
Circle Packing in Euclidean and Hyperbolic Geometries

Mary E. Wilkerson

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Mathematics

William J. Floyd, Chair
James E. Thomson
Peter E. Haskell

April 29, 2008
Blacksburg, Virginia

Keywords: Circle Packings, Uniform Neighbor Model
Copyright 2008, Mary E. Wilkerson

Circle Packing in Euclidean and Hyperbolic Geometries

Mary E. Wilkerson

(ABSTRACT)

Given a graph that defines a triangulation of a simply connected surface, it is possible to
associate a radius with each vertex so that the vertices represent centers of circles, and the
edges denote patterns of tangency. Such a configuration of circles is called a circle packing.
We shall give evidence for the existence and uniqueness of circle packings generated by such
graphs, as well as an explanation of the algorithms used to find and output a circle packing
on the complex plane C and hyperbolic disc D.

Cassie, Mom, and Dad–this is for you.

iii

Acknowledgments

I would like to thank my adviser, Dr. William Floyd, for his guidance, support, and seemingly
endless patience over this past year. I would also like to express gratitude to the rest of my
thesis committee, Dr. Peter Haskell and Dr. James Thomson, for their time and effort in
reviewing my work.

Last but not least, I owe many thanks to my family, friends, and Mike for giving their love
and encouragement throughout this past year.

Without all of these wonderful people, this document may never have come to fruition.

iv

Contents

1 Introduction 1

2 Geometries 3

2.1 Euclidean Geometry . 3

2.2 Hyperbolic Geometry . 6

2.3 Spherical Geometry . 8

3 Foundations 9

3.1 Definitions and Preliminaries . 9

3.2 Monodromy . 12

3.3 Existence of Packings . 14

3.4 Generalizing from the Boundary . 20

4 Iterative Methods for Labels 23

4.1 Why Iterate? . 23

4.2 General Iterative Methods . 24

4.3 The Uniform Neighbor Model . 25

4.4 Acceleration . 28

5 Programming Considerations and Placement 30

5.1 Input . 30

5.2 Iterative considerations . 31

5.3 Circle Placement . 33

v

5.4 Output . 35

6 Observations and Conclusions 38

A Law of Cosines Derivations 41

A.1 Euclidean Case . 41

A.2 Hyperbolic Case . 41

B Uniform Neighbor Model 43

C Programs 44

C.1 Euclidean UNM with Acceleration . 44

C.2 Hyperbolic UNM with Acceleration . 49

D Convergence Tables and Packings 55

vi

List of Figures

1.1 A sample packing . 1

2.1 A triangle in Euclidean space . 3

2.2 Reference for law of cosines with radii . 4

2.3 Monotonicity I in action. 5

2.4 Geodesics, triangles, and circles on the hyperbolic disk D 6

3.1 A local modification on a closed chain of faces. 10

3.2 The angle sum at the center vertex changes as we alter its label, r. 12

3.3 If faces are not triangles, the packing becomes unstable. 14

3.4 Locally equivalent, but globally dissimilar: there exists a non null-homotopic
chain of faces in the original complex. 15

3.5 A maximal interior hyperbolic circle with n=8 petals. 16

3.6 The complex K is cut into two pieces. 18

3.7 The packing for K is built from two superimposed pieces. 19

3.8 A complex that does not admit a packing in C or D. 19

4.1 Steps of the Uniform Neighbor Model. 26

5.1 The complex from Table 1 . 31

5.2 The first placed circle was a center with maximum radius. 34

5.3 On the left, we started with a non-center circle. On the right, we started with
a circle of small radius. 35

5.4 An example, continued. 36

vii

6.1 The packing accumulates error near the boundary. 39

6.2 Two different computers running the same program on the same file. 39

B.1 Determining r̂ and r′. 43

D.1 Pentagonal subdivision packings at level 1 and 2. 55

D.2 Pentagonal subdivision packings at level 3 and 4. 56

D.3 Fracthex subdivision packings at level 1 and 2. 56

D.4 Fracthex subdivision packings at level 3 and 4. 57

D.5 Trhex subdivision packings at level 1 and 2. 58

D.6 Trhex subdivision packings at level 3 and 4. 58

viii

List of Tables

1 Input file formatting . 31

2 Error output for our example. 36

3 K with label and center information. 37

A.1 Pentagonal subdivision iteration counts . 57

A.2 Fracthex subdivision iteration counts . 58

A.3 Trhex subdivision iteration counts . 59

ix

Chapter 1

Introduction

It is often said that a picture is worth a thousand words. Rarely however, is this as true as
it is for the field of circle packings!

Circle packings are configurations of circles with a specified pattern of tangencies. Studied by
E. M. Andreev and Paul Koebe, circle packings went long unnoticed until William Thurston
reintroduced them in a talk a little over 20 years ago. With the aid of many researchers,
Thurston’s conjecture that circle packings could potentially be used to approximate con-
formal maps has since grown into discrete analytic function theory–having a multitude of
parallels to topics in complex analysis. Circle packings have since also found applications in
the study of tilings, graph embedding, and in creating mappings of brain structures.

Figure 1.1: A sample packing

Circle packings no doubt are a fantastic tool for displaying mathematics as it happens. From
subtle nuances of conformal maps to the networks contained within the cortical surface,
these structures often serve as a useful visual aid. In such applications however, the ability
to produce reliable output is critical. The basic ideas involved in creating a packing appear
simple: fix boundary conditions, solve for the radii of the remaining circles in the packing,

1

1. Introduction 2

and implement a placement procedure based on the geometry that the packing lives in. This
method of solution may be perfectly fine for small systems. In modeling networks containing
several hundred thousand nodes however, the system of equations involved in attempting a
direct solution is computationally intensive. For this reason, circle packings are generally
sought via iterative means.

In this paper, we examine “Acceleration” and the “Uniform Neighbor Model,” strategies
proposed by Collins and Stephenson in their paper A Circle Packing Algorithm for deter-
mining the radii of circles in a given packing. We build up to finding a circle packing with
these methods by answering the following questions:

• What exactly is a Circle Packing?

• What criteria will allow the existence of these structures?

• What are the steps involved in implementing Uniform Neighbor model and Accelera-
tion?

• Why do these methods work?

• Once a solution for radii is found, how is a circle packing actually laid out?

Upon developing the ability to create circle packings, we test the algorithms on several
graphs determined by finite subdivision rules, noting effectiveness and possible alterations
and improvements.

Chapter 2

Geometries

Before discussion of the structures that we are to create, it is necessary to address relevant
properties of the surfaces that they will be constructed on. Although the notion of a circle
(thus a circle packing) can be presented on a general manifold of constant curvature, we shall
restrict to surfaces with constant curvature, focusing on Euclidean and Hyperbolic spaces
and their respective geometries.

2.1 Euclidean Geometry

Figure 2.1: A triangle in Euclidean space

Euclidean space is of constant curvature 0. This is the first geometry that most students of
mathematics encounter, and much of its workings are familiar if not routine: geodesics are
“straight lines,” and the distance metric and trigonometry of this space follow as expected.
As it is referenced heavily in the Euclidean computations in this paper, we recall from
elementary trigonometry the law of cosines: If we have a, b and c the side lengths of some
triangle, and A the angle opposite the side of length a then equation 2.1 holds.

A = arccos (
b2 + c2 − a2

2bc
) (2.1)

3

2. Geometries 4

This is tremendously useful in calculating the angles in any triangle whose vertices are the
centers of three mutually tangent circles. Consider the geodesics that pass through these
circle centers–they pass right through the point of tangency. Thus, the side lengths of the
triangle are determined by the radii of the circles–as in figure 2.2. A few simple substitutions
in the law of cosines yields formula 2.2, and with a bit of manipulation we may obtain from
this equation 2.3. As the connection is not readily visible, but the mathematics involved is
nothing more than routine algebra and trigonometry, we provide justification for equation 2.3
in Appendix A.

Figure 2.2: Reference for law of cosines with radii

α = arccos [
(r + r1)

2 + (r + r2)
2 − (r1 + r2)

2

2(r + r1)(r + r2)
] = arccos [1− 2r1r2

(r + r1)(r + r2)
] (2.2)

α = 2 arcsin

√
r1r2

(r + r1)(r + r2)
(2.3)

Finally, we have Herron’s formula for the area of a triangle as based on side length. If s is
the semi-perimeter of a triangle T with sides a, b, and c, then the area of T is given by:

Area(T) =
√

s(s− a)(s− b)(s− c), (2.4)

which in our mutually tangent trio of circles setting becomes:

Area(4vv1v2) =
√

rr1r2(r + r1 + r2) (2.5)

These angle and area calculations yield a simple yet important result for circle packing, as
given by Theorem 2.1.

Theorem 2.1 (Monotonicity I). Let v, v1, and v2 be the centers of three mutually tangent
circles, with r, r1, and r3 their respective radii. The triangle formed by connecting these
centers has an angle at v which is monotonically decreasing in r and angles at v1 and v2

which are monotonically increasing in r. Further, the area of the triangle is monotonically
increasing in r.

2. Geometries 5

Proof. We give a sketch of the proof suggested by [6] and [7].

Taking partial derivatives of equation 2.2 with respect to r yields a negative result. Thus,
the angle at v is strictly monotonically decreasing in r. Relabeling the indices to reflect the
proper angle and taking partials with respect to r1 or r2 yields a positive result. Thus, the
angles at v1 and v2 are strictly monotonically increasing in r.

Finally, taking the partial with respect to r as in equation 2.5 yields a positive result, which
implies the area of the triangle is strictly monotonically increasing with respect to r.

Figure 2.3: Monotonicity I in action.

As in the above figure, the effects of Monotonicity I are fairly easy to envision. We may
extend the consequences of Monotonicity I to yield the following corollary.

Corollary 2.2 (Monotonicity II). Let v, v1, and v2 be the centers of three mutually tangent
circles, with r the radius at v. The angle at v, θ(v) is a continuous function of r. We have
that lim

r→∞
θ(v) = 0 and lim

r→0
θ(v) = π. Thus, given a value α in (0, π), there exists some unique

value of r which makes θ(v) = α.

Proof. Again, we sketch proofs given by [6] and [7].

The formula for θ(v) is given by equation 2.3, a continuous function. The limit calculations
are very straightforward. It is the last statement in the corollary which requires a small
amount of work.

Given α in (0, π), since lim
r→0

θ(v) = π, there exists some value r1 that makes θ(v) > α.

Similarly, since lim
r→∞

θ(v) = 0, there exists a value r2 which makes θ(v) < α. That there

exists some r which allows θ(v) = α may be shown by applying the Intermediate Value
Theorem to [r1, r2] in (0,∞). As Monotonicity I shows that θ(v) is strictly monotonically
decreasing in r, the value this determines for r must be unique.

2. Geometries 6

Finally, we note that isometries in Euclidean space are generally given as compositions of
translations, rotations, reflections, and glide reflections. However, for the purposes of circle
packings, the only isometries are compositions of translations and rotations as we wish to
preserve the orientation of our packings. Isometries of circle packings on the complex plane
are given by

f(z) = eiθ(z − z0), (2.6)

where z0 is sent to the origin, and θ identifies an angle of (counterclockwise) rotation. Rewrit-
ing eiθ using Euler’s formula and expanding via complex multiplication yields a result iden-
tical to utilizing the traditional rotation matrix on a translation in R2. We may identify
Euclidean space with either R2 or C, but shall refer mostly to the latter.

2.2 Hyperbolic Geometry

Figure 2.4: Geodesics, triangles, and circles on the hyperbolic disk D

Hyperbolic space is of constant curvature -1. We shall work on the unit disc, D. Here,
geodesics are arcs of circles which are perpendicular to the boundary of the unit disc and
Euclidean segments which go through the origin. (We may think of these geodesics passing
through the origin as arcs of circles with infinite Euclidean radii.) We use the same notation
for points in the disc as we do for points on the complex plane. All formulas that follow are
as given in [1].

The metric on the hyperbolic disc as given by Poincaré is:

ρ(z, w) = log
|1− zw̄|+ |z − w|
|1− zw̄| − |z − w|

(2.7)

Note that this gives the distance between a point w and the origin as log 1+|w|
1−|w| . Thus, any

point on the boundary of the unit disc may be considered infinitely far away from the origin.

2. Geometries 7

By the triangle inequality, we may extend this to say that points on the boundary are
infinitely far away from any other point in D.

Due to the new metric, trigonometric operations and properties of triangles differ consider-
ably from those of Euclidean space. Note in Figure 2.4 that angles do not necessarily sum
to π in every triangle. In fact, the sum of angles of a triangle in hyperbolic space determine
the area of that triangle! If T is some triangle with angles α, β, and γ, then we have that
the area of T is given by equation 2.8.

