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                                                       ABSTRACT 

 

 

Electro-active polymers (EAPs) have emerged as a new class of active materials, which produce 

large deformations in response to an electric stimulus.  EAPs have attractive characteristics of 

being lightweight, inexpensive, stretchable, and flexible.  Additionally, EAPs are conformable, 

and their properties can be tailored to satisfy a broad range of requirements.  These advantages 

have enabled many target applications in actuation and sensing. A general constitutive 

formulation for isotropic and anisotropic electro-active materials is developed using continuum 

mechanics framework and invariant theory.  Based on the constitutive law, electromechanical 

stability of the electro-elastic materials is investigated using convexity and polyconvexity 

conditions.  Implementation of the electro-active material model into a commercial finite 

element software (ABAQUS 6.9.1, PAWTUCKET, RI, USA) is presented.  Several boundary 

and initial value problems are solved to investigate the actuation and sensing response of 

isotropic and anisotropic dielectric elastomers (DEs) subject to combined mechanical and 

electrical loads.  The numerical response is compared with experimental results to validate the 

theoretical model.  

For the constitutive formulation of the electro-elastic materials, invariants for the coupling 

between two families of electro-active fibers (or particles) and the applied electric field are 

introduced.  The effect of the orientation of the electro-active fibers and the electric field on the 
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electromechanical coupling is investigated under equibiaxial extension.  Advantage of the 

constitutive formulation derived in this research is that the electromechanical coupling can be 

illustrated easily by choosing invariants for the deformation gradient tensor, the electro-active 

fibers, and the electric field.  For the electromechanical stability, it is shown that the stability can 

be controlled by tuning the material properties and the orientation of the electro-active fibers.  

The electromechanical stability condition is useful to build a stable free energy function and 

prevent the instabilities (wrinkling and electric breakdown) for the electro-elastic materials.  The 

invariant-based constitutive formulation for the electro-elastic materials including the isotropic 

and anisotropic DEs is implemented into a user subroutine (UMAT in ABAQUS: user defined 

material) by using multiplicative decomposition of the deformation gradient and the applicability 

of the UMAT is shown by simulating a complicated electromechanical coupling problem in 

ABAQUS/CAE.  Additionally, the static and dynamic sensing and actuation response of tubular 

DE transducers (silicone and polyacrylate materials) with respect to combined electrical and 

mechanical stimuli is obtained experimentally.  It is shown that the silicone samples have better 

dynamic and static sensing characteristics than the polyacrylate.  The theoretical modeling 

accords well with the experimental results.   
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Chapter 1. Introduction 

Electro-elastic materials are materials that can change their mechanical behavior in response to 

the applied electric field.  Since their attractive characteristics are lightweight, stretchable, 

flexible, forming into any desired shape and controllable properties to satisfy a broad range of 

requirements, they have been subject of growing interest for their potential use in actuators for 

artificial muscles in robotics and for biomedical applications.  This chapter presents basic 

introduction to electro-active materials along with the theoretical background required to model 

DE transducers.  This dissertation consists of 4 main contributions: (1) Derivation of the 

generalized constitutive laws for electro-elastic materials (Chapter 2), (2) Examination of the 

polyconvexity conditions for the invariant-based electro-elastic free energy function for electro-

elastic materials (Chapter 3), (3) Mathematical modeling of fiber containing dielectric elastomer 

(DE) systems (Chapters 4, 5 and 6), and (4) Implementation of the constitutive relationships for 

isotropic and anisotropic DE materials into the user subroutine (UMAT: User defined material) 

of a finite element modeling tool (ABAQUS 6.9.1, PAWTUCKET, R.I, USA) (Chapter 7).   

A generalized constitutive formulation for electro-elastic materials undergoing large 

deformations, is derived using the continuum mechanics framework of Adkins and Rivlin [1, 2], 

Kydoniefs [3-5], Rajagopal and Wineman [6], Dorfmann and Ogden [7, 8] and Bustamante [9].  

Using an invariant based formulation, the irreducible integrity bases for anisotropic electro-

elastic materials are derived in general form for the first time based on the works of Spencer and 

Rivlin [10-12] and Pipkin and Rivlin [13].  Rajagopal and Wineman [6] and Dorfmann and 

Ogden [7, 8] derived a formulation for nonlinear and isotropic electro-elastic materials.  Their 

formulation contains of an invariant-based free energy function, and the invariants for the 

isotropic electro-elastic material (essentially developed by Spencer, Pipkin and Rivlin [10-15]) 
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are introduced in their work [6-8].  Bustamante [9] developed a theoretical constitutive law for 

transversely isotropic electro-elastic materials, consisting of the isotropic matrix and one family 

of the electro-active particles and the coupling between an electro-active directional vector (one 

family of the electro-active particles in his paper) and an applied electric field was described 

using Spencer’s invariant theory [10].  The electromechanical stability of the electro-elastic 

materials is explored using polyconvexity conditions introduced by Ball [17], Schrőder [18, 19] 

and Rogers [20].  A method for the electro-elastic constitutive laws into a UMAT in ABAQUS is 

developed using the approaches of Weiss [21], Simo and Taylor [22-24], and Zhao and Suo [25-

28].  Several boundary value problems are solved to investigate the actuation and sensing 

response of isotropic and anisotropic dielectric elastomers subject to combined mechanical and 

electrical loads.  The numerical response is compared with experimental results to validate the 

theoretical model.   

 

1.1. Electro-Active Polymers 

Generally, electro-active polymers (EAPs) are defined as polymers that exhibit 

electromechanical coupling.  Historically, the first  EAP was likely first introduced by 

Roentgen’s 1880 experiment where a rubber band with one fixed end and a mass attached at the 

other end was charged and discharged [29].  in the field of EAP materials has occurred in the last 

fifteen years, where materials that can produce over 300% electromechanical strains have 

emerged [30].  EAPs can be divided into two major classes: ionic and electronic.  An electric 

field or Columbic forces drive electronic EAPs; these include electrostrictive, electrostatic, 

piezoelectric and ferroelectric materials which require high electric fields (> 100 V/μm) [31].  

Ionic EAPs are materials whereby electromechanical coupling occurs due to ion movement 

within the polymer; these devices require 1–8 V for actuation.     
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1.1.1. Electronic EAP  

A. Dielectric Elastomers 

DEs offer various advantages in addition to large strains up to 300%, including simple 

fabrication techniques, low cost, repeatability, scalability, and shape conformability [30, 32, 33].  

In principle, a DE is a three-component system consisting of a compliant elastomeric insulator 

sandwiched by two compliant electrodes.  For DE actuators, an electric field applied on the 

electroded surfaces generates an electrostatic stress which creates in-plane and out-of-plane 

strain as shown in Figure 1.1.  DE sensors are essentially compliant capacitors which have a 

capacitance that varies with mechanical strain as shown in Figure 1.1.  Alternatively, the 

resistance can be monitored.  More details about DEs will be provided in Section 1.2.  

 

 
 

 

Figure 1.1. Principle of dielectric elastomer actuation and sensing. 

 

B. Electrostrictive Graft Elastomers 

Electrostrictive graft elastomers were introduced by NASA in 1998 [34].  These consist of two 

components: flexible macromolecule backbone chains and a grafted polymer crystal unit, which 

is described in Figure 1.2 [35].  The backbone and side chain crystal units can then form 

polarized monomers, which contain atoms with partial charges and generate dipole moments.  

When an electric field is applied to the elastomer, a force is applied to each partial charge and 
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causes rotation of the whole polymer unit.  This rotation causes electrostrictive strain and 

deformation of the elastomer.  Electrostrictive graft elastomers have obtained strain levels of up 

to 4% with a relatively higher mechanical modulus than electrostrictive polyurethane. 

 

 
Figure 1.2. The structure of electrostrictive graft elastomers. 

  

C. Ferroelectric Polymers 

Piezoelectricity was discovered in 1880 by Pierre and Paul-Jacques Curie.  They found that 

certain types of crystals compressed along certain axes produced a voltage on the surface of the 

crystal.  Conversely, an application of a voltage leads to elongation of the crystal.  When a non-

conducting crystal or dielectric material exhibits spontaneous electric polarization, the 

phenomenon is called ferroelectricity [36].  In principle, ferroelectric polymers have a permanent 

electrical polarization that can be rotated repeatedly with respect to the orientation of applied 

electric field.  The dipoles randomly oriented at the beginning can be aligned by applying an 

electric field.  Ferroelectric polymers can be operated in air, and the most common is the 

poly(vinylidene fluoride), which is also known as PVDF or PVF2, and its copolymers.        

 

1.1.2. Ionic EAPs 

A. Ionic Gels 
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When a voltage is applied to ionic gels such as poly-acrylic acid, hydrogen ions move in and out 

of the gel, which becomes dense or swollen accordingly.  In principle, under an applied voltage, 

the positively charged surfactant molecules move towards the cathode and form a complex with 

the negatively charged gel as shown in Figure 1.3 [37].  This causes contraction, bending the gel 

towards the anode.  Since reversing the polarity of the electric field releases the surfactant 

molecules from the surface of the gel, the polymer gel flattens.   

 

 

 

Figure 1.3. Principle of ionic polymer gels. 

 

B. Ionic Polymer Metal Composites 

An ionomeric polymer sandwiched by an interpenetrating conductive medium is called an ionic 

polymer-metal composite (IPMC).  This material can exhibit large deformations (< 8.0%) if 

suitable electrodes are used and an electric field is applied [38].  In detail, an IPMC is a charged 

polymer-metal composite that is infused with a fluid and neutralized by mobile counterions.  An 

applied electric field is responsible for the counterion redistribution shown in Figure 1.4.  This 

redistribution of mobile counterions gives rise to a number of concurrent microscopic actuation 

mechanisms that lead to the macroscopic IPMC deformation.  Conversely, an imposed 

mechanical deformation induces a redistribution of mobile counterions that leads to a charge 

stored at the IPMC electrodes.    
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Figure 1.4. Principle of ionic polymer metal composites actuation. 

 

C. Conductive Polymers 

Conductive polymers (CPs) such as polypyrrole and polyaniline are materials that swell in 

response to an applied voltage as a result of oxidation or reduction, depending on the polarity, 

causing inclusion or exclusion of ions.  The oxidation-reduction reaction induces a considerable 

volume change due to the exchange of ions with an electrolyte.  Dimensional changes occur 

primarily due to ion insertion.  Very high currents are required in order to operate at high power 

due to the low electromechanical coupling and low activation voltages [39]. 

 

1.2. Dielectric Elastomers 

DE membranes are one of the most promising transducers for developing soft large strain sensors 

and actuators.  Dielectric elastomers have been investigated theoretically and experimentally for 

over 20 years.  Theoretically, Toupin presented the basic formulation of the electrically induced 

stress of a deformable elastic dielectric [40].  His formulation for the elastic dielectric was based 

on Green and Cauchy methods.  Zhenyi et al. performed experiments on the electromechanical 

response of a soft polymer in 1994 [41].  They examined the thickness response of a 

polyurethane film (~25 μm) with respect to a high DC bias field and discovered that high static 
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strain could be produced by applying voltage.  Additionally, they suggested that the 

electromechanical response measured was strongly reduced by the surface constraints imposed 

by the electrodes, because Tin Foil was used.  In the late 1990’s, the pioneering experimental 

investigation for DEs was carried out by a research group at SRI international.  They coined the 

term dielectric elastomer and incorrectly proposed electrostriction as the coupling mechanism, it 

is now widely accepted that the mechanism is electrostatic.  They fabricated thin uniform 

dielectric films by techniques such as spin coating, casting, dipping, and using off-the-shelf 

materials [33].  The dielectric materials they employed for the DEs include polyacrylate, 

polyurethane, silicone, fluorosilicone, ethylene propylene and isoprene.  Among them, silicone 

polymers produced the highest in-plane strain (32%) at that time.  At the same time, they 

developed various prototypes of the DE actuators to demonstrate the flexibility of the technology 

such as stretched film actuators, rolled actuators, tube actuators, and unimorph and bimorph 

actuators.  In 2000, they showed that prestraining dielectric films further improves the 

electromechanical actuation performance [30].  Actuation strain up to 117% of linear strain was 

achieved with silicone (Dow Corning HS3 silicone) by prestraining 280% uniaxially and 158% 

of circular strain with acrylic elastomers (3M VHB 4910) by biaxial prestraining 300%.   

 DE research can be divided into two categories: (i) theoretical study and (ii) DE transducer 

development and applications.  Most of the DE configurations are potential candidates for 

artificial muscle due to high energy densities, large strains, light weight, silent operation and the 

capability to operate as sensors and actuators.  The drawbacks of these transducers include 

required high voltage causing the electrical breakdown and prestrain-supporting structure leading 

to unbalanced actuation and stress concentration.  Several configurations of DEs have been 

employed by Son and Goulbourne [42, 43], Pelrine et al.[32, 44], Kornbluh et al. [45], Pei et al. 
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[46],  Kofod et al. [47] and Carpi et al. [48, 49].  Goulbourne et al. developed a nonlinear static 

and dynamic model and performed experiments with a DE diaphragm with the view of potential 

application to a pump mechanism [50-52].  Son and Goulbourne investigated the 

electromechanical response of tubular DE transducers experimentally and numerically [42, 43].  

The static and dynamic sensing and actuation performance of the tubular DE transducers were 

obtained and the DE transducers were employed to fabricate a fiber-reinforced electro-pneumatic 

transducer.  Detail of this work is presented in Chapters 4, 5 and 6.  Pelrine et al.[32, 44] and 

Kornbluh et al. [45] presented a bowtie, extender and rolled DE actuators being considered for 

artificial muscles.  These actuators can be stacked in parallel to increase the force output, or 

chained in series to increase the stroke.  They applied these actuators into several types of 

biomimetic robots [32, 44, 45].  Pei et al. introduced the multifunctional elastomer roll (MER) 

which is fabricated by rolling a prestrained elastomer film with patterned electrodes around a 

central compression spring [46].  The 2-DOF (degree of freedom) and 3-DOF spring rolls 

produced by patterning the electrodes exhibit both linear and bending actuation.  In order to 

describe an application of the roll DE actuator, they fabricated a six legged robot [46].  Kofod et 

al. developed a stiff framed DE structure, consisting of a prestrained DE attached to a thin and 

flexible PET film [47].  Initially, the tension in the prestrained membrane causes the frame to 

curl up, and when a voltage is applied, the frame returns to its uncurled state, forming a useful 

bending actuator.  The stiff framed DE can be applied to systems for manipulation, pumping and 

locomotion.  Carpi et al. designed helical and contractile folded DE actuators which are very 

similar to stack-like configurations consisting of several layers of DEs [48, 49].  The helical and 

contractile folded DE actuators produce contractile actuation and overcame the fabrication 

technique difficulty of the stack-like configuration.  The potential application of the helical and 
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contractile DE actuators includes hand splints for rehabilitation and lightweight flexible space 

structures.   

Previously it has been reported that prestrain can improve the electromechanical behavior of DEs 

such as breakdown strength, actuation strain and efficiency [30, 53].  However, often the 

prestrain-supporting structure causes more weight and space than the polymers themselves, 

unbalanced actuation performance, and a short lifetime from the stress concentration at the 

interface between the soft polymer and the rigid structure.  For setting the DEs free from the 

prestrain-supporting structure, additives have been introduced which enhance electromechanical 

actuation [54-58].  Ha et al. introduced diacrylate and trimethacrylate monomers into the 

prestrained VHB 4910, which act to preserve the prestrain [54].  Physically, VHB films are very 

soft (Young’s modulus: ~500 kPa), consisting of the long chain and branched alkyl groups 

attached to the acrylate polymer chains.  The flexible hexylene between the two acrylate end 

groups allows the polymer to stretch.  When the polymer is stretched, adding either of the highly 

crosslinked polymers of HDDA (1,6 Hexanediol Diacrylate) or TMPTMA (Trifunctional 

trimethylolpropane trimethacrylate) results in a higher overall crosslink density and it was found 

that the prestrain of the polymer is preserved.  They reported that VHB with poly(HDDA:18.3 

wt %) preserves 275% prestrain and produces electromechanical actuation up to 233% in areal 

strain, and VHB with poly (TMPTMA:9.7 wt %) retains 244% prestrain and shows 300% of 

electromechanical areal strain.   

Zhang et al. reported that EAP composites including an organic filler material 

(Metallophthalocyanine (MtPc) oligomer and copper-phthalocyanine (CuPc), dielectric constant: 

> 10,000) can possess a very high dielectric constant [55].  They fabricated an organic filler 

dispersed electrostrictive polymer matrix for enhancing dielectric constants while retaining the 
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flexibility of the matrix.   Nguyen et al. [56] Gallon et al. [57] and Carpi et al. [58] reported that 

the dispersion of titanium dioxide powder in a silicone dielectric elastomer leads to a lower 

elastic modulus and higher dielectric permittivity and can produce a larger actuation.   

Toupin [40] and Eringen [59] formulated a generalized theory for deformable elastic dielectrics 

by using Green and Cauchy’s methods, respectively.  Their formulations were theoretical frame 

works not limited to a specific electromechanical coupling, initial and boundary condition, 

material or application.  Cauchy’s method is to assume that the stress tensor is function of certain 

parameters and Green’s method assumes the existence of a stored energy function.  Toupin [40] 

and Eringen [59] assumed that the stress was a function of the displacement gradient, and 

polarization (or electric field or electric displacement).  They presented the constitutive 

relationships for stress and the effective local field.  In detail, Toupin and Eringen employed the 

principle of virtual work to yield field equations and boundary conditions along with equilibrium 

equations for the elastic dielectrics.  Using the variational principle, a single scalar function of 

the variables of state is derived to characterize the mechanical and electrostatic properties of an 

electric dielectric.  Without the energy principle, the same formal set of equations and boundary 

conditions can be derived but the constitutive equations for the stress and strain must be given 

separately in order to characterize the properties of the material.  Differently from Toupin [40], 

Eringen applied his formulation to specific examples [59].  He presented the electro-elastic 

constitutive formulation for simple shear of an infinite homogeneous isotropic slab and uniform 

extension of a hollow cylindrical dielectric.   

Theoretically, Pelrine et al. [33] modeled the electrostatic coupling between the applied electric 

field and the elastic dielectric as an effective pressure, which describes the electrostatic energy 

change per unit area  and unit displacement in the thickness direction.  The effective pressure is 
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exactly twice the pressure in a parallel-plate capacitor implying that the effective pressure is 

strongly dependent on the relative permittivity [33].  The actuation performance of the dielectric 

elastomer for the unloaded and unconstrained case is modeled analytically using a linear 

Hookean constitutive relation [33].  Though largely used due to its simplicity, it is not correct to 

represent the electrostatic stress as a pressure. Goulbourne et al. [52] derived the correct 

expression for the electrostatic stress tensor, which has been separately derived later by Suo et al. 

[27] and McMeeking [60].  

Based on the approach in Pelrine et al. [33], Carpi and Rossi [61] and Wissler and Mazza [62-64] 

modeled the prestrained cylindrical and circular DE actuators using linear elasticity and 

hyperelasticity, respectively.  Carpi and Rossi developed an analytical model for the cylindrical 

DE actuator assuming a linear elastic constitutive relationship and validated the modeling with 

the experimental results of the silicone samples (strain: < 5%) [61].  Wissler and Mazza [62-64]  

predicted the performance of a circular DE actuator by adopting a hyperelastic constitutive 

relation.  The constitutive relationship was described by employing the hyperelastic strain energy 

potentials of Yeoh [65], Ogden [66] and Arruda-Boyce [67].  In [62], an analytical model was 

presented for analyzing a circular actuator in the case of dielectric elastomer.  In [63, 64], finite 

element modeling for a circular DE actuator describing the time dependent response was 

developed employing a commercial software (ABAQUS 6.9.1).  In ABAQUS, the effective 

pressure p is applied as a surface pressure and defined in a user’s subroutine (UMAT: User 

defined material).   

Goulbourne et al. [52, 68] derived a nonlinear large deformation model for DEs assuming that 

the stress as a point in the deformed medium is determined by the local elastic and electric fields, 

where the electrical effects of the system are described using Maxwell-Faraday electrostatics 
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[69].  They presented the electrical constitutive relationship for a homogenous and isotropic 

dielectric:  
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 (1.1) 

where D is the electric displacement, P is the polarization vector, σM is the Maxwell stress tensor, 

I is the identity tensor and  is the tensor product.  They postulated that the Cauchy stress σ in 

the dielectric is the sum of the local elastic stress tensor and the Maxwell stress tensor giving  

 ,ME σσσ   (1.2) 

where σE is the local elastic stress tensor which is obtained from a constitutive relationship using 

the Ogden [66] or Mooney-Rivlin [70] hyperelastic strain energy function.  In order to validate 

the nonlinear mathematical formulation for the DEs, a boundary value problem (an inflatable DE 

membrane subject to prestrain, external pressure and applied electric field (potential cardiac 

pump application)) was presented and the numerical results compared well with the experimental 

results of the fluid pump in Tews et al. [71].       

Suo et al. [27] derived a constitutive relation for an ideal dielectric elastomer using a variational 

approach which is identical to that proposed by Goulbourne et al. [52] previously in 2005.  They 

assumed that the dielectric elastomer is attached with a weight and a battery, and then prescribed 

fields of virtual displacement and voltage [27].  Based on the approach of the virtual work for the 

weight, the inertia and the batteries, they defined the elastic stress and the electric displacement 

with respect to the deformation gradients and the gradient of electric potential, respectively.  

Based on the approach in Suo et al. [27], the electromechanical stability of the dielectric 

elastomer was investigated by Zhao [25, 26, 28].  This was done by using a general convexity 

condition, from which the Hessian matrix must be positive definite at the equilibrium state.  A 
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literature review regarding electromechanical stability of dielectric elastomers will be presented 

in Chapter 3. 

 

1.3. Large Electro-Elastic Deformations of Fiber-reinforced Elastomer 

Composites 

In this research, the response of a DE transducer placed in contact with an axisymmetric tubular 

host system is investigated.  Two such host systems are considered: a fiber-reinforced pneumatic 

actuator (in Chapters 4 and 5) and an arterial wall (in Chapter 6).  The fiber reinforced tubular 

membrane is modeled as a thin cylindrical membrane with two families of fibers.  Theoretical 

modeling of fiber-reinforced thin elastic membranes is based on the works of Adkins, Rivlin, and 

Green [1, 2, 72], Kydoniefs and Spencer [3-5] and Matsikoudi-Iliopoulou [73].  Fundamentally, 

Adkins, Rivlin, and Green developed a large deformation theory for pure thin membranes and 

fiber-reinforced elastic body and solved a series of axially symmetric problems [1, 2, 72].  They 

applied the theory of large elastic deformations of incompressible isotropic materials to the 

inflation of a circular diaphragm with a highly elastic material.  In order to determine the 

deformation of axially symmetric problems (a circular diaphragm, a tube and a spherical shell), a 

numerical integration method using a truncated Taylor series expansion was employed [1, 72].  

They indicated that if the deformation state at a point of the diaphragm is known, then the 

deformation state at all points of the inflated diaphragm could be calculated for any form of the 

strain energy function.  In this research (Chapters 4, 5 and 6), the numerical integration scheme 

similar to Adkins, Rivlin, and Green [1, 72] are employed to solve the finite electro-elastic 

deformation of axisymmetric membrane under mechanical and electrical stimulus.  In [2, 72], 

Adkins, Rivlin and Green employed the theory of large elastic deformation to the deformations 
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of elastic bodies reinforced with fibers.  The fibers are assumed to be thin, flexible, and 

inextensible, and lie parallel and close together in smooth surfaces in the undeformed body.  The 

elastic body is described using a hyperelastic strain energy function and the fibers are considered 

as structural components.  The Cauchy stress is the sum of the elastic stress and stress from the 

fiber tension.  The stress from the fiber tension was obtained by considering the geometry of the 

fibers on the elastic body.  Based on the approach of Adkins, Rivlin, and Green [1, 2, 72], 

Kydoniefs and Spencer [3-5], and Matsikoudi-Iliopoulou [73]  formulated a theory for the 

axisymmetric deformations of a cylindrical membrane and of a fiber-reinforced cylindrical 

membrane.  Kydoniefs and Spencer considered an initially cylindrical membrane composed of 

an incompressible, homogenous, isotropic elastic material possessing a strain energy function [3, 

5].  They obtained the exact solution of the deformation of a cylindrical membrane.  The solution 

was obtained by solving the first order ordinary nonlinear differential equations formed by 

inserting the Cauchy stress into the equilibrium equations in the direction of the meridional and 

latitudinal directions of the cylindrical membrane.  They illustrated their approach considering 

the inflation of a cylindrical membrane sealed at each end by rigid plugs.  By using a numerical 

iterative process (which will be presented specifically in Chapter 4), the deformed profile of the 

cylindrical membrane was calculated numerically.  Kydoniefs [4] and Matsikoudi-Iliopoulou [73] 

formulated the axisymmetric deformation of a fiber-reinforced cylindrical membrane with two 

families of inextensible fibers.  Kydoniefs adopted his previous works [3, 5] on finite 

deformations of a cylindrical membrane to solve for the deformation profile of a fiber-reinforced 

cylindrical membrane and employed Adkins, Rivlin, and Green’ work [1, 72] for formulating the 

fiber stress with fiber geometry [4].  The geometric consideration of two families of fibers on the 

elastic membrane in Kydoniefs’ work [4] is employed in Chapters 4, 5 and 6 to obtain the 
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constitutive formulation of the fiber-reinforced axisymmetric membrane.  However in Chapters 2 

and 3, differently from the structural approach for the fibers, the continuum approach is 

employed to describe the constitutive formulation of the anisotropic continuum, which is 

described by using an invariant-based free energy function.  The detail of the continuum 

approach will be given in Chapter 2.  In comparison with Kydoniefs’ work, Matsikoudi-

Iliopoulou [73] considered finite deformations of a cylindrical membrane with one family of 

fibers by the application of a constant inner pressure and an external torque at the end of the 

membrane.  Matsikoudi-Iliopoulou employed a Mooney-Rivlin strain energy function in the 

numerical examples.  Matsikoudi-Iliopoulou’s results indicated that the ratio between the initial 

length and radius of the cylindrical membrane is an important parameter for the deformation and 

the external torque on the ends of the membrane does not affect the deformation after the 

pressure reaches a certain value.  Later, Shan et al. [74], Goulbourne [75] and Liu [76] adopted 

the approaches in Adkins, Rivlin and Green [1, 2, 72], Kydoniefs and Spencer [3-5] for solving 

problems considering an axisymmetric fiber-reinforced cylindrical membrane.  In this research 

(Chapter 4, 5 and 6), a mathematical model for finite deformations of an axisymmetric fiber-

reinforced cylindrical membrane with two families of fibers under internal pressure, axial 

loading and external electric field is derived.  Details of the formulation are presented in 

Chapters 4, 5 and 6.   

 

1.4. Scope of the Dissertation 

The content of this dissertation can be subdivided as follows: (1) Formulation of a general 

constitutive relationship for electro-elastic materials using an invariant-based formulation 

(Chapter 2), (2) Examination of the polyconvexity conditions for the invariant-based electro-
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elastic free energy function (Chapter 3), (3) Investigation of the sensing and actuation response 

of tubular DE transducers and application of the DE sensors to specific host systems (Chapters 4, 

5 and 6), and (4) Implementation of an electro-elastic material into user subroutine (UMAT) in 

ABAQUS (Chapter 7).  Both isotropic and anisotropic formulations are presented along.  Finite 

electro-elastic deformation of axisymmetric DE transducers is fundamentally based on 

combining large deformation membrane theory and electrostatics.     
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Chapter 2. Constitutive Formulations for 

Anisotropic Electro-Elastic Materials 

In this chapter, generalized constitutive relationships for anisotropic electro-elastic materials are 

formulated using continuum mechanics framework [1-7].  The constitutive relationship for an 

anisotropic electro-elastic material can be derived using an invariant-based theoretical approach.  

The invariants for the scalar valued stress function that is itself a function of the deformation 

gradient, directional vectors and the electric field are determined by using the approach and 

derivations of Spencer, Pipkin and Rivlin [8-13].  The anisotropic electro-elastic material 

consists of an isotropic continuum with electro-passive or active particles or fibers embedded in 

a certain direction.  The particles or fibers are organized and have a certain orientation, 

consequently the material properties can change significantly by applying an electric field if the 

fibers (or particles) are electro-active.  In this research, two families of fibers are considered in a 

3-dimensional space.  The particles are arranged in linear form and closely packed so they can be 

treated as fibers mathematically.  Here, the particles are considered only in the electro-active 

case, hence there is no electrical interaction and physical connection among the particles without 

the applied field.  Unlike fibers, the particles do not carry tension because they are not 

continuous without the electrical coupling induced by the electric field.  Two families means that 

the fibers are in the isotropic matrix with two distinct angles forming each family.  The angles 

could vary for a number of fibers in a given family where the variation is determined by a 

statistic distribution from the dominant angle.   

The constitutive relationship for fiber-reinforced materials can be derived using a semi-structural 

approach or a purely invariant approach.  For the structural approach, the fiber families are 
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considered as structural components in a matrix and a formulation can be obtained by describing 

the geometric relationship of the fibers and the matrix.  In Chapters 4–6, the structural approach 

is employed for fiber-reinforced elastomers undergoing large deformations [14-16].  The 

anisotropic continuum is described by an invariant-based free energy function.  Holzapfel et al. 

[17] and Gasser et al. [18] adopted this invariant approach to describe arterial layers containing a 

statistical distribution of collagen fiber angles. 

In order to describe the local fiber and particle directions (electro-passive or active), a vector 

representing the material preferred direction is introduced as in Spencer [11].  When the fibers 

are not electro-active, they are described by electro-passive directional vectors and exert 

influence only on the zero field stiffness of the material.  When they are electro-active, they are 

represented as electro-active directional vectors and affect the field dependent stiffness and 

deformation of the material.  For electro-elastic materials, an applied electric field causes 

macroscopically observable deformations, which may include electromechanical coupling 

mechanisms such as electrostrictive and electrostatic effects.  It is expected that the amount and 

nature of the electric coupling can be significantly dependent on the orientations of the electric 

directional vectors and polarity and magnitude of the applied electric field.  In order to observe 

the dependence of the electric coupling on the electro-active directional vectors and the applied 

electric field, the coupling is investigated using an analytical method.   

In the development of constitutive equations, one first determines the set of variables on which 

the constitutive function depends and it is convenient to have a method to reduce the possible 

forms of the constitutive function.  Mathematically, we pose the problem of constructing the 

irreducible integrity basis for a scalar valued function that depends on any number of tensor and 

vectors.  The reduction is carried out by satisfying requirements for material frame invariance, 
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material symmetry, and kinematic considerations.  Spencer and Rivlin [8-10] obtained a finite 

integrity basis (invariant set) for an arbitrary number of vectors which are denoted as skew-

symmetric 2nd order tensors and an arbitrary number of symmetric 2nd order tensors.  They 

proved that the integrity basis under the proper orthogonal group consists of the integrity basis 

for the symmetric tensors only and the trace of the symmetric tensor products [8].  They 

tabulated the full class of integrity bases for an arbitrary number of symmetric 2nd order tensors, 

axial vectors, and polar vectors under the proper and full orthogonal groups [9]. Pipkin and 

Rivlin [13] derived the irreducible integrity bases, used to obtain the constitutive equations for 

several physical phenomena involving electric, magnetic, and temperature gradient fields.  The 

stress is a function of the deformation gradient (2nd order tensor), a magnetic field (axial vector), 

and an electric field (polar vector) and a temperature gradient field (polar vector).  The integrity 

bases for symmetric tensor and three polar vectors under the proper and the integrity bases for 

the symmetric tensor, two polar vectors and two axial vectors under full orthogonal groups in 

Pipkin and Rivlin’s work [13] are presented in Appendix B.  The characteristic group of the 

material symmetry of the anisotropic electro-elastic material is the proper orthogonal group [19, 

20].  

Constitutive formulations for general electro-elastic material have been developed in [1-4].  

Dorfmann and Ogden [1, 2] and Rajagopal and Wineman [3] derived a formulation for nonlinear 

isotropic electro-elastic materials.  Dorfmann and Ogden developed a constitutive relationship 

for isotropic electro-active materials using the invariants derived by Spencer [10] and applied the 

formulation to two different boundary value problems (homogenous simple shear and non-

homogenous axial shear of a circular cylindrical tube) [1, 2].  Rajagopal and Wineman derived a 

constitutive relationship to describe the stress that develops in a deformed solid due to the 
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presence of an electric field by using the invariants presented by Spencer [10].  They presented 

two simple boundary value problems, triaxial extension and shear.  Based on the approach 

developed by Dorfmann and Ogden [1, 2], Bustamante [4] developed a theoretical constitutive 

law for transversely isotropic electro-elastic materials, consisting of an isotropic matrix and one 

family of electro-active particles [10].  He showed that the coupling between the electric field 

and the electro-active particles can be controlled by aligning the electro-active directional vector 

in particular orientations with respect to the applied electric field [4].  The research presented 

here distinguishes itself from the works of Dorfmann and Ogden [1, 2], Rajagopal and Wineman 

[3] and Bustamante [4], by means of the following contributions: 1. Constitutive equations for an 

anisotropic material containing two electro-active fiber families are derived and explored in 3 

dimensional space 2. The effect of the orientation of the directional vectors on the 

electromechanical coupling are investigated (the direction of the fiber direction and electric field 

is limited to the principal directions in Bustamante’s work [4]). 3. The constitutive formulation in 

this research is a general formulation applicable to materials with the electro-active or passive 

fibers embedded.  

In Sections 2.1–2.4, a constitutive formulation for anisotropic electro-elastic materials is 

presented. In Section 2.2, the invariants for the coupling between the electric directional vectors 

and electric field are derived.  In Sections 2.3 and 2.4, total stress and tangent modulus equations 

are given.  The coupling effect between the electric directional vectors and the electric field is 

investigated with simple examples (equi-biaxial extension and simple shear) in Section 2.5. 

   

2.1. Geometry and Kinematics 
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We consider an electro-elastic solid continuum occupying and let Ω0 denote the undeformed 

fixed reference configuration, which undergoes a large deformation to the deformed current 

configuration Ω.  The transformation from the reference to the current configuration is denoted 

by c , such that 

  )(Xx  ,  for each .0X  (2.1) 

The deformation gradient F is defined as 

 .
X

(x)







F  (2.2) 

The Jacobian of the deformation gradient is  

 ],det[FJ  (2.3) 

with the convention that J  >  0 for real materials to exist.  The left and right Cauchy-Green 

tensors are written as  

 ., FFCFFB
TT   (2.4) 

For an incompressible material, the material is subject to the constraint 

 .1]det[  FJ  (2.5) 

 

2.2. Invariants for an Electro-Elastic Material  

In order to describe the local fiber and particle directions which could be electro-passive or 

active, vectors a and b in the undeformed configuration is introduced in Equation (2.6) and it is 

required that the free energy depends on the vectors.  The directional vectors are considered as 

one dimensional components, which are characterized by the fibers’ angles in Equation (2.6). 

When a material undergoes deformation, the unit vectors a and b will deform along with the 

material.  Their initial orientation is  
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,ˆsinˆsincosˆcoscos,ˆsinˆsincosˆcoscos 321321 eeeeee    b     a    (2.6) 

where }ˆ,ˆ,ˆ{ 321 eee denote base vectors for a rectangular Cartesian coordinate system (see Figure 

2.1),  α and β are the angle between the vector and the X1 direction on the X1-X2 plane and γ is the 

angle between the vector and the vector projection on the X1-X2 plane 

]).2/,2/[],,[,(    The nominal electric field vector E in Equation (2.7) is 

described in Figure 2.1  

 .ˆˆˆ 332211 eEeEeE    E   (2.7) 

(Note that generally in this dissertation, E is used for the nominal electric field vector, but the 

rest of vectors are lowercase and bold). 

 
 

Figure 2.1. Direction vector a and nominal electric field E in the reference state. 

We consider the anisotropic electro-elastic material under the electric field and the anisotropic 

continuum is described by an invariant-based free energy function.  The invariants are 

constructed by using deformation gradient, directional vectors, a and b and electric field E.  The 

stress invariants for the deformation gradient F, directional vectors a and b and electric field E 

are constructed using Pipkin, Rivlin, and Spencer’s results [8-13].  They derived the integrity 

bases (invariants) for various symmetric groups.  The selection of the invariants depends on 

number and type of tensors and vectors and type of orthogonal group.  For the proper orthogonal 
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group, it is immaterial whether the vectors are axial or polar vectors.  Since the proper 

orthogonal group consists of all rotations but no reflection, the axial and polar vectors are 

invariant under the proper orthogonal group.  For the full orthogonal group, the distinction 

becomes important because the full orthogonal group includes all rotations and reflections in any 

plane.  That is to say, since under the reflection a polar vector is transformed into its negative 

whereas the coordinates of an axial vector are unchanged by the reflection, the number of 

invariants under the full orthogonal group is dependent on whether the vectors are axial or polar.  

According to Eringen and Toupin [19, 20], since the anisotropic electro-elastic material is 

defined under the proper orthogonal group, the integrity basis for the proper orthogonal group is 

employed in this research and is given in Appendix B [13].  Since the anisotropic materials have 

fewer symmetries than isotropic material, they are defined under the proper orthogonal group.  

To use those results, it is important to identify the type of the vector (polar or axial vectors) 

needed.  Electric field E and directional vectors a and b can be defined as polar vectors.  The 

invariant groups for the polar and axial vectors under the proper and full orthogonal groups were 

derived by Pipkin and Rivlin [13]; a summary of the results is given in Appendix B.   

The mechanical behavior of an elastic material is described by the stress which is a function of 

the deformation gradient F.  The principal invariants of the stress are expressed in terms of the 

right Cauchy-Green tensor C as  

 ],det[]],[cof[tr],[tr 321 CCC  III  (2.8) 

where I1, I2 and I3 represent the length, area and volume change of the solid.  The quantities tr[C] 

and cof[C] are the trace and cofactor of the right Cauchy-Green tensor, respectively.  If the 

material is incompressible, I3 = 1.   
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The stress in an anisotropic material is a function of the deformation gradient and the fiber 

orientation (a and b).  Spencer derived the following set of invariants for fiber reinforced elastic 

materials [11]     
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in addition to I1–I3 from Equation (2.8).  I4 and I6 are the fiber stretches in the direction of a and 

b, I5 and I7 are higher order invariants for I4 and I5, and I8 and I9 are coupled invariants of the 

directional vectors a and b.  Since it is assumed that the fibers are inextensible in Chapters 4, 5 

and 6 and I4–I9 are constant during the deformation.  

The invariants associated with the electric field are 

 ,,, 2
12

1
1110 ECE  ECE  EE

  III  (2.10) 

where I10 and I11 represent the quadratics of the nominal and true electric field E and e, 

respectively.  The true electric field e is expressed in terms of the nominal electric field E as 
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Additionally, there are coupled invariants between the nominal electric field and the two electro-

active directional vectors, 
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where I13–I16 represent the coupling between one electro-active directional vector and the 

nominal electric field and I17–I19 represent the coupling between two electro-active vectors and  

the electric field.  Since the electro-active fibers (or particles) are considered as one dimensional 

components and the coupling invariants between the fibers (or particles) and the nominal electric 
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field are defined as dot product of two vectors in Equation (2.12), there is no coupling when the 

directions of the fibers a and b are orthogonal to the nominal electric field E.  The choice of 

which invariants in Equation (2.12) to use in the formulation of a free energy function for an 

electro-elastic material is determined by whether the directional vectors a and b in the material 

are electro-active or passive.   

 

2.3. Cauchy Stress for an Incompressible Material 

If there exists a energy function W, meaning the system is conservative, then W also depends on 

F, a, b, and E. We postulate a free energy function that depends on F, a, b, and E to describe the 

behavior of an anisotropic electro-elastic material.  The free energy function is then a function of 

the set of invariants,  

).,,,,,,,,,,,,,,,,,,( 19181716151413121110987654321 IIIIIIIIIIIIIIIIIIIWW   (2.13) 

For isotropic electro-elastic materials, the free energy function can be prescribed as 

 ).,,,,,( 121110321 IIIIIIWW   (2.14) 

If two families of the electro-passive fibers are embedded in an isotropic matrix, there is no 

coupling between the fibers and the electric field and the free energy function can be given as 

 ).,,,,,,,,,,,( 121110987654321 IIIIIIIIIIIIWW   (2.15) 

For anisotropic electro-elastic materials with two families of electro-active fibers or particles 

embedded, the free energy function is written as 

 ).,,,,,,,,,,,,,,,,,,( 19181716151413121110987654321 IIIIIIIIIIIIIIIIIIIWW   (2.16) 

To simplify the constitutive formulations, higher order invariants with C
2
 (I5, I7, I9, I12 and I19) 

are not included and the free energy function for anisotropic electro-elastic materials is 
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 ).,,,,,,,,,,,,,( 1817161514131110864321 IIIIIIIIIIIIIIWW   (2.17) 

The 2nd Piola-Kirchhoff stress S is defined as 
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By using the chain rule, the 2nd Piola-Kirchhoff stresses is obtained explicitly as 
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where the first derivatives of the invariants in terms of the right Cauchy-Green tensor are 
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where 1 is the 2nd identity tensor and  and  represent the tensor and cross products, 

respectively.  

