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(Received 9 July 1985; accepted for publication 12 February 1986) 

The zeros of the dispersion function that arise in particle transport with anisotropic scattering are 
studied. An algebraic test for the number of zeros is presented. 

I. INTRODUCTION 

In treating particle transport in plane geometry with 
azimuthal symmetry, the transport equation of the particle 
density 'J1 (x, ft) is often written in the form 1 

ft a'J1 + 'J1 (x, ft) =..£..-J + 1 f( ft, ft') 'J1 (x, ft')d ft', ax 2 -1 

(1.1 ) 
where c is the mean number of secondary particles per colli­
sion, x is the distance measured in mean free paths, and ft is 
the direction cosine of the angle between the x axis and the 
particle velocity. Here it is assumed that the scattering law is 
such thatf( ft, ft') can be adequately represented by a finite 
Legendre expansion, viz., 

N 

f(ft,ft') = L (2n + l)f"P,,(ft)P,,(ft'), (1.2) 
,,=0 

where P" (ft) is the Legendre polynomial of order nand 
physical considerations require that 10 = 1 and 
If" 1<: 1, n > 1. For definitiveness it will be assumed that 
fN i= O. The purpose of this paper is to reexamine the zeros of 
the dispersion function that arises in the solution to Eq. 
(1.1). In particular, Mika2 showed over two decades ago 
that solutions of the form qJ" (ft)exp( - x/v) yield the 
eigenvalue equation 

c N 
(v-ft)qJ,,(ft) =- L vP"(ft)h,,,e(v), (1.3) 

2 ,,=0 

where 

( 1.4) 

Further, Mika showed, using the orthogonality and recur­
sion properties of Legendre polynomials, that h",e ( ft) is a 
polynomial uniquely determined by the recursion formula 

(n + l)h,,+I,e(V) +nh,,_I,e(V) 

= (2n + 1)( 1 - cf" )vh",e (v), ( 1.5) 

and the nonrestrictive requirement that h _ I,e (v) = 0 and 

hO,e(v) = 1. (1.6) 

The so-called discrete solutions of Eq. (1.1) are ob­
tained by solving Eq. (1.3) for qJ" ( jl) and using the norma­
lization given by Eq. (1.6). The result is that discrete solu­
tions occur for those values of v in the complex plane 
C\ [ - 1, + 1] that are zeros ofthe dispersion function 

Ae(v) = 1 +.E..f+1 vg(ft,v) dft, (1.7) 
2 -I ft-v 

where 

N 

g(ft,v) = L (2n + l)f"P" (jl)h",e(v). (1.8) 
,,=0 

The dispersion function obviously has a cut in the complex v 
plane along (- 1, + 1). The limit values A/ (p,) and 
Ae- (ft) of Ae(v) as v approaches a value ftE( - 1, + 1) 
from the upper and lower half complex planes, respectively, 
are given by 

Ae± (ft) = 1 + ..£..-pJ+ I vg(Tj,ft) dTj ± i1TCftre(ft) , 
2 -I Tj-p, 2 

where P indicates the Cauchy principal value and 

re(ft) =g(ft,ft)· 

( 1.9) 

( 1.10) 

Case3 and Hangelbrook4 have shown that Ae± (ft) does not 
vanish for -1 <ft < + 1 and Lekkerkerker has shown that 
the same result is true for the end points ± 1. The limit value 
of Ae (v) as V-oo is given by6 

N 

Ae ( 00 ) = IT (1 - cf.. ). ( 1.11) 
,,=0 

Other statements about the location and character of 
the zeros can be made. It is readily seen that the roots must 
occur in ± pairs. Further, Case3 showed that if c < 1 that 
the zeros of Ae ( v) are real. Moreover, Case showed that if 
1 - cf .. ;;;.O for n = 1,3,5, ... , the zeros are all simple and are 
either real or purely imaginary. However, the determination 
of the number of zeros of the dispersion function remains 
relatively primitive. The number of zeros 2M of Ae (v) can 
be obtained from the argument principle. The contour C in 
Fig. 1 and a contour at infinity encloses the cut plane. Be­
cause Ae ( 00) is a constant, the number of zeros of the dis­
persion function is given by the change in the argument of 
Ae ( v) along C as the contour is collapsed (with p-o) onto 
the real interval ( - 1, + 1). This procedure yields 

M = (ll1r)Ac Arg A/ (ft), (1.12) 

where Ac Arg Ae+ (ft) represents the change in the argu­
ment of A/ (ft) as ft varies along the directed line from 
- 1 to + 1. Since the imaginary part of A/ (ft), 
ftE( - 1, + 1), is a polynomial of at most degree N + 1, 

then M<:N + 1. For linear anisotropic scattering (N = 1), 
the number of pairs of zeros of Ae (v) can be shown to be 
either one or two depending on the values of c and fl' The 
proof of this last statement is essentially an algebraic one. As 
will be seen below, the enumeration of the pairs of zeros of 
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FIG. 1. Contour C. 

