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INTRODUCTION 

The advent of fast reactors has made it imperative to study 

neutron cross sections at epithermal energies(!). Definitive values 

for these cross sections and the nuclear resonance parameters which can 

be derived from them also greatly enhance studies of stellar evolution 

and the optical model theory of the nucleus(Z, 3). The above exigencies 

have caused vast amounts of data to be generated in this field. 

Nevertheless, gaps do exist and some data are very poor, leaving 

extensive work yet to be done. For example, the latest edition of 

Neutron Cross Sections(Z3), the "Barn Book", gives values for the 

capture cross section of natural silver with error bars of + 40%. 

Values for average resonance parameters are even more inconsistent 

from one e~qJerimenter to another as can be seen in Table (III~ page <67 ). 

Neutron cross sections are generally examined by one of several 

ways, among which are 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(31 32) time-of-flight method using a linear accelerator ' , 

spherical shell transmission( 4 , 33), 

time-of-flight method using a pulsed Van de Graaff(B, 9 ,lO), 

1 . d . (34,35) s owing- own-time spectrometer , 
(11) time-of-flight method using a reactor and beam chopper , 

using the monoenergetic beam of neutrons available at 
back angles to a neutron producing target placed in the 
beam of a steady current Van de Graaff (lZ,l)), 

boron filter techniques(5 , 6 • 7>. 
No single method is best for the entire energy range of from several 

eV to several hundred keV where data are needed; however, each one has 

1 
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intrinsic advantages over the others in specific cases. These 

advantages along with some disadvantages are described quite well in 

a review by Gibbons(l4). The work now being done at V.P.I. in this 

field involves methods (f) and (g) above, using the V.P.I. research 

reactor and the 4 mV Van de Graaff accelerator. These two techniques 

differ radically but both involve activation of similar samples "Which 

are counted with a common detector system. Hopefully, systematic errors 

.in each technique will differ with each method and can be eliminated 

between the two measurements. 

The experiment described in this work employs the technique of 

activating a sample with 7Li(p,n) 7Be neutrons and counting the resulting 

induced activity in a separate lab; therefore, the method is dependent 

upon the sample having a suitable neutron cross section for production 

of at least one radioactive isotope with a half life long enough to 

make transfer feasible and short enough to make activation times 

reasonable. Although this limits the number of isotopes which can be 

studied, the procedures are straightforward, and for these isotopes it 

is perhaps the best method in the 1 to 200 keV energy region. 

Neutron capture cross sections and average resonance parameters 

have been determined in the present work for 3 keV < E < 155 keV. For - n -

medium and heavy nuclei, not close to closed shells this energy region 

involves contributions of many resonances. In addition, over this 

restricted energy it may be assumed that only s-, p-, and to a much less 

degree, d-wave neutrons contribute to the neutron capture cross 

. (13) sections • 
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The technique has been e~ployed i~ the present work to study . 

1271 , llSin. 107Ag, 109Ag d , A • o- ~ an natura.... g. All cross sections were 

1 . d h 1 . h 1271 . norma ize to t erma cross sections and t e cross section at 

24 keV. The results, given in Section (VII), are in general good 

agreement with those of other workers although, as noted in the 

introductory paragraph, there are often wide variations in these 

other data. 



EXPERIMENTP.L PROCEDURE 

A. Sample Preparation 

As 0 d 0 h • ~ • h • 115I 1271 107A mentione in t e 1ntrouuct1on t e isotopes n, ; fig, 

109Ag, and natural silver were studied in this work. In each case the 

samples were made into an annular form having a width of 4 mm, a 

diameter of 72 mm for the annulus, with the thickness varying with each 

element. 

Indium wire of 1.58 mm diameter was rolled in a hand operated 

rolling mill ,to a thickness of 0.15 nnn, equivalent to an areal density 

2 of 111.0 mg/cm • The silver samples were made by folding 0.013 mm 

foil into eight thicknesses, making a total thickness of 0.1 mm, with 

an areal density of 105.0 mg/cm2 • The iodine, not being a metal, was 

obtained in the form of KI crystals. These crystals were crushed to 

a fine powder and mixed with distilled water to form a thick slurry. 

The resulting mixture was then painted onto a steel supporting ring 

of 0.25 mm thickness and dried. The resultant KI shell was about 1.0 

nun thick with the areal density of iodine being approximately 
2 200 mg/cm • No appreciable activity was obtained from the steel ring 

or from the potassium. The samples were kept thin enough so that 

self-shielding corrections were not necessary since the greatest 

neutron attentuation (for the KI mixture) was less than 0.5%. 

All samples were activated by being affixed to the same steel 

support rings used to support the KI slurry. The ring with sample 

attached was supported by a plexiglass ring as illustrated in Fig. 1. 

This plexiglass ring served several purposes. Not only did it 

4 
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retain the sample, but it partially shielded the sample from room 

scattered neutrons and helped to shielJ the neutron monitor from a 

direct neutron beam. This last point will be discussed in the next 

section. Measurements made with a small monitor showed that a 

negligibly small nuinber of multiply scattered neutrons from the 

support returned to the sample and activated it. 

B. Sample Activation and Neutron Monitoring 

Neutrons are produced by the 71i(p,n) 7Be reaction which has been 

studied in great detail (l5 ,l6,l7,l8) and whose characteristics are 

well lr..nown. The threshold of this reaction is 1. 8811 rneV, at which 

energy neutrons of 29 keV are emitted in a narrow forward cone. As 

the proton energy is increased the cone spreads and the neutron energy 

increases until, at E = 1. 9255 meV, neutrons are being produced at 
p 

an angle of 90° with E = 3 keV. As E increases, E increases and the 
n p n 

neutron beam is monoenergetic. At higher proton energies than were 

used here, additional neutron groups are produced by the reaction(l6). 