By inserting Equation (2.20) into (2.19), the 2nd Piola-Kirchhoff stress becomes 
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where ii IWW  / , i = 1, 2, 4, 6, 8, 11, 14, 16 and 18, and d = a × b.  With the assumption of 

material incompressibility (J = 1), the 2nd Piola-Kirchhoff stress is rewritten as  
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where p is the hydrostatic pressure.  By using the push-forward operator [21], the total Cauchy 

stress in the deformed configuration is  
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The total stress in Equation (2.23) can be expressed in index notation, where the summation 

convention is implied for repeated indices 

.)}(2

)(2)(2)(2)(2

)(2)(22)(2{

18

1614118

64
2

2121

ijljlkik

ljlkikljlkikjiljlkik

ljlkikljlkikijijij

peBdFW

eBbFWeBaFWeeWbFaFW

bFbFWaFaFWBWBIWW











 (2.24) 

where i, j and k run from 1‒3.  If it is assumed that the free energy function is a linear 

combination of the invariants in Equations (2.8)‒(2.11) and Wi is a material contant, W1, W2, W4, 

W6 and W8 represent mechanical properties of the material and the fibers, which can be obtained 

using a uniaxial or biaxial extension test.  W11 is an electrical property of the isotropic matrix and 

can be independently measured using a reference material, which electrical property is already 

known.  W14, W16 and W18 are electromechancial coupling coefficients between the fibers and the 

applied electric field, which also can be determined similarly to W11.     

If E = 0, there is no electro-active coupling and the material behavior is elastic.  If E ≠ 0, 

specifically, well known electromechanical coupling mechanisms can be associated with the 

invariants and the electric charges will align towards the electric field.  The Coulombic attraction 

between charged surfaces is described by the sixth term of Equation (2.24).  Fik ak Bjl el and Fik bk 

Bjl el represents the coupling between one electro-active directional vector (a and b) and the 

applied true electric field (e).  Fik dk Bjl el describes the coupling between two electro-active 
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directional vectors and the applied electric field.  It is expected that the couplings are strongly 

dependent on the orientation and magnitude of a, b and e. 

   

2.4. Tangent Modulus for an Incompressible Material 

Application of the constitutive formulations in the previous section to a finite element method 

(ABAQUS 6.9-1) requires the derivation of the tangent modulus.  The tangent modulus serves as 

an iterative operator for a finite element solver using a Newton-type method for the solution of 

nonlinear initial or boundary value problems.  The detail of the implementation of the 

constitutive formulation for the electro-elastic material will be presented in Chapter 7. 

The tangent modulus tensor is defined as 
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The tangent modulus in the reference state is obtained by inserting Equation (2.21) into (2.25),  
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where 
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The tangent modulus tensor in the deformed configuration is obtained using the push-forward 

operator,  

.
1 TT

J
FFFFCc   (2.28) 

The detailed formulation of the tangent modulus for an electro-elastic material is given in 

Appendix C.  

 

2.5. Coupling Effect between the Fibers and the Electric Field 

In this section, the coupling between the electro-active directional vectors and the electric field is 

investigated by using the constitutive formulation in Section 2.3.  A maximum or minimum 

coupling effect can be generated by orienting the angles of the directional vectors and changing 

the polarity and magnitude of the electric field.  The critical angles for the maximum or 

minimum coupling are obtained by using a simple second derivative test in Section 2.5.1.  In 

Section 2.5.2, the constitutive formulation for an electro-elastic material with two electro-passive 

directional vectors is presented for the case of plane strain.  In Sections 2.5.3 and 2.5.4, the 

coupling between a single active directional vector and the electric field and between 2 active 

directional vectors and the electric field are investigated respectively by using the second 

derivative test.  To examine the dependence of coupling on the angles and electric field, simple 

examples (equi-biaxial extension and simple shear) are presented in Section 2.5.5 and 2.5.6.    

 

2.5.1. Local Maxima and Minima for Electro-active Coupling 

The local maximum and minimum of the coupling between the electro-active directional vectors 

and electric field are investigated using a simple second derivative test [22].  For a single fiber 
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family (α and γ), the critical values (α1 and γ1) can be obtained by taking the first partial 

derivatives of a given function f with respect to α and γ.  The Hessian matrix of second partial 

derivatives of the function f with respect to α and γ is  
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so that 
2

2



 f
or 

2

2



 f
 can be used as D1. 

The conditions for identifying a maximum, minimum , or saddle points are: 

(i)        If D1(α1, γ1) > 0 and D2(α1, γ1) > 0, then  f  has a local minimum at (α1, γ1), 

(ii)       If D1(α1, γ1) < 0 and D2(α1, γ1) > 0, then  f  has a local maximum at (α1, γ1), 

(iii)      In any other case where D2(α1, γ1) < 0,  f  has a saddle point at (α1, γ1). 
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2.5.2. Two Passive Directional Vectors and Electric Field 

Let’s consider two directional vectors which are not electro-active as may be the case for a 

material reinforced with passive fibers.  Since the directional vectors are passive, the coupling 

invariants I13–I19 are zero.  The free energy function can now be simplified to 

 ).,,,,,,( 111086421 IIIIIIIWW   (2.31) 

The total stress in Equation (2.24) is also simplified:  
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Consider the electromechanical deformation in the X1-X2 plane of an anisotropic dielectric 

elastomer.  It is assumed that there is no shear in the X3 direction (F13 = F23 = F31 = F32 = 0), the 

fiber families exist in the X1-X2 plane (γ = 0) and the true electric field is applied in the X3 

direction (e1 = e2 = 0).  In this case, the deformation gradient, directional vectors a and b, and 

true electric field e are  
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where the fibers a and b reside in the X1-X2 plane as shown in Figure 2.2.  Figure 2.2 describes 

the geometry of the electro-elastic where L1, L2 and h0 are reference dimensions in the X1, X2, and 

X3 directions.  
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Figure 2.2. Schematic of anisotropic dielectric elastomer with two directional vectors a and 

b and true electric field e in the reference state. 

There are no tractions normal to the surface, so we set σ33=0 and the total stress is now written 

using Equations (2.32) and (2.33):  
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(2.34) 

where σ13 = σ23 = 0 because of F13 = F23 = B13 = B23 = 0. 

Equation (2.34) can be applicable to the isotropic electro-elastic material or the anisotropic 

electro-elastic material with two families of the electro-passive fibers.  According to Equation 

(2.34), the terms with W4, W6, and W8 induce the stress from the electro-passive fibers during the 

deformation.  However, for the electro-passive particles, since the electro-passive particles 

cannot carry the tension in the direction of the particles, the invariants (I4, I6, and I8) for the 

directional vectors a and b should disappear.     
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2.5.3. One Electro-active Directional Vectors and Electric Field 

Consider one electro-active vector a and a passive vector b.  Since there is coupling between a 

and e, the free energy function becomes  

 ).,,,,,,,,,( 14131110864321 IIIIIIIIIIWW   (2.35) 

 The total stress in Equation (2.24) is simplified with respect to the free energy function in 

Equation (2.35) to be 
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where 

 }.,,{},sin,sincos,cos{cos},sin,sincos,cos{cos 321 eee e  b  a   (2.37) 

Note that the fibers or aligned particles can take on a 3 dimensional character and are illustrated 

in Figure 2.3. 

 

 

 

Figure 2.3. Two directional vectors a and b and true electric field e in 3 dimensional space. 

When it is assumed that there is no surface traction in the X3 direction, the total Cauchy stresses 

are derived as  
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If Wi (i = 1, 2, 4,..., 18) are assumed to be prescribed parameters based on the electro-elastic 

materials (that is to say, W is a linear function of the invariants), the angles of the directional 

vector (α, β and γ) are controllable independent parameters for magnifying the coupling.  Since 

the deformation gradient F and the electric field e are independent of the angles α, β and γ, the 

first and second derivatives of the coupling term in the principal stress  (i  =  j) in Equation (2.33) 

with respect to the angles α, β, and γ are given as 
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where 
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The critical angles for the maximum and minimum coupling are obtained when the first 

derivatives in Equation (2.39) are equal to zero.  The critical angles corresponding to a maximum 

or minimum is determined by using the second derivatives per Equation (2.29) and conditions (i) 

and (ii), 
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39 

 

where 

 }.sin,sincos,coscos{},0,sincos,coscos{
2

2

2

2















 aa
 (2.42) 

 

2.5.4. Two Electro-Active Directional Vectors and Electric Field 

Two electro-active directional vectors a and b and the electric field in Equations (2.6) and (2.7) 

are considered.  Since there are couplings between both electro-active directional vectors (a and 

b) and the electric field, the free energy function becomes  

 ).,,,,,,,,,,,,,( 1817161514131110864321 IIIIIIIIIIIIIIWW   (2.43) 

 The total stress in Equation (2.24) is now simplified to  
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where 

)}.sin(cos),cos(cossincos),sin(sinsin{cos 2   bad  (2.45) 

For simplification, β is assumed to be –α, which implies symmetric placement of the fibers and 

hence Equation (2.45) becomes,  

 }.2sincos,0,sinsincos2{ 2
     d    (2.46) 

The total Cauchy stresses in the X1 and X2 directions are expressed as  
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(2.47) 

For instance, if electro-active particles are embedded and no electric field is applied, there is no 

physical connection among the particles, which means that each family of the particles cannot 

carry the tension.  The total Cauchy stresses for this case is  
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However, if the electro-active fibers are embedded and no electric field is applied (or the 

direction of fibers is orthogonal to the direction of the applied electric field), there is no coupling 

between the fibers and the applied electric field but, each family of the fibers still carries the 

fiber tension.  The total Cauchy stress for this case is  
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 (2.49) 

The coupling term between directional vectors and the electric field in Equation (2.47) is now 

investigated to obtain the critical points to obtain a local maximum or minimum.  Note that this 

value will depend on the deformation state.  It is assumed that W18 is a prescribed constant.  The 

first and second derivatives of the coupling term with respect to the angles α, β, and γ are given 

as 
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where 
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The critical angles are obtained using Equations (2.50) and (2.51) via the method described in 

Section 2.5.2: 
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where 
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2.5.5. Numerical Example 1: Equi-biaxial Extension 

Consider equi-biaxial extension without shear (F12 = F13 = F23 = 0) with the incompressibility 

assumption in Equation (2.5).  The deformation gradient F, directional vectors a and b and true 

electric field e are given as   
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The critical angles inducing the minimum and maximum couplings between one or two electro-

active directional vectors and the electric field are obtained by using the formulation in Sections 

2.5.2 and 2.5.3 along with conditions (i) and (ii) in Section 2.5.1.   

A. Coupling between one active directional vector and the electric field 

For the coupling between one electro-active directional vector and the electric field, the critical 

angles for the principle directions i = j = 1 and 2 are obtained by solving Equation (2.39),  
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The critical angles {αi, γi} for i = j = 1 and 2 are 
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Whether the critical angles in Equation (2.56) produce a maximum or minimum coupling is 

determined by conditions (i) and (ii):   
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According to Equations (2.56) and (2.57), there are several possible scenarios depending on the 

polarity and magnitude of the applied electric field.  They are:   
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Case 1) when 321   eee and , {α1, γ1}={0, 0} and {α2, γ2}={π/2, 0}, which induce  

maximum coupling ( 1e and 02e ) and minimum coupling ( 1e and 02e ) in the X1 and X2 

direction, 

Case 2) when 213   eee and , γ1 = γ2 = π/2, which induce maximum coupling ( 1e and 

02e and 03e ), and γ1 = γ2 = -π/2, which induce minimum coupling ( 1e and 02e  and 

03e ) in the X1 and X2 direction, and α is not defined at γ = ±π/2,  

Case 3) when  321  eee  ,0
 
{α2, γ2}={π/2, 0}, which induce maximum coupling 

( 02e ) and minimum coupling ( 02e ) in the X2 direction, 

Case 4) when  312  eee  ,0  {α1, γ1}={0, 0}, which induce  maximum coupling ( 01e ) 

and minimum coupling ( 01e ) in the X2 direction. 

The orientation of α and γ in the two cases are shown to Figure 2.4.  The dash and solid lines 

represent the minimum and maximum coupling, respectively.  According to conditions Case 1) – 

Case 2), the critical angles for the maximum and minimum coupling are significantly dependent 

on the polarity and magnitude of the applied electric field.  The change of the electric polarity 

reverses the direction of the coupling.  This result implies that when the electro-active directional 

vector aligns in the preferred direction for coupling, controlling the electric polarity leads to 

either positive or negative coupling.   
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Figure 2.4. Orientation of the directional vector for the cases 1) and 2) 

The coupling in Equation (2.38) is denoted as Q and can be normalized by 3
111Fe  and 3

222Fe  with 

assuming W14 = 1 and e3 = 0 for i = j = 1 and 2.  
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 (2.58) 

The normalized couplings for i = j = 1 and 2 are plotted in Figures 2.5 and 2.6.   

Positive coupling means positive electric stress, which is induced by the coupling between one 

electro-active directional vector and the applied electric field.  Consider Case 1) 

( 321   eee and ).  At the boundary in Figure 2.2, the force balance equation in the X1 direction 

can be obtained using Equation (2.47)  
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 (2.59) 

where A and F represent the deformed cross-sectional area and the external force in the X1 

direction, respectively and the last term in Equation (2.59) is the coupling term Q11 in Equation 

(2.58).  Equation (2.59) implies that a larger positive coupling Q11 (e1 > 0) causes a larger 

Cauchy stress and more external force F is required.  Conversely, the negative coupling Q11 (e1 < 
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0) leads to a smaller Cauchy stress and improve the actuation response.  Specifically, the effect 

of the negative coupling Q11 with respect to the orientation of the directional vector on the 

actuation response can be investigated using Figures 2.4 and 2.5.  For example, the improvement 

of the actuation in the X1 direction at e1 < 0 can be maximized by aligning the directional vector 

in the X1 direction (α = γ = 0°) in Figures 2.4 and 2.5.  

    

  
Figure 2.5. Contour plot for the coupling at i 

= j = 1 between one electro-active directional 

vector a and the electric field e with respect 

to α and γ. 

Figure 2.6. Contour plot for the coupling at 

i = j = 2 between one electro-active 

directional vector a and the electric field e 

with respect to α and γ. 

 

 

B. Coupling between two active directional vectors and the electric field 

For the coupling between two electro-active vectors and the electric field, the second derivative 

test is used to find the critical angles.  The critical angles for the principal direction i = j = 1 are 

calculated by using Equation (2.39):  
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(2.60) 

where {α1, γ1}n represents the nth critical angle for i = j =1. 

At i = j = 1, the critical angles are also dependent on the electric field e1 and e3.  

To simplify D1 and D2, either e1 or e3 is assumed to be zero.  Now, the critical angles become 
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(2.61) 

Whether the critical angles in Equation (2.61) produce a maximum or minimum coupling is 

determined by conditions (i) and (ii):  
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(2.62) 

According to Equation (2.62), the specific angles for the maximum or minimum coupling are 

decided by the polarity of the electric field e1 and e3.  As expected, the direction of the coupling 

is reversed by changing the polarity.   

For example, the coupling normalized by 
3

11Fe1  and the orientation of the critical angles for i = j 

= 1 with W18 = 1 and e3 = 0 in Equations (2.61) and (2.62) are plotted in the left of Figure 2.7.  



47 

 

The maximum coupling (solid lines: B and C to the right of Figure 2.7) exist at {α, β, γ} = {π/2, -

π/2, π/4} and {-π/2, π/2, -π/4} and minimum coupling (dotted lines: A and D in the right of 

Figure 2.7) at {α, β, γ} = {-π/2, π/2, π/4} and {π/2, -π/2, -π/4}, respectively.  In detail, since the 

absolute value of the maximum and minimum coupling is identical mutually, the maximum 

coupling could be reversed by converting the electric polarity.  According to right of Figure 2.7, 

since the critical angles of α = π/2 (or -π/2) and γ=π/4 (or -π/4) leads to the maximization of the 

cross product of a and b along with the X1 direction, the coupling is maximized (B and C on right 

of Figure 2.7).  Differently from Coupling between one active directional vector and the electric 

field, the coupling between two electro-active directional vectors and the electric field is 

maximized when the electric field is orthogonal to the plane where a and b exist because the 

coupling is defined as the cross produce of a and b.  Additionally, the coupling is not affected 

directly by the mechanical properties of the electro-active fibers because the direction of the 

coupling is orthogonal to orientation of the fibers.  

 

 

Figure 2.7. (Left) The maximum and minimum coupling between two directional vectors 

and electric field with respect to α and γ. (Right) see B and C for maximum coupling and A 

and D for minimum coupling, coupling vectors illustrated by solid and dotted lines.  

A 

D C 

B 
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2.5.6. Numerical Example 2: Simple Shear 

Consider simple shear with the electric field in the X1 direction.  The deformation gradient F, 

directional vectors a and b and true electric field e are given as   
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where k represents a value of the shear.  The critical angles inducing the minimum and maximum 

couplings between one or two electro-active directional vectors and the electric field are obtained 

using the same procedure outlined previously in Section 2.5.5.   

A. Coupling between one active directional vector and the electric field 

For the coupling between one electro-active directional vector and the electric field, the critical 

angles for the principle directions at i  =  j  = 1 and 2 are obtained by solving Equation (2.39),  
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The critical angles {αi, γi} for i = j = 1 and 2 are 

 .  }0,
2

{},{},0,{tan},{ 22
1

11


   k  (2.65) 

Whether the critical angles in Equation (2.65) produce a maximum or minimum coupling is 

determined by conditions (i) and (ii):   
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 (2.66) 

According to Equation (2.65), the critical angle at i = j = 1 is dependent only on the shear k 

which is shown in Figure 2.8.  Figure 2.8 describes the coupling normalized by the applied true 

electric field e1 for i = j = 1 at k = 0.1 and 0.6 rad.  In the left of Figure 2.8 (k = 0.1), the critical 

angle exists near to the X1 axis.  This implies that the maximum or minimum coupling can be 

obtained by aligning the directional vector in the X1 direction when the shear is small.  However, 

according to the right of Figure 2.8 (k = 0.6), the critical angle is strongly dependent on the shear 

when the shear is not small.  As expected, the minimum and maximum couplings are dependent 

on the polarity of the applied electric field e1 (see D1 in Equation (2.66)).  For example, when the 

electro-active fibers or particles are embedded in a certain direction, positive e1 could produce 

the contraction and negative e1 leads to the extension in the X1 direction.  When i = j = 2, the 

critical angle always exists in the X2 direction ({α2, γ2}={π/2, 0}) because the shear k is in the X1 

direction.  The magnitude of the coupling for i = j =2 is strongly dependent on the amount of 

shear k in Figure 2.9.     
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Figure 2.8. Contour plot for the coupling (i = j = 1) between one electro-active directional 

vector a and the electric field e with respect to α and γ for k = 0.1 (left) and k = 0.6 (right). 

 

  
Figure 2.9. Contour plot for the coupling (i = j = 2) between one electro-active directional 

vector a and the electric field e with respect to α and γ for k = 0.1 (left) and k = 0.6 (right). 

B. Coupling between two active directional vectors and the electric field 

For the coupling between two electro-active vectors and the electric field, the second derivative 

test is applied to find the critical angles.  The critical angles for the principle directions i = j = 1 

are calculated using Equation (2.50):  
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where {α1, γ1}n represents the nth critical angle (n = 1, 2, 3, and 4) for i = j = 1.  Whether the 

critical angles in Equation (2.67) produce a maximum or minimum coupling is determined by the 

conditions (i) and (ii): 
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 (2.68) 

According to Equations (2.66) and (2.67), the specific angles for the maximum or minimum 

coupling are decided by the polarity of the applied electric field.  As expected in Equation (2.67), 

the direction of the coupling is reversed by changing the electric polarity.  Similar to the result of 

the coupling in Section 2.5.5, the critical angles in Equation (2.66) maximizes the cross product 

of a and b along with the X1 direction such that the magnitude of the coupling is maximized.  

Physically, the directional vectors a and b are not affected by the shear in the X1 direction 

because a and b are aligned in the X2 direction (α and β = π/2 (or -π/2)).  Since the coupling is 

the cross product of a and b, the critical angles for the coupling is not dependent on the shear k in 

the X1 direction, which is shown in Figure 2.10.  As expected, the magnitude of the coupling 

depends on the amount of shear k.    
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Figure 2.10. Contour plot for the coupling (i = j = 1) between two electro-active directional 

vector a and b and the electric field e with respect to α and γ for k = 0.1 (left) and k = 0.6 

(right). 
 

2.6. Conclusion  

In this chapter, a nonlinear constitutive law for anisotropic electro-elastic materials is formulated 

by using a continuum mechanics framework.  The anisotropic electro-elastic material is 

considered as an isotropic continuum with electro-active and passive fibers or particles 

embedded, which are defined by directional unit vectors.  The free energy function for the 

electro-elastic material is assumed to be invariant-based.  The invariants for describing the 

coupling between the electro-active directional vectors and electric field are developed by 

adopting the approach of Spencer and Rivlin [8-10] and Pipkin and Rivlin [13].  The coupling 

between the electro-active directional vectors and the applied electric field was analyzed with 

respect to the orientation of the directional vector and polarity and magnitude of the applied 

electric field.  The conditions on the electro-active directional vectors and the applied electric 

field for maximizing and minimizing the coupling were investigated in two simple examples 

(equi-biaxial extension and simple shear).  The results indicate that the magnitude and direction 
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of the coupling is significantly dependent on the boundary conditions, the orientation of the 

directional vectors, and the polarity of the applied electric field.  
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Chapter 3. Electromechanical Stability Conditions 

for Electro-Elastic Materials 

 

 

 

 

The main objective of this section is to investigate the numerical stability of the proposed 

constitutive models for electro-elastic materials.  When using finite element modeling, numerical 

stability is a crucial consideration in obtaining converged solutions of initial and boundary value 

problems.  Stability is dependent on the mechanical and electrical material properties, the 

boundary conditions and external forces (mechanical or electrical stimulus).  Stability therefore 

depends on the form of the strain energy function, which is oftentimes invariant based. The 

invariants can be either convex or non-convex, which ultimately will affect the stability of the 

strain energy function.  In this chapter, only invariant-based free energy functions are considered 

and the stability of the electro-elastic material is examined using the concepts of convexity and 

polyconvexity.   

The convexity of the invariants which are involved in the deformation gradient, the directional 

vectors and the electric field vector as well as the polyconvexity of the invariant-based free 

energy function for electro-elastic materials are examined using the convexity and the 

polyconvexity conditions, which have been developed formally by Hill [1] and Ball [2].  The 

conditions are mainly based on the direct method of the variational principle, finding a 

minimizing deformation of the electro-elastic strain energy subject to specified boundary 

conditions.  The set of invariants, which are also called the irreducible integrity bases, are 
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obtained by adopting the invariant theoretical formulations previously derived by Spencer, 

Pipkin and Rivlin [3-7] described in Chapter 2.   

The direct method in calculus of variations is used for proving the existence of equilibrium 

solutions of the free energy function W(F) with given boundary conditions.  If the function is 

finite-valued and continuous, an important relationship can be summarized 

.convexityonerankxityquasiconveitypolyconvexconvexity    

This says that a convex function is polyconvex, a polyconvex function is also quasiconvex, and a 

quasiconvex function is also rank-one convex, but the converse relationship is not true.  A 

convex free energy function with respect to the deformation gradient F leads to a unique 

equilibrium solution under specific boundary conditions (the concept of convexity is presented in 

Section 3.1).  In nonlinear elasticity, there is in general no unique solution to boundary-value 

problems, and it is also not guaranteed that solutions always exist.  To examine the existence of 

solutions when considering finite deformations, Morrey introduced the concept of 

quasiconvexity. This was formulated as an integral inequality over an arbitrary domain subject to 

Dirichlet boundary conditions (the concept of quasiconvexity is introduced in Section 3.2) [8].  

However, since quasiconvexity is formulated as an integral inequality, it is difficult to show the 

existence of solutions by using quasiconvexity.  In order to overcome this limitation, Ball 

proposed the polyconvexity condition which is a more practical method for proving the existence 

of the equilibrium solutions [2].  According to Ball’s approach, the polyconvexity of a free 

energy function is proven by showing that that function is convex with respect to the argument 

(F, cof[F] and det[F]), which represent the mappings of the line, area and volume elements, 

respectively.  Ball demonstrated the polyconvexity of several isotropic strain energy functions, 
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namely the Neo-Hookean, Mooney-Rivlin, and Ogden models [2].  He modified the class of 

strain energy functions W(F) introduced by Ogden [9] to be 
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where α1 ≥…≥ αM ≥ 1, β1 ≥…≥ βN ≥ 1, B is arbitrary constant and Fij is the component of the 

deformation gradient F (i and j = 1, 2 and 3).  The polyconvexity condition for W(F) was 

determined to be  
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    (3.2) 

The special cases, B = 0, M = N = 1, α1 = β1= 2 and B = 0, ck = 0 represent the Mooney-Rivlin 

[10] and Ogden models, respectively. 

For isotropic materials, Raoult [11], Steigmann [12], and Schrőder and Neff [13, 14] investigated 

polyconvexity of the free energy function for the material following Ball’s approach.  Raoult 

employed a Saint Venant-Kirchhoff model for a hyperelastic material,  

  ]].[cof[tr][tr][tr)( 1
2

21 FFFFFFF
TTT baaW   (3.3) 

He showed that the Saint Venant-Kirchhoff model W(F) is not polyconvex if a1 < 0 but W(F) is 

polyconvex if all coefficients a1, a2 and b1 are nonnegative [11].  Steigmann inspected the 

convexity of the invariants for the isotropic material.  He introduced a new set {ik} which is 

derived from the invariants for isotropic materials as  

 ],[d]],[cof[tr],[tr 321 U  U  U etiii   (3.4) 

where I1, I2 and I3 have been introduced in Chapter 2 and U is the unique positive symmetric 

right stretch tensor and square root of C [12].  The convexity of i1, i2 and i3 were established with 

respect to F, cof[F] and det[F], respectively.  Steigmann also proved the polyconvexity of an 

additive form of the invariant-based strain energy function 
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 where W(i1), W(i2) and W(i3) are convex with respect to F, cof[F] and det[F], respectively [12].  

Schrőder and Neff proved the convexity of the invariants I1, I2 and I3 by using Ball’s approach 

[13, 14].  Also, they introduced several additive and multiplicative combinations of the invariants 

between I1, I2 and I3 for developing polyconvex invariant-based strain energy functions.    

For anisotropic materials, a polyconvex strain energy function was introduced by Schrőder and 

Neff [13, 14].  They proved the convexity of the invariants (I4, I5, I6, I7, I8 and I9) for anisotropic 

materials and developed a polyconvex anisotropic invariant-based strain energy function by 

taking a linear combination of the convex invariants.  Based on the proposed polyconvex strain 

energy function, they derived a constitutive formulation for anisotropic materials, and two 

numerical examples were presented for describing the constitutive equations with specific 

boundary conditions (biaxial extension and a 3-dimensional tapered cantilever) [13, 14].    

Rogers and Antman adopted Ball’s approach to prove polyconvexity of the free energy function 

for electro-magneto-thermo-elastic materials [15].  According to their work, the polyconvex 

function for an electro-magneto-thermo elastic material is expressed as 

 ),,],det[],[cof,(),,( HEFFFHEF gW   (3.6) 

with g convex with respect to the independent variables F, cof[F], det[F], E and H, where E and 

H are electric and magnetic fields.   

The numerical stability of  dielectric elastomers (DEs) has been investigated by Zhao and Suo 

[16-18], Xu et al. [19] and Leng et al. [20].  Based on considerations of virtual work, they 

derived the elastic stress and the electric displacement with respect to the deformation gradients 

and the gradient of electric potential, respectively.  The electromechanical stability of a dielectric 

elastomer (DE) was examined by using a general convexity condition, for which the Hessian 
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matrix must be positive definite in the equilibrium state [16-18].  Zhao and Suo showed that the 

free energy function for the DEs (an isotropic electro-elastic material) is typically non-convex 

and causes the material to undergo one of three possible unstable states such as wrinkling when 

two states coexist and a discontinuous transition is made from a thick to thin state.  Based on 

Zhao and Suo’s approach to electromechanical stability of DEs, Xu et al. [19] and Leng et al. [20] 

presented the critical nominal electric field, nominal stresses and principal stretches for the 

electromechanical stability of DEs under biaxial extension. 

In this chapter, polyconvexity of invariant-based free energy functions for electro-elastic 

materials under equibiaxial extension is investigated using Ball’s, and Rogers and Antman’s 

approaches [2, 15].  In Sections 3.1 and 3.2, the concepts of convexity and quasiconvexity will 

be presented, respectively.  In Section 3.3, the general and strict polyconvexity conditions for 

pure elastic and electro-elastic materials will be described.  Based on the convexity condition in 

Section 3.1, convexity of the invariants for the nominal electric field and the electro-active 

directional vectors will be proved in Section 3.4.  In Section 3.5, the polyconvexity conditions 

for isotropic and anisotropic electro-elastic materials will be obtained using the polyconvexity 

condition in Section 3.3.   

 

3.1. Convexity Conditions  

In order to find a minimizing deformation of the free energy W(F) subject to specific boundary 

condition, the method of variations is the main mathematical treatment.  A sufficient condition 

for the existence of minimizers can be obtained by using the concepts of convexity, 

quasiconvexity and polyconvexity.  The convexity of a function with respect to its different 

arguments plays a major role in determining the mathematical stability of the function.  Let us 
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first consider a scalar-valued function f(x) depicted in Figure 1.2 The function f(x) is convex with 

respect to x if  

 ),()1()())1(( 2121 xfxfxxf    (3.7) 

where ].1,0[,,),( 2121    xxxxx  

Figure 1.2describes the geometric interpretation of Equation (3.7).  The point C which exists on a 

straight line between A and B is always above D.  The geometry of each point is given as 

 ).)1((,)1(),(),( 2121 xxfDBACxfBxfA          (3.8) 

 

 

Figure 3.1. Geometric interpretation of the convexity condition. 

 

If the first or second derivatives f (́x) and f (̋x) exist for each x, the convexity condition can be 

reformulated from Figure 1.2 
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Alternatively, Equation (3.9) becomes 

 .0)(  xf  (3.10) 
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Therefore, the twice differentiable scalar valued free energy function W(F) is convex with 

respect to F if  

  .0)(  FW  (3.11) 

The convexity condition with respect to the deformation gradient F in Equation (3.11) 

guarantees the unique solution, which means that a local minimum is always a global minimum.  

A drawback of the convexity condition is that it is physically too restrictive.  That is to say, since 

the convexity condition of the free energy function precludes instable solutions, the stability of 

problems cannot be analyzed.  Therefore, W needs not be strictly convex for including the non-

unique solution for the description of instability.  One suitable condition is quasiconvexity, 

which was introduced by Morrey [8].  The concept of quasiconvexity is introduced in Section 3.2.  

 

3.2. Quasiconvexity Conditions  

The mathematical criterion of material stability states that it is impossible to release energy from 

a body made of a stable and homogeneous thermo-elastic material by an isothermal process if the 

body is fixed at the boundaries [8].  This condition can be formulated for the case of 

hyperelasticity as  
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with homogeneous Dirichlet boundary conditions, where  Ω and [t, t0] represent the space and 

time domains.   
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The deformation gradient and free energy at the initial time t0 over Ω are denoted as F̂ and 

)ˆ(),( 0 FF WtW  .  Performing the time integration, Equation (3.12) becomes 

 .0)ˆ()(   
dVWdVW FF  (3.13) 

The first term in Equation (3.13) describes a state at time t.  The deformation gradient F at t can 

be rewritten using an arbitrary fluctuation field w, 

 .ˆ wFF   (3.14) 

where w  represents the gradient of w.  By inserting Equation (3.14) into (3.13), the 

quasiconvexity condition which has been introduced by Morrey [8] is obtained,  

 .)ˆ()ˆ( dVWdVW  
 FwF  (3.15) 

Note that the inequality in Equation (3.15) holds for arbitrary fluctuations w.  The quasiconvexity 

condition in Equation (3.15) implies that any homogeneous body for any displacement boundary 

value problem allow a possible homogeneous strain which should be an absolute minimizer for 

the total energy.  Morrey showed that if W(x) is quasiconvex for every argument x, there exist 

minimizers for various boundary value problems [8].  This condition is relatively difficult to 

verify due to the fact that it characterizes an integral inequality, and a more tractable condition is 

required.   

 

3.3. Polyconvexity Condition 

Morrey introduced a more suitable condition than convexity (quasiconvexity), which ensures the 

minimizers of a function for various boundary value problems [8].  However, as already 

mentioned in Section 3.2, since the quasiconvexity condition in Equation (3.15) is a non-local 

integral inequality, proving quasiconvexity of an explicit free energy function is rather 
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complicated to handle.  So, Ball introduced the notion of polyconvexity, which is more practical 

than quasiconvexity [2].  The polyconvexity condition is also equivalent to a sufficient condition 

for quasiconvexity given by Morrey [8].   

Based on physical considerations, it is implied that extreme strains lead to infinite stress.  That is 

to say, if a material is extremely compressed (J → 0, where J = det[F]) or stretched (J → ∞), 

large stresses is produced.  This physical observation can be summarized using the arguments F, 

cof[F] and det[F] 
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Equation (3.16) can be replaced by the coerciveness inequality 

 ,}])(det[][cof{)(   rqp
W FFFF  (3.17) 

where α, β, p, q and r > 0.  Ball combined this result with the calculus of variations to establish 

the existence of minimizers for a free energy function [2].  According to Ball’s approach [2], the 

free energy function of an elastic material is defined as 

 ]),det[],[cof,( FFFgW   (3.18) 

where cof[F] is the cofactor of the deformation gradient F.    

W(F) is polyconvex if g is convex with respect to each variable (F, cof[F] and det[F]).   

In other words, by adopting Equation (3.7), polyconvexity of the free energy function W(F) is 

satisfied if 
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where ].1,0[,21  FF  

It is further assumed that W can be decomposed into 
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 ]).(det[])[cof()( 321 FFF gggW   (3.20) 

Strictly, W is polyconvex if g1, g2 and g3 are convex with respect to the independent variables F, 

cof[F] and det[F], respectively [13, 14].  If the free energy function for an anisotropic material is 

assumed to be a linear combination of invariants, Equations (3.18) and (3.20) can be rewritten as 

),()()()()()()()()(

),,,,,,,,,(

998877665544332211

987654321

IgIgIgIgIgIgIgIgIgW

IIIIIIIIIgW




 (3.21) 

where W is polyconvex if gi, (i = 1,…,9) are convex with respect to the independent variables F, 

cof[F] and det[F].  Note that I2 and I3 are functions of cof[F] and det[F], respectively, and the 

rest of the invariants (I1, I4, I5, I6, I7, I8 and I9) are only functions of F.  

Rogers employed Ball’s approach [2] for investigating polyconvexity of electro-elastic materials 

[15].  According to Rogers and Antman’s work, the coerciveness inequality for the electro-

elastic material becomes similar to Equation (3.17)  

 ,}])(det[][cof{)(  
srqp

W EFFFF  (3.22) 

where α, β, p, q, r and s > 0.  Therefore, W for isotropic electro-elastic materials is said to be 

polyconvex if it can be written in the form 

 ),],det[],[cof,(),( EFFFEF gW   (3.23) 

with g convex for each independent variable F, cof[F], det[F] and E.  Equation (3.23) represents 

the general polyconvexity condition for electro-elastic materials.  

Under the assumption that the free energy function for an electro-elastic material is a linear 

combination of the invariants similar to Equation (3.21), Equation (3.23) becomes 
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where W is polyconvex if gi, (i = 1,…,19)  are convex with respect to the independent variables 

F, cof[F], det[F] and E.  Note that Ii, (i = 10,…,19)  are functions of F and E.  Equation (3.24) 
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represents the strict polyconvexity condition for electro-elastic materials.  If the invariant-based 

free energy function for electro-elastic material does not satisfy the strict polyconvexity 

condition in Equation (3.24), the general polyconvexity condition for the free energy function 

can be obtained using Equation (3.23).  That is to say, since the strict polyconvexity in Equation 

(3.24) cannot be satisfied when non-convex invariants in the free energy function exist; the 

polyconvexity should be investigated by using the general polyconvexity condition in Equation 

(3.23).  

Equations (3.18)–(3.24) can be adopted for investigating polyconvexity of electro-elastic 

materials which are described with an invariant-based free energy function.  In the literature, the 

convexity of the general invariants for isotropic and transversely isotropic materials (Ii, (i = 

1,…,9)) has been investigated and proven by Schrőder and Neff [13, 14], Steigmann [21] and 

Hartmann and Neff [22].  They developed a polyconvex strain energy function using a set of the 

convex invariants . 

Based on the polyconvexity condition in Equations (3.23) and (3.24), the polyconvexity of the 

anisotropic free energy function W = W(I1, I2, I3, I4,…, I19) is investigated by proving the 

convexity of the invariants (Ii, (i = 1,…,19)) with respect to the independent variables (F, cof[F], 

det[F] and E).  In Section 3.4, the convexity of the coupling invariants (Ii, (i = 10,…,19)) under 

equi-biaxial extension is investigated by using the convexity condition in Equation (3.11).  Note 

that the independent variables (F, cof[F], det[F] and E) are dependent on the boundary 

conditions.   
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3.4. Convexity of Invariants  

In this section, the convexity of the coupling invariants (Ii, (i = 1,…,19)) for electro-elastic 

materials, which were introduced in Chapter 2 is inspected.  To simplifying the formulation, we 

consider equi-biaxial extension of an anisotropic electro-elastic material with two electro-active 

directional vectors a, b and an applied nominal electric field E.  The deformation gradient, 

directional vectors, and nominal electric field under equi-biaxial extension with the assumption 

of material incompressibility are given as  

 },,0,0{},sin,sincos,cos{cos},sin,sincos,cos{cos,

/100

00

00

3
2

11

11

11

E

F

F

F


















 E  b  aF   (3.25) 

where it is assumed that the angles α, β and γ are dependent and F11 and E3 are independent 

variables for equi-biaxial extension.  With Equation (2.54), the polyconvexity condition can be 

rewritten to state that W in Equation (3.24) is strictly polyconvex if  gi, (i = 1,…,19) are convex 

with respect to the independent variables F11 and E3.  Note that the polyconvexity condition and 

the independent variables are dependent on the boundary conditions.  Since the convexity of (Ii, 

(i = 1,…,9)) has already been proved by Schrőder and Neff [13, 14], Steigmann [21] and 

Hartmann and Neff [22].  The convexity of Ii, (i = 1,…,19) will now be examined using the 

convexity condition in Equation (3.11).   The invariants Ii, (i = 1,…,19) were introduced in 

Chapter 2. 

The second derivative of the invariants I1,…,I9 with respect to the independent variable F11 is 

written as  
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Equation (3.26) implies that I1,…,I9 are convex with respect to F11. 

The second derivative of the invariants I10, I11 and I12 with respect to the independent variables 

F11 and E3 is written as  

       

.,

,0144det,
216

1656

,040det,
28

812

,02

32111

14
11

2
3

12
2

8
11

7
113

7
113

6
11

2
312

2

6
11

2
3

11
2

4
11

3
113

3
113

2
11

2
311

2

2
3

10
2

EF

FE
I

FFE

FEFEI

FE
I

FFE

FEFEI

E

I

jiji

jiji


























































































  

 (3.27) 



68 

 

It is therefore seen that I10 is convex with respect to E3, but I11 and I12 are not convex with 

respect to F11 and E3.  Except for I13, I15 and I17, the coupling invariants I14, I16, I18 and I19 are 

also not convex with respect to F11 and E3:  
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 (3.28) 

According to Equations (3.27) and (3.28), since the invariants for the electro-active directional 

vectors a, b and nominal electric field E are not convex with respect to F11 and E3 excepting for 

I10, I13, I15 and I17, the polyconvexity of an invariant based free energy function which is a linear 

combination of I1, I2, I3, I4,…, I19 with respect to F11 and E3 is not satisfied by using the strict 

polyconvexity condition in the second of Equation (3.24).  Therefore, by applying the general 

polyconvexity condition in Equation (3.23), the general polyconvexity condition for the electro-

elastic material under equi-biaxial extension is derived in Section 3.5.   

 

3.5. Polyconvexity of Invariant-based Free Energy Functions  

In order to ensure polyconvexity of a free energy function which is a linear combination of 

convex and non-convex invariants (I11, I12, I14, I16, I18 and I19), an explicit condition can be 
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obtained by employing the general polyconvexity condition in Equation (3.23).  The free energy 

function under equi-biaxial extension, in which the deformation gradients, the directional vectors 

and the electric field are defined in Equation (2.54) are given as  
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Similar to Equations (3.18) and (3.23), W is said to be polyconvex if g is convex with respect to 

F11 and E3.     

An explicit condition for the convexity of g under equibiaxial extension with respect to F11 and 

En3 can be obtained by employing the general convexity condition in Equation (3.11): 
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where 
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and the second derivatives of I1,…, I19 with respect to F11 and E3 are given in Equations (3.26), 

(3.27) and (3.28), where ii IWW  / , i = 1,…,19.  When the condition in Equation (3.30) is 

satisfied, g is convex with respect to F11 and E3.  Therefore, the free energy function W is 

polyconvex when the convexity condition in Equation (3.30) is satisfied.   

 

3.5.1. Polyconvexity: Isotropic Electro-Elastic Materials  

Let us now consider the simplest case of an incompressible and isotropic electro-elastic material 

under equi-biaxial extension.  The free energy function for an isotropic electro-elastic material is 

given as  

 ),,,,,( 12111021 IIIIIWW   (3.32) 

where all terms in E
2
 have been retained.  

