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ABSTRACT 

The clinical presentation of social phobia suggests that alterations in theory of mind (TOM) may play a 

systematic role in the development and maintenance of the disorder. In the current study we leverage a 

quantitative neuroeconmic approach to probe for neural and behavior markers of cognitive TOM, as well 

as rejection estimation, with a particular focus on social phobia. Participants comprised a non-clinical 

sample that was divided into low (N = 10) and high (N = 7) social anxiety groups based on self-report. 

Participants completed a one-sided uncertainty ultimatum game designed to probe individual differences 

in cognitive TOM, as well as rejection estimation. Contrary to predictions, there were no behavioral 

differences between high and low social anxiety groups in terms of rejection estimation. Although no 

between-group differences emerged in the traditional TOM network, significant differences were 

observed in subregions of the striatum during formulation of offers, likely corresponding to estimation of 

reward expectations. As hypothesized, and consistent with past research, imaging results support the 

existence of a network regions implicated in TOM, including the medial prefrontal cortex (MPFC) and 

the temporal parietal junction (TPJ). In addition to these regions, additional areas, including the caudate 

and insula, were also active during mentalizing components of the task. Collectively, results suggest a 

novel role for expected-value computations in the development and maintenance of social phobia. 
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A Quantitative Neural Biomarker for Rejection Estimation:  

A Neuroeconomic Approach for Evaluating Theory of Mind 

Social exchange between rational partners is constrained by a complex set of rules that 

establish shared expectations, beliefs and predictability in interaction. To the extent that a social 

actor has access to at most 50% of the available information in an exchange, the chain of events 

that emerge in dynamic social interactions can therefore be described as realizations of an 

ongoing inferential processes whose sole purpose is to generate ‘best’ responses to antecedents 

generated by a partner. An efficient method for estimating hidden parameters of social exchange 

is inferring the mental state of an interaction partner. This generates information that can be 

stored and used to predict a partner’s behavior, a process broadly known as theory of mind 

(ToM). Recent advances in human neuroimaging and quantitative approaches to human decision 

making in the form of neuroeconomics provide techniques to reduce complex interactions into a 

comparatively simplified framework, in which specific parameters of interactions can be isolated 

and quantified. The current study seeks to leverage these techniques in order to clarify the neural 

bases of ToM, and the extent to which these relate to social functioning. Specifically, we 

leverage a behavioral economic model to identify neural systems underlying rejection estimation, 

and cognitive theory of mind. Further, we characterize the degree to which these systems relate 

to measures of social functioning, with implications for psychiatric and neurodevelopmental 

disorders of social cognition, with a specific focus on social phobia.   

In a seminal paper, Premack and Woodruff (1978) provided an early conceptualization of 

ToM that now represents a foundational definition. Conceptually, the authors suggested that an 

individual uses a coherent set of rules based on best guesses (theories) to explain the behaviors 

of other individuals. The use of the term ‘theory’ was intentional, since an individuals’ theory of 
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mind is thought to function similarly to a traditional scientific theory, by positing a best guess (a 

mental state), which is then used to predict a phenomenon (behavior). As such, ToM is broadly 

construed as the ability to attribute independent mental states of others, in order to explain and 

predict behavior (Fletcher et al., 1995).  ToM can be further reduced to a two-pronged process, 

involving not just inferences about the mental states of another agent, but also understanding that 

agent’s behavior as a function of that mental state. Mental states come in various orders and 

categories including beliefs, desires, opinions, and emotions. It is therefore conceptually useful 

to recast ToM as a nexus of processes involving vertical (depth of reasoning, such as first, 

second order beliefs) and horizontal elements (types of reasoning, behavioral, cognitive 

affective). As an example, an individual may successfully infer the mental state of another agent, 

but be unable to successfully predict the emotion experienced, given that mental state. 