Ac ( v) becomes more difficult as the order of the scattering 
increases. For N> 4 and for a given value of C and a set of 
{(II }, the enumeration of the pairs of zeros of the dispersion 
function in some kind of "closed form" is an unlikely possi­
bility and resort to some sort of numerics is inevitable. The 
big problem with a numerical evaluation of the change in the 
argument of a function is that it is easy to lose track as the 
argument unfolds. Thus an independent evaluation of the 
number of pairs of zeros would be useful. 

The main result of this paper provides such an algebraic 
test for the number of pairs of zeros of the dispersion func­
tion. The proof of this test is based in part on the observation 
that the function re (1) can be regarded as a polynomial in c 
of order N· = N - K, where K is the number of I", 
0< n < N, that are zero. It will be shown below that the N· 
zeros of re (1) are all simple and real. Denote the nonposi­
tive zeros of re (1) by cp-' p = 1, ... ,P, and the positive zeros 
by cq+, q = 1, ... ,Q, with P + Q = N·. Order these zeros ac­
cording to 

cp <cp_ I < ... <c I- <ct <c2+ < ... <cJ. (1.13) 

IfO<cL I <c<ci!+ I for a given setof{/,,}, then the num­
ber of pairs of zeros of Ae (v) is k + 1. A similar idea was 
proposed by Dawn and Chen 7 but their analysis is not as 
complete as the one presented here. 

The proof of the preceding test is contained in the re­
maining sections of this paper. It proves convenient in that 
proof to make the change of variables c-1/s. This change is 
made in Sec. II. The essential points of a mapping between 
the s plane and the v plane are also made in that section. The 
proof of the test. given above is contained in the main 
theorem proved in Sec. III. Concluding ancillary remarks 
about the character of the zeros of the dispersion function 
are made in Sec. IV. 

II. MAPPING BETWEEN THE v PLANE AND THE s PLANE 

The dispersion function can also be written in the form 

(2.1 ) 

where here and in the subsequent analysis Q" (v) is the nth-
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order Legendre function of the second kind and Re ( v) is a 
polynomial in v and c. With the change of variables c = 1/s 
an auxiliary dispersion function A(v,s) is defined by 

A(v,s) =?*+IAII.(v) 

= R (v,s) - vy( v,s)Qo( v) 

=?*+I+?*AI(v)+ .•. +AN*(v), (2.2) 

where 

R(v,s) =?*+IRII.(v) 

=?*+I+?*bl(v)+ ••. +bN*+dv), (2.3) 

and 

r(v,s) = ?*rll' (v) 

=?*ao(v) +?*-lal(V) + ... +aN*(v). 
(2.4) 

Here hj ( v) and aj ( v) are even polynomials in v only and 
Aj (v) is an analytic function on v C\ [ - 1, + I]. Obvious­
ly, A( v,s) and Ails (v) have the same zeros in the v plane for 
s =1= 0 (c =1= 00 ). The object is to consider A ( v,s) as a complex 
function of two complex variables and use the implicit func­
tion theorem to study A(v,s) = O. 

In particular, A ( v,s) for fixed v can be regarded as a 
polynomial in s and its zeros can be investigated. For exam­
ple, with v = 00, Eq. (1.11) can be written in the present 
notation as 

N 

A( oo,s) = II G" (s), (2.5) 
,,=0 

where 

Gn (s) = (s - I,,), iff,. =1=0, 

= 1, if I" =0. 
(2.6) 

Thus the point v = 00 maps by A( oo,s) = OintoN· + 1 real 
points, the nonzero f,. in the s plane. These points are, of 
course, distinct if the I" are all different. Consequently, it 
will be assumed for simplicity that all the nonzero I" are 
distinct. However, since A(v,s) and r( v,s) are also polyno­
mials in the/" , the main results obtained here also follow for 
nondistinctln by continuity. Other points in the v plane also 
map into real points in the s plane. To this point consider the 
following. 

Lemma 1: If voER\ [ - 1, + I], then the roots of 
A( vo,s) = 0 are all real. 

Proof: The proof of this lemma follows from using the 
dispersion function in a form written by Inonii,8 

Ae (v) = (N + 1) [QN+ IhN,e (v) - QN(v)hN+ I,e (v)]. 
(2.7) 

If Kn < n of the I" are zero and 

h,,(v,s) =SK"h".II.(V), (2.8) 

the recursion formula for the h" (v,s) can be written as 

(n + 1 )hn+ I (v,s) + ni"h,,_ 1 (v,s) 

= (2n + 1)G" (s)vh" (v,s), (2.9) 

with 

h_l(v,s) = 0, ho(v,s) = 1, 

R. L. Bowden 1625 
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and 

~n =Kn+1 -Kn_I>O. 