The neutron producing targets used in this experiment were made 

by evaporating LiF powder onto 0.25 mm tantalum in an evacuated 

chamber. Targets of this type are discussed by Gibbons, et al (l6). 

Two different targets were used; one which was 1. 7 keV thick for 115rn 

and one of 1.9 keV thickness for all other samples and for the 

normalizing run taken at the end of the measurements. Thicknesses 

were determined by the method outlined below described by Gibbons 

in the reference just cited. 
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A paraffin covered lOBF3 detector was placed at an angle of o0 

to the proton beam and the proton beam on the target was adjusted to 

well below the (p,n) threshold of 1.8811 meV. Small increments were 

made in the proton energy with corresponding neutron counts being 

recorded. This was continued until the neutron yield reached a 

maximum and began to decrease. A graph was made of the relative yield 

at o0 versus proton energy. The thickness was determined by 

extrapolating the linear portion of the curve down to zero and up to 

the value of the maximum and calling the target thickness the energy 

difference between these two intersections. 

It was also necessary to determine the (p,n) threshold for a 

proton of average energy which has penetrated half the LiF target. 

By defining the threshold in this manner the neutron energy spread 

would be symmetric about the nominal energy. The threshold as defined 

above was then taken to be the energy corresponding to the maximum 

value of the neutron yield. Figure (2) shows the neutron counts at 
0 0 versus proton energy curve from which the thickness and threshold 

were determined for the 1. 9 keV thick target. 

One further point deserves conunent at this time. At 0° the 

spread in neutron energy is nearly equal to the spread in proton 

energy, but at greater angles this is not true. The expression for 

the ratio of neutron energy spread to proton energy spread for 7Li at 

a lab angle ~ is given by (16) 

tiE 
n 

tiE 
p '~ = [cos ~ + Z + 

49 E 
th] 

Z E 
p 

(1) 
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energy of.the threshold. 

[49(Ep-Eth)/Ep] - sin2 $• 

Thus the spread in neutron energy at an angle of 90° is only three 

fourths the proton energy spread. 

The samples used in this work were placed at an angle of 90° to 

the proton beam to take advantage of the monoenergetic property of 

the lithium (p,n) yield at angles ::__ 90° and still have the greatest 

possi.ble flux. The geometry of the sample placed in this position 

was such that it subtended a half-angle of 3° 11' to the neutron 

source. This resulted in an energy resolution, due to geometry alone, 

of approximately 4% for E = 155 keV, increasing to about 40% at n 

E = 3 keV. This can best be seen looking at Fig. (3). Better n 

resolution is available at greater back angles but the neutron yield 

decreases, so that one trades poorer energy resolution for poorer 

counting statistics. 

Irradiation times varied from 7.5 minutes for silver to 30 

minutes for indium, determined partially by whether good counting 

statistics were obtained, and partially by the half life of the target. 

Two similar samples of each element were made to enable the experimenter 

to count one sample while the other was being activated. This 

procedure was then repeated, alternating the samples such that each 

sample was irradiated at each energy. The two activities were added 

together 1 after necessary corrections and normalizations, to prevent 

errors from arising due to the differences in the samples. 
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The activity of a sample irradiated for a time, t, is given by 

A = -A.t NcrHl - e ) (2) 

where 

N = number of target atoms present 

a = cross section of target 

~ = neutron flux 

A = decay constant = ln 2/(half life) 

t = activation time 

Obviously, from this equation it is necessary that one know the 

relative flux at each activation energy if a cross section versus energy 

curve is to be made. 

If the neutron flux were constant throughout a single activation 

and the activation times were also constant, the cross section at 

energy E2 relative to that at E1 could be given by the simple relation 

= (3) 

However, a constant flux is not the usual case with a Van de Graaf£. 

Therefore one must make a correction for this effect. By recording 

a neutron counting rate, F., during the activation period, at intervals 
l. 

of time that are short compared to the half life of the radioactive 

product, it is possible to write down the equation 

F = l F. 
i l. 

-At· e· . J. (4) 
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A = decay constant 

t. = 
l. 

time from ith interval to end of activation. 

Equation 4 gives the effective neutron counts which, if all neutrons 

had been formed at a constant rate during the last time interval, 

would have resulted in the observed activity (i.e. corrects for both a 

variable flux and radioactive decay during activation) • 

. A block diagram of the neutron monitoring system is given in 

Fig. (4). The multi-channel analyzer was used in the multiscale mode 

whereby all neutron counts arriving in a certain time interval were 

stored in a certain channel, regardless of their energies. By 

monitoring in this manner, one can make use of Eq. 4 to correct for 

variations in neutron flux during the period of activation. 

During a survey of the literature in the field it was found 

that a neutron source located in a "vault" such as the target area 

of the Van de Graaf f room gave rise to a large number of room scattered 

neutrons to add to the neutron background(l9). Extensive data were 

taken by the author to determine the magnitude of this correction 

factor using a small, silicon, surface barrier detector operated at 

room temperature. This detector was covered with a thin lOB disc 

which served to produce detectable ions by the lOB(n,a) 7Li reaction. 

A survey of the target area was taken recording neutron counts versus 

distance from the source, keeping the neutron energy constant. It 

was hoped that it would be possible to thereby separate the room 

background and foreground (direct neutrons from the source), assuming 

2 a 1/r dependence for the foreground. A sample of this survey is 
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given in Fig. (5) 0 for a neutron energy, at 90 to the proton beam, 

of 43 keV. Background counts resulting from natural radiation, electronic 

noise, and Van de Graaff related radiation have been subtracted from 

these data. 

The open circles of Fig. (5) represent the corrected neutron 

counts and the closed circles represent the resultant after subtracting 

a background of 5000 counts from each point. This background was 

arrived at by trial and error. The straight line represents a l/r2 

curve and strengthens the assumption of such a dependence. The 

variance of the closed circles from the l/r2 curve at short 

distances can be attributed to the inability to locate the exact 

position of the proton beam on the lithium target Ci_:__e_:_ position of 

the neutron source). This position was uncertain to several milli-

meters and would result in such an error near the source, with little 

effect at large distances. 