Area(T) = π − α− β − γ (2.8)

Another consequence is that we work with a significantly different law of cosines: If we have
a, b and c finite side lengths of some triangle, and A the angle opposite the side of length a
as in Figure 2.1, then equation 2.9 holds.

A = arccos
cosh b cosh c− cosh a

sinh b sinh c
(2.9)

Circles in this space appear as circles in Euclidean space, although hyperbolic circles generally
have centers that do not match those of their Euclidean counterparts. As in Euclidean
space, we have that geodesics connecting centers of tangent circles pass through the point of
tangency–similar to Figure 2.2. With a few simple substitutions, this yields formula 2.10.

αv = arccos
cosh (r + r1) cosh (r + r2)− cosh (r1 + r2)

sinh (r + r1) sinh (r + r2)
(2.10)

With a bit of manipulation and the assumption that r∗ = e−2r, r∗1 = e−2r1 , and r∗2 = e−2r2 ,
this yields alternate equation 2.11. We will refer to r∗, r∗1, and r∗2 as the transformed labels of
r, r1, and r2. As the result is not obvious, but requires only routine algebra and trigonometric
calculations, we provide a justification for equation 2.11 in Appendix A.

αv = 2 arcsin

√
r∗(1− r∗1)(1− r∗2)

(1− r∗r∗1)(1− r∗r∗2)
(2.11)

Note that these formulas work only for triangles with finite side lengths. If a triangle contains
a vertex that lies on the boundary, the sides of the triangle adjacent to that vertex are
taken to have infinite length. This special case arises in mutually tangent trios of circles
whenever at least one circle is internally tangent to the unit disc. Such internally tangent
circles are called horocycles, and are taken to have radii of infinite length. Utilizing that
cosh x = ex+e−x

2
, sinh x = ex+e−x

2
, and taking limits as either r, r1 or r2 go to infinity, we

can still obtain formulas for angles of triangles, even when side lengths are infinite. As this
paper does not explicitly deal with circle packings containing horocycles, only two of these
formulas will be applicable within the context of this paper: determining the angle at v when

2. Geometries 8

v1 and v2 lie on the boundary, in which case equation 2.12 holds, and determining the angle
at v when v lies on the boundary, in which case equation 2.13 holds.

αv = 1− 2e−2r (2.12)

αv = 0 (2.13)

An interesting result is that even though we have different formulas for angles and area
in hyperbolic space, the conclusions of Theorem 2.1 and Corollary 2.2 still hold. Using
equations 2.11 and 2.8, a partial derivative argument as in the initial proof shows that the
results remain valid.

Isometries of circle packings in this space are also affected. Although similarly we may
consider translation and rotation as isometries, the means of expressing an isometry changes.
We use the Möbius transformation,

f(z) = eiθ z − z0

1− zz̄0

, (2.14)

where z0 denotes a point within D to be translated to the origin, and θ denotes an angle
of rotation. Möbius transformations preserve circles, and as they are conformal, they also
preserve angles. This means they maintain patterns of tangency between circles, or that
they preserve circle packings as the isometries in Euclidean space do.

2.3 Spherical Geometry

Much of the origins of circle packings lie within spherical geometry. Thus, although we do
not perform many calculations within this geometry, many of our proofs rely on the existence
of packings on the unit sphere S2. We are concerned primarily with the ability to move our
packings from geometry to geometry: thus, that stereographic projection preserves circles is
tremendously useful! Further, If we identify coordinates in S2 with their counterparts in the
complex plane after stereographic projection, we have that isometries in S2 are given by the
Möbius transformations

f(z) =
az + b

cz + d
, (2.15)

where a, b, c, and d are contained in C, and ad− bc = 1. These transformations maps circles
to circles, and preserve packings on S2.

Chapter 3

Foundations

As noted in the introduction, circle packings are configurations of circles with a specified
pattern of tangencies. To describe these patterns, we may relate the circle packing to a
simple graph by allowing nodes to represent centers of circles, and allowing an edge to join
two nodes if and only if they represent the centers of two circles that are externally tangent
to each other.

Starting with a circle packing and building a graph in this manner is obviously not too
difficult. However, one more often has to start with a graph and construct a packing, which
is significantly more challenging! If we are to start in this manner, how can we confirm that
we have a circle packing if we think we have obtained one? What qualities should we start
with to determine a unique circle packing? We shall start with the basics first.

3.1 Definitions and Preliminaries

Closed topological triangles are simply connected surfaces bounded by three vertices and the
edges connecting them. A triangulation is a means of breaking down a topological surface
into a collection of closed topological triangles such that any two triangles are either disjoint,
intersect only at a vertex, or intersect only at a single edge and its endpoints. Any edge
not contained in two closed topological triangles within a triangulation is a boundary edge,
and any vertices which lie on boundary edges are boundary vertices. Any vertices within the
triangulation that are not boundary vertices are interior vertices, and these vertices connect
to other vertices only by interior edges.

The graphs that we work with are generally triangulations of 2-dimensional topological
surfaces, which are types of simplicial 2-complexes. (The reason we work with triangulations
alone will be addressed later.) We will refer to these simplicial 2-complexes as complexes
(generally denoted by K), and to the topological triangles contained within a given complex

9

3. Foundations 10

as faces. The union of all faces is called the carrier of the packing. Any sequence of faces
{f1, ..., fn} such that any element shares an edge with its successor and predecessor is referred
to as a chain. A chain is closed if f1 = fn. A null chain is any chain that consists of a single
face.

Figure 3.1: A local modification on a closed chain of faces.

In Figure 3.1, we illustrate some of the above definitions. Both images within the figure
illustrate the same triangulation of a surface. Starting at face f and working counterclockwise
about either grey loop until we reach f again yields a closed chain of faces. Notice that we
may obtain the second chain in the figure by changing the direction the chain takes around
the vertex v in heading from f ′ to f . Any such change where a sequence of faces in a chain
is replaced with some subchain beginning and ending with the same faces is called a local
modification. (Above, the beginning face is f ′ of the replaced subchain is and the ending
face is f .) We also may obtain local modifications by pattern simplifications such as in the
following:

{..., f, f, ...} → {..., f, ...},
{..., f, g, f, ...} → {..., f, ...}.

Two closed chains are homotopic if one may perform a finite number of local modifications
on one to obtain the other. All closed chains on triangulations of simply connected surfaces
are homotopic to the null chain.

Vertices in the complex are noted as neighboring whenever they are adjacent (connected
by an edge) in the complex. These neighboring vertices are often addressed more simply
as neighbors. We often use similar terminology for referring to the tangent circles within a
circle packing which such vertices represent.

Any mutually tangent trio of circles is called a triple. The structure formed when an interior
circle is grouped together with all its immediate neighbors is a flower. The center of this
configuration is simply referred to as the center circle, while all of the outer circles are
called petals. If we are dealing solely with vertices and not circles, the corresponding term

3. Foundations 11

is combinatorial flower in lieu of flower. In either case, if describing petal circles in any sort
of sequential form, the standard direction of ordering about the center circle is taken to be
counterclockwise.

A label is a collection of potential radii R = {r1, ..., rn} assigned to respective vertices
{v1, ..., vn} of K. We often write R(vk) = rk. Note that we make a distinction between
“potential radii” and “radii” within this definition, as we do not know that the values in
the label will actually yield a packing when paired with the complex–For all we know, these
could be completely arbitrary values such that the circles do not “fit” together properly. The
word “radius” in this work will be used in reference to both potential and true radius, with
the assumption that the context will clarify which is implied.

It is often convenient to refer to specific angles at given vertices in a complex. Suppose that
we have an interior vertex v in the complex K, and that K has been paired with some label R
that gives v the radius r. Allow that v has petal radii {r1, ..., rk} ordered so that (r, rj, rj+1)
is a triple of radii for all 1 ≤ j ≤ k when we assume the convention that rk+1 = r1. This
convention reflects the fact that when we have ordered our triple like this, our “first” and
“last” petal circles must form a triple with the center for our center vertex to be interior.
Let α(r; rj, rj+1) refer to the angle centered at v when we lay out the face determined by the
triple of circles of these radii. (As noted in the geometries section, it is possible to determine
this angle using the law of cosines in whichever space the packing is to be laid out in.) The
angle sum at v using label R, θR(v) is then given by equation 3.1.

θR(v) =
k∑

i=1

α(r; ri, ri+1) (3.1)

To better reflect the dependence of the angle sum on the radii of the petal vertices, we may
also use the equivalent notation θR(v; v1, ..., vk) or θ(v; v1, ..., vk) for θR(v).

Note that the definition of angle sum refers only to vertices that are the centers of com-
binatorial flowers–thus, we have only referred to angle sum for interior vertices. We may
extend the notion of angle sum to vertices that lie on the boundary if we allow {r1, ...rk} to
be neighboring radii, and only take the sum to k − 1.

That said, the angle sum at the interior vertices often tends to be a more useful quantity to
know: given some complex K a label R is said to meet a packing condition at a vertex v ∈ K
if the angle sum at v is an integer multiple of 2π. A packing label for K is any label that
meets a packing condition at all interior vertices of K. Packings meeting a packing condition
by having interior angle sums of 2π are termed locally univalent, whereas any packing that
is not locally univalent is called a branched packing. A circle packing is globally univalent (or
univalent) if the interiors of all circles in the packing are disjoint. Univalent packings must
be locally univalent, whereas the converse is not always the case.

We illustrate several of the above terms with Figure 3.2. The three images within the figure
represent the same flower, but with different labels assigned to the center vertex. The petal

3. Foundations 12

circles have fixed labels here. Also note that the “first” and “last” petal circles are the same:
the dashing is to represent that the circle cannot be in two locations at once, even though
we must calculate the angles given by both of the triples it is contained in.

Figure 3.2: The angle sum at the center vertex changes as we alter its label, r.

In the first image within Figure 3.2, we see that the angle sum is less than 2π when the
label at the center is r1. When label r2 is assigned, a packing condition is met. When label
r3 is assigned, the angle sum is greater than 2π. The change in angle sum as a result of
changing radii is a consequence of Monotonicity I applied across all triples within the flower.
An elementary way to think of this relationship between angle sum and radii is that angle
sums which are “too small” imply we have central radii that are “too big,” and vice versa.
That we were able to find a label for the center vertex such that a packing condition was met
is a consequence of Monotonicity II, similarly applied across all triples within the flower.

Finally, we have the language to determine when we have a packing!

3.2 Monodromy

As simple as it sounds, one cannot have a circle packing for a complex K without ensuring
that the circles in the packing match the patterns of tangency specified in K. Recall that the
distinction between “radii” and “potential radii” is made here: if the radii given in a label
are such that the resulting circles do not fit together properly, there is no packing. Thus, we
may also say there is no circle packing for K unless our label complements the combinatorial
information specified by K. Circumstances for when this match can be guaranteed to occur
are given by Theorem 3.1.

Theorem 3.1 (Monodromy). Let K be a simply connected complex. There exists a circle
packing for K if and only if K has a packing label. This packing is unique up to isometries.

Proof. We follow the method given in [7].

(=⇒) The forward direction of this proof is fairly straightforward. If we have laid out a circle
packing for K, we may take the radii given in this packing to be a label. Given any interior

3. Foundations 13

circle at vertex v, we may enumerate its petal vertices {v1, ..., vk} such that the triangle
determined by v, vj and vj+1 form a face fj for all 1 ≤ j ≤ k if vk+1 = v1.

This means that {f1, ..., fk} form a chain of faces containing v that surround v. This chain
must do so without changing direction, as all of our tangencies have been declared to be
external. Further, as our faces begin and end on the same edge (the one connecting v to v1),
the chain must circumnavigate v at least once. We then have that the angle sum at v is 2π
times the number of times the chain of faces circles v.

This holds for any interior vertex v, thus our label must be a packing label.

(⇐=) Given a complex K and a packing label R, place one circle, and any one of its neighbors.
We may liken the placement of any subsequent circle to the placement of its vertex, as pairing
this information with the radius from the packing label will determine a circle. Further,
since K is a triangulation of a surface, placing a vertex based on two mutual neighbors is
akin to the placement of a face. Given two previously placed neighboring vertices and an
unplaced neighbor of both, the combinatorial information of K, the radii given in R, and
the geometry of the underlying space force a shape and location for the unplaced face–thus
forcing a location for the new vertex. We may place the rest of the circle packing in this
manner; working circle by circle. This yields a circle packing of some sort, but it remains to
show that this packing is unique.