Thus the auxiliary dispersion function A ( v,s) takes the form 

A(v,s) = (N + 1) [QN+ Ishn (v,s) - QN(v)hN+ I (v,s)]. 
(2.10) 

Let voeR '\ [ - 1, + 1] be fixed and consider 

A(vo,s) = QN+ I (vO)shN(vO,s) 

- QN(vo)hN+ dvo,s) = o. (2.11 ) 

Note that hN(vo.s) and hN+I (vo,s) cannot vanish for the 
same value of s, for if they did, then the recursion formula 
would yield hN _ I (vo,s) = 0, which would imply 
h N _ 2 ( vo,s) = 0, etc. This would eventually lead to the con­
tradiction ho(vo,s) = o. It can be easily shown that 

1 n-I . 

hn (v,O) = - IT (2n + 1) [ - Gn (0) ]v'. (2.12) 
n! )=0 

Thus A(vo,O) does not vanish for voER'\l - 1, + 1]. Now 
let Sl and S2 be nonzero roots of A( vo,s) = O. Equation 
(2.11) then yields 

S2hN(VO,s2)hN+ I (VO,sI) =slhN(vO,sI)hN+ I (VO,s2)' 

(2.13 ) 

Rewriting Eq. (2.9) for s = Sl' V = VO' and then for 
s = S2' V = Vo, and combining the results in a familiar fash­
ion yields 

(N + 1) [S2hN(VO,s2)hN+ I (VO,sI) 

- slhN (VO,s1 )hN + I (VO,s2)] /(SIS2)N0 + I 

~ vo(2n + 1)fnhn(vo,sl)hn(vo,s2) 
= (Sl - S2) ~ /C _ I . 

n=O (SIS2) • 
(2.14 ) 

Because hn(vo,s) for fixed voeR'\[ -1, + 1] is a polyno­
mial in S with real coefficients, if S I is a zero of A ( vo,s), then 
so is SI' Thus lets2 = SI and employ Eq. (2.13) to obtain 

N 1 hn (Vo,sl) 12 1m SI L (2n + 1)fn /C
n 

= O. (2.15) 
n=O SI 

Hence, for example, if all ofthef" are non-negative, then the 
sum in the last expression is positive and therefore S I real. 

To pin down the general situation consider the relation 
given by Bowden et a/.,9 

Al/s(v)Pn(v) 

=.!.J+IPn(J-l) 

2 -I v-J-l 

~ (2m + 1)fmPm (J-l)hm (v,s) d 
X ~ Km+ 1 J-l 

m=O S 

+ hn (v,s)/sKn. (2.16) 

Now let v = Vo and S = Sl be defined as above. Multiplying 

Eq. (2.16) by (2n + 1)fnhn (VO,SI)/sn and summing on n 

yields 

..!2..f+11 f (2n + 1)f"PnK~J-l)hn(Vo,sl) 12 ~ 
2s1 -I n=O Sl J-l Vo 

+ nto (2n + 1)f" 1 h
n 

(;:,sl) r = O. (2.17) 

1626 J. Math. Phys., Vol. 27, No.6, June 1986 

Here the fact that hn (VO,sI) = lin (VO,sI) for Vo real has been 
used. For voER'\ [ - I, + 1] the integral term in Eq. (2.17) 
will not vanish; thus Eqs. (2.15) and (2.17) state that 
1m SI = 0, i.e., SI is real. This completes the proof of the 
lemma. To show that these zeros (for fixed vo) are simple, 
consider the following. 

Lemma 2: IfvoER'\ [ - 1, + 1] and A(vo,so) = 0, then 
aA( vo,so)/as#o. 

Proof: Let Hn(v,s)=shn(v,s). It follows from Eq. 
(2.10) that 

aA( v,s) = (N + 1) [QN + 1 (v) aHn (v,s) 
as as 

hN+ I (v,s) ] 
- QN(V) . 

as 
(2.18 ) 

If now both A(vo,so) = 0 and aA(vo,so)/as = 0, then Eqs. 
(2.11) and (2.18) imply that 

(2.19) 

Dividing both sides ofEq. (2.14) by (SI - S2) and taking the 
limit S2-S1 = so, where So is a zero of A( vo,s), give 

(N + 1) [H (v ) ahN+ I (vo,so) 
~N0 N o,so as 

aHN(vO,so) ] 
- hN(vO,so) -~-­

as 

= f (2n + 1)fn 1 h
n 

(::,so) 1

2
. 

n=O So 
(2.20) 

Therefore from Eq. (2.19) a necessary condition for 
A(vo,so) and aA(vo,so)/as to vanish is that the right-hand 
side of Eq. (2.20) also vanish. The proof of the lemma is 
completed by recalling from Lemma 1 that the right-hand 
side ofEq. (2.20) does not vanish for voER'\ [ - 1, + 1]. 