It was also noted from this survey that at 3.6 cm, the sample 

distance from the source (see Fig. 1), that the scattered background 

was about 6%; but at a distance of 10 cm, the closest in the same 

plane as the target specimen that the neutron monitor could be 

placed, the backgrcund was 33%. Because of this source of possible 

large errors it was decided that the liability of a high background 

from the room could be turned into an asset. By placing the detector 

0 at an angle of 90 to the proton beam and behind a "shadow shield" 

one could then monitor the ambient neutron flux in the room and 

obtain results which would reflect variations in the neutron yield 

of the target. The monitor geometry of Fig. (6) shows the final 



.J:l 
E 
0 
:J io4 
0 u 
;:l. 

0 

........ 
VI 
.µ 
c: 
:J 
0 u 

15 

T 

0 

0 

0 

0 

0 

0 

0 

___ J____j_ __ ~_......_,,,_ ..... _____ J._ __ ..__ __ 
0 5 10 15 20 25 

Distance from Source (cm) 

1/r2 Survey 

FIGURE 5 

30 35 

0 



16 

Target .. 
Source 

I 
15 cm 

18 cm 

~6.5 cm --ti 

Neutron Detector 

FIGURE 6 

T 
10.6 cm 

l 
Wooden 
Shadow 
Cone 

Paraffin 

lOBF Detector 
3 



17 

experimental setup. As stated earlier, the plexiglass ring with 

cadmium insert served to reduce the background at the sample and to 

shield the monitor from direct neutrons. 

· All that remained was to determine the energy dependence of the 

monitor detector, including variations in the number of room neutrons 

with proton energy (and hence neutron energy). With the setup as shown 

in Fig. (6) a survey was made recording the neutron monitor counts over 

the entire energy range from 3 to 155 keV, keeping the integrated proton 

current constant. The results are shown in Fig. (7) and give a monitor 

correction to be applied to the data. Finally, it was necessary to 

determine how the yield of the 7Li(p,n) 7Be reaction varied with 

0 energy at 90 to the proton beam. This yield correction was determined 

by placing the aforementioned silicon detector at a distance of 3.6 cm 

from the source and running a counts versus energy experiment, the 

results of which are shown in Fig. (8). The counts plotted in this 

figure have been corrected for background effects and for the l/v 

dependence of the boron cross section. The details of the va~ious 

corrections will be d.iscussecl in the section on analysis. 

C. Counting Procedure 

In order that the counting background might be as s~all as 

possible, all samples were removed from the Van de Graaff target 

roorr, and carried to the counting laboratory. This lab is removed 

from the target room by some 25 meters and is shielded from Van de 

Graaff related background by several feet of concrete. A low 

background counting facility constructed and described by Winters(2l) 
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is provided in this lab. Figure (9) is a block diagram of the 

counting system used in this experiment. 

Several different detector assemblies were used to measure the 

activities of the isotopes studied. Early in the work a 7,62 X 

7.62 cm Nal(Tl) detector was used. Low counting rates were obtained 

and a 2.54 X 12.70 cm NE102 plastic scintillator was tried since 

this would respond to both S and y radiation from the sample. 

This improved the count rate so a well-type plastic scintillator ~as 

constructed by cutting a 3 mm wide by 5 mm deep groove in the face of 

a 2.54 X 10.16 cm scintillating plastic cylinder to accept the 

annular samples. The surface was then covered with aluminum foil to 

prevent light leakage. This detector proved to be the most efficient 

for our work. 

A Cosmic Spectrastat high voltage power supply was used to 

power the photomultiplier for the NaI crystal? and an Atomic Model 

312 high voltage power supply was used :when either of the beta crystals 

was used. Pulses from the P-M tube were sent to a Tennelec Model 

TC200 amplifier and then into the multi-channel analyzer which was 

operated in a multi-scale mode. This mode of operation was chosen 

rather than a pulse height analysis mode to permit separation or 

identification of the radiation by the rate of decay and because the 

plastic scintillator used offered little hope of identification of 

the radiation present from the spectrum details available. 
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ANALYSIS 

A. Cross Sections 

The first quantity obtained from the activation data was the 

neutron cross section for capture. Several correction factors must 

be applied to the data but the calculation is straightforward. In 

general, the measured activity of a sample containing N target 

atoms placed in a neutron flux, ~(E), for a time, t , and counted a 
for a time, t , is given by c 

where 

e: = counting efficiency 

a (E) = neutron capture cross section 

t = time between activation and counting w 

.A = decay constant 

The efficiency, e:, of the counting system is dependent upon the 

geometry of both the sample and detector, as well as intrinsic 

(1) 

characteristlcs of the detector. This parameter is quite difficult 

to obtain accurately for complex geometries so it was decided'to 

obtain relative cross sections (~~ an energy versus cross section 

curve which is identical in shape to an absolute cross section 

curve) for each isotope. To obtain absolute cross sections it was 

necessary to obtain the "exact or absolute" cross section at any one 

energy and then normalize the relative curve to this value. This 

normalization is discussed later. 

22 
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By recording the various times invol-.,red during each activation 

and counting period, one can obtain relative cross sections by use 

of the equation 

where 

C(E) = measured activity of the sample 

¢R(E) = relative neutron flux 

FC\.,t.) 
1 

exponential terms in Eq. 1 

It should be reemphasized that, in this discussion, relative cross 

section refers to the curve giving the cross section at one energy 

(2) 

relative to that at a different energy. This is not in accord with the 

usual definition of relative cross section as the cross section of 

one isotope relative to that of another. Insertion of Eq. 2 into 

(1) yields 

= E:N { ill2_ 1 cr (E) 
¢R(E)J 

Therefore, the constant of proportionality between relative and 

absolute cross sections is the product of the total efficiency, 

(3) 

the number of target atoms in the sa~ple, and the ratio of relative 

flux to absol~te flux. Equation 2, in a modified form due to several 

correction factors outlined below, was used for the data collected 

in this project. 