We will consider a packing to be unique if any two such orderings of placement will place
a given circle in a unique location, up to isometries. In other words, if any two chains of
faces starting at f1 and ending at fn ultimately drop fn in the same spot, we have unique
placement.

Let {f1, ..., fj} and {g1, ..., gk} be any two distinct chains of faces resulting from differing
placement sequences such that f1 = g1 and fj = gk. (These sequences need not contain the
same number of elements; they just need to start and end at the same respective faces.)

Consider the chain created by adjoining the first chain to the reverse-ordered elements of the
second chain: {f1, f2, ..., fj−1, fj, fj, gk−1, ..., g2, f1}. If and only if we have unique placement
of fj, heading out along the first chain from f1 to fj and back down the second from fj to f1

places us back in the same spot. If we do not have unique placement, our final f1 may be in a
different location from our initial f1. However, since K is a simply connected complex, closed
chains are homotopic to the null chain. This means that if the null chain {f1} places f1 in
its initial location–and it is clear that it does–then chains homotopic to{f1} also place f1 in
its initial location. — the null chain clearly puts the original face in its original location,
thus so must the original chain.

Therefore, we have unique placement of fj, unique placement of the circles associated with
placing fj, and a circle packing unique up to isometries.

Given the rigidity of this link between angle sum and circle packings, it is useful for us to
develop a notion of error, or curvature, in packings. The difference between actual angle sum

3. Foundations 14

and the desired packing condition at a given vertex may be considered a measure of error at
that vertex. If A(v) is the target packing condition at v, curvature e(v) for a packing label
R may be given by:

e(v) = |θR(v)− A(v)|, (3.2)

and with overall error for the label E(R) given by:

e(v) =
k∑

i=1

e(vi), (3.3)

where the vi represent interior vertices. Clearly, curvature then concentrates at vertices
where the angle sum does not meet a packing condition.

Note that K must be a simply connected triangulation of a surface for us to guarantee that a
circle packing can be obtained from a packing label, though. If K fails to be a triangulation,
the packing becomes unstable–we do not have that the label and geometry force shapes and
locations of our “faces,” as in Figure 3.3. If K does not triangulate a simply connected
surface, there may be chains of faces which are not null-homotopic, as in Figure 3.4. Either
case causes the proof to fail. This is not to say graphs that are not triangulations cannot
have circle packings; we just cannot verify the existence of unique packings of this sort with
Theorem 3.1.

Figure 3.3: If faces are not triangles, the packing becomes unstable.

Monodromy thus serves to show that circle packings and packing labels go together hand in
hand–but we need to determine that either may exist in general before we attempt to build
a circle packing from a complex.

3.3 Existence of Packings

Given a complex K that contains only five or six vertices, we often may be able to sketch
out on paper a potential configuration of circles which approximates a packing for K. That
circle packings and packing labels exist for smaller complexes may seem intuitive in this

3. Foundations 15

Figure 3.4: Locally equivalent, but globally dissimilar: there exists a non null-homotopic
chain of faces in the original complex.

manner–but clearly it is not practical to attempt this on a complex with several thousand
vertices!

For this reason, we must show that packings exist given a complex. We attempt this in a
slightly roundabout manner by starting with maximal packings in D–packings whose bound-
ary circles are horocycles.

Lemma 3.2. Suppose there exists some packing for the complex K in D. Then, there exists
a unique univalent maximal circle packing in D for K.

Proof. We follow methods given in [7], employing a Perron method. The steps in using this
Perron method are as follows:

• Show that we can construct a partially ordered set of labels from which we seek to find
a solution, and that this collection is nonempty.

• Develop the notion of taking a maximum in this set, and show that the maximum of
two elements is contained within the set.

• Show that the set is non-degenerate (i.e. that the maximum is not a trivial element).

• Develop the notion of a supremum on this set, and show that the supremum of the set
is our solution.

Choose a packing for K in D. Let R0 be the label of this packing.

We now define our partial ordering and our set. For two labels R1 and R2, let R1 ≤ R2 denote
that R1(v) ≤ R2(v) for all vertices v in the complex K. Now, allow the term subpacking label
to refer to any label for K in which the angle sum at all interior vertices is greater than or
equal to 2π. Then, we may define a collection of labels R as follows:

R = {R : R is a subpacking label}

3. Foundations 16

As R0 is a packing label for K, all its interior vertices meet a packing condition and must have
angle sums greater than or equal to 2π. Thus, R0 is an element of R, and R is nonempty.

Now, let us develop a notion of a maximum on R: If R1 and R2 are elements of R, let
R3 = max{R1, R2} be defined at each vertex by R3(v) = max{R1(v), R2(v)} for all v in K.
It is clear that R1, R2 ≤ R3, but does R actually contain R3?

The answer is yes. Suppose that R3(v) = R1(v), relabelling indices if necessary. If v is
interior, the radii at the neighbors of v may only increase from the values given in R1. By
monotonicity, this will only cause the angle sum at v to increase–so the angle sum at v
remains ≥ 2π. Thus, our set R is closed under maximums.

Suppose, extending this notion of maximums, that R̂ = supR. To show that R̂ is non-
degenerative with respect to our constructions is to show that R̂ is finite at all interior
vertices.

Figure 3.5: A maximal interior hyperbolic circle with n=8 petals.

In hyperbolic space, any circle which has n neighbors has a maximum radius when it and
its flower are arranged in the configuration shown in Figure 3.5. It is clear that the angle
α as in the picture is 2π

n
, but by our hyperbolic angle formulas, this central angle is also

arccos 1− 2e−2r. Setting these two expressions equal and solving for r then yields the upper
bound r ≤ log 1

sin π
n

for all interior radii with n petals. Therefore, interior radii are bounded,

and R̂ is non-degenerate.

Is R̂ actually the packing we are looking for? First, we examine the boundary radii: replacing
the boundary radii in any label R in R with ∞ will only result in increased angle sums at
interior vertices by Monotonicity I. Thus, this new label is contained in R. As R̂ is a
supremum, the boundary radii of R̂ must also be ∞.

As for the interior radii, consider the subset R′ of R generated by increasing each of the
boundary radii to the desired value ∞, as above. Since R̂ is the supremum of R (and of R′),
given n in N, for each interior vertex v there exists some label R such that R̂(v)−R(v) < 1

n
.

Taking the maximum among such R to be Rn, we have that R̂(v) − Rn(v) < 1
n

for each

3. Foundations 17

interior vertex in K. Therefore, lim
n→∞

Rn(v) = R̂(v) for all v in K.

We have that angle sums, as given by the law of cosines, are continuous functions of the
radii involved. Thus, lim

n→∞
Rn(v) = R̂(v) implies that lim

n→∞
θRn(v) = θR̂(v). As elements of

R′ have angle sums bounded below by 2π, R̂ must also have angle sums bounded below by
2π. If, in fact R̂(v) > 2π for some vertex v, this implies that we should be able to make a
minute increase to the radius at v without having the angle sum at v dip below 2π. (Yet
again this is possible because angle sums are continuous functions of the radii involved, as
per Monotonicity II.) This, however, contradicts that R̂ is the supremum of R. Thus the
angle sum at each interior vertex of K must be 2π.

To show that R̂ is unique, suppose to the contrary: that there exists some other maximal
packing label R′ such that R′ 6= R̂. Since R′ clearly belongs to R, we must have that R′ ≤ R̂,
since R̂ is the supremum of R.

Consider the area of the carriers of the packings given by these two labels. Since K is
a triangulation, we have that the area of a triangle (thus the area of the carriers of our
packings) can be determined by angle sums. If we allow {v1, ..., vp} to denote the interior
vertices and {w1, ..., wq} to denote the boundary vertices, then repeated use of the triangle

area formula given by equation 2.8 states that the area of our carriers in R′ and R̂ are given
by

AreaR′(K) = Fπ −
p∑

i=1

θR′(vi)−
q∑

j=1

θR′(wj)

AreaR̂(K) = Fπ −
p∑

i=1

θR̂(vi)−
q∑

j=1

θR̂(wj)

But, as R′ and R̂ are both locally univalent packing labels, interior angle sums are 2π.
Further, as they are also both maximal packings, boundary circles are horocycles with radius
∞. By our special case angle formulas, boundary angle sums are then zero. Thus,

AreaR′(K) = Fπ − 2pπ = AreaR̂(K).

By Monotonicity I, we have that areas of faces are strictly monotonically increasing in radii.
Therefore, as R′ results from decreasing interior radii from values in R̂, we have that the
areas of faces of K in R′ are strictly less than the areas of the same faces in R̂. Therefore,

AreaR′(K) < AreaR̂(K),

a contradiction. We must have that R̂ is a unique maximal circle packing in D.

Now, we may show existence of packings given complexes alone.

3. Foundations 18

Theorem 3.3. If K is a complex which is finite, simply connected, and with nonempty
boundary, then K has a univalent circle packing. Thus, there exists some packing label for
K.

Proof. We follow the method given in [7].

This proof is by induction on V , the number of vertices in the complex K. The base case
is given by V = 3, where K is merely one topological triangle. We may position any three
circles together so as to be mutually tangent, so any label will yield a packing here.

For our inductive hypothesis, assume that our proposition holds for any complex having V
or fewer vertices. Suppose that we are given a complex K fitting our hypothesis, and that
K has V + 1 vertices. As our complex has nonempty boundary and more than 3 vertices,
we may select some boundary vertex w which lies on an interior edge. From here we have
two cases to consider:

Case 1. Suppose that w lies on some interior edge whose other endpoint is also a boundary
vertex, u. We may obtain two complexes, K1 and K2 by cutting K in two pieces along this
edge, as in Figure 3.6.

Figure 3.6: The complex K is cut into two pieces.

Since splitting K in this manner produces two complexes with fewer vertices than K, by
our induction hypotheses, there exist circle packings for K1 and K2. By Lemma 3.2, we can
extend this to say that we have maximal packings for K1 and K2 in D. We may then find the
transformation that sends the horocycle cu1 to the circle cu = {|z − 1

2
| = 1

2
}, and cw1 to the

circle cw = {|z− 1
2
| = 1

2
}. (This is an isometry of the packing for K1, as it sends the point of

tangency of the horocycles cu1 and cw1 to the origin, and rotates the packing such that the
center of cw1 lies on the positive x-axis.) Similarly, we may find an isometry of the packing
for K2 that sends the horocycles cu2 and cw2 to cu and cw. Given that complexes preserve
orientation, the circles not sent to cu and cw in the packings of K1 and K2 are disjoint–they
lie on opposite sides of the x-axis. We may then superimpose the two packings for K1 and
K2 upon each other to obtain a univalent hyperbolic packing for K, as in Figure 3.7.

Case 2. Suppose that any edge w lies on contains an interior vertex. We may create a new
complex K ′ by removing the combinatorial star at w–i.e., w and all edges containing w–from
the complex K. Since this new complex contains V vertices, by the induction hypothesis, we

3. Foundations 19

Figure 3.7: The packing for K is built from two superimposed pieces.

may find a circle packing for K ′ in D. Then, by Lemma 3.2, there exists a maximal univalent
packing for K ′ in D.

Suppose we project this maximal packing along with the boundary disc to the unit sphere
S2. Then, the compliment of D maps to a circle which covers a hemisphere of S2 and is
externally tangent to all of the boundary circles in the packing for K ′. If we allow this new
circle to represent cw and ignore extraneous tangencies, this new packing on S2 contains the
combinatorics of K. Thus, we may select any circle on S2 disjoint from the carrier or the
circles of the packing and use a Möbius transformation to send this circle to the southern
hemisphere of S2. After this, projecting back to the unit disc gives us a univalent hyperbolic
packing for K.

Both cases yield a univalent hyperbolic packing for K. Inductively, we may conclude that
any finite, simply connected complex with nonempty boundary has a univalent hyperbolic
packing. As we “draw” hyperbolic figures in the Euclidean plane, that there exist univalent
Euclidean packings for such complexes follows from the hyperbolic case.

Even after all of this effort, one may wonder if showing that a general circle packing exists
for K may have just been busy work. However, there are graphs–obviously not complexes by
our definition–composed of topological triangles that do not admit circle packings in either
C or D. Figure 3.8 for example, requires that two circles be tangent to each other exactly
twice, which is impossible on a flat surface using any standard definition of “circle.”

Figure 3.8: A complex that does not admit a packing in C or D.

To build a packing from the bottom up, a complex is then a very important requirement

3. Foundations 20

indeed! Now that we have existence of circle packings, we know that K guarantees existence
of packing labels by Monodromy. We now investigate how to go about finding a packing
label.

