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ABSTRACT

In our daily life, we are increasingly putting our trust in embedded software applications,

which run on a range of processor-based embedded systems from smartcards to pay-TV

units. This trend expands the threat model of embedded applications from software into

hardware. Over the last 20 years, fault attacks have emerged as an important class of

hardware attacks against embedded software security. In fault attacks, an adversary breaks

the security by injecting well chosen, targeted faults during the execution of embedded

software, and systematically analyzing softwares fault response.

In this work, we propose cycle-accurate and fully digital techniques that can efficiently

detect different types of fault attacks. The detection methods are low-cost regarding the

area and power consumption and can be easily implemented using the standard cell based

VLSI design flow. In addition to the architecture of the detectors, we present a detailed

analysis of the design considerations that affect the cost and accuracy of the detectors. The

functionality of the detectors is validated by implementing on ASIC and FPGA platforms

(Spartan-6, Cyclone IV). Additionally, the proposed detection methods have demonstrated

to successfully detect all of the injected faults without any false alarm.



Hardware Fault Attack Detection Methods for Secure Embedded
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ABSTRACT (GENERAL AUDIENCE)

Embedded systems nowadays play a very crucial role in day to day life. They are always

gathering sensitive and private data of the users. So they become an attractive target for the

attackers to steal this important data. As a result, the security of these devices has become

a grave concern.

Fault attacks are a class of hardware attacks where the attacker injects faults into the system

while it is executing a known program and observes the reaction. The abnormal reactions

of the system are later analyzed to obtain the valuable data. Several mechanisms to detect

such attacks exist in the literature, but they are not very effective. In this work, we first

analyze the effect of different types of fault attacks on the embedded processor. Then we

propose various low-cost digital techniques that can efficiently detect these attacks.
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Chapter 1

Introduction

The daily life of the modern society relies on a range of secure embedded devices such as

smartcards, smart phones, implantable medical devices, and pay-TV systems. These devices

store, transfer, and process the sensitive data of both users (e.g., passwords, personal data)

and vendors (e.g., intellectual property, cryptographic keys). Therefore, secure embedded

systems employ security mechanisms to protect confidentiality, integrity, and availability

of the sensitive data. The employed security mechanisms are efficient against traditional

software-oriented attacks. However, because of their pervasive nature, the secure embedded

systems are subject to hardware-oriented attacks that exploit vulnerabilities in the physical

implementation of the security mechanisms.

An important class of hardware-oriented attacks is fault attacks, which use fault injection

as a hacking tool [1, 3]. In a fault attack, an adversary has physical access to the target de-

1
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vice, and s/he can control the operating conditions of the apparatus. To break the security,

the adversary injects well-chosen, engineered faults by actively manipulating the operating

conditions during the execution of the target security mechanism. Common low-cost fault

injection techniques include clock glitching, voltage glitching, voltage underfeeding, and over-

heating [1, 3]. These methods create failures by temporarily violating the timing constraints

of the target system [20]. Another technique for fault injection is using electromagnetic fault

injection (EMFI) technology, which directs powerful electromagnetic pulses towards the de-

vice using an EM probe [15]. These pulses create sudden current flow in power/ground

networks in the device under attack switching transistor(s) ON (or OFF). Also, EMFI can

penetrate through nonmetallic surfaces, allowing an adversary to create local faults without

decapsulation of the target device. This significantly reduces the cost and time needed to

mount a successful attack. Therefore, it is vital to design efficient detection methods.

Software countermeasures such as algorithm-level, instruction-level fault detection mecha-

nisms are generic solutions against fault attacks. The most straightforward method for the

fault detection is running an algorithm twice and comparing the outputs of both executions.

Another approach is using error detection codes or parity bits for the critical data of an

algorithm and checking them at the end of the algorithm. However, it has been shown

that these algorithm-level countermeasures are insecure against multiple fault injections and

adaptive adversaries. Defending against fault attacks from software is therefore difficult as

the faults do not originate in the software, but rather in the underlying processor hardware.

Moreover, modern embedded systems need to satisfy various performance and flexibility re-
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quirements. Therefore, current embedded systems require low-cost and flexible mechanisms

for fault detection.

In this research, we propose various hardware fault attack mechanisms to detect different

types of attacks suited for constrained embedded systems. These detection devices use

the most sensitive elements of the design as detectors and monitor their response to the

injected fault. The detectors consist of circuit elements that do actual computation. Thus,

it can achieve 100% detection rate with no false positives. As the detectors are tightly

coupled with the logic, they are hard to bypass. Because of its all-digital implementation,

the detection methods can be easily integrated into VLSI design process for both ASIC and

FPGA technologies.

The thesis is organized as follows. Chapter 2 gives an overview of common fault injection

techniques and how they can be practically applied. Chapter 3 provides an outline of current

Fault attack detection technologies. Chapter 4 presents Ring Oscillator based detector for

detecting setup time violation attacks. Chapter 5 presents detection method for Electromag-

netic Fault Injection Attacks. Chapter 6 ends the thesis with the conclusion of presented

work.



Chapter 2

Fault Injection

Hardware Fault Injection (FI) refers to a variety of techniques for inducing errors in the device

and measure the response to those mistakes. This chapter introduces the commonly applied

fault injection mechanism and fault injection properties. Subsequently, we demonstrate how

fault attack can be conducted on supposedly secure function.

2.1 Fault Injection Methods

There are different ways an adversary can introduce errors into the target device. The below

list shows a few of prevalent methods for how an attacker can tamper with a processor to

induce fault

Clock glitching reduces the clock period of a digital circuit during selected clock cycles. If

4
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the instantaneous clock period decreases below the critical path of the circuit, then a faulty

value will be captured in the memory or state of the circuit. An adversary can inject a clock

glitch by controlling the clock line of the digital circuit, triggering a fault in the critical path

of the circuit. If the adversary knows the circuit structure, s/he will be able to predict the

location of the circuit faults. Glitch injection is one of the least complicated methods of fault

injection, and therefore it can be considered as a broad threat to secure circuits.

Voltage Starving can be used to artificially lengthen the critical path of a circuit, to a

point where it extends beyond the clock period [2]. This method is similar to injection of

clock glitches, but it does not offer the same precise control of fault timing.