The polyconvexity condition for W with respect to F11 and E3 in Equation (3. 31) is now 

formulated and solved for the nominal electric field E3:    
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With the condition in Equation (3.33), the total free energy function in Equation (3.32) is 

polyconvex under equi-biaxial extension.  The inequality in Equation (3.33) describes the 

magnitude of the applicable nominal electric field for retaining polyconvexity of the free energy 

function polyconvex.  Equation (3.33) can be rewritten in terms of the ratio between the 

electrical and mechanical properties 
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(3.34) 

where it is assumed that 0 < R2 < 2 and 0 < Rj (j = 10, 11 and 12) < 10
-12

 because generally the 

electrical property is much smaller than the mechanical property (For polyacrylate (VHB 4905), 

W1 = 16000, W11 = ε0εr/2 = 2.08×10
-10

 and R11= 1.3×10
-14

), where ε0 and εr are vacuum and 

relative permittivity. 

Figure 3.2 shows the effect of Rj (j = 10, 11 and 12) on the electromechanical stability of the 

isotropic electro-elastic materials.  The area under each curve represents the electromechanical 

stable region along with the stretch ratio (1.0–7.0).  In Figure 3.2, R2 is given as 0.5 and R10, R11 

and R12 are assumed to be identical each other.  Higher value of R10, R11 and R12 represents 

higher electrical property of the material and leads to narrow electromechanical stable region.  

That is to say, higher R10, R11 and R12 can induce larger electromechanical actuation, but cause 

electromechanical instability. Figure 3.3 shows the effect of the R2 on the electromechanical 

stability.  R2 is varied between 0.1 and 2.0 and R10, R11 and R12 are given as 1.0×10
-14

.  As R2 

increases, stiffer material enhances the electromechanical stability of the material.   
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Figure 3.2. The effect of R10, R11 and R12 on 

the electromechanical stability of the 

isotropic electro-elastic material. 

 Figure 3.3. The effect of R2 on the 

electromechanical stability of the isotropic 

electro-elastic material. 

For example, let us consider an incompressible and isotropic dielectric elastomer described by an 

invariant based free energy function,  

 ).,,( 1121 IIIWW   (3.35) 

For this case, Equation (3.33) can be simplified to be 
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Equation (3.36) indicates that the applicable E = {0, 0, E3} is therefore significantly dependent 

on the value of R2 and R11.  When Mooney-Rivlin strain energy function [10] is employed, R2 

and R11 can be written in terms of the material properties  
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where C1 and C2 are material constants for the Moony-Rivlin model.   

Figure 3.4 describes the electromechanical stability region of the isotropic dielectric elastomer 

with respect to R11, (R2 = 0.5).  Similarly to Figure 3.2, a lower value of R11 means large 

mechanical property (C1) or small relative permittivity εr and leads to larger electromechanical 
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stability (wider range of stable E), but can reduce the electromechanical actuation with respect to 

the E due to larger elastic stress or smaller Maxwell stress.    

 

Figure 3.4. The effect of R11 on the electromechanical stability of isotropic dielectric 

elastomer (R2 = 0.5). 

Additionally, the range of R11 (W11/W1) for the isotropic dielectric elastomer can be obtained 

using Equations (3.30) and (3.31).  Equation (3.38) describes the range of R11 for the 

electromechanical stability with respect to the given stretch F11 and the applied electric field E3:   
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Figure 3.5 shows the range of R11 with respect to the stretch F11 and the applied electric field E3.  

The area under each curve represents the boundary of R11 for the electromechanical stability. 

According to Figure 3.5, higher nominal electric field E3 causes smaller range of R11, which 

implies smaller region of the electromechanical stability.   
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Figure 3.5. The boundary of R11 (W11/W1) with respect to the stretch F11 and applied 

electric field E3.  

 

3.5.2. Polyconvexity: Electro-Elastic Materials with Electro-Passive Fibers  

 For fiber-reinforced electro-elastic materials under equibiaxial extension which have two 

electro-passive directional vectors a and b, the free energy function is given as  

 ).,,,,,,,,,,( 12111098765421 IIIIIIIIIIIWW   (3.39) 

The convexity condition for W with respect to F11 and E3 is formulated as   
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With the condition in Equation (3.40), the total free energy function for the fiber-reinforced 

electro-elastic materials with two families of the electro-passive fibers in Equation (3.39) is 

polyconvex under equibiaxial extension.  Equation (3.40) can be rewritten   
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(3.41) 

where Ri represents the ratio between the fiber properties and the property of the isotropic matrix.  

When R4, R5, R6, R7, R8 and R9 are all zero which corresponds to an isotropic electro-elastic 

material, Equation (3.41) reduces to Equation (3.34)  because no effects of the fibers are included.  

According to Equation (3.41), when the material properties are prescribed (not controllable), the 

applicable nominal electric field E3 could be controlled by adjusting the orientation of the fibers 

(α, β and γ).  That is to say, when the material properties are given, polyconvexity (stability) of 

an electro-passive fiber-reinforced electro-elastic material could be determined by the orientation 

of the fibers.  Clearly, Figure 3.6 and Figure 3.7 show that the electromechanical stability can be 

controlled by adjusting the orientation of the electro-passive fibers with β = -α, R2 = 0.5, R4 = 

R5= R6 = R7 = R8= R9 = 10.0 and R10 = R11 = R12 = 1.0×10
-14

.  According to Figure 3.6 and Figure 

3.7, the fiber angle γ represents the angle between the electro-passive fiber and the X1-X2 plane 

and affects significantly on the electromechanical stability of the electro-elastic material with 

electro-passive fibers.  As γ increases in Figure 3.6, the electromechanical stable region becomes 

narrow.  When γ = 90°, there is no fiber-reinforcement in the X1-X2 plane.   
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Figure 3.6. The effect of the fiber angles α 

and β on the electromechanical stability of 

electro-elastic material with two families of 

electro-passive fibers (γ = 0°). 

Figure 3.7. The effect of the fiber angle γ on 

the electromechanical stability of electro-

elastic material with two families of electro-

passive fibers (α = β = 0°).  

 

Additionally, the range for R11 (W11/W1) of the anisotropic dielectric elastomer can be obtained 

using Equations (3.30) and (3.31):   
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Figures 3.8 and 3.9 show the range of R11 with respect to the applied electric field E3 and the 

fiber’s mechanical properties R4 (W4/W1) at R2 = 0.5, R5 = R7 = R9 = 0.0 and R4 = R6 = R8.  The 

area under each curve represents the range of R11 for the electromechanical stability.  

Specifically in Figure 3.9, larger fiber mechanical properties (R4, R6 and R8 >> 1: W4, W6 and W8 

>> W1) lead to larger electromechanical stability.  This result implies that the range of R11 

(W11/W1) can be controlled by tuning the fiber’s mechanical properties (W4, W6 and W8).  
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Figure 3.8. The boundary of R11 (W11/W1) 

with respect to the stretch F11 and applied 

electric field E3 at W4 = W6 = W8= 10.0. 

Figure 3.9. The boundary of R11 (W11/W1) 

with respect to the stretch F11 and R4 

(W4/W1) at 8.0 MV/m. 

 

Note that the boundary for the other ratios Ri (i = 2, 3,…, 19) can be obtained solving Equations 

(3.30) and (3.31) for the ratios.  

3.5.3. Polyconvexity: Anisotropic Electro-Elastic Materials  

To simplify the polyconvexity condition, let’s neglect the higher order invariants with C
2
 (I5, I7, 

I9, I12 and I19) in the free energy function:  

 ).,,,,,,,,,,,,,( 1817161514131110864321 IIIIIIIIIIIIIIWW   (3.43) 

Equation (3.43) is now used to analyze 2 cases of coupling between electro-active fibers and the 

electric field.  

 

A. Coupling between one active directional vector and the electric field  

For an electro-elastic material which has one directional electro-active vector a, the free energy 

function in Equation (3.43) is rewritten as  

 ).,,,,,,,( 14111086421 IIIIIIIIWW   (3.44) 

 The polyconvexity condition for this case is  
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(3.45) 

Equation (3.45) is rewritten in terms of the ratio, Ri = Wi/W1, (i = 2, 4, 6, 8, 10, 11 and 14) 
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For γ = 0, the polyconvexity condition is:  
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For γ = π/2, the polyconvexity condition is:  
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 (3.48) 

According to Equations (3.47) and (3.48), since the directional vector a at γ = 0 exists in the X1-

X2 plane and orthogonal to the electric field (E = {0, 0, E3}), no electric coupling between a and 

the electric field E affects the polyconvexity condition.  The effect of the electric coupling on the 

polyconvexity condition is maximized at γ = π/2.  This result implies that the range of the 

nominal electric field for polyconvexity is controllable by orienting the directional vectors, 
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instead of changing the material parameters, similar to Section 3.5.2.  Figure 3.7 shows the effect 

of the fiber angle γ on the electromechanical stable region with β = -α, R2 = 0.5, R4 = R6 = R8 = 

10.0, R10 = R11 = 1.0×10
-14

 and R14 = 1.0×10
-4

.  According to Figure 3.7, as γ increases, the 

electromechanical stable region of the anisotropic electro-elastic material becomes wide.  This is 

due to that higher electromechanical coupling between the electro-active fiber and the applied 

electric field (E = {0, 0, E3}) when the fiber exists out of the X1-X2 plane.  Since the higher 

electromechanical coupling causes the higher total stress, the coupling enhances the overall 

stiffness of the material.      

 

Figure 3.10. The effect of the fiber angle γ on the electromechanical stability of electro-

elastic material with one family of electro-active fibers (α = β = 0°).  
 

B. Coupling between two active directional vectors and the electric field  

For an electro-elastic material with two electro-active directional vectors and an applied electric 

field, the free energy function in Equation (3.43) is employed.  The polyconvexity condition can 

be obtained by using Equation (3.30): 
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(3.49) 

Equation (3.49) is rewritten in terms of the ratio, Ri = Wi/W1, (i = 2, 4, 6, 8, 10, 11, 14, 16 and 18) 
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(3.50) 

For γ = 0, Equation (3.50) becomes  
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For γ = 0, the parameters R14 and R16 disappear because I14 and I16 do not exist when the 

directional vectors a and b exist on the X1-X2 plane orthogonal to the electric field E = {0, 0, E3}.  

This means that the electro-active fibers act like electro-passive because of the orientation of the 

electric field (E = {0, 0, E3}).  Similarly to the electro-elastic material with the electro-passive 

fibers in Figure 5, the electromechanical stable region can be controlled by changing α and β.   

For γ = π/2, Equation (3.50) becomes  
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(3.52) 

For γ = π/2, since the directional vectors a and b converge to a unit vector in the X3 direction, I18 

disappears (a×b = 0).  In this case, the range of the nominal electric field for the polyconvexity is 

strongly dependent on the ratios (Ri, i = 1, 2,…, 16 ), but not controllable by the orientation of the 

fibers (α and β).   

 

3.6. Conclusion  

In this Chapter, the polyconvexity condition for electro-elastic materials was investigated 

adopting Ball’s and Rogers and Antman’s approach [2, 15].  Note that the polyconvexity and 

convexity conditions are affected by the boundary conditions.  Electro-elastic materials were 

described by employing an invariant-based free energy function.  First, the convexity of the 

invariants for the electro-active directional vectors and nominal electric field under equi-biaxial 

extension were inspected using the general convexity condition in Section 3.1.  According to the 

investigation, the invariants (I11, I12, I14, I16, I18 and I19) are not convex with respect to the 
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independent variables F11 and E3.  Therefore, the polyconvexity of an invariant based free energy 

function which is a linear combination of I1, I2, I3, I4,…, I19 with respect to F11 and E3 is not 

guaranteed by using the strict polyconvexity condition in Equation (3.24).  By applying the 

general polyconvexity condition in Equation (3.23), an explicit polyconvexity condition for an 

electro-elastic material under equi-biaxial extension was obtained.  The polyconvexity condition 

is expressed by setting a range for the applicable nominal electric field, and this range represents 

electromechanical stability of an electro-elastic material.   

For an isotropic electro-elastic material (e.g, an isotropic DE), the applicable E is significantly 

dependent on the ratio R11 which is the ratio between the electrical (permittivity) and mechanical 

(stiffness) properties.  For example, a higher permittivity (R11 >> 0) causes a narrow range of 

applicable E values and a higher stiffness (W1 >> W11) leads to a wide range of applicable E 

values.  However, higher stiffness of the material leads to lower electromechanical actuation of 

the material due to the higher elastic stress.  For anisotropic electro-elastic materials, it was 

indicated that the applicable E could be controlled by adjusting the orientation of the electro-

active or passive directional vectors without tuning the material properties.        
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Chapter 4. Finite Deformations of Tubular Dielectric 

Elastomer Sensors 

 
(This was published in Journal of Intelligent Material Systems and Structures (Son and Goulbourne [1])) 

 

Seyul Son and N. C. Goulbourne 

Center for Intelligent Material Systems and Structures 

Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 

 

4.1. Abstract 

This paper describes a numerical model validated with experimental results for a large stretch 

tubular sensor.  The sensor is a dielectric elastomer (DE) membrane with electrical properties 

that can be accurately correlated with mechanical strain, for strains well over 50%.  The DE 

sensor is a passive capacitive sensor.  To illustrate the concept, the sensor is attached to the inner 

surface of a fiber reinforced elastomer actuator, which serves as the host substrate.  Fiber 

reinforced elastomers configured for pneumatic operation are employed as actuators in robotic, 

prosthetic, and morphing applications.  An electromechanical model for the two-layer composite 

consisting of the fiber reinforced elastomer and the sensor is derived.  For several illustrative 

loading profiles, the model yields a strain output for an input capacitance value.  Using identical 

loading cases, an experimental setup was designed to measure sensor output for two different 

sensor materials: silicone and polyacrylate.  The sensitivity of the DE sensor was also evaluated 

for varying geometrical parameters and is mainly dependent on the initial thickness.  Comparison 

of experimental data and numerical results is very good with an overall error of 3–6%.  This 

work shows that the model is robust in the large strain range and furthermore predicts nonlinear 

strain behavior. 
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4.2. Introduction  

The ultimate goal of this research is the development of sophisticated tactile sensory capabilities 

for soft robotics, prosthetic devices, and adaptive structures.  The tactile sensors are based on 

dielectric elastomers.  Dielectric elastomer sensors are essentially compliant passive sensors, 

which have a capacitance that varies with mechanical strain, or alternatively, the resistance can 

be monitored.  Consider the placement of a dielectric elastomer sensor in direct contact with the 

inner surface of a McKibben actuator, which is a fiber reinforced pneumatic actuator that 

contracts when inflated in Figure 4.1.  McKibben actuators have a high force to weight ratio and 

have been considered for decades as a potential artificial muscle for prosthetic limbs and devices.  

If it is assumed that the actuator/sensor system undergoes the same motion and that the sensor is 

structurally negligible, then the sensor output will be a measure of the corresponding mechanical 

strain.   

McKibben 

actuator

DE sensor

DE sensor

McKibben 

actuator

 
Figure 4.1. McKibben Actuators with tubular DE sensor. 

This paper has two objectives.  The first objective is to derive a mathematical model to describe 

axisymmetric deflections of a tubular dielectric elastomer sensor attached to a host or substrate 

(here: McKibben actuator) as well as demonstrate the robustness of the approach by comparing 

the results with experimental data.  The second objective is to describe the electromechanical 

sensing response of the tubular dielectric elastomer, which can be used to monitor the strains of 
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the McKibben actuator.  McKibben actuators have been chosen as a host structure to illustrate 

the capability of the large strain sensor model under representative loading scenarios.  McKibben 

actuators are being investigated to enable the continually evolving technological fields of flexible 

control surfaces for aircrafts or aquatic vehicles, compliant limbs and graspers for robots, as well 

as for human-augmenting systems.  McKibben actuators were first developed in the 1950’s for 

an orthotic limb system.  Since then, different models of the pneumatic actuator have been 

proposed over the years most notably by Baldwin [2], Chou et al [3], Klute [4, 5], Repperger et 

al [6, 7], and Schulte [8] and Nakamura [9].  The lack of sufficiently accurate and reproducible 

models and low precision of operation are two limiting issues [2].  McKibben actuators consist 

of a cylindrical rubber bladder enclosed by an inextensible braided shell.  When the bladder is 

subjected to an internal inflation pressure the actuator contracts axially [3].  The inextensible 

fibers restrain axial extensions and allow axial contraction.  This motion enables the actuator to 

mimic the behavior of biological muscles thus making it applicable to highly technological fields 

such as soft robotics, orthotics, and prosthetics [10-14].  McKibben actuators can also be 

configured for a variety of functions using different kinematic arrangements for example as 

antagonistic actuator pairs [7].       

The McKibben actuator is modeled as a thin elastic cylindrical membrane undergoing 

axisymmetric deformations with geometric constraints imposed by fiber inextensibility.  Green 

and Adkins’ proposed a general approach to the study of such a fiber reinforced elastic cylinder 

[15].  For large elastic deformations, Adkins and Rivlin [16, 17], Kydoniefs [18-20], and 

Matsikoudi-Iliopoulou [21] among others have made very notable contributions.  Specifically, 

Adkins and Rivlin formulated a large deformation theory for thin membranes and solved a series 

of axially symmetric problems [16, 17].  Kydoniefs investigated the axisymmetric deformation 
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of an initially cylindrical membrane with two families of inextensible fibers [18-20].  

Matsikoudi-Iliopoulou used a reinforced cylindrical membrane with one family of fibers to 

model torsion, inflation, and extension [21].  Recently, Liu and Rahn used a continuum approach 

to model inflation and contraction of McKibben actuators [22] – they employed Kydoniefs’ 

model to describe McKibben actuators. In Liu and Rahn’s results, a Mooney-Rivlin model was 

employed for the rubber bladder and the material constants were given assumed values in the 

numerical calculations.  Employing an equivalent approach, we have found the membrane model 

to be very sensitive to the material model employed.  This has previously been noted by Hart-

Smith and Crisp [23].  To compare the results of the numerical model with our experimental data 

the material constants of the constitutive model were determined experimentally as opposed to 

presuming a value.  Mooney-Rivlin and Ogden models were fit to experimental data from simple 

tension tests on rectangular samples.  Simple tension tests using rectangular specimens were 

found to be a poor qualitative predictor of the multi-axial loading state in the boundary value 

problem.  In this paper, uniaxial extension tests using tubular samples are used to determine 

Ogden material constants, which lead to excellent correlation with experimental data within 3%. 

The robustness of the modeling approach is demonstrated by varying several experimental 

parameters.  

An introduction to dielectric elastomer sensors is given in the next section, followed by an 

outline of the continuum mechanics based model for elastic tubular membrane.  In previous 

research, Goulbourne et al. [24, 25] derived a finite deformation model for dielectric elastomer 

membranes in actuation mode.  Dynamic characterization of edge-clamped DE membrane 

actuators was conducted using an experimental approach [26, 27].  Wakimoto, Suzumori and 

Kanda [28] conducted experiments to study an internal rubber displacement sensor patch for a 
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McKibben actuator using changes in electrical resistance induced by the deformation of the 

actuator.  The main contribution of their work was to demonstrate the concept of using a 

deformable sensor for in situ strain sensing.  In this paper, a robust model for in situ large strain 

sensing is developed and validated by a series of experiments under varying loading conditions.  

Later, a mathematical model is derived to predict the capacitance versus stretch relationship for 

cylindrically symmetric deformations of dielectric elastomer sensors.  If the sensor is presumed 

to maintain its cylindrical shape during deformation, then only a single stretch ratio is needed to 

completely describe the deformed state.  In this case, a simple model is derived by combining 

elastic membrane theory and electrostatics.  This geometrical restraint could be relaxed so that 

axisymmetric but not necessarily perfectly cylindrical shapes can be considered.  To demonstrate 

the validity of the modeling approach a comparison of numerical and experimental results is 

performed.  The results of a series of parametric studies performed to test the robustness of the 

model are presented. 

 

4.3. Dielectric Elastomer Sensor Response 

Dielectric elastomer sensors are large strain electromechanical transducers.  The dielectric 

elastomer sensor is a three-component system consisting of a compliant elastomeric insulator 

sandwiched by two compliant electrodes.  Dielectric elastomers offer various advantages as large 

strain sensors including: simple fabrication techniques, low cost, repeatability, scalability, and 

shape conformability, just to name a few.  Traditional sensor materials are comparatively stiff 

and fail at low strains.  This is not the case for dielectric elastomer sensors which are highly 

compliant and have a large strain range.  Mechanical strains are detected by measuring one of 

two electrical parameters: capacitance or resistance.  These sensors are ideal for large strain 
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sensing applications due to the ability to retain electrical conductivity at the strains – even up to 

100%.  A schematic of a tubular dielectric elastomer in sensing mode is given in Figure 4.2. 

 

Dielectric elastomer sensor 

Load

Electrode
Dielectric

t

t-Δt

x

x+Δx

Load applied

 

Figure 4.2. Schematic of pressure/strain sensing using a dielectric elastomer sensor.  

The two most common types of dielectric elastomers used in fabricating sensors are acrylic 

rubber and silicone rubber [29, 30].  Failure of a typical specimen of 3M VHB 4905 does not 

occur until a stretch ratio of 8, thus making dielectric elastomer sensors ideal for large stretch 

applications.  Applying compliant electrodes to the major surfaces of prestretched dielectric 

elastomer specimens completes the fabrication process.  We have previously conducted an 

experimental evaluation of the large stretch response of different electrodes: carbon grease, silver 

grease, graphite powder, and graphite spray.  The experimental results indicate that carbon 

grease and silver grease are the best compliant electrodes of the four that were tested; carbon 

grease has a slightly better performance overall and is also less costly [31]. 

 

4.4. Theoretical Model for Fiber-Reinforced Tubular Membrane 

 

4.4.1. Formulation of the Boundary Value Problem 
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In this section, a theoretical model to describe the deformation response of fiber-reinforced 

tubular membranes based on Green and Adkins’ work.  The theory so derived is applicable to 

McKibben actuators.  By relaxing the deformation constraints imposed by the inextensible fibers, 

the theory can be modified and used to model unreinforced tubular membranes such as the 

dielectric elastomer sensor. This approach is outlined in more detail in the following section.  

From the symmetry of the problem and the assumption that the membrane is very thin compared 

with its radius, the state of stress is considered nearly constant throughout the thickness (elastic 

membrane theory assumption).  A set of cylindrical polar coordinates (R,,) at the midplane 

are employed in the undeformed state (Figure 4.3).  The meridian length of the cylindrical 

membrane is denoted  in the undeformed state and  in the deformed state.  The inextensible 

fibers on the membrane forms a constant angle ± with the z-axis and the initial length and 

radius of the cylindrical membrane are given by L0 and R.   It follows that the principal directions 

at any point in the deformed membrane coincides with the deformed coordinates (r,, z) and the 

principal extension ratios are denoted as λ1, λ2 and λ3.  Specifically, 1 and 2 are the meridional 

and latitudinal stretch ratios that define the deformation and λ3 is the thickness stretch ratio.  

Mathematically, the deformed coordinates and stretch ratios are given as 
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(4.1) 

where 2h0 and 2h are the undeformed and deformed thickness of the membrane. 
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Figure 4.3. A reinforced cylindrical membrane with two families of fibers (left). Half of the 

undeformed and deformed membrane (right).  

Let the elements of length in the undeformed and deformed states be denoted by ds0 and ds and 

the geometrical relation between them given by 
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where α is the angle between an individual fiber and the z axis.  In the direction of the fiber, ds0 

is equal to ds because it is assumed that the fiber is inextensible, so that Equation (4.2) becomes 
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Let  be the angle formed between the z axis and ds in the deformed state as shown in Figure 4.3.  

The geometry and fiber inextensibility can be used to determine  as 
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Since the material is incompressible, the stretch invariant, I3 is given as  
 .1

3213  I  (4.5) 

Hence, the strain energy function is a function of the stretch invariants, I1 and I2,  
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which are defined by    
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For a fiber reinforced membrane, the total stress resultants are derived from the force required to 

deform the elastic membrane alone and from the tension in the fibers.  Therefore, the total stress 

resultants, Ni  ́can be decomposed into two parts 

 iii tnN  , (4.8) 

where ni  ́is the stress resultant required to deform the membrane itself and ti is the tension due to 

the inextensible fibers (i=1,2 and 3).  In accordance with Adkins and Rivlins solution approach, 

we presume that the applied forces normal to the cylindrical surfaces are negligible in 

comparison to the in-plane stresses and set n3=0.  The stress components of the membrane are 

then given by 
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where n1, n2, and n3 are the latitudinal, meridional, and normal stress components.  In the 

deformation, the initial thickness 2h0 of the membrane becomes 23h0 and the stress resultants 

are obtained by integrating over the deformed thickness of the membrane 
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Resolving the tensions of the two family fibers in the latitudinal and meridional directions yield 
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where  is the tension in the fiber and  is the constant distance between two different fibers on 

the undeformed circumference.  Therefore, the total stress resultants for a reinforced membrane 

with two family fibers are 
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By employing the Ogden strain energy function and dividing the stress resultant by 4μ1h0 the 

non-dimensional stress resultants become 
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where T=τ/4μ1h0Δ, β2= μ1 /μ2 and  β3= μ2 /μ3. 

The equilibrium equations for axisymmetric deformations of a membrane are  
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where p=PR/4μ1h0  and σ is the angle between the deformed membrane and the z axis.  Only half 

of the deformed membrane is considered due to symmetry considerations.  If an axial load F is 

applied to the distal end of the membrane so that contraction forces can be measured, then the 

boundary conditions at ξ = L and ξ = 0 become 
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where f=F/8πμ1Rh0. 

From the second expression of Equation (4.14), we have  
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By integrating Equation (4.16) and using the boundary conditions (Equation (4.15)), we obtain 

the following:  
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Inserting the total stress resultants into the first nondimensional equilibrium equation, a nonlinear 

ordinary differential equation with independent variable, λ2(ξ), is obtained.  By guessing τ, λ1(ξ) 

and λ2(ξ) are calculated.  An iterative numerical solution procedure is applied until the calculated 

value of the initial length, l0 using Equation (4.18) is compared with the initial length, l0.  This 

procedure is repeated until the correct initial length, l0 is obtained:  
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The deformed length of half of the membrane is then obtained by 
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4.4.2. Constitutive Relationship for McKibben Actuator Tubes 

The bladder of a McKibben actuator is made of a rubbery elastic material such as latex and 

silicone and is considered to be incompressible and isotropic.  There are numerous strain energy 

functions that have been proposed to describe elastomeric materials, including Mooney-Rivlin, 

neo-Hookean, Blatz-Ko, and Ogden formulations.  Axial extension experiments were conducted 

on 3 tubes.  Figure 4.4 shows the force versus stretch results for tubular latex samples.  The three 

samples were tested 5 times each, the average of these tests are represented by the dashed line (--) 

in Figure 4.4.  A nonlinear fit of the data using Mooney-Rivlin and Ogden formulations are 
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shown in the figure.  The results indicate that the Mooney-Rivlin material model only captures 

the stretch behavior up to ~1.75.  The Ogden model is much better fit for the entire stretch range.  

Therefore, in this paper, an Ogden strain energy function [32] is employed for describing the 

stress-strain behavior of the rubbery material.  The Ogden strain energy function has the form,  
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where ki are dimensionless constants, i  are the dimensional Ogden material constants and 1 , 

2  and 3  are the three principal stretch ratios.  Theoretical predictions of the Ogden model with 

m = 3 generates satisfactory results especially for multi-axial stress states [33].  The constants of 

the Ogden strain energy function, ki and i (i = 1,2 and 3), are determined from uniaxial 

extension tests on tubular samples supporting a uniformly distributed axial load.  The Ogden 

constants for tubular samples are 1 = 2.79 MPa, 2 = 30.4 kPa, 3 = -1.69 kPa, k1 = 0.078, k2 = 

3.33 and k3 = -7.31. 

 
Figure 4.4. Force versus stretch data for tubular rubber samples compared with material 

models. 
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4.5. Electromechanical Model for Tubular DE Sensors  

In this section, a capacitance versus stretch relationship is derived for tubular dielectric elastomer 

sensors.  The expression for the capacitance is derived from basic electrostatics and the sensor 

deformation is described by modifying the membrane theory presented in the previous section 

(i.e. fiber constraints removed).  Conventional sensor materials are relatively stiff and fail at low 

strains. Unlike traditional sensors such as strain gages and piezoelectric ceramics, low modulus 

dielectric elastomers do not fail at large strains and are hence a viable option for large strain 

applications.  Dielectric elastomer sensors offer various other advantages such as simple 

fabrication, low cost, low weight, repeatability and shape compliance [34].  In the proposed 

hybrid McKibben actuator system, a tubular dielectric elastomer sensor is attached directly to the 

inner cylindrical surface of the actuator.  Dielectric elastomers are fabricated by electroding an 

elastomeric material (3M VHB) with compliant electrodes (carbon grease).  Since the dielectric 

elastomer is much more compliant than the rubbery actuator tube, it is assumed that the tubular 

dielectric elastomer layer is structurally negligible and hence considered to undergo the same 

deformation as the McKibben actuator.  Three different loading scenarios for the tubular sensor 

and the hybrid McKibben actuator will be considered in the following section: (i) extension of 

the sensor, (ii) inflation and extension of the sensor and (iii) inflation and extension of the 

sensor/actuator composite in Figure 4.5. 

 

 

Initial 

shape

Extension

Extension

&

inflation

Deformed shapeDeformed shape
 

Figure 4.5. Deformed shapes of the tubular sensors and McKibben actuator.  
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4.5.1. Loading Case I: Sensor Extension 

The DE is essentially a cylindrical membrane without inextensible fibers, which in the 

undeformed state is of length L0, a deformed length L, an initial radius R in the mid-plane of the 

cross-sectional surface and thickness, h0.  It has outer and inner radii Rout and Rin respectively in 

the undeformed state and rin and rout in the deformed state.  We assume that the membrane is 

stretched by a uniform extension ratio λ1, parallel to the z axis without increase of internal 

pressure such that the deformations are cylindrically symmetric.  We can apply the theoretical 

model outlined in the previous section to the unreinforced dielectric elastomer by making a few 

simplifications.  First of all, the deformation constraints previously imposed by the fibers are 

removed.  Secondly, if the deformed membrane is a perfect cylinder, then the angle between the 

membrane and the z axis, σ, is equal to zero.  Therefore, there is a single nonzero curvature 

expression and the second equilibrium equation, Equation (4.14) can be rewritten as  
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From the second equilibrium equation, Equation (4.21), the pressure difference, P is obtained as 
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Using the boundary conditions, (λ1(0)= λ2(0)=1), P is equal to be zero, which is constant during 

the deformation because the internal pressure is zero.  Then, the relationship between λ1 and λ2 

are obtained using Equation (4.22) 

 .2/1
12
   (4.23) 
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  To determine the capacitance of the deformed cylindrical membrane, expressions for the 

coaxial electric field and the potential difference between inner and outer surfaces are  
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where r is a radial coordinate, Q is the charge, εr is the relative permittivity and ε0 is the vacuum 

permittivity and L is the deformed length of cylinder.  The capacitance of the dielectric elastomer 

is the ratio between the electrical charge and the potential difference 
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The capacitance of the tubular dielectric elastomer can then be rewritten and expressed in terms 

of only the initial dimensions and the stretch ratios  
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Then by substituting Equation (4.23), we can simplify Equation (4.26) for the case of pure 

extension of the sensor as 
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(4.27) 

From Equation (4.27), the relationship between the total capacitance and extension ratio λ1 is 

linear and the capacitance depends on the geometrical dimensions and relative permittivity of the 

tubular dielectric elastomer.  

Using the expressions derived above, a parametric study can be conducted to determine the most 

effective operating regimes for the sensor.  In other words, identify regions that will have high 
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sensitivity.  Figure 4.6 gives capacitance as a function of the initial sensor dimensions, which is 

obtained by numerical computation.  For the numerical computation, Equation (4.27) is used 

with a relative permittivity (3M VHB), εr of 4.7.  The effect of thickness and radius (varied from 

0.2 to 1.0 mm and from 4.0 to 10.0 mm) for a constant length of 20.0 mm on the capacitance is 

shown in Figure 4.6.  The slope of the curve below the thickness, 0.4 mm, becomes very steep 

with decreasing thickness, and ever so slightly increases for increasing radius.  This means that 

the capacitance sensitivity can be improved by using very thin sensors, that is to say, operating in 

the steep regions of the surface.  Figure 4.7 shows capacitance as a function of length and radius 

(10–30.0 mm and 4–10.0 mm) for a constant thickness of 0.50 mm.  When the length and radius 

are varied, only the initial capacitance is increased without a significant change in slope.  In 

summary, the geometrical parameters affect the initial capacitance of the sensor (as expected).  

Most importantly, sensor thickness has the most significant impact on sensor performance since 

it can be varied to improve sensor sensitivity.  Furthermore, in reality the length and radius of the 

sensor are limited by the configuration of a host system.   

 
 Figure 4.6 The effective regime of 

thickness and radius for the tubular 

dielectric elastomer sensor (3M VHB). 

 
Figure 4.7. The effective regime of length 

and radius for the tubular dielectric 

elastomer sensor (3M VHB). 
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4.5.2. Loading Case II: Sensor Inflation and Extension 

For the second loading scenario, an axial force and an internal pressure are applied to the sensor.  

Due to the nonzero inflation pressure, the cylindrical membrane does not deform as a perfect 

cylinder but rather inflates axisymmetrically as illustrated in Figure 4.5.  Using the condition that 

there are two nonzero curvatures, all Equations (4.1)–(4.20) except for the equations involving 

the inextensible fibers can be used to model the unreinforced tube.  For completeness, the 

equilibrium equations are repeated here 
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where p=PR/4μ1h0. 

Using the first equilibrium equation and the constitutive equations for the stress resultants, N1 

and N2 from Equation (4.13), a relationship between λ1 and λ2 is obtained.  The boundary 

conditions are identical to those applied previously in modeling the McKibben actuator and 

Equations (4.16)–(4.19) apply. 

In addition, a new capacitance expression needs to be formulated since the membrane is no 

longer deforms as a perfect cylinder.  A schematic of the deformed shape of the cylindrical 

membrane is shown in Figure 4.8. 
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Figure 4.8. Deformed tubular dielectric elastomer sensor.  
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The capacitance of a unit volume of the sensor, dC, in Figure 4.6 can be obtained as,  
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The total capacitance for the inflated tubular membrane is formulated by integrating Equation 

(4.29) with respect to z axis, yielding 
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An iterative numerical procedure is needed to solve this system of equations.  Initially, the 

internal pressure (P) and initial dimensions of the sensor are known.   The first step is to guess an 

axial loading F and λ2(0) and obtain λ1(0) by using the appropriate boundary conditions 

(Equation (4.15)). The second step is to insert the relationship between λ1 and λ2 from Equation 

(4.28) as well as Equation (4.17) into Equation (4.30).  The third step is to obtain a numerical 

capacitance Cnum by using Equation (4.30) and compare it with the given capacitance.  The trial 

value for λ2(0)  is changed until the values match.  When the values match, a numerical initial 

length Lnum is obtained from Equation (4.18) and compared with the given initial length.  The 

trial value for the axial loading F is changed until the values are identical.  Conversely, the 

pressure can be calculated by employing an identical numerical procedure.  

 

4.5.3. Sensor/Actuator Composite: Inflation and Extension 

In the previous two subsections, the sensor was studied in the absence of a substrate. In this 

section, we consider a sensor attached to a pneumatic actuator.  The tubular sensor is placed in 
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contact directly with the inner surface of an actuator.  The initial assumption is that the 

deformation of the sensor is identical to the actuator’s.  Therefore, the deformation is governed 

by the actuator, so that the model for the pneumatic actuator outlined in the previous section can 

be used without accounting for an additional layer.  That is to say that, although physically there 

is a two-layer structure, only the dominant actuator layer is modeled.  For a pneumatic actuator, 

the curvature in the meridional direction is nonzero (not a perfect cylinder) during deformation, 

hence the capacitance expression derived in Equation (4.30) can be applied.  By measuring the 

capacitance change during the deformation, the deformed dimensions and axial loading or 

internal pressure applied can be predicted by using the following iterative procedure.  Initially, a 

trial value of τ and λ2(0) are given.  The second step is to obtain the numerical capacitance using 

Equation (4.30).  When the numerical capacitance is matched with the measured value, the initial 

length l0 is calculated using Equation (4.18), which is compared with the initial length, l0.  When 

matched, the axial loading or internal pressure is obtained using the boundary conditions, 

Equation (4.15).  This procedure is repeated until the correct numerical capacitance and initial 

length, l0 are obtained. 

 

4.6. Experimental and Numerical Results 

In this section, experimental results conducted to observe the static sensing response of tubular 

DE sensors are presented and discussed. The numerical results are generated using the 

mathematical model derived in the previous sections.  The results are divided into two 

subsections.  In the first subsection, the experimental setup is described.  The response of 

polyacrylate DE sensors and silicone DE sensors with extension is analyzed in the first 
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subsection.  In the second subsection, the response of a sensor integrated with a McKibben 

actuator is analyzed.  In each section, experimental and numerical results are compared. 

 

4.6.1. Pure Extension (Polyacrylate and Silicone Films) 

For the first set of experiments, five different DE sensors using 3M VHB (Samples 1–5) were 

fabricated.  Each sample was tested five times.  The initial dimensions of each sample are given 

in Table 4.1.  The sensor is clamped at both circular ends and a uniform longitudinal extension is 

applied to the sample using a linear displacement stage (NLS4 Series linear stage, Newmark 

systems, INC).  The capacitance is measured throughout the deformation using a very sensitive 

capacitance meter (GLK model 3000, resolution: 0.001 pF to 0.1 nF).  A schematic of the 

experimental setup is shown in Figure 4.9.  It is expected that the relationship between 

capacitance and the stretch ratio is linear and the sensitivity of the sensor is dependent on the 

initial dimensions and the relative permittivity of the material (Equation (4.28)).  The Ogden 

material constants are 1=70.3 kPa, 2=9.57 kPa, 3=-0.91 kPa, k1=0.4293, k2=0.4293 and k3=-

5.9555. 

 
Figure 4.9. Experimental setup of the pure extension test for tubular dielectric elastomer 

sensor (Left), and picture of fabricated sensor (Right). 
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Table 4.1. Initial dimensions of tubular dielectric elastomer sensor (3M VHB & Siliccone). 

Sensor (3M VHB) 1 2 3 4 5 

L0/R0/t0 (mm) 10.9/9.57/0.5 17.15/9.57/0.5 20.83/9.57/0.5 17.66/3.6/0.5 21/3.6/0.5 

Sensor (Silicone) 6 7 8 9 10 

L0/R0/t0 (mm) 10.5/9.57/0.09 17.1/9.57/0.09 21/9.57/0.09 17.15/3.6/0.09 21/3.6/0.09 

 

Figure 4.10 shows that the relationship between the capacitance and the stretch ratio in the 

longitudinal direction is linear.  The effect of the initial length of the samples on the capacitance 

sensitivity is also shown in Figure 4.10.  As the length increases, the slope increases.  This 

implies that a longer sensor is more sensitive as can be seen by examining Equation (4.27).  

Previous experimental results had also indicated that increasing the prestretch increases the 

sensitivity of the sensor [35].  Therefore, the trade-off in size can be countered by optimizing the 

prestretch.  Figure 4.11 shows the influence of the initial outer radius on the capacitance 

sensitivity.  As the initial radius increases, the slope of the curve also increases.  An increase in 

slope means higher sensor sensitivity.  The curves for the numerical results compare well with 

the experimental results within 3% error.  

 
Figure 4.10. Effect of the length on the capacitance sensitivity (3M VHB). 
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Figure 4.11. Effect of outer radius on the capacitance sensitivity (3M VHB).  

As is expected from Equation (4.27), the relationship between the capacitance and the extension 

ratio is linear and the results indicate that the initial dimensions of the dielectric elastomer affect 

the sensitivity.  The changes of the slope are summarized in Table 4.2.  Sample 3, which has the 

largest initial radius and length, has the highest slope among the 3M VHB samples (Table 4.2).  

Table 4.2. Slopes (Capacitance / Axial stretch) of the experimental results for samples 1~10. 

Sample (3M VHB) 1 2 3 4 5 
Slope of curve 

(pF/Axial stretch) 
56.42 84.62 104.62 28.32 34.39 

Sample (Silicone) 6 7 8 9 10 
Slope of curve 

(pF/Axial stretch) 146.56 206.15 304.75 113.93 121.93 

 

In the second set of experiments, five silicone DE sensors (Samples 6–10) were fabricated by 

spincoating two-part solutions of silicone (CF 19-2186) using the spin coater (Model P6700, 

Specialty coating systems. IMC).  This method allows more refined control of initial sensor 

thickness.  

The initial dimensions of each sample are given in Table 4.1.  Each sample was tested 5 times 

using the setup in Figure 4.9.  The Ogden material constants of silicone sensors are  1=22.9 kPa, 

2=31.3 kPa, 3=-0.11 kPa, k1=0.268, k2=0.263 and k3=-13.44. 

Figure 4.12 shows the relationship between the capacitance and axial stretch for different initial 

dimensions (length and radius) of the sensors.  These results show the same trend as those in 
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Figure 4.10 and Figure 4.11.  The slopes of the curves are shown in Table 4.2.  The numerical 

results compare well with the experimental results within an overall error of 6%.  From these 

results we can conclude that silicone sensors have better sensitivity because of the initial 

thickness value.  In both cases (3M VHB and Silicone), the results show linearity over the test 

region (Stretch ratio, 1~1.7).   