3.4 Generalizing from the Boundary

If one is familiar with complex analysis, one will certainly recognize the Dirichlet problem:
given a continuous function on the boundary of a region, find a function that is harmonic
over the interior, continuous over the entire region, and matches the initial function on the
boundary. As the roots of circle packings lie in approximation of concepts from complex
analysis, we should hope that there exists an analogous discrete result for packings–and as
it turns out, there is one.

As many of the programs we reference later restrict to packings with a finite number of
vertices, finite radii, and angle sums of 2π, in this proof we also restrict to the case that any
packing label we target is one that has a finite number of elements which all yield interior
angle sums of 2π.

Theorem 3.4 (Boundary Value Theorem). Let the complex K be a finite triangulation
with nonempty boundary such that there exists some locally univalent packing label R0 for
K. Write w1, ..., wq for the boundary vertices of K. Then, given any numbers r1, ..., rq in

(0,∞), there exists a unique packing label R̂ for K such that R̂(wj) = rj for j = 1, ..., q.
This result holds for both Euclidean and hyperbolic packings.

Proof. We follow methods given in [4] and [6], again employing a Perron method. Details of
the proof which strongly resemble those in the proof of Lemma 3.2 shall be omitted.

Let a collection of boundary radii r1, ..., rq corresponding to boundary vertices w1, ..., wq in
K be given, and assume that there exists a packing label R0–not necessarily with these
boundary radii–for the complex K.

We may define a collection of labels R as follows:

R = {R : R is a subpacking label with R(wj) ≤ rj for j = 1, ..., q}

If R0 happens to be contained in R, then R is clearly nonempty. If not, then consider
Euclidean scalings of the circle packing generated by R0. If rk is the smallest of our boundary
radii, we can pick a small enough scaling factor to fit the entire packing within a circle of
radius rk. The interior angle sums will still all be 2π, as scaling does not change angles.
Further, all boundary radii in the new label are forced to be less than the smallest possible
prescribed boundary radii. Therefore, R contains at least this label, and is nonempty.

If R1 and R2 are elements of R, let R3 = max{R1, R2}. By a previous argument, the angle
sum at all interior v in K remains ≥ 2π in the label R3. If v is exterior, that R1(v) was

3. Foundations 21

contained in R implies that R3(v) meets the boundary criteria for R3 to be an element of
R. Therefore, our set R is closed under maximums.

Suppose that R̂ = supR. To show that R̂ is non-degenerative is to again show that R̂ is
finite at all interior vertices. It has already been shown why this holds in the hyperbolic
case, and the Euclidean case is fairly simple: all interior circles must be contained within

the carrier of the packing. The carrier has a perimeter yielded by 2

q∑
i=1

ri, which is finite.

No circle of infinite radius may fit in such a bounded region! As interior radii are bounded
in both the hyperbolic and Euclidean case, we have R̂ is non-degenerate.

All signs point toward R̂ as the solution to our discrete Dirichlet problem, but we must show
that it actually forms a solution. First, we show that R̂ has the correct boundary radii:

Select any element R in R, and let R′ be the label that results from replacing the boundary
radii of R with the desired boundary values. Using R′ as a label, any interior vertices of K
that only have interior vertices as neighbors have unchanged angle sums. Any other interior
vertices of K have angle sums that can only stand to increase, by Monotonicity II. R′ is a
subpacking with boundary radii meeting the criteria for elements of R, thus R′ is contained
in R. As the boundary radii are now bounded above and below by r1, ..., rq we must have

that the boundary radii of R̂ match our prescribed values.

For the interior radii, following the argument from Lemma 3.2 shows that the angle sum at
each interior vertex of K must be 2π. Therefore, R̂ is locally univalent and meets a packing
condition at each vertex v of K, and R̂ is a packing label. All that is left is to show that R̂
is unique.

Suppose to the contrary: that there exists some other packing label R′ such that R′ 6= R̂.
Since R′ clearly belongs to R, we must have that R′ ≤ R̂, since R̂ is the sup of R.

In the Euclidean case, we consider the angle sums on the boundary. K is a triangulation,
and Euclidean triangles have angles which sum to π. Thus, the sum of all boundary angle
sums is given by Fπ − 2pπ where F is the number of faces and p is the number of interior
vertices. As the number of faces and interior vertices is constant in K, even after switching
labels, we have then that

q∑
j=1

θR̂(wj) = Fπ − 2pπ =

q∑
j=1

θR′(wj)

as both labels are packing labels, and interior angle sums are all 2π.

Now, examine the difference in boundary angle sums due to changing the label on K from
R to R′: we decrease all interior radii, while maintaining the boundary radii. By repeated
application of Monotonicity I to the radii of interior vertices neighboring the boundary, we

3. Foundations 22

have that the boundary angle sums will all be strictly decreasing. Thus,

q∑
j=1

θR̂(wj) >

q∑
j=1

θR′(wj),

a contradiction. Therefore, in the Euclidean case we have that R̂ is a unique solution to the
boundary value problem.

In the hyperbolic case, we have similar to before that

AreaR′(K) < AreaR̂(K).

If we allow {v1, ..., vp} to denote the interior vertices, repeated use of the triangle area formula
given by equation 2.8 then yields

Fπ −
p∑

i=1

θR′(vi)−
q∑

j=1

θR′(wj) < Fπ −
p∑

i=1

θR̂(vi)−
q∑

j=1

θR̂(wj)

But, as R′ and R̂ are both locally univalent packing labels the sum of interior angle sums
using either label is given by the same value. Thus,

q∑
j=1

θR̂(wj) <

q∑
j=1

θR′(wj).

Similar to the Euclidean case however, we have by Monotonicity I that the boundary angle
sums decrease from R̂ to R′, or

q∑
j=1

θR̂(wj) >

q∑
j=1

θR′(wj);

a contradiction. This implies that in the hyperbolic case R̂ is a unique solution to the
boundary value problem.

What the Boundary Value Theorem boils down to then, is this key point: If K is a complex,
we can specify boundary values to mold a packing with the combinatorics of K into a form
that we desire. By Theorem 3.3, we need a complex to guarantee a packing exists at all.
Considering Figure 3.8 again, it should be intuitive that if we cannot pack a surface while
guided by the combinatorics of some K, we should not reasonably expect to be able to select
boundary radii values for this K and get a packing!

Chapter 4

Iterative Methods for Labels

With the proof of Theorem 3.4, we should come away with the idea that local corrections
may cause an overall reduction in curvature in a packing. This is the fundamental idea
behind many algorithms which determine packings.

4.1 Why Iterate?

If we are given a list of desired boundary radii along with a set of packing conditions, there
is certainly a task ahead of us if we wish to determine a packing label.

Suppose we want to give the process a shot using brute force–i.e., the direct method. As we
have seen before, the basic idea in checking whether a label constitutes a packing label is
the notion of the packing condition. If, for example, we desire our end packing to be locally
univalent, we know that the angle sum at each interior vertex must be 2π. Thus, given any
interior vertex v, we have θR(v) = 2π.

This looks simple, but the notation suppresses all of the menial calculations that go into
determining an angle sum. Since we essentially determine the angle sums at each interior
vertex in the packing using the law of cosines, at any interior vertex v with k neighbors and
radius r, we have in Euclidean space:

2π =
k∑

i=1

2 arcsin

√
2riri+1

(r + ri)(r + ri+1)
,

and in hyperbolic space:

2π =
k∑

i=1

2 arcsin

√
r∗(1− r∗i)(1− r∗i+1)

(1− r∗r∗i)(1− r∗r∗i+1)
.

23

4. Iterative Methods for Labels 24

If we keep in mind that an attempt at direct solution yields a system of as many of these
equations as there are interior vertices, it is fairly easy to see why this brute force method
isn’t very popular: For even fairly small circle packings, attempting to find a solution to the
system may be computationally taxing, if not impossible. On the other hand, for packings
involving several hundred thousand circles or more, it becomes an absolute nightmare.

As it turns out, it is much, much quicker to use iterative methods to determine a circle
packing.

4.2 General Iterative Methods

We mentioned very briefly at the end of the proof of Theorem 3.4 that one may make
adjustments in radii to “fix” an angle sum, and reduce curvature at a given vertex. The set
of labels that we were working with was very restrictive in that all possible angle sums were
≥ 2π, though. It turns out that if we make similar adjustments on general labels, however,
that we still are given a reduction in overall curvature!

Theorem 4.1. Let R be a label for the complex K, and assume that a packing label can
be found for K. If at any vertex v in K we have curvature e(v) > 0, total curvature E(R)
is monotone decreasing with label corrections to R(v) = r that do not allow angle sums to
“overshoot” the target packing condition at v. That is, if R′ is a label that matches R at
every vertex except for where we have made the label correction R′(v) = r′, then we have
θR(v) > θR′(v) ≥ A(v) and θR(v) < θR′(v) ≤ A(v) imply E(R) ≥ E(R′). This result holds for
both Euclidean and hyperbolic labels.

Proof. We fill in details from a proof sketch suggested by [4]. There are two cases that allow
e(v) > 0: either the angle sum θR(v) at v is strictly greater than or strictly less than the
target packing condition A(v).

Assume that θR(v) > A(v). (The proof follows very similarly for the opposite case.) This
implies that the radius at v is too small. As angle sums are continuous functions of the
radii involved, we may increase the value of R(v) = r to some R′(v) = r′ such that θr(v) >
θR′(v) ≥ A(v). In doing so we have made a change to the label R such that our correction
does not allow the new angle sum to overshoot our target packing condition. Consider the
changes that this label adjustment yields on any face containing the vertex v.

If we are in Euclidean space, the angles of a triangle sum to π. Thus,

α + β + γ = 2π = α′ + β′ + γ′,

which implies
α− α′ = β′ − β + γ′ − γ.

4. Iterative Methods for Labels 25

As α − α′ yields the correction in angle sum at v due to the change in this face, we see
that over all faces containing v, the label correction yields at most an equal increase in the
angle sums of neighboring vertices. At best, this yields improvement in the curvatures of
neighboring vertices of v; at worst we have retained our old total curvature but changed the
vertices at which it concentrates. Thus, E(R) ≥ E(R′).

If we are in hyperbolic space, angles of faces do not sum to a constant term–but they do
determine triangle area. As the face induced by our label adjustment has greater area than
our initial face by Monotonicity I, equation 2.8 yields:

π − α− β − γ < π − α′ − β′ − γ′,

which implies
α− α′ > β′ − β + γ′ − γ.

As α − α′ yields the correction in angle sum at v due to the change in this face, we see
that over all faces containing v, the label correction yields an increase in the angle sums of
neighboring vertices which amounts to less than the correction in angle sum at v. At best,
this yields improvement in the curvatures of neighboring vertices of v; at worst the curvature
correction at v still surpasses any new curvature generated at the petal vertices of v. Thus,
E(R) ≥ E(R′).

This forms the basic principle upon which we iterate: Sequences of error terms generated
upon subsequent corrections to a label are monotonically decreasing. As error is clearly
bounded below by zero, we should get that this sequence converges to some value of error.
If we are working with subpacking labels (or superpacking labels where all interior vertices
have angle sums ≤ 2π for that matter), then we may use arguments similar to those in the
proof of Theorem 3.4 to show that this error converges to zero. For general packing labels
we are somewhat stuck out on a limb–but experimental observations in packing circles have
generally shown that the rigidity of the geometry involved makes iterative processes of this
sort “so stable that almost any iterative procedure will succeed.” [4]

We know now that iterative procedures will give results–all that is left is to develop such an
iterative procedure.

4.3 The Uniform Neighbor Model

We develop a correction scheme based on the first of two label correction algorithms from
Collins and Stephenson’s “A Circle Packing Algorithm.” Let R be a label for the complex K
such that the boundary radii have been assigned desired target values. If e(v) > 0 for some
interior vertex v in K, we make label corrections to v as follows:

• Calculate the angle sum θR(v) at v.

4. Iterative Methods for Labels 26

• Count the petal vertices of v. If v has n petal vertices, determine the radius r̂ which
would be necessary for v to have an angle sum of θR(v) if its n neighbors had uniform
radius r̂.

• Determine the value r′ such that a vertex with radius r′ surrounded by neighbors with
radius r̂ has an angle sum that matches the packing condition.

• Let r′ be the label correction in R for the vertex v.

Figure 4.1: Steps of the Uniform Neighbor Model.

That this is dubbed the Uniform Neighbor Model now makes sense: we base our correction
to r at v off of an approximation to the current label where the radii of neighbor vertices to
v are uniform. Given r and θR(v), the calculations for r̂ and r′ are then reasonably simple.