Voltage Spikes cause an immediate change in the logic threshold levels of the circuit [1].

This changes the logic value held on a bus. Voltage spikes can be used, for example, to mask

an instruction read from memory while its moving over the bus. Similar to clock glitches,

voltage spikes have a global effect and impact the entire circuit.

Electromagnetic Pulses cause Eddy currents in a chip, leading to erroneous switching

and isolated bit faults [19]. By using special probes, EM pulses can be targeted at specific

locations of the chip.

Laser and Light Pulses cause transistors on a chip to switch with photo-electric effects

[22]. Through focusing of the light, a minute area of the circuit can be targeted, enabling

precise control over the location of the fault injection.

Hardware Trojans can be a source of faults as well. This method requires that the
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adversary has access to the circuit design flow and that the design is directly modified with

suitable trigger/fault circuitry. For example, recent research reports on a FPGA with a

backdoor circuit which disables the readback protection of the design [21]. Another example

is BlueChip, a processor design that considers the threat of hardware trojans inside of the

processor [11].

2.2 Fault Injection Properties

An attacker should understand the impact of the fault and the target algorithm to mount a

successful fault attack. Fault attacks can be designed to exploit specific weaknesses of the

target algorithm which are introduced by the injection of a fault. Several attacks targeting a

large number of algorithms were presented in the past, the most common being the attacks

against AES, RSA, and ECC. Besides the algorithm type, it is important to characterize

different properties that help distinguish an attack. These properties are listed below:

Fault Attack Timing refers to the time of the injected fault concerning the instructions

running on the target hardware. With precise control, it is possible to affect a specific bit or

variable in time. An attacker can use this to target a specific operation/instruction in the

algorithm.

Fault Attack Location determines the position of the injected fault on the target device.

An adversary with full control can modify the specific bit/s of a particular variable, given

that s/he knows the physical layout of the device under attack. However, in practice, this is
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rarely the case and is possible only to attack a particular variable or range of bits.

Fault Type is decided by the effect of the fault on the device and can be classified into:

bit flip, bit set/reset and stuck-at-fault. A bit flip error always sets the target bits to

complementary values. On the other hand, the bit set/reset fault sets the target bits to

chosen values - one or zero regardless of their previous values. The stuck-at-fault is similar

to bit set/reset fault. Nevertheless, in this case, a bit is permanently tied to a particular

value.

Size of the affected bits refers to the timing of the injected fault to the instructions

running on the target hardware. With precise control, it is possible to affect a specific bit or

variable in time. An attacker can use this to target a specific operation/instruction in the

algorithm.

2.3 Fault Attack Example

The power of fault attacks can be illustrated with a simple PIN verify program.

boolean verifyPin(char* userPIN) {

charArray correctPIN = {1,2,3,4}

for (i=0; i<length(correctPIN); i++) {

if (pin[i] != correctPIN[]){

reducePinTryCounter()

return false
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}

}

return true

}

Listing 2.1: Pin Verification Code

A Personal Identification Number (PIN) is an alphanumeric passcode used for authenticated

access. Listing 2.1 gives the pseudocode of PIN verification function. verifyPin(char*

pin) function compares the entered pin userPIN to a secret value correctPIN. If the userPIN

matches the stored pin correctPIN, the function returns true. Otherwise function returns

false reporting an incorrect pin and decrementing the pin-try-counter.

The function may seem secure but only if the underlying device executes it correctly. Fault

Attacks can modify the data and instruction execution. For the given example, an adver-

sary can successfully complete verifyPin(char* ) with an invalid PIN. An adversary can

achieve this outcome in multiple ways. For instance, s/he can skip the if statements or

calling of the verifyPin(char* ) function. Alternatively, he can set the correctPIN to

a known value such as zero by attacking when it is loaded from the memory. The adver-

sary can also invert the result of the verifyPin(char* ) function while attacking during

its execution. Finally, s/he can try all possible PIN values and skip the execution of the

reducePinTryCounter() with fault injection. All of these can be achieved using glitch

injection attacks by manipulating either clock or the operating voltage.
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2.4 Conclusion

In this chapter, we provided some background on fault attacks. We showed that various

methods could be used to induce faults in a design from clock glitching, to voltage starvation,

and to electromagnetic or laser injection. Although different in forms all these methods try

to cause errors in the operation of the circuit and use that error to undermine the security

of the design. Therefore, it is imperative to be able to detect these attacks. In the next

chapter, we will review some of the existing work on detecting fault attacks for timing fault

attacks and Electromagnetic Injection fault attacks.



Chapter 3

Related work

Here we will provide an overview of current fault attack detection techniques. We focus on

detectors and sensors in the literature designed to detect timing violations and Electromag-

netic fault attacks.

3.1 Detecting Electromagnetic Fault Injection Attacks

The Electromagnetic glitch Fault Injection (EMFI) has recently emerged as an effective

fault injection method for conducting physical attacks against integrated circuits. Initial

research efforts have demonstrated that electromagnetic glitch based failures are induced

due to timing violations and that they are also located in the vicinity of the injection probe.

In the literature, there are different approaches used to develop a dedicated EMFI detection

method, from using a glitch based detector to a Ring Oscillator based sensor, which we

10



Chinmay Deshpande Chapter 2. Related work 11

discuss in the following sections.

3.1.1 Delay Based Sensor

Zussa et al. proposed the use of delay-based glitch detectors to detect EMFI[25]. This

method detects setup time violations by using fixed guarding delay which is set slightly

greater than critical path of the design. The principle of this detection mechanism consists

of detecting the breach of a guarding delay prior to any timing violation. The clock signal is

used as a reference to draw comparisons between the guarding delay and the clock period.

In normal operation, the guarding delay is set greater than the critical time, but smaller

than the clock period. If clock period is decreased by inducing a timing violation, it will

have to be shorter than the guarding delay. Hence, voltage disturbances will be detected,

and an alarm will be issued.