 
Figure 4.12. Effect of the length of the samples on the capacitance sensitivity (Silicone DE 

samples). 
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Figure 4.13. Experimental setup for a pneumatic actuator with attached tubular sensor.  

 

Table 4.3. Initial dimensions of pneumatic actuator with tubular dielectric elastomer sensor 

(3M VHB (V1~V5) and Silicone film (S1~S3)). 

Sample L0 (mm) R0 (mm) t0 (mm): tube t0 (mm): sensor Fiber angle (º) 

V1 65 6.4 1.2 0.5 20 

V2 65 6.4 1.2 0.5 25 

V3 65 6.4 1.2 0.5 30 

V4 50 6.4 1.2 0.5 30 

V5 60 6.4 1.2 0.5 30 

S1 65 6.4 1.2 0.09 20 

S2 65 6.4 1.2 0.09 25 

S3 65 6.4 1.2 0.09 30 

 

Figure 4.14 and Figure 4.15 show the experimental and numerical results for 3M VHB DE 

sensors (V1–V3) and silicone DE sensors (S1–S3) for a pure internal pressure test.  The inflation 

pressure is varied from 0 to 160 kPa.  The relationship between capacitance and pressure is 

nonlinear and the nonlinearity is shifted to a higher pressure range when the fiber angle 

decreases.  The DE sensor is not inherently nonlinear.  The nonlinearity arises from the nonlinear 

relationship between pressure and stretch of the McKibben actuator.  To illustrate, consider 

Figure 4.16 and Figure 4.17, which show the relationship between pressure and deformed 

dimensions of the actuator.  The observed plateau region in the curves is due to constrained 

motion as opposed to sensor insensitivity.  In Figure 4.15, the initial capacitance value is higher 
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and the slope is also much larger than for the VHB samples (Figure 4.14) since the silicone 

sensors are thinner.  These results also show that the fiber angle has significant effects on the 

actuation response which is coupled into the capacitance measurements.  The curves for the 

numerical results compare well with the experimental results within 6% error in Figures 4.14–

4.17. 

 
Figure 4.14. Capacitance change with 

applied   pressure V1~V3 (3M VHB). 

 
Figure 4.15. Capacitance change with 

applied pressure S1~S3 (Silicone). 

 
 Figure 4.16. Deformed length with applied 

pressure V1~V3 (3M VHB). 

 
Figure 4.17. Deformed radius with applied 

pressure V1~V3 (3M VHB). 

In Figure 4.18, the effect of the axial loading on the capacitance of the actuator is given for 

constant pressure values.  The internal pressure is kept constant at 137 kPa & 207 kPa and the 

axial loading is varied between 0–650 g.  The relationship between axial loading and capacitance 

is linear in the test range (0–650 g).  Since the inextensible fibers constrain the overall 

deformation, the capacitance decreases when the axial load increases.  
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 Figure 4.18.  The effect of axial loading on the capacitance of VHB DE sensors (V4 and 

V5). 

 

4.7. Summary 

In this paper, a numerical model for tubular dielectric elastomer sensors is derived using large 

deformation membrane theory and electrostatics.  Specifically, numerical models for tubular 

dielectric elastomer sensors and a pneumatic actuator with sensor integration are formulated.  An 

Ogden material model is used to describe the rubber elastic tube of the actuator and the dielectric 

elastomers.  The constitutive models are integrated into the boundary value problem so that 

numerical results for three different loading conditions can be studied.  A comparison of 

numerical results and experimental results are presented for (i) the DE sensor and (ii) the 

sensor/actuator composite.  Results for simple extension of 3M VHB and silicone DE sensors 

indicate that the relationship between the capacitance and extension ratio is linear and sensor 

sensitivity is affected by the initial dimensions of DE, particularly thickness can be used to 

significantly improve sensitivity.  When the silicone DE sensors are used, the sensitivity is 

increased due to lower thickness values.  For the actuator with the integrated DE sensor, it is 

observed that the relationship between pressure and capacitance is nonlinear due to the 

inextensible fibers.  The relationship between axial load and capacitance, however, is linear.  
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Overall, the sensor is viable for a stretch range of 1–1.6.  The experimental data for the tubular 

dielectric elastomer sensor shows good correlation with the numerical modeling results with 

3~6% overall error.  Therefore, the modeling approach, which is a combination of large 

deformation theory of fiber reinforced elastomers and electrostatics is a good tool for predicting 

DE sensor response.  It should be noted that the model predicts both axial loading and the 

deformation state (simultaneously) for a known inflation pressure.  Furthermore, this is the first 

large stretch sensor model for DE sensors. 
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5.1. Abstract 

In this paper, a numerical model for the dynamic response of tubular dielectric elastomer 

transducers is presented and validated with experimental results for the first time.  Dielectric 

elastomers (DE) are soft polymer based smart materials that can be potentially employed in 

applications such as actuation, sensing and energy harvesting [2-4]. In our previous work, the 

quasi-static response of tubular DE transducers was studied [5, 6].  Here, a numerical model is 

developed to predict the dynamic response of tubular DE transducers.  Inertia effects are 

included in our previous static model which yields a system of partial differential equations.  The 

results of the dynamic response of the tubular DE transducers are obtained by numerically 

solving the simplified partial different equations using a finite difference scheme.  The 

capacitance change induced by the dynamic deformation of the tubular DE is also calculated by a 

simple electrostatic model, illustrating dynamic passive sensing.   

Several tubular DE transducer samples (VHB 4905 and silicone) were fabricated and an 

experimental setup was developed to investigate the dynamic response by measuring capacitance 
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and radial deformation.  In the sensing experiments, a sweep of dynamic pressure profiles (0–

5Hz) is applied.  It is observed that silicone transducers have a larger dynamic sensing range.  In 

the actuation experiments, the deformation of the silicone actuator is monitored while a voltage 

signal (4.5kV) is applied from 0–30Hz.  The silicone actuator shows a good actuation response.  

The comparison between numerical and experimental results for the DE transducers shows an 

overall error of 3%.  

 

5.2. Introduction 

The purpose of this research is to study the dynamic response of tubular dielectric elastomer 

transducers using both an experimental and numerical modeling approach.  Dielectric elastomers 

can be employed as actuators, large strain sensors and for energy harvesting [2-4, 7].  Dielectric 

elastomer sensors are essentially compliant capacitors, which have a capacitance that varies with 

mechanical strain, or alternatively, the resistance can be monitored.  In general, conventional 

sensor materials are relatively stiff and fail at low strains within 2.5–5.0%.  Dielectric elastomer 

sensors provide various advantages such as large strain range, simple fabrication, low cost, low 

weight, repeatability and shape compliance [8, 9].  Dielectric elastomer actuators are large strain 

electro-active polymers with areal strains up to 300% [10].  

 In the previous work, a finite deformation model for dielectric elastomer membranes in 

actuation mode was derived [11].  In this paper, a dynamic model for tubular configurations is 

derived by combining a modified large deformation membrane theory that accounts for the 

coupling electromechanical effect in actuation commonly referred to as the Maxwell stress and 

the dynamic capacitance change under finite strains which accounts for passive sensing is 

calculated.  The equations are simplified with the assumption that the inertia effect in the 
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meriodinal direction is negligible.  The dynamic model consists of a set of PDEs (Partial 

differential equations).  A finite difference scheme (forward difference method) is used to 

simulate the dynamic response of the tubular DE transducer.  The numerical method is general 

and can readily be employed for other axisymmetric configurations, and has a moderate 

computing time.  The running time for the numerical method can be reduced by optimizing the 

finite difference algorithm.  

Dynamic characterization of edge-clamped DE membrane actuators in a diaphragm 

configuration was conducted using an experimental approach in [12, 13].  The static response of 

tubular DE sensors was studied and numerical results were validated with experiments in [5, 14].  

Tubular DE transducers have been previously analyzed by [9, 15]. Carpi et al. proposed a static 

model for actuation which was validated within the small strain range (0–5.0%).  The model was 

based on the linear elasticity theory [15]. An actuation characterization of spring roll DE 

actuators has been conducted using analysis techniques [9].  The previous works have focused on 

the static actuation response and was limited to small strains.  In this paper, a finite deformation 

model is used to describe the dynamic response of these transducers in both actuation and 

sensing modes [16].  For large elastic deformations, the developments by Adkins and Rivlin [16, 

17], Kydoniefs [18-20], and Matsikoudi-Iliopoulou [21] are most notable.  The dynamic 

mechanical response of elastic membranes has been studied by Jenkins [22], Tüzel [23] and 

Verron [24, 25] to name a few.  Specifically, Jenkins et al. applied dynamic approaches to the 

dynamic inflation field while considering the membrane’s inertia [22] and Tüzel studied the 

dynamic response of an isotropic hyperelastic membrane tube, subjected to a dynamic extension 

at one end [23].  Verron applied the Mooney-Rivlin model or non-linear viscoelastic 

Christensen’s model to the dynamic inflation of spherical membranes [24, 25].  The dynamic 
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response of planar dielectric elastomer actuators was investigated in [26] by measuring current 

change while a high voltage (~6kV) was applied and the strain decrease of the DE actuator 

presumed due to material viscoelasticity was presented [27].  Here the dynamic inflation of 

tubular membrane in the presence of an electric field is considered.  

Experimental results are obtained to validate the proposed dynamic modeling approach.  The 

experimental procedure is devised to measure the dynamic deformation and capacitance of the 

DE membrane in sensing mode, in actuation mode, and in simultaneous sensing and actuation 

mode.  For dynamic sensing the electromechanical response is measured while a dynamic 

pressure was applied for various frequencies, 0–5.0Hz.  The tubular DE sensors are prepared 

with 3M VHB 4905 and silicone films (NuSil Technology: CF 19-2186), which are 

commercially available and spincoated in situ, respectively.  They are electroded with carbon 

grease (Carbon Conductive Grease, M.G. Chemicals).  Two end cylindrical shapes (Radius=9.5 

and Length=10mm) of the transducers are made of fluoropolymers (Teflon® PTFE, McMaster-

Carr Supply Company).  The dynamic pressure is generated for low frequencies (~2.5Hz) and 

higher frequencies (2.5–5.0Hz).  A comparison between the dynamic behavior of the VHB and 

silicone sensors is presented.  For the dynamic actuation behavior of tubular DEs, radial 

deformations of the tubular DE actuator are monitored while a dynamic voltage signal is applied 

with various frequencies, 0~30Hz.  In the actuation experiments, since VHB with radial 

prestretch did not show good actuation response while high voltage (4.5kV) is applied, only 

silicone DEs are used in the actuation experiments.   
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5.3. Principle of Dielectric Elastomer Transducer 

Dielectric elastomers are large strain electromechanical transducers.  The dielectric elastomer 

transducer is a three-component system consisting of a compliant elastomeric insulator 

sandwiched between two compliant electrodes.  For the sensing configuration, mechanical 

strains are detected by measuring one of two electrical parameters: capacitance or resistance.  

These sensors are ideal for large strain sensing applications due to the ability to retain electrical 

conductivity at large strains – even up to 100%.  For actuation, electrostatic forces are induced 

by applying an electric field to the dielectric elastomer.  This results in thickness reduction and 

an areal expansion in the in-plane directions due to an effect that is amplified by the softness of 

the material and material incompressibility.  A schematic of the typical assembly of a dielectric 

elastomer transducer as well as depiction of its sensing and actuation mode is given in Figure 5.1 

and Figure 5.2. 

  

Figure 5.1. Schematic of pressure/strains 

sensing using a dielectric elastomer. 
Figure 5.2. Schematic of actuation using a 

dielectric elastomer. 

The two most common types of dielectric elastomers used in fabricating transducers are 

polyacrylates and silicone elastomers [28, 29].  Failure of a typical specimen of 3M VHB 4905 

(polyacrylate) does not occur until a stretch ratio of 8.  Applying compliant electrodes to the 

major surfaces of prestretched dielectric elastomer specimens completes the fabrication process.  
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We have conducted an experimental evaluation of the large stretch response of different 

electrodes: carbon grease, silver grease, graphite powder, and graphite spray.  The experimental 

results indicate that carbon grease and silver grease are the best compliant electrodes of the four 

that were tested; carbon grease has a slightly better overall performance and is also less costly 

[30]. 

 

5.4. Electro-Elastic Model 

In this section, the modeling approach for the dynamic response of tubular DE transducer is 

presented.  Specifically, the previous large deformation model for the electromechanical 

response of DE membranes is augmented to account for dynamic effects. 

 

5.4.1. Geometric Relationships:  Coordinates 

In this section, a theoretical model to describe the deformation response of tubular DE transducer 

based on Green and Adkins’ work on unreinforced elastic tubes is briefly derived.  The tubular 

DE transducers are modeled as an elastic cylindrical membrane as shown in Figure 5.3.  From 

the symmetry of the problem and the assumption that the membrane is very thin compared with 

the cylinder’s radius, the state of stress is considered nearly constant throughout the thickness 

(elastic membrane theory assumption).  A set of cylindrical polar coordinates (R, , ) at the 

midplane are employed in the undeformed state.  The initial length and radius of the cylindrical 

membrane are given by L0 and R respectively.  The deformations of the tubular transducer are 

considered to be entirely symmetric with respect to the z-axis.  The meridian length of the 

cylindrical membrane is denoted  in the undeformed state and  in the deformed state.  It 
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follows that the principal directions at any point in the deformed membrane coincides with the 

deformed coordinates (r, θ, z), and the principal extension ratios are denoted as λ1, λ2, and λ3.  

Specifically, 1 and 2 are the meridional and latitudinal stretch ratios that define the 

deformation and λ3 is the thickness stretch ratio.  
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where 2h0 and 2h are the undeformed and deformed thickness of the membrane. 

                                                                                

 
Figure 5.3. An undeformed cylindrical membrane (Left) Half of the undeformed and 

deformed membrane (Right). 

 

5.4.2. Material Modeling: Electroelastic Stress and Strain Energy Function 

It is assumed that the elastic dielectric material is homogenous, isotropic and electrically linear, 

so that there is no direct coupling between the mechanical and the electrical response.  We 

hypothesize that the stress for the material can be written as the sum of the elastic and Maxwell 

stresses.  Therefore, the total stresses are divided into the two parts, mechanical and electrical 

portion.  The mechanical portion is determined by an elastic strain energy function (Mooney-

Rivlin function).  The electrical portion is given by the Maxwell stress.  In accordance with 
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Adkins’ and Rivlin’s solution approach, we presume that the applied forces normal to the 

cylindrical surfaces are negligible in comparison to the in-plane stresses and set n3=0.  The stress 

components of the membrane are then given by 
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    (5.2) 

where n1, n2, and n3 are the meridional, radial, and thickness stress components and W is a 

Mooney-Rivlin energy function.   

Figure 5.4 shows the fit of the strain energy function with experimental uniaxial data for 3M 

VHB 4905.  The Mooney-Rivlin model fits well with experimental data up to a stretch ratio 

around 4.   

 

 
Figure 5.4. Stress vs stretch data for VHB 4905 samples compared with Mooney-Rivlin 

model. 

For simplification of the partial differential equations using the finite difference scheme, the 

Mooney-Rivlin function is employed for describing the stress-strain behavior of dielectric 

elastomers (VHB 4905 & Silicone).  The Mooney-Rivlin function has the form,  
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 ),3()3( 2211  ICICW     (5.3) 

where I1 and I2 are strain invariants and Ci (i=1 and 2) are Mooney-Rivlin constants determined 

from uniaxial extension tests on rectangular samples supporting a uniformly distributed axial 

load (Table 5.1) [6]. 

 

Table 5.1. Mooney-Rivlin constants for VHB 4905 and Silicone. 

Mooney-Rivlin constants C1 (kPa) C2 (kPa) 

VHB 4905 16 7.3 

Silicone 163 34.2 

 

 During deformation, the initial thickness 2h0 of the membrane becomes 23h0 and the stress 

resultants are obtained by integrating over the deformed thickness 
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   (5.4) 

 

5.4.3. Equations of Motion for Tubular DE Membranes 

The equations of motion in the meridional and radial directions are expressed as,  
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where κ1 and κ2 are the principal curvatures given by,  
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For simplification, it is assumed that inertia effects in the meriodinal direction are negligible.  

Therefore, the first equation of motion in Equation (5.5) becomes an equilibrium equation due to 

d2ξ/dt2
=0 and results in only the second equation of motion in Equation (5.6) to solve.  

The independent variable  in the deformed state is rewritten as the independent variable η in the 

undeformed state by using the chain rule. 
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Therefore, Equation (5.5) and (5.6) can be rewritten using Equation (5.7) 
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(5.9) 

 For dynamic solutions, the initial conditions are the radial deformation and deformation rate 

which are defined at t = 0. Boundary conditions are defined at one end and the mid-length of the 

cylinder.  At the fixed end, the radial deformation is equal to zero and the curvature in the 

meridional direction at the middle of the membrane is zero.  
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The capacitance of the deformed tubular sensor is modeled by utilizing large deformation 

membrane theory and electrostatics. The approach is based on the assumption that the membrane 

is very thin compared with the tubular sensor’s radius, as well as axisymmetric deformation [14].  

The capacitance of the unit volume of the deformed tubular membrane is calculated using 

electrostatics.  The total capacitance of the tubular membrane is obtained by integrating the 

capacitance of the unit volume with respect to the axis.  The capacitance for an axisymmetric 

tubular membrane is 
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where   is the angle between membrane curve and vertical direction in Figure 5.3, r  is the 

relative permittivity and 0  is the vacuum permittivity.   

 

5.4.4. Numerical Solution Procedure 

In order to obtain the numerical solutions for the dynamic response of tubular DE transducers, a 

finite different scheme (forward difference method) is employed.  The equation of motion, 

Equation (5.8) is second order in time and space and thus impossible to solve analytically.  The 

first and second derivatives with respect to time and space are 
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where i and j are the space and time indices respectively as well as h and k are space and time 

increments.  

The parameters h and k are defined as 
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where n and m are the space and time component number and T is the time period.   

The equation of motion, initial conditions, and boundary conditions are rewritten by using the 

finite different method as  
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In the case of j=0, Equation (5.15) by inserting Equation (5.16) becomes 
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To ensure convergence of the solution, the k value is changed until 2
,2 n  converges to 1, which 

matches with boundary condition, Equation (5.16). Considering j = 1, Equation (5.15) becomes 
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Similarly, the solution at j = 1 is obtained when 2
,2 n  is converged to 1 by changing the k value.  

By repeating the previous steps for j = 2,3,4,…, m, numerical solutions are obtained.  
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5.5. Experimental and Numerical Results  

In this section, the dynamic characteristics of tubular VHB and silicone transducers are 

presented.  In Section 5.5.1, the experimental setup for the dynamic response is described.  In 

Section 5.5.2, the sensing response is analyzed.  Specifically, the frequency response is 

monitored while dynamic pressure is applied at various frequencies.  In Section 5.5.3, the 

actuation response is described.  The response is measured while dynamic high voltage is applied 

with various frequencies.  For the validation of our modeling approach, the experimental results 

are compared with the numerical results, which are simulated using finite difference scheme, 

described in Section 5.5.4.  

 

5.5.1. Experimental Setup 

In this section, the sample preparation procedure and experimental setup are presented.  

Polyacrylate and silicone films are used to make tubular DE samples.  3M VHB is commercially 

available and silicone films are fabricated using a spincoater [6] and the initial dimensions are 

given in Table 5.2.  For a length to radius ratio of one, the edge constraints could limit the radial 

deformation of the middle cross-section of the sample.  Figure 5.5 shows the effect of the length-

radius ratio (L/R) on the radial deformation.  According to Figure 5.5, the effect of L/R is 

negligible within pressure range considered in this research (0–2000Pa). 

 



126 

 

 

Figure 5.5. The effect of L/R on the radial deformation of the sample. 

 

In the experimental setup (Figure 5.6), dynamic responses of tubular DE sensor/actuator are 

obtained by measuring the capacitance and the radial deformation at the midpoint of the 

transducer, which are measured by a capacitance meter (Model 3000, GLK) and a triangular 

optical laser sensor (Model LTC-050-20, MTI INSTRUMENT, INC).  Dynamic pressure is used 

to inflate the tubular sensor and actuator by a combination of a syringe (140CC), linear stage 

(NLS4 Series linear stage, Newmark systems, INC) and solenoid valves (SY3340-SGZ, SMC), 

and measured by a pressure sensor (163PC01D36, OMEGA).  A high voltage dynamic signal is 

applied by supplying a LabVIEW generated signal to an amplifier (Model 610E, Trek, INC).   

 

Table 5.2. The initial dimensions of tubular DE sensor and actuator (VHB 4905 and 

silicone film). 

Sample R (mm) L (mm) t (mm) 

VHB sensor 9.56 20 0.5 

Silicone sensor 9.56 20 0.1 

Silicone actuator 9.56 20 0.2 
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Figure 5.6. Experimental setup for dynamic response of tubular DE sensors and actuators. 

 

For the tubular DE sensor experiment, the fabricated tubular samples are attached to a frame 

(Figure 5.6) and a dynamic pressure (1400 and 2000Pa) is applied with excitation frequencies 

ranging from 0–5.0Hz.  Higher frequencies (2.5–5.0Hz) are generated by opening and closing the 

solenoid valves.  For the tubular DE actuator experiment, the linear stage and syringe provide a 

static pressure (2000Pa) and a dynamic voltage (4.5kV) is applied with excitation frequencies 

ranging from 0–30Hz. In each of these experiments, 3 tests for 4 each samples are performed. 

 

5.5.2. Dynamic Response of Tubular DE Sensors with Dynamic Pressure 

Input 

The initial capacitance value of the VHB sensor is 85 pF and the initial dimensions of the sensor 

are given in Table 5.2.  Figure 5.7 and 5.8 show the capacitance change and deformed radius of 

the tubular VHB sensor while a dynamic pressure (2000Pa) is applied at 0.3 Hz.  At a low 

frequency (0.3 Hz), there is no delay between the pressure signal, the measured capacitance, and 

deformed radius.  The maximum values of the measured capacitance and deformed radius are 

consistently measured to be 107 pF and 11 mm as shown in Figure 5.7 and Figure 5.8.  That is to 
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say, the VHB sensor has a good quasi-static sensing response Figure 5.9 and Figure 5.10 show 

the sensing response of the VHB sensor at 2.0 Hz.  For a 2.0 Hz signal of amplitude 2000 Pa, the 

capacitance signal is not identical to the dynamic pressure signal and the maximum value of 

capacitance decays with time.  To understand the output signal further, which exhibits a definite 

rise and decay time, a comparison between the radial deformation and the input pressure is 

conducted.  Figure 5.10 shows that the mechanical response (radial deformation) of the VHB 

sensor at 2.0 Hz is identical to the pressure signal and there is no delay.  Therefore, the 

dissimilarity between the capacitance and the pressure signal is electrical in nature.  There is an 

apparent time required for charging/discharging the VHB sensor.  That is to say, the VHB 

tubular sensor is capacitive in nature.  Additionally, the amplitude of the radial deformation 

decreases as the cycle is repeated.  This is due to the material viscoelasticity.  VHB sensors do 

not have a linear dynamic response at frequencies above 2.0 Hz.  The sensor has good quasi-

static behavior, but a poor dynamic response above 2.0 Hz.   

  

Figure 5.7. Dynamic capacitance of a VHB 

sensor at 0.3 Hz. 

Figure 5.8. Radial deformation of a tubular 

VHB sensor at 0.3 Hz. 
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Figure 5.9. Dynamic capacitance of a 

VHB sensor at 2.0 Hz. 

Figure 5.10. Radial deformation of a 

tubular VHB sensor at 2.0 Hz. 

Between the frequency ranges of 0 to 5.0 Hz, the capacitance change and radial deformation of 

the tubular silicone sensor are monitored while a dynamic pressure is applied.  Initially, the 

capacitance value of the depressurized sensor is 435 pF.   Initial dimensions of the sensor are 

given in Table 5.2.  It should be noted that the dynamic pressure profile is not a perfect 

rectangular shape.  It is expected that the dynamic response of the silicone sensor shows linearity 

in proportion to the dynamic pressure.  In Figure 5.11 and Figure 5.12, the somewhat quasi-static 

response of a silicone sensor (0.17 Hz) is shown.  In detail, Figure 5.11 shows that the measured 

capacitance is identical to the dynamic pressure signal and the dynamic maximum value of the 

capacitance is 485 pF.  That is to say, the silicone sensor shows a linear relationship between the 

mechanical input and the electrical output.  Comparatively, Figure 5.12 shows the deformation of 

the membrane corresponding to the measured capacitance in Figure 5.11.  Figure 5.13 and Figure 

5.14 illustrates the dynamic response of the silicone sensor at 4.7 Hz.  In Figure 5.13, it is shown 

that the maximum value of the capacitance is 485 pF, but there is a slight delay between the 

mechanical input and the electrical output.  Similarly in Figure 5.14, the maximum radial 

deformation is 10.30 mm at a pressure of 1400 Pa but, there is almost no delay or time lag 

between the mechanical input and the output.  Therefore, the delay in Figure 5.13 exists only 
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between the mechanical input and the electrical output.  This appears to be related to the 

electrical charging and discharging time for the silicone sensor.   

In summary, both VHB and silicone sensors show good quasi-static sensing behavior.  The 

experimental analysis indicates that the maximum capacitance value of the VHB sensor at 2.0 Hz 

decays in time and the electrical output signal is delayed due to charging/discharging time 

(around 0.3s at 2.0 Hz), so that the VHB sensor shows poor dynamic response.  On the other 

hand, the silicone sensor outputs a non-decaying signal and the charging/discharging time is 

significantly less around 0.05s at 4.7 Hz. Therefore, it can be concluded that the silicone sensor 

has a wider dynamic range in comparison to VHB sensors. 

 

  

Figure 5.11. Capacitance change of a 

tubular silicone sensor at 0.17 Hz. 

Figure 5.12. Radial deformation of a 

tubular silicone sensor at 0.17 Hz. 

  

Figure 5.13. Capacitance change of a 

tubular silicone sensor at 4.7 Hz. 

Figure 5.14. Radial deformation of a 

tubular silicone sensor at 4.7 Hz. 
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Figure 5.15 and 5.16 show a comparison between numerical and experimental results for the 

silicone sensor at 1400 Pa at 5.0 Hz.  In Figure 5.15 and 5.16, there are differences between the 

numerical (rectangular) and experimental results (close to trapezoid), although the minimum and 

maximum values have a good correlation. The trapezoidal curve of the experimental capacitance 

results in Figure 5.15 is due to the discharging and charging time for the silicone sensor as well 

as the trapezoidal shape of the dynamic pressure input.  Also, the measured radial deformation in 

Figure 5.16 comes from the trapezoidal shape of the experimental pressure input.  Since these 

factors in the experiment are not included in the theoretical model, the differences in the results 

are expected.  The comparison between maximum/minimum values of numerical and 

experimental capacitance and radial deformation in Figure 10 shows within 3% overall error.  

  

Figure 5.15. Comparison of numerical and 

experimental results for capacitance sensing 

(5.0 Hz). 

Figure 5.16. Comparison of radial 

deformation between numerical and 

experimental results (5.0 Hz). 

 

5.5.3. Dynamic Response of Tubular DE Actuators with Dynamic Voltage 

Input 

A series of experiments were conducted in which a dynamic voltage input between 0 and 30 Hz 

with an amplitude of 4.5 kV was applied to the tubular membrane.  The initial dimensions of the 

400

420

440

460

480

500

520

0.1 0.2 0.3 0.4 0.5

Time (s)

D
e
fo

rm
e
d

 r
a
d

iu
s
 (

m
m

)

Experimental result

Numerical result

C
a
p

a
c
it

a
n

c
e
 (

p
F

)

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

0.1 0.2 0.3 0.4 0.5

Time (s)

D
e
fo

r
m

e
d

 r
a
d

iu
s
 (

m
m

) Experimental result

Numerical result



132 

 

transducers are given in Table 2.    Radial deformation of the initially pressurized tubular silicone 

actuator (2000 Pa) is measured while a dynamic voltage is applied.  The radius of the tubular 

silicone actuator with the static pressure is 10.80 mm.  Figure 5.17 and Figure 5.18 describe the 

relationship between the electrical input (voltage) and the mechanical output (radial deformation) 

for the given frequency values.  Since there is a linear relationship and no delay between 

electrical input and mechanical output, good dynamic actuation responses of the tubular silicone 

actuator are shown.  The normalized maximum amplitudes ((Deformed radius-10.80)/(10.80–

9.56)) for 3 sets of voltage sweeps (1–30 Hz) are shown in Figure 5.19.  The maximum 

amplitude averages around 0.5 below 15 Hz, and reaches 0.6 at 20–22 Hz and then steadily 

declines with increasing frequency.   

  
Figure 5.17. Radial deformation of tubular 

silicone actuator at 2.0 Hz. 

Figure 5.18. Radial deformation of tubular 

silicone actuator at 10 Hz. 

 

Figure 5.19. Dynamic actuation peak amplitudes for voltage frequencies, 1~30 Hz. 
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Figures 5.20 and 5.12 show the comparison between numerical and experimental results for a 4.5 

kV signal at 2.0 Hz and 10 Hz.  The experimental curves in Figures 5.20 and 5.21 accord well 

with the numerical results.  The correlation between numerical and experimental results are 

within 3% overall error.  Therefore, the modeling approach that is proposed in this paper is 

validated by these experimental results.  

  
Figure 5.20. Comparison between numerical 

and experimental results (2.0 Hz). 

Figure 5.21. Comparison between numerical 

and experimental result (10 Hz). 

5.6. Summary 

 In this paper, the dynamic actuation and sensing response of tubular dielectric elastomers was 

discussed.  A theoretical background for the dynamic model based on a large deformation theory 

for DE membranes and electrostatics was presented.  Numerical results were obtained by 

employing a finite difference scheme to solve the PDEs.  The experiments indicate that both 

VHB and silicone sensors have good quasi-static sensing behavior.  However, for the dynamic 

response within a limited frequency range, the VHB sensor shows poor response after 2.0 Hz and 
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sensing response at higher frequencies up to 5.0 Hz and 8% radial strain.  Tubular silicone 
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between the maximum values of numerical and experimental results for the silicone sensor and 

actuator shows good agreement with 3% overall error.    This shows that the dynamic model and 

solution approach based on the finite difference method is a good tool for predicting the finite 

dynamic deformation of tubular DE sensors and actuators.  
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6.1. Abstract 

Dielectric elastomer (DE) membranes are one of the most promising transducers for developing 

soft large strain sensors.  In this paper, we describe the sensor response for a potential biomedical 

application.  It is widely accepted that diseased arteries at various stages have a unique 

constitutive response.  This means that ideally the output of an in situ artery sensor would have 

distinct profiles corresponding to various stages of unhealth.  An in situ sensor can potentially 

allow access to information about the mechanical state of the artery that is not currently 

available.  Furthermore, the potential to combine the functions of providing structural support 

(stent) and monitoring the mechanical state (sensor) is appealing.  Traditional sensors such as 

strain gages and piezoelectric sensors are stiff and fail at low strains (< 1%) whereas some 

dielectric elastomers are viable at strains up to and even surpassing 100%.  Investigating the 

electromechanical response of a deformable tube sensor sandwiched between a pulsating 

pressure source and a nonlinear elastic distensible thick wall has not been attempted before now.  
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The successful development of a multiphysics model that correlates the electrical output of a 

pulsatile membrane sensor to its state of strain would be a significant breakthrough in medical 

diagnostics.  The artery is described using a structural model for a tubular membrane reinforced 

with two families of initially crimped fibers subject to a pulsating pressure profile.  In this paper, 

the fundamental mechanics associated with electromechanical coupling during dynamic finite 

deformations of DEs is derived.  A continuum model for the dynamic response of tubular 

dielectric elastomer membranes configured for sensing is presented.  The pressure profile leads 

to a nonlinear response of the artery-sensor due to the nonlinear deformation behavior of the 

arterial wall.  At pressures above 13kPa, the artery undergoes infinitesimal deformation which 

leads to very small changes in the sensor signal.  In this range, fabricating thinner sensors and 

synthesizing hybrid polymers with higher dielectric constants can enhance the sensitivity. 

 

Keywords: artery, dielectric elastomer, sensor. 

 

6.2. Introduction 

The main purpose of this paper is to describe a structural model for an arterial segment and to 

use the model to describe the response of a soft in situ sensor subject to pulsatile loads.  Arteries 

will have a unique constitutive response at various stages of disease progression due to local 

mechanical changes in the tissue.  It is then expected that an implanted sensor would detect 

distinct profiles corresponding to various stages of unhealthy conditions.  Unhealthy arteries can 

be caused by the blockage of the artery by plaque, calcification and hardening of the biological 

membrane.  There are a variety of tests to detect heart disease such as electrocardiogram, stress 

test, echocardiography, computerized tomography and coronary angiography via cardiac 
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catheterization.  In advanced cases, stent deployment is one of the commonly employed 

procedures to correct artery blockage.  Once the stent is deployed, there is no means of locally 

tracking the state of that arterial segment.  A multifunctional stent, one restoring structural 

integrity to the artery as well providing local state information, would be of utmost value.  The 

DE sensor is a soft sensor that is easily fabricated, has low cost, low weight, repeatability, shape 

compliance, and operable at large strains [1, 2].  In this paper, we seek to understand the 

response of an in situ tubular DE sensor placed in contact with an arterial segment.  Specifically, 

a numerical model of the electromechanical response of a tubular DE sensor placed in contact 

with the artery is studied.   

The artery is a highly deformable material that shows a nonlinear constitutive response for a 

physiological pressure range (normal blood pressure: 16/10kPa).  One modeling approach is to 

initially consider the artery as a hyper-elastic membrane with an anisotropic contribution due to 

the embedded wavy collagen fibrils, which can be modeled as crimping fibers in the undeformed 

state that are straightened during the deformation.  The gradual straightening of the originally 

undulated fibers has been studied by [3-8].  Comninou and Yannas and Lanir developed the 

structural theory for the crimping collagen fibers with a sinusoidal wave, which correlated 

reasonably well with experimental data [3, 4].  Freed and Doehring considered the wavy collagen 

fibers as a three-dimensional structure wave form (which is a helical spring) on the geometry of a 

cylindrical helix and  their model allowed compression [7, 8].  In the present model, the crimping 

collagen fibers in the reference configuration is represented by sinusoidal curves similar to the 

approaches in [3, 4] and it is assumed that when the fibers are undulated they do not carry any 

tension and hence do not contribute structurally to the overall material stress, which is dominated 

by the isotropic membrane in that phase.  Once the fibers are straightened, they carry a tension.  
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This is equivalent to phenomenological treatments whereby the fiber constitutive response is 

represented by an exponential function making the fiber contribution negligible in the low strain 

range of the overall tissue response. 

Collectively, the artery is represented as a fiber-reinforced tubular membrane and our approach is 

based on the work of Green, Adkins, and Rivlin [9-11].  Adkins and Rivlin formulated a large 

deformation theory for thin membranes and solved a series of axially symmetric problems for 

fiber reinforced membranes  [9, 12].  The general formulation for fiber-reinforced elastic tubular 

membranes has also been treated by Kydoniefs and Matsikoudi-Iliopoulou [13-16].  Kydoniefs 

investigated the axisymmetric deformation of an initially tubular membrane with two families of 

inextensible fibers [13-15].  Matsikoudi-Iliopoulou described a reinforced membrane with one 

family of fibers to model torsion, inflation, and extension [16].  The general concept of a fiber-

reinforced constitutive model for the artery was first introduced by Holzapfel et al. [17].  In their 

model, the structure of the artery is reduced from a three layered fibrous structure to an isotropic 

tubular non-collagen layer and two families of collagen fibers to represent the artery.  The effect 

of the fibers is incorporated through the definition of an anisotropic strain energy function.  In 

the strain energy function proposed by Holzapfel et al. [17], the non-collagen part of the arterial 

adventitia is mechanically viewed as an isotropic Neo-Hookean material.  The strain energy 

function is disassociated into isotropic and anisotropic parts [18].  In the proposed model in this 

paper, the isotropic part of the artery (non-collagen part: Adventitia) is described using an 

isotropic strain energy function (Neo-Hookean model) and the two families of fibers are 

considered as structural components that place restraints on the overall deformation when they 

are straightened. 
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In principle, DE sensors are compliant capacitors, which have a capacitance that varies with 

mechanical strain; alternatively, the resistance can be monitored.  The varying capacitance 

induced by the deformation of the tubular DE sensors is used as a measure of the deformation 

state.  In this paper, a numerical model for the DE sensor is based on elastic membrane theory 

and electrostatics.  In our previous work, a finite deformation model for DE membranes in 

actuation mode was derived [19] and a quasi-static model for a tubular DE sensor was derived in 

[20].  The quasi-static model for tubular DE sensors was validated with experiments in [20] 

whereby a fiber-reinforced membrane was employed as the host.  The fiber-reinforced 

membrane consists of a rubbery elastic membrane bladder wrapped with a helical two-family 

fiber mesh.  Here, we consider a model for a tubular DE sensor placed in contact with the inner 

surface of an artery as shown in Figure 6.1.  It is assumed that the DE sensor does not inhibit the 

behavior of the artery and hence undergoes equivalent deformations.  [21-23] 

 

 
Figure 6.1. Schematic of an arterial segment with tubular DE sensor. 

In this paper, numerical results are presented to validate the proposed modeling approach for the 

artery-DE sensor composite.  This is a structural approach (see [20]) which differs from semi-

structural and phenomenological approaches employed by [17, 18, 24, 25] amongst others in 

modeling the artery.  Quasi-static results for the pulsatile response of the artery with 

physiologically valid pressures and frequencies (1–2Hz) are presented.  Furthermore, with the 

sensor in contact with the membrane, the dynamic electromechanical response (capacitance 
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change) is calculated for physiologically valid pressures and frequencies.  Based on large 

deformation membrane theory and electrostatics, a numerical model for the large strain sensing 

response of the tubular DE sensor is presented and solved.  

In Section 6.3, the mathematical modeling for the quasi-static and dynamic response of the artery 

and tubular DE sensor is outlined.  Based on the modeling in Section 6.3, numerical results are 

obtained for pressures from 0–20 kPa in the 1–2 Hz frequency range in Section 6.4.  Specifically, 

the mechanical deformation of the artery and the electromechanical response of the tubular DE 

sensor are discussed in Section 6.4.   

 

6.3. Modeling Approach for the Artery 

In this section, a continuum mechanics based modeling approach for the quasi-static response of 

an artery in contact with a soft sensor is presented.  The mathematical formulation is based on a 

combination of large deformation elastic membrane theory and electrostatics.  Geometric 

relationships for the artery referred to a cylindrical coordinate system are established and 

geometric relationship of the crimping fibers in the undeformed state is explained in Section 

6.3.1.  The constitutive stress strain relationships for the artery which is considered as a fiber-

reinforced tubular membrane are described in Section 6.3.2.  Specifically, the isotropic portion is 

modeled as a Neo-Hookean material and two families of fibers are regarded as structural 

components.  The governing equations are provided in Section 6.3.3.  An expression for the 

capacitance of the tubular DE sensor with respect to the deformation of the artery is derived in 

Section 6.3.4.  
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6.3.1 Geometric Relationships for the Isotropic Membrane and Crimping 

Fibers 

In this section, a theoretical model to describe the deformation response of the artery based on 

Green and Adkins’ work on fiber-reinforced tubular membrane is briefly outlined.  As shown in 

Figure 6.2, the artery is modeled as an elastic tubular membrane.  From the symmetry of the 

problem and the assumption that the membrane is very thin compared with the tube’s radius, the 

state of stress is considered nearly constant throughout the thickness (elastic membrane theory 

assumption).  A set of cylindrical coordinates (R, , ) at the midplane are employed in the 

undeformed state.  The initial length and radius of the cylindrical membrane are given by L0 and 

R0.  The deformations are considered to be entirely symmetric with respect to the z-axis.  The 

meridian length of the artery is denoted  in the undeformed state and  in the deformed state.  It 

follows that the principal directions at any point in the deformed membrane coincides with the 

deformed coordinates (r, θ, z), and the principal extension ratios are denoted by λ1, λ2 and λ3.  

Specifically, 1 and 2 are the meridional and latitudinal stretch ratios that define the 

deformation and λ3 is the thickness stretch ratio. 
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 (6.1) 

where 2h0 and 2h are the undeformed and deformed thickness of the membrane.  There are two 

fiber families: the initial angles of the fibers are α1 = α2 = 39.98º, 49.98º and 59.98º (chosen to be 

physiologically consistent) [24] and once deformed are located at the deformed angle β as shown 

in Figure 6.2.  Two families of fibers are undulated in the reference state with the mean initial 

fiber angles α1 and α2 and the straightened fiber length Lf.  The arterial wall deforms without 
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fiber tensions until the fibers are straightened at the deformed fiber angle β1 and β2 in Figure 6.2 

(Right).  Subsequently, the arterial wall deforms with the fiber tensions engaged.     

η ξ

R0

LL
0

z

α1

Two families of crimping fibers 

β1r

σ

Two families of straight fibers

α2

β2

 
Figure 6.2. Half of the undeformed artery (symmetry presumed) with crimping fibers (Left) 

and the deformed artery with straight fibers (Right). 