Flux Mon~~oring Corre~~i~. -- There were three correction 

factors which had to be applied to the neutron monitor data. These 

are: (l) M ,due to variations in the neutro!l detection ~fficiency with c 
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energy, (2) Y , due to variations in the yield of the 7Li(p,n) 7Be c . 

reaction with energy, and (3) N , due to variations in the neutron flux c 

due to target evaporation and inconsistencies in the integrated proton 

current. 

The monitor used to detect neutrons, as stated earlier, was 

a lOBF3 detector. Th' · · t' 1 b t · · b is was an ioniza ion c1am er con aining oron 

trifluoride gas which detects neutrons by the lOB(n,a) 7Li reaction. 

The alpha particle and lithium ion produce the necessary ionization 

for detection. Boron-10 has a l/v cross section, i.e. the cross 

section varies as l/./E, for neutrons; therefore, it is not a good 

detector for fast neutrons. This necessitated covering the detector 

with paraffin which slowed the neutron down for more efficient 

detection. Because we were monitoring the ambient neutron flux of 

the target area, it was necessary to take into account changes in this 

neutron "cloud" with energy. The data shown in Fig. (7), Section ( v ) 

is a result of a survey of neutrons detected versus energy. This 

data was taken in a short period of time so that target burnup was 

assumed negligible. The integrated proton current (total number of 

protons which struck the lithium target) was held constant so the 

data should reflect both the change in ambient flux as a function of 

energy and the detector efficiency changes with energy. The monitor 

correction factor, M , was then taken from the graph of Fig. (7) as c 

the ratio of neutrons co~nted at E. to neutrons counted at E = 155 keV. 
i 

The actual neutron yield of the n + 7Li reaction varies 

radically with energy as can be seen in Fig. (8). This required a 
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corr~ction to simulate a constant yield. The section on Experimental 

Procedure describes an experiment performed to obtain this yield 

versus energy curve which is illustrated by Fig. (8). Note that 

the ordinate has been corrected for background and for the l/v 

dependence of the boron. 

neutron yield with energy. 

Figure (8) reflects actual changes in the 

The correction factor, Y , was taken from c 

this graph as a ratio of neutrons counted at 155 keV to those counted 

at Ei. 

Finally, target evaporation and integrated current changes were 

taken into account. Evaporation of the target is a result of the 

literal boiling away of the LiF by the proton beam. This can be 

virtually eliminated by an air-water spray directed onto the target 

as a coolant. However, this would have contaminated our samples 

(and dissolved the KI mixture) and was not used. It was found that 

by running the Van de Graaff with a proton current in the range of 

from 2 to 3 microamps target evaporation could be kept within 

tolerable limits and the neutron yield was also acceptable. All 

reasonable care was taken to provide a constant current in this 

range. Nevertheless changes did occur and were accounted for by 

fo:nr.ing the ratio of neutron counts at 155 keV to those at E .• 
l. 

This constituted the factor N • c 

All correction factors for E = 155 keV were taken to be unity 
n 

and succeeding factors were measured relative to this. The net 

re3ult of these three corrections is given by 
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C(E)M (E)Y (E)N (E) 
c c c = . F().,t.) (4) 

where 

M = c 
y = c 
N = c 

. l. 

monitor correction (M < l) c-

Yield correction (Y > 1) . c -

neutron correction. 

Equation 4 was used in this-form for each different neutron energy 

and yielded a curve that was directly proportional to the absolute 

cross section curve. 

Normalization. -- Each sample was activated and counted at discrete 

energy intervals over the range of 3 to 155 keV. To obtain absolute 

cross sections the cross section of 1271 at 24 keV was chosen as the 

standard. The value used was 0.832 ± .026 barns as determined by 

Robertson(ZZ) using the spherical shell transmission method. Iodine 

was then normalized to this value. For indium and silver, normalization 

was performed using the cross section of iodine measured in the present 

experiment at 24 keV and the thermal cross sections of the individual 

isotopes. 

Consider the following ratio. 

R 

where the subscripts refer to activation at thermal energy snd at 

another energy, E. 

R 
Nth0 th¢thELhFth(A,t) 
NE0E¢EsEFE(;I,' t) 

(5) 

(6) 
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where 

E = efficiency of coUJ.1ting system. 

If the same samples and counting system are used for both thermal 

and E activations, then Nth = NE and Eth = EE. 

R = cr th<!> thF th (A.' t) 
crEcpEF E().' t) 

(7) 

One can write down a similar equation for a standard and take the 

ratio of R to R , where the subscript refers to the standard. s 

R 
R s 

= 
. {a th <!>thF th(A.' t)} 

{aEcpEFE(A.,t)} 
. {crsE<!>sEFsE(A.,t)} 

{ 0 s th cps th F s th (A.' t) } 
(8) 

By activating both the standard and the sample in the same thermal 

flux we may write the above equation, solving for oE' as 

= 
R s 
R 

<!> cr o Fth(A.,t) FsE(A.,t) 
~· { th sE} { } { } 
"' ~(~) FE·(A.,t) 'l'E 0 sth sth ' 

(9) 

Hence, one can determine the absolute cross section by activating 

a sample and a standard in a thermal fl~x and in a monoenergetic non-

thermal flux, then counting to determine the above ratios. The 

following thermal neutron cross sections were used to perform this 

calculation: o(natural Ag) = 63.6 + 0.6 barns, o(107Ag) = 35 ± 5 barns, 

o(109Ag) = 89 + 4 barns, o(115rn) = 157 ± 4 barns, and 0(1271) = 
~ (23) 6.2 , 0.2 barns • The half lives of the resulting radioisotopes 

108 110 which were used were: T 112 ( Ag) = 2. l~ minutes,· T l/Z ( Ag) = 24 

25 minutes. 