The delay-based glitch detector is only partially successful with a best-case detection rate

of about 32%. The second drawback of the detector is that the fixed guarding delay value

during the pre-silicon stage might not be the same after the chip is fabricated. Specifically,

the PVT variations can cause the guarding delay to deviate from its intended value. This

change of guarding delay can cause the detection rate to decrease further or can create false

positives.
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3.1.2 PLL Based Sensor

Miura et al. introduced PLL-based sensor circuit to detect Electromagnetic Injection re-

actively [16]. The detection technique uses a Phase Locked Loop (PLL), which is a clock

control circuit and is found in modern ASICs and FPGAs. A PLL needs multiple clock

cycles before it generates a stable clock, after which it goes into ’locked’ state. Whenever

the parameters of PLL are changed, the lock is broken and takes multiple clock cycles to

come back to the ’locked’ state. This work shows that EMFI can affect the clock signal and

break the PLL lock. So by monitoring the ’locked’ state of PLL, this method determines if

the device is under attack or not.

A drawback of this method is that the PLL may not always be available and adding a PLL

just for fault detection might not be cost effective. Furthermore, PLL is an analog component

sensitive to layout. Therefore, integrating it into a digital circuit remains a challenge. This

method adds a lot of cost on the chip area and power consumption.

3.1.3 Full Detector

A method for detecting bit-fault using full detector was proposed by El-Baze et al. [8]. First,

they initialize several flip-flops to represent different bits. Then, they monitor the bits at

the rising edge of the clock. A fault is detected when the flops take unexpected values, and

the alarm is then issued.

This detection mechanism uses 5 flip flops, 6 inverters, 2 XOR gates, and 1 AND gate per
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detector block. Moreover, it is not clear how many of these detector blocks are required and

where to physically place them on the chip to ensure 100% fault coverage.

3.1.4 Hogge Phase Detector

A novel sensor is introduced in [4] for detecting EM disturbances using Hogge Phase Detector.

The sensor identifies if the circuit is under EMFI attack by measuring the variations in an

internal ring oscillator (RO). The reported detection rate of this sensor is 93%.

However, this sensor has high false positives rate of about 56%, which may incur a significant

performance penalty. Furthermore, using a power-hungry RO limits its applications on IOT

and low power devices. It also requires some characterization before it can start working

correctly.

3.2 Detecting Setup time Violation Attacks

The setup time violation attacks such as clock glitching, supply voltage variation, voltage

underfeeding are the most commonly used physical fault injection methods. Clock glitch-

ing is the most practical and low-cost fault injection technique, and therefore clock glitch

based DFA is more controllable and becomes a real security threat. Some high-level pro-

tection methods for cryptographic systems employ error detection and correction codes or

redundancy [24, 13] to improve the reliability of circuits, but cannot resist clock glitch-based
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DFAs. Other protection methods try to detect the fault injection sources and therefore

prevent DFAs [12]. We discuss these hardware detection techniques in the literature used

against setup time violation attacks.

3.2.1 Concurrent Error Detection (CED)

These methods detect faults in parallel with the normal operation of the circuit. They employ

time (e.g., repetition), hardware (e.g., duplication), information (e.g., error detection codes),

or hybrid (e.g., inverse computation) redundancy for fault detection [12].

The CED methods aim at detecting logical effects of the fault injection (e.g., clock glitching)

on the data. Thus, their detection capabilities are independent of the fault injection means.

However, they require modifications to the protected circuit. Depending on the performance

and security requirements, they can bring large area and timing overhead on the protected

circuit. Moreover, Guo et al. showed that an adversary could bypass most of the CED

techniques by injecting the same faults into both actual and redundant operations [12].

3.2.2 Error Detection for Variation-Aware Design

In a variation-aware design, the operating frequency is dynamically scaled to increase the

performance. The operating frequency is gracefully increased until a timing error occurs.

Upon detection of a timing error, the frequency is reduced back to the previous value and

circuit operates at this frequency until the next error occurs.
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A well-known technique for error detection is using Razor Flip-Flops (FFs) [9]. A Razor FF

consists of a regular datapath FF and a shadow latch that is fed by a delayed clock signal.

If the regular FF and the shadow latch capture different values, an alarm is raised.

In a system, where the operating voltage is reduced gracefully, or the clock frequency is

increased gradually to improve performance, it is expected that Razor FFs will be able to

detect the first errors and raise an alarm that will initiate a recovery process. However, in

a fault attack, an adversary can inject a clock glitch such that both the regular FF and

the shadow latch of a Razor FF capture the incorrect value. In this case, the fault remains

undetected. Thus, Razor FFs are not suitable for fault attack detection.

3.2.3 Voltage or Clock Line Monitors

These detection methods monitor the clock or voltage line of the device. They raise an alarm

signal in case of an anomaly.

A method for detecting anomalies in the clock signal is using another external clock signal

as a reference to monitor system clock line[14]. This reference signal is of higher frequency

than the system clock and is used to measure the width of the system clock. The width of

the system clock relative to this reference clock is measured in the normal scenario when it

is not under attack. Any time this measurement changes, an alarm is raised and the glitch

attack is detected.

This is a simple method to detect clock glitches, and the results have shown that the scheme
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Figure 3.1: Analog Sensor to monitor voltage lines

can detect glitches efficiently with low resource overhead. However, the reference clock signal

used to monitor the system clock can be manipulated. The adversary can control both the

system and the reference clock to glitch the device yet not triggering the detection method.

This is a major drawback of this approach and is only suitable in cases where reference clock

lines could be trusted.

Analog sensors are employed to monitor the voltage line of a device [23]. The glitch sensors

shown in Figure 3.1 detect the glitches by overseeing the impact of a glitch on the output of

the modified inverter circuit. This method is designed to be used to detect positive glitches

on Vdd.

However, these sensors are bulky and have high detection latency. They also require a

complex analog design process.
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3.3 Conclusion

In this chapter, we reviewed state of the art on timing and EMFI fault attack detection. We

reported their effectiveness and their perceived weaknesses. In the next chapter, we provide

our proposed low-cost cycle-accurate timing fault detector, which can be efficiently employed

both in ASIC and FPGA designs.



Chapter 4

Detecting Timing Violation Attacks

In this chapter, we propose a countermeasure that can detect timing violation attacks, which

we have previously presented in [6]. The proposed detection mechanism is based on moni-

toring the incoming clock and making sure it is pacing at a speed that is acceptable to the

current state of the hardware. The detection mechanism measures the relative speed of the

clock with respect to the hardware and resolves whether the design is under attack or not.