 

Let’s assume that the crimping fibers in Figure 6.2 (Left) are continuous with all the same shape 

and natural lengths and there is no relative motion between the isotropic membrane and the 

fibers.  The shape of the crimping fibers is regarded as a sinusoidal waveform (in Equation (6.2) 

and Figure 6.3) with respect to the undeformed membrane length (L0/sinαi), (i=1 and 2) in the 

direction of the mean fiber angle αi  Note that dx initially coincides with dη/sinαi. 
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Figure 6.3. Schematic of a crimping fiber. 

 The straightened fiber length Lf can be obtained by using simple geometric relations from Figure 

6.3, 
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    (6.3) 

The amplitude A in Equations (6.2) and (6.3) can be considered a crimping parameter of the 

fibers.  For instance, if the fibers in the reference state are straight then A=0.  At A≠0, the fibers 

are undulated in the undeformed configuration and there will be no fiber tension until the fibers 

are straightened.  For a fixed natural length, the amplitude then describes the degree of crimping 

of the fibers.  At some point during the deformation of the membrane, the fibers will become 

straight.  To determine when the fibers become straight during the deformation, Equations (6.4)-

(6.7) are employed.  The undeformed and deformed lengths at the mean fiber angle αi and βi are 

dS and ds, respectively.  The stretch ratio in the fiber direction (an arc length along the 

membrane) can be expressed as,  
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The relationship between the fiber angles αi and βi is obtained by geometric inspection of Figure 

6.2, 
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The deformed membrane length lm in the z axis (Figure 6.4) is calculated as,  
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Figure 6.4. Geometric relationship between membrane length lf and lβ. 
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Then, the deformed membrane length lβ at the fiber direction βi (i=1 and 2) (Figure 4) can be 

obtained by using a geometric relationship in Figure 6.4, 
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      (6.7) 

Therefore, when lβ is equal to Lf in Equation (6.3) (which is the straightened fiber length), the 

fiber is straightened and lies along the fiber angle βi.  It is assumed that all fibers straighten at the 

same moment and are parallel and closely spaced.  Note that Gasser et al. [24] have proposed 

formulations that account for a statistical distribution of the fiber angle, which could be 

employed as an alternate approach to the sensor model developed later in the paper [24].   

 

6.3.2. Material Modeling: Elastic Stress and Strain Energy Function  

The artery is modeled as a tubular membrane with two families of crimping collagen fibers.  

Thus, the total stress resultants Nij are derived from the force required to deform the elastic 

membrane alone in addition to the tension in the straightened collagen fibers.  Recall that the 

effect of the crimping fibers is included in the reference state, there is no fiber tension until the 
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fibers are straight (Lf = lβ).  Therefore, there are only stress resultants from the elastic membrane 

when the fibers are crimped, 

 
ijij nN  ,    (6.8) 

where nij is the stress resultant required to deform the membrane itself, (i and j = 1,2 and 3). 

After the fibers are straight, the total stress, Nij can be decomposed into two parts 

 
iijij tnN  ,    (6.9) 

where ti is the tension due to the collagen fibers (i and j=1,2 and 3).  

 The decomposition in Equation (6.9) is consistent with Green and Adkins and Rivlins’ fiber 

reinforced membrane model [10, 11].  Employing a similar solution approach, we presume that 

the applied forces normal to the tubular surfaces are small in comparison to the in-plane stresses 

and set n33=0.  In the deformation, the initial thickness 2h0 of the membrane becomes 23h0 and 

the stress resultants are obtained by integrating the stress components over the deformed 

thickness. Hence,  
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where W is a strain energy function.  

The collagen fiber tensions in the meridional and latitudinal directions are determined to be  
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where  is the tension in the fiber and  is the constant distance between two different fibers on a 

single circle of latitude.    is given as 5μm taken from measurements using transmitted light 

microscopic (TLM) images of stained adventitia samples and experimentally verified [26]. In the 

model presented here, only the Neo-Hookean model in Equation (6.12) is employed for the 

isotropic tubular membrane and fiber effects are modeled using a structural representation, which 

is already described in Equations (6.8)–(6.11).  

3.  
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C
WNH     (6.12) 

where C is a Neo-Hookean material constant for the isotropic tubular membrane. 

We compare the structural model described in this section to the semi-structural approach of the 

Holzapfel-Gasser-Ogden model (HGO model: [17]) in Equation (6.13).  In their formulation, a 

strain energy function is proposed for the artery that contains an expression for the non-collagen 

part and a term for the two families of collagen fibers, which leads to a strongly nonlinear 

response in the large strain domain.  The proposed strain energy function is an exponential type 

reminiscent of the well-known Fung type model for soft biological materials [27, 28],  
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where C is a Neo-Hookean constant for the isotropic non-collagen part, k1 is a material parameter, 

k2. The material parameters are given in Table 6.1.  Note that any suitable material model for the 

artery can be used in the sensor framework that will be outlined in Section 6.4.  

Table 6.1. Material parameters for the artery model [24].  

C (kPa) k1 (kPa) k2 

7.64 996.6 524.6 
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6.3.3. Governing Equations and Boundary Conditions for Static Response  

The membrane governing equations for a tube subjected to an inflation pressure are expressed in 

the meridional and latitudinal directions as,  
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where κ1 and κ2 are the principal curvatures in the meridional and latitudinal directions given by,  
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The derivation of the membrane equations from the Cauchy equilibrium equations is somewhat 

involved and can be found in Green and Adkins [9-11].  For an arterial segment of length L0, the 

boundary conditions at z=L0 and z=0 are fixed and given in Equation (6.16-1)) where symmetry 

about the midpoint of the membrane has been employed.  The force balance in the axial direction 

yields at z=0 the expression given in Equation (6.16-2).  The angle σ between the deformed 

membrane and the z axis is zero at the midpoint of the tube (z=0) and expressed in Equation 

(6.16-3),  

  . )σ(),(N)r(πP)r(π,   )(Lλ 0000201 11
2
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In particular, the non-dimensional undeformed length l0 is obtained by  
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The angle σ represents the angle between the deformed membrane and the z axis. 
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If the length is allowed to change (both ends of the tube not fixed), the deformed length of half of 

the membrane is obtained in the following manner 
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For the quasi-static analysis, the right hand side of Equation (6.14) is set equal to be zero. 

Calculation of the numerical deformation profile of the artery is obtained using the following 

numerical procedure:   Initially, trial values of τ and λ2(0) are given.  The second step is to obtain 

λ2(L0) using a Runge-Kutta algorithm.  The value of λ2(L0) is matched with the boundary 

condition, λ2(L0)=1 (Equation (6.17)) and the numerical deformation profile is calculated.  If the 

value of λ2(L0) does not match the boundary condition, the procedure is repeated until the correct 

value of λ2(L0) (λ2(L0)=1)is obtained. 

For the dynamic analysis, Equation (6.14) is simplified by assuming that inertial effects in the 

meridional direction are negligible.  Therefore, the first equation of motion in Equation (6.14) 

becomes a static equilibrium equation where d
2
ξ/dt

2
=0 (Note that the current representation does 

not include viscous effects).  The initial conditions are the deformed radius and deformation rate,  
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Numerical solutions for the dynamic response of the artery wall are obtained using a finite 

different scheme.  Further details of the computational scheme are described in [29].  At first, the 

equation of motion, initial conditions, and boundary conditions in Equations (6.14), (6.16) and 

(6.20) are discretized by using the finite different method (forward difference method) for time 

and space domains.  At the first time step, the deformed profile is calculated by using the initial 
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conditions.  For the following time steps, the deformed profiles are obtained in the same manner 

as the procedure for the quasi-static solution.  

 

6.3.4. Capacitance Formulation for Tubular Dielectric Elastomer Sensors  

In this section, the sensing equation for the DE transducer is briefly derived.  Consider a tubular 

DE in the undeformed state of length 2L0, and outer and inner radii Rout, and Rin respectively.  To 

determine the capacitance of the tubular membrane, expressions for the coaxial electric field and 

the potential difference between the inner and outer surfaces are obtained using 
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where r is a radial coordinate, rin and rout are the inner and outer radii of the cylinder,  Q is the 

charge, εr is the relative permittivity and ε0 is the vacuum permittivity and 2L is the current 

length of the cylinder.   

The capacitance of a unit volume of the tubular DE in Figure 6.5 is the ratio between the 

electrical charge and the potential difference 
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where dz is of unit length.  
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Figure 6.5. Unit element of a deformed tubular DE sensor. 

Therefore, the total capacitance is calculated by integrating Equation (6.23) with respect to the z 

axis, which yields 
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where Rs0 and t0 are the radius and thickness of the tubular DE sensor.  To calculate the 

capacitance value of a tubular DE sensor, we will assume that the deformation of the sensor is 

identical to that of the artery.  Therefore, the sensing response can be calculated using Equation 

(6.23) for a known deformation profile of the artery wall (outlined in the previous section).   

 

6.4. Quasi-static and Dynamic Response of the Large Strain Sensor 

Consider a tubular sensor placed in contact with the inner surface of the arterial wall.  It is 

assumed in this first approximation that the sensor does not structurally influence the behavior of 

the arterial wall, thereby undergoing equivalent deformations.  By means of the numerical 

modeling approach described in the previous section, the deformation response of the artery and 

subsequent electromechanical coupling of the DE sensors is obtained.  It is assumed that the 

uniformly distributed collagen fibers are initially crimped about a mean initial fiber angle α and 

then become aligned and straight during the deformation.  The quasi-static and dynamic response 



152 

 

of the arterial wall with physiologically valid pressure and frequency ranges applied are 

presented in this section.  The initial dimensions of the arterial wall and the tubular DE sensor 

(silicone) are given in Table 6.2 and Table 6.3, respectively.  The initial fiber angle α=49.98º and 

artery dimensions given in the table are physiologically representative [30].   

 

Table 6.2. The initial dimensions of the artery. 

 R0 (mm) 2h0 (mm) 2L0 (mm) α (º) 

Artery 4.745 0.43  20 39.98, 49.98 and 59.98 

 

6.4.1. Comparison between the Structural Model and HGO Model  

To validate the proposed numerical model for the artery, the static constitutive deformation of 

the artery wall is compared with Gasser et al.’s numerical results [24], which was validated with 

experimental results [31].  The parameters for the strain energy function and initial dimensions 

of the artery are given in Table 6.1 and Table 6.2 for the collagen fiber angle of 49.98º.  One 

circular end of the artery is fixed, the other is free, and an internal pressure is applied.  Figures 

6.6 and 6.7 show comparisons of radial and longitudinal arterial deformations using the present 

model (SG) and the HGO model, in which κ is equal to 0.  The difference between the two 

models are within 3% overall, which provides validation for the proposed approach.  The error 

between the two numerical results are calculated by  

 
100.
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modelSG model- HGO
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Figure 6.6. Comparison of radial 

deformation as a function of pressure. 

Figure 6.7. Comparison of longitudinal 

deformation as a function of pressure. 
 

6.4.2. The Effect of the Crimping Fibers on the Deformation of the Artery 

In order to observe the effect of the undulated fibers in the reference configuration, the static 

response of the artery with respect to internal pressure (0–20kPa) is calculated for different 

values of the crimping parameter A from 0 to 1.0.  Again, A≠0 means that the fibers are 

undulated in the undeformed state and there is no fiber tension until the fibers are straightened.  

Figure 6.8 describes the relationship between the initial fiber angle and the straightened fiber 

length Lf with respect to the crimping parameter A.  The length Lf increases nonlinearly with A 

due to the sinusoidal function in Equation (6.2) (the fiber crimping).  Figure 6.9 shows the effect 

of the crimping fibers on the deformation of the artery with respect to the internal pressure.  The 

initial fiber angle α is 49.98 º and the fibers have the same extended fiber length in each 

simulation.  Since there is no fiber tension until the fiber is straightened, larger deformations in 

the radial direction are observed than the model not including the crimping fiber (A=0).  The 

response is nonlinear due to the crimping shape of the fiber.    
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Figure 6.8. Relationship between fiber 

undulation and straightened fiber length. 

Figure 6.9. The effect of crimping on the 

deformation response. 

 

6.4.3. Static Deformation of the Artery  

In this subsection, the static response of an arterial segment is obtained for a physiological 

pressure range of 0–20kPa using the structural model outlined in Section 6.3.  Since the crimping 

parameter A is given as 0.8, the straightened fiber lengths, Lf, are given as 17.07, 14.81 and 

13.49mm for 39.98°, 49.98° and 59.98°, respectively.  The boundary conditions for the numerical 

results are as follows: both circular ends of the artery are fixed, the longitudinal stretch ratio L/L0 

is constant and of unit value and the radial stretch ratio λ2 is of unit value at both ends of the 

tube.  Figure 6.10 and Figure 6.11 show the radial and thickness deformations of the artery for 3 

different initial fiber angles.  The deformation response is nonlinear and the results show that the 

nonlinearity is shifted to a higher pressure range when the collagen fiber angle increases.  This is 

because a larger collagen fiber angle provides less constraint on the radial expansion in 

comparison to smaller fiber angles.  Note that the radius of the artery reaches maximum values 

of 5.66 to 8.00mm.  Figure 6.10 shows that a smaller fiber angle induces a higher radial 

constraint as evidenced by the early transition to the plateau region (points 1, 2 and 3 in Figure 

6.10).   
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Figure 6.10. Radial deformation as a 

function of pressure for 3 different fiber 

angles. 

Figure 6.11.Thickness deformation as a 

function of pressure for 3 different fiber 

angles. 

 

Figure 6.12 and Figure 6.13 show the variation of the meridional and thickness stretch ratios λ2 

and λ3 of the arterial membrane along the z axis.  In Figure 6.12, λ2 progressively decreases at 

points away from the boundary.  Conversely, for the thickness stretch in Figure 6.13, λ3 increases 

most at points farther away from the middle of arterial wall (z = 0mm).   

  
Figure 6.12. Latitudinal stretch ratio as a 

function of z axis. 

Figure 6.13. Thickness stretch ratio as a 

function of z axis. 

 

6.4.4. Static and Dynamic Deformation of the Soft DE Sensor and Artery  

The static and dynamic electromechanical response of a tubular DE sensor is obtained for a 

pressure range of 0–20kPa.  The initial dimensions of the DE sensor are given in Table 6.3.  

 

Table 6.3. The initial dimensions of a tubular silicone DE sensor (silicone material). 

 Rs0 (mm) t0 (mm) 2L0 (mm) εr 

Silicone DE sensor 4.525 0.10 20 2.7 
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Figure 6.14 shows the predicted sensor output for a silicone DE sensor in response to the 

deformation of the artery.  The model procedure is as follows.  For a given pressure input, the 

deformation of the artery is calculated.  The calculated deformation profile is used as the 

mechanical input of the sensor and the sensor output is calculated using Equation (6.23).  The 

relationship between capacitance and pressure is nonlinear.  This nonlinearity is shifted to a 

higher pressure range when the fiber angle increases.  The nonlinearity arises from the nonlinear 

relationship between pressure and deformation of the arterial wall.  The observed plateau region 

in the curve is due to constrained motion as opposed to sensor insensitivity.  The capacitance 

sensitivity for each fiber angle is calculated by Equation (6.25) and is shown in Table 6.4.  The 

results in Table 6.4 imply that the sensitivity is a function of the fiber angle.  This is somewhat 

misleading.  The sensitivity actually varies with the stretch and since the fiber angle affects the 

allowable stretch, different fiber angles yield different apparent sensitivity values.   
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Table 6.4. Sensitivity of tubular silicone sensor for each fiber angle. 

Fiber angle (α) 39.98 º 49.98 º 59.98 º 

Sensitivity (pF/mm) 14.09 50.87 61.09 

 

 
Figure 6.14. Predicted sensor output (capacitance) versus pressure. 
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Generally, the heart beat rate of infants is 120 beats per minute (around 2Hz) and for a person 

over age 18 it is about 70 beats per minute (around 1Hz).  So, 1 and 2Hz are reasonable choices 

for the frequencies.   Figures 6.15–6.18 show the response of the tubular silicone sensor while a 

sinusoidal pressure is applied at 1–2Hz.  Specifically in Figures 6.15–6.18, there is no delay 

between the input and output signal since damping is not considered in this model.  The response 

of the artery is identical to the static response in Figure 6.10 and Figure 6.14 (α=49.98°) for this 

low frequency range. Similar to the static response, there is a nonlinear relationship between 

pressure and radial deformation as shown in Figure 6.15 and Figure 6.17.  However, note that the 

electromechanical response and the sensor output have a linear correlation as shown in Figure 

6.16 and Figure 6.18.  The non-sinusoidal output or nonlinearity is an innate characteristic of the 

deformation of the artery wall, but is not a characteristic of the electromechanical response of the 

sensor.   

  
Figure 6.15. The mechanical response of the 

artery-sensor at 1 Hz. 

Figure 6.16. The electromechanical response 

of the artery-sensor at 1 Hz. 

  
Figure 6.17. The mechanical response of the 

artery-sensor at 2Hz. 

Figure 6.18. The electromechanical response 

of the artery-sensor at 2Hz. 
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These results show that the strain sensor would be insensitive above 13kPa since the artery no 

longer deforms appreciably.  Since the initial dimensions of the sensor are restricted by the 

dimensions of the arterial wall, sensor sensitivity could only be reasonably increased by say 

increasing the relative permittivity.  The effects of a sensor’s permittivity on the sensitivity with 

respect to initial thickness variation of the sensor are shown in Figure 6.19.  For a thickness of 

0.01mm a higher sensitivity is attained.  The sensitivities (Figure 6.19, Figure 6.20 and Table 6.5) 

are calculated by using Equation (6.26).   

 

.20,...,3,2,ateCapacitanc),(

),./(ySensitivit
1

1












nPCkPanP

kPapF
PP

CC

nnn

nn

nn

       

     
 

 

(6.26) 

It is non-trivial to increase material permittivity since increased permittivity is often 

accompanied by an increase in stiffness which would be counter productive for developing a soft 

sensor.  Ha et al. developed a hybrid dielectric elastomer based on interpenetrating polymer 

networks with a dielectric constant of Adding a ceramic inclusion with a higher relative 

permittivity such as TiO2 (εr=114) has been used to increase the permittivity of silicone [32, 33].  

The study shows that a silicone matrix with TiO2 powder has a lower elastic modulus (which is 

unusual) and a higher relative permittivity (εr=8.0) [32].  Figure 6.20 illustrates the enhanced 

sensing response of the artery-sensor with respect to the permittivity.  The sensor with a higher 

permittivity (εr=30.0) produces higher sensitivity as shown in Figure 6.20 and Table 6.5.  It is 

concluded that higher sensitivity to pressure input (physiological pressure range: 16/10kPa) can 

be obtained by fabricating thinner sensors or adding an inclusions to increase the permittivity.  
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Figure 6.19. The effect of initial thickness on 

the sensor sensitivity (εr=3.0). 

Figure 6.20. Static sensing response of the 

artery-sensor with respect to permittivity 

(at t0=0.01mm). 

 

Table 6.5. Sensor sensitivity with respect to permittivity (εr) at h0=0.01mm. 

Pressure range (kPa) 
Sensor sensitivity (pF/kPa) 

εr=1.0 εr=3.0 εr=10.0 εr=20.0 εr=30.0 

10–13 1.92 5.77 19.25 38.50 57.75 

13–15 1.53 4.6 15.34 30.69 46.04 

15–17 1.23 3.70 12.35 24.70 37.05 

17–18 1.03 3.09 10.30 20.61 30.92 

18–20 0.94 2.82 9.42 18.84 28.26 

 

6.5. Conclusion 

In this paper, a numerical model for the arterial wall placed in contact with a tubular DE sensor 

is derived using large deformation membrane theory and electrostatics.  Specifically, a model for 

the arterial wall with an integrated tubular DE sensor is formulated.  Principally, it is assumed 

that the arterial wall consists of only one layer (adventitia) and the tubular DE sensor does not 

obstruct the deformation behavior of the arterial wall.  The arterial wall in the model is not the 

full multi-layered structure.  Furthermore, membrane theory has been used to model the behavior 

instead of a full three dimensional approach.  For the constitutive relationship of the arterial wall, 

a Neo-Hookean model is employed to describe the non-collagen fiber part of the artery, and the 

collagen fiber part of the arterial wall is considered structurally.  The undulated fibers in the 
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model are modeled using as a simple sinusoidal waveform.  According to the results in Section 

6.4.2, the crimped fibers can have a significant effect on the mechanical response of the arterial 

wall.  For the static response, the constitutive model is integrated into the boundary value 

problem so that the numerical deformation response with respect to a physiological pressure 

input (0–20kPa) can be obtained.  For the dynamic response, only inertial effects in the radial 

direction are considered.  The resulting initial-boundary value problem is solved numerically for 

physiologically valid frequencies (1–2Hz).  The dynamic model is very simple at this point and 

does not encompass known biological phenomena related to viscoelastic effects.   

For the static response of the artery and tubular DE sensor, it is observed that the relationship 

between pressure and capacitance is nonlinear due to the collagen fibers.  Higher collagen fiber 

angles increase the capacitance sensitivity due to a decreasing radial constraint, which lead to 

larger deformations for a given input pressure (Table 6.4).  For the dynamic response of the 

artery-sensor, similar to the static response, a nonlinear relationship between pressure and radial 

deformation is observed for the frequencies considered.  Since the nonlinearity is inherent to the 

arterial wall, specifically the collagen fibers, a linear electromechanical response between radial 

deformation and capacitance change is observed for all frequencies.  The nonlinearity leads to 

insensitivity of the sensor above 13kPa.  However, higher sensitivity can be achieved by 

fabricating thinner sensors and or tailoring the polymer to attain higher permittivity, though there 

is the trade-off of increasing sensor modulus.  
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Chapter 7. Implementation of an Electro-Elastic 

Material into a Finite Element Method Tool 

(ABAQUS) 

 

This chapter is motivated by the difficulty of solving problems involving complicated 

(asymmetric) configurations and complex boundary and initial conditions by utilizing numerical 

and analytical methods.  The difficulties can be overcome by using a finite element method tool 

(ABAQUS 6.9-1).  Constitutive formulation for isotropic and anisotropic electro-elastic 

materials is not built into ABAQUS/CAE. Implementation of the formulation into a user 

subroutine (UMAT: User subroutine to define a material's mechanical behavior) is required to 

use ABAQUS.  In this chapter, the procedure of embedding the constitutive formulation for the 

isotropic and anisotropic electro-elastic material into a UMAT is presented and the applicability 

of ABAQUS to the electromechanical coupling problem is described in two different examples.   

Since incompressible materials experience a volumetric locking when ABAQUS is employed 

and volumetric locking causes numerical instabilities, a mathematical treatment is required for 

preventing the volumetric locking during simulation.  For overcoming the volumetric locking, 

the constitutive formulations for the electro-elastic materials in Chapter 2 are reformulated by 

considering a multiplicative decomposition of the deformation into purely isochoric and purely 

volumetric contributions.  Then, the decoupled formulation is implemented into a UMAT in 

ABAQUS.  The multiplicative decomposition was introduced at the first time by Flory [1].  

Flory assumed that the deformation gradient is expressed as the product of two deformations, 

one purely volumetric (    and the other isochoric ( ̅   
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where V0 is the volume in the reference state.  The determinants of the isochoric and volumetric 

deformation gradients are, 

 .]det[,1]det[ J VF  F  (7.2) 

Based on the multiplicative decomposition in Flory [1], Ogden [2, 3], Simo and Taylor [4] and 

Weiss and Maker [5] presented more detailed decompositions of the constitutive laws for 

isotropic and anisotropic materials.  For nearly incompressible materials, Ogden decomposed the 

deformation into isochoric and volumetric parts following Flory’s approach and expanded the 

strain energy function as a power series in the volumetric strain ε  
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Then, in order to investigate the volume change (ε) during the deformation, he applied the 

decomposition to a simple tension and combined extension and torsion of a circular cylinder [2, 

3].  Simo and Talyor developed a closed form expression for the tangent modulus of a nearly 

incompressible isotropic material by using a multiplicative decomposition of the deformation 

gradient and considered the variational formulation of several boundary value problems (simple 

tension, pure shear and equibiaxial extension) in a form suitable for numerical implementation 

(using a nonlinear finite element analysis program: FEAP) of nearly incompressible materials  

[4].  Weiss et al. [5] also presented the multiplicative decomposition of the constitutive laws for 

a transversely isotropic material and demonstrated the accuracy and efficiency of the 

decomposed formulation for fully incompressible transversely isotropic hyperelasticity with 

several examples (uniaxial, strip biaxial and equibiaxial extension).  Their finite element 

solutions showed excellent agreement with theoretical solutions [5].  In order to decouple the 
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constitutive formulation of the isotropic and anisotropic electro-elastic materials as considered in 

this research, the theoretical approaches of Flory [1] and Weiss et al. [5] are adopted.   

A previous implementation of a dielectric elastomer (DE) into a user subroutine was presented 

by Zhao and Suo [6], Wissler and Mazza [7, 8] and O’Brien [9].  Zhao and Suo defined the total 

Cauchy stress as the elastic stress plus the electrostatic stress and implemented the constitutive 

law for an isotropic DE into a UMAT in ABAQUS [6].  According to their approach, the tangent 

modulus for the constitutive law is formulated using a strain energy function (Neo-Hookean 

model), not including the electric energy function.  However, a closed form of the tangent 

modulus is not obligatory because it is used for an iterative operator in a UMAT [10].  The 

tangent modulus in the UMAT is calculated numerically with respect to the deformation, and 

then the Cauchy stress is updated with given deformation gradients [6].  The computational 

results for several simple configurations such as rectangular and circular actuators undergoing 

homogeneous deformations were compared with analytical solutions [6].  Wissler and Mazza’s 

approach [7, 8] for dealing with the electromechanical coupling is to consider the electrostatic 

pressure as a negative Cauchy stress in the thickness direction.  The prestrained circular DE 

actuator was investigated using ABAQUS.  They adopted three strain energy functions (Yeoh 

[11], Ogden [12] and Mooney-Rivlin [13] hyperelastic models) and the numerical result was 

compared with their analytical model.  The electrostatic pressure is implemented in a user 

subroutine (UVAR in ABAQUS: An array containing the user-defined output variables) [7, 8].  

This model is an oversimplification and approximation of the theoretical stress, which has been 

rigorously presented and derived in proper form in Goulbourne [14], Suo [15] and McMeeking 

[16].  O’Brien and McKay considered the total free energy function for an electro-elastic 

material as a combination of the elastic strain energy and electrostatic energy, and this was 
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embedded into ABAQUS using a user supplied routine (UHYPER: User subroutine to define a 

hyperelastic material) [9].  Their approach was employed for simulating dielectric elastomer 

minimum energy structures (DEMES) which consist of a prestrained DE adhered to a thin and 

flexible film.  Their model predicted well the equilibrium state, free displacement and blocked 

force of DEMES.  This approach is limited to the quasi-static and isotropic case because 

UHYPER can handle only isotropic material and requires that the derivatives of the free energy 

density function should be defined with respect to the strain invariants.  In the present research, 

the approach is most consistent with Zhao and Suo [6] for implementing electro-elastic materials.  

In comparison with the previous work in [6-9, 17], the UMAT developed in this research is not 

limited to isotropic materials with homogeneous deformation and is here extended to the 

anisotropic electro-elastic materials with inhomogeneous deformation.  

In Section 7.1, the physical meaning and an example of volumetric locking is presented.  In 

Section 7.2, the decoupling of the invariants and the new constitutive formulation in Chapter 2 is 

implemented by using multiplicative decomposition.  An objective rate of the stress tensor for 

describing the material rotation in the UMAT is presented in Section 7.3.  The procedure for 

updating the solution for the each increment in ABAQUS by using the Newton-Raphson method 

is described in Section 7.4.  The numerical stability of the electro-elastic material when the finite 

element modeling is employed is discussed in Section 7.5 using the polyconvexity condition in 

Chapter 3.  Two numerical examples are simulated using ABAQUS with the new UMAT for 

large deformations of isotropic and anisotropic electro-elastic materials in Section 7.6.  

 

7.1. Volumetric Locking 
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Volumetric locking in fluid and solid mechanics is an undesirable consequence of a given 

numerical technique which produces erroneous numerical solutions.  The locking is caused by 

the fact that there are too many incompressibility constraints imposed on a discretized solution 

relative to the number of degrees of freedom.  Mathematically, as Poisson’s ratio  approaches 

0.5 (  0.5), the volumetric locking becomes significant because the material becomes 

incompressible.  The bulk modulus  is given by  

  ,
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 (7.4) 

where E is the Young’s Modulus. 

For there is no volumetric locking as EHowever, the locking becomes very 

noticeable as  0.5 because in this limit 
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An infinite bulk modulus implies that the behavior of the material is incompressible.   

In order to further illustrate the concept of volumetric locking, a simple numerical example is 

presented.  Let’s consider an elastic rectangular block under uniaxial force (force control).  The 

material properties and initial dimensions of the material are given in Table 7.1.  In this 

numerical example, the uniaxial displacement of the material in the X1 direction (X in ABAQUS) 

is observed for investigating the volumetric locking as  approaches to 0.5.   

Table 7.1. Material properties and initial dimensions of the elastic rectangular block. 

E    Length width Thickness 

10 kPa 0.1–0.5 200 mm 20 mm 20 mm 

 

Figure 7.1 depicts the undeformed and deformed configurations of the elastic block in 

ABAQUS/CAE.  The boundary condition is one fixed end and uniaxial force (1 N) at free end.  8 
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node linear elements (C3D8 and C3D8R) are employed for the mesh type.  The difference 

between C3D8 and C3D8R is the integration scheme in ABAQUS/CAE.  The elements C3D8 

and C3D8R employ the full integration and the reduced integration, respectively.  The reduced 

integration is the simplest way to void the volumetric locking.  Since the full integration cannot 

make the strain field volume preserving at all the integration points in element, the reduced 

integration is able to reduce the number of integration points so that the constraint can be met.     

 

  
 Figure 7.1. Undeformed (Left) and deformed (Right) configuration of the elastic block 

under uniaxial force 1 N at the free end (X direction). 

Figure 7.2 shows the displacement of the elastic block at the free end with respect to uniaxial 

force 1 N simulated by using two different element types C3D8 and C3D8R.  Since Young’s 

modulus and external force are prescribed, the strain (or displacement in the X1 direction) should 

be consistent along with different Poisson’s ratio ( = 0.1‒0.5).  As  approaches 0.5 for C3D8, 

the finite element solution gradually underestimates the displacements, which implies significant 

volumetric locking.  This result indicates that the solution with respect to the different Poisson’s 

ratios have not converged due to the volumetric locking. 
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Figure 7.2. Effect of Poisson ratio on the maximum displacement of the elastic block with 

respect to uniaxial force 1N (Volumetric locking effect). 

 

7.2. Multiplicative Decomposition of the Constitutive Formulation  

In order to prevent volumetric locking, the incompressibility constraint of a material is released 

by treating the material as nearly incompressible.  For a nearly incompressible material, the 

constitutive relations are decoupled into isochoric and volumetric parts.  In Section 7.2.1, the 

Cauchy-Green tensors and invariants are decomposed by using multiplicative decomposition 

following Flory’s approach [1].  Additionally in Section 7.2.1, the physical conditions for the 

decoupled free energy function are presented.  In Sections 7.2.2 and 7.2.3, the total Cauchy stress 

and tangent modulus for the anisotropic electro-elastic materials from Chapter 2 are decoupled.   

 

7.2.1. Invariants and Free Energy Function for Electro-elastic Materials: 

Nearly Incompressible Material   
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The deformation gradient F can be expressed as the product of two deformation gradients, one 

purely volumetric )V(F and the other isochoric )(F  [1, 2, 4, 5]: 

  ,,)/(, 3/13/13/1
0 FF    FFFF VV

 JJVV  (7.6) 

where V0 is the volume in the reference state.  The determinants of the isochoric and volumetric 

deformation gradients are, 

 .]det[,1]det[ J VF  F  (7.7) 

The isochoric left and right Cauchy-Green tensors can be written in terms of the deformation 

gradient F and F , 
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Additionally, the invariants for the incompressible material introduced in Chapter 6 need to be 

modified using the decompositions in Equations (7.6)–(7.8),  
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The rest of the invariants are also modified in a similar manner: 
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7.2.2. Decoupled Total Cauchy Stress 

The free energy function for the nearly incompressible material is decoupled into 
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where W is the isochoric part, U(J) is the volumetric part and the volumetric function  is given in 

[18, 19], 
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which is just one choice of the volumetric function. 

The total Cauchy stress is 
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where VSSS  is the 2nd Piola-Kirchhoff stress.  

SV in Equation (7.13) becomes 
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The derivative of the isochoric free energy function with respect to C can be written as  
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where 1 and I represent the 2nd and 4th order identity tensors, E is the nominal electric field and 

(:) is the double dot product, which are defined as 
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By using Equation (7.15), S becomes  
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(7.17) 

Therefore, the total stress is obtained by inserting Equations (7.14)and (7.17) into (7.13),  
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where e is the true electric field.  

Doll and Schweizerhof summarized the required physical conditions for several volumetric 

functions given in the literature [20].  In the reference state, free energy is zero:  
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If it is assumed that there is no residual stress in the reference state, then 
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where JJUp  /)( represents the hydrostatic pressure.  

During the deformation, the free energy is greater than zero:  
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For the nearly incompressible material, the bulk modulus is defined as 
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With respect to the requirement of polyconvexity of the free energy function [21], the volumetric 

part has to satisfy the convexity condition,  
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7.2.3. Decoupled Tangent Modulus 

For nearly incompressible materials, the tangent modulus is also decoupled by using the 

multiplicative decomposition in Section 7.2.1.  First, the 2nd Piola-Kirchhoff stress S in 

Equation (7.13) can be rewritten as  
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The tangent modulus is defined as 
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The tangent modulus can be obtained by using Equations (7.14), (7.15) and (7.24) in Equation 

(2.25): 
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where 
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Simplifying the full expression for the tangent modulus yields  
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By using the push-forward operator,  
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where 
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(7.30) 

The decoupled constitutive formulations in Equations (7.6), (7.8), (7.18) and (7.29) are 

implemented in ABAQUS using a user defined UMAT.  The UMAT code is given Appendix D.  

Specific examples of the decoupled constitutive formulation for isotropic and anisotropic electro-

elastic materials are presented with numerical examples in Section 7.6. 

 

7.3. Objective Rate of the Tangent Modulus  

According to Belytschko et al. [22], in order to account for material rotation, an objective rate of 

the stress tensor is required for the finite element program.  In detail, since the stress is a material 

quantity, the objectivity is automatically satisfied,  

       ,1,  TT
RR  RσRσ  (7.31) 

where the rotational tensor R is orthogonal.  However, the first derivative of the stress σ with 

respect to time t (stress rate) is not objective because 
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Therefore, in order to account for the rotation R during the deformation and keeping the 

objectivity, an objective rate of the stress tensor needs to be employed.   

In ABAQUS/CAE, the material is considered as being in a fixed global coordinate system.  

However, since incremental rotations are passed in to the user subroutine (UMAT) at the 

beginning of each increment, the material is taken to lie in a corotational coordinate system.  In 

ABAQUS/CAE, the Jaumann rate is adopted as a corotational rate (objective rate of the stress 

tensor), where the material coordinates rotate with deformation.   

The Lie derivative of the Kirchhoff stress Lvτ can be written as 
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where τ = Jσ and L is the velocity gradient and D is the rate of deformation, 
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The Jaumann rate in ABAQUS/CAE is defined as 
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where C is the Jaumann tangent modulus and W is the spin tensor,  
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By inserting the time derivative of τ in Equation (7.35) into Equation (7.33), the following 

relation is obtained  

        ,:)()(:: TTJ τDDτDWLττWLDD   CCc  (7.37) 

The Jaumann tangent modulus is 
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where  
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The tangent modulus for ABAQUS is obtained, 
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In index notation, the tangent modulus (for ABAQUS) is 
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where 
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The user subroutine (UMAT) developed in this dissertation includes the constitutive 

formulations which are the total stress and tangent modulus in Sections 7.2.2, 7.2.3 and 7.3.  The 

ser subroutines (UMAT: E_MRmodel.f and E_Anisomodel.f ) for isotropic and anisotropic 

electro-elastic materials are given in Appendix D. 

  

7.4. Implementation of the Finite Element Method   
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In this section, the procedure to solve a nonlinear electro-elastic problem in ABAQUS is outlined.  

The general equilibrium equation for the finite element mesh is 

         ,0)(  ii u  (7.43) 

where i  is the force conjugate to node number i, ui
 is the nodal displacement at node number i, 

(i = 1, 2,…, N), respectively and N is the number of nodes in the mesh.  

The first solution ui
 is guessed and inserted into Equation (7.43).  If the equilibrium equation is 

not satisfied with the first guess ui
, the solution is improved by adding a small correction dui

.  

This procedure is repeated until the equilibrium equation is approximately satisfied within a 

sufficient degree of accuracy, which is defined by user or ABAQUS/CAE.  

By inserting the updated solution ui
+dui

, the equilibrium equation becomes,  

         .0)(  ii duu  (7.44) 

Equation (7.44) is modified by using a Taylor expansion  
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where 
iuudu

ud



 )(
is the stiffness matrix, which is a function of the tangent modulus.  Since 

Equation (7.45) can be solved for du
i
, the guessed u

i
 can be corrected.  The next solution is 

obtained by using the Newton-Raphson method [23].  Let ui
 be a good guess for ui+1

,  

       .1 iii duuu 
 (7.46) 

By rearranging Equation (7.45), dui
 is obtained as 
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The next guess ui+1
 is obtained by inserting Equation (7.47) into Equation (7.46),  
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The convergence rate of the solution u
i+1

 is significantly dependent on the tangent modulus.  The 

tangent modulus serves as an iterative operator for the next solution. Even though an exact 

closed –form solution for the tangent modulus gives the most rapid convergence, the exact 

tangent modulus is not mandatory to achieve correct solutions [10].   

Based on Equations (7.43)–(7.48), the solution procedure in UMAT of ABAQUS can be 

summarized:  

(i). The displacement field is specified as ui
 and the deformation gradient F , the left and right 

Cauch-Green tensors B  and C  are calculated by using ui
.  

(ii). Given the deformation gradient, the left and right Cauchy-Green tensors, the Kirchhoff 

stress (Jσ), Cauchy stress (σ) and tangent modulus (c) are calculated using Equations (7.18), 

(7.29) and (7.41).  

(iii). The values from 1 and 2 are substituted into the equilibrium equation in Equation (7.43).  

If the equilibrium equation is not satisfied with the first guess ui
, ui

 is corrected to bring it 

closer to the proper solution by setting ui+dui. 

(iv). The procedures (i), (ii) and (iii) are repeated until the equilibrium equation is satisfied.  

 

7.5. Numerical Stability of Electro-elastic Constitutive Model in ABAQUS  

In this section, the numerical stability of the constitutive model for the electro-elastic material is 

investigated using the polyconvexity condition which is introduced in the Chapter 3.  In 

ABAQUS, the Newton-Raphson method is generally employed to update the solution for each 
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node ui
.  The material stiffness matrix 

iuudu

ud



 )(
is used for iteration operator in the Newton-

Raphson method.  The material stiffness matrix is a function of the tangent modulus C.  

According to Chapter 3, the electromechanical stability of the electro-elastic material is satisfied 

if W is polyconvex with respect to the independent variables (F, cof[F], det[F] and E).  That is 

to say, if C is positive definite (C is the second derivative of W with respect to C), the numerical 

solution of the equilibrium equations will be stable electromechanically.  Thus, by requiring the 

polyconvexity condition of W, the numerical solutions for the electro-elastic material becomes 

stable.  The polyconvexity condition from the Chapter 3 is written in the form 

 ),],det[],[cof,(),( EFFFEF gW   
(7.49) 

with g convex for each independent variable F, cof[F], det[F] and E.   

The numerical stability of the examples in Section 7.6 is investigated by using the polyconvexity 

condition in Equation (3.23).   

 

7.6. Numerical Examples 

In this section, two numerical examples for an isotropic electro-elastic material and an 

anisotropic electro-elastic material in ABAQUS are presented to show the capability of the user 

subroutine (UMAT).  In Section 7.6.1, the decoupled constitutive formulation for an isotropic 

electro-elastic material is derived and a numerical example (equibiaxial extension of an isotropic 

dielectric elastomer (DE)) is simulated to validate the UMAT developed in this research.  For 

showing the applicability of the UMAT, a more complicated example employing an anisotropic 

DE is presented in Section 7.6.2.   

 



181 

 

7.6.1. Equibiaxial Extension of Isotropic Electro-elastic Materials: Dielectric 

Elastomer 

The finite element simulation for simple equibiaxial extension is compared with the analytical 

solution using the constitutive law presented in Chapter 2.  Let’s consider an isotropic electro-

elastic material specifically a DE (see Figure 7.3).  An electric field is applied in the X3 direction.  

The initial dimensions for the simulation are given as L1 = L2 = 200 mm and h0 = 0.5 mm.  

 

 

 

Figure 7.3.  Equibiaxial extension of an isotropic dielectric elastomer membrane with 

nominal electric field E3 in the reference state. 

 

The free energy function is assumed to be invariant-based, where for a DE the following 

formulation is used  

             
,

),(),,( 1121

electricelastic WWW

JUIIIWW




 (7.50) 

where the volumetric function U(J) is given in Equation (7.12).  A Mooney-Rivlin model is 

adopted for the elastic part, 

             ),3()3( 2211  ICICW elastic  (7.51) 

where C1 and C2 are material constants for the Mooney-Rivlin model (C1 = 16 kPa, C2 = 7.3  kPa 

for 3M VHB 4905 [24, 25]).  For small to medium stretch (< 2.0), this is a reasonable 

assumption [24, 26]. 

