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Abstract
Transmission x-ray microscopy (TXM), which can provide morphological and chemical
structural information inside of battery component materials at tens of nanometer scale, has
become a powerful tool in battery research. This article presents a short review of the TXM,
including its instrumentation, battery research applications, and the practical sample preparation
and data analysis in the TXM applications. A brief discussion on the challenges and
opportunities in the TXM applications is presented at the end.
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(Some figures may appear in colour only in the online journal)

1. Introduction of transmission x-ray
microscopy (TXM)

In studying complex systems composed of hierarchical
structures, the system’s performances are dependent on the
structures and properties at all lengths of scales, from atomic
to microscopic and macroscopic levels. Various microscopy
techniques can be utilized to reveal the structures and prop-
erties at different lengths of scales. Compared to microscopy
techniques based on other types of probing particles, e.g.
electrons and infrared/visible light photons, x-rays have the
advantage of high penetration power and are capable of
looking at internal structures in bulk materials. Furthermore,

x-ray techniques with a large field of view (FOV) that can
measure a relatively large volume can mitigate the risk of
biased, statistically irrelevant conclusions from other nano-
resolution techniques that only measure very small volumes,
usually near the surface. This is crucial in studying complex
systems like batteries that have multiple components with
hierarchical structures.

TXM techniques have been widely used in studying
these complex systems [1–4]. TXM measures the transmitted
x-rays after passage through the sample. x-rays interact with
electrons in the matter when passing through a sample. X-rays
can be scattered, absorbed, and re-emitted by electrons. The
intensity, energy, and directions of the transmitted x-rays
carry the sample information.

There are two general types of TXM techniques, full-
field TXM and scanning TXM (STXM) [5, 6]. TXM and
STXM are complementary in capabilities. Especially in the
x-ray energy regime over transition metals’ L-edges and O
K-edge, STXM is typically employed in material science
applications. This review focuses mainly on TXM applica-
tions in battery research. The readers who are interested in
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STXM techniques can find the details in [6–8] and references
therein.

Figure 1 presents the sketch of a TXM. TXM is analo-
gous to conventional bright-field optical microscopes. A
TXM is composed of an x-ray condenser, which is typically a
shaped glass capillary or a grating-based beam shaper, an
x-ray objective lens made of Fresnel zone plate (FZP) [9–11],
and an x-ray detector composed of an x-ray scintillator,
optical microscope objective lens, and an optical two-
dimensional image detector. An FZP has concentric zone
structures that alter the transmitted x-ray wave’s optical path
by half a wavelength through each zone. In the TXM setup, a
sample is placed in between the condenser and the FZP lens.
The sample’s x-ray transmission image is magnified by the
FZP lens and projected to the x-ray detector’s scintillator. The
scintillator converts x-ray photons into visible light photons
that are further magnified by the optical microscope objective
lens and registered in the image detector.

Since x-rays have wavelengths on the Angstrom scale,
TXM can achieve high spatial resolutions within a few to tens
of nanometer scales [6]. The FOV and resolution of the TXM
depends on the illumination properties of the condenser, the
zone plate objective and the visible light optics and detector.
The typical FOV and spatial resolution with a TXM vary in
ranges of tens to more than a hundred micrometers and
10–100 nm, respectively.

The TXM and STXM can operate in x-ray absorption
spectroscopy (XAS) mode [6]. This is achieved by scanning

the same sample at different energy points across one
component element’s x-ray absorption edge. When the inci-
dent x-ray photon energy is in the vicinity of the element’s
core electron binding energies, the interaction between x-ray
photons and the core electrons is largely increased. The
sample’s absorption to the illuminating x-ray beam changes
accordingly as a function of the x-ray photon energy. The
x-ray energy dependent absorption spectrum carries the
information of the sample’s local structure configuration and
chemical state. The XAS mode of TXM and STXM usually
focus on the x-ray near-edge absorption spectroscopy
(XANES) regime that presents the chemical state information
of the measured samples. Generally speaking, one can
understand TXM-XAS as performing XAS with a high spatial
resolution.

An x-ray source is critical to TXM performances. The
required number of photons is inversely proportional to the
third to fourth power of the targeted spatial resolution
[12, 13]. Therefore, a high intensity source is needed to obtain
high-quality microscopy/spectroscopy data at high spatial
resolution in a reasonable measurement time. Although lab-
based TXMs exist, the performance of synchrotron-based
TXMs are significantly better due to the superior synchrotron
beam properties. As an example, the TXM at the National
Synchrotron Light Source II at Brookhaven National
Laboratory provides high-speed data acquisition at high
spatial resolution (<30 nm) [14]. Table 1 summarizes the key
performance parameters of this microscope. With the high

Figure 1. Schematic structure of TXM. Sample’s x-ray images are recorded by an x-ray imaging detector (not shown).