Let k be the number of petal circles to v, A be the target packing condition at v, β = sin θ
2k

,
and δ = sin A

2k
.

We have for the Euclidean setting that r̂ and r′ are given by

r̂ =
β

1− β
r, (4.1)

r′ =
1− δ

δ
r̂. (4.2)

Further, taking a hyperbolic label to be transformed as in Section 2.2, we have for the
hyperbolic setting that r̂ and r are given by

r̂ =
β −

√
r

βr −
√

r
, (4.3)

r′ = (
2δ√

(1− r̂)2 + 4δr̂ + 1− r̂
)2. (4.4)

Deriving these formulas require not much more than routine algebra and trigonometry. As
they are not directly clear however, for the interested reader I sketch the derivation for the
these formulas in the appendices.

As it turns out, this method of correction yields estimates with a very useful property, stated
by Theorem 4.2.

4. Iterative Methods for Labels 27

Theorem 4.2. Let θ(r) = θ(r; r1, ..., rk), and = θ̂(r) = θ(r;

k︷ ︸︸ ︷
r̂, ..., r̂). Let r̂ be chosen such

that θ(r0) = θ̂(r0) for some r0 > 0. Assuming that {r1, ..., rk} are not all equal (thus not all
equal to r̂), then

dθ̂

dr
(r0) <

dθ

dr
(r0). (4.5)

These results hold for both Euclidean and Hyperbolic labels.

We do not prove this theorem here, as for the most part it is a direct proof involving partial
derivative calculations performed on our angle sum formulas. The interested reader may
refer to [4] for details. Although the computations are not hard, mathematics software of
some sort is recommended if one wishes to verify the result, as the steps leading up to the
conclusion are quite messy.

Corollary 4.3. Assuming the conditions given in Theorem 4.2, we have that θ(r) < θ̂(r)
for 0 < r < r0 and θ(r) > θ̂(r) for r0 < r. In other words, label adjustments to R made by
the Uniform Neighbor Model do not allow angle sums to overshoot target packing conditions.

Proof. This result is also given in [4]. Given the conclusions of Theorem 4.1, since θ(r0) =
θ̂(r0), the above inequalities follow.

To show that the Uniform Neighbor Model does not overcorrect in its label adjustments,
suppose that θ(r0) is greater than the target packing condition A(r). (The proof follows
similarly if the opposite is true.) We have θ(r0) = θ̂(r0) for some r̂, which implies that the
label r0 is too small for the flower (v; v̂, ..., v̂) by Monotonicity II. Corrections by the Uniform
Neighbor Model will then replace r0 with some label r > r0 such that θ̂(r) is equivalent to
the packing condition at v. However, by the above inequalities this implies θ(r) > θ̂(r)–that
the label correction still leaves us with an angle sum at v greater than the packing condition.

Therefore, we have that the Uniform Neighbor Model does not allow label corrections which
allow subsequent angle sums to overshoot target packing conditions.

By Theorem 4.1, label adjustments to R which do not “overcorrect” any radii will lead
to a reduction in curvature in a packing. This is a tremendous improvement over means of
label correction such as Newton’s Method which are computationally intensive and where we
cannot guarantee that our label adjustments do not overshoot the target packing label. As
the Uniform Neighbor Model makes only corrections of the type called for by Theorem 4.1,
we will be able to reduce curvature in an attempt to approximate a packing for K. This
leaves the general iterative process for determining a new label as follows:

• Select any label R0 that assigns the desired boundary radii to their appropriate vertices
in K. Set ε > 0.

4. Iterative Methods for Labels 28

• For any label Rn, cycle through all interior vertices (in no necessary order) performing
label corrections as per the Uniform Neighbor Model. Let Rn+1 denote the resulting
label, and count this sequence of steps as one iteration.

• In some predetermined manner, calculate the angle sum error of the current label. If
this error is less than ε, we declare the current label to be our approximation to the
packing label. (Sums of curvature work as an error calculation, as do measures of the

“curvature vector”, [
k∑

i=1

e(vi)
2]

1
2 . The former is more strict, but both will serve our

purposes here.)

• If the error is greater than ε, then perform more iterations until we have reached an
approximation for the packing label.

4.4 Acceleration

We are surely not the first to have attempted to design a circle packing program. As in
[4], the Uniform Neighbor Model has been implemented on larger scales, and computational
experiments have shown that convergence after large numbers of iterations appears uniform:
i.e. if R̄ is a solution to the boundary value problem, and Rl and Rl+1 are consecutive
approximations made with the Uniform Neighbor Model, then for some large l

Rl+1 − R̄ ≈ λ(Rl − R̄) (4.6)

holds element by element in the labels for some λ < 1. Solving for Rl+2 and Rl+1 in this
format and determining the difference yields

Rl+2 = Rl+1 + λ(Rl+1 −Rl). (4.7)

More manipulation to the initial equation also yields

R̄ = Rl+1 +
λ

1− λ
(Rl+1 −Rl). (4.8)

As equation 4.7 targets the next iterate, we denote any approximation using this formula
acceleration. As equation 4.8 targets the final solution, we denote any approximation using
this formula super acceleration.

As approximation using these methods requires information on the last two iterations (Rl

and Rl+1), we give the algorithm in its full sequence as follows.

• Select any label R that assigns the desired boundary radii to their appropriate vertices
in K. Set ε and δ > 0, Error = ε + 1, λ = −1, and flag = 0.

4. Iterative Methods for Labels 29

• Set Error0 = Error, λ0 = λ, and R0 = R. This will maintain a record of the values
of elements from the last iteration.

• Perform one iteration of corrections on the label using the Uniform Neighbor Model.

Determine the error estimate Error = [
k∑

i=1

e(vi)
2]

1
2 , where {v1, ..., vk} are the interior

vertices of the packing.

• Set λ = Error
Error0

. (Note from equation 4.6 that we may take new error divided by old
error as an estimate for λ.) Then, set flag = 1.

• If flag0 = 0 and λ < 1, we may attempt to perform acceleration. The point of
setting flag and flag0 is to not have our program attempt to run acceleration too
many times. As we gather information on λ based on the approximations made by the
Uniform Neighbor Model, performing several iterations of acceleration in a row may
negate the purpose and cause our error to increase!

– Set Error = λError.

– If it appears that λ is converging to some value–i.e., if |λ − λ0| < δ–then set
λ = λ

1−λ
in preparation for running super acceleration.

– Determine the largest potential value of λ∗ such that R + λ∗(R−R0) yields legal
values of radii.

– Set λ equal to the minimum of {λ, .5λ∗}. We wish to obtain fast convergence, but
we do not wish to obtain values that are not legal radii on any iteration!

– Set the new label R equal to R + λ(R−R0), and set flag = 0.

• If the error is greater than ε, then perform more iterations until we have reached an
approximation for the packing label.

Chapter 5

Programming Considerations and
Placement

5.1 Input

In the development of our programs, we took the liberty of making the assumption that
our given complex represented a simply connected triangulation of a surface. Further, as in
Theorem 3.4, we assume that any complex we use will be packable.

All programs modeled on the above methods were implemented in Mathematica, version 5.2.
Relevant code for our four programs may be found in the appendices.

All input files used in testing the algorithms were generated by the programs subdivide.c and
tilepack.c as written by J. W. Cannon, W. J. Floyd, and W. R. Parry. The first program,
subdivide.c, uses specified finite subdivision rules to tile a quadrilateral. The second program,
tilepack.c, forms a triangulation based on the configuration of tiles given in the first program
and outputs it in a format usable for K. Stephenson’s CirclePack. (See [2] and [3] for the
first two programs, and [5] for CirclePack.)

Files output by tilepack.c were stripped of their heading information to obtain raw data of
the form used in Table 1. We assume the default enumeration of vertices as specified by
the program. Although this is a bit difficult to note in our example, the ordering of the
vertices in these files tends to not follow any easily discernible pattern–i.e., our first vertex
isn’t always the center, and the ordering doesn’t always work its way from the inside out.
We essentially start from scratch with the bare minimum information on the structure of
our complex.

On a given row, the first element refers to a vertex and the following elements provide
information about that vertex: The second element labels number of triangular faces that
the vertex is adjacent to, while the remaining elements list petal vertices in consecutive order.

30

5. Programming Considerations and Placement 31

Table 1: Input file formatting

vertex faces neighbors
1 6 2 3 4 5 6 7 2
2 2 7 1 3
3 2 2 1 4
4 2 3 1 5
5 2 4 1 6
6 2 5 1 7
7 2 6 1 2

Figure 5.1: The complex from Table 1

This means any two consecutive numbers in this list paired with the original vertex will form
a triangular face. If the vertex that a given row describes is interior, this list of petal vertices
will include an element that appears twice–once at the beginning of the neighbor list, and
once at the end. This reflects the fact that petals to interior vertices must neighbor at least
two other petal vertices, and also serves to let us differentiate between boundary and interior
vertices within the file.

5.2 Iterative considerations

To serve as somewhat of a standard, in testing each input file several items remained constant.
On each test run, the prescribed boundary radii were set to 1, and the prescribed “dummy
values” for interior radii were set to .1. In some of the hexagonal packings, a dummy value
identical to the given boundary conditions causes very uninteresting results in the Euclidean
setting–this automatically starts us off with a packing label, so we don’t really get to test
the program! There was no special reasoning behind this value, as it was selected simply

5. Programming Considerations and Placement 32

because it is not equal to 1.

The value for ε was held to a constant 5 · 10−15. This value was small enough to allow
most of the larger circle packings to pass visual inspection upon output, without taking an
unreasonable amount of time on some of the slower programs. Error within the programs

is measured by taking the magnitude of the “curvature vector”, i.e. (
k∑

i=1

e(vi)
2)

1
2 . Although

this is less stringent than total sum error
k∑

i=1

e(vi), the computations in acceleration require

use of this form of error; so we make it the default.

A second note on the error measure from the programs: the total error for any iteration is
actually an over-approximation of error on that iteration. For sake of efficiency, we take the
curvature prior to correction at a vertex to be that vertex’s error at the end of the iteration.
As we recall from Theorem 4.1, label corrections of the sort given by the Uniform Neighbor
Model are guaranteed to reduce or redistribute curvature within a packing. Thus, taking the
error prior to the correction serves as an over-approximation of the error on that iteration.
This was an original improvement to the algorithms suggested by [4].

Accuracy became a major issue for many of the packings. Keeping in mind that we often
work with thousands of circles or more, rounding can throw answers off greatly–especially in
the hyperbolic setting. Default accuracy settings often do not accommodate the particularly
small values of ε needed for larger complexes to pack. Further, hyperbolic computations
often have us dealing with very small and very large numbers simultaneously. (Suppose for
example that one of the vertices in a complex has radius 50. As we work with transformed
labels, this will eventually call for the usage of numbers such as e−100 and e100 in several
computations!) The programs we used instructed Mathematica to set accuracy to 30 places
on all test runs.

In cycling through vertices to make corrections via the Uniform Neighbor Model, the order
of the cycling is given by the default ordering of the vertices in the input file, skipping
boundary vertices. This was done for consistency. It would, for example be possible to
test a random walk variant, or a scheme that selects random interior vertices to correct–
but random schemes give different iteration counts on different trials, making it hard to
measure effectiveness. It would also be possible to form an algorithm that iterates based on
something more purposeful, such as location of the vertex in the complex; perhaps starting
near the boundary and working inward, or iterating first on circles with a specified number
of neighbors. At any rate, programs that dictate that each vertex be met in a given order
on each pass do not differ much from the current. Using the Uniform Neighbor Model, error
generally decreases no matter what the cycling order is, so it has not been made an issue
here.)

In discussing effectiveness of the programs, we mainly discuss iteration counts. Recall that
acceleration is really a pass-through of Uniform Neighbor Model paired with possible ac-

5. Programming Considerations and Placement 33

celeration and/or super acceleration calculations. For sake of comparison, we denote one
iteration in any of the programs as a step involving one pass through all interior vertices
of K making corrections using the Uniform Neighbor Model. This makes one pass through
the interior vertices of K in a UNM program one iteration, and one pass through K paired
with acceleration calculations just one iteration. We may specify a count of acceleration
iterations and super acceleration iterations by the number of times these calculations are
actually performed. Note that while we take a count of iterations to determine effectiveness
of the programs, it should be expected that the number of iterations increases as the number
of circles in a packing increases.