For a thermal neutron sonrce, the thermal column of the V.P.I. 

UTR 100 reactor was used. Each sample was placed in the central 
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stringer a distance of 102 cm from the lead gamma curtain and 

activated for one minute at 10 watts. This position yielded an absolute 

flux of about 106 neutrons/ cffi2 /sec at this power level. At this 

position the neutron beam is essentially all thermal since the cadmium 

ratio at a distance of 76 cm is 540 to 1, as shown by Stam(24). 

Each sample was activated at 24 keV in the exact geometrical 

configuration which was used to determine the relative cross sections. 

By performing the activation of each sample at 24 keV within a short 

time interval and in identical geometries, we were confident of 

having a little change in the neutron yield and detector response, 

enabling us to determine the ratio ~sE/¢E accurately. Equation (8) 

was then used to calculate the absolute cross section at 24 keV. 

The cross section versus energy curves were then normalized to this 

value. The entire normalization experiment, including reactor and 

Van de Graaff irradiations, was performed in a single evening so that 

activation and counting coulc be done with a minimum error due to 

activation geometry and any possible variations in the counting 

equipment. The results along with values determined by other 

investigators are given in the next chapter. 

B. Average Resonance Parameters 

To the nuclear theorists resonance parameters are the most 

important information to be obtained from this work. These parameters, 

which will be defined below, tell much about the target nucleus 

and have meaning in relation to statistical nuclear models such as 

the optical model. 
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Before proceeding further it is beneficial to define the more 

commonly used terms which are to be used. 

l) 

2) 

3) 

4) 

5) 

a = neutron capture cross section ny 
E = incident neutron energy 

E = energy of a particular resonance 
0 

A = l/k = de Broglie wavelength of the incident neutron 

R = radius of the target nucleus 1 4 Al/3 f . • _emus 

6) I = spin of the target nucleus 

7) i = angular momentum of the incident neutron 

8) J = I + I + 1/2 = spin of the compound nucleus 

9) 

10) 

11) 

12) 

13) 

14) 

15) 

16) 

17) 

18) 

r n 

r y 

= 

= 

statistical weight factor 2J + 1 
2(21 + 1) 

penetration factor of the nucleus for neutrons of 
angular momentum t 

reduced width at 1 eV of a resonance with angular 
momentum t 

r(~)(,!E"""" v) =neutron width of resonance at energy n o t 
E with angular momentum t 

0 

gamma width of the resonance 

r = total width of the resonance at energy E 
0 

s = local level spacing in the neighborhood of a given 
resonance 

D obs 

D = 
0 

(neutron energy interval)/(number of resonances of 
a given angular momentum in that interval) 

Db X 2(21+1)(2i + 1) 
0 s 

D I (2J + 1) 
0 

19) {r~~))!(nJ) = c(r~t)/!(n)).J - neutron strength function 
for an orbital angular momentum t and spin J 
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20) ( ( r Y) I ( Dn)) J = y-ray strength function 

21) <( r!~)) 1<nJ)) = (2i+1)-1 I (r<n); <n) = gJ nJ J s 

< r~i)) /< D) 

22) ((ryJ) J(nn)) = <I gJ(2J+l))-1I gJ(r) /{n3 ) = ,Q, J J y 

( ry) 1< n0 ) ,Q, 

NOTE: In the above definitions and the work that follows, average 

values are denoted by braces ( ) Also, vector quantities are 

designated by placing a bar above the quantity (See definition 8 above). 

The notation used herein is from Bilpuch et al(l2). 

The subscripts in the above definitions indicate that the 

particular quantity refers to neutrons of a particular angular momentum, 

i, and resonances of the compound nucleus with spins, J, which can 

be formed with these neutrons. Subscripts outside parentheses are 

understood to refer to each enclosed term. 

According to the compound nucleus concept of nuclear reactions 

we may denote the probability of the reaction X(n,y)X' as 

a = a (n) X (relative prob. of y-emission) ny c . (1) 

where a (n) is the cross section for the formation of the compouud c 

nuclaus. The relative probability of y-emission is simply r /r, y 

where r is the partial level width for y and r is the total level y 
width. For heavy nuclei (80 < A < 250) and intermediate energy 

neutrons (1 keV < E < 500 keV) the only reactions which are discern-

ible are (n, y) capture and elastic . (25) scattering • The work done 
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in this project falls in both categories; therefore, r = r + r . y n 

The Breit-Wigner single level formula( 26 ) gives th.a theoretical 

cross section in the case of resonance ?henomena. This equation in 

its simplest form gives the value of the cross section in the 

neighborhood of a single resonance level formed by neutron capture as 

(2) 

Equation 2 may be thought of as composed of three terms. The first 

is a measure of the probability of compound nucleus formation and 

is proportional to A2. The second, [(E - E0 ) 2 + (f/2) 2]-1 , is the 

resonance factor and results in maximum values for a when E ~ E . ny o 

The partial widths r and r give the probabilities for definite 
n Y 

types of disintegration of the compound nucleus. 

The average cross section for a single resonance of local 

level spacing, sJ, is given by 

= a dE ny 
(3) 

where any is given by Eq. (2). Over this energy region, which 

contains a single resonance, r is a constant and r and qu2ntities y 

dependent upon E alone are slowly varying functions of energy and 

may be assumed constant. 