Furthermore, someone might be able to successfully predict behavior as a function of beliefs, but 

not as a function of emotions 

Empirical study of ToM and related processes has provided insight into the 

psychopathology a variety of disorders characterized by deficits in interpersonal functioning, 

including, Autism (Baron-Cogen et al, 1985), Borderline Personality Disorder (Sharp et al., 

2011), and Antisocial Personality Disorders (Dolan & Fullam, 2004). One disorder that has 

received comparatively little attention in the context of ToM work is social anxiety disorder 

(SAD; also called social phobia). SAD is a debilitating disorder with an early onset and a 

persistent life course (Davidson, Hughes, George, & Blazer, 1993), and is marked by distorted 

perceptions about social outcomes and others’ beliefs (Hirsch & Clark, 2004).  To date, only a 

handful of behavioral and neuroimaging studies exist assessing the role of ToM in the 

psychopathology of Social Phobia. In the neuroimaging literature, diminished medial prefrontal 
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cortex (MPFC) activity has been associated with social anxiety during an interactive, multi-

round economic exchange game (Sripada et al. 2009). Specifically when comparing conditions 

for which subjects played against a computer as opposed to a human partner, attenuated activity 

in the medial prefrontal cortex was found in socially anxious individuals versus controls.  

Furthermore, during a face perception study, socially anxious individuals exhibited attenuated 

activity in the posterior cingulate cortex (PCC), a brain region commonly implicated in ToM 

(Gentili et al., 2009). Together, these studies suggest that theory of mind may play a role in the 

psychopathology of Social Phobia.  

Despite the relative scarcity of ToM work in the field of SAD, the clinical presentation of 

this disorder provides clues that alterations in ToM may play a systematic and non-trivial role in 

the etiology and maintenance of the disorder. For example, a hallmark feature of SAD is concern 

about being negatively evaluated by others (Salemink et al., 2013). Evaluation itself is a thought-

centric concept, involving judging or thinking critically about a social actor. Similarly, the 

experience of humiliation and fear of embarrassment, also require estimation of the thoughts and 

mental states of others.  

Although the broad notion of ToM may be a credible starting point in evaluating how 

self-other cognition is altered in SAD, the broadness of the ToM construct poses obstacles to 

direct empirical scrutiny.  Thus, in the case of SAD it is useful to narrow the facet of ToM that 

may be most relevant to the disorder. One possibility is a particular aspect of ToM known as 

“rejection sensitivity” or “rejection estimation.” Rejection estimation is defined as the degree to 

which an individual assumes another individual will adopt a rejecting intention toward them. The 

term ‘estimation’ is used to highlight the ToM-centric nature of the term, since it involves 
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estimating the degree to which someone is adopting a rejecting mental state, as opposed to just 

being sensitive or feeling hurt by actually being rejected.  

Peer rejection experiences have been implicated as an etiological factor in the 

development of Social Phobia. In particular, distorted perceptions of rejection is thought to be 

especially characteristic of SAD (Hudson & Rapee, 2000), perhaps evolving into exaggerated  

rejection sensitivity (Fang et al., 2007). In a more general sense, rejection estimation may also be 

a fruitful cognitive architecture to study in a clinical context, since it may provide a single 

dimension along which multiple disorders of interpersonal dysfunction might be placed. Being 

able to predict whether another agent will be accepting or rejecting of a given behavior is an 

important social task that is likely essential for normative (naturalistic) social functioning.  The 

ability to accurately estimate acceptance or rejection presumably plays a mechanistic and 

perhaps deterministic role in guiding behavior, by informing an agent of whether a behavior is 

permissible in a social context, before the behavior is even generated or emitted. An agent who 

tends to underestimate the degree to which other agents will reject their behavior may be more 

likely to violate social norms. One who tends to overestimate rejection may behave in ways that 

are risk-averse, possibly having negative implications for success in cooperative or perhaps most 

particularly in competitive relationships. The fiduciary estimation of such a parameter in a 

quantitative game, could clarify how ToM may be implicated in pathologies of social 

functioning.  

In considering how to reduce the complexity of estimating social acceptance or rejection, 

the field of neuroeconomics may provide a useful framework to isolate and quantify specific 

parameters of ToM, such as the ones we outline here. Specifically, neuroeconomics leverages 

well-established behavioral economic models that offer quantitative depictions of social 
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exchange (for reviews see Kishida, King-Cases & Montague, 2010; King-Casas & Chiu, 2012). 

