Acknowledgements

First of all, I would like to thank Dr. Anbo Wang for bringing me to the Center for Photonics Technology and accepting me as one of your graduate research assistants. I consider myself very lucky and privileged to work in such a state-of-art research center. I would also like to thank you for showing such confidence in my abilities and encouraging me to perform to the best of my capabilities. You have seen me grow academically and personally and I thank you for all of the wonderful advice that has shaped me into the professional I am today.

I would also like to thank Dr.Gary Pickrell and Dr.Yilu Liu for agreeing to be on my defense committee. Thank you for the many fruitful discussions and for the valuable guidance and support during the preparation of this thesis.

To the members of the CPT staff, I would like to extend my sincere gratitude. Thank you to Dr. Kristie Cooper. Without you, this document and my success as a research assistant would not have been possible. Also, to Ms. Debbie Collins and Mr. Bill Cockey, thank you for all of the administrative support as well as personal advice.

I also owe a lot of thanks to the students of the CPT for your help and cooperation. I really enjoyed the discussions with you which intrigue my inspiration and push me to discover my potential. I am especially grateful to Yizheng Zhu and Juncheng Xu for your knowledge and patience, who led me to the research on the miniature sensors.

This work was supported by US Department of Energy (DOE) under contract DE-FC36-01GO11050. I would like to thank Dr. Wing Ng, Aditya Ringshia and Hugh Hill of the Dept. of Mechanical Engineering of Virginia Tech for providing the engine test facilities and technical support, and Dr. Bo Song for many helpful discussions. Also, I appreciate the technical assistance of Frank Caldwell.

Personally, I would like to thank my family for their never ending encouragement, love, and support throughout my life. Thank you for always being there and for being so understanding. You are my inspiration and my joy.

Table of Contents

Title

Раде	i
Abstract	ii
Acknowledgements	iii
Table of Contents	iv
List of Illustrations	vi
List of Tables	viii

hapter 1 Introduction	l
1.1 Need for Miniature Pressure Sensors	2
1.1.1 Medical Applications	2
1.1.2 Industrial Applications	2
1.2 Miniaturized Sensing Technology	2
1.2.1 MEMS Sensors	3
1.2.2 Fiber Optic Sensors	1
1.3 Organization of the Thesis	5
hapter 2 Sensor Design and System Structure	3
2.1 Fabry-Pérot Interferometer Theory	3
2.1.1 Geometry Ray Analysis)
2.1.2 Fringe Patterns	2
2.1.3 Two-Beam Model	1
2.2 Principles of Diaphragm-based Pressure Sensors	5
2.2.1 Theory of Diaphragm Based Pressure Sensors	5
2.2.2 Sensor Coefficient Design	3
2.2.3 Material Selection	1
2.3 Signal Processing and System Introduction	2
2.3.1 CTS	2
2.3.2 White Light System	3

Chapter	3 Sensor Fabrication	24
3.1	Sensor Structure	24
3.2	Fabrication	
	Process	26
	3.2.1 Cavity Fabrication	26
	3.2.2 Diaphragm Fabrication	27
3.3	Fabrication Tools	29
	3.3.1 Coefficient Setup of the Splicer	30
	3.3.2 Wet-Etching	31
Chapter	4 Laboratory Test Result	33
4.1	Static Pressure Test	33
	4.1.1 Testing System Setup	33
	4.1.2 Algorithm	34
	4.1.3 Performance	37
	4.1.4 Loss Analysis	43
4.2	Dynamic Pressure Test	47
	4.2.1 Testing System Setup	47
	4.2.2 Frequency Response	48
4.3	Dynamic Pressure Calibration	49
Chapter	5 Engine Field Test Result	50
5.1	Installation Location in the Engine	50
5.2	Package Description	51
5.3	Performance Analysis	52
	5.3.1 Acoustic Pressure Measurement Result	54
	5.3.2 Time Delay Analysis	
5.4	Summary	55
Chapter	6 Conclusions and Future Work	56
6 1	Conclusions	56
6.2	Future Work	56
0.2	6.2.1 Cleaver Adjustment	50
	6.2.2 Other Materials and Structures	57
	6.2.3 Other Bonding Methods	57
	6 2 4 Film Deposit	58
	6.2.5 Three Cavity Problem	58
	6.2.6 Multimode Fiber Sensors	
	6.2.7 Open Cavity Structure	58
	6.2.8 Dynamic Pressure Calibration	59
	6.2.9 Other Issues	59
Referen	ces	61
Vito		67
v 11a		03

List of Illustrations

Figure 1-1 Current medical invasive pressure system	.1
Figure 1-2 Application areas for optical fiber sensors	. 5
Figure 2-1 Schematic of Fabry-Pérot interference	10
Figure 2-2 Reflective and transmitted intensity fringe patterns	14
Figure 2-3 Configuration of Extrinsic Fabry-Pérot Interferometric (EFPI)	16
Figure 2-4 Diaphragm structure	17
Figure 2-5 Relationship between sensor performance and r and h	20
Figure 2-6 Photo of Component Testing System (CTS) used to monitor fabrication	and
static testing process	23
Figure 2-7 Photo of the white light system used for dynamic pressure testing	23
Figure 3-1 Schematic of the sensor structure	24
Figure 3-2 Photograph of the sensor structure	25
Figure 3-3 Fabrication equipment setup	30
Figure 4-1 System testing setup	34
Figure 4-2 a 42µm cavity sensor spectrum in CTS	35
Figure 4-3 Spectrum of sensor in CTS (only one valley is observed)	36
Figure 4-4 Sensor airgap change according to 10psi pressure variation	37
Figure 4-5 Sensor's repeatability and hysteresis	39
Figure 4-6 Temperature dependence of the sensor	41
Figure 4-7 Real sensor spectrum versus that of the theoretical simulation	43
Figure 4-8 Matlab simulation of the relation between power transmission coefficient	: (a)
and longitudinal loss (b) with the longitudinal displacement	46
Figure 4-9 Sensor structure	46
Figure 4-10 Geometrical analysis of the longitudinal loss	46
Figure 4-11 Experimental setup for dynamic pressure test4	17
Figure 4-12 Pictures of the equipments for dynamic test	48
Figure 4-13 Signal output from the oscilloscope during the dynamic pressure t	est.
Time-domain signal (yellow) and corresponding H	FFT
(red)	18
Figure 4-14 FFT of the time-domain data as analyzed by Matlab4	19
Figure 5-1 Installation locations of the sensors	50
Figure 5-2 Picture of the packaged sensor	51

Figure 5-3 Schematic of the configuration of the packaged optical sensor	(not to scale)
	51
Figure 5-4 Cutaway view of the fiber optic pressure sensor packaging	
Figure 5-5 Frequency response of the optical sensor compared with that	of the Kulite
sensor. (The top plot shows the response of the optical sensor while the	ne lower one
shows the response of the Kulite sensor.)	
Figure 5-6 Time domain response of the optical sensor compared with that	t of the Kulite
sensor. (The top plot shows the response of the optical sensor while the	ne lower one
shows the response of the Kulite sensor.)	53

List of Tables

Table 2-1 Properties of fused silica (at 25℃)	18
Table 2-2 Values of a mn	19
Table 3-1 Illustration of cavity fabrication	26
Table 3-2 Illustration of direct diaphragm bonding	28
Table 3-3 Illustration of diaphragm bonding with a stopper	29
Table 5-1 Comparative results between the optical sensor and the Kulite sensor	54