We understand the speed of the hardware depends on many variables including operating

voltage and environmental temperature. Attackers can use these variables to inject faults.

They can also directly inject faults by manipulating the clock. One can also imagine a

combination of these methods. Regardless of the source, these faults happen because the

design clock has become too fast for the circuit to operate. The detector measures the relative

speed of the clock with respect to the hardware and resolves whether the design is under

18
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attack or not. In an analogy, it works similar to a medical thermometer. Just like a medical

thermometer can detect the presence of fever, but it cannot identify the underlying issues,

our proposed detector can capture the presence of danger, but cannot isolate the cause (does

not need to). The sensor can detect several forms of attacks, namely under-powering, clock

glitching, or a combination of these two attacks.

4.1 Proposed Detection Mechanism

The proposed scheme detects if there is an anomaly in the operating conditions of the circuit

and raises the alarm. The principle of this work is to detect fault attacks on the external

clock by monitoring it using a Ring Oscillator (RO). RO clock is itself immune to glitches,

direct change in frequency and clock manipulation by faults as it is internal to the device.

This RO clock is then used as a reference to draw a comparison between the external clock

and itself, efficiently detecting a change in the external clock.

4.1.1 Operation Overview

The basic idea of the proposed detector is to sample the external design clock (clkd) with a

faster internal Ring Oscillator clock (clkro) as illustrated in Fig. 4.1. The expected relative

frequency difference between clkd and clkro is stored in a secure non-volatile memory, which

is a standard component in many applications. When an attacker tries to over-clock a design

or underfeed it by lowering the operating voltage of the device (VDD) for inducing a timing
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Overclocking Voltage starving

(a) fd increases (b) fro decreases

clkroclkd

Figure 4.1: Detector Principle for (a) Over-clocking. (b) Voltage starving.

fault, the relative frequency difference deviates from the expected value, and an alarm is

issued. Hence, by continuously monitoring the design clock every cycle, the detector can

issue an alarm, insitu, to prevent an attack.

Fig. 4.1 illustrates the behavior of the detection technique under over-clocking and under-

feeding. If the adversary tries to induce fault by increasing the clock frequency, the relative

frequency difference decreases as shown in Fig. 4.1a. This change thus triggers an alarm

notifying the user of timing violation. In case the circuit is attacked by reducing the supply

voltage, the propagation delay of the circuit and the detector increases. This decreases the

RO frequency and reduces the relative difference as depicted in Fig. 4.1b.

To monitor the design clock, we use two counters; one for each phase of clkd. Although only

a single counter is sufficient to sample the period of the design clock, we use two counters

as it has distinct advantages. First, in attack scenarios like over-clocking, alarm can be

issued earlier than in case of using single counter. This is necessary for sensitive designs

which require immediate activation of response strategy after fault detection. Further, using
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Figure 4.2: Timing Detector: (a) Block diagram. (b) Timing diagram

two counters allows for latching the comparator output and resetting the counter without

borrowing time from the next clock cycle. Next, we present the architecture and the detailed

operation of the detector.

4.1.2 Circuit Architecture

Fig. 4.2a shows the block diagram of the operation of the detector for the high phase of clkd.

The operation for the low phase is similar to that of the high phase, and it is not shown. As

shown in Fig. 4.2a, the counter is enabled for the high phase of clkd, and it increments on the
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positive edge of clkro. The output of the counter (cntH) is compared against a predetermined

expected threshold (cntexp) to generate the comparator output. However, the comparator

output is latched to alertH only when the counter has stabilized after the high phase of clkd.

Hence, when alertH is asserted, it signals that an anomaly occurred during the high phase

of clkd. Similar to alertH , alertL signals if an anomaly has occurred during the low phase of

clkd. A positive edge of either alertH or alertL issues an alarm, which can be acted upon to

suspend the circuit operation, update the secret key, etc. From Fig. 4.2a, it can be observed

that the comparator output is latched to alertH only on the first valid clkro cycle during

the low phase of clkd. After alertH is latched, the high counter is cleared to zero on the next

rising edge of clkro.

Fig. 4.2b shows the operation of the detector with the help of a timing diagram. The

expected counter value cntexp for target clkd and VDD is computed to be 6. We can observe

that the counter output, cntH , increments during the high phase of clkd and stabilizes to

value of 6 after the first high cycle. Since this counter value is the same as expected value,

this cycle does not trigger an alarm. However, at the end of the second high cycle, the

counter value cntH assumes the value of 3. Hence, the comparator output stays high as the

counter value is less than the expected threshold. The first valid clkro cycle in the following

low phase of clkd latches the comparator output to alertH which then triggers an alarm.
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4.1.3 Timing analysis of the detector

In Fig. 4.2b, when the rising edges of clkd and clkro are close to one another, it can result in

a timing violation in the counter. To limit the effect of this violation, we use asynchronous

(ripple) counters such that, in the case of a violation at either the rising edge of clkd or the

falling edge of clkd, it only affects the least significant bit (LSB) of the counter. Hence, in

the event of a violation, the counter misses the count by 1, in the worst case. The detector

can be designed to tolerate this error by accommodating this error in setting the threshold

for comparison (cntexp).

This design accommodation involves detector to require 2 clock cycles on each phase of

clkd. This enforces a lower bound on the relative frequency of the ring oscillator (fro).

Additionally, our design choice involves using a single counter to monitor each phase of clkd.

Considering these constraints, the frequency of RO, fro, has to be at least four times the

frequency of the design clock (fd). This is easily achievable considering the target systems

are secure embedded designs.

4.2 Detector Parameters

In this section, we define a new metric called Leniency Factor which captures the required

resolution to distinguish acceptable safe variations from unacceptable attack behavior. Le-

niency Factor is defined as the difference between the delay of design when working in safe
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Figure 4.3: Attack and safe operation windows

conditions compared to its delay when the first fault happens. This metric is also a func-

tion of area and power allowing a designer to trade-off between low area or low power while

maintaining the required minimum resolution. In the following section, we analyze different

attack scenarios and describe how to determine the parameters that affect both cost and

effectiveness of the detector while mathematically formulating LF.

The most important parameter of the detector is the frequency of the internal ring oscillator.