(E 0 + sJ/2 

I dE 
= 

JE0 - sJ/2 
(E - E ) 2 + (f/2) 2 

0 

(4) 
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Essentially the entire contribution to the integral is a result of 

the energy region in the iw~ediate vicinity of the resonance. No 

significant error is introduced by extending the limits of integration 

to + 00 • 

+co 

gJn7i:2r r r 
(any) = r n 

J _QO 

dE (5) SJ E )2 (r /2) 2 (E - + 
0 

and 
+co QO 

L dE L dx 
E )2 

= 2 (E - + (f/2) 2 a+ bx+ ex 
0 

where 

x = E 

a = E2 + r 2/4 
0 

b = -2E 
0 

c 1. 

c x = 00 

dx 2 -1 2 ex + b 
2 =;q tan 

a+ bx+ ex /cl x = -oo 

where 
2 r2 (r + r )2 q 4ac ·- b = = n y 

<any) (6) 

We are interested in the average cross section over a region 

which contains many resonanees and which depends on the average value 
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of the parameters of Eq. (6). Rae, et a1< 27> have shown that r is --- y 

expected to vary little from level to level, but (any) does depend 

upon the distribution chosen for the reduced neutron widths. In 

general, the average cross section over a region containing many 

resonances may be written 

(r ) 
} F (-< !!--!--) ) 

n U 

is a correction factor dependent upon the 

distribution function chosen for r ~i) I< r ~i)) A Porter-Thomas 

distribution(2S) has been assumed in this work and can be written 

F(b) = (l + 2b) {l _ 2 vb [l - Hvb]} 
H' vb 

where 

b = 1 (ry)/{r~i)> 
2 IE vi 

H(vb) 2 r.-t2 dt and H' (vb) 2 -b = e ;; .;; 
0 

are the tabulated error function and its derivative. Equation (8) 

is plotted in Fig. (10). 

(7) 

(8) 

The variable, vi, above is the penetration factor of the nucleus 

for a neutron of angular momentum i, and has the values 

v = 1 
0 

vl = k2R2/(l + k2R2) (9) 

v2 = k4R4/(9 + 3k2R2 + k4R4) 
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By having an upper limit of 155 keV for the neutron energy 

in this experiment, it is assumed that only s- and p-wave neutrons 

are present; therefore, we have values of 0 and 1 for £. This 

assumption perhaps is not a rigorously valid one, but analysis for 

d-wave contributions is severely limited by the accuracy of the 

data available. 

Some further assumptions are made before Eq. (7) can be used to 

analyze the cross section data. It has been shown emplrically<29> 

that ry/n1£) is 

D0 = (2J + l)DJ 

proportional to (2J + 1)-5/ 4. If it is assumed that 

then r /D is at most proportional to (2J + 1)-l/4. 
y 0 

Because of this weak J dependence we call ( r y) I ( D 0 ) the y-ray 

strength function and is taken to be independent of J and E for a n 

particular neutron angular momentum. Another widely used assumption 

is that the neut~on strength function, ( r ~~)) I< nY)) ' is independent 

of J, i.e. r (£) = (2J + 1) r (J£) • This allows us to redefine the 
~~ n n 

neutron strength function as ( r(£)) /(D) = (2t + 1)-l l gJ 
n J 

With the above assumptions, along with gJ = (2J + l)/[2(2I + l)], 

Eq. (7) becomes 

= 
2 2 (2J + 1) 2 ( r ) 

21r A: . { 2 (2I + 1)} (--y-) 
{Do) £ 

By considering only s- and p-wave contributions there are four 

(10) 

parameters to be extracted from Eq. (10). These are C(ry) /{n0 ) )t=O' 

C(ry) /(D0 ) )£=l' \ry) /(r~), and <ry)J\r!)· The last 
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are obtained from comparison to the shapes of the cross section versus 

dependent upon the magnitude of the cross sections. There are two 

methods of analysis: the so-called "two parameter fit" whereby the 

ratio ( <ry) I <n0 ) )R.=l/( < ry} I <n0 ) )R.=O is taken to be unity, and 

the "three parameter fit" where this ratio can have any value. It 

has been assumed in this analysis that ( < r y} I { n 0 ) ) R.=O = 

( ( r y) I ( D 0 ) ) R.=l" This assumption is in agreement with Lane and 

Lynn(36), Gibbons et al(g), and Furr(JO). Although this assumption 

has been shown not to hold strictly(l2), the relatively poor accuracy 

of our cross section curves makes any attempt to extract a three 

parameter fit futile. The uncertainties in the resulting resonance 

parameters would be so large as to make the values meaningless. 

Average resonance parameters were determined by calculating 

{ ony) .Q,J using Eq. (10) for each compound nucleus spin and each LJ.eutron 

angular momentum, with the requirement 

( ony} = (11) 

This was accomplished by assuming that ( ( r y} I { n 0 ) ) .Q.=O = 

( ( r y) I < D 0 ) ) R.=l = 1 and generating the families of curves obtained 

when different values were substituted for ( ( r Y) I< r n) ) .Q,J in Eq. (10). 

Figures (11) and (12) illustrate these curves for s- and p-waves, 

respectively, for 107Ag with the assumption of a Porter-Thomas 
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distribution for ( r ~t) I ( r !9..))) and indicated values for the ratio 

( r Y) I ( r ~x,)) The analysis reduces to choosing a particular 

curve from each of the s- and p-wave families which, when added 

together, yields the same shape as the cross section curves previously 

determined. Figure (13) illustrates the components which were found 

107 to be the best fit for Ag. By then normalizing the s- and p-wave 

combination to the absolute value of the cross section at 24 keV 

calculated earlier, one has found the value of ( ( r y) I ( D 0 ) ) 9..=0 = 

(( ry) I (D0 )) .Q.=l as the multiplicative constant necessary for 

normalization. 

Results of this analysis are given in Chapter (VII) and can 

be compared to values derived by other workers which are also given. 
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RESULTS 

A. Capture Cross Sections, 

The cross sections determined in this experiment are plotted in 

Figures 14 through 18 with representative error bars, The horizontal 

error bars (en.ergy spread) were determined from an examination of 

Figure 3. These error bars consist of a spread in E resulting 
n 

7 from Li target thickness and the angle intercepted by the sample. 