The electrostatic energy function is given as 
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where ε0 = 8.85×10
-12

 F/m and εr = 4.7 for VHB 4905 represent the vacuum and relative 

permittivity.  

By inserting the free energy function into Equation (7.18), the total Cauchy stress is  
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The total Cauchy stress is written in index notation as   
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The tangent modulus for the isotropic electro-elastic material is given as 
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(7.55) 

In index notation, it is written as  



183 

 

).3,2,1,,,(),2(})2({
9

4

}]{}

[{
3

4
})({

4

)(
3

1
)}(

2
2{

3

4
)}](

2
)

({)}(
2

)([{
3

4

1102
2
12

2
12

1
110

2
222

1
110

2
2220

2
22

0
1211

02

121
02

121





















lkjiIpJIJCIICIC
J

BIJBCBICBIJ

BCBIC
J

eeJBCBBC
J

Iee
J

ICIC
J

ee
J

B

BICBCee
J

BBICBCF
J

ijklklijklijr

klrklklijklr

ijkljirklklij

klijijkl
r

lk
r

kl

klklijklji
r

ijijijkl

ij

ijij

ij

  











c

 (7.56) 

Now, Equations (7.54) and (7.56) are implemented into the UMAT (ABAQUS).  Details of the 

UMAT are given in Appendix D.  

The numerical stability of the isotropic DE with respect to the independent variables (F11 and E3) 

is investigated using the polyconvexity condition in Equation (3.23) and the results in the 

Chapter 3 (det[F] is not independent variable because det[F] is treated as a constant  for nearly 

incompressible material (det[F] ≈ 1.0 in ABAQUS)).  The numerical stability under equibiaxial 

extension is expressed as the applicable electric field range 
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(7.57) 

where R2 = 0.456 and R11 = 2.6×10
-15

 for VHB 4905.   

Figure 3.4.  shows the numerical stability region of the isotropic DE with respect to the 

deformation gradient F11.  The curve represents the upper boundary of the electric field for 

keeping the numerical stability and the area under the curve represents the stable region during 

the deformation.     
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Figure 7.4. Electromechanical stability of isotropic dielectric elastomer, C1 = 16 kPa, R2 = 

0.2‒0.6 and R11 = 2.6×10
-15

 (VHB 4905, R2=0.456). 

In ABAQUS/Standard, a 3D element (C3D8: 8 node linear brick) is employed for the equibiaxial 

extension of the isotropic DE with prestretch (3.0) in Figure 7.3.  C3D8 is one of continuum 

elements in ABAQUS.  The continuum element is the standard volume elements in ABAQUS 

and is composed of a single homogeneous material, but cannot include structural elements such 

as beams, shells, membranes, and trusses. Figure 7.5 shows the electromechanical response of 

the isotropic DE under the equibiaxial extension with respect to the applied voltage.  As 

expected, Figure 7.5 shows that the membrane becomes increasingly compliant with higher input 

voltage.  The numerical result from ABAQUS with the UMAT is identical to the analytical 

solution in Figure 7.5.  The analytical solution is based on the approaches in Son and Goulbourne 

[27, 28].  For the analytical solution, since the isotropic DE was assumed to be membrane, only 

the stress in the principal direction was considered [27, 28].  For the finite element modeling, 3D 

continuum element was employed and any assumption was not included.   
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Figure 7.5. Electromechanical response of the prestretched isotropic dielectric elastomer 

with respect to the applied voltage (1–5 kV). 

 

In this section, the finite element modeling result for the electromechanical response of an 

isotropic electro-elastic membrane was compared to the analytical solution.  The result in 

validates the UMAT of the electro-elastic material.  In the next section, a problem with a more 

complicated configuration is considered to show the ability of the UMAT for electro-elastic 

materials.   

 

7.6.2. M-framed Anisotropic Electro-Elastic Material with Electri al and 

Mechanical stimulus  

In this section, a more complex problem employing an anisotropic electro-elastic material 

(specifically anisotropic DE) is presented.  Example in Figure 7.6 is inspired from batwing 

surface, which is scaled from real batwing structure [26].  In Figure 7.6, consider an anisotropic 

DE with static or dynamic pressure P on the X1-X2 plane, an nominal electric field E3 given in the 

X3 direction and uniaxial stretch at the right boundary.  The anisotropic DE consists of an 

isotropic DE and two families of electro-passive fibers characterized by the reference angles α 

and β (see Figure 7.6). The families of the electro-passive fibers are described using local 
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directional vectors a and b, which have been introduced in Chapter 2.  The initial dimensions of 

the anisotropic DE are given in Figure 7.6. 

 
 

Figure 7.6. Schematic of the M-framed anisotropic dielectric elastomer with the pressure 

profile, applied electric field and uniaxial stretch in the reference state. 

 

Since the fibers are not electro-active, there is no coupling between the fibers and the electric 

field.  The free energy is a function of the invariants in terms of the deformation gradient, the 

electro-passive directional vectors and the electric field,  
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electricW  is given in Equation (7.52) and Neo-Hookean ( NHW ) and GOH models ( GOHW : Gasser-

Ogden-Holzapfel model [29]) are adopted for the isotropic ( isoW ) and anisotropic ( anisoW ) strain 

energy functions, respectively:  
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 (7.59) 

where k1i is a material parameter, k2i is a dimensionless material parameter which will affect the 

shape of the stress-strain curve, and κi represents the distribution of two families of fibers about a 
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dominant fiber angle (i = 1 and 2).  The distribution accounts for variations from the otherwise 

dominant fiber angles α and β.  (The distribution of the fiber angle was described in Son and 

Goulbourne [28].)   

By inserting the free energy function into Equation (7.18), the total stress becomes  
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With index notation, Equation (7.60) is written as 
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The tangent modulus for the strain energy function is given as 
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(7.62) 

With index notation, Equation (7.62) is rewritten as 
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 (7.63) 

Now, Equation (7.61) and (7.63) are employed in the newly developed UMAT (ABAQUS).  

Details of the UMAT are given in Appendix D. 

The numerical stability of the anisotropic DE with respect to the independent variables (F11 and 

E3) is investigated using the polyconvexity condition in Equation (3.23) and the results in the 

Chapter 3.  The numerical stability under equibiaxial extension is expressed as the applicable 

electric field range from Chapter 3, 
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(7.64) 

where the nominal electric field E3 is written in terms of voltage input in the X3 direction (Z in 

ABAQUS)  

 .303 EhV   (7.65) 
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Figure 7.7 shows the numerical stability region of the anisotropic DE under equibiaxial extension.   

Each curve represents the upper boundary of the stable region during the deformation with 

different stiffness of fibers.  Differently from the stability of the isotropic DE, the stability region 

becomes larger after stretch ratio 1.6‒1.8.  This is due to that the fiber stress increases 

exponentially from the anisotropic strain energy function WGOH in Equation (7.59).  Even though 

the fiber stiffness is smaller than the stiffness of the isotropic matrix (R4 < 1.0), the stability 

region becomes larger after stretch ratio 1.8 because of the exponential form of the fiber strain 

energy function in Equation (7.59).  This result implies that the numerical stability of the 

anisotropic DE can be controllable by tuning the properties of the fibers.   

 

Figure 7.7. Electromechanical stability of anisotropic material with two families of electro-

passive fibers, C1 = 100 kPa, k11 = k12 = 150 kPa, k21 = k22 = 0.2, κ1 = κ2=0.1, α = 10°, εr = 4.7, 

R11 = 2.6×10
-15

 and R4=0.7‒1.5. 

 

The finite element model for Figure 7.6 consists of 3 dimensional element in Figure 7.8 (C3D8).  

The material consists of isotropic matrix and two families of the electro-passive fibers in Figure 

7.8.  The local orientations of two families of fibers are prescribed in the UMAT and ABAQUS 

input file.  Specifically, when the free energy function is invariant-based, the local directions of 

each family of fibers must be defined by a user.  Note that if no local directions are specified in 
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the ABAQUS input file, ABAQUS assumes that the families of fibers are aligned initially with 

the axes of the local system.  In order to define N local directions of the fibers, “ORIENTATION, 

LOCAL DIRECTIONS=N” is included in the ABAQUS input file.  The detailed input file for 

the anisotropic electro-elastic membrane is presented in Appendix E.  The kinematic boundary 

consists of two rigid frames.  The elements on the top edge of the material are assigned rigid and 

act like a rigid frame on the material.  The other boundary conditions are prescribed in the finite 

element model as pinned at left boundary and specified displacement (10 mm) on right boundary.  

The static and dynamic pressure is applied on the surface of the material.  As expected, stress 

concentrations occur at the boundaries and the joint in Figure 7.8.   

  
Figure 7.8. The ABAQUS/CAE simulation results of M-framed anisotropic material in the 

undeformed (Left) and deformed (Right) shape by stretch at the right boundary and static 

pressure on the X-Y plane. 

 

Figures 7.9‒7.11 shows the electromechanical response of the anisotropic DE with respect to the 

uniaxial stretch in the X1 direction, the static pressure (P = 0–50 kPa) on the X1-X2 plane and 

voltage input in the X3 direction (In ABAQUS, X1, X2 and X3 in Figure 7.6 are X, Y and Z, 

respectively).  The material properties for Figures 7.8‒7.11 are given in Table 7.2, which are 

prescribed arbitrarily.   

 

u3
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Table 7.2. Material properties of the anisotropic dielectric elastomer in Figures 7.8‒7.11. 

C1 k11 = k12 k21 = k22 κ1 = κ2 α (β = -α) εr 

100 kPa 
150 kPa 0.2 0.1 10° 4.7 

 

Figure 7.9 shows the deformation of the anisotropic dielectric elastomer with respect to the static 

pressure with 4 kV.  The color variation describes the primary displacement with respect to the 

external force (the displacement and the static pressure).  The red and blue regions represent the 

maximum and minimum displacements, respectively.  Figure 7.10 describes the transverse 

displacement (u3 in Figure 7.8) in the Z direction with respect to the static pressure (P = 0–50 

kPa).  As expected, a higher voltage input leads to the larger transverse displacement with 

respect to the static pressure P.  Figure 7.11 shows the fiber angles α (at u3 in Figure 7.8) at the 

deformation state with respect to the displacement (10 mm in the X direction) and the static 

pressure (P = 0–50 kPa) under 4 kV.  

   
Undeformed state Stretch (10mm) in the X1 direction Surface pressure P = 12.5 kPa 

   
Surface pressure P = 25.0 kPa Surface pressure P = 37.5 kPa Surface pressure P = 50.0 kPa 

Figure 7.9. Static deformation of the anisotropic dielectric elastomer with respect to the 

static pressure (50 kPa) and voltage input (4 kV) in ABAQUS/CAE 
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Figure 7.10. The transverse displacement u3 of 

the anisotropic dielectric elastomer in the Z 

direction with respect to static pressure and 

voltage input. 

Figure 7.11. The fiber angle α  in the 

deformed state of the anisotropic 

dielectric elastomers with respect to the 

displacement and static pressure at 4 kV. 

For the dynamic response of the M-shaped anisotropic DE, the dynamic pressure is given as a 

function of time  

 ,)2sin(50)( tfkPaP       (7.66) 

where f is the frequency (Hz) of the pressure and t is the time domain, 0 ≤ t ≤ 1/2f (sec) for 

Figures 7.12–7.14 and 0 ≤ t ≤ 2/f (s) for Figure 7.15.  The material properties are given in Table 

7.3, which are prescribed arbitrarily. 

Table 7.3. Material properties of the anisotropic dielectric elastomer in Figures 7.12‒7.15. 

ρ (density) C1 k11 = k12 k21 = k22 κ1 = κ2 α, (β = -α) εr 

1000 kg/m3
 

100 kPa 150 kPa 0.2 0.1 10° 4.7 

 

Figure 7.12 shows the dynamic deformation of the anisotropic dielectric elastomer with respect 

to the dynamic pressure in Equation (7.66) with 0.5 Hz.  After one cycle of a sinusoidal pressure 

(Pmax = 50 kPa), the pressure is kept as zero until 2 s.  
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0.0 s 0.2 s (P = 29.38 kPa) 0.4 s (P = 47.55 kPa) 0.6 s (P = 47.55 kPa) 

    
0.8 s (P = 29.38 kPa) 1.0 s (P = 0 kPa) 1.2 s (P = 0 kPa) 1.4 s (P = 0 kPa) 

   

 

1.6 s (P = 0 kPa) 1.8 s (P = 0 kPa) 2.0 s (P = 0 kPa)  

7.12. Dynamic deformation of the anisotropic dielectric elastomer with respect to the 

dynamic pressure in Equation (7.66) with 0.5 Hz and 4 kV in ABAQUS/CAE. 

 

Similarly to the static response in Figure 7.10, larger transverse displacement u3 proportional to 

the voltage input (0‒4.0 kV) is obtained under the dynamic pressure in Equation (7.66) with f = 

0.5 Hz in Figure 7.13.  Figure 7.14 shows the transverse displacement with respect to different 

frequencies (f = 0.5‒4.0 Hz) at 4 kV.  The maximum displacement (u3 ≈ 18 mm) is almost 

constant with respect to the frequencies (0.5‒4.0 Hz).  Figure 7.15 shows the displacement u3 and 

the dynamic pressure P (f = 0.5 Hz) with respect to time at voltage input 4 kV.  The displacement 

shows linear response with respect to the sinusoidal pressure input and there is no delay between 

the pressure input and the displacement.  This is due to that the material damping is not included 

in the UMAT of ABAQUS.  In order to describe the material damping, the constitutive law for 

the electro-viscoelastic material needs to be formulated in the UMAT.       
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Figure 7.13. The transverse displacement u3 

of the anisotropic electro-elastic material in 

the Z direction with respect to applied 

dynamic pressure and voltage input at 0.5 

Hz. 

Figure 7.14. The transverse displacement u3 

of the anisotropic electro-elastic membrane 

in the Z direction with respect to frequencies 

(0.5‒4 Hz) at 4 kV. 

 
Figure 7.15. The transverse displacement u3 of the anisotropic DE and dynamic pressure (f 

= 0.5 Hz) with respect to time at 4 kV (0 ≤ t ≤ 4.0 s for the dynamic pressure). 

 

7.7. Summary    

In order to prevent volumetric locking during the ABAQUS simulation, a multiplicative 

decomposition of the constitutive formulation for isotropic and anisotropic electro-elastic 

materials is employed using Flory’s approach [1].  From the multiplicative decomposition, a 

closed form solution for the tangent modulus of isotropic and anisotropic electro-elastic materials 

is introduced for the first time.  Through the decoupling of the constitutive equation, several 

UMATs for electro-elastic materials are developed.  The FEM model facilitates simulating 



195 

 

complex electromechanical coupling problems.  To validate the UMAT, equi-biaxial extension 

of isotropic electro-elastic material was presented.  The computational result matches well with 

the analytical solution.  A more complex problem considering an anisotropic dielectric elastomer 

subject to static and dynamic mechanical loads and asymmetric boundary conditions was solved 

to highlight the advantage of having a FEM solver.  The UMATs for anisotropic electro-elastic 

materials can be used to solve a range of problems with arbitrary boundary conditions and 

applied loadings.  
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Chapter 8. Conclusions and Summary 

In this section, the main contributions of this research are presented.  

The objectives of this research are four fold: (1) The derivation of a general constitutive law for 

electro-elastic materials within a continuum mechanics framework, (2) Examining polyconvexity 

conditions of a general invariant-based electro-elastic free energy function for anisotropic 

electro-elastic materials, (3) The investigation of the sensing and actuation response of tubular 

dielectric elastomer (DE) transducers along with their applications, and (4) Implementation of 

the constitutive model for electro-elastic materials into a user subroutine (UMAT) in ABAQUS.      

 

8.1. General Constitutive Formulation for Anisotropic Electro-Elastic 

Materials 

A class of anisotropic electro-elastic materials is considered that consists of an isotropic matrix 

embedded with two families of electro-active or passive fibers (or particles).  Invariant-based 

free energy formulations are derived to investigate the coupling between the fibers and the 

applied electric field.  The fibers and particles are represented by a unit directional vector in the 

free energy function.   

Coupling between the electro-active directional vectors and the electric field is scrutinized with 

respect to the orientations of the vectors and the polarity and magnitude of the applied electric 

field.  Two simple boundary value problems (equibiaxial extension and simple shear) are used to 

determine the conditions that yield local maxima and minima.  The results indicate that the 

magnitude and orientation of the coupling is significantly dependent on the orientations of the 

directional vectors and the polarity and magnitude of the electric field.   
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Through the invariant approach, the electromechanical couplings of the anisotropic electro-

elastic continuum are included directly in the constitutive formulation as invariants, which are 

combinations of deformation gradient tensor, nominal electric field and directional vectors.  

Several combinations between the symmetric tensor and vectors produce the invariants to 

illustrate the electromechanical couplings.  The advantage of this approach is that the 

electromechanical couplings can be introduced conveniently into the constitutive formulations by 

using the invariants.  However, main issue of this approach is the selection of realistic forms of 

energy function to model the response of large deformation of the electro-elastic materials.  For 

the proper models, several perspectives are needed.  These include the evaluation of stability 

inequalities (polyconvexity condition in Chapter 3) and mathematical aspects concerned with 

material properties from comprehensive sets of experimental data which assess the dependence 

of the mechanical and the electromechanical response on the deformation, electric field and 

directions for specific fiber families.         

 

8.2. Electromechanical Stability of Isotropic and Anisotropic Electro-Elastic 

Materials 

The electromechanical stability of an electro-elastic material under specific boundary conditions 

was examined using the convexity and polyconvexity conditions.  Specifically, the convexity of 

the invariants for the electro-active directional vectors and the applied nominal electric field and 

polyconvexity of the invariant-based electro-elastic free energy function with respect to the 

independent variables (the deformation gradient and the applied nominal electric field) under 

equibiaxial extension was investigated. Strict polyconvexity condition requires that the 

subgroups of a free energy function W are convex with respect to the independent variables then 
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W is polyconvex.  General polyconvexity condition requires that the W is polyconvex if W is 

convex with respect to the independent variables.  For convexity of the invariants, the results 

show that the invariants (I11, I12, I14, I16, I17, I18 and I19) under equibiaxial extension are not 

convex with respect to the independent variables F11 and E3.  This result implies that an 

invariant-based free energy function for an electro-elastic material which is a linear combination 

of the invariants (W = W1(I1)+W2(I2)+,…,+W19(I19)) will not satisfy the strict polyconvexity 

condition.  An explicit condition required for polyconvexity of the electro-elastic free energy 

function was obtained by using the general polyconvexity condition and solving for the nominal 

electric field.  By the polyconvexity condition, it is shown that the free energy for the electro-

elastic material is non-polyconvex because of the non-convex invariants, leading to the wrinkling 

and the electric breakdown.  The explicit polyconvexity condition for the electro-elastic material 

informs us the electromechanical stable region to prevent the instabilities during the deformation.  

The polyconvexity condition is helpful to build a stable electro-elastic free energy function.  

Specifically within the explicit polyconvexity condition, the constitutive formulation for the 

electro-elastic material can be derived using the continuum mechanics framework and invariants.  

Additionally, the condition is useful to keep the numerical stability of the electro-elastic material 

in finite element model tool (ABAQUS) which was shown as the applicable electric field in 

Chapter 7 (see Figures 7.4 and 7.7).         

Specifically for an isotropic electro-elastic material, the polyconvexity condition implies that the 

range of the applicable electric field for maintaining polyconvexity is significantly dependent on 

the ratio between the mechanical and electric material parameters (R11 = W11/W1).  For an 

anisotropic electro-elastic material, the polyconvexity condition can be controlled by adjusting 

the orientation of the electro-active and/or passive directional vectors.  That is to say, the 
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electromechanical stability for electro-elastic materials is governed by the orientation of the 

fibers and/or particles.   

 

8.3. Electromechanical Response of the Tubular DE Transducers 

In Chapters 4, 5 and 6, theoretical modeling and experimentation on the electromechanical 

actuation and sensing response of tubular DE transducers and DE were described.  Two DE 

integrated systems were considered involving a fiber-reinforced pneumatic actuator and an 

arterial wall segment.  In both systems, the DE was used as a sensor.  The fiber-reinforced 

pneumatic actuator and arterial wall were modeled as fiber-reinforced axisymmetric tubular 

membranes with two families of fibers.  In both cases, it was assumed that the DE sensor 

undergoes the same motion as the host and that the DE sensor is structurally negligible.  Under 

this assumption, the sensor output (capacitance) was then calculated by using electrostatics and a 

measure of the known mechanical strain of the host system.  In detail of the DE integrated 

systems, since there is no electromechanical coupling, the invariants for the deformation gradient 

tensor in Chapter 2 were employed to illustrate the constitutive formulation of the isotropic 

membrane.  Under the fiber inextensibility assumption, the fibers were considered as structural 

components and the fiber stress was added to the constitutive formulation instead of using the 

invariants for the families of fibers in Chapter 2.  It was shown in Chapter 6 (see Figures 6.6 and 

6.7) that the structural approach for the families of the fibers are equivalent to the continuum 

mechanics approach with the invariants in Chapter 2.  However, the invariant formulation has the 

advantage to describe the electromechanical couplings between the electro-active fibers and the 

electric field without any difficulties.    
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The DE sensor integrated pneumatic actuator in Chapters 4, 5 and the arterial wall in-situ DE 

sensor in Chapter 6 both produce a nonlinear response with respect to the input pressure,  which 

is due to the constraint of the fibers.  That is to say, the nonlinear sensing response is not due to 

an inherent property of the DE, but a characteristic of the fiber-reinforced host system for the 

range of strains considered.  This nonlinearity reduces the sensor’s sensitivity.  However, higher 

sensitivity can be achieved by fabricating thinner sensors and adding metallic filler, which has a 

higher permittivity value such as titanium dioxide powder (εr = 86 ‒ 173).  In terms of the 

actuation of the DE, enhancing the sensitivity with metallic filler additive is not recommended 

because the metallic filler leads to the electric breakdown and decreases the electromechanical 

actuation due to the higher stiffness.  This is already described as the explicit polyconvexity 

condition of the isotropic DE in Chapter 3 (see Figure 3.4).  According to Chapter 3, the higher 

permittivity causes the electromechanical instability of the isotropic DE.   

Analysis of the static and dynamic sensing characteristics of the DE transducers shows that 

silicone based DE sensors has a good quasi-static and dynamic sensing response at higher 

frequencies up to 5.0 Hz, whereas polyacrylate (VHB 4905) shows a poor dynamic response 

after 2.0 Hz due to material viscoelasticity and apparent time required for charging/discharging 

the sensor.  The DE sensor model correlates well with the experimental results, thus the model is 

a good tool for predicting large strain DE sensing behavior.      

 

8.4. Implementation of Electro-Elastic Materials into ABAQUS 

In Chapters 4, 5 and 6, the electromechanical response of isotropic electrostatic-elastic materials 

(dielectric elastomers: DEs) in an axisymmetric configuration was studied using a numerical 

method.  Computational methods are required to solve more complex problems such as those 
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involving: complex 3D-geometric shapes, viscoelastic material behavior, anisotropic, 

complicated loading and/or boundary conditions (asymmetries for example).  One solver, 

ABAQUS, offers powerful and complete solutions for both routine and sophisticated engineering 

problems covering a vast spectrum of applications in various fields.  ABAQUS also provides the 

expandability and flexibility of the code with user subroutines, in which one can define almost 

arbitrary user materials.  By using these capabilities, the electromechanical response of isotropic 

or anisotropic electro-elastic materials can be solved.  Since electro-elastic materials are not built 

into the material library of ABAQUS/CAE, UMATs for electro-elastic materials were developed 

in this dissertation.  Two different examples were presented to show the capability of the 

UMATs developed in this research.  In order to validate the UMATs, results for equibiaxial 

extension of an isotropic electro-elastic material were presented.  The numerical results from 

ABAQUS were shown to match well with the analytical solution.  A more challenging problem 

involving an anisotropic electro-elastic material was presented to illustrate the advantage of 

using an FEM solver.  Electromechanical response of the anisotropic electro-elastic material 

under asymmetric boundary conditions with uniform electric field and static/dynamic pressure is 

simulated using the developed UMAT in ABAQUS.  Clearly, this example shows the 

applicability of the UMAT developed in this research to the various situations for the electro-

elastic materials without establishing the constitutive formulation from scratch.  Additionally, 

anyone who is not familiar with the electro-elastic material can simulate the electromechanical 

deformation of the electro-elastic material using the UMATs developed in this research with a 

simple instruction for the UMAT and ABAQUS/CAE.  These are powerful advantages of the 

FEM solver over any other numerical methods.     
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8.5. Contributions    

In this section, the main contributions of this research are presented.  

1. Previously, the invariant-based constitutive formulations for the isotropic electro-elastic 

materials and the transversely isotropic electro-elastic materials have been developed by 

Dorfmann and Ogden [1, 2], Rajagopal and Wineman [3] and Bustamante [4].  In this 

dissertation, a full set of generalized constitutive relationships for the anisotropic electro-elastic 

materials with two families of the electro-active fibers (or particles) were derived for the first 

time.  For the electromechanical constitutive formulation, invariants for the coupling between 

two electro-active directional vectors and the electric field were introduced.  The advantage of 

the proposed constitutive formulation is that various electromechanical couplings can be 

illustrated easily by choosing invariants for the deformation gradient tensor, the electro-active 

directional vectors, and the electric field.  

2. The polyconvexity of the invariant-based strain energy for the isotropic and the anisotropic 

materials was explored by [5], Steigmann [6], and Schrőder and Neff [7, 8].  The 

electromechanical stability of the isotropic dielectric elastomer was examined using convexity 

condition in the work of Zhao and Suo [9-11].  In this dissertation, convexity of the coupling 

invariants between the electro-active directional vectors and the applied electric field was 

examined.  The electromechanical stability of the general electro-elastic material including 

isotropic and anisotropic dielectric elastomer is investigated using the polyconvexity condition 

for the first time.  It was shown that the electromechanical stability can be controlled by tuning 

the material properties and the orientation of the directional vectors. The polyconvexity 

condition (which is expressed as the applicable electric field range) is useful to build a 
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polyconvex free energy function and prevent the instabilities (wrinkling and electric breakdown) 

and the numerical instability in FEM solver (ABAQUS) for the electro-elastic materials.  

3. Theoretical modeling of the sensing response of DE transducers was developed using large 

deformation membrane theory and electrostatics.  The numerical model’s good correlation with 

experimental results confirms that it is a good tool for predicting the DE sensor response.  The 

dynamic and static sensing ability of the DEs (silicone and polyacrylate (VHB 4905)) was 

examined experimentally by varying the magnitude and frequency of the applied internal 

pressure.    

4. A previous implementation of an isotropic DE into a user subroutine was presented by Zhao 

and Suo [10], Wissler and Mazza [12, 13] and O’Brien [14].  Based on the invariant-based 

constitutive formulations for the electro-elastic material, UMAT for the  electro-elastic materials 

including the isotropic and anisotropic DEs were developed in this dissertation for the first time.  

The applicability of the UMAT is shown by simulating a complicated electromechanical 

coupling problem in ABAQUS/CAE; the electromechanical response of the anisotropic electro-

elastic material under asymmetric boundary conditions with uniform electric field and 

static/dynamic pressure.   

  

8.6. Future Work    

1. Implementation of the model for an anisotropic electro-elastic material with electro-active 

directional vectors into the UMAT should be developed.  

- Similar to the example of an anisotropic electro-elastic material with two families of electro-

passive fibers in Chapter 7, an anisotropic electro-elastic material with electro-active fibers and 

particles can be simulated by developing a UMAT.  The coupling effects between the electro-
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active fibers and particles and the applied electric field could be visualized in the finite element 

modeling tool (ABAQUS).    

2. Implementation of a closed form of the tangent modulus for electro-elastic materials can be 

developed to achieve a faster convergence rate of the solution than that of the approximated 

tangent modulus.  

- It was mentioned in Chapter 7 that the convergence rate of the solution in the finite element 

model is significantly dependent on the tangent modulus which serves as an iterative operator for 

the solution.  More complicated initial and boundary condition causes a slower convergence rate 

of the solution in the finite element model.  In order to improve the convergence rate, possible 

methods are to simplify the problem (initial and boundary conditions, mesh size and geometry) 

and to use the closed form of the tangent modulus.  Since simplifying the problem is 

fundamentally limited with respect to achieving an accurate solution, utilization of the closed 

form of the tangent modulus is optimal way.  The convergence rate of the solution with the 

approximate and closed form tangent moduli for an electro-elastic material could then be 

compared for relevant examples.       
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Appendix A. Mathematica Codes 

1. Static response of a fiber reinforced tubular membrane  

ClearAll[T1, T2] 

Off[General::spell1] 

SetAttributes[{h0, C1, C2, R, ,L0,,,}, Constant]; 

W=C1 (1/1*(1^1+2^1+3^1-3)+2*1/2*(1^2+2^2+3^2-3)+3* 1/3*(1^3+2^3+3^3-

3)); 

t1=4 h0 3 (1^2-3^2) (D[W,I1]+2^2 D[W,I2]); 

t2=4 h0 3 (2^2-3^2) (D[W,I1]+1^2 D[W,I2]); 

tf1=2**(1/(2*)* (Cos[])^2); 

tf2=2**((2*(Sin[])^2)/(1*)); 
T1=t1+tf1; 

T2=t2+tf2; 

K11=-(R/1) Dt[1/1 Dt[2,],]/(1-(R/1 Dt[2,])^2)^(1/2); 

K22=1/(R 2) (1-(R/1 Dt[2,])^2)^(1/2); 

3=1/(1 2); 

u1=35480.47;u2=100810.93;u3=-100810.93;1=2.505;2=-0.5729;3=-0.5729;C1=u1;2=u2/u1;3=u3/u1; 
h0=2.4*10^-3;R=8.7*10^-3;L0=0.5*264.0*10^-3; 

 NN=500 ;=1.5*10^-3;=17.688*(2 Pi)/360; 

h=L0/NN;P=500000.0;(*P=(2*6894.757*Sin[(j+2)/8]);*) 

lamda11=((1-2^2 Sin[]^2)/Cos[]^2)^(1/2); 

dlamda2=-(1/R) (1-K2^2 2 R^2)^(1/2); 

dK2=1/2 (K1-K2) dlamda2; 

dT1=1/2 (T2-T1) dlamda2; 

so1=Flatten[Solve[Dt[T1,]DT1,Dt[1,]],1]; 

dlamda1=Dt[lamda11,]/.{Dt[2,]dlamda2,DT1dT1}; 

dT2=Dt[T2,]/.{Dt[2,]dlamda2,Dt[1,]dlamda1}; 
dK1=-(1/T1) (K1 dT1+K2 dT2+T2 dK2); 

ddlamda2=-K1 K2 1^2 2; 

ddK2=1/2 (K1-K2)ddlamda2; 

ddT1=1/2 (T2-T1) ddlamda2; 

ddlamda1=Dt[Dt[lamda11,],]/.{Dt[2,]0,Dt[1,]0,Dt[2,{,2}]ddlamda2,Dt[DT1,]ddT1}; 

ddT2=Dt[Dt[T2,],]/.{Dt[1,]0,Dt[2,]0,Dt[1,{,2}]ddlamda1,Dt[2,{,2}]ddlamda2}; 
ddK1=-(1/T1) (K1 ddT1+K2 ddT2+T2 ddK2); 

 (*F=0;jj=-1;tau=0.0436;*) 

SetDirectory["F:\\Simulation results\\Dynamic response\\Fiber reinforced tubular membrane\\Pressure"]; 

2t=Table[0,{i,1,NN}]; 

1t=Table[0,{i,1,NN}]; 

KK1=Table[0,{i,1,NN}]; 

KK2=Table[0,{i,1,NN}]; 

TT1=Table[0,{i,1,NN}]; 

TT2=Table[0,{i,1,NN}]; 

FRKmethod[x_,y_,z_]:=Module[{F=x,jj=y,tau=z}, 

  ClearAll[T10,K20,so2,10,T20,K10]; 

  100==((1-200^2 Sin[]^2)/Cos[]^2)^(1/2); 

  sol=Solve[T1==F/(2 Pi 200 R)+(P 200 R)/2 /.jjj/.{2->200,1->100,tau},200]; 

  sol1=Table[200/.sol[[i]],{i,1,Length[sol]}]; 

  20t=Catch[Do[If[Im[sol1[[i]]]==0&&Re[sol1[[i]]]>1,Throw[sol1[[i]]]],{i,1,Length[sol1]}]];  

  K20t=1/(20t R); 

  T10t=F/(2 Pi 20t R)+(P 20t R)/2 /.{jjj,tau}; 

  so2=Solve[T1T10t/.{2->20t,tau},1]; 

  10t=1/.so2[[1]]; 

  T20t=T2/.{2->20t,1->10t,tau}; 
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  K10t=1/T10t (P-K20t T20t)/.{jjj,tau}; 
  dn=h; 

  20=20t+0.5 ddlamda2*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  10=10t+0.5 ddlamda1*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  K20=K20t+0.5 ddK2*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  K10=K10t+0.5 ddK1*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  T20=T20t+0.5 ddT2*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  T10=T10t+0.5 ddT1*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  2t[[1]]=20; 

  1t[[1]]=10; 

  KK1[[1]]=K10; 

  KK2[[1]]=K20; 

  TT1[[1]]=T10; 

  TT2[[1]]=T20; 

  For[i=0,i<NN-1, 

   2t[[i+1]]=2t[[i]]+dlamda2*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau}; 

   1t[[i+1]]=1t[[i]]+dlamda1*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau}; 

   KK2[[i+1]]=KK2[[i]]+dK2*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau}; 

   KK1[[i+1]]=KK1[[i]]+dK1*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau}; 

   TT1[[i+1]]=TT1[[i]]+dT1*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau}; 

   TT2[[i+1]]=TT2[[i]]+dT2*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau},i++]; 

  Print["Pressure:",P/6894.757/.jjj,"PSI"]; 

  Print["2(L0):",2t[[Length[2t]]]]; 

  Print["2(0):",2t[[1]]]; 

  Print["1(0):",1t[[1]]]; 

  Print["K1(0):",KK1[[1]]]; 

  Print["K2(0):",KK2[[1]]];] 

Int=(1^2-R^2 (dlamda2)^2)^(1/2); 

Int1=Table[Int/.{1->1t[[ii]],2->2t[[ii]],K2KK2[[ii]]},{ii,1,Length[2t]}]; 

Int2=Table[h/2 (Int1[[ii]]+Int1[[ii+1]]),{ii,1,Length[Int1]-1}]; 

L=Sum[Int2[[ii]],{ii,1,Length[Int2]}]*10^3; 
Stretch=L*10^-3/L0 

Print["L:",L,"mm"] 

 

2. Dynamic response of a tubular membrane  

ClearAll[T1, T2] 

Off[General::spell1] 

SetAttributes[{h0, C1, C2,,R,,L0}, Constant]; 

W=C1 (I1-3)+C2 (I2-3); 

  

t1=4 h0 3 (1^2-3^2) (D[W,I1]+2^2 D[W,I2]); 

t2=4 h0 3 (2^2-3^2) (D[W,I1]+1^2 D[W,I2]); 
T1=t1/(4 h0 C1); 

T2=t2/(4 h0 C1); 

3=1/(1 2); 

K11=-((1/1 Dt[1/1 Dt[r,],])/(1- Dt[r,]^2)^(1/2)) /.Dt[r,]->1/1 Dt[r,]/.rR 2; 

K22=1/r (1- Dt[r,]^2)^(1/2))/.Dt[r,]->1/1 Dt[r,]/.rR 2; 

SolDlamda2=Solve[K22K2, Dt[2,]]; 

dlamda2=Dt[2,]/.SolDlamda2[[1]]; 

eqnDK2=Dt[K2 r,]K1 Dt[r,]/.{Dt[r,]->1/1 Dt[r,],Dt[K2,]->1/1 Dt[K2,]}; 

SolDK2=Solve[eqnDK2,Dt[K2,]]; 

dK2=Dt[K2,]/.SolDK2[[1]]/.rR 2; 

eqnDT1=Dt[TT1 r,]TT2 Dt[r,]/.Dt[r,]->1/1 Dt[r,]/.Dt[TT1,]->1/1 Dt[TT1,]/.rR 2; 
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SolDT1=Solve[eqnDT1,Dt[TT1,]]; 

dT1=Dt[TT1,]/.SolDT1[[1]]/.{TT1T1,TT2T2}; 

SolDlamda1=Solve[Dt[TT1,]Dt[T1,],Dt[1,]]/.Dt[TT1,]dT1; 

dlamda1=Dt[1,]/.SolDlamda1[[1]]; 

dT2=Dt[T2,]; 

SolDK1=Solve[Dt[K1 T1,]+Dt[K2 T2,]0,Dt[K1,]]; 

dK1=Dt[K1,]/.SolDK1[[1]]; 

Solddlamda2=Solve[K1*K2==K11*K22,Dt[2,{,2}]]; 

ddlamda2=Dt[2,{,2}]/.Solddlamda2[[1]]/.{Dt[1,]0,Dt[2,]0}; 

ddK2=Dt[dK2,]/.{Dt[1,]0,Dt[2,]0}; 

ddT1=Dt[dT1,]/.{Dt[1,]0,Dt[2,]0}; 

ddlamda1=Dt[dlamda1,]/.{Dt[1,]0,Dt[2,]0}; 

ddT2=Dt[dT2,]/.{Dt[1,]0,Dt[2,]0}; 

ddK1=Dt[dK1,]/.{Dt[1,]0,Dt[2,]0}; 
C1=16000;C2=7300;h0=0.50*10^-3;R=9.56*10^-3;L0=20*10^-3;P=2000; rho=960.0; 

NN=300; 
h=L0/NN; 

dK2=dK2/.Dt[2,]->dlamda2; 

dT1=dT1/.Dt[2,]->dlamda2; 

dlamda1=dlamda1/.{Dt[1,]->dlamda1,Dt[2,]->dlamda2}; 

dT2=dT2/.{Dt[1,]->dlamda1,Dt[2,]->dlamda2}; 

dK1=dK1/.{Dt[1,]->dlamda1,Dt[2,]->dlamda2,Dt[K2,]dK2}; 

ddK2=ddK2/.Dt[2,{,2}]ddlamda2; 

ddT1=ddT1/.Dt[2,{,2}]ddlamda2; 

ddlamda1=ddlamda1/.Dt[2,{,2}]ddlamda2; 

ddT2=ddT2/.Dt[2,{,2}]ddlamda2; 

ddK1=ddK1/.Dt[2,{,2}]ddlamda2; 

3t=Table[0,{i,1,NN}]; 

2t=Table[0,{i,1,NN}]; 

1t=Table[0,{i,1,NN}]; 
KK1=Table[0,{i,1,NN}]; 

KK2=Table[0,{i,1,NN}]; 

TT1=Table[0,{i,1,NN}]; 

TT2=Table[0,{i,1,NN}]; 

SonnyMethod[x_,y_,z_]:=Module[{F=x,jj=y,20t=z}, 

  ClearAll[10,20,T10,T20,K10,K20,so2,dn]; 

  T10=F/(2 Pi 20t R (4 h0 C1))+(P 20t R)/(2 (4 h0 C1))/.jjj; 

  K20t=1/(20t R); 

  so2=Solve[T1T10/.2->20t,1]; 

  10t=1/.so2[[4]]; 

  T20=T2/.{2->20t,1->10t}; 

  K10t=1/T10 (P/(4 h0 C1)-K20t T20)/.jjj; 
  T10t=T10; 

  T20t=T20; 

  ClearAll[T10,T20]; 

  dn=h; 

  20=20t+0.5 ddlamda2*dn^2/.{K1K10t,K2K20t,2->20t,1->10t}; 

  10=10t+0.5 ddlamda1*dn^2/.{K1K10t,K2K20t,2->20t,1->10t}; 

  K20=K20t+0.5 ddK2*dn^2/.{K1K10t,K2K20t,2->20t,1->10t}; 

  K10=K10t+0.5 ddK1*dn^2/.{K1K10t,K2K20t,2->20t,1->10t}; 

  T10=T10t+0.5 ddT1*dn^2/.{K1K10t,K2K20t,2->20t,1->10t}; 

  T20=T20t+0.5 ddT2*dn^2/.{K1K10t,K2K20t,2->20t,1->10t}; 

  3t[[1]]=1/(20*10); 

  2t[[1]]=20; 

  1t[[1]]=10; 
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  KK1[[1]]=K10; 

  KK2[[1]]=K20; 

  TT1[[1]]=T10; 

  TT2[[1]]=T20; 

  For[i=0,i<NN-1, 

   2t[[i+1]]=2t[[i]]+dlamda2*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]]}; 

   1t[[i+1]]=1t[[i]]+dlamda1*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]]}; 

   3t[[i+1]]=1/(1t[[i]]*2t[[i]]); 

   KK2[[i+1]]=KK2[[i]]+dK2*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]]}; 

   KK1[[i+1]]=KK1[[i]]+dK1*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]]}; 

   TT1[[i+1]]=TT1[[i]]+dT1*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]]}; 

   TT2[[i+1]]=TT2[[i]]+dT2*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]]},i++]; 

  Int=(1^2-R^2 (dlamda2)^2)^(1/2); 

  Int1=Table[Int/.{1->1t[[ii]],2->2t[[ii]],K2KK2[[ii]]},{ii,1,Length[2t]}]; 

  Int2=Table[h/2 (Int1[[ii]]+Int1[[ii+1]]),{ii,1,Length[Int1]-1}]; 