Table 1. TXM operation chart at FXI beamline of NSLS-II.

Spatial resolution Temporal resolution Operation energy range

2D XANES 30–50 nm 5–10 min scan−1 5–15 keV
3D XANES 30–50 nm ∼60 min scan−1

Tomography 30–50 nm ∼15 s scan−1
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spatial and temporal resolution of this TXM, it is capable of
revealing the structure evolution information in dynamic
processes, e.g. morphological cracking behaviors and trans-
ition metal oxidation states in electrode particles under
operating conditions. It provides high-throughput measure-
ment capabilities that are crucial to obtain statistical infor-
mation from microscopy experiments.

One of the most exciting developments of the TXM
technique is the direct visualization and quantification of
redox events in battery materials. Battery electrode particles
represent a highly heterogeneous system where it can be very
challenging for other high spatial resolution techniques to
measure a sufficiently large volume that is statistically
representative at the mesoscale. TXM, equipped with high-
throughput capabilities, can not only provide a relatively good
spatial resolution but also offer statistically significant results.
In the next section, we will discuss some recent studies in
applying TXM for understanding redox properties in inter-
calation cathodes. In this review, we will also provide some
perspectives on data processing. However, the more extensive
discussion will be reported elsewhere.

2. TXM applications in lithium-ion battery research

Since commercialization in the 1990s, the development of
lithium-ion batteries has continued to advance both at the
device level and electrode level [15]. Deeper understandings
of the electrochemical reactions that occur in electrode
materials have led to improvements in materials designs.
Much of this understanding has been enabled by the use of
synchrotron x-ray analytical techniques to study battery sys-
tems, which have matured in tandem with battery materials
research. High-energy synchrotron x-ray techniques have
become extremely important in the field of battery research as
they allow scientists to study battery materials at multiple
length scales, ranging from the battery system level at the
macroscopic scale, to the electrode materials at the meso-
scopic scale, down to the electronic structures of materials at
the microscopic scale [1]. Synchrotron techniques allow for
the study of battery materials under equilibrium conditions
with ex situ experiments or during operation conditions with
rapid in situ or operando studies [16]. Of the common tech-
niques utilized, x-ray imaging techniques including tomo-
graphy and STXM/TXM allow for the direct, nondestructive
visualization of battery materials [16–22].

The chemical compositions and local valance states of
elements in materials can be detected by combining TXM or
STXM with XAS. Through probing the absorption edge of a
specific element using the appropriate x-ray energy, researchers
can visualize the distribution of different chemical species or
monitor specific elements as they undergo oxidation and
reduction in materials at the nanoscale (∼30 nm) and in mul-
tiple dimensions [16, 23]. Synchrotron x-ray imaging techni-
ques combine spectroscopy and microscopy to obtain data with
both energy and space dimensions, providing researchers with
extraordinary capabilities to see and study the three-dimensional
chemical and morphological information in battery materials.

Herein, we summarize recent developments in the field of
lithium-ion battery research, which utilize TXM and STXM
techniques to aid in answering fundamental questions about
battery chemistries, including materials’ structures, chemical or
charge distributions, mechanisms and dynamics of Li+ trans-
portation, and chemomechanical degradation.

TXM has been used to determine elemental distributions
and morphology in pristine layered oxide cathode materials
containing multiple transition metals [24]. Elemental dis-
tribution mapping has also been used to understand chemical
and morphological changes in cathodes after cycling where
segregation of transition metals or changes to transition metal
density between the surface and bulk of particles can be
visualized [25]. When electrodes undergo charge or dis-
charge, state-of-charge (SOC) heterogeneity is also often
observed. The local oxidation states of transition metals can
deviate from the bulk average and can change the electro-
chemical characteristics in local regions compared to the bulk.
Such heterogeneities are impactful to the operating perfor-
mance of batteries as they can lead to mechanical degrada-
tions, including surface phase changes, crack formation, local
overcharging or undercharging, or loss of oxygen from the
materials leading to capacity fading or unsafe operating
conditions [26]. Battery researchers are interested in studying
the formation mechanisms of non-uniform SOC from a
practical standpoint. TXM has been used frequently to map
charge distribution to evaluate the SOC heterogeneity in
lithium-ion battery cathode materials as the high spatial and
chemical resolution is needed to probe the local environments
within particles [26–29].