5.3 Circle Placement

Radii have been discussed much within this work, but recall that the point of many of these
exercises was to be able to construct a model. It turns out that this goal that we’ve been
building toward is actually rather anticlimactic: we’ve already detailed a rough variant of
our placement scheme in the 3rd chapter! Although the geometry that the packing lies
in determines the details, our placement scheme follows from that given in the proof of
Theorem 3.1. We start with two circles, and then place circles which are mutually tangent
to any two already placed.

It is convenient to start with the origin as the center of the first circle, and place the center
of a tangent neighbor on the positive x-axis. From here, the method of placing remaining
circles depends on the space we are working in.

Given two placed tangent circles c1 and c2, and a mutual unplaced neighbor c3, the process
for placing c3 in Euclidean space is intuitive. Form the vector from the center of c1 to that
of c2 and determine the angle of the face of this triple at c1: then rotate this vector by the
determined angle, and scale the vector to the desired length, r1 + r3. The endpoint of the
vector yields our new circle center.

In hyperbolic space we use a similar method, but in a more roundabout manner. We perform
the Möbius transformation that sends the center of c1 to the origin on both c1 and c2. Then
we perform the above method to determine a center for c3, and perform the inverse Möbius
transformation on all three circles to send them back to their proper respective locations.
(We only relocate these two or three circles at a time instead of moving the entire packing
as the latter is likely to introduce unwanted error into our center calculations.)

This is not quite the end of the process for drawing a hyperbolic packing. This gives us the
hyperbolic centers of the circles in the packing, which generally are different from the Eu-
clidean centers of the circles–and to draw the hyperbolic circle packing, we need a Euclidean
radius and a Euclidean center. Suppose we wish to find this information for c. Unlike most
hyperbolic isometries, rotation about the origin is a Euclidean isometry. So, an easy way to
determine this information is to perform another Möbius transformation on our circle: more

5. Programming Considerations and Placement 34

specifically, the one which rotates the circle about the origin until the center of c lies on
the x-axis at some coordinate (x, 0). A diameter of our circle then lies on the x-axis, with
endpoints (x− a, 0) and (x + b, 0) for some a and b such that 0 < x− a, x + b < 1. (Recall
that the hyperbolic metric causes hyperbolic circles to have centers that generally differ from
those of their Euclidean counterparts.) Using the distance metric for hyperbolic space, it is
not difficult to determine Euclidean coordinates for these points. From the Euclidean coordi-
nates, a radius and center are easily calculated for the circle lying on the x-axis. Performing
a rotation on this coordinate in the reverse direction gives us our desired Euclidean circle
center.

The drawing process is fairly simple, but as we know that the labels resulting from our
programs are approximations to packing labels, there are a few bugs to contend with. The
proof of the Monodromy Theorem from which we draw this method rests on the hypothesis
that we have a packing label. Although the label generated by the computer program may
be close, it will likely be only an ε-approximation to the packing label. This means that
each circle will likely not be placed in the same location as the packing label would demand,
even after taking isometries. This may eventually introduce very visible error in the packing
once it is printed, as we place all circles based on the location of previously placed circles.To
counter this, we have a very useful strategy: finding a “center” circle of maximum radius to
place first.

This works much better than one would suspect. Figure 5.2 was placed using this strategy.
Even though we used the same exact approximating label to create the packings in Figure 5.3,
those two obviously do not turn out as well!

Figure 5.2: The first placed circle was a center with maximum radius.

To explain why center circles place best, we must first develop a notion of what it means
to be in the center of a packing. Define a vertex’s distance from the boundary to be the
fewest number of edges that must be passed through to travel from it to a boundary vertex.

5. Programming Considerations and Placement 35

Then, the center circle (or circles) in the packing are those possessing the maximum possible
distance from the boundary within the packing. If this distance is n, we must place at least
n triples before placing those on the boundary. (The number may obviously be larger if we
have more than one “center” circle.) Therefore, we have at least n generations of error built
into the packing before we are able to place the outermost circles.

Figure 5.3: On the left, we started with a non-center circle. On the right, we started with a
circle of small radius.

If we were to not start at the center, then the maximum possible distance between the initial
circle and any other is greater than n–thus we have more potential generations of error built
into the packing by the time the boundary circles are placed.

To understand why circles with larger radii work better as first placements, keep in mind
the accuracy issues discussed earlier. If our radius approximation to a large circle is off by
a few decimal places, this does not yield a high percent error for that circle. If our radius
approximation to a small circle contains the same inaccuracy, it reflects a much larger percent
error–thus smaller circles tend to be unreliable in placement considerations.

What if we wish to not have the recommended starting circle at the origin? This is simple–
circle packings are unique up to isometries. Once our placement scheme is done, we may
perform rotations, translations, or compositions thereof within our given geometry in order
to obtain the desired orientation of our packing.

5.4 Output

The program yields three main forms of output. The first, obviously, is the circle packing.

Continuing our example from earlier, using the information in Table 1 with boundary radii
set to 1 yields Figure 5.4. The circles in the packing have been labeled here to correspond

5. Programming Considerations and Placement 36

1 2

34

5

6 7

Figure 5.4: An example, continued.

with their respective vertices, but the default in our program is to provide packings without
this information. Further output includes the error on iteration file, as in Table 2. Note
that it only took two iterations: In this case, all the boundary radii were uniform, so the
UNM correction turns out to be the exact answer here! (The error in approximation packings
generally ends up as zero only in cases such as this.) On the first iteration, we have technically
found the proper label, but the over-approximation given for our error forces one extra
iteration to check.

Table 2: Error output for our example.

vertex error upon iteration
1 4.24845172343812730905709182688
2 0

The last output is the complex K, paired with information on radii, circle centers, and
placement. The file appears in the formatting given by Table 3. For formatting concerns,
the values in the table are truncated from the actual output of the program.

5. Programming Considerations and Placement 37

Table 3: K with label and center information.

vertex placed coordinate location radius neighbors
1 1 (0, 0) 1 1. 2 3 4 5 6 7 2
2 1 (2., 0) 0 1. 7 1 3
3 1 (1., 1.732) 0 1. 2 1 4
4 1 (-0.999, 1.732) 0 1. 3 1 5
5 1 (-2., 0) 0 1. 4 1 6
6 1 (-1.000, -1.732) 0 1. 5 1 7
7 1 (0.999, -1.732) 0 1. 6 1 2

Chapter 6

Observations and Conclusions

As can be expected, the observations gathered align with that of Collins and Stephenson in
[4]. Acceleration paired with the Uniform Neighbor Model generally produces results with
far fewer iterations than the Uniform Neighbor model alone; in some cases yielding a packing
after one tenth of the number of iterations. As this often saves several hundred (if not several
thousand) iterations, this is a tremendous improvement on UNM as far as computational
requirements to get a packing label.

Larger packings (those involving more circles) took much longer to pack than those with fewer
circles. Having more vertices in a complex implies more places to gather curvature–but in
most cases, simply allowing the program to keep iterating ended in a result. See Tables A.1,
A.2, and A.3 for details. These tables are accompanied by several of the packings they refer
to in the appdendices.

It also turns out that convergence occurs much faster in the hyperbolic setting than in
Euclidean. This aligns with a result given in Theorem 4.1: in Euclidean space, adjustments
made by UNM may simply “push curvature around” without reducing it. This cannot
happen in hyperbolic space as the geometry is such that proper corrective adjustments will
always decrease error. If we are creating a packing for a reason that is not explicitly tied
to having specific boundary vertices–for example, if we want to embed a graph and do not
care about edge length–this implies that it may be more efficient to work in D rather than
C. Even though the formulas for working in hyperbolic space may be more computationally
taxing, the number of iterations required when working in Euclidean space were often two
or three times that of running the same complex through a program working in hyperbolic
space. Again, consult Tables A.1, A.2, and A.3 for details.

For many of the packings, setting the error tolerance to ε = 5 ·10−15 yielded results that were
visually passable as a circle packing. Packings containing as few as ≈ 500 circles began to
have errors in placement that accumulated mostly near the boundary of the packing, as in
Figure 6.1. This aligns with the statements in Section 5.3–that more “generations of error”

38

6. Observations 39

have been built into the packing by the time the circles furthest from the first are placed.

Figure 6.1: The packing accumulates error near the boundary.

A few corrective measures have been suggested in [7] for countering placement error in circle
packings. For one, if a circle to be placed has more than one pair of mutually tangent
neighbors laid out, we may take the placement of the new circle to be the “average” of the
placements suggested by all its neighbors. (In our current program, we cycle through the
complex, and all circles are placed based on the first suggested location given.) Another
suggestion is to not place circles based on “poorly placed” neighbors. This involves checking
the center locations of old circles against new placements in a method similar to the above.
Circles which are furthest away from their suggested location may be relocated, or ignored
in further placement considerations.

Figure 6.2: Two different computers running the same program on the same file.

Multiple computers were used in collecting output data for these tests. Error manifested
itself in different ways dependent upon the particular computer running the programs; even
if the same data sets were used to generate output. Although it is not certain, a possible
reason for this may be that each machine was running a different version of Mathematica. In
Figure 6.2, the output on the left was generated using version 6.0, while the output on the

6. Observations 40

right was generated using the version the program was written in, Mathematica 5.2. Despite
this, the different output files still managed to reflect that error begins to accumulate rapidly
as circles are placed further and further away from the initial circle.

Although we have succeeded in developing a rudimentary means of approximating circle
packings via the method suggested by Thurston several years ago, much work is yet to be
done. Our conclusions on the usefulness of the programs discussed within this work are based
on several packings containing a few thousand circles at most–meanwhile, many packings
done on an industrial scale may contain several hundred thousand!

The existence and uniqueness criteria upon which our program is based build a strong foun-
dation for future attempts at circle packings. However, recall that some of our methods result
from experimental observation of circle packing complexes. Whether the next great improve-
ment in circle packing methods has theoretical or experimental roots may be uncertain–but
it is clear that either way, we have much more to learn about creating and manipulating
these fascinating structures.

Appendix A

Law of Cosines Derivations

A.1 Euclidean Case

By equation 2.2, we have:

cos α = 1− 2r1r2

(r + r1)(r + r2)
.

By the half angle trigonometric identity:

sin
α

2
=

√
1− cos α

2
,

sin
α

2
=

√
r1r2

(r + r1)(r + r2)
.

Thus we get equation 2.3:

α = 2 arcsin

√
r1r2

(r + r1)(r + r2).

A.2 Hyperbolic Case

We use the identities cosh x = ex+e−x

2
and sinh x = ex−e−x

2
. Then, by equation 2.10,

α = arccos
(er+r1 + e−r−r1)(er+r2 + e−r−r2)− 2(er1+r2 + e−r1−r2)

(er+r1 − e−r−r1)(er+r2 − e−r−r2)
.

Expanding and reducing yields

cos α = 1− 2e−2r (e−2r1 − 1)(e−2r2 − 1)

(e−2r−2r1 − 1)(e−2r−2r2 − 1)
,

41

6. Observations 42

and allowing usage of transformed labels yields

cos α = 1− 2r∗
(r∗1 − 1)(r∗2 − 1)

(r∗r∗1 − 1)(r∗r∗1 − 1)
.

As before, the half angle trigonometric identity provides the rest.

sin
α

2
=

√
1− cos α

2
,

sin
α

2
=

√
r∗

(r∗1 − 1)(r∗2 − 1)

(r∗r∗1 − 1)(r∗r∗1 − 1)
.

Thus, we have equation 2.11.

α = 2 arcsin

√
r∗(1− r∗1)(1− r∗2)

(1− r∗r∗1)(1− r∗r∗2)

Appendix B

Uniform Neighbor Model

As before, let k be the number of petal circles to v, θ the current angle sum, A the target
packing condition at v, β = sin θ

2k
, and δ = sin A

2k
.

Assume the angle sum of the left flower in Figure B.1 matches that of θ. If we are attempting
to solve for r̂, note that β = sin θ

2k
may also be given in the Euclidean case by r̂

r̂+r
, as the

half face shown is a right triangle. Substituting this for β in β
1−β

r and reducing then yields

r̂. As for the hyperbolic case, equation 2.11 gives β =
√

r(1−r̂)2

(1−rr̂)2
if we take r and r̂ to be

transformed hyperbolic radii. Similarly, substituting this into β−
√

r
βr−

√
r

and reducing yields the
transformed hyperbolic radius r̂.

Figure B.1: Determining r̂ and r′.