Economic models expose quantitative benchmarks for behavior that facilitate comparison of 

social exchange patterns across individuals and groups. Importantly, these parameters can be 

correlated with brain activity to isolate where and how certain processes are implemented at a 

neural level. A general feature of economic exchange games is that players interact via mutual 

exchange of a commodity (most commonly money; Camerer, 2003). Rejection is a particularly 

tractable construct to assess in this framework, as a player’s estimate of their partner’s 

acceptance threshold can be codified in terms of the amount of money players send to their 

partners. These approaches allow for the establishment of biomarkers highly specific to a 

disorder (Chiu et al., 2008).  

In the current study, we seek to reduce individual differences in rejection estimation to a 

single parameter. This parameter will then be correlated with both brain activity, as well as 

measures of social anxiety and social function. The goal is to isolate a neurobiological biomarker 

relevant to ToM that varies with anxiety symptomatology. This will be accomplished by 

leveraging a quantitative behavioral economic model describing subjects’ choice behavior in an 

interactive economic exchange (Rapoport & Sundali, 1996). We will use a two-player game, that 

is a variation of the “Ultimatum Game” (Guth, 1995). In the traditional Ultimatum Game, one 

player is designated as the proposer, and a second player the responder. In the traditional 

Ultimatum Game, the job of the proposer is to take a sum of money, referred to as the ‘pie’, and 

to propose a monetary split of the pie between themselves and a second player. The responder 

can either accept or reject the proposed split. If the responder accepts, both players receive their 

share of the split. If the responder rejects, both players receive nothing. After the responder 
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accepts or rejects, the round is over.  The ultimatum game has traditionally been used to probe 

social and cognitive processes such as fairness preferences than ToM (Camerer, 2003).  

In the version of the game used in the current study, one participant (a ‘proposer’) 

proposes a monetary split with a second player (a ‘responder’). We systematically introduce 

uncertainty to the responder, by censoring information about the total amount being split.  This is 

an adaptation known as the one-sided uncertainty Ultimatum Game. We will use this game to 

provide a quantitative framework within which to estimate individual differences in cognitive 

ToM and rejection estimation (Rapoport & Sundali, 1996). The traditional Ultimatum Game is a 

game of ‘complete information.’ That is, both the proposer and responder know the value of the 

pie to be split. Ultimatum games characterized by uncertainty (incomplete information) have 

also been developed (Mitzkewitz & Nagel, 1993). In version of the game we use (Rapoport & 

Sundali, 1996), the proposer splits an amount of money (a ‘pie’) each round that is randomly 

drawn from a range of numbers, referred to here as the ‘range’. The proposer knows the range, as 

well as the value of the pie. The responder, however, only knows the range, and not the pie. The 

responder only knows what their proposed take of the pie is, and does not know with certainty 

how much the proposer kept (since the responder is unsure of the amount of the original pie). 

The ranges from which the pies are drawn are systematically increased and decreased, making 

the responder more or less certain, respectively the proposer is playing fair. For the proposer, the 

goal of the game is to play a series of single-round games, each with a different responder, and 

maximize overall earnings.  

This task is relevant to ToM in the following ways. First, the proposer must adopt the 

responder’s perspective (known as cognitive ToM), in order to avoid proposing a split that is 

unnecessarily low and likely to be rejected or unnecessarily high and economically 
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disadvantageous. To do this, the proposer must estimate how confident the responder will be that 

a fair offer is being proposed. This estimate is encapsulated by the rejection estimation parameter  

designated as α̂ . Note that cognitive ToM and rejection estimation are actually distinct 

processes. That is, individuals could theoretically have an equally perfect sense of what it is like 

to be in the uncertain responder’s shoes (cognitive theory of mind) yet still vary in whether they 

think a responder has a rejecting intention (rejection estimation).   