In other words, a fast enough RO provides sufficient resolution to discern faults from normal

variations in environment but consumes more power. A slower RO, on the other hand, may

not be able to identify an acceptable change in operating voltage from an attack and result

in a false positive alarm. Nevertheless, such slow RO is going to consume less power. We

formalize the above statements by calculating a lower bound for the frequency of the RO.

First, we observe that for the detector to be able to distinguish safe operation from attack,

the difference between the counter values for the two scenarios must be greater than or equal

to one. This is shown in (4.1), which can be rewritten as (4.2).

fro × tsafe − fro × tattack >= 1 (4.1)
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fro × tsafe >=
1

1 − tattack
tsafe

(4.2)

In the above equations, fro is the frequency of the RO. tsafe is the period of the fastest clock,

where the design can safely operate. tattack is the period of the slowest clock that results in

faults and therefore, constitutes a real threat. While tattack is the property of the circuit,

tsafe is designated by the designer and is greater than or equal to tattack. Fig. 4.3 shows the

relationship between tattack and tsafe.

Equation 4.3 formulates Leniency Factor which captures the acceptable variations from ir-

regular. The minimum leniency of a design is 0, while at its maximum, it can reach 1. We

can rewrite (4.2) as shown in (4.4),

LF = 1 − tattack
tsafe

(4.3)

fro
fsafe

>=
1

LF
(4.4)

This means the relative frequency of the RO with respect to a safe frequency of the design

is inversely proportional to LF. In other words, if the designer decides on very low leniency

by choosing tsafe very close to tattack, which requires fast RO thus dissipating more power.

On the other hand, if tsafe is chosen much larger than tattack, leniency will be higher, and

frequency of RO can be lower. The relative speed of the RO should never be less than 4,

required for ensuring correct operation of the detector as described in Section 4.1.3.

The above equations describe how fro can be selected at nominal voltage, when the attacker

is manipulating the clock. We continue our analysis by describing the scenario, where the
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voltage is under attack. Equation 4.1 can be written as follows:

fro(V ) × tsafe(V ) − fro(V ) × tattack(V ) >= 1 (4.5)

This means when manipulating operating voltage, V , all three parameters in the equation

become functions of V . The question is how to choose fro at nominal voltage such that it can

still identify attack scenarios at lower voltages. In order to answer this question, we resort

to modeling the delay of the circuit as well as RO with respect to operating voltage. We

know that in superthreshold region frequency increases almost linearly with voltage. The

slope of the increase depends on circuit characteristics, nevertheless with an error margin of

less than 10%, we can assume both the circuit under attack and the RO experience the same

relative slowdown. In other words, we can write:

fro(V ) = fro(Vnominal) × a× (V − Vthreshold) (4.6)

fattack(V ) = fattack(Vnominal) × a× (V − Vthreshold) (4.7)

Where a is a constant value. In our SPICE simulation, the error resulting from this model

for voltages up to 0.9V is less than 6%.

If we rewrite (4.5), since all the voltage-dependent terms cancel out, we are back to (4.1), and

the same bound for RO frequency holds for the underfeeding attack. Even if the first faults

happen at near or subthreshold regions, despite the fact that the relationship is not linear

anymore, it is still expected that voltage-dependent terms in (4.5) to cancel each other out.

In other words, the RO experiences the same relative slow down as the rest of the circuit.
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This enables the designer to choose a LF at nominal voltage and decide on a frequency for

the RO without extensive analysis at lower voltages.

fro >= fsafe ×Max(4,
1

LF
) (4.8)

To summarize, the designer can use (4.8) to choose a frequency for RO. From (4.8), both

fsafe and LF are chosen by the designer. The choice of LF depends on what the designer

deems as noise in the system compared to an attack. tsafe shown in Fig. 4.3 is the shortest

delay, while the design is operating safely. For example, let us assume that tsafe for a device

at nominal operating conditions is 100ns and −10% VDD and 50◦C is the upper limit of noise

in the system. At these extreme conditions, let us assume that tsafe increases to 150ns. If

tattack for such a design is 75ns, using (4.3), LF becomes 0.5, whereas, for a design at nominal

conditions LF is 0.25. The designer has to select fro based on LF of 0.5 to accommodate for

extreme variations that he/she deems as noise.

4.3 Results

We validated the functionality of the proposed detector on a Xilinx Spartan-6 FPGA. We

also synthesized our detector onto a 90nm ASIC technology to examine the effects of process

variation and aging on the operation of the detector. Next, we will explain the details of our

experimental work.
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Figure 4.4: Experimental results for (a) Overclocking (b) Underfeeding : (1) Nominal cycle

in which case cntH counts till 7 (2) Attacker induces faults by shortening the high phase of

clock as in case (a) or underfeeding to 1V in case (b) (3) The cntH in this cycle assumes a

different value raising an alarm

4.3.1 FPGA Implementation

The experimental setup (Fig. 4.5) consists of a SAKURA-G board, a pulse generator (Agilent

81110A), and a computer. On the main FPGA (Spartan XC6SLX75) of the SAKURA-G

board, we implemented an AES-128 circuit and our detector. We can adjust the supply

voltage of the main FPGA to be 0.5–1.5V by using an onboard trimmer. The clock signal

of the main FPGA is fed by a clock glitcher module implemented on the control FPGA

(Spartan XC6SLX9). To generate a glitchy clock, the clock glitcher processes a glitch-free

clock signal that comes from the pulse generator [5]. It can cause glitches with a resolution

of 100ps. The computer communicates with onboard components with a USB interface.
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Figure 4.5: Block diagram of the experimental setup

We determined parameters of the detector by following the methodology explained in Section

III. First, we measured tattack value of the AES circuit as 38ns. We obtained this value by

injecting clock glitches while the circuit was processing a set of random inputs. Second,

we chose a tsafe value of 40ns. This corresponds to an fsafe value of 25MHz. Then, we

calculated the Leniency Factor (LF), which is 0.05, using (4.3). Finally, we chose an fro

value of 200MHz, which satisfies (4.4). Therefore, we set cntexp to 7.

