessed 12-19-2016).

[55] A. Mtibaa, A. Chaintreau, J. LeBrun, E. Oliver, A.-K. Pietilainen, and C. Diot, “Are you
moved by your social network application?,” in Proceedings of the first workshop on Online
social networks, pp. 67–72, ACM, 2008.

[56] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing
order to the web.” Technical Report 1999-66, Stanford InfoLab, November 1999. Previous
number = SIDL-WP-1999-0120.

[57] Google, “Facts about Google and competition.” https://web.archive.org/web/

20111104131332/http://www.google.com/competition/howgooglesearchworks.html,
2016. (accessed 12-19-2016).

[58] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale hypertextual web search
engine,” Computer networks, vol. 56, no. 18, pp. 3825–3833, 2012.

[59] “Text Wrangler.” http://www.barebones.com/products/TextWrangler/, 2016. (accessed
12-19-2016).

[60] Apache, “Apache Avro.” https://avro.apache.org/, 2016. (accessed 12-19-2016).

[61] “Piggy Bank - User Defined Pig Functions.” https://cwiki.apache.org/confluence/

display/PIG/PiggyBank, 2016.

[62] Apache, “Apache Spark.” http://spark.apache.org/, 2016. (accessed 12-19-2016).

[63] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics,
and function using NetworkX,” in Proceedings of the 7th Python in Science Conference
(SciPy2008), (Pasadena, CA USA), pp. 11–15, Aug. 2008.

[64] F. Abidi, S. Fan, and M. Wagner, “CMT Team’s Codebase on GitHub.” https://github.

com/mitchwagner/CMT, 2016. (accessed 12-19-2016).

[65] “Apache Avro 1.8.1 Getting Started.” https://avro.apache.org/docs/1.8.1/

gettingstartedjava.html, 2016. (accessed 12-19-2016).

[66] Gradle, “Getting started.” https://gradle.org/getting-started-gradle-java/, 2016.
(accessed 12-19-2016).

104

http://www.pewinternet.org/files/2014/02/How-we-analyzed-Twitter-social-media-networks.pdf
http://www.pewinternet.org/files/2014/02/How-we-analyzed-Twitter-social-media-networks.pdf
https://web.archive.org/web/20111104131332/http://www.google.com/competition/howgooglesearchworks.html
https://web.archive.org/web/20111104131332/http://www.google.com/competition/howgooglesearchworks.html
http://www.barebones.com/products/TextWrangler/
https://avro.apache.org/
https://cwiki.apache.org/confluence/display/PIG/PiggyBank
https://cwiki.apache.org/confluence/display/PIG/PiggyBank
http://spark.apache.org/
https://github.com/mitchwagner/CMT
https://github.com/mitchwagner/CMT
https://avro.apache.org/docs/1.8.1/gettingstartedjava.html
https://avro.apache.org/docs/1.8.1/gettingstartedjava.html
https://gradle.org/getting-started-gradle-java/

[67] “Tweepy: Twitter for Python!.” https://github.com/tweepy/tweepy, 2016. (accessed 12-
19-2016).

[68] “RDBMS and Graphs, Relational vs. Graph Data Modeling.” https://neo4j.com/blog/

rdbms-vs-graph-data-modeling/, 2014. (accessed 12-19-2016).

[69] “Top reason to use MySQL.” https://www.mysql.com/why-mysql/topreasons.html, 2016.
(accessed 12-19-2016).

[70] The bad tutorials. https://www.youtube.com/watch?v=-thOn1NKJew&list=PL_

RGaFnxSHWr_6xTfF2FrIw-NAOo3iWMy, 2016. (accessed 12-19-2016).

[71] “Apache Hadoop.” https://en.wikipedia.org/wiki/Apache_Hadoop, 2016. (accessed 12-
19-2016).

[72] Apache, “MapReduce Tutorial.” https://hadoop.apache.org/docs/r1.2.1/mapred_

tutorial.html, 2016. (accessed 12-19-2016).

[73] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in ACM SIGOPS
operating systems review, vol. 37, pp. 29–43, ACM, 2003.

[74] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Com-
munications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[75] D. Rosenberg, “Hadoop breaks data-sorting world records.” https://www.cnet.com/news/

hadoop-breaks-data-sorting-world-records/, 2009. (accessed 12-19-2016).