The quantitative model assumes the proposer assigns an empty parameter to the 

responder (α̂ ) corresponding conceptually to the minimum anticipated monetary value that will 

be accepted (Rapoport & Sundali, 1996). The parameter ranges from 0 to 1. For example, a 

proposer who assigns a parameter value of 0.8 to a responder, assumes that responder must be at 

least 80% certain the prosper is being fair, otherwise they will reject. A ‘fair offer’ is defined 

quantitatively as an equal or better split, favoring the responder. Since the proposer’s goal in the 

task is to maximize their earnings, they should not offer the responder too much or too little. The 

rejection parameter is not measured as a ToM ability per se, but more as a tendency. That is, 

there is not an a priori optimal choice solution the proposer infers. This is not to say certain split 

choices are not better than others. Indeed, proposers assigning parameters of 0.9 are very likely 

underestimating the confidence tolerability of responder (many responders are still willing accept 

an offer, even if they are less than 90% sure an offer is fair). This rejection estimation parameter 

is intended to probe individual differences in the estimation of this parameter, without making 

explicit whether the subjects’ parameters are misplaced.  

The primary goal the current study is to probe individual differences in subjects’ a priori 

rejection estimation.  Accordingly, we also seek to mitigate potential confounding effects, such 

as other-regarding preferences, learning rates, and reputation-building on the estimation of the 
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rejection sensitivity parameter. ‘Other-regarding preferences’ refers broadly to the concern over 

the welfare of others (Burkart, Fehr, Efferson, & van Schaik, 2007; Fehr & Fischbacher, 2003). 

For example, if a proposer offers a responder $10, this could either be because the proposer 

estimates a responder will reject a lower offer (rejection estimation), or because the proposer 

feels it is unfair to offer anything less (other-regarding preferences). To mitigate the interference 

of other-regarding preferences on the estimation of the rejection estimation parameter, a 

behavioral version of the dictator game will be used to probe the degree to which proposer 

behavior is driven by other regarding preferences. Briefly, participants play as the dictator, the 

role of whom is to make a monetary split between themselves and a second player. The second 

player cannot accept or reject the split, and must take what they are given. Assessing the size of 

the split offered by the dictator to the second player provides an isolated probe for fairness 

preferences. To reduce the impact of individual differences in learning rates associated with ToM 

and reputation-building effects proposers will be informed that they are randomly paired with a 

different responder, such that they never know the identity of each responder. This manipulation 

functions to prevent proposers from learning individual responder behavior, and further functions 

to prevent proposers from thinking they can influence or build a reputation with specific 

responders.  

Based on the extant neuroimaging literature regarding the identity and spatial extent of a 

ToM network, we predicted (1) that at the neural level, there will be a positive correlation 

between level of responder uncertainty (across the 4 conditions ranging from certain to 

uncertain) in the anterior rostral prefrontal cortex (arPFC) as well as the temporoparietal junction 

(TPJ). It is noted that arPFC has been suggested as a localized region of ToM mentalizing within 

the MPFC (Amodio & Frith, 2006). The rationale for this expectation is that placing the 
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responder under increasing levels of uncertainty systematically increases the perspective-taking 

demands on the proposer. Specifically, in the certainty condition, since both the proposer and 

responder know the size of the pie, it is relatively easy for the proposer to assess the responder’s 

estimate of the pie size (since it is identical to their own). When uncertainty is introduced, the 

perspective of the responder systematically deviates from the proposer’s, which prompts the 

proposer to engage in increased perspective taking.  

We further hypothesized (2) that individual differences in the rejection estimation 

parameter will correlate positively with behavioral measures of social anxiety (Liebowitz Social 

Anxiety Scale, and Social Phobia Anxiety Inventory). Finally, we hypothesized (3) that 

individuals high in social anxiety would exhibit a relatively weaker correlation between 

increasing uncertainty and increased MPFC and TPJ activity.  

Methods 

Participants  

Undergraduate students at Virginia Tech were recruited via Sona (Virginia Tech’s online 

portal through which students can sign up for studies). Participants first completed an online 

screener to assess for social anxiety symptom severity. Participants completed the Liebowitz 

Social Anxiety Scale (LSAS) as well as the Social Phobia and Anxiety Inventory (SPAI – 23). A 

subset of low and high social anxiety participants were identified based on established cutoff 

scores on the LSAS and SPAI -23 self-report. Specifically an and rule was used, in order to 

identify high social anxiety cases. Those who exceeded the clinical cutoff on both the LSAS 

(total score >60) and the SPAI-23 (difference score >35; Rytwinski et al., 2009; Schry, 