Fig. 4.4a shows operation of the detector in case of clock glitching. In this figure, a nominal

cycle followed by a glitchy cycle, where the high phase of the clkd is shortened to 25ns. For

the nominal cycle, the cntH counts up to 7. However, cntH only reaches 4 for the glitchy

cycle. As we set cntexp to 7, alertH is asserted, which results in issuing an alarm. Fig. 4.4b

shows operation of the detector in case of underfeeding. We reduced the VDD level from the

nominal value of 1.2V to 1V . As seen, this reduces the frequency of ring oscillator (fro) and,

the cntH counts up to 5 instead of its nominal value 7. Thus, the detector asserts alertH ,
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Table 4.1: Area and Power Overhead of the Proposed Detector

Circuit Area (µm2) Power (mW)

AES 28321 35.6

AES+Detector 28386 36.1

which then issues an alarm. Next, we present our analysis on an ASIC implementation.

4.3.2 ASIC Implementation

We synthesized the AES circuit with our detector onto IBM 90nm technology to compare

its cost with the existing methods and analyze the effects of variation on the detector’s

operation. We used Synopsys tools for synthesis (DC), logic simulation (VCS), SPICE

simulation (HSPICE), and reliability analysis (MOSRA). We organized results into four

categories.

Overhead of the Detector: Table 4.1 shows post-synthesis area and power consumption

results for (i) original AES (ii) original AES with the timing detector. As seen, our timing

detector incurs 0.23% area and 1.4% power-consumption overhead. Also, it does not bring

any timing overhead. In comparison, Igarashi et al. [12] and Zussa et al. [25] report

0.47% and 0.3% area overhead for their delay-based monitors. On the other hand, the CED

techniques have up to 100% area and timing overhead [10]. As a result, the overhead of

our detector is slightly better than the existing delay-based methods and significantly better

than the CED techniques.
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Effect of Leniency Factor (LF) A designer must consider different tradeoffs during the

selection of Leniency Factor (LF). Higher LF values imply a slower fro, a higher number

of inverters, and a smaller number of counter flip-flops. Therefore, each different LF value

effects area and power consumption of the detector in a different way.

Fig. 4.6 shows variation in the power and area of the detector for different leniency factor

(LF) values. For this simulation, we assume tattack for a design to be 160ns. The tsafe has

been varied from 161ns to 200ns in steps of 5ns. Then we computed the minimum value

of fro at each step using (4.3) and (4.4). The area numbers reported are the post-synthesis

total cell area, whereas, the power consumption numbers are the average power consumption

collected from transistor-level SPICE simulations. For very low LF values, Fig. 4.6 shows

that the power consumption is high due to large counter size and toggling in counter bits. For

higher LF values, however, the area of the inverters becomes dominant. The total area and

power consumption saturate as fro reaches the minimum design limit of 4 times frequency

of design clock (fd).

Effect of Process Variation: Process variation (PV) has a significant effect on the opera-

tion of timing detector. The frequency of ring oscillator (fro) can change from its predefined,

intended value due to process variation. This can result in false alarms. To observe the

effect of PV, we simulate the timing detector at typical, slow, and fast process corners. For

a ring oscillator (RO) designed for 200MHz at typical corner, we observe that fro varies

from 165MHz at slow corner to 246MHz at fast corner. As mentioned earlier cntexp is the

product of fro and tsafe. As fro might deviate from expected value due to PV, we propose
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Figure 4.6: Power and area tradeoff with leniency factor

characterization of fro after fabrication. Based on post-fabrication fro, the actual value of

cntexp is evaluated and stored in the non-volatile memory.

Having this flexibility of tuning the detector with respect to the requirements is an advantage

of our detector over delay-based countermeasures.

Effect of Aging: Aging is a gradual phenomenon that slows down circuits with time. To

simulate the effect of aging on the ring oscillator (RO), we design an RO with a nominal

fro of 200MHz. After operating the RO for 10 years, the value of fro drops to 193MHz.

Similar to the effect of process variation, the value of cntexp can be adjusted to accommodate

changes in fro due to aging. To further mitigate the effect of aging, the RO can be composed

of NAND gates with common enable input. This allows designers to reduce the impact of

aging by disabling the detector when it is not needed.
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4.4 Conclusion

In this chapter, we presented a cycle-accurate monitor that could efficiently detect timing-

violation-based fault attacks. The proposed monitor could detect clock or voltage manipu-

lations by monitoring the external clock using an internal Ring Oscillator. The monitor was

low-cost concerning area and power consumption and could be easily implemented using the

standard cell based VLSI design flow. In addition to the architecture of the timing monitor,

we presented a detailed analysis of the design considerations that affect the cost and accuracy

of the detector.

In the next chapter, we will present a different fault attack detector, which targets Electro-

magnetic Fault Injections. We will provide the architecture of the detector as well as an

analysis of its cost and effectiveness.



Chapter 5

Detecting Electromagnetic Fault

Injection Attacks

In this chapter, we propose a novel sensing technique that can detect EMFI, which we have

previously presented in [7]. The technique relies on the observation that flip-flops are the

most sensitive elements to EMFI and the effect of EMFI is based on the polarity of the

applied EM pulse [18, 17]. The central idea of the detection is to monitor the vulnerable

flip-flops for faults by pairing each of these flip-flops with a shadow flip-flop, which is designed

in such a way that only one flip-flop of the pair gets affected by EMFI. The proposed sensor

then measures the relative states of the main and shadow flip-flops, and resolves whether

the design is under attack or not.

As opposed to the previous detectors, this EMFI detector uses the circuit elements that do

34
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actual computation. Thus, it can achieve 100% detection rate with no false positives. As

the detector is tightly coupled with the logic, it is hard-to-bypass. Because of its all-digital

implementation, this sensor is easily integrated into VLSI design process for both ASIC

and FPGA technologies. The sensor is lightweight as it incurs cost of integrating a shadow

element into the logic. In addition, existing scan flip-flops can be used as shadow flip-flops

to reduce the cost more.

5.1 Operation Overview

The proposed detector consists of an existing main flip-flop (MFF ) and an additional sensing

flip-flop called a shadow flip-flop (SFF ) as shown in the Figure 5.1. The detection circuit is

designed in such a way that nominally, the two flops capture complementary values at every

clock cycle. So at a particular cycle, if the output of MFF (Q) is at logic-0, the output

of SFF (Qs) will be at logic-1. In the case of EMFI, either the main flop (MFF ) or the

shadow flop (SFF ) gets affected based on the polarity of the EM pulse. The injected fault is

then detected by applying an XNOR operation on the flip-flop outputs Q and Qs. The area

cost of the standalone detector is an additional FF , NOT and an XNOR gate compared to

a regular FF . It is possible to utilize design for test (scan-chain design) reuse methodology

to reduce the area overhead of the monitor. However, we limit this article to monitor’s use

to detect EM fault attack.