There are N· + 1 = N + 1 - K nonvanishing roots of 
A( vo,s) = 0 for voER'\ [ - 1, + 1] that are real and simple. 
Denote these roots by S60

) ,s62) , ... ,s6
NO

). From the implicit 
function theorem there are neighborhoods, say N( vo) and 
N.J(S6J», such that the equation A(v,s) =0 has a unique 
root 51(v) in N.J(S6j» for any v in N(vo)' Further, each 
function 51(v) is single valued and analytic on N(vo) and 
satisfies the condition 51 (vo) = sf!). 

The immediate objective now is to continue the S) (v) to 
the right (left) half complex plane cut as described below. 
That each of these functions can be continued along any line 
in the v plane that avoids the cut [- 1, + 1] and zeros of the 
discriminant of Eq. (2.2) is clear. The discriminant of Eq. 
(2.2) can be written in the form 

Mo 

D(v) = L Pn(v)[vQo(v)]n, (2.21) 
n=O 

whereMo is finite andPn (v) is an even polynomial with real 
coefficients. Thus D( v) is analytic on the complex plane cut 
along [ - 1, + 1], has at most a finite-order pole at infinity, 
and has the limits 
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D ± (,.,,) = ~ /3" (,.,,) [,." tanh-I,." + iTT''''']'' (2.22) 
,,=0 2 

on the cut ( - 1, + I). It is readily seen that the real and 
imaginary parts of D ± ( ,.,,) have only a finite number of 
zeros for ,."e( - 1, + 1). A straightforward argument prin­
ciple calculation similar to the one about the contour C men­
tioned in Sec. I shows that the number of zeros of D(v) is 
finite. Because of the assumption that nonzero I" are dis­
tinct, D( v) does not vanish at infinity. Further, since 
D(v) = D( - v) and D(v) = D(v), if v = v'is a zero of 
D(v) so are v = - v' and v = v. Let 

9 = {ttID(tt) =O}, (2.23) 

where ± to, ± ~ I"'" ~p = 0 are points on the imaginary 
axis with Ito I > l~tI > ... > I~p I and ± tp + I"'" 
± tp + q' ± ~p + q are the rest of the points of g. (Note that 

p could be equal to zero.) Now cut the v plane by joining 
+ ~o, + tl'···'~P in the upper half plane with a straight line, 

similarly joining - to, - tl' .. "~P in the lower half plane, 
joining t p = 0, ~p + 1 , ••• ,tp + q with a series of straight lines 
in the first quadrant, making similar joinings in the remain­
ing quadrants, and finally adding the original cut along 
(-1,+1). 

Each of the Sj ( v) can be analytically continued to the 
right (left) half complex plane cut as described above so 
that, according to the monodromy theorem, each function 
will be single valued and analytic in the right (left) cut plane. 
Each function Sj (v) can be continued from the right half 
plane to the left half plane by considering the regions 
11m vi > I~ol. ThuseachSj(v) so continued has the property 
that Sj ( v) = Sj ( - v). Since Sj ( v) is real for 
veR \ [ - 1, + 1]. the reflection principle yields the addi­
tional property that Sj (v) = ~ (v). Since Sj (v) is contin­
uous across the imaginary axis for 11m vi > Itol, the two 
properties listed show that Sj ( v) is real if v lies on the imagi­
nary axis and 11m vi > I~ol. Most importantly, of course, is 
the property that A [ v,Sj ( v)] = 0 for every v in the plane 
cut as described. The functions Sj ( v) will be labeled accord­
ing to limv--+oo Sj (v) = In}' where Ino = fo = 1 and In

j
' 

j = 1 ,2, ... ,N *, are the nonvanishing expansion coefficients. 
To look at the behavior ofthe Sj (v) on [ - 1, + ] it is 

helpful to consider the following lemmas. 
Lemma 3: If voeR \ ( - 1, + 1), then the roots of 

r( vo,s) = 0 are all real. 
Proof: As demonstrated by Inonii,8 the recursion for­

mula for P" (v) and hn (v,s) can be used to write 

vy(v,s) = (N + 1) [PN+ 1 (v)shN(v,s) 

(2.24) 

This expression is entirely analogous to Eq. (2.10) with 
Q" (v) replaced by P" (v). Thus letting voeR\( - 1, + 1) 
be fixed, letting So be a nonzero root of r( vo,s) = 0, and 
following the proof of Lemma 1 yields 

Nih" (vo,so) 12 Imso L (2n + l)/n K. = O. 
,,=0 So 

(2.25) 

Substituting v = Vo and s = So defined as above into Eq. 
(2.16), multiplying the resulting equation by 

1627 J. Math. Phys .• Vol. 27. No.6. June 1986 

(2n + 1 )/"h" (vo;So)Iso', and summing on n gives 

~ f+ 'I f (2n + l)/"P"K~ ,.")h,, (vo.so) 12 ~ 
2s0 - 1 ,,= 0 So ,." - Vo 

+ "to (2n + 1 )/" I hn (~:,so) 12 = O. (2.26) 

Note that the integral in Eq. (2.26) is well defined for Vo = 1 
and for voeR \ ( - 1, + 1) the integral term does not vanish. 
Thus Eqs. (2.25) and (2.26) state that 1m So = 0, i.e., So is 
real. 