Roberson-Nay, & White, 2012; Roberson-Nay et al., 2007). Low anxiety subjects were also 

characterized by an and rule, requiring an LSAS total score <30, and SPAI difference scores 
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<28. It is noted that a score of less than 28 is used on the SPAI-23 since a Difference score of 28 

has been used as a more conservative clinical cutoff for SAD (Schry, Roberson-Nay, & White, 

2012; Roberson-Nay et al., 2007).  A total of 150 students (meeting low and high social anxiety 

cutoffs) were contacted via email and asked whether they wanted to take part in the imaging 

portion of the study. For the subset who expressed interest, the application of the following 

exclusion criteria resulted in a final sample of N=17: Left-handedness, history of head trauma 

resulting in more than 10-minutes of unconsciousness, history of seizures, and a recent history 

(past year) of taking psychotropic medication. The resultant pool of eligible subjects (N=17; 10 

female) completed the fMRI task. This total fMRI sample was comprised of 10 low social 

anxiety (mean LSAS score = 19.4, SD = 6.5) and 7 high social anxiety (mean LSAS score = 

65.7, SD = 3.6) participants. There were 5 females in the low social anxiety group, and 5 females 

in the high social anxiety group. A two-sample Welch’s t-test did not reveal a significant 

difference in age or years of education between the low (mean age = 19.8, SD = 1.7; mean years 

of education = 14.7, SD = 1.2) and high (mean age = 20.0, SD = 1.4; mean years of education = 

14.1, SD = 1.5) social anxiety groups.   

Measures  

Liebowitz Social Anxiety Scale – LSAS. The Liebowitz Social Anxiety Scale (LSAS) 

comprises 24 items, depicting different social situations. Each item features scale ratings, from 0 

to 3, for both fear (ranging from “no fear” to “severe fear”) and avoidance (ranging from “never” 

to “usually”) (Liebowitz, 1987). Chronbach’s α for the fear and avoidance subscales comprising 

the LSAS demonstrated high internal consistency at 0.91 and 0.92 respectively (Baker, 

Heinrichs, Kim, Hyo-Jin., & Hofmann, 2002).  
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Social Phobia and Anxiety Inventory (Abbreviated) – SPAI-23. The abbreviated 

Social Phobia Anxiety Inventory (SPAI-23) is a 23-item self-report questionnaire assessing 

specific somatic symptoms, cognitions, and behavior that may be elicited across a wide array of 

situations (Roberson-Nay, Nay, Strong, Beidel, & Turner, 1007). The frequency of items are 

rated on a 5-point scale, ranging from “never” to “always”. Cronbach’s α for the two subscales 

comprising SPAI, the Social Phobia and Agoraphobia subscales, demonstrated high internal 

consistency at 0.93 and 0.85 respectively (Schry, Roberson-Nay, & White, 2012). 

Rejection Sensitivity Questionnaire – RSQ. The Rejection Sensitivity Questionnaire is 

an 18-item self-report questionnaire assessing degree of anxiety and concern, and rejection 

expectations, across a variety of situations (Downey & Feldman, 1996). The items are rated on a 

6-point scale from “very unconcerned” to “very concerned (for questions addressing anxiety and 

concern about a situation) and from “very unlikely” to “very likely” (for questions addressing the 

degree to which rejection is likely). The RSQ shows high internal reliability (Cronbach’s α = 

0.83) and high test-retest reliability (Downey & Feldman, 1996). 

Procedure 

Upon arrival to the laboratory, and after completing informed consent, participants were 

screened for MRI contraindications, such as a history of head-trauma, or metal in the body. 

Participants then completed self-report measures via paper and pencil. Participants were then 

presented with written instructions explaining the nature of the fMRI task. Participants 

completed a 10-item multiple choice quiz after reading the instructions, to ensure that all 

instructions were understood. Subjects did not continue to the fMRI task unless they answered 

all questions correctly. If a question was not answered correctly, the staff explained why the 

answer was incorrect, and the participant was asked to repeat that item on the quiz. Participants 
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then completed a practice version of the fMRI task on a computer outside of the scanner to 

familiarize themselves with the nature of the task. Subjects were informed prior to beginning the 

fMRI task, that they would be playing with five real players, who are playing from desktop 

computers in an adjacent room. Participants were told that they would meet these players at the 

conclusion of the experiment.  