Figure 5.2 illustrates the behavior of the sensor in a fault-free case and under different fault
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Figure 5.1: Block diagram of EMFI detector: During normal operation, MFF and SFF keep

complementary values. EMFI can alter only one of the FFs. An alarm signal is generated if
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injection scenarios. It shows how the redundancy in the shadow flip-flop can be used for

EMFI detection. Figure 5.2a depicts the first case in which the device is not under EMFI

attack. We can observe that the flop outputs consistently assume opposite values at every

clock cycle. For example, in the third clock cycle, the main flop output Q is at logic-0 and the

shadow flop output Qs is at logic-1. Since the outputs of the registers are complementary,

the alarm signal remains low.

Figure 5.2b shows the second case where the adversary tries to inject the fault during the the

sampling window [17] of the flip-flops. In this scenario, the clock is switching, i.e. the fault

occurs around the rising edge of the clock, maximizing the occurrence of a fault in the IC.

We can see that until the point of attack, the behavior of monitor is same as in the first case,

that is, flop outputs Q and Qs remain complementary to each other keeping alarm signal

low. However, the fault in the third clock cycle causes one of the flops to change its value. In

this case, the EMFI induces bit-reset faults in both the flops. Since Q was already at logic-0,

it stays at logic-0. However, Qs value changes to logic-1 from logic-0 instantaneously. The

alarm signal immediately goes high which can be used to trigger fault response of the device

on the next clock edge.

In the third case, EMFI happens outside the sampling window as shown in Figure 5.2c. In

this scenario, the fault is injected when the clock is not switching. As observed, the fault

induces bit-set faults in the IC during the third clock cycle. This change switches the main

flop output Q to switch to logic-1. The relative indifference in the logic outputs immediately

gets detected triggering an alarm.
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5.2 Implementation Details

In order to evaluate the effectiveness of the proposed mechanism, we integrate the detec-

tor with a target circuit. The detector along with the target logic was implemented on a

Terasic Technologies DE0-Nano development kit. In the following section, we first discuss

the standalone implementation of the detector on FPGA. Following that, we present the

steps performed to integrate the detection mechanism with the logic and map it to the chip.

Subsequently, we discuss the measurement system used for validating the faults.

5.2.1 Implementation of Detector

We implemented our EMFI detector on an Altera Cyclone-IV FPGA residing on the DE0-

Nano board. In this family of FPGA, Logic elements (LE) are the smallest unit of logic

block. Each LE consists of a 4-input lookup table (4-LUT) for implementing logic gates, and

a register.

A macro(mon) was created for the detector to integrate it into the target circuit. For this

purpose, we first synthesize the detector and map it into the FPGA. Then we place and

route the design and the netlist is then extracted using the netlist writer. As it is seen from

the EDA netlist writer, the detector macro takes up 2 FFs and 1 combinational primitive.
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Figure 5.3: Flow chart to integrate the detector with the AES-128 coprocessor
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5.2.2 Integration of Detector

To experimentally verify the operation of the EMFI detector, we use a hardware implemen-

tation of Advanced Encryption Standard (AES-128) as the target logic. We integrate the

EMFI detector into the target logic by replacing all flip-flops of the target logic with our

EMFI detector macro. We automated this process using Quartus-II 15.0 software from Al-

tera and our custom Tcl scripts as shown in Figure 5.3. The detailed procedure of integrating

the monitor is given below:

1. We synthesize the AES-128 logic and place&route the synthesized design. Then we

extract the netlist using the Quartus netlist writer.

2. We also apply the synthesis, place&route, and netlist extraction steps for the EMFI

detector.

3. We convert the extracted netlist of the EMFI detector into a macro as mentioned in

the earlier subsection.

4. We replace the flip-flops of the original AES-128 netlist by the EMFI detector macros.

For this purpose, we use a custom Tcl script which assigns 2 LE blocks per macro. The

final netlist has EMFI detectors integrated within the logic. We call the final netlist

AES-128+.

5. Next, we place&route AES-128+ netlist again.
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6. Finally, we generate sof bitstream file to program the FPGA with the implemented

circuit.

During Step 5, optionally, additional physical constraints can be applied to control the

locations of the EMFI detectors. In this work, we applied additional constraints to refrain

the the tool from placing the AES-128+ circuit near the communication interface. This

enables us to inject EM faults into the target circuit without affecting the communication

interface. To apply the additional constraints, we use Altera’s LogicLock feature. Figure 5.4

demonstrates the final design after LogicLock. We configure the Logiclock region to keep

all the AES-128+ circuit out of the black rectangle, which is a JTAG module to provide

communication between the target logic and the outside world.

5.2.3 Communication Interface

In addition to the AES-128+ circuit, we also implemented a communication interface to con-

trol the input/output of the AES circuit and observe the status of the EMFI detectors from

a computer. Figure 5.5 shows the block diagram of the communication interface consisting of

an Altera Avalon Bus fabric, a memory-mapped slave (AES-128+), and a memory-mapped

bus master (JTAG to MM Master). The computer can communicate with the AES circuit

using Tcl scripts through Altera’s system-console application.
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Figure 5.4: AES-128+ circuit on the Altera Cyclone IV fabric after place&route. Dark blue

cells correspond to LEs occupied by AES-128+ logic, light blue cells are unmapped and

black rectangle shows the dedicated JTAG core
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Figure 5.5: Communication interface of AES-128+ circuit: A computer uses Tcl scripts and

system-console to communicate with the AES circuit (a memory-mapped slave) through a

JTAG bus master on the Avalon Bus.
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Figure 5.6: Block diagram of Fault Injection Setup. (1) Inspector transmits EMFI param-

eters to the Glitch Controller and arms it. (2) PC sends input to AES-128+ and start

encryption. (3) FPGA sends a trigger to the Glitch Controller. (4) Glitch Controller makes

EMFI-probe to inject EM pulse (5) The output is sent back to PC.