TXM has been used for mapping charge distribution in
pristine, chemically delithiated, and partially charged or dis-
charged LiNi1−x−yMnxCoyO2 (NMC) materials [30]. Com-
bining XANES analysis with TXM provides bulk sensitive
chemical information. Two-dimensional oxidation state
mapping of Ni was obtained, which can serve as a proxy for
lithium content. This analysis revealed high heterogeneity
within both chemically and electrochemically delithiated
particles. A gradient in the oxidation state of transition metal
on the surface was observed and was found to be more sig-
nificant in the electrochemically delithiated samples. It was
concluded that interactions between the liquid electrolyte and
solid electrode present in the electrochemically delithiated
sample play a role in facilitating the degradation mechanism
of surface reconstruction.

The microstructure can also affect the dynamics of
charge distribution. The spatially resolved charge distribution
has been investigated in polycrystalline layered oxides pre-
pared with different crystallographic arrangements [31]. NMC
materials with radically aligned primary particle grains (rod-
NMC) and randomly oriented primary particle grains (gravel-
NMC) were studied as model systems. Examining the Ni
charge distributions of the particles after slow charging
(C/10) using three-dimensional TXM showed variations in
the spatial patterns of the Ni valence states between the two-
grain orientations (figure 2). To further visualize the charge
distributions, two-dimensional nanodomain valence gradient
vectors were defined as the local variation of the Ni
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absorption edge in three dimensions. The gradient vectors
were mostly parallel for the rod-NMCs (figure 2(c)) and
randomly oriented for the gravel-NMC (figure 2(f)), sug-
gesting the materials had different redox reaction behaviors
guided by the grain crystallographic orientation. Such tailor-
ing of grain orientations can be utilized to guide reaction
pathways and charge distribution in electrode materials.
Through three-dimensional and two-dimensional TXM ana-
lysis, it was concluded that radically aligned grains provided
direct lithium ion pathways, improving charge homogeneity
and leading to improved capacity retention and suppressed
polarization. Understanding and improving charge homo-
geneity is vital for designing battery materials with increased
cycling stability. TXM has been demonstrated to be a useful
technique to track and visualize such chemical homogeneities.

In addition to structural and chemical characterizations,
TXM techniques can also be used to further elucidate Li+

transport mechanisms in battery materials. Phase transfor-
mations in polycrystalline NMC have been studied [32].
Kuppan et al used TXM-XANES to probe the mesoscale
delithiation pathways and phase transformation mechanisms
at a single-crystal level in octahedral shaped, spinel
LixMn1.5Ni0.5O4 (LNMO) materials [33]. Probing intrinsic

phase transformation behaviors through Ni oxidation state
mapping revealed that delithiation of the particles pre-
ferentially initiated at the truncated vertices of the octahedral
particles, where Li+ transport has been reported to be more
favorable, and then propagated into the bulk (figure 3).

Phase transformations is also an important topic in the
research of olivine LiFeO4 (LFO). During Li removal, a phase
change occurs that can lead to significant changes in the
lattice parameter, increasing strain within particles that can
impact conductivity and cycling performance [34]. To
examine the mechanism of phase transformation, TXM and
STXM combined with mapping of Fe and O K-edges in LFO
during chemical delithiation revealed that delithiation occur-
red more easily at the edges of single-crystal particles [34].
This suggested that morphological defects can kinetically
determine the progress of the phase transformation reaction.
In a similar study, STXM was used to investigate electro-
chemically cycled nano-sized LFO particles [35]. Most par-
ticles were shown to be either completely lithiated or
delithiated at 50% SOC. This study concluded a particle-by-
particle mechanism of Li+ intercalation initiated by the phase
change dominated. The sequence of lithiation was also
investigated through TXM in partially charged LFO cathodes