These values can be compared to the results of other workers given in 

Figures 19 through 22. The solid lines drawn in Figures 19-22 are 

the best estimate of the cross sections as a function of energy. 

It is noted that the cross section curves are reproduced dir~ctly 

from reference 23. On the pages immediately followine each figure 

are found the keys to the various symools used and the experL~enters 

who determined the values. The capture cross sections determined 

herein are in general good agreement with values of other workers 3 

with the greatest deviations appearing in the 107Ag and 109Ag isotopes, 

Even in these two cases 1 the error bars of the data in this experiment 

overlap those of other workers. 

Even though our values are in good agreement with others as 

indicated above, as far as the magnitude of the cross sections is 

concerned, there are variations compared to the shapes of the cross 

section curves from other sources, These variations are not 

consistent from isotope to i~otope and cannot be attributed to a 

systematic error in our analysis. 

Comments on the individual nuclei follow, including comparison 
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with other workers of our value of the cross section at 24 keV, 

relative to 127r(n,y) a= 0.832 + .026 barns at 24 keV. The symbols 

refer to the same symbols used on the respective graphs. 

107Ag, Figures 14 and 19. The values determined in this 

experiment all lie beneath the curve of published values but the dis-

crepancy is not great except above 30 keV, where the slope of our 

cross section curve is greater than that of other workers. Values for 

the cross section at 24 keV are: This work, a = 0.830 + .180 barns; ny 

a 
O' ny 

, a = 1. 7 5 + • 20 barns,· ~ , a ny - w ny = 1.31 + .09 barns; "V , 
= 0.93 + .08 barns; b.. , a = - ny 0.84 + .10 barns. 

109~, Figures 15 and 19. 

comparison. 

Only one set of values is given for 

109Ag, having a 24 second half life, is difficult to 

examine by transferring of the sample between activation and counting, 

and the statistics of this isotope are the worst of the nuclides studied 

in this work. In comparing the cross section curve determined in this 

experiment with that plotted(x) due to Weston, et al., we see that our 

curve crosses his at about 20 keV with a considerably greater slope. 

However, the large error bars on our data illustrate an inability to 

have much faith in the results. Our value of the cross section at 

24 · keV is cr = 1. 7 4 + . 26 barns. The value interpolated from Weston's ny 
data is cr = 2.15 barns. ny 

Natural Ag, Figures 16 and 20. Our results for natural Ag are 

in good agreement with the curve of accepted values given in Fig. 20. 

The major discrepancy is the value at the lowest energy, where our 

curve lies considerably above the published values. Values at 24 keV 
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are: This work, o = 1.27 + .22 barns; Cl , o = 0.98 + .06 barns; ny ny 
a = 1.12 + .08 barns. ny 

115rn, Figures 17 and 21. Again, good agreement was found between 

published values and values determined in this experi.~ent. However, 

the slope of the two curves shown in Figures 17 and 21 are not the 

same. Cross sections at 24 keV are: 

a = 0.58 + .04 barns; A, a ny \I ny 

This work, a ny = 0.88 + .12 barns; 

= 0.77 + .OS barns. 

1271, Figures 18 and 22. Results of our analysis for 127r are 

in excellent agreement with valu.es given by other workers. Slight 

differences, however, can be seen in the shape of the curve. Cross 

sections at 24 keV are: This work, a = 0.832 + .032 barns; El (value ny 
taken as standard), a = 0.832 + .026 barns;+, a = 0.768 + .09 ny ny -
barns; (.i1 • a = 0.99 + .04 barns; n. , a = 0.820 + .06 barns. ' ny - \J1 ny 

B. Average Resonance Parameters. 

The results of our analysis for detennining the average resonance 

parameters are given in Tables 1-V, along with values measured by 

other workers. The quoted errors for the parameters calculated in the 

present work are a measure of the uniqueness of the fit of the s- and 

p~wave components to the experimental cross section curve. Some 

results are in good agreement with other experimenters, while others 

differ greatly. 

S-Wave Neutron Strength Functions, Column 4. The measured 

s-wave neutron strength function, S 0 = ( r~) I ( D) , is highly 

dependent upon the shape of the cross section curve at low energies 
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('E < .,. 30 ke.V) as can be seen from an examination of Fig, 13. Above n 

- 30 keV, in this example, the cross section is essentially parallel 

to the p-wave component. Hence, reliable values for S are dependent . 0 

upon accurate values for the cross sections at low energies. Because 

of the spread of the neutron energy in this energy region, the shape 

of the cross section curve is least accurately known for E < 20 keV. n 

Consequently, S can be expected to have large uncertainties. 
0 

Reiterating, the error bars on the average resonance p?.rameters 

determined in this experiment are only a measure of the uniqueness of 

the fit and do not reflect the large uncertainties in the energy. 

The values for S are given in colmnn 4 of the tables and can be 
0 

seen to generally lie a good deal above o_ther published values. They 

agree best, on the average, with Gibbons, et al. C9), who used a time-

of-flight method and detected the prompt gammas emitted from the 

sample. 

PW N t St th F t . C 1 5 Fesl1bach, e. t·a1.C37 > - ave eu ron reng unc ions, o umn • 

predicted maxima in the p-wave strength function near atomic mass 

m.nnbers 28, 90, and 216. Early measurements of s1 = < r!) I ( D) by 

BarshallC3B) and NewsonC39> confirmed the existence of this giant 

resonance structure. However, p-wave neutron strength functions 

determined later(lJ, 30) indicated a peak also near A = 110. This 

additional peak was attributed to the effect of a spin orbit coupling, 

and a satisfactory theoretical fit of the data has been generated by 

assuming an additional spin-orbit coupling term to the optical potential. 