[76] Apache, “Hadoop: Setting up a Single Node Cluster..” https://hadoop.apache.org/docs/

current/hadoop-project-dist/hadoop-common/SingleCluster.html, 2016. (accessed 12-
19-2016).

[77] Hortonworks, “Learn Hadoop: The Essentials Series Hortonworks 15 videos.” https://www.

youtube.com/watch?v=6UtD53BzDNk&list=PL2y_WpKCCNQeLC4reyP-RaBqfH5QML000, 2016.
(accessed 12-19-2016).

[78] “Apache Hadoop HDFS.” http://hortonworks.com/apache/hdfs/, 2016. (accessed 12-19-
2016).

[79] “HDFS Architecture Guide.” https://www-01.ibm.com/software/data/infosphere/

hadoop/avro/, 2013. (accessed 12-19-2016).

[80] “C API libhdfs.” https://hadoop.apache.org/docs/r1.2.1/libhdfs.html, 2013. (accessed
12-19-2016).

[81] Edureka! https://www.youtube.com/watch?v=A02SRdyoshM, 2016. (accessed 12-19-2016).

[82] “Bigtable.” https://en.wikipedia.org/wiki/Bigtable, 2016. (accessed 12-19-2016).

[83] “Ganglia Monitoring System.” http://ganglia.info/, 2016.

[84] “What is HBase?” https://www-01.ibm.com/software/data/infosphere/hadoop/hbase/,
2016. (accessed 12-19-2016).

105

https://github.com/tweepy/tweepy
https://neo4j.com/blog/rdbms-vs-graph-data-modeling/
https://neo4j.com/blog/rdbms-vs-graph-data-modeling/
https://www.mysql.com/why-mysql/topreasons.html
https://www.youtube.com/watch?v=-thOn1NKJew&list=PL_RGaFnxSHWr_6xTfF2FrIw-NAOo3iWMy
https://www.youtube.com/watch?v=-thOn1NKJew&list=PL_RGaFnxSHWr_6xTfF2FrIw-NAOo3iWMy
https://en.wikipedia.org/wiki/Apache_Hadoop
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://www.cnet.com/news/hadoop-breaks-data-sorting-world-records/
https://www.cnet.com/news/hadoop-breaks-data-sorting-world-records/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html
https://www.youtube.com/watch?v=6UtD53BzDNk&list=PL2y_WpKCCNQeLC4reyP-RaBqfH5QML000
https://www.youtube.com/watch?v=6UtD53BzDNk&list=PL2y_WpKCCNQeLC4reyP-RaBqfH5QML000
http://hortonworks.com/apache/hdfs/
https://www-01.ibm.com/software/data/infosphere/hadoop/avro/
https://www-01.ibm.com/software/data/infosphere/hadoop/avro/
https://hadoop.apache.org/docs/r1.2.1/libhdfs.html
https://www.youtube.com/watch?v=A02SRdyoshM
https://en.wikipedia.org/wiki/Bigtable
http://ganglia.info/
https://www-01.ibm.com/software/data/infosphere/hadoop/hbase/

[85] Apache, “Column Family.” http://hbase.apache.org/0.94/book/columnfamily.html,
2016. (accessed 12-19-2016).

[86] “HBase - Installation.” https://www.tutorialspoint.com/hbase/hbase_installation.

htm, 2016. (accessed 12-19-2016).

[87] Edureka!, “HBase Tutorial — Apache HBase Tutorial for Beginners — NoSQL Databases
— Hadoop Tutorial — Edureka.” https://www.youtube.com/watch?v=NOX6-nDtrFQ, 2015.
(accessed 12-19-2016).

[88] “Sqoop Quick Guide.” https://www.tutorialspoint.com/sqoop/sqoop_quick_guide.htm,
2016. (accessed 12-19-2016).

[89] Edureka, “Apache Pig Tutorial 1 — Understanding Pig Latin — Pig Latin Explained —
Hadoop Tutorial.” https://www.youtube.com/watch?v=Yw4hcSR-DGU, 2016. (accessed 12-
19-2016).

[90] Sqoop. https://www.tutorialspoint.com/sqoop/sqoop_installation.htm, 2016. (ac-
cessed 12-19-2016).