Figure 2. (a) 3D Ni valence state distribution, (b) representative region of the 3D Ni valence state distribution, and (c) 2D nanodomain
valence gradient of the rod-NMC. (d) 3D Ni valence state distribution, (e) representative region of the 3D Ni valence state distribution, and
(f) 2D nanodomain valence gradient of the gravel-NMC. The nanodomain valence gradient vectors are represented by the black arrows,
where the vector direction and magnitude are represented by the arrow direction and arrow length, respectively. The scale bars in (a) and (d)
are 3 μm, and the scale bars in (b)–(c) and (e)–(f) are 1 μm. The Ni K-edge absorption energies are color-coded, in which blue stands for
lower edge energy and red means higher edge energy. Reproduced with permission from [31]. CC BY 4.0.
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with various microstructures and sizes ranging from
50–500 nm under different electrochemical conditions [28].
Smaller particles were found to lithiate first when electronic
conductivity was uniform due to their larger surface area to
volume ratio. An operando TXM-XANES study tracking the
phase transformation processes revealed a rate dependent
phase inhomogeneity, where slow rates of charging and dis-
charging lead to more homogenous phase distributions, and
fast rates showed coexistence of phases at the multi-particle
scale [36]. Two-phase coexistence was also observed for the
first time within micron-sized single particles. Such dynamic
studies utilizing TXM techniques suggest rate and particle-
size dependent mechanisms of Li+ intercalation in LFO and
highlight the importance of rationally designing materials to
tailor and optimize particle morphologies.

Phase transformations, lattice volume changes, weaken-
ing of grain boundaries, and crack formation caused by
mechanical stress induced by anisotropic structural or che-
mical heterogeneities can all occur during redox reactions in
batteries. Such morphological defects and chemomechanical
breakdowns can hinder electronic and ionic diffusion path-
ways leading to capacity fading mechanisms or complete
failure of batteries [37, 38]. Mapping these transformations at
multiple length and time scales can establish relationships
between these processes, identify fading pathways, and pro-
vide insights into designing more stable materials. The che-
momechanical breakdown of layered NMC was quantified
through studying the dependence of crack formation on

charging rates [39]. TXM analysis after 50 cycles showed that
the crack density increased with the increasing charging rate.
Novel mathematical processing of the data allowed for
quantification of the porosity and surface area three-dimen-
sional, providing insights into the dynamics of chemo-
mechanical degradation.

Three-dimensional TXM was used to study the degra-
dation of NMC particles as materials were cycled to different
charge cut-off voltages [40]. XANES mapping of the Ni
K-edge for samples with different cycling history combined
with nano-resolution x-ray tomography revealed that higher
voltage cycling leads to a more rapid decay of capacity and
more charge heterogeneity, morphological defects, cracking,
and void formation (figure 4). Surface reduction and surface
reconstruction were also observed, correlating with charge
heterogeneity. Another study combining nanoscale x-ray
spectromicroscopy and TXM to study NMC under fast
charging conditions revealed a depth-dependent trend of
particle fracturing and provided a statistical analysis of che-
momechanical transformations to quantify the degradation
heterogeneity at multiple length scales fully [41]. In situ TXM
has also been used to study degradation and SOC hetero-
geneity in LiCoO2 cycled at different rates [42]. In the study
of battery materials, ex situ, in situ, and operando TXM
studies have been beneficial in elucidating structural and
chemical evolutions as well as providing insights into mate-
rials degradations mechanisms at the particle level for both
single-crystal and polycrystalline materials.

Figure 3. Three-dimensional map of Ni oxidation state at sub-particle scale. The shape of the particle is presented as the transparent grey
surface with the internal oxidation state heterogeneity illustrated using the diagonal slices (a)–(d) surfaces of the 3D Ni oxidation state map
(e)–(j). All the panels are color-coded in order to show the state of charge heterogeneity at the sub-particle level in a quantitative manner.
Reproduced with permission from [33]. CC BY 4.0.
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Throughout the development of battery research, TXM
has been employed as a useful tool to study morphology,
chemical distributions, reaction dynamics, and degradation
mechanisms in electrode materials. The high resolution pro-
vided by synchrotron techniques allows researchers to visualize
processes occurring in materials on the nanoscale. However,
synchrotron experiments can be sophisticated, operando elec-
trochemical cells can be difficult to design, and three-dimen-
sional chemical information can be time consuming to collect
and requires large radiation doses that can potentially impact
electrolyte or polymer components in the cell [16]. Limited
spatial resolution and sample probing depth in the soft x-ray
range is a limitation of TXM analysis for mapping of certain
elements [30]. However, in combination with other multimodal
and multi-length scale characterizations techniques such as

transmission electron microscopy, tomography, nano- or
micro-diffraction, and ptychograpy, TXM remains a powerful
method to visualize and understand chemical properties and
reaction dynamics in battery materials. As technologies and
data analysis methods continue to advance, TXM methods will
have a prosperous future in the study of battery materials.