  L=Sum[Int2[[ii]],{ii,1,Length[Int2]}]*10^3; 
  (*Print["L:",L,"mm"] 

  Print["R:",2t[[1]]*R*10^3,"mm"]*) 

  2t[[NN]] 
  ] 

x=1.138145; 

sol=SonnyMethod[0,0,x] 

Print["Error: ",Abs[(sol-1)*100],"%"] 

(*nn=2; 

initial=2t[[Length[2t]]]; 
statlamda2=Table[0,{i,1,nn}]; 

statlamda2[[1]]=initial; 

Clear[ii] 

For[ii=1,ii<nn/2+1, 

x1=Catch[Do[If[Abs[RKmethod[0,ii-2,j1]-1]*100<3,Throw[j1]],{j1,initial,initial+0.2,0.00001}]]; 

Clear[initial]; 

initial=x1+0.1; 

statlamda2[[ii]]=x1; 

Print[x1], 

ii++];*) 

f=10.0; 

T=1/f; 

Clear[i,nPDE1,nPDE2,P] 

MM1=10^4; 

P=2000+500.0*If[MM1/(2f)<j&&j<2*MM1/(2f),1,0];(*1500.0*If[MM1/(2f)<j&&j<2*MM1/(2f),1,0];*) 

(*1000.0*If[0<j&&j<MM1/(2f),1,0];*)(*Abs[(1000.0*Sin[2 f j/MM1 ])]*) 

nPDE1=R 2 Dt[T1,]+R T1 Dt[2,]T2 R Dt[2,]; 
p=P/(4 h0 C1); 

nPDE2=p-K11 T1-K22 T2(2  3 h0)/(4 h0 C1) Dt[r,{t,2}]/.rR 2; 

Clear[i,1,2,K1,K2,IC2,IC21] 

Table[2[i-1,0]=2t[[i]],{i,1,NN}]; 

Table[1[i-1,0]=1t[[i]],{i,1,NN}]; 
Table[K2[i-1,0]=KK2[[i]],{i,1,NN}]; 

Table[K1[i-1,0]=KK1[[i]],{i,1,NN}]; 

Table[2[i-1,1]=2t[[i]],{i,1,NN}]; 

Table[1[i-1,1]=1t[[i]],{i,1,NN}]; 

Table[K2[i-1,1]=KK2[[i]],{i,1,NN}]; 

Table[K1[i-1,1]=KK1[[i]],{i,1,NN}]; 

Table[1[-1,j]=1[1,j],{i,0,NN}]; 

Table[2[-1,j]=2[1,j],{i,0,NN}]; 
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nPDE22=nPDE2/.{K1K11,K2K22}/.{Dt[2,{t,2}]->(2[i,j+1]-2 2[i,j]+2[i,j-1])/k^2,Dt[1,]->(1[i+1,j]-

1[i-1,j])/(2 h) 

    ,Dt[2,]->(2[i+1,j]-2[i-1,j])/(2 h),Dt[2,{,2}]->(2[i+1,j]-2 2[i,j]+2[i-1,j])/h^2,1->1[i,j],2->2[i,j]}; 

Sollamda2time=Solve[nPDE22,2[i,1+j]]; 

ClearAll[lamda1,lamda2,pp] 

lamda1=Table[0,{i,1,2*MM1/(2f)},{j,1,NN}]; 

lamda2=Table[0,{i,1,2*MM1/(2f)},{j,1,NN}]; 

pp=Table[0,{i,1,2*MM1/(2f)}]; 
time=Table[0,{i,1,2*MM1/(2f)}]; 

lamda1[[1]]=1t; 

lamda2[[1]]=2t; 

pp[[1]]=P/.j0; 

SonnyMethod1[x_,y_]:=Module[{jj=x,M1=y}, 

  ClearAll[MM,k,Sollamda2]; 

  MM=M1; 

  k=T/MM; 

  2[-1,jj]=2[1,jj];(*Boundary condition at 0*) 

  1[-1,jj]=1[1,jj]; 

  Sollamda2=Table[2[i,1+j]/.Sollamda2time[[1]]/.{iii,jjj},{ii,0,NN-1}]; 

  Table[2[i-1,jj+1]=Sollamda2[[i]],{i,1,NN-1}]; 

  2[NN-1,jj+1]=2t[[NN]];(*Boundary condition at L0*) 

  pp[[jj+1]]=P/.jjj; 
  time[[jj+1]]=k jj; 

  lamda2[[jj+1]]=Table[2[i,jj+1],{i,0,NN-1}]; 

  T10=(P 2[0,j+1] R)/(2 (4 h0 C1))/.jjj; 

  SolBC3=Solve[T1T10/.2->2[0,jj+1],1]; 

  so=Table[1/.SolBC3[[i]],{i,1,Length[SolBC3]}]; 

  For[i=0,i<Length[SolBC3],If[Im[so[[i]]]0&&Re[so[[i]]]>1,10=so[[i]]],i++]; 
  Clear[i]; 

  1[0,jj+1]=10; 

  2[-1,jj+1]=2[1,jj+1];(*Boundary condition at 0*) 

  1[-1,jj+1]=1[1,jj+1]; 

  1[1,jj+1]=1[0,jj+1]; 

  Sollamda1time=Solve[nPDE1/.{Dt[1,]->(1[i+1,j]-1[i-1,j])/(2h),Dt[2,]->(2[i+1,j]-2[i-1,j])/(2h),1-

>1[i,j],2->2[i,j]},1[i+1,j]]; 

  Sollamda1=Table[1[i+1,j]/.Sollamda1time[[1]]/.{iii,jjj},{ii,1,NN-1}]; 

  Table[1[i+1,jj+1]=Sollamda1[[i]],{i,1,NN-2}]; 

  lamda1[[jj+1]]=Table[1[i,jj+1],{i,0,NN-1}]; 

 

3. Static and dynamic response of arterial wall with crimped collagen fiber   

ClearAll[T1, T2] 

Off[General::spell1] 

SetAttributes[{h0, C1, C2, R, ,L0,,,}, Constant]; 
W=C1/2 (I1-3); 

t1=4 h0 3 (1^2-3^2) (D[W,I1]+2^2 D[W,I2]); 

t2=4 h0 3 (2^2-3^2) (D[W,I1]+1^2 D[W,I2]); 

tf1=2*Tf*(1/2* (Cos[])^2); 

tf2=2*Tf*((2*(Sin[])^2)/1); 

Tf=(4 Exp[k2(-1+1^2 Cos[]^2+2^2 Sin[]^2)^2] h0 k1 (-1+1
2
 Cos[]

2
+2

2
 Sin[]

2
))/(1^2 Cos[]^2+2^2 

Sin[]^2)^(1/2); 

T1=t1+tf1; 

T2=t2+tf2; 

K11=-(R/1) Dt[1/1 Dt[2,],]/(1-(R/1 Dt[2,])^2)^(1/2); 

K22=1/(R 2) (1-(R/1 Dt[2,])^2)^(1/2); 
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3=1/(1 2); 
C1=7.64*10^3;h0=0.5*0.43*10^-3;R=4.745*10^-3;L0=10*10^-3;k1=996*10^3;k2=524.6; 

 NN=100 ;=1.0*10^-3;=(90-39.98)*(2 Pi)/360;0=8.8542*10^-12;r=2.7; 

h=L0/NN;P=1000.0*j;(*P=(2*6894.757*Sin[(j+2)/8]);*)  

=(90-59.98)*(2 Pi)/360; 

A=1.3*10^-3; 

B=4 Cos[]/L0; 

Lf=8 NIntegrate[1/Cos[ArcTan[A B Cos[B x]]],{x,0,L0/(8 Cos[])}] 

dlamda2=-(1/R)(1-K2^2 2^2 R^2)^(1/2); 

dK2=1/2 (K1-K2) dlamda2; 

dT1=1/2 (T2-T1) dlamda2; 

so1=Flatten[Solve[Dt[T1,]dT1,Dt[1,]],1]; 

dlamda1=Dt[1,]/.so1[[1]]/.Dt[2,]dlamda2; 

dT2=Dt[T2,]/.{Dt[2,]dlamda2,Dt[1,]dlamda1}; 
dK1=-(1/T1) (K1 dT1+K2 dT2+T2 dK2); 

ddlamda2=-K1 K2 1^2 2; 

ddK2=1/2 (K1-K2)ddlamda2; 

ddT1=1/2 (T2-T1) ddlamda2; 

Dso1=Dt[so1,]/.{Dt[K2,]0,Dt[2,]0,Dt[1,]0,Dt[2,{,2}]ddlamda2,Dt[DT1,]ddT1}; 

ddlamda1=Dt[1,{,2}]/.Dso1[[1]]; 

ddT2=Dt[Dt[T2,],]/.{Dt[1,]0,Dt[2,]0,Dt[1,{,2}]ddlamda1,Dt[2,{,2}]ddlamda2}; 

ddK1=-(1/T1) (K1 ddT1+K2 ddT2+T2 ddK2); 

(*F=0;jj=-1;tau=0.0436;*) 

2t=Table[0,{i,1,NN}]; 

1t=Table[0,{i,1,NN}]; 

KK1=Table[0,{i,1,NN}]; 
KK2=Table[0,{i,1,NN}]; 

TT1=Table[0,{i,1,NN}]; 

TT2=Table[0,{i,1,NN}]; 

Solution2=Table[{1,0},{i,1,25}]; 

Solution1=Table[{1,0},{i,1,25}]; 

Solution3=Table[{1,0},{i,1,25}]; 

SolutionC=Table[{1,0},{i,1,25}]; 

SolutionR=Table[{1,0},{i,1,25}]; 

FRKmethod[y_,z_]:=Module[{jj=y,200=z}, 

  ClearAll[T10,K20,so2,10,T20,K10]; 
  j=jj; 

  20=200; 

  so2=FindRoot[T1==F/(2 Pi 20 R)+(P 20 R)/2 /.{F0,2->20},{1,1.0}]; 

  10t=1/.so2[[1]]; 

  20t=20; 

  K20t=1/(20t R); 

  T10t=F/(2  20t R)+(P 20t R)/2 /.{F0}; 

  T20t=T2/.{2->20t,1->10t}; 
  K10t=1/T10t (P-K20t T20t); 

  dn=h; 

  20=20t+0.5 ddlamda2*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  10=10t+0.5 ddlamda1*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  K20=K20t+0.5 ddK2*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  K10=K10t+0.5 ddK1*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  T20=T20t+0.5 ddT2*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  T10=T10t+0.5 ddT1*dn^2/.{K1K10t,K2K20t,2->20t,1->10t,tau}; 

  2t[[1]]=20; 

  1t[[1]]=10; 

  KK1[[1]]=K10; 
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  KK2[[1]]=K20; 

  TT1[[1]]=T10; 

  TT2[[1]]=T20; 

  For[i=0,i<NN-1, 

   2t[[i+1]]=2t[[i]]+dlamda2*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau}; 

   1t[[i+1]]=1t[[i]]+dlamda1*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau}; 

   KK2[[i+1]]=KK2[[i]]+dK2*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau}; 

   KK1[[i+1]]=KK1[[i]]+dK1*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau}; 

   TT1[[i+1]]=TT1[[i]]+dT1*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau}; 

   TT2[[i+1]]=TT2[[i]]+dT2*dn/.{K1KK1[[i]],K2KK2[[i]],2->2t[[i]],1->1t[[i]],tau},i++]; 
  Print["K1(0):",KK1[[1]]]; 

  Print["Pressure:",P,"Pa"]; 

  Print["2(L0):",2t[[Length[2t]]]]; 

  h1=0.1*10^-3; 

  Solution2[[j+5,1]]=P; 

  Solution2[[j+5,2]]=2t[[1]]+0.11; 

  Solution1[[j+5,1]]=P; 

  Solution1[[j+5,2]]=1t[[1]]; 

  Solution3[[j+5,1]]=P; 

  Solution3[[j+5,2]]=1/(1t[[1]] (2t[[1]]+0.11)); 

  Cap=4**0*r*L0*(Log[(R 2t[[1]]+h1 (2-2t[[1]])) /(R 2t[[1]]-h1 (2-2t[[1]]))])
-1

*10^12; 

  SolutionC[[j+5,1]]=P; 

  SolutionC[[j+5,2]]=Cap; 
  SolutionR[[j+5,2]]=P; 

  SolutionR[[j+5,1]]=(2t[[1]]+0.11)*R*10^3; 

  Print["Capacitance:",Cap,"pF"]; ] 

 

4. Coupling between directional vectors and the electric field   

Clear[Evaluate[Context[]<>"*"]] 

Off[General::spell1] 

SetDirectory["F:\\"]; 

F=(\[NoBreak]{ 

    {F11, F12, F13}, 

    {F21, F22, F23}, 
    {F31, F32, F33} 

   }\[NoBreak]); 

F21=F31=F32=F12=F13=F23=0;F33=1/(F11 F22);F22=F11; 

(*F11=F22=F33=1;F13=F23=F32=F31=0;F21=0;F12=k1;*) 

B=F.Transpose[F]; 

a={a1,a2,a3}; 

a1=Cos[]Cos[];a2=Cos[]Sin[];a3=Sin[]; 

b={b1,b2,b3}; 

b1=Cos[]Cos[];b2=Cos[]Sin[];b3=Sin[]; 

ab=Cross[a,b]; 

EE={E1,E2,E3}; 

Enn={En1,En2,En3}; 

(*E1=E2=0;*) 

m=F.a; 

BE=B.EE; 

A[i_,j_]:=Sum[F[[i,k]]a[[k]]B[[j,l]]EE[[l]],{k,1,3},{l,1,3}] 
B1[i_,j_]:=Sum[F[[i,k]]b[[k]]B[[j,l]]EE[[l]],{k,1,3},{l,1,3}] 

(*A[i_,j_]:=m[[i]]Sum[B[[j,k]] EE[[k]],{k,1,3}]+Sum[B[[i,k]] EE[[k]],{k,1,3}]m[[j]];*) 

fa[x_,y_]:=D[A[x,y]-A[3,3],]; 

fr[x_,y_]:=D[A[x,y]-A[3,3],]; 



214 

 

fa2[x_,y_]:=D[A[x,y]-A[3,3],{,2}]; 

fr2[x_,y_]:=D[A[x,y]-A[3,3],{,2}]; 

far[x_,y_]:=D[D[A[x,y]-A[3,3],],]; 

fra[x_,y_]:=D[D[A[x,y]-A[3,3],],]; 

D1[x_,y_]:=fa2[x,y]fr2[x,y]-far[x,y]^2; 

Reduce[{fa[1,1]0,fr[1,1]0,-(/2)<=/2,-(/2)<=<=/2,F11>1},{,}] 
ClearAll[E1,E2,E3,k1] 

(*E1=E2=E3;*) 

x1=1;y1=1; 

Sol1=Reduce[{fa[x1,y1]0,fr[x1,y1]0,-(/2)<=/2,-(/2)<=<=/2,E3>0,F11>0,k1>0},{,}] 

Solve[Simplify[D[A[x1,y1],]]0,] 

E3=1; 

ContourPlot[ A[x1,y1]/.k1/4,{,-/2,/2},{,-/2,/2},FrameTicks{{-Pi/2,0,Pi/2},{-

Pi/2,0,Pi/2}},ClippingStyleAutomatic] 

PA[i_,j_]:=Sum[F[[i,k]]a[[k]]F[[j,l]]a[[l]],{k,1,3},{l,1,3}]; 

PB[i_,j_]:=Sum[F[[i,k]]b[[k]]F[[j,l]]b[[l]],{k,1,3},{l,1,3}]; 
PAB[i_,j_]:=Sum[F[[i,k]]a[[k]]F[[j,l]]b[[l]],{k,1,3},{l,1,3}]; 

DSa[x_,y_]:=D[W4 PA[x,y]+W8 PAB[x,y]+W14 A[x,y],]; 

DSb[x_,y_]:=D[W4 PA[x,y]+W8 PAB[x,y]+W14 A[x,y],]; 

DSr[x_,y_]:=D[W4 PA[x,y]+W8 PAB[x,y]+W14 A[x,y],]; 

DSa2[x_,y_]:=D[W4 PA[x,y]+W8 PAB[x,y]+W14 A[x,y],{,2}]; 

DSb2[x_,y_]:=D[W4 PA[x,y]+W8 PAB[x,y]+W14 A[x,y],{,2}]; 

DSr2[x_,y_]:=D[W4 PA[x,y]+W8 PAB[x,y]+W14 A[x,y],{,2}]; 

DSar[x_,y_]:=D[D[W4 PA[x,y]+W8 PAB[x,y]+W14 A[x,y],],]; 

DSab[x_,y_]:=D[D[W4 PA[x,y]+W8 PAB[x,y]+W14 A[x,y],],]; 

DSra[x_,y_]:=D[D[W4 PA[x,y]+W8 PAB[x,y]+W14 A[x,y],],]; 

DSrb[x_,y_]:=D[D[W4 PA[x,y]+W8 PAB[x,y]+W14 A[x,y],],]; 

D11[x_,y_]:=DSa2[x,y]DSr2[x,y]-DSar[x,y]^2; 

DD1[x_,y_]:=(\[NoBreak]{ 

    {DSa2[x,y], DSab[x,y], DSar[x,y]}, 

    {DSab[x,y], DSb2[x,y], DSrb[x,y]}, 
    {DSar[x,y], DSrb[x,y], DSr2[x,y]} 

   }\[NoBreak]); 

=-; 

E1=E2=E3; 

x1=1;y1=1; 

Sol=Reduce[{DSa[x1,y1]0,DSr[x1,y1]0,-(/2)<=<=/2,-(/2)<</2,E3>0,F11>0,k1>0},{,}] 
mn=F.ab; 

=-; 
AB[i_,j_]:=Sum[F[[i,k]]ab[[k]]B[[j,l]]EE[[l]]+B[[i,k]]EE[[k]]F[[j,l]]ab[[l]],{k,1,3},{l,1,3}] 

cfa[x_,y_]:=D[AB[x,y]-AB[3,3],]; 

cfb[x_,y_]:=D[AB[x,y]-AB[3,3],]; 

cfr[x_,y_]:=D[AB[x,y]-AB[3,3],]; 

cfa2[x_,y_]:=D[AB[x,y]-AB[3,3],{,2}]; 

cfb2[x_,y_]:=D[AB[x,y]-AB[3,3],{,2}]; 

cfr2[x_,y_]:=D[AB[x,y]-AB[3,3],{,2}]; 

cfar[x_,y_]:=D[D[AB[x,y]-AB[3,3],],]; 

cfab[x_,y_]:=D[D[AB[x,y]-AB[3,3],],]; 

cfbr[x_,y_]:=D[D[AB[x,y]-AB[3,3],],]; 
D3[x_,y_]:=(\[NoBreak]{ 

    {cfa2[x,y], cfab[x,y], cfar[x,y]}, 

    {cfab[x,y], cfb2[x,y], cfbr[x,y]}, 

    {cfar[x,y], cfbr[x,y], cfr2[x,y]} 

   }\[NoBreak]); 

D2[x_,y_]:=(\[NoBreak]{ 
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    {cfa2[x,y], cfar[x,y]}, 

    {cfar[x,y], cfr2[x,y]} 

   }\[NoBreak]); 

ClearAll[E1,E2,E3] 

x1=2;y1=2; 

(*E1=0;*) 

Sol=Solve[{cfa[x1,y1]0,cfr[x1,y1]0},{,}]; 

SolE1=Sol/.E10 

{cfa2[x1,y1],Det[D2[x1,y1]]}/.E10/.{-/4,0} 

SolE3=Sol/.E30; 

{cfa2[x1,y1],Det[D2[x1,y1]]}/.E30/.{-/2,-/4} 

E3=0; 

x1=1;y1=1; 

Sol=Reduce[{cfa[x1,y1]0,cfr[x1,y1]0,-(/2)<=<=/2,-(/2)<</2,F11>0,k1>0},{,}] 

cgoodplot2[Cos[] Sin[] Sin[],{,-/2,/2},{,-/2,/2},{{-Pi/2,0,Pi/2},{-Pi/2,0,Pi/2}},,,"Pastel"] 

PAB[i_,j_]:=Sum[F[[i,k]]a[[k]]F[[j,l]]b[[l]],{k,1,3},{l,1,3}]; 

DSa[x_,y_]:=D[W4 PA[x,y]+W6 PB[x,y]+W8 PAB[x,y]+W14 A[x,y]+W16 B1[x,y]+W18 AB[x,y],]; 

DSb[x_,y_]:=D[W4 PA[x,y]+W6 PB[x,y]+W8 PAB[x,y]+W14 A[x,y]+W16 B1[x,y]+W18 AB[x,y],]; 

DSr[x_,y_]:=D[W4 PA[x,y]+W6 PB[x,y]+W8 PAB[x,y]+W14 A[x,y]+W16 B1[x,y]+W18 AB[x,y],]; 

DSa2[x_,y_]:=D[W4 PA[x,y]+W6 PB[x,y]+W8 PAB[x,y]+W14 A[x,y]+W16 B1[x,y]+W18 AB[x,y],{,2}]; 

DSb2[x_,y_]:=D[W4 PA[x,y]+W6 PB[x,y]+W8 PAB[x,y]+W14 A[x,y]+W16 B1[x,y]+W18 AB[x,y],{,2}]; 

DSr2[x_,y_]:=D[W4 PA[x,y]+W6 PB[x,y]+W8 PAB[x,y]+W14 A[x,y]+W16 B1[x,y]+W18 AB[x,y],{,2}]; 

DSar[x_,y_]:=D[D[W4 PA[x,y]+W6 PB[x,y]+W8 PAB[x,y]+W14 A[x,y]+W16 B1[x,y]+W18 AB[x,y],],]; 

DSab[x_,y_]:=D[D[W4 PA[x,y]+W6 PB[x,y]+W8 PAB[x,y]+W14 A[x,y]+W16 B1[x,y]+W18 AB[x,y],],]; 

DSra[x_,y_]:=D[D[W4 PA[x,y]+W6 PB[x,y]+W8 PAB[x,y]+W14 A[x,y]+W16 B1[x,y]+W18 AB[x,y],],]; 

DSrb[x_,y_]:=D[D[W4 PA[x,y]+W6 PB[x,y]+W8 PAB[x,y]+W14 A[x,y]+W16 B1[x,y]+W18 AB[x,y],],]; 

D11[x_,y_]:=DSa2[x,y]DSr2[x,y]-DSar[x,y]^2; 

DD1[x_,y_]:=(\[NoBreak]{ 

    {DSa2[x,y], DSab[x,y], DSar[x,y]}, 

    {DSab[x,y], DSb2[x,y], DSrb[x,y]}, 

    {DSar[x,y], DSrb[x,y], DSr2[x,y]} 
   }\[NoBreak]); 

Solr=Solve[{DSa[1,1]0,DSb[1,1]0,DSr[1,1]0},{,,}] 

ClearAll[E1,E2,E3,F22] 

Sola=Solve[{cfa[1,1]}0,{,,}] 

Solb=Solve[cfb[1,1]0,{,,}] 

Solr=Solve[cfr[1,1]0,{,,}] 

 

5. Convexity and Polyconvexity of Invariants and Invariant-based Free Energy Function   

Clear[Evaluate[Context[]<>"*"]] 

Off[General::spell1] 

SetDirectory["F:\\"]; 

<<Combinatorica` 

F=(\[NoBreak]{ 

    {F11, F12, F13}, 

    {F12, F22, F23}, 

    {F13, F23, F33} 

   }\[NoBreak]); 

F=J^(-1/3) F; 

F12=F13=F23=0;F22=F11;F33=J/(F11 F22); 
C1=Transpose[F].F; 

IC1=Inverse[C1]; 

B1=F.Transpose[F]; 

J=1; 
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I1=Tr[C1]; 

Ivar={F11}; 

DI11=IdentityMatrix[Length[Ivar]]; 

DI1[i_,j_]:=D[D[I1,Ivar[[i]]],Ivar[[j]]]; 

Table[DI11[[i,j]]=DI1[i,j],{i,1,Length[Ivar]},{j,1,Length[Ivar]}]; 

Simplify[Det[DI11]] 

CofFT=IdentityMatrix[3]; 

Table[CofFT[[i,j]]=Cofactor[Transpose[F],{i,j}],{i,1,3},{j,1,3}]; 

CofF=IdentityMatrix[3]; 
Table[CofF[[i,j]]=Cofactor[F,{i,j}],{i,1,3},{j,1,3}]; 

CF=(\[NoBreak]{ 

   {CF11, CF12, CF13}, 

   {CF12, CF22, CF23}, 

   {CF13, CF23, CF33} 

  }\[NoBreak]);(*cofactor of F*) 

CC1=CF.CF;(*Cof[FT].Cof[F]*) 

I2=Tr[CC1] 

Ivar={CF11,CF22,CF33,CF12,CF13,CF23}; 

DI21=IdentityMatrix[Length[Ivar]]; 

DI2[i_,j_]:=D[D[I2,Ivar[[i]]],Ivar[[j]]]; 

Table[DI21[[i,j]]=DI2[i,j],{i,1,Length[Ivar]},{j,1,Length[Ivar]}]; 

Det[DI21] 

I3=Det[C1]; 

ClearAll[a1,a2,a3,] 
a={a1,a2,a3}; 

a1=Cos[]Cos[];a2=Cos[]Sin[];a3=Sin[]; 
M1=IdentityMatrix[3]; 

Table[M1[[i,j]]=a[[i]]a[[j]],{i,1,3},{j,1,3}]; 

I4=a.(C1.a); 

Ivar2={F11}; 

DI4=IdentityMatrix[Length[Ivar2]]; 

DI41[i_,j_]:=D[D[I4,Ivar2[[i]]],Ivar2[[j]]]; 

Table[DI4[[i,j]]=DI41[i,j],{i,1,Length[Ivar2]},{j,1,Length[Ivar2]}]; 

Det[DI4] 

I5=a.((C1 C1).a); 

Ivar2={F11}; 

DI5=IdentityMatrix[Length[Ivar2]]; 

DI51[i_,j_]:=D[D[I5,Ivar2[[i]]],Ivar2[[j]]]; 

Table[DI5[[i,j]]=DI51[i,j],{i,1,Length[Ivar2]},{j,1,Length[Ivar2]}]; 

Det[DI5] 

b={b1,b2,b3}; 

b1=Cos[]Cos[];b2=Cos[]Sin[];b3=Sin[]; 
M2=IdentityMatrix[3]; 

Table[M2[[i,j]]=b[[i]]b[[j]],{i,1,3},{j,1,3}]; 

I6=b.(C1.b); 

Ivar2={F11}; 

DI6=IdentityMatrix[Length[Ivar2]]; 

DI61[i_,j_]:=D[D[I6,Ivar2[[i]]],Ivar2[[j]]]; 

Table[DI6[[i,j]]=DI61[i,j],{i,1,Length[Ivar2]},{j,1,Length[Ivar2]}]; 

Det[DI6] 

I7=b.((C1 C1).b); 
Ivar2={F11}; 

DI7=IdentityMatrix[Length[Ivar2]]; 

DI71[i_,j_]:=D[D[I7,Ivar2[[i]]],Ivar2[[j]]]; 

Table[DI7[[i,j]]=DI71[i,j],{i,1,Length[Ivar2]},{j,1,Length[Ivar2]}]; 

Det[DI7] 
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I8=a.(C1.b) 

Ivar21={F11}; 

(*Ivar21={F11,F22};*) 

DI8=IdentityMatrix[Length[Ivar21]]; 

DI81[i_,j_]:=D[D[I8,Ivar21[[i]]],Ivar21[[j]]]; 

Table[DI8[[i,j]]=DI81[i,j],{i,1,Length[Ivar21]},{j,1,Length[Ivar21]}]; 

FullSimplify[Det[DI8]] 

I9=a.((C1 C1).b) 

Ivar21={F11}; 
(*Ivar21={F11,F22};*) 

DI9=IdentityMatrix[Length[Ivar21]]; 

DI91[i_,j_]:=D[D[I9,Ivar21[[i]]],Ivar21[[j]]]; 

Table[DI9[[i,j]]=DI91[i,j],{i,1,Length[Ivar21]},{j,1,Length[Ivar21]}]; 

FullSimplify[Det[DI9]] 

ClearAll[En1,En2,En3] 

ClearAll[En] 

En={En1,En2,En3}; 

En1=En2=0; 

I11=En.(IC1.En) 

var={F11,En3}; 

DI11E[i_,j_]:=D[D[I11,var[[i]]],var[[j]]]; 

DI111E=IdentityMatrix[Length[var]]; 

Table[DI111E[[i,j]]=DI11E[i,j],{i,1,Length[var]},{j,1,Length[var]}]; 

Simplify[Det[DI111E]] 

I12=En.((IC1 IC1).En) 

var={F11,En3}; 
DI12E[i_,j_]:=D[D[I12,var[[i]]],var[[j]]]; 

DI121E=IdentityMatrix[Length[var]]; 

Table[DI121E[[i,j]]=DI12E[i,j],{i,1,Length[var]},{j,1,Length[var]}]; 

Simplify[Det[DI121E]] 

I13=a.En 

var={F11,En3}; 

DI13[i_,j_]:=D[D[I13,var[[i]]],var[[j]]] 

DI131=IdentityMatrix[Length[var]]; 

Table[DI131[[i,j]]=DI13[i,j],{i,1,Length[var]},{j,1,Length[var]}]; 

FullSimplify[Det[DI131]] 

I14=a.C1.En 

var={F11,En3}; 

DI14[i_,j_]:=D[D[I14,var[[i]]],var[[j]]] 

DI141=IdentityMatrix[Length[var]]; 

Table[DI141[[i,j]]=DI14[i,j],{i,1,Length[var]},{j,1,Length[var]}]; 

FullSimplify[Det[DI141]] 

I15=a.(C1 C1).En 
var={F11,En3}; 

DI15[i_,j_]:=D[D[I15,var[[i]]],var[[j]]] 

DI151=IdentityMatrix[Length[var]]; 

Table[DI151[[i,j]]=DI15[i,j],{i,1,Length[var]},{j,1,Length[var]}]; 

FullSimplify[Det[DI151]] 

I16=b.C1.En 

var={F11,En3}; 

DI16[i_,j_]:=D[D[I16,var[[i]]],var[[j]]] 

DI161=IdentityMatrix[Length[var]]; 

Table[DI161[[i,j]]=DI16[i,j],{i,1,Length[var]},{j,1,Length[var]}]; 

FullSimplify[Det[DI161]] 

I17=b.(C1 C1).En 

var={F11,En3}; 
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DI17[i_,j_]:=D[D[I17,var[[i]]],var[[j]]] 

DI171=IdentityMatrix[Length[var]]; 

Table[DI171[[i,j]]=DI17[i,j],{i,1,Length[var]},{j,1,Length[var]}]; 

FullSimplify[Det[DI171]] 

I18=Cross[a,b].C1.En 

var={F11,En3}; 

DI18[i_,j_]:=D[D[I18,var[[i]]],var[[j]]] 

DI181=IdentityMatrix[Length[var]]; 

Table[DI181[[i,j]]=DI18[i,j],{i,1,Length[var]},{j,1,Length[var]}]; 
FullSimplify[Det[DI181]] 

I19=Cross[a,b].(C1 C1).En 

var={F11,En3}; 

DI19[i_,j_]:=D[D[I19,var[[i]]],var[[j]]] 

DI191=IdentityMatrix[Length[var]]; 

Table[DI191[[i,j]]=DI19[i,j],{i,1,Length[var]},{j,1,Length[var]}]; 

FullSimplify[Det[DI191]] 

ClearAll[W1,W2,W4,W5,W6,W7,W8,W9,W10,W11,W12,W13,W14,W15,W16,W17,W18,W19] 

(*=/2;*) 
D2WD2F=W1 DI11[[1,1]]+W2 DI22+W4 DI4[[1,1]]+W5 DI5[[1,1]]+W6 DI6[[1,1]]+W7 DI7[[1,1]]+W8 

DI8[[1,1]]+W9 DI9[[1,1]]+W11 DI111E[[1,1]]+W12 DI121E[[1,1]]+W14 DI141[[1,1]]+W16 DI161[[1,1]]+W18 

DI181[[1,1]]+W19 DI191[[1,1]]; 

D2WDFE=W11 DI111E[[1,2]]+W12 DI121E[[1,2]]+W14 DI141[[1,2]]+W16 DI161[[1,2]]+W18 

DI181[[1,2]]+W19 DI191[[1,2]]; 

D2WD2E=2 W10+W11 DI111E[[2,2]]+W12 DI121E[[2,2]]; 

(*W4=W5=W6=W7=W8=W9=W14=W16=W18=W19=0;*) 

(*W14=W16=W18=W19=0;*) 

(*W5=W7=W12=W13=W15=W16=W17=W18=W19=0;*) 

W5=W7=W9=W12=W19=0; 

Sol1=Solve[D2WD2F D2WD2E-(D2WDFE)^20,En3]; 
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Appendix B. Integrity Basis for the Proper and Full Orthogonal Set 

The integrity basis is presented in the forms of typical invariants under the proper orthogonal 

group in terms of the symmetric tensor G and three generic vectors u, v and w: 

(i) N
Gtr  (N = 1, 2, 3) 

(ii) uuG
N

, ][ uG Gu, u,
2  (N = 1, 2, 3) 

(iii) vuG
N

 (N = 1, 2, 3) 

 ][ vG v,G u,
NM

 (MN = 01, 02, 12) 

 ][ vG u,G u,
NM  (MN = 10, 11, 12, 20) 

(iv) ][ wG v,G u,
NM

 (MN = 00, 01, 02, 10, 11, 12, 20) 

where [u, v, w] represents a triple scalar product of vectors u, v and w.  

A table of typical invariants for the symmetric tensor G, two polar vectors u and v and two axial 

vectors r and s under the full orthogonal group is presented: 

 (i) vvG  uuG  G
NNN ,,tr 1

 (N = 0, 1, 2) 

(ii) 

][],[

][

rG r,G s,  sG s,G r, 

rG Gr, r,  s,rGr,rG

NMNM

2NN

 

(N = 1, 2, 3) 

(MN = 01, 02, 12) 

(iii) 

])[(

))((

][

uG r,u,ur

ruGur

uG u,G r, 

N

NM

N
 

(MN = 01, 02, 12) 

(N = 1, 2, 3) 

(N = 1, 2) 

(iv) 

])[(])[(

][][

][][

))(())((

))(())((

rG r,u,vrrG r,v,ur

vG u,Gr,vG u,G r,

vG  u,r,v u,G r,

ruGrvGrvGruG

ruGvrrvGur

NN

MNNM

NN











NNNN

NN

 

(N = 0, 1, 2) 

(MN = 01, 02, 12) 

(N = 0, 1, 2) 

(MN = 01, 02, 12) 

(N = 0, 1, 2) 

(v) 

])[(],)[(

))((

uG s,Gu,us  uG r,Gv,ur

suGruG

NMNM

NN

 

(MN = 00, 01, 02, 10, 20, 21) 

(MN = 00, 01, 10, 20) 
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(vi) 

])[(])[(

])[(])[(

))(())((

))(())((

uG s,Gr,vsvG s,Gr,sr

uG r,Gs,vrvG r,Gs,ur

suGrvGsvGruG

suGrvGsvGruG

NMNM

NMNM









NMNM

NMNM

 

(MN = 00, 10, 20, 01, 02, 21) 

(MN = 00, 10, 20, 01, 02, 12) 

(MN = 00, 01, 10, 20) 

(MN = 00, 01, 10, 20) 
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Appendix C. Tangent Modulus for Electro-Elastic Material 
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Appendix D. UMATs (User Subroutines for ABAQUS) 

1. Mooney-Rivlin model + electrostatic energy function (E_MRmodel.f) 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATEV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

 INCLUDE 'ABA_PARAM.INC' 

C     

      CHARACTER*8 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATEV), 

     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

     4 Et(3),Stress_Max(3,3),EkEk(1),DFGRDM1_INV(3,3),En(3), 

     5 TEMP(1),DTEMP(1),DFGRDP(3),DFGRDM1(3, 3),DFGRDM0(3, 3), 

     6 CBAR(3,3),DDSDDE_Max(6,6) 

C 

      DIMENSION BBAR(6),DISTGR(3,3),BBARBBAR(6) 

C 

      PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0,  

     1          FIVE=5.D0, SIX=6.D0, SEVEN=7.D0, EIGHT=8.D0) 

C 

C ---------------------------------------------------------------- 

C    UMAT FOR COMPRESSIBLE MOONEY-RIVLIN MODEL 

C    W=C10(I-3)+C01(I-3)+1/D1 (J-1)*(J-1) 

C ---------------------------------------------------------------- 

C    PROPS(1) - C10      C1 

C    PROPS(2) - C01      C2 

C    PROPS(3) - D1       Bulk modulus 

C    PROPS(4) - E1       E-field in X direction 

C    PROPS(5) - E2       E-field in Y direction   

C    PROPS(6) - E3       E-field in Z direction  

C    PROPS(7) – EPSILON  Vaccum permittivity*relative permittivity  

C ---------------------------------------------------------------- 

C 

C   Read Material PROPERTIES 

C 

      C10=PROPS(1) 

      C01=PROPS(2) 

      D1 =PROPS(3)  

      EPSILON=PROPS(7)     

C 

C    JACOBIAN AND DISTORTION TENSOR 

C 

      DET=DFGRD1(1, 1)*DFGRD1(2, 2)*DFGRD1(3, 3) 

     1   -DFGRD1(1, 2)*DFGRD1(2, 1)*DFGRD1(3, 3) 

      IF(NSHR.EQ.3) THEN 

        DET=DET+DFGRD1(1, 2)*DFGRD1(2, 3)*DFGRD1(3, 1) 

     1         +DFGRD1(1, 3)*DFGRD1(3, 2)*DFGRD1(2, 1) 

     2         -DFGRD1(1, 3)*DFGRD1(3, 1)*DFGRD1(2, 2) 

     3         -DFGRD1(2, 3)*DFGRD1(3, 2)*DFGRD1(1, 1) 

      END IF 
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      SCALE=DET**(-ONE/THREE) 

      DO K1=1, 3 

        DO K2=1, 3 

          DISTGR(K2, K1)=SCALE*DFGRD1(K2, K1) 

        END DO 

      END DO 

C 

C    CALCULATE LEFT CAUCHY-GREEN TENSOR (B=F.Ft) 

C 

      BBAR(1)=DISTGR(1, 1)**2+DISTGR(1, 2)**2+DISTGR(1, 3)**2 

      BBAR(2)=DISTGR(2, 1)**2+DISTGR(2, 2)**2+DISTGR(2, 3)**2 

      BBAR(3)=DISTGR(3, 3)**2+DISTGR(3, 1)**2+DISTGR(3, 2)**2 

      BBAR(4)=DISTGR(1, 1)*DISTGR(2, 1)+DISTGR(1, 2)*DISTGR(2, 2) 

     1       +DISTGR(1, 3)*DISTGR(2, 3) 

      IF(NSHR.EQ.3) THEN 

        BBAR(5)=DISTGR(1, 1)*DISTGR(3, 1)+DISTGR(1, 2)*DISTGR(3, 2) 

     1         +DISTGR(1, 3)*DISTGR(3, 3) 

        BBAR(6)=DISTGR(2, 1)*DISTGR(3, 1)+DISTGR(2, 2)*DISTGR(3, 2) 

     1         +DISTGR(2, 3)*DISTGR(3, 3) 

      END IF       

C       

C    CALCULATAE (B.Bt) 

C 

      BBARBBAR(1)=BBAR(1)*BBAR(1)+BBAR(4)*BBAR(4)+BBAR(5)*BBAR(5) 

      BBARBBAR(2)=BBAR(4)*BBAR(4)+BBAR(2)*BBAR(2)+BBAR(6)*BBAR(6) 

      BBARBBAR(3)=BBAR(5)*BBAR(5)+BBAR(6)*BBAR(6)+BBAR(3)*BBAR(3) 

      BBARBBAR(4)=BBAR(1)*BBAR(4)+BBAR(4)*BBAR(2)+BBAR(5)*BBAR(6) 

      BBARBBAR(5)=BBAR(1)*BBAR(5)+BBAR(4)*BBAR(6)+BBAR(5)*BBAR(3) 

      BBARBBAR(6)=BBAR(4)*BBAR(5)+BBAR(2)*BBAR(6)+BBAR(6)*BBAR(3) 

C 

C    CALCULATE THE STRESS 

C 

      TRBBAR=(BBAR(1)+BBAR(2)+BBAR(3)) 

      TRBBAR1=(BBAR(1)+BBAR(2)+BBAR(3))/THREE 

      TRBBAR2=(BBAR(1)**2+BBAR(2)**2+BBAR(3)**2)/THREE 

      TRBBARBBAR=(BBARBBAR(1)+BBARBBAR(2)+BBARBBAR(3))/THREE 

      EG1=TWO*C10/DET 

      EG2=TWO*C01/DET 

      EK=TWO/D1*(TWO*DET-ONE) 

      PR=TWO/D1*(DET-ONE) 

      DO K1=1,NDI 

        STRESS(K1)=EG1*(BBAR(K1)-TRBBAR1)+PR 

     1             +EG2*(TRBBAR*BBAR(K1)-TRBBAR2-BBARBBAR(K1) 

     2             +TRBBARBBAR) 

      END DO 

      DO K1=NDI+1,NDI+NSHR 

        STRESS(K1)=EG1*BBAR(K1) 

     1             +EG2*(TRBBAR*BBAR(K1)-BBARBBAR(K1)) 