The One-Sided Uncertainty Ultimatum Game 

In the traditional ultimatum game, one player (the proposer) is endowed with an amount 

of money, which they then propose to split with a second player (the responder). The responder 

can then either accept, or reject, the proposal. If the proposal is accepted, the proposer and 

responder keep the splits. If the proposal is rejected, both the proposer and responder receive 

nothing. This marks then end of a single round. The game can be either played as a single-shot 

version (single round), or over multiple rounds (Camerer, 2003). In the one-sided uncertainty 

ultimatum game, the responder is unsure of the proposer’s endowment. The responder knows the 

range of numbers from which the original endowment is drawn, and the amount the proposer 

offers to them, and nothing else. From this perspective of incomplete information, the responder 

must choose to accept or reject the offer (Rapoport & Sundali, 1996; Slonim & Roth, 1998). In 

the current study, we use both the traditional, as well as the one-sided uncertainty ultimatum 

game. 

For the fMRI task, each participant completed 4 runs. For each run, participants played as 

the ‘proposer’. For each trial within a run, the proposer is endowed with an amount of money, 

called the ‘pie’. The job of the proposer is to propose a split of the pie between themselves and 

another player, called the ‘responder’. Participants were told that they were playing against five 

human responders, who were playing from another room at the facility. Participants were also 
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told that they would be randomly paired with one of the five responders on each trial. In reality, 

participants played against a computer program that mimicked actual responder behavior derived 

from the behavioral results of former experiments using the same task (Rapoport & Sundali, 

1996; Slonim & Roth, 1998).  

Each of the 4 runs was either characterized by ‘uncertainty’ (3 runs) or ‘certainty’ (1 run) 

type. Each run was counter-balanced by subject. For the 3 uncertainty runs, the pie was randomly 

drawn from one of the following three ranges ($0 - $30, $5 - $25, $10 - $20). Each run 

corresponded to one of these ranges, such that the range remained fixed for the entire run. The 

range was displayed prominently to the proposer at the top of the screen for the duration of each 

run. The pie-values drawn on each trial were drawn from an equal distribution of the range, in 

intervals of $3, $2, and $1 (for the $0 - $30, $5 - $25, and $10 - $20 run respectively). As an 

example, for the $5 - $25 range, the pie values ranged from $5 to $25, in increments of $2. Each 

of the pie values was drawn twice per run. This yielded a total of 22 trials for the uncertainty 

runs (with the exception of the $0 - $30 range run, which featured 20 trials, since it is not 

possible to split from $0). The pie value was displayed under the range for each trial. Once the 

pie value was displayed, the participant cycled through possible splits (in increments of $1) using 

an fMRI compatible button box. They then indicated via button-press when they were satisfied 

with their split, at which point the proposal was revealed to the responder. The responder would 

then indicate whether they accepted or rejected the split, which the responder viewed on the 

screen in text as ‘Accept’ or ‘Reject’. If the responder accepted the split, the proposer received 

their share of the split, and the responder received theirs also.  

For ‘Uncertainty’ runs, proposers are told that the responder knows only the range of 

possible values, but never knows the total actual value (pie) to be split. The certainty run differed 
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from uncertainty runs in that the responder always knew the pie the proposers was splitting. The 

degree of uncertainty systematically varies across the four runs. For the certainty run the 

responder is provided with the exact value of the pie. By contrast, for the uncertainty run with 

range $10 - $20, the pie could be any value between $10 and $20. The next level of uncertainty 

(increased uncertainty) is characterized by the $5 - $25 run. This condition is relatively more 

uncertain, since the pie is drawn from a wider range. Following this logic, the $0 - $30 run is 

characterized by the most uncertainty.  

Each trial in a given run consisted of the following: (1) Each exchange began with a 

crosshair centered on the screen for 4000ms indicating the beginning of a round, followed by a 

blank black screen with a jittered duration (ranging from 100ms – 300ms). (2) The range from 

which each pie was drawn was presented centered at the top of the screen. The range remained 

fixed for the entirety of the run. The pie to be split on the current trial, varied by trial and was 

displayed simultaneously. The pie amount was represented by a single numeric value. For each 

trial, the pie to be split was randomly drawn from an evenly distributed full spread of the range. 