Assume the angle sum of the right flower in Figure B.1 matches that of our target packing
condition, A. If we are attempting to solve for r′, note that δ = sin A

2k
may also be given

in the Euclidean case by r̂
r̂+r′

, as the half face shown is again a right triangle. Substituting

this for δ in 1−δ
δ

r̂ and reducing then yields r′. As for the hyperbolic case, equation 2.11

again gives δ =
√

r′(1−r̂)2

(1−r′r̂)2
for r′ and r̂ transformed hyperbolic radii. Substituting this into

(2δ√
(1−r̂)2+4δr̂+1−r̂

)2 and reducing yields the transformed hyperbolic radius r′.

43

Appendix C

Programs

C.1 Euclidean UNM with Acceleration

The following is Mathematica code used in testing Euclidean UNM with acceleration. Some
comments have been left in; they appear (*like this*). The program has been written such
that if one wishes to perform a test without acceleration or super acceleration, the appropriate
sections of code can be removed or commented out. Comments on which sections to remove
are included in the code.

The following should be compatible with Mathematica version 5.2.

Clear[accur,L,K,Epsilon,RadiiPack,x];

accur=30;

errorfilename="Desktop/error.txt";

outputfilename="Desktop/output7.txt";

packingfilename="Desktop/packing7.pdf";

K=Import["/Users/username/Desktop/input.txt","Table"];

(*location of the input file*)

BoundVert={};

InteriorVert={};

For[m=1,m<=Length[K],

If[K[[m,3]]==K[[m,Length[K[[m]]]]],AppendTo[InteriorVert,K[[m,1]]];m++,

AppendTo[BoundVert,K[[m,1]]];m++]];

(*the above sorts the boundary from interior vertices*)

L=Table[SetPrecision[1.,accur],{Length[BoundVert]}];

(*here I’ve set the boundary vertices to all have radius one.*)

K=ReplacePart[K,SetPrecision[.3,accur],Table[{n,2},{n,1,Length[K]}]];

(*a dummy value of .3 is set for all interior radii*)

44

6. Observations 45

For[b=1,b<=Length[BoundVert],

K=ReplacePart[K,L[[b]],{BoundVert[[b]],2}];

K=Insert[K,0,{BoundVert[[b]],2}];b++];

(*this marks each boundary vertex with 0*)

For[i=1,i<=Length[InteriorVert],

K=Insert[K,-1,{InteriorVert[[i]],2}];i++];

(*each interior vertex is marked with -1*)

Epsilon=SetPrecision[.000000000000005,accur];

Delta=SetPrecision[.05,accur];

(*here I’ve set epsilon and delta*)

ItCount=0;

ErrorPoints={};

AccelCount=0;

SuperAccelCount=0;

ErrorSum=Epsilon+1;

Lambda=-1;

Flag=0;

While[ErrorSum>=Epsilon,

PreErrorSum=ErrorSum;

PreLambda=Lambda;

PreLabel=Table[K[[v,3]],{v,1,Length[K]}];

PreFlag=Flag;

(*These all give ErrorSum, Lambda, and the list of radii from the

last pass.*)

ErrorSum=SetPrecision[0.0,accur];

For[m=1,m<=Length[K],

If[K[[m,2]]==-1,

AngleSum=SetPrecision[0.0,accur];

r=K[[m,3]];

For[n=4,n<Length[K[[m]]],

r1=K[[K[[m,n]],3]];

r2=K[[K[[m,n+1]],3]];

AngleSum=SetPrecision[(AngleSum+

ArcCos[((r+r1)^2+(r+r2)^2-(r1+r2)^2)/(2*(r+r1)*(r+r2))]),accur];

n++];

ErrorSum=SetPrecision[(ErrorSum+(2*\[Pi]-AngleSum)^2),accur];

PetalNumber=(Length[K[[m]]]-4);

a=Sin[Pi/PetalNumber];

b=Sin[AngleSum/(2*PetalNumber)];

K=ReplacePart[K,SetPrecision[(K[[m,3]]*(b-a*b))/(a-b*a),accur],{m,3}];

m++,

6. Observations 46

m++]];

ErrorSum=SetPrecision[ErrorSum^(1/2),accur];

Lambda=SetPrecision[ErrorSum/PreErrorSum,accur];

Flag=1;

(*Starting here is code for acceleration:*)

(***)

If[PreFlag==1&&Lambda<1,

ErrorSum=ErrorSum*Lambda;

(*Starting here is super acceleration:*)

(*------------------------------------*)

If[Abs[Lambda-PreLambda]<Delta,

Lambda=SetPrecision[Lambda/(1-Lambda),accur];

SuperAccelCount++];

(*------------------------------------*)

LambdaList1={};

LambdaList2={};

For[v=1,v<=Length[K],

If[K[[v,2]]==-1&&K[[v,3]]!=PreLabel[[v]],

AppendTo[LambdaList1,Max[SetPrecision[-K[[v,3]]/(K[[v,3]]-

PreLabel[[v]]),accur],SetPrecision[(1-K[[v,3]])/(K[[v,3]]-

PreLabel[[v]]),accur]]];

AppendTo[LambdaList2,Min[SetPrecision[-K[[v,3]]/(K[[v,3]]-

PreLabel[[v]]),accur],SetPrecision[(1-K[[v,3]])/(K[[v,3]]-

PreLabel[[v]]),accur]]]];

v++];

LambdaMax=Min[LambdaList1];

LambdaMin=Max[LambdaList2];

If[LambdaMax>LambdaMin,

Lambda=Min[Lambda,LambdaMax/2];

For[v=1,v<=Length[K],

If[K[[v,2]]!=0,

K[[v,3]]=K[[v,3]]+Lambda*(K[[v,3]]-PreLabel[[v]])];

v++];

AccelCount++]];

(***)

(*Acceleration code ends here.*)

ItCount++;

AppendTo[ErrorPoints,{ItCount,ErrorSum}]];

6. Observations 47

(*this collects and writes the error on each iteration to the set

"Errorpoints".*)

Print["Error = ",N[ErrorSum]];

Print["Iteration Count = ",ItCount];

(*this prints the iterations/error after the algorithm is done.*)

Export[errorfilename,ErrorPoints,"Table"];

(*this sends the error on each iteration data to a file.*)

Show[Graphics[Point/@ErrorPoints],

PlotRange->All,AspectRatio->1,Axes->True,PlotLabel->

"Error on subsequent iterations"];

(*the above yields a graph of iteration count/error.*)

K=Insert[K,0,Table[{x,2},{x,1,Length[K]}]];

K=Insert[K,0,Table[{x,3},{x,1,Length[K]}]];

(*after this step:

-the first value in each sublist of K is the vertex number

-the second value denotes whether placement has occured

-the third value should be a coordinate

-the fourth value denotes interior or exterior

-fifth denotes radius at the given vertex

-sixth and on denote which vertices are neighbors to this vertex*)

For[v=1,Intersection[Table[K[[x,4]],{x,1,Length[K]}],{-1}]!={},

TestSet=Pick[Table[x,{x,1,Length[K]}],Table[K[[x,4]],{x,1,Length[K]}],-1];

(*this lists untested interior vertices*)

BoundSet=Pick[Table[x,{x,1,Length[K]}],Table[K[[x,4]],{x,1,Length[K]}],v-1];

(*this lists vertices v combinatorial generations away from the closest

boundary vertex*)

For[m=1,m<=Length[TestSet],

If[Intersection[Take[K[[TestSet[[m]]]],{6,Length[K[[TestSet[[m]]]]]}],

BoundSet]!={},

K[[TestSet[[m]],4]]=v;];

m++];

v++];

CenterVertices=Pick[Table[x,{x,1,Length[K]}],Table[K[[x,4]],

{x,1,Length[K]}],v-1];

CenterVertex=First[Pick[CenterVertices,Table[K[[CenterVertices[[x]],5]],

{x,1,Length[CenterVertices]}],Max[Table[K[[CenterVertices[[x]],5]],

{x,1,Length[CenterVertices]}]]]];

(*this finds a set of "center" vertices and selects the element with the

6. Observations 48

largest radii among this list to be the center vertex.*)

K[[CenterVertex,3]]={0,0};K[[CenterVertex,2]]=1;

(*this assigns the center vertex the origin as a center*)

K[[K[[CenterVertex,6]],3]]={(K[[CenterVertex,5]]+

K[[K[[CenterVertex,6]],5]]),0};

K[[K[[CenterVertex,6]],2]]=1;

(*this assigns the second circle a spot on the x-axis*)

l=Length[K];

While[Table[K[[m,2]],{m,1,l}]!=Table[1,{m,1,l}],

For[m=1,m<=l,

If[K[[m,2]]==1,

For[n=6,n<Length[K[[m]]],

If[(K[[K[[m,n]],2]]==1)&&(K[[K[[m,n+1]],2]]==0),

r=K[[m,5]];

r1=K[[K[[m,n]],5]];

r2=K[[K[[m,n+1]],5]];

costheta=((r+r1)^2+(r+r2)^2-(r1+r2)^2)/(2*(r+r1)*(r+r2));

x=-K[[m,3,1]]+K[[K[[m,n]],3,1]];

y=-K[[m,3,2]]+K[[K[[m,n]],3,2]];

K[[K[[m,n+1]],3]]={x*costheta-y*(1-costheta^2)^(1/2),

x*(1-costheta^2)^(1/2)+y*costheta}*(r+r2)/(x^2+y^2)^(1/2)+K[[m,3]];

K[[K[[m,n+1]],2]]=1];

n++]];

m++]];

(*the above loop assigns the centers of all other vertices*)

Export[outputfilename,Prepend[K,

{vert,placed,coord,int,radius,neighbors}],"Table"]

(*this exports K to a file.*)

(*Show[Graphics[Point/@Table[K[[x,3]],{x,1,Length[K]}]],

PlotRange->All,AspectRatio->1]*)

(*this shows the circle centers; it is currently commented out*)

Export[packingfilename,Show[Graphics[Table[Circle[{K[[t,3,1]],

K[[t,3,2]]},K[[t,5]]],{t,1,l}],AspectRatio->Automatic]]];

(*The above command exports a graphic of the packing to pdf. It should

output the packing in mathematica as well.*)

6. Observations 49

C.2 Hyperbolic UNM with Acceleration

The following is Mathematica code used in testing Hyperbolic UNM with acceleration. Some
comments have been left in; yet again they appear (*like this*). This program has also been
written such that if one wishes to perform a test without acceleration or super acceleration,
the appropriate sections of code can be removed or commented out. Comments on which
sections to remove are included in the code.

The following should also be compatible with Mathematica version 5.2.

LT[x_]:=E^(-2*x);

Clear[accur,L,K,Epsilon,RadiiPack,x];

accur=30;

errorfilename="Desktop/error.txt";

outputfilename="Desktop/output7.txt";

packingfilename="Desktop/packing7.pdf";

K=Import["/Users/username/Desktop/input.txt","Table"];

(*location of the input file*)

BoundVert={};

InteriorVert={};

For[m=1,m<=Length[K],

If[K[[m,3]]==K[[m,Length[K[[m]]]]],AppendTo[InteriorVert,K[[m,1]]];m++,

AppendTo[BoundVert,K[[m,1]]];m++]];

(*the above sorts the boundary from interior vertices*)

L=Table[SetPrecision[1.,accur],{Length[BoundVert]}];

(*here I’ve set the boundary vertices to all have radius one.*)

K=ReplacePart[K,SetPrecision[.3,accur],Table[{n,2},{n,1,Length[K]}]];

(*this sets a dummy value of .3 for all interior radii*)

For[b=1,b<=Length[BoundVert],

K=ReplacePart[K,Exp[-2*L[[b]]],{BoundVert[[b]],2}];

K=Insert[K,0,{BoundVert[[b]],2}];b++];

(*this replaces the radii w/ a transformed value of what was assigned in L

and marks each boundary vertex with 0*)

For[i=1,i<=Length[InteriorVert],

K=Insert[K,-1,{InteriorVert[[i]],2}];i++];

(*this marks each interior vertex with -1*)

Epsilon=SetPrecision[.000000000000005,accur];

Delta=SetPrecision[.05,accur];

(*here I’ve set epsilon and delta*)

ItCount=0;

6. Observations 50

ErrorPoints={};

AccelCount=0;

SuperAccelCount=0;

ErrorSum=Epsilon+1;

Lambda=-1;

Flag=0;

While[ErrorSum>=Epsilon,

PreErrorSum=ErrorSum;

PreLambda=Lambda;

PreLabel=Table[K[[v,3]],{v,1,Length[K]}];

PreFlag=Flag;

(*These all give ErrorSum, Lambda, and the list of radii from the last

pass.*)

ErrorSum=SetPrecision[0.0,accur];

For[m=1,m<=Length[K],

If[K[[m,2]]==-1,

AngleSum=SetPrecision[0.0,accur];

r=K[[m,3]];