Lemma 4: If vaK\ ( - 1, + 1) and So is a nonzero root 
of A( vo,so) = 0, then 8A( vo,s0)/8s#0. 

The proof of this lemma is completely analogous to that 
of Lemma 3 and the details will be omitted. 

It can be shown thatao(v) inEq. (2.4) can be written as 
l:~=0(2n+ 1)/" [P,,(V)]2. It will be assumed that 
ao(I)#O; thisisequivalentto/(I,I) >OinEq. (1.2). How­
ever, again ao( v) is a polynomial in the I" and the case 
ao( 1) = 0 can be included by continuity. 

Theequationr(vo.s) = o for voeR\ ( -1, + I)hasN* 
simple real nonvanishing roots. In particular denote the 
roots of r( 1,s) = 0 by SI,S2, .. "SN* with the ordering ofthe 
roots given by the following. 

Lemma 5: 

limSj(v) =Sj' j= 1,2, ... ,N*. 
v-+1 

(2.27) 

Proof: Let 

A'(v,s) =R(v,s)/[vQo(v)] - r(v,s). (2.28) 

For fixed v# 1 the zeros of A( v,s) and A' (v,s) coincide. For 
v = 1, it is obvious that A'(v,s) vanishes at the zeros of 
r(l,s). Thus if Sj (v) is a zero of A'(V,s) then 

ISj (v) -Sj(v)1 = ISj (v) -Sj +Sj -Sj(v)1 

= 0, v# 1. (2.29) 

Therefore 

ISj(v) -Sjl = IS; (v) -sjl, v#1. (2.30) 

The proof is completed by noting that the right-hand side of 
the last equation vanishes in the limit 'V--+ 1. A similar calcu­
lation leads to the following. 

Lemma 6: 

limSo(v) =limSo(v), (2.31) 
v-+I v-+1 

where 

So(v) = - bl(v) - ao(v)vQo(v) 

+al(v)/ao(v). (2.32) 

with the polynomials a" (v) and b" (v) given by Eqs. (2.3) 
and (2.4). 

Proof: Let 

A"(v,s) =s+ ~ bn+dv)a,,(v)vQo(V), (2.33) 
,,=0 s" 

and note that for v# 1, the zeros of A (v,s) and A" (v,s) coin­
cide. Let S;; (v) be a zero of A"(v,s), i.e., 
A" [v,s;; (v>] = 0, and note that 
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ISo(v) -so (v)1 

= ISo(v) -So(v) +So(v) -so (v)1 

=0. (2.34) 

Using the same argument as in Lemma 5 completes the 
proof. Note, for example, that as v-+ 1 along the real axis that 
So ( v) -+ 00 • Furtherif S 0+ (!1-) and S 0- (!1-) are the limits of 
So(v) as V-+!1-E( - 1, + 1) from the upper and lower com­
plex plane, respectively, then 

lim S o± (!1-) = + 00 += i1Tao( 1)/2 S o±· (2.35) 
1'--+1 

Let A + (!1-,s) and A - (!1-,s) be the limits of A( v,s) as 
V-+JI.E( - 1, + 1) from the upper and lower half complex v 
plane, respectively, and consider for fixed !1- the roots of 
A ± (!1-,s) = O. ThereareN* + 1 such roots, some of which 
may be multiple roots if!1- is a zero of the discriminant of 
A ± (!1-,s). LetS/ (!1-),j = O,I, ... ,N*, be the functions gen­
erated by such roots as!1- takes on values along ( - 1, + 1). 

Lemma 7: Each function S / is continuous on 
( - 1, + 1). 

Proof: The proof will be illustrated for S / (!1-). The 
proof for S j - (!1-) follows in an analogous manner. Let So be 
a root of A + ( !1-0,s) = 0, where !1-oE ( - 1, + ) is not a zero of 
the discriminant of A + (!1-,s). Further, let KE be a circle of 
radius E> 0 centered on So so small that A + ( !1-0,s) contains 
no zero except at the point So itself. Since A + ( !1-0,s) is analyt­
ic inside of K E , let 11 > 0 be the minimum of IA + (!1-0,s) 1 on 
Ke For fixed s, A + (!1-,s) is a continuous function of!1- on 
( - 1, + 1). Therefore, choose a real interval A so small that 
IA + (!1-0,s) - A + ( !1-,s) 1 < 11 for all!1-EA. Thus according to 
Rouche's theorem 