      END DO 

c 

C    CALCULATE THE STIFFNESS 

C 

      EG23=EG1*TWO/THREE 

      EG24=EG2*TWO/THREE 

      DDSDDE(1, 1)= EG23*(BBAR(1)+TRBBAR1)+EK 

     1              +EG24*(-(BBAR(1)*(3*BBAR(1)+5*(BBAR(2)+BBAR(3))))/2 

     2              +BBAR(4)**2+BBAR(5)**2) 
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      DDSDDE(2, 2)= EG23*(BBAR(2)+TRBBAR1)+EK 

     1              +EG24*(-(BBAR(2)*(5*BBAR(1)+3*BBAR(2)+5*BBAR(3)))/2 

     2              +BBAR(4)**2+BBAR(6)**2) 

      DDSDDE(3, 3)= EG23*(BBAR(3)+TRBBAR1)+EK 

     1              +EG24*(-(BBAR(3)*(5*(BBAR(1)+BBAR(2))+3*BBAR(3)))/2 

     2              +BBAR(5)**2+BBAR(6)**2) 

      DDSDDE(1, 2)=-EG23*(BBAR(1)+BBAR(2)-TRBBAR1)+EK 

     1             +EG24*((3*(2*BBAR(1)*BBAR(2)-(4*(BBAR(1)+BBAR(2)) 

     2             *(BBAR(1)+BBAR(2)+BBAR(3)))/3-2*BBAR(4)**2))/2) 

      DDSDDE(1, 3)=-EG23*(BBAR(1)+BBAR(3)-TRBBAR1)+EK 

     1             +EG24*((3*(2*BBAR(1)*BBAR(3)-(4*(BBAR(1)+BBAR(3)) 

     2             *(BBAR(1)+BBAR(2)+BBAR(3)))/3-2*BBAR(5)**2))/2) 

      DDSDDE(2, 3)=-EG23*(BBAR(2)+BBAR(3)-TRBBAR1)+EK 

     1             +EG24*((3*(2*BBAR(2)*BBAR(3)-(4*(BBAR(2)+BBAR(3)) 

     2             *(BBAR(1)+BBAR(2)+BBAR(3)))/3-2*BBAR(6)**2))/2) 

      DDSDDE(1, 4)= EG23*BBAR(4)/TWO 

     1             +EG24*(-((3*(BBAR(1)+BBAR(2))+5*BBAR(3))*BBAR(4))/4 

     2             +(BBAR(5)*BBAR(6))/2) 

      DDSDDE(2, 4)= EG23*BBAR(4)/TWO 

     1             +EG24*(-((3*(BBAR(1)+BBAR(2))+5*BBAR(3))*BBAR(4))/4 

     2             +(BBAR(5)*BBAR(6))/2) 

      DDSDDE(3, 4)=-EG23*BBAR(4) 

     1             +EG24*((-2*(BBAR(1)+BBAR(2))+BBAR(3))*BBAR(4) 

     2             -3*BBAR(5)*BBAR(6)) 

      DDSDDE(4, 4)= EG1*(BBAR(1)+BBAR(2)) 

     1             +EG24*((13*BBAR(1)**2-6*BBAR(1)*BBAR(2)+13*BBAR(2)**2 

     2             +3*(BBAR(1)+BBAR(2))*BBAR(3)+2*(16*BBAR(4)**2 

     3             +5*(BBAR(5)**2+BBAR(6)**2)))/8) 

      IF(NSHR.EQ.3) THEN 

        DDSDDE(1, 5)= EG23*BBAR(5)/TWO 

     1               +EG24*(-((3*BBAR(1)+5*BBAR(2)+3*BBAR(3))*BBAR(5))/4 

     2               +(BBAR(4)*BBAR(6))/2) 

        DDSDDE(2, 5)=-EG23*BBAR(5) 

     1               +EG24*((-2*BBAR(1)+BBAR(2)-2*BBAR(3))*BBAR(5) 

     2               -3*BBAR(4)*BBAR(6)) 

        DDSDDE(3, 5)= EG23*BBAR(5)/TWO 

     1               +EG24*(-((3*BBAR(1)+5*BBAR(2)+3*BBAR(3))*BBAR(5))/4 

     2               +(BBAR(4)*BBAR(6))/2) 

        DDSDDE(1, 6)=-EG23*BBAR(6) 

     1               +EG24*(-3*BBAR(4)*BBAR(5)+(BBAR(1)-2*(BBAR(2) 

     2               +BBAR(3)))*BBAR(6)) 

        DDSDDE(2, 6)= EG23*BBAR(6)/TWO 

     1               +EG24*((2*BBAR(4)*BBAR(5)-(5*BBAR(1)+3*(BBAR(2) 

     2               +BBAR(3)))*BBAR(6))/4) 

        DDSDDE(3, 6)= EG23*BBAR(6)/TWO 

     1               +EG24*((2*BBAR(4)*BBAR(5)-(5*BBAR(1)+3*(BBAR(2) 

     2               +BBAR(3)))*BBAR(6))/4) 

        DDSDDE(5, 5)= EG1*(BBAR(1)+BBAR(3))/TWO 

     1               +EG24*((13*BBAR(1)**2+3*BBAR(1)*(BBAR(2)-2*BBAR(3)) 

     2               +3*BBAR(2)*BBAR(3)+13*BBAR(3)**2+10*BBAR(4)**2 

     3               +32*BBAR(5)**2+10*BBAR(6)**2)/8) 

        DDSDDE(6, 6)= EG1*(BBAR(2)+BBAR(3))/TWO 

     1               +EG24*((13*BBAR(2)**2-6*BBAR(2)*BBAR(3) 

     2               +13*BBAR(3)**2+3*BBAR(1)*(BBAR(2)+BBAR(3)) 

     3               +10*(BBAR(4)**2+BBAR(5)**2)+32*BBAR(6)**2)/8) 

        DDSDDE(4,5)= EG1*BBAR(6)/TWO 

     1               +EG24*((22*BBAR(4)*BBAR(5)+(-9*BBAR(1)+13*(BBAR(2) 
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     2               +BBAR(3)))*BBAR(6))/8) 

        DDSDDE(4,6)= EG1*BBAR(5)/TWO 

     1               +EG24*((-3*(BBAR(1)+3*BBAR(2)+BBAR(3))*BBAR(5))/8 

     2               +(3*BBAR(4)*BBAR(6))/4) 

        DDSDDE(5,6)= EG1*BBAR(4)/TWO 

     1               +EG24*(((13*(BBAR(1)+BBAR(2))-9*BBAR(3))*BBAR(4) 

     2               +22*BBAR(5)*BBAR(6))/8) 

      END IF 

      DO K1=1, NTENS 

        DO K2=1, K1-1 

          DDSDDE(K1, K2)=DDSDDE(K2, K1) 

        END DO 

      END DO 

C 

C     Calculate the inverse of deformation gradient 

C 

      DFGRDM1_INV(1,1)=DFGRD1(2,2)*DFGRD1(3,3) 

     1 -DFGRD1(2,3)*DFGRD1(3,2)  

      DFGRDM1_INV(1,2)=-DFGRD1(1,2)*DFGRD1(3,3) 

     1 +DFGRD1(1,3)*DFGRD1(3,2)   

      DFGRDM1_INV(1,3)=DFGRD1(1,2)*DFGRD1(2,3) 

     1 -DFGRD1(1,3)*DFGRD1(2,2) 

  

      DFGRDM1_INV(2,1)=-DFGRD1(2,1)*DFGRD1(3,3) 

     1 +DFGRD1(2,3)*DFGRD1(3,1)  

      DFGRDM1_INV(2,2)=DFGRD1(1,1)*DFGRD1(3,3) 

     1 -DFGRD1(1,3)*DFGRD1(3,1)  

      DFGRDM1_INV(2,3)=-DFGRD1(1,1)*DFGRD1(2,3) 

     1 +DFGRD1(1,3)*DFGRD1(2,1) 

 

      DFGRDM1_INV(3,1)=DFGRD1(2,1)*DFGRD1(3,2) 

     1 -DFGRD1(2,2)*DFGRD1(3,1)  

      DFGRDM1_INV(3,2)=-DFGRD1(1,1)*DFGRD1(3,2) 

     1 +DFGRD1(1,2)*DFGRD1(3,1)   

      DFGRDM1_INV(3,3)=DFGRD1(1,1)*DFGRD1(2,2) 

     1 -DFGRD1(1,2)*DFGRD1(2,1) 

        

      DO I=1,3 

      DO J=1,3 

      DFGRDM1_INV(I,J)=DFGRDM1_INV(I,J)/DET 

      END DO 

      END DO 

C       

C     Calculate the current true electric field 

C 

      En(1)=PROPS(14)      

      En(2)=PROPS(15) 

      En(3)=PROPS(16)   

      DO I=1,3 

      Et(I)=0 

      END DO  

      DO I=1,3 

      DO J=1,3 

      Et(J)=Et(J)+En(I)*DFGRDM1_INV(I,J) 

      END DO 

      END DO 

      EkEk=0.0D0 
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      DO I=1, 3 

         EkEk=EkEk+Et(I)*Et(I) 

      ENDDO  

      DO I=1,3 

        DO J=1,3 

        Stress_Max(I,J)=0.0D0 

        ENDDO 

      ENDDO 

C 

C     Update the true stress due to polarization 

C 

      DO I=1,3 

        DO J=1,3 

        IF (I==J) THEN 

        Stress_Max(I,J)=EPSILON*Et(I)*Et(J)-0.50D0*EPSILON*EkEk(1) 

        ELSE 

        Stress_Max(I,J)=EPSILON*Et(I)*Et(J) 

        ENDIF 

        ENDDO 

      ENDDO 

      STRESS(1)=STRESS(1)+Stress_Max(1,1) 

      STRESS(2)=STRESS(2)+Stress_Max(2,2) 

      STRESS(3)=STRESS(3)+Stress_Max(3,3) 

      STRESS(4)=STRESS(4)+Stress_Max(1,2) 

      STRESS(5)=STRESS(5)+Stress_Max(1,3) 

      STRESS(6)=STRESS(6)+Stress_Max(2,3) 

      RETURN 

      END  

 

2. Neo-Hookean+Gasser-Ogden-Holzapfel model + electrostatic energy function 

(E_Anisomodel.f) 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATEV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

 INCLUDE 'ABA_PARAM.INC' 

C     

      CHARACTER*8 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATEV), 

     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

     4 Et(3),Stress_Max(3,3),EkEk(1),DFGRDM1_INV(3,3),En(3), 

     5 TEMP(1),DTEMP(1),DFGRDP(3),DFGRDM1(3, 3),DFGRDM0(3, 3), 

     6 CBAR(3,3),DDSDDE_Max(6,6) 

C 

      DIMENSION BBAR(6),DISTGR(3,3),BBARBBAR(6), MM(6), M(3), D(6),  

     1          NN(6), N(3) 

                   

C 

      PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0,  

     1          FIVE=5.D0, SIX=6.D0, SEVEN=7.D0, EIGHT=8.D0) 
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C 

C ---------------------------------------------------------------- 

C    GASSER & HOLZAPFEL STRAIN ENERGY FUNCTION 

C    W=C10(I-3)+k1/2k2 exp[k2{K I1+(1-3K) I4i-1}**2-1] 

C ---------------------------------------------------------------- 

C    PROPS(1) - C10 

C    PROPS(2) - D1 

C    PROPS(3) - k1 

C    PROPS(4) - K2 

C    PROPS(5) - k 

c    PROPS(6) - cos (fiber angle1) 

C    PROPS(7) - sin (fiber angle1) 

C    PROPS(8) - cos (fiber angle2) 

C    PROPS(9) - sin (fiber angle2) 

C ---------------------------------------------------------------- 

C 

C   Read Material PROPERTIES 

C 

      C10=PROPS(1) 

      D1 =PROPS(2) 

      P =PROPS(3)  

      PP =PROPS(4)  

      PK = PROPS(5)  

      COS=PROPS(6) 

      SIN=PROPS(7) 

      Q =PROPS(8) 

      QQ =PROPS(9) 

      QK =PROPS(10) 

      COSS=PROPS(11) 

      SINN=PROPS(12) 

      EPSILON=PROPS(13) 

C    JACOBIAN AND DISTORTION TENSOR 

      DET=DFGRD1(1, 1)*DFGRD1(2, 2)*DFGRD1(3, 3) 

     1   -DFGRD1(1, 2)*DFGRD1(2, 1)*DFGRD1(3, 3) 

      IF(NSHR.EQ.3) THEN 

        DET=DET+DFGRD1(1, 2)*DFGRD1(2, 3)*DFGRD1(3, 1) 

     1         +DFGRD1(1, 3)*DFGRD1(3, 2)*DFGRD1(2, 1) 

     2         -DFGRD1(1, 3)*DFGRD1(3, 1)*DFGRD1(2, 2) 

     3         -DFGRD1(2, 3)*DFGRD1(3, 2)*DFGRD1(1, 1) 

      END IF 

      SCALE=DET**(-ONE/THREE) 

      DO K1=1, 3 

        DO K2=1, 3 

          DISTGR(K2, K1)=SCALE*DFGRD1(K2, K1) 

        END DO 

      END DO 

C    CALCULATE LEFT CAUCHY-GREEN TENSOR (B=F.Ft) 

      BBAR(1)=DISTGR(1, 1)**2+DISTGR(1, 2)**2+DISTGR(1, 3)**2 

      BBAR(2)=DISTGR(2, 1)**2+DISTGR(2, 2)**2+DISTGR(2, 3)**2 

      BBAR(3)=DISTGR(3, 3)**2+DISTGR(3, 1)**2+DISTGR(3, 2)**2 

      BBAR(4)=DISTGR(1, 1)*DISTGR(2, 1)+DISTGR(1, 2)*DISTGR(2, 2) 

     1       +DISTGR(1, 3)*DISTGR(2, 3) 

      IF(NSHR.EQ.3) THEN 

        BBAR(5)=DISTGR(1, 1)*DISTGR(3, 1)+DISTGR(1, 2)*DISTGR(3, 2) 

     1         +DISTGR(1, 3)*DISTGR(3, 3) 

        BBAR(6)=DISTGR(2, 1)*DISTGR(3, 1)+DISTGR(2, 2)*DISTGR(3, 2) 

     1         +DISTGR(2, 3)*DISTGR(3, 3) 
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      END IF           

C    CALCULATAE (B.Bt) 

      BBARBBAR(1)=BBAR(1)*BBAR(1)+BBAR(4)*BBAR(4)+BBAR(5)*BBAR(5) 

      BBARBBAR(2)=BBAR(4)*BBAR(4)+BBAR(2)*BBAR(2)+BBAR(6)*BBAR(6) 

      BBARBBAR(3)=BBAR(5)*BBAR(5)+BBAR(6)*BBAR(6)+BBAR(3)*BBAR(3) 

      BBARBBAR(4)=BBAR(1)*BBAR(4)+BBAR(4)*BBAR(2)+BBAR(5)*BBAR(6) 

      BBARBBAR(5)=BBAR(1)*BBAR(5)+BBAR(4)*BBAR(6)+BBAR(5)*BBAR(3) 

      BBARBBAR(6)=BBAR(4)*BBAR(5)+BBAR(2)*BBAR(6)+BBAR(6)*BBAR(3) 

C    CALCULATE INVARIANT I1 I4 

      TRBBAR=BBAR(1)+BBAR(2)+BBAR(3) 

      M(1)=DISTGR(1,1)*COS+DISTGR(1,2)*SIN 

      M(2)=DISTGR(2,1)*COS+DISTGR(2,2)*SIN 

      M(3)=DISTGR(3,1)*COS+DISTGR(3,2)*SIN 

      N(1)=DISTGR(1,1)*COSS+DISTGR(1,2)*SINN 

      N(2)=DISTGR(2,1)*COSS+DISTGR(2,2)*SINN 

      N(3)=DISTGR(3,1)*COSS+DISTGR(3,2)*SINN 

      TRBBARR=M(1)**2+M(2)**2+M(3)**2 

      TRBBARRR=N(1)**2+N(2)**2+N(3)**2 

C   CALCULATE ORIENTATION mimj 

      MM(1)=M(1)*M(1) 

      MM(2)=M(2)*M(2) 

      MM(3)=M(3)*M(3) 

      MM(4)=M(1)*M(2) 

      MM(5)=M(1)*M(3) 

      MM(6)=M(2)*M(3) 

      NN(1)=N(1)*N(1) 

      NN(2)=N(2)*N(2) 

      NN(3)=N(3)*N(3) 

      NN(4)=N(1)*N(2) 

      NN(5)=N(1)*N(3) 

      NN(6)=N(2)*N(3) 

C    CALCULATE DW/DI 

      A=(-1+TRBBARR*(1-3*PK)+TRBBAR*PK) 

      AA=PP*A**2 

      B=(-1+TRBBARRR*(1-3*QK)+TRBBAR*QK) 

      BB=QQ*B**2      

      WO=C10+exp(AA)*PK*A*P+exp(BB)*QK*B*Q 

      WFA=exp(AA)*(1-3*PK)*A*P 

      WFB=exp(BB)*(1-3*QK)*B*Q 

      WOO=(P*(2*exp(AA)*PK**2*PP+4*exp(AA)*PK**2*A**2*PP**2))/(2*PP) 

     1   +(Q*(2*exp(BB)*QK**2*QQ+4*exp(BB)*QK**2*B**2*QQ**2))/(2*QQ) 

      WFFA=(P*(2*exp(AA)*(1-3*PK)**2*PP+4*exp(AA)*(1-3*PK)**2*A**2 

     1    *PP**2))/(2*PP) 

      WFFB=(Q*(2*exp(BB)*(1-3*QK)**2*QQ+4*exp(BB)*(1-3*QK)**2*B**2 

     1    *QQ**2))/(2*QQ) 

      WOFA=exp(AA)*(1-3*PK)*PK*P+2*exp(AA)*(1-3*PK)*PK*A**2*P*PP 

      WOFB=exp(BB)*(1-3*QK)*QK*Q+2*exp(QQ)*(1-3*QK)*QK*B**2*Q*QQ 

C    CALCULATE THE STRESS 

      TRBBART=TRBBAR/THREE 

      TRBBARRT=TRBBARR/THREE 

      TRBBARRRT=TRBBARRR/THREE 

      EG=TWO/DET 

      EK=TWO/D1*(TWO*DET-ONE) 

      PR=TWO/D1*(DET-ONE) 

      DO K1=1,NDI 

        STRESS(K1)=EG*WO*(BBAR(K1)-TRBBART)+EG*WFA*(MM(K1)-TRBBARRT) 

     1             +EG*WFB*(NN(K1)-TRBBARRRT)+PR 
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      END DO 

      DO K1=NDI+1,NDI+NSHR 

        STRESS(K1)=EG*WO*BBAR(K1)+EG*WFA*(MM(K1))+EG*WFB*(NN(K1)) 

      END DO 

C    CALCULATE THE STIFFNESS 

      DDSDDE(1, 1)=(8*(2*TRBBAR*WO+2*TRBBARR*WFA+2*TRBBARRR*WFB)) 

     1          /(9*DET)-(2*(4*WO*BBAR(1)+4*WFA*(M(1))**2+4*WFB 

     2          *(N(1))**2))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(1))**2 

     3          +2*WOFA*(-TRBBART+BBAR(1))*(-TRBBARRT+(M(1))**2) 

     4          +2*WOFB*(-TRBBART+BBAR(1))*(-TRBBARRRT+(N(1))**2) 

     5          +WFFA*(-TRBBARRT+(M(1))**2)**2)+WFFB*(-TRBBARRRT 

     6          +(N(1))**2)**2)/DET+EK 

      DDSDDE(2, 2)=(8*(2*TRBBAR*WO+2*TRBBARR*WFA++2*TRBBARRR*WFB)) 

     1          /(9*DET)-(2*(4*WO*BBAR(2)+4*WFA*(M(2))**2+4*WFB 

     2          *(N(2))**2))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(2))**2 

     3          +2*WOFA*(-TRBBART+BBAR(2))*(-TRBBARRT+(M(2))**2) 

     4          +2*WOFB*(-TRBBART+BBAR(2))*(-TRBBARRRT+(N(2))**2) 

     5          +WFFA*(-TRBBARRT+(M(2))**2)**2)+WFFB*(-TRBBARRRT 

     6          +(N(2))**2)**2)/DET+EK 

      DDSDDE(3, 3)=(8*(2*TRBBAR*WO+2*TRBBARR*WFA++2*TRBBARRR*WFB)) 

     1          /(9*DET)-(2*(4*WO*BBAR(3)+4*WFA*(M(3))**2+4*WFB 

     2          *(N(3))**2))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(3))**2 

     3          +2*WOFA*(-TRBBART+BBAR(3))*(-TRBBARRT+(M(3))**2) 

     4          +2*WOFB*(-TRBBART+BBAR(3))*(-TRBBARRRT+(N(3))**2) 

     5          +WFFA*(-TRBBARRT+(M(3))**2)**2)+WFFB*(-TRBBARRRT 

     6          +(N(3))**2)**2)/DET+EK 

      DDSDDE(1, 2)=(2*(2*TRBBAR*WO+2*TRBBARR*WFA+2*TRBBARRR*WFA)) 

     1         /(9*DET)-(2*(2*WO*BBAR(1)+2*WO*BBAR(2)+2*WFA*(M(1))**2 

     2         +2*WFA*(M(2))**2+2*WFB*(N(1))**2+2*WFB*(N(2))**2)) 

     3         /(3*DET)+(4*(WOO*(-TRBBART+BBAR(1))*(-TRBBART+BBAR(2)) 

     4         +WFFA*(-TRBBARRT+(M(1))**2)*(-TRBBARRT+(M(2))**2)+WFFB 

     5         *(-TRBBARRRT+(N(1))**2)*(-TRBBARRRT+(N(2))**2)+WOFA 

     4         *((-TRBBART+BBAR(2))*(-TRBBARRT+(M(1))**2)+(-TRBBART 

     5         +BBAR(1))*(-TRBBARRT+(M(2))**2))+WOFB*((-TRBBART 

     6         +BBAR(2))*(-TRBBARRRT+(N(1))**2)+(-TRBBART+BBAR(1)) 

     7         *(-TRBBARRRT+(N(2))**2))))/DET+EK 

      DDSDDE(1, 3)=(2*(2*TRBBAR*WO+2*TRBBARR*WFA+2*TRBBARRR*WFA)) 

     1         /(9*DET)-(2*(2*WO*BBAR(1)+2*WO*BBAR(3)+2*WFA*(M(1))**2 

     2         +2*WFA*(M(3))**2+2*WFB*(N(1))**2+2*WFB*(N(3))**2)) 

     3         /(3*DET)+(4*(WOO*(-TRBBART+BBAR(1))*(-TRBBART+BBAR(3)) 

     4         +WFFA*(-TRBBARRT+(M(1))**2)*(-TRBBARRT+(M(3))**2)+WFFB 

     5         *(-TRBBARRRT+(N(1))**2)*(-TRBBARRRT+(N(3))**2)+WOFA 

     4         *((-TRBBART+BBAR(3))*(-TRBBARRT+(M(1))**2)+(-TRBBART 

     5         +BBAR(1))*(-TRBBARRT+(M(3))**2))+WOFB*((-TRBBART 

     6         +BBAR(3))*(-TRBBARRRT+(N(1))**2)+(-TRBBART+BBAR(1)) 

     7         *(-TRBBARRRT+(N(3))**2))))/DET+EK 

      DDSDDE(2, 3)=(2*(2*TRBBAR*WO+2*TRBBARR*WFA+2*TRBBARRR*WFA)) 

     1         /(9*DET)-(2*(2*WO*BBAR(2)+2*WO*BBAR(3)+2*WFA*(M(2))**2 

     2         +2*WFA*(M(3))**2+2*WFB*(N(2))**2+2*WFB*(N(3))**2)) 

     3         /(3*DET)+(4*(WOO*(-TRBBART+BBAR(2))*(-TRBBART+BBAR(3)) 

     4         +WFFA*(-TRBBARRT+(M(2))**2)*(-TRBBARRT+(M(3))**2)+WFFB 

     5         *(-TRBBARRRT+(N(2))**2)*(-TRBBARRRT+(N(3))**2)+WOFA 

     4         *((-TRBBART+BBAR(3))*(-TRBBARRT+(M(2))**2)+(-TRBBART 

     5         +BBAR(2))*(-TRBBARRT+(M(3))**2))+WOFB*((-TRBBART 

     6         +BBAR(3))*(-TRBBARRRT+(N(2))**2)+(-TRBBART+BBAR(2)) 

     7         *(-TRBBARRRT+(N(3))**2))))/DET+EK 

      DDSDDE(1, 4)=(-2*(2*WO*BBAR(4)+2*WFA*(M(1))*(M(2))+2*WFB*(N(1)) 
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     1         *(N(2))))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(1))*BBAR(4) 

     2         +WFFA*(M(1))*(-TRBBARRT+(M(1))**2)*(M(2))+WFFB*(N(1)) 

     3         *(-TRBBARRRT+(N(1))**2)*(N(2))+WOFA*(BBAR(4)*(-TRBBARRT 

     4         +(M(1))**2)+(-TRBBART+BBAR(1))*(M(1))*(M(2)))+WOFB 

     5         *(BBAR(4)*(-TRBBARRRT+(N(1))**2)+(-TRBBART+BBAR(1)) 

     6         *(N(1))*(N(2)))))/DET 

      DDSDDE(2, 4)=(-2*(2*WO*BBAR(4)+2*WFA*(M(1))*(M(2))+2*WFB*(N(1)) 

     1         *(N(2))))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(2))*BBAR(4) 

     2         +WFFA*(M(1))*(M(2))*(-TRBBARRT+(M(2))**2)+WFFB*(N(1)) 

     3         *(N(2))*(-TRBBARRRT+(N(2))**2)+WOFA*((-TRBBART+BBAR(2)) 

     4         *(M(1))*(M(2))+BBAR(4)*(-TRBBARRT+(M(2))**2))+WOFB 

     5         *((-TRBBART+BBAR(2))*(N(1))*(N(2))+BBAR(4)*(-TRBBARRRT 

     6         +(N(2))**2))))/DET 

      DDSDDE(3, 4)=(-2*(2*WO*BBAR(4)+2*WFA*(M(1))*(M(2))+2*WFB*(N(1)) 

     1         *(N(2))))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(3))*BBAR(4) 

     2         +WFFA*(M(1))*(M(2))*(-TRBBARRT+(M(3))**2)+WFFB*(N(1)) 

     3         *(N(2))*(-TRBBARRT+(M(3))**2)+WOFA*((-TRBBART+BBAR(3)) 

     4         *(M(1))*(M(2))+BBAR(4)*(-TRBBARRT+(M(3))**2))+WOFB 

     5         *((-TRBBART+BBAR(3))*(N(1))*(N(2))+BBAR(4)*(-TRBBARRRT 

     6         +(N(3))**2))))/DET 

      DDSDDE(4, 4)=(2*TRBBAR*WO+2*TRBBARR*WFA+2*TRBBARRR*WFB)/(3*DET) 

     1         +(4*(WOO*BBAR(4)**2+2*WOFA*BBAR(4)*(M(1))*(M(2))+2*WOFB 

     2         *BBAR(4)*(N(1))*(N(2))+WFFA*(M(1))**2*(M(2))**2+WFFB 

     3         *(N(1))**2*(N(2))**2))/DET 

      IF(NSHR.EQ.3) THEN 

        DDSDDE(1, 5)=(-2*(2*WO*BBAR(5)+2*WFA*(M(1))*(M(3))+2*WFB 

     1       *(N(1))*(N(3))))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(1)) 

     2       *BBAR(5)+WFFA*(M(1))*(-TRBBARRT+(M(1))**2)*(M(3))+WFFB 

     3       *(N(1))*(-TRBBARRRT+(N(1))**2)*(N(3))+WOFA*(BBAR(5) 

     4       *(-TRBBARRT+(M(1))**2)+(-TRBBART+BBAR(1))*(M(1))*(M(3))) 

     5       +WOFB*(BBAR(5)*(-TRBBARRRT+(N(1))**2)+(-TRBBART+BBAR(1)) 

     6       *(N(1))*(N(3)))))/DET 

        DDSDDE(2, 5)=(-2*(2*WO*BBAR(5)+2*WFA*(M(1))*(M(3))+2*WFB 

     1       *(N(1))*(N(3))))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(2)) 

     2       *BBAR(5)+WFFA*(M(1))*(-TRBBARRT+(M(3))**2)*(M(3))+WFFB 

     3       *(N(1))*(-TRBBARRRT+(N(3))**2)*(N(3))+WOFA*(BBAR(5) 

     4       *(-TRBBARRT+(M(2))**2)+(-TRBBART+BBAR(2))*(M(1))*(M(3))) 

     5       +WOFB*(BBAR(5)*(-TRBBARRRT+(N(2))**2)+(-TRBBART+BBAR(2)) 

     6       *(N(1))*(N(3)))))/DET 

        DDSDDE(3, 5)=(-2*(2*WO*BBAR(5)+2*WFA*(M(1))*(M(3))+2*WFB 

     1       *(N(1))*(N(3))))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(3)) 

     2       *BBAR(5)+WFFA*(M(1))*(M(3))*(-TRBBARRT+(M(3))**2)+WFFB 

     3       *(N(1))*(N(3))*(-TRBBARRRT+(N(3))**2)+WOFA*((-TRBBART 

     4       +BBAR(3))*(M(1))*(M(3))+BBAR(5)*(-TRBBARRT+(M(3))**2)) 

     5       +WOFB*((-TRBBART+BBAR(3))*(N(1))*(N(3))+BBAR(5) 

     6       *(-TRBBARRRT+(N(3))**2))))/DET 

        DDSDDE(1, 6)=(-2*(2*WO*BBAR(6)+2*WFA*(M(2))*(M(3))+2*WFB 

     1       *(N(2))*(N(3))))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(1))*BBAR(6) 

     2       +WFFA*(-TRBBARRT+(M(1))**2)*(M(2))*(M(3))+WFFB*(-TRBBARRRT 

     3       +(N(1))**2)*(N(2))*(N(3))+WOFA*(BBAR(6)*(-TRBBARRT 

     4       +(M(1))**2)+(-TRBBART+BBAR(1))*(M(2))*(M(3)))+WOFB*(BBAR(6) 

     5       *(-TRBBARRRT+(N(1))**2)+(-TRBBART+BBAR(1))*(N(2)) 

     6       *(N(3)))))/DET 

        DDSDDE(2, 6)=(-2*(2*WO*BBAR(6)+2*WFA*(M(2))*(M(3))+2*WFB*(N(2)) 

     1       *(N(3))))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(2))*BBAR(6)+WFFA 

     2       *(M(2))*(-TRBBARRT+(M(2))**2)*(M(3))+WFFB*(N(2)) 

     3       *(-TRBBARRRT+(N(2))**2)*(N(3))+WOFA*(BBAR(6)*(-TRBBARRT 
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     4       +(M(2))**2)+(-TRBBART+BBAR(2))*(M(2))*(M(3)))+WOFB*(BBAR(6) 

     5       *(-TRBBARRRT+(N(2))**2)+(-TRBBART+BBAR(2))*(N(2)) 

     6       *(N(3)))))/DET 

        DDSDDE(3, 6)=(-2*(2*WO*BBAR(6)+2*WFA*(M(2))*(M(3))+2*WFB*(N(2)) 

     1       *(N(3))))/(3*DET)+(4*(WOO*(-TRBBART+BBAR(3))*BBAR(6)+WFFA 

     2       *(M(2))*(M(3))*(-TRBBARRT+(M(3))**2)+WFFB*(N(2))*(N(3)) 

     3       *(-TRBBARRRT+(N(3))**2)+WOFA*((-TRBBART+BBAR(3))*(M(2)) 

     3       *(M(3))+BBAR(6)*(-TRBBARRT+(M(3))**2))+WOFB*((-TRBBART 

     4       +BBAR(3))*(N(2))*(N(3))+BBAR(6)*(-TRBBARRRT 

     5       +(N(3))**2))))/DET 

        DDSDDE(5, 5)=(2*TRBBAR*WO+2*TRBBARR*WFA+2*TRBBARRR*WFB)/(3*DET) 

     1       +(4*(WOO*BBAR(5)**2+2*WOFA*BBAR(5)*(M(1))*(M(3))+2*WOFB 

     2       *BBAR(5)*(N(1))*(N(3))+WFFA*(M(1))**2*(M(3))**2+WFFB 

     3       *(N(1))**2*(N(3))**2))/DET 

        DDSDDE(6, 6)=(2*TRBBAR*WO+2*TRBBARR*WFA+2*TRBBARRR*WFB)/(3*DET) 

     1       +(4*(WOO*BBAR(6)**2+2*WOFA*BBAR(6)*(M(2))*(M(3))+2*WOFB 

     2       *BBAR(6)*(N(2))*(N(3))+WFFA*(M(2))**2*(M(3))**2+WFFB 

     3       *(N(2))**2*(N(3))**2))/DET 

        DDSDDE(4,5)=(4*(WOO*BBAR(4)*BBAR(5)+WFFA*(M(1))**2*(M(2))*(M(3)) 

     1       +WFFB*(N(1))**2*(N(2))*(N(3))+WOFA*(BBAR(5)*(M(1))*(M(2)) 

     2       +BBAR(4)*(M(1))*(M(3)))+WOFB*(BBAR(5)*(N(1))*(N(2))+BBAR(4) 

     3       *(N(1))*(N(3)))))/DET 

        DDSDDE(4,6)=(4*(WOO*BBAR(4)*BBAR(6)+WFFA*(M(1))*(M(2))**2*(M(3)) 

     1       +WFFB*(N(1))*(N(2))**2*(N(3))+WOFA*(BBAR(6)*(M(1))*(M(2)) 

     2       +BBAR(4)*(M(2))*(M(3)))+WOFB*(BBAR(6)*(N(1))*(N(2))+BBAR(4) 

     3       *(N(2))*(N(3)))))/DET 

        DDSDDE(5,6)=(4*(WOO*BBAR(5)*BBAR(6)+WFFA*(M(1))*(M(2))*(M(3))**2 

     1       +WFFB*(N(1))*(N(2))*(N(3))**2+WOFA*(BBAR(6)*(M(1))*(M(3)) 

     2       +BBAR(5)*(M(2))*(M(3)))+WOFB*(BBAR(6)*(N(1))*(N(3))+BBAR(5) 

     3       *(N(2))*(N(3)))))/DET 

      END IF 

      DO K1=1, NTENS 

        DO K2=1, K1-1 

          DDSDDE(K1, K2)=DDSDDE(K2, K1) 

        END DO 

      END DO 

C     Calculate the inverse of deformation gradient 

      DFGRDM1_INV(1,1)=DFGRD1(2,2)*DFGRD1(3,3) 

     1 -DFGRD1(2,3)*DFGRD1(3,2)  

      DFGRDM1_INV(1,2)=-DFGRD1(1,2)*DFGRD1(3,3) 

     1 +DFGRD1(1,3)*DFGRD1(3,2)   

      DFGRDM1_INV(1,3)=DFGRD1(1,2)*DFGRD1(2,3) 

     1 -DFGRD1(1,3)*DFGRD1(2,2) 

  

      DFGRDM1_INV(2,1)=-DFGRD1(2,1)*DFGRD1(3,3) 

     1 +DFGRD1(2,3)*DFGRD1(3,1)  

      DFGRDM1_INV(2,2)=DFGRD1(1,1)*DFGRD1(3,3) 

     1 -DFGRD1(1,3)*DFGRD1(3,1)  

      DFGRDM1_INV(2,3)=-DFGRD1(1,1)*DFGRD1(2,3) 

     1 +DFGRD1(1,3)*DFGRD1(2,1) 

 

      DFGRDM1_INV(3,1)=DFGRD1(2,1)*DFGRD1(3,2) 

     1 -DFGRD1(2,2)*DFGRD1(3,1)  

      DFGRDM1_INV(3,2)=-DFGRD1(1,1)*DFGRD1(3,2) 

     1 +DFGRD1(1,2)*DFGRD1(3,1)   

      DFGRDM1_INV(3,3)=DFGRD1(1,1)*DFGRD1(2,2) 

     1 -DFGRD1(1,2)*DFGRD1(2,1) 
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      DO I=1,3 

      DO J=1,3 

      DFGRDM1_INV(I,J)=DFGRDM1_INV(I,J)/DET 

      END DO 

      END DO 

C     Calculate the current true electric field 

      En(1)=PROPS(14)      

      En(2)=PROPS(15) 

      En(3)=PROPS(16)   

      DO I=1,3 

      Et(I)=0 

      END DO  

      DO I=1,3 

      DO J=1,3 

      Et(J)=Et(J)+En(I)*DFGRDM1_INV(I,J) 

      END DO 

      END DO 

      EkEk=0.0D0 

      DO I=1, 3 

         EkEk=EkEk+Et(I)*Et(I) 

      ENDDO  

      DO I=1,3 

        DO J=1,3 

        Stress_Max(I,J)=0.0D0 

        ENDDO 

      ENDDO 

C     Update the true stress due to polarization 

      DO I=1,3 

        DO J=1,3 

        IF (I==J) THEN 

        Stress_Max(I,J)=EPSILON*Et(I)*Et(J)-0.50D0*EPSILON*EkEk(1) 

        ELSE 

        Stress_Max(I,J)=EPSILON*Et(I)*Et(J) 

        ENDIF 

        ENDDO 

      ENDDO 

      STRESS(1)=STRESS(1)+Stress_Max(1,1) 

      STRESS(2)=STRESS(2)+Stress_Max(2,2) 

      STRESS(3)=STRESS(3)+Stress_Max(3,3) 

      STRESS(4)=STRESS(4)+Stress_Max(1,2) 

      STRESS(5)=STRESS(5)+Stress_Max(1,3) 

      STRESS(6)=STRESS(6)+Stress_Max(2,3) 

      RETURN 

      END  
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Appendix E. Input File for the Anisotropic Material (Define the Orientation 

of Fibers) 

*Heading 

** Job name: Cuttlefish_test2 Model name: Model-1 

** Generated by: Abaqus/CAE 6.10-1 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Part-1 

*Node 

     1, -0.140000001, 0.0199999996, 0.00164000003 

     2, -0.140000001, 0.0260000005, 0.00164000003 

     3, -0.140000001, 0.0320000015, 0.00164000003 

     4, -0.140000001, 0.0379999988, 0.00164000003 

     5, -0.140000001, 0.0439999998, 0.00164000003 

     6, -0.140000001, 0.0500000007, 0.00164000003 

      … 

    250, -0.00999999978, 0.0379999988,           0. 

    251, -0.00999999978, 0.0439999998,           0. 

    252, -0.00999999978, 0.0500000007,           0. 

*Element, type=C3D8 

  1,  13,  14,  20,  19,   1,   2,   8,   7 

  2,  14,  15,  21,  20,   2,   3,   9,   8 

  3,  15,  16,  22,  21,   3,   4,  10,   9 

  4,  16,  17,  23,  22,   4,   5,  11,  10 

  5,  17,  18,  24,  23,   5,   6,  12,  11 

  6,  25,  26,  32,  31,  13,  14,  20,  19 

  … 

  95, 233, 234, 240, 239, 221, 222, 228, 227 

  96, 241, 242, 248, 247, 229, 230, 236, 235 

 97, 242, 243, 249, 248, 230, 231, 237, 236 

 98, 243, 244, 250, 249, 231, 232, 238, 237 

 99, 244, 245, 251, 250, 232, 233, 239, 238 

100, 245, 246, 252, 251, 233, 234, 240, 239 

*Nset, nset=_PickedSet2, internal, generate 
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   1,  252,    1 

*Elset, elset=_PickedSet2, internal, generate 

   1,  100,    1 

** Section: UMAT 

*orientation,name=ori-1,local directions=2 

 1.0,0.0,0.0,0.0,1.0,0.0 

 3,0.0 

 0.707107,  0.707107, 0.0 

 0.707107,  -0.707107, 0.0 

*Solid Section, elset=_PickedSet2, material=UMAT, orientation=ori-1 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name=Part-1-1, part=Part-1 

*End Instance 

**   

*Nset, nset=_PickedSet4, internal, instance=Part-1-1, generate 

   1,  247,    6 

*Elset, elset=_PickedSet4, internal, instance=Part-1-1, generate 

  1,  96,   5 

*Elset, elset=__PickedSurf5_S3, internal, instance=Part-1-1, generate 

   1,  100,    1 

*Surface, type=ELEMENT, name=_PickedSurf5, internal 

__PickedSurf5_S3, S3 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=UMAT 

*User Material, constants=16 

16000.,   4.19e-09,    200000.,        0.2,        0.1,   0.707107,    0.707107,    200000. 

        0.2,        0.1,  0.707107,    -0.707107, 3.2745e-11,         0.,         0.,      1.0e06 

** ---------------------------------------------------------------- 
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**  

** STEP: disp 

**  

*Step, name=disp, nlgeom=YES 

*Static 

1., 1., 1e-05, 1. 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

*Output, field, frequency=0 

*Output, history, frequency=0 

*End Step 

** ---------------------------------------------------------------- 

**  

** STEP: Load 

**  

*Step, name=Load, nlgeom=YES 

*Static 

0.01, 1., 1e-05, 1. 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Fixed Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

_PickedSet4, ENCASTRE 

**  

** LOADS 

**  

** Name: Load-1   Type: Pressure 

*Dsload 

_PickedSurf5, P, 30. 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  
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** FIELD OUTPUT: F-Output-1 

**  

*Output, field, variable=PRESELECT 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT 

*End Step 

 