For[n=4,n<Length[K[[m]]],

r1=K[[K[[m,n]],3]];

r2=K[[K[[m,n+1]],3]];

AngleSum=SetPrecision[(AngleSum+2*ArcSin[((r*(1-r1)*(1-r2))/

((1-r*r1)*(1-r*r2)))^(1/2)]),accur];

n++];

ErrorSum=SetPrecision[(ErrorSum+(2*Pi-AngleSum)^2),

accur];

PetalNumber=(Length[K[[m]]]-4);

delt=Sin[Pi/PetalNumber];

beta=Sin[AngleSum/(2*PetalNumber)];

rhat=Max[(beta-r^(1/2))/(beta*r-r^(1/2)),0];

rnew=SetPrecision[((2*delt)/(((1-rhat)^2+4*delt^2*rhat)^(1/2)+

(1-rhat)))^2,accur];

K=ReplacePart[K,rnew,{m,3}]];

m++];

ErrorSum=SetPrecision[ErrorSum^(1/2),accur];

Lambda=SetPrecision[ErrorSum/PreErrorSum,accur];

Flag=1;

(*Starting here is code for acceleration:*)

(***)

If[PreFlag==1&&Lambda<1,

6. Observations 51

ErrorSum=ErrorSum*Lambda;

(*Starting here is super acceleration:*)

(*------------------------------------*)

If[Abs[Lambda-PreLambda]<Delta,Lambda=SetPrecision[Lambda/(1-Lambda)accur];

SuperAccelCount++];

(*-----------------------------------*)

(*Super acceleration code ends here.*)

LambdaList1={};

LambdaList2={};

For[v=1,v<=Length[K],

If[K[[v,2]]==-1&&K[[v,3]]!=PreLabel[[v]],

AppendTo[LambdaList1,Max[SetPrecision[-K[[v,3]]/(K[[v,3]]-

PreLabel[[v]]),accur],SetPrecision[(1-K[[v,3]])/(K[[v,3]]-

PreLabel[[v]]),accur]]];

AppendTo[LambdaList2,Min[SetPrecision[-K[[v,3]]/(K[[v,3]]-

PreLabel[[v]]),accur],SetPrecision[(1-K[[v,3]])/(K[[v,3]]-

PreLabel[[v]]),accur]]]];

v++];

LambdaMax=Min[LambdaList1];

LambdaMin=Max[LambdaList2];

If[LambdaMax>LambdaMin,

Lambda=Min[Lambda,LambdaMax/2];

For[v=1,v<=Length[K],

If[K[[v,2]]!=0,

K[[v,3]]=K[[v,3]]+Lambda*(K[[v,3]]-PreLabel[[v]])];

v++];

AccelCount++]];

(***)

(*Acceleration code ends here.*)

ItCount++;

AppendTo[ErrorPoints,{ItCount,ErrorSum}]];

(*this collects the error on each iteration, and adds it to the set

"Errorpoints".*)

Print["Error = ",N[ErrorSum]];

Print["Iteration Count = ",ItCount];

Print["Acceleration Count = ",AccelCount];

Print["Super Accel. Count = ",SuperAccelCount]

6. Observations 52

(*this prints the iterations/error etc. after the algorithm is done.*)

Export[errorfilename,ErrorPoints,"Table"];

(*this sends the error on each iteration data to a file.*)

Show[Graphics[Point/@ErrorPoints],

PlotRange->All,AspectRatio->1,Axes->True,PlotLabel->"Error on

subsequent iterations"];

(*the above yields a graph of iteration count/error.*)

K=Insert[K,0,Table[{x,2},{x,1,Length[K]}]];

K=Insert[K,0,Table[{x,3},{x,1,Length[K]}]];

(*after this step:

-the first value in each sublist of K is the vertex number

-the second value denotes whether placement has occured

-the third value should be a coordinate

-the fourth value denotes interior or exterior

-fifth denotes radius at the given vertex

-sixth and on denote which vertices are neighbors to this vertex*)

For[d=1,d<=Length[K],

K=ReplacePart[K,-.5Log[K[[d,5]]],{d,5}];

d++];

(*this replaces the transformed labels of the form e^-2h with h, the actual

hyperbolic radius*)

For[v=1,Intersection[Table[K[[x,4]],{x,1,Length[K]}],{-1}]!={},

TestSet=Pick[Table[x,{x,1,Length[K]}],Table[K[[x,4]],{x,1,Length[K]}],-1];

(*this lists untested interior vertices*)

BoundSet=Pick[Table[x,{x,1,Length[K]}],Table[K[[x,4]],{x,1,Length[K]}],v-1];

(*this lists vertices v combinatorial generations away from the closest

boundary vertex*)

For[m=1,m<=Length[TestSet],

If[Intersection[Take[K[[TestSet[[m]]]],{6,Length[K[[TestSet[[m]]]]]}],

BoundSet]!={},

K[[TestSet[[m]],4]]=v;];

m++];

v++];

CenterVertices=Pick[Table[x,{x,1,Length[K]}],Table[K[[x,4]],

{x,1,Length[K]}],v-1];

CenterVertex=First[Pick[CenterVertices,Table[K[[CenterVertices[[x]],5]],

{x,1,Length[CenterVertices]}],Max[Table[K[[CenterVertices[[x]],5]],

{x,1,Length[CenterVertices]}]]]];

6. Observations 53

(*this finds a set of "center" vertices and selects the element with the

largest radii among this list to be the center vertex.*)

K[[CenterVertex,3]]={0,0};K[[CenterVertex,2]]=1;

(*this assigns the center vertex the origin as a center*)

K[[K[[CenterVertex,6]],3]]={1-2/(1+Exp[K[[CenterVertex,5]]

+K[[K[[CenterVertex,6]],5]]]),0};

K[[K[[CenterVertex,6]],2]]=1;

(*this assigns the second circle a spot on the x-axis*)

l=Length[K];

MobiusTransform[Z_,c_]:={Re[(Z[[1]]+I*Z[[2]]-c)/(1-Conjugate[c]*(Z[[1]]+

I*Z[[2]]))],Im[(Z[[1]]+I*Z[[2]]-c)/(1-Conjugate[c]*(Z[[1]]+I*Z[[2]]))]};

(*this defines the Mobius transformation taking the point c to the origin*)

While[Table[K[[m,2]],{m,1,l}]!=Table[1,{m,1,l}],

For[m=1,m<=l,

If[K[[m,2]]==1,

For[n=6,n<Length[K[[m]]],

If[(K[[K[[m,n]],2]]==1)&&(K[[K[[m,n+1]],2]]==0),

PlaceMe=K[[m,n+1]];

For[f=6,f<Length[K[[PlaceMe]]],

If[(K[[K[[PlaceMe,f]],2]]==1)&&(K[[K[[PlaceMe,f+1]],2]]==1),

c0=K[[K[[PlaceMe,f]],3,1]]+I*K[[K[[PlaceMe,f]],3,2]];

r=K[[K[[PlaceMe,f]],5]];

r1=K[[K[[PlaceMe,f+1]],5]];

r2=K[[PlaceMe,5]];

halfsine=((LT[r]*(1-LT[r1])*(1-LT[r2]))/

((1-LT[r]*LT[r1])*(1-LT[r]*LT[r2])))^(1/2);

sintheta=2*halfsine*(1-halfsine^2)^.5;

K[[K[[m,n+1]],3]]=MobiusTransform[{{(1-sintheta^2)^(1/2),sintheta},

{-sintheta,(1-sintheta^2)^(1/2)}}.

MobiusTransform[K[[K[[PlaceMe,f+1]],3]],c0]*(Exp[r+r2]-1)/

(Norm[MobiusTransform[K[[K[[PlaceMe,f+1]],3]],c0]]*(Exp[r+r2]+1)),-c0];

K[[K[[m,n+1]],2]]=1;

f=Length[K[[PlaceMe]]],

f++]]];

n++]];

m++]];

Export[outputfilename,Prepend[K,

6. Observations 54

{vert,placed,coord,int,radius,neighbors}],"Table"]

(*this exports K, radii, and circle centers for a packing approximation to

a file.*)

(*Show[Graphics[Point/@Table[K[[x,3]],{x,1,Length[K]}]],

Graphics[Circle[{0,0},1]],

PlotRange->All,AspectRatio->1]*)

(*this shows the original hyperbolic centers; it is currently commented

out*)

(*Show[Graphics[

{Table[Point[K[[t,3]]*2/(Norm[K[[t,3]]]^2+1+

(1-Norm[K[[t,3]]]^2)*Cosh[K[[t,5]]])],{t,1,Length[K]}],

Circle[{0,0},1]},

PlotRange->All,AspectRatio->Automatic]];*)

(*this shows the euclidean centers--calculation of euclidean centers is

entirely contained w/in this graphics command. the entire cell is

currently commented out*)

Export[packingfilename,Show[Graphics[{Table[Circle[K[[t,3]]*2/

(Norm[K[[t,3]]]^2+1+(1-Norm[K[[t,3]]]^2)*Cosh[K[[t,5]]]),

((1-Norm[K[[t,3]]]^2)*Sinh[K[[t,5]]])/(Norm[K[[t,3]]]^2+1+

(1-Norm[K[[t,3]]]^2)*Cosh[K[[t,5]]])],{t,1,Length[K]}],

Circle[{0,0},1]},

PlotRange->All,AspectRatio->Automatic]]];

(*The above command exports a graphic of the packing to pdf. It should

output the packing in mathematica as well.*)

Appendix D

Convergence Tables and Packings

The following are hyperbolic packings and tables of convergence for pentagonal, fracthex, and
trhex subdivision rules. “Level” in the tables refers to iterations of subdivisions according
to the respective rule.

Figure D.1: Pentagonal subdivision packings at level 1 and 2.

55

6. Observations 56

Figure D.2: Pentagonal subdivision packings at level 3 and 4.

Figure D.3: Fracthex subdivision packings at level 1 and 2.

6. Observations 57

Table A.1: Pentagonal subdivision iteration counts

Level Geometry Number of circles UNM iterations Acceleration iterations
0 hyperbolic 6 2 2
1 hyperbolic 21 44 24
2 hyperbolic 101 190 60
3 hyperbolic 561 928 117
4 hyperbolic 3281 4934 302
0 Euclidean 6 2 2
1 Euclidean 21 66 36
2 Euclidean 101 391 92
3 Euclidean 561 2278 265
4 Euclidean 3281 13231 994

Figure D.4: Fracthex subdivision packings at level 3 and 4.

6. Observations 58

Table A.2: Fracthex subdivision iteration counts

Level Geometry Number of circles UNM iterations Acceleration iterations
0 hyperbolic 7 2 2
1 hyperbolic 31 32 21
2 hyperbolic 175 155 68
3 hyperbolic 1111 908 168
4 hyperbolic 7447 5823 573
0 Euclidean 7 2 2
1 Euclidean 31 57 36
2 Euclidean 175 408 146
3 Euclidean 1111 2798 523
4 Euclidean 7447 19075 2358

Figure D.5: Trhex subdivision packings at level 1 and 2.

Figure D.6: Trhex subdivision packings at level 3 and 4.

6. Observations 59

Table A.3: Trhex subdivision iteration counts

Level Geometry Number of circles UNM iterations Acceleration iterations
0 hyperbolic 13 23 15
1 hyperbolic 43 53 22
2 hyperbolic 157 152 39
3 hyperbolic 601 496 91
4 hyperbolic 2353 1770 293
0 Euclidean 13 29 20
1 Euclidean 43 94 52
2 Euclidean 157 359 120
3 Euclidean 601 1400 243
4 Euclidean 2353 5477 828

Bibliography

[1] A. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.

[2] J. W. Cannon, W. J. Floyd, and W. R. Parry, subdivide.c, software, available from
http://www.math.vt.edu/people/floyd/research/software/subdiv.html

[3] J. W. Cannon, W. J. Floyd, and W. R. Parry, tilepack.c, software, available from
http://www.math.vt.edu/people/floyd/research/software/subdiv.html

[4] C. Collins and K. Stephenson, A Circle Packing Algorithm, Computational Geometry:
Theory and Applications, 25 (2003), 233-256 (electronic).

[5] K. Stephenson et. al., CirclePack, software, available from
http://www.math.utk.edu/∼kens/CirclePack

[6] K. Stephenson, Circle Packings: Existence and Uniqueness, Course lecture notes,
University of Tennessee, 1995.

[7] K. Stephenson, Introduction to Circle Packings, Cambridge University Press, New
York, 2005.

60