A + ( !1-,s) = A + (!1-0,s) + [A + (!1-,s) - A + ( !1-0,s)] 

(2.36) 

has only one zero inside KE for any fixed but arbitrary !1-EA. 
If A + ( !1-0,s) = 0 has a k-fold multiple root, then repeating 
the argument above shows that the circle KE encloses k zeros 
of A + ( !1-,s) for !1-EA. Thus each S / (!1-) is continuous on 
( - 1, + 1) and at each zero of the discriminant of A + ( !1-,s) 
that corresponds to a k-fold multiple root of A + (!1-,s) = 0 
(e.g., !1- = 0) k of the functions S / (!1-) take on the same 
value. The labeling of the functions S / (!1-) is given by the 
following. 

Lemma 8: The limits of Sj(v),j=O, ... ,N*, as 
V-+!1-E( - 1, + 1) from the upper and lower complex plane 
are S j + (!1-) and S j - (!1-), respectively. 

Proof: The proof of this lemma is similar to Lemma 7 
and again the proof will be illustrated for S / (!1-). The 
proof for S j - (!1-) follows in an analogous manner. As in 
Lemma 7, let So be a root of A + ( !1-0,s) = 0, where 
!1-oE( - 1, + 1) is not a zero of the discriminant of A + (!1-,s). 
Again let K E be a circle of radius E > 0 centered on So so small 
that A + ( !1-0,s) encloses only the zero at So itself. Let 11 > 0 be 
the minimum of IA + (!1-0,s) I onKE • Finally letK/l bea circle 
centered on !1-0 so small that I A + ( !1-0,s) - A (v,s) I < 11 for 
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any v with Re v> 0 inside Kt;. Thus again from Rouche's 
theorem 

A( v,s) = A + (!1-0,s) + [A( v,s) - A + (!1-0,s)] (2.37) 

has only one zero inside KE for any fixed but arbitrary point v 
in K /l with Re v > O. If A + ( !1-0,s) = 0 has a k-fold multiple 
root at So, then the circle KE will contain k roots of A ( v,s). 

III. MAIN THEOREM 

Consider the contours generated by s = SJ ( v), 
j = 0, 1, ... ,N *, as v varies along the contour C of Fig. 1 as 

that contour is collapsed (with p-+O) onto the real interval 
( - 1, + 1). These contours are in fact the contours rj gen­
erated parametrically by s = S/ (!1-), j = O,I, ... ,N*, as!1-
varies along the real interval (- I, + 1). Note that 
S / ( -!1-) = S / (!1-), S / (!1-) = S j - ( -!1-), and that 
each of the contours begins and ends at the limit points given 
by Lemmas 5 and 6. Thus the contour rj starts, say, at Sj' 
varies continuously in the s plane as !1- varies from - 1 to 0 
along the top of the cut, passes through zero at!1- = 0, traces 
out its complex conjugate as !1- continues to vary from 0 to 
+ 1 along the top of the cut, and finally retraces itself as !1-

varies from + 1 to - 1 along the bottom of the cut. That the 
contours do not cross the real s plane axis except at s = 0 and 
s = Sj' j> 0, is clear. Forif S / (!1-0) = soER for some value 
of !1-oE( - 1, + 1), that would imply that A + ( !1-0,s0) = 0 in 
contradiction to the results cited in Sec. I. 

Thecontoursrj , j= 1, ... ,N*,areclosed. (The contour 
r 0 can be regarded as closed if it is regarded as being closed 
at infinity.) The contours rJ have positive (counterclock­
wise) orientation. Since 1m S / (!1-) =1= 0 for 0 < 1!1-1 < 1, it is 
sufficient to show positive orientation of the rj by demon­
strating for some!1-o with 0 <!1-0 < 1 that 

1m S / (!1-0) < 0, if Sj > 0, 

>0, ifSj <0. 

Note first that 1m S 0+ (!1-) > 0, since 

lim 1m S 0+ (!1-) = - ao(1 )1T/2, 
1'--+1 

(3.1) 

(3.2) 

with ao( 1) > O. If A + (!1-,s) is evaluated from Eq. (2.2), it is 
easy to see that 

lim 1m A + ( !1-,s) = r( 1,s)1T/2. (3.3) 
1'--+1 

Now order the zeros of r( 1,s) according to 

Sm, >Sm, > ... >SmQ>O>SmQ+1 > ... >SmN" (3.4) 

and choose 1 >!1-0 > 0 so that either 

(3.5) 
Sm <ReS';; (!1-0) <0, ifq = Q + 1, or 

Q+ I q 

Ifs = ReS';; (!1-0), q = 1, ... ,N*, then 
• 
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A+[JL,ReS';;q (JLo)] = -lmS';;q (JLo) [ReS';;q (JLo) -ReS o+ (JL)] 