5.3 Experimental Results

In this section, we provide an outline of our fault injection setup and the test procedure that

enables us to verify the correctness of the detector and to establish the results.

5.3.1 Fault Injection Setup

Figure 5.6 gives an overview of the setup. It consists of a Control PC, Cyclone-IV FPGA,

and Riscure Fault Injection module. The Control PC manages the entire injection process by

controlling the fault injection module and the FPGA. The FPGA runs the AES-128+ core
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and communicates the results back to the PC using the communication interface described

earlier. The FPGA also generates a trigger for the injection module a clock cycle before the

attack.

The Fault Injection module uses two different components, Glitch Controller and EMFI

probe. Glitch Controller enables the communication between the PC (Riscure’s inspector

software), FPGA, and EMFI probe. The Glitch Controller is realized using VCGlitcher mod-

ule from Riscure. It receives trigger signal from the FPGA and generates EMFI parameters

required by the probe. The probe creates a voltage pulse that sends current through the coil

to produce magnetic field. This changing magnetic field causes voltage perturbation in the

device producing EM glitch.

5.3.2 Finding EMFI Parameters

The first step of our experimental work is characterizing the target system to find the right

EMFI parameters. These parameters include power of the EM pulse, duration of the EM

pulse, location of the probe tip, and the distance between the FPGA surface and the probe

tip.

For this particular experiment, we use a probe tip with positive polarity, which generates

+200V perturbation at maximum power. The range of the power is from 0% to 100%. Glitch

offset refers to the timing of EMFI relative to the rising edge of the clock signal, and takes

values between 0 − 20ns. During our experiments, FPGA operates with a 50-MHz clock
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signal and a 1.2-Volt supply voltage.

To determine the best glitch offset and EM pulse power, we conveyed a systematic search.

We divided the chip area into a grid of 10 x 10 locations. Then we injected 200 EM faults at

each location of the grid by randomly varying EM power and glitch offset parameters within

their range. we used a constant EM pulse duration of 50 ns.

Figure 5.7 shows the effect of EM pulses with varying power and glitch offset. For any

given offset, we observe three distinct behavior of the circuit, (a) faults (b) fault-free (c)

resets/mutes. First, we notice that fault occurrence window is much larger when glitch

offset is around 0 or 20ns. At these offset points, a fault can be induced even when the

power is as low as around 35%. This can be attributed to the fact that EM susceptibility

of a circuit is higher during the rising edge of the clock, which for this circuit corresponds

to glitch offset of 0 or 20 ns. Second, we observe that fewer faults can be induced when

glitch offset is around 10ns. The power required for such faults is also much higher. This

is because the clock is stable and higher energy is needed to induce faults. We use this

fine-tuned parameter data and inject repeated faults to establish the results.

5.3.3 Results

We experimentally verified the EMFI detector and measured its efficiency by comparing the

number of injections that lead to a faulty output and the number of injections that were

detected.
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Figure 5.7: Effect of EMFI on the target circuit. There are three distinct regions: (a) fault-

free output (under the green line), (b) faulty output (between green and blue lines), (c) no

response (above the blue line).
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Table 5.1: Hardware Overhead of the detection mechanism on AES-128

LUTs Registers Timing (ns)

AES-128 4814 530 9.22

AES-128 with detector 5097 620 9.22

Figure 5.8 shows the result of EM injections on the AES-128 logic. We can observe the

number of injections at each of location that result in an incorrect cipher output. Out of

the 20000 EMFI attacks, only 7% injections lead to a fault. Some of these locations are

more vulnerable to EMFI attacks and can produce repeated faulty outputs. We also notice

that fault injection experiments at all the locations do not induce a fault in the target logic.

The heatmap for the number of detected faults and injected faults are found to be exactly

identical, providing a fault detection rate of 100%.

Based on the observed results, we can conclude that (a) All the EM injections that induced

faults in the logic were detected. This validates the correctness of the detector and confirms

the locality of EMFI attacks on Altera FPGA platform. (b) The detector triggers an alarm

only when a fault is induced. This eliminates the unnecessary false positives that can be

raised when the circuit is under attack, but no fault is being induced. The detector’s alarm

output can be reliably used by the controller to safely initiate device reset or other system

calls.
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Figure 5.8: Heatmap showing the number of injections leading to a faulty output. All the

induced faults are detected, giving 100% detection rate.
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5.3.4 Hardware Overhead

We measure the hardware overhead of proposed mechanism by observing area and timing

results for (a) AES-128 logic without detector (b) AES-128 logic with detector. The timing

analysis reports maximum clock frequency for both the implementations as 108.39 MHz.

This shows that the detector incurs no timing overhead. Table 5.1 shows the obtained area

results. The area increase is found to be 0.05% and 17% in the number of LUTs and registers

respectively.

5.4 Conclusion

In this chapter, we proposed a low-cost, fully-digital, and cycle-accurate mechanism to detect

EMFI. We also presented a framework to integrate the proposed detector into any logic core.

We implemented the proposed detection mechanism on an Altera Cyclone-IV FPGA and

integrated it with a round-serial hardware implementation of AES-128. The area overhead

of this design was 0.05% and 17.3% in the number of LUTs and registers, respectively. We

also experimentally demonstrated the efficiency of the implemented design under actual EM

fault injection. In our experiments, we applied 20000 EM pulses with different parameters

(i.e., timing, location, pulse width, energy). In total, 7% of the applied pulses caused faults

in the output of the AES. The proposed mechanism successfully detected all of the injected

faults without any false alarms.



Chapter 6

Conclusion

Within this thesis, we introduced different fault attack detection methods in hardware.

Software solutions are proven to be insecure against multiple fault injections and adaptive

adversaries. We have designed and experimentally demonstrated novel low-cost and cycle-

accurate detectors that can efficiently detect fault attacks without any false alarms. From

a general point of view, our detectors can be applied to arbitrary logic and support protec-

tion against different attacks, namely EMFI, Clock glitching and Voltage starvation. The

detectors can be added to any device without the need to change the rest of the design with

an insignificant area and power overhead. They are fully digital and enable easy integration

into both ASIC and FPGA platforms.
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