An additional cause for the splitting or broadening of the p-wave 
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giant resonance near A= 100 has been suggested(46) as a spherical 

asymmetry of the highly excited states of the compound nucleus 

considered by the optical model theory. 

By some combination of the above two phenomena there does appear 

to be a broadc.ni.ng of the p-wava giant resonance near A = 100. Even 

though the range of atomic numbers studied in the present work is 

small, a peak near A = 110 is indicated. There does seem to be a great 

discrepancy between the magnitudes of s1 calculated from capture gamma 

measurements and those calculated from earlier activation and transmission 

methods. Gibbons•(9) work with capture gammas indicates· values of s1 

differing by factors of two or three from other previous work. However, 

the results of the present work, using activation techniques, yield 

magnitudes of the order of those obtained by Gibbons. As far as is 

known, the present work is the first activation experiment giving 

values comparable to those of Gibbons. This is just an observation 

and is not meant to confirm or deny any previous results, 

The values of the p-wave neutron strength functions calculated 

in this work are listed in column 5 of the tables and can be compared 

to those of previous exper:in1enter.s. 

Gamma-Ray Strength Functions, Column 3. As stated earlier, we 

have assumed that the y-ray strength functior:., < ry) / ( n0 ) , is the 

same for s- and p-wave neutrons, resulting ln a two-·parameter fit for 

these functions. 

The y-ray strength function was determined to be the normalization 

factor necessary to make the experimental cross section curve coincide 
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with the resultant of the addition of the s- and p-wave components 

of the cross section. Hence, this parameter is dependent upon the 

magnitudes of the cross section, the s-wave component, and the p-wave 

component at the normalization energy of 24 keV. Values determined 

for cr at 24 keV in this experiment are in general good agreement ny 
with previous results. However the overall shapes of the cross section 

curves do differ from those of other workers. This difference affects 

the value of S0 and s1 and they in turn affect the magnitude of the 

y-ray strength function. As before our values agree best with the 

values measured by Gibbons(g), and they lie below the values 

determined by other workers. 

Column 3 of the tables contains the calculated magnitudes of the 

y-ray strength functions measured in this work and values from several 

other workers. 

NOTE. Table III contains two results for the average resonance 

parameters of natural Ag. The first row gives the values obtained 

by fitting the cross section curve in the method described in the 

analysis section. The second row gives values that one would expect 

to obtain by averaging the contributions of the two isotopes making 

up natural Ag. 
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CONCLUSION 

It is encouraging to note that the cross sections at a pe..rticular 

energy obtained in this exper:i.J:nent agree with the best estimates 

determined from other investigations. However, the cross section curves 

obtained in this work tend to cross over the curves obtained by other 

workers, with different slopes. This difference in shape of the cross 

section versus energy curves between this experiment and those of other 

workers results in average resonance parameters which are still subject 

to conjecture. The primary difficulty encountered in the present work 

was doubt concerning the exact shape of the cross section curve for 

neutron energies < - 30 keV. 

In regard to this probable source of error, several suggestions 

are made for future experiments. Firet, a more efficient B/y detector 

should be incorporated so that one might use thinner LiF targets and 

narrower samples. Each of these changes would result in a smaller 

energy spread and a consequent lessening of the number of choices one 

now has in estimating the shape of the cross section curve in the lower 

energy region. It would also be advantageous to determine the 

distribution of the proton beam that strikes the LiF target. This could 

be done by sweeping the proton beam across a target having a narrow 

proton capture resonance and exa.~ining the y-ray activity as the beam 

crosses the sample. One could then obtain infonnation about the 

variations from the assumed syu1ITI.etric distribution of protons in the 

beam. Once this distribution is obtained, care should be taken to 

assure that it does not become biased during the performance of the 

70 
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actual experi.ment. (This bia:; could arise from the proton beam 

being colliuated in a manner which remove more protons from one side 

of the. distribution than the other.) To preyent such an occurence 

a set of two slits, one horizont2l, one vertical, could be constructed 

as a colliI'lator such that the ctrrrent striking each half of the slits 

could be monitored at the operator console. With proper adjustments 

an operator could assure an unbiased proton beam by making certain 

that the current on the four plates remains equal or fixed relative 

to each other. Finally, it is suggested that a finer grid of energies 

be used in the 3-30 keV energy range. Even though the energy spread 

of adjacent points might overlap, this would provide more information 

as to the shape of the curve in this critical region, 

With these improvements, the metho4 of analysis described herein 

should be applicable for a large number of nuclides and should yield 

accurate values of the average resonance parameters. 
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CAPTURE CROSS SECTIONS IN THE KEV REGION 

Wayne Wesley Campbell 

ABSTRACT 

Many workers have attempted to determine neutron absorption cross 

sections and average resonance parameters with varying degrees of success. 

Values of the latter parameters for a given isotope often vary as much 

as a factor of two or three from one worker to another. This dissertation 

is an attempt to remove some of this uncertainty. 

Natural silver and the isotopes 107Ag, 109Ag, 115rn, and 1271 have 

been irradiated by the monoenergetic neutrons emitted at 90° to a proton 

beam striking a 7Li target. These samples were then counted for their 13 

and y activity and their absolute cross sections relative to the cross 

section of 1271 at 24 keV were calculated over the energy range of from 

3 to 155 keV. These measured cross section versus energy curves were 

used to determine the y-ray strength functions'< r y >I< Do) ' the s-wave 

neutron strength functions, ( r~) I ( D) , and the p-wave neutron strength 

functions'< r!) I< D). Because of data limitations it has been assumed 

that the y-ray strength function is the same for both s-· and p-wave 

neutrons. 

The cross sections determined are in general good agreement with 

the values previously reported but differ somewhat in shape. This shape 

variance results in values for the average resonance parcuneters which 

are somewhat higher than values reported by other workers. 
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