X IjDI [Re S';;q (JLo) - Re S/ (JL)] + T( JL,f..Lo)}, 

J#-mq 

(3.6) 

where T( JL,f..Lo) is a function such that T( JL,f..Lo)-D aSJL-1. 
Thus for JL sufficiently close to 1, Eqs. (3.3) and (3.6) yield 

sgn (A + [JL,Re S';;q (JLo)]) 

= sgn [ - 1m S';;q (JLo) 

(3.7) 

Moreover, since lims~oo y(1,s)-oo, then sgn[y(1,s)] 
= sgn[ ( - l)q] if Sm <s <Sm' Thus if Re S';; (JLo) is 

q+ 1 q q 

chosen by Eq. (3.5), then Eq. (3.7) gives 

sgn [ - ( - 1 )qm S';;. (JLo)] 

=sgn[( -l)Q], ifSm >0, • 
(3.8) 

Theorem: Let I(rj ) and E(rj ) represent the interior 
and exterior of the contours r j , j = 0,1 , ... ,N·, respectively, 
and let 

P-l N· 

se n I(r m) n E(r m ). 
j=O 1 j=P J 

(3.9) 

Im s 

- i1TO o ( I )/2 
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In other words, let s lie in the interior of P of the contours rj 
and the exterior to all the other r j . The number of roots of 
A(v,s) = 0 is ~;::ol N

mJ
, where N

mJ 
is the index of s with 

respect to rj' Further, ifs is real and satisfies Eq. (3.9) then 
N m = 1 and M = P + 1, i.e., just equal to the number of 

1 

contours rj in which s lies. 
Proof: As indicated in Sec. I, A ( 00 ,s) is a constant and 

the number of zeros of A( v,s) is given by the change in the 
argument of A (v,s) along the contour C in Fig. 1 as the 
contour is collapsed (with p-o) onto the real interval 
(-1, + 1). This procedure yields [cf. Eq. (1.12)] 

(3.10) 

where /i.e Arg A + (JL,s) represents the change in the argu­
ment along the directed line from - 1 to + 1. Thus 

N· 

M = /i.e Arg II [s - S / (JL)] 
j=O 

N· P-I 

= L /i.e Arg[s - S/ (JL)] = L Nmj' 
j=O j=O 

(3.11 ) 

If seRCI(r m ) then Nm = 1 since rm does not cross the 
J 1 J 

real axis for 0 < s < S mJ' Of course if s does not lie inside of any 

Re s 
FIG. 2. Contours r ()o rl' and r 2forit = 0.2 
and,/; = 0.05. Scale ofro reduced by factor 
of 6 and scale of r 2 enlarged by factor of 2. 
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1m s 

of the contours then M = 0, i.e., A( v,s) has no zeros. The 
number of zeros of A( v,s) is intimately connected to the 
zeros of y(1,s), i.e., to the SP j = t, ... ,N*. 

Corollary: If seR satisfies 0 < S m < s < S m , where the 
J+ I J 

Sm are ordered according to Eq. (3.4), then the number of 
j 

pairs of zeros of A(v,s) isj + 1. Further, ifcq+ = lIs
mi

, then 
the test of Sec. I follows directly. 

For a numerical illustration of the mappings 
s = S/ (p), j = O,t, ... ,N*, consider Figs. 2-5. These 

Im s 
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Re s 

FIG. 3. Contours ro, r l, and r2 for 
It = - 0.1 and /; = 0.05. Scale of ro re­
duced by factor of 5 and scale of r 2 enlarged 
by factor of 2. 

curves were generated for the case N = 2 by solving 
A + (p,s) = 0 for s asp varies from 0 to + 1. For a numeri­
cal illustration of the roots of y( 1,s), consider Table I. In this 
calculation 

N 

f( p,p,') = L (2n + t)f~ Pn (p)Pn (pi), (3.12 ) 
n=O 

where the expansion coefficients are given by the recursion 
relation9 

Re s 

FIG. 4. Contours of roo rl' and r2 for 
It = - 0.1 and/; = - 0.05. Scale of r 0 re­
duced by factor of 3 and scale of r 2 enlarged 
by factor of 4. 
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Im 5 

f 'i = j+ 1 [ n f1-1 +f1-1 
" 2j(2n + 1) (2n _ 1) n - 1 n 

n+l f 'i- I ] 
+2n+3 n+1 , 

(3.13 ) 

with/~ = 1, j = 0, 1, ... , and/~ = 0 if n > j. The calculations 
in Table I were made with J = 50. Other numerical results 
agree with the azimuthally symmetric results reported by 
Shultis and Hill. II 

IV. CONCLUDING REMARKS 

It seems appropriate to conclude with a couple of re­
marks about the nature of the zeros of A(v,s) and y(v,s). 
Several years ago Kuseerl2 pointed out that for the case 

TABLE I. Zeros ofr(l,s). The last row is the reported number of pairs of 
zeros of Ac(v) fore = 0.95 (see Ref. 10). 