[91] Edureka!, “Introduction to Sqoop.” https://www.youtube.com/watch?v=UDWriTDSclo, 2016.
(accessed 12-19-2016).

[92] “Welcome to Apache Pig!.” https://pig.apache.org/, 2016. (accessed 12-19-2016).

[93] TutorialsPoint, “Apache Pig - Installation.” https://www.tutorialspoint.com/apache_

pig/apache_pig_installation.htm/, 2016. (accessed 12-19-2016).

[94] Hortonworks, “Hadoop Tutorial: Apache Pig.” https://www.youtube.com/watch?v=

PQb9I-8986s, 2016. (accessed 12-19-2016).

[95] “AvroStorage - Load and Store Avro Data in Pig Scripts.” https://cwiki.apache.org/

confluence/display/PIG/AvroStorage, 2016. (accessed 12-19-2016).

106

http://hbase.apache.org/0.94/book/columnfamily.html
https://www.tutorialspoint.com/hbase/hbase_installation.htm
https://www.tutorialspoint.com/hbase/hbase_installation.htm
https://www.youtube.com/watch?v=NOX6-nDtrFQ
https://www.tutorialspoint.com/sqoop/sqoop_quick_guide.htm
https://www.youtube.com/watch?v=Yw4hcSR-DGU
https://www.tutorialspoint.com/sqoop/sqoop_installation.htm
https://www.youtube.com/watch?v=UDWriTDSclo
https://pig.apache.org/
https://www.tutorialspoint.com/apache_pig/apache_pig_installation.htm/
https://www.tutorialspoint.com/apache_pig/apache_pig_installation.htm/
https://www.youtube.com/watch?v=PQb9I-8986s
https://www.youtube.com/watch?v=PQb9I-8986s
https://cwiki.apache.org/confluence/display/PIG/AvroStorage
https://cwiki.apache.org/confluence/display/PIG/AvroStorage

	List of Tables
	List of Figures
	Requirements
	Overview of the IDEAL and GETAR projects
	Current system setup
	Functionality
	Incremental database updates
	Tweet cleaning, noise reduction, and augmentation
	Building a tweet and webpage social network

	Input and output
	Input
	Output
	Collaborations

	Level of performance
	User support

	Overview of project effort
	Project management
	Weekly meetings
	Communication
	File-sharing

	Problems and challenges faced
	Constraints

	Additional challenges
	Solutions developed
	First report
	Second report
	Third report
	Final report

	Future work

	Literature review
	Database updates and backups
	Cold database backups
	Hot database backups
	Full backup
	Incremental backup
	Differential backup

	Incremental update from relational database to HDFS
	Percona Toolkit

	Incremental update from HDFS to HBase
	Text cleaning and noise reduction
	Text cleaning
	Noise reduction

	Social networks
	The PageRank algorithm

	Design
	Approach
	Tools
	Methodology
	Conceptual background

	Implementation
	Timeline
	Details on the test data used for this project
	Deriving our solution
	Incremental database updates
	Noise reduction and cleaning
	Social network

	User manual
	Incremental Update from MySQL to HDFS
	Transfer SQL data to the MySQL database
	Use pt-archiver to transfer tweets to the ArchiveDB, and save to a file
	Cleaning the text file of tweets
	Converting the CSV file into an Avro file and copying it to HDFS
	Merging the Avro files on HDFS

	Incremental update from HDFS to HBase
	Preparing the pipeline
	Running our scripts

	Build social network
	Collect data
	Use Twitter API
	Build social network and compute importance factor
	Visualization using NetworkX

	Developer manual
	IDEAL/GETAR cluster architecture
	Module overviews
	MySQL database
	MySQL installation & operation
	Apache Hadoop
	Apache Hadoop installation & operation
	HDFS
	HDFS installation & operation
	Apache HBase
	Apache HBase installation & operation
	Apache Sqoop
	Apache Sqoop installation & operation
	Apache Pig
	Apache Pig installation & operation
	Pt-archiver installation & operation
	csv2avro
	csv2avro Installation & Operation

	Project installation
	Software versions
	MySQL to HDFS incremental update
	HDFS to HBase incremental update
	Social network

	File inventory

	Acknowledgments
	Appendix
	Table of acronyms

	References