3. Sample preparations

Compared with electrons, the advantage of x-ray measure-
ments is that they do not require a high vacuum environment
because x-rays have less interaction with matter, thus higher
penetration power. Especially in hard x-ray experiments,
measurements can be done in ambient environments. This

Figure 4. Evolution of the NMC particle morphology upon cycling at C/8 over different voltage windows. (a) Pristine particle, (b) 3.0–4.4 V,
(c) 3.0–4.6 V, and (d) 3.0–4.9 V voltage range. The left column is 3D renderings of the secondary particle structure. The middle columns are
the virtual slices through different depths of the particle. The right column is the 3D rendering of the void volume (in blue) within the
secondary particles. All the particles are about 8–10 microns in diameter. [40] Copyright © 2019, John Wiley and Sons.
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largely simplifies the sample preparations in either in situ or
ex situ experiments.

Nonetheless, the samples for TXM experiments are still
subject to certain dimensional requirements. Due to the chal-
lenges in the fabrications of FZP, most high-resolution (better
than 100 nm) TXMs operate below 15 keV. Furthermore, in
XAS mode with TXMs, the measurement energy range is
constrained to the vicinity of the specific element’s absorption
edge, e.g. 8.333 keV for Ni element. The relatively low x-ray
energy limits the maximum sample thickness through which
measurements with good signal-to-noise ratios (SNR) can be
obtained. TXM’s depth of focus (DOF) is another factor that
limits samples’ thickness. If a part of the sample is beyond the
DOF, that part of the sample will not be in focus. For good
practice, a sample’s thickness should always be smaller than
the used TXM’s DOF. The DOF is x-ray energy dependent.
For example, a TXM of 30 nm at 8 keV has a DOF of 23 μm.

In TXM battery experiments, the focus thus far is mainly
on the electrode materials. In most experiments, the total sample
thickness should be around two absorption lengths, similar to
the requirement in a typical bulk XAS experiment in trans-
mission mode [43, 44]. The samples for ex situ TXM experi-
ments can be prepared in powders scratched from a cycled
electrode or a sharp tip cut out from the electrode, then sealed in
thin-wall Kapton® tubes or glass capillaries in a glovebox.

The samples for in situ experiments need specially
designed functional cells. Reference [2] has a summary of
various battery cells for in situ x-ray experiments, including
that for TXM experiments. The typical battery cells used in
TXM experiments are in the forms of coin cell and pouch cell,
while various flow cells are also widely used in STXM
experiments [45].

Although a high-resolution TXM allows for tens of
nanometer resolution characterizations at electrode particle
levels, it is important to consider the statistical significance of
the measurements. Typically, only a handful of particles are
within the FOV and due to sample heterogeneity and, in the
case of in situ cells, imperfect contact, it is not unusual that
different particles within the FOV show different properties,
leading to risk of bias in interpretation of the result. Ideally, a
large number of measurements of the same type of samples/
conditions are needed to avoid bias. With ex situ type
experiments, this is relatively easy to achieve with a high
throughput TXM, e.g. the TXM at FXI beamline of NSLS-II.
However, it is not a trivial task for in situ type experiments
since it is the battery operation conditions rather than the
microscope performances determining the throughput of the
experiments. Besides, the x-ray radiation may induce side
effects to a battery under operating conditions [2, 45–50]. As
a rule of thumb, it is necessary to reduce the radiation dose to
the cells, which further reduces the in situ experiment
throughput.

4. Data analysis

TXM data analysis is nontrivial in terms of the amount of data
generated (usually on the Terabyte scale) and has relatively

poor spectroscopic quality compared with bulk XAS. At tens
of nanometer resolution scale, sample drifts due beam-
induced heating can be a challenge, especially for 2D or 3D
XANES measurements. Analysis usually requires image
alignments before the XANES and tomography data proces-
sing steps. There is no generic alignment algorithm that can
handle the images of various samples in different types of
contrast and upon various background features, so careful
manual tweaking is needed to get good results.