Order of scattering N 
4 6 8 10 15 

3.0765 5.0607 6.8243 8.0824 9.2031 
1.0388 1.6213 2.1600 2.5665 2.9677 
0.6067 0.8576 1.1052 1.2990 1.5039 
0.4645 0.5854 0.7131 0.8201 0.9402 

0.4683 0.5405 0.5986 0.6710 
0.3396 0.4422 0.4893 0.5332 

0.3265 0.3920 0.4457 
0.2057 0.2842 0.3491 

0.1860 0.2554 
0.1047 0.1762 

0.1147 
0.0701 
0.0399 
0.0206 
0.0091 

2 3 4 4 4 
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FIG. 5. Contours ro and r l forh = 0 and 
Re 5 .Ii = 0.1. Scale ofro reduced by factor of3. 

N = 2 that the zeros of Ac (v) could be complex. The advan­
tage of the present analysis is that it points out that the zeros 
of A(v,s) become complex (even for real s) whenever the 
discriminant D( v) has zeros on the imaginary axis. Stated 
somewhat differently, the zeros of A (v,s) are mapped via the 
SJ ( v) from the v plane to thes plane and that map is confor­
mal as long as the path in the v plane avoids the cuts as 
described in Sec. II. In particular, the imaginary axis in the v 
plane is conformally mapped to the real axis in the s plane as 
v marches in from infinity. This conformal mapping is 
broken if a zero in the discriminant of A ( v,s) is encountered, 
resulting with complex zeros of A ( v,s). One can quickly 
show that this is just the situation for the special case consid­
ered by Kuseer. 

Somewhat similar related remarks can be made about 
the zeros ofy(v,s). It has been shown that the number of 
zeros of A(v,s) are related to the zeros ofy( 103). If the num­
ber of pairs of zeros of y( v,s) (for fixed s) that lie in the 
interval ( - 1, + 1) is denoted by a, the discussion in Sec. I 
indicates that the number of pairs of zeros M of A( v,s) must 
be bounded M<;;a + 1. Further, numerical calculation with 
real s not too small (c not too large) suggest thatM can be, in 
fact, just equal to a + 1. To see the reason for this consider 
the fact that y( v,s) = 0 generates an algebraic function, say 
v(s), each branch of which conformally maps the appropri­
ately cut s plane to the v plane. Note that v(s}) 
= 1, j= 1,2, ... ,N·. The number of zeros ofy(v,s) mustal-

ways be sufficient to satisfy the main theorem. Thus there is 
always a certain branch of v( s) that maps the interval (s},O) 
in the s plane to the real interval ( - 1, + 1) in the v plane, 
and that mapping will be conformal (and thus one-to-one) if 
the discriminant of y( v,s) does not vanish on the interval 
(sJ'O). Therefore, if the set of expansion coefficients {In} is 
such that the discriminant of y( v,s) does not vanish on any 
of the intervals (s"O), j = 1,2, ... ,N·, in the s plane, then 
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indeed M = a + 1. This is certainly the case for N = 0 and 
N = 1. However, one can show quite easily that for the case 
N = 2, 11 < 0, and 12 < 0 that the discriminant does vanish 
for s small enough. However, it is apparent that there always 
exist values of s greater than the largest zero of the discrimi­
nant of y( v,s) for which the number of pairs of zeros of 
A( v,s) is always given by M = a + 1. 

IK. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, 
Reading, MA, 1967). 

1632 J. Math. Phys., Vol. 27, No.6, June 1986 

21. R. Mika, Nucl. Sci. Eng. 11,415 (1961). 
3K. M. Case, I. Math. Phys. 15,974 (1974). 
4R. I. Hangelbroek, Transp. Theory Stat. Phys. 8, 133 (1979). 
sC. G. Lekkerkerker, Proc. R. Soc. Edinburgh Sec. A 83,303 (1979). 
6A. Leonard and T. W. Mullikin, I. Math. Phys. 5, 399 (1964). 
7T_Y. Dawn and I-I. Chen, Nucl. Sci. Eng. 72, 237 (1979). 
8E. Inonii, I. Math. Phys. 11, 568 (1970). 
"R. Bowden, F. I. McCrosson, and E. A. Rhodes, I. Math. Phys. 9, 753 
(1968). 

1°1. K. Shultis, I. Comput. Phys. 11, 109 (1973). 
III. K. Shultis and T. R. Hill, Nucl. Sci. Eng. 59, 53 (1976). 
121. Kuseer, Nucl. Sci. Eng. 38, 175 (1969). 

R. L. Bowden 1632 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Mon, 24 Mar 2014 17:03:03