In the XAS type data analysis, e.g. 2D XANES, the SNR
of the spectrum at each individual pixel is low. This is due to
the small area of the pixels that are typically under 10–2 μm2.
As a comparison, the typical sample area in bulk XAS mea-
surements is larger than 1 mm2. The small area of the pixels in
TXM limits the SNR in each pixel to ∼100–300, which
corresponds to a pixel count level of 10 000–100 000 and is
several orders of magnitude smaller than that in the bulk XAS
measurement. On the other hand, the number of pixels in
TXM measurements is very large. They are typically com-
posed of more than 1 million spectra in a 2D XANES mea-
surement or more than 1 billion spectra in a 3D XANES
measurement with TXM. It is not feasible to fit so many low
SNR spectra manually with the conventional XAS analysis
approach. Therefore, robust and automatic XAS analysis
methods are needed. Whiteline position fitting is one type of
XANES spectroscopy analysis method [43, 51, 52] that is
widely used in TXM data analysis [53–55]. It is found that the
whiteline peak positions of 3d-metals widely used in cathode
materials are positively correlated to their oxidation states.
Therefore, the whiteline positions of these 3d-metals can be
used to track the chemical states of the cathode materials
when a battery is cycled to different states of charge. Since the
change of the sample absorption in the vicinity of the
whiteline position is the largest in the entire spectrum,
the signal sensitivity around a whiteline position is highest.
However, it should be noted that in certain crystal structures,
the absorption peak shape and whiteline position may be
strongly affected by factors like the local coordination
chemistry and band structures [43, 52]. In such a case, it
becomes crucial to carefully calibrate and normalize the
spectra so that the edge shift can be used to analyze oxidation
states.

There are few available data analysis toolboxes targeted
to TXM data analysis [56–58]. One popular package, named
TXM-Wizard and developed by Liu and coworkers, has been
widely adopted by the TXM community especially for the
data collected at the Stanford Synchrotron Radiation Light-
source [56]. However, TXM-Wizard is released only as the
compile program so users do not have freedom to contribute
further developments. Recently, a Python-based TXM data
analysis toolbox with a user-friendly graphic user interface,
named TXM_Sandbox, was developed by Xiao et al [59].
TXM_Sandbox integrates the tomography reconstruction, 2D
XANES, and 3D XANES analysis. The toolbox emphasizes
image preprocessing and visualization functions. Automatic
image alignments based on a few image registration algo-
rithms are included to handle the alignment tasks with dif-
ferent types of image data. TXM_Sandbox implements
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efficient whiteline peak fitting routines based on a multi-
process parallelization framework so it can fit a large number
of spectra in a short time. The toolbox has carefully designed
architecture to guide users to follow the analysis workflow
with less ambiguity. In recent years, attempts based on arti-
ficial intelligence and machine learning (AI/ML) techniques
have been applied in XANES analysis [60–64]. It is
demonstrated that AI/ML is capable of finding delicate cor-
relations between different parameters hidden in a large
amount of data from XANES spectra with TXM [40, 65, 66].
TXM_Sandbox also includes user interfaces to few AI/ML
routines out of Scikit-Learn [67].

5. Discussions and outlooks

Due to the limited surface sensitivity and SNR in the mea-
surements, TXM is not a surface-sensitive technique. It is a
powerful tool in providing structural and performance infor-
mation at mesoscales. However, in complex systems like
lithium-ion batteries, components of different length scales all
matter in the overall performance of the system. Not a single
technique can provide complete information for thoroughly
understanding the system. It is necessary to combine different
techniques, including various x-ray techniques, electron
microscopy techniques, and electrochemical characterization
techniques, to obtain complementary information. Although
the multimodal characterization approach becomes almost a
standard in battery materials research, the field still mostly
lacks quantitative and correlative data analysis of different
kinds of data. Specific AI/ML applications demonstrated the
strength in handling high-dimensional complex data, yet there
are no obvious solutions to quantitative and correlative data
analysis regarding battery materials.

One hurdle in the current approach is data representa-
tiveness. It is not feasible to obtain statistically significant
representative data at every level with the different techni-
ques. One possible solution is to use certain high-throughput
techniques to guide and correlate results from low-throughput
techniques that have limited data. For instance, TXM, like the
one at NSLS-II, is capable of high-throughput measurements.
It is possible to utilize TXM to select representative sample
groups for further characterizations with other low-throughput
microscopic techniques.

As new technology emerges, TXM will continue to
develop as a tool to study the morphology and chemical
composition in novel and diverse electrode materials.
Improvements and streamlining of software for data proces-
sing are already in development, a topic which we have
previously touched on. Tools to integrate TXM data proces-
sing and data from additional techniques will likely emerge in
the near future and would allow for efficient multimodal
analysis at a variety of length and time scales. If the issue of
beam damage can be mitigated or solved, TXM experiments
can be widely applied to a variety of battery systems and
materials with minimal limitations. Ultimately, the advance-
ment of TXM, in tandem with other characterization

techniques, will prove to be a vital asset for battery materials
research and development in the future.
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