Each subject was presented with an identical pseudorandom distribution of pies (trials are 

identical across subjects). The participant was represented as a blue schematic face on the left 

side of the screen, and the responder as a purple schematic face on the right. The proposer then 

chose via button press (decision phase) how much they wanted to keep, which was displayed 

under the blue face. The remaining amount was displayed under the purple face. There was no 

time-limit placed on the proposer during the decision phase. The participant indicated via a 

button press when they were ready with their choice, at which point the split was revealed to the 

responder. A question mark was then placed under the purple face, indicating that the responder 

was deciding whether to accept or reject (the anticipation phase). The anticipation phase lasted 
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8000ms. The responder’s decision, either to accept or reject, was then displayed in white 

characters under the purple face for 4000ms (the outcome phase). The next trial began after a 

blank screen of 4000ms. For the decision, anticipation, and outcome phases, the range, current 

pie, and faces each remained fixed on the screen. The only change in the visual presentation of 

the paradigm across these phases was the information featured under the faces. The total length 

of the experiment was approximately 40 minutes, with runs lasting 10 minutes each. Stimuli 

were presented using PyGame, an open-source python based stimulus presentation software.  

After completion of fMRI task, participants completed a behavioral version of a single-

shot dictator game to provide an experimental control for other-regarding preferences. The game 

was played on a standard laptop computer. Participants played as the dictator. Participants were 

told that they would be matched with one randomly drawn participant for this game.  

For the fMRI task, participants were paid for every trial, at a rate of $0.15 for every dollar 

earned. Participants were paid using the same payment schedule for the dictator game. This 

payment schedule was explained to participants at the beginning of the experiment.   

Description of the Quantitative Model1 

 A Proposer makes an offer to split $k . The amount $k  is drawn from the distribution 

[a,b] . Let $x  denote the amount the proposer keeps for himself, and $y  the amount given to the 

responder, where x + y = k . Let p(y)  denote the responder’s probability y , given their 

knowledge of the distribution, that y / k ≥ 0.50 . A distribution of y / k ≥ 0.50 is assumed in the 

current model to be a generous offer. Intuitively, this is a case where the proposer is offering less 

for themselves than for the responder. For a uniform distribution: 

p(y) := Pr[(y / k) ≥ 0.5]= (2y− a) / (b− a)  
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Steps to the model: 

Step 1: 

The proposer is assumed to view the ultimatum game as a strategic task. That is, a 

strategic sender views the game such that if they think they can get more than k / 2 , they 

will do so. 

Step 2: 

A proposer viewing the game strategically believes the responder will reject any offer y , 

if p(y) ≤α , where 0 <α <1  is a fixed constant. Since the proposer does not know the 

true value of α , they must estimate it, denoted by α̂ . 

Step 3: 

Upon estimating α̂ , the proposer determines y , which denotes the maximum share of the 

pie they are willing to send to the responder. The actual offer y* is the solution of the 

following equation: 

 p(y) = (2y− a) / (b− a) = α̂      (1) 

A constraint is applied such that y ≤ γk , where 0 < γ <1 . From this it follows that the 

proposer will offer the responder 

 y* =min(y ',γk)       (2) 

where y ' is the solution of Equation 1: 

 y ' = [α̂(b− a)+ a] / 2  

 Step 4: 

After receiving the offer y , the responder will estimate the size of the pie by k̂ , and 

reject the offer if y / k̂ ≤α , and accept it otherwise.  
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Model assumptions: 

Assumption 1: α̂ ≤ 0.5 . That is, the proposer believes the responder will not reject any 

offer if her probability that the offer is generous exceeds 0.5.  

Assumption 2: α̂  is independent of the parameters of the pie size distribution. 

Assumption 3: γ̂ ≤ 0.5 . That is, the proposer will keep at least 50% of the pie for himself. 

The function of this assumption is to reduce the number of parameters from two to one. 

A numerical example: 

 Assume a uniform distribution [a,b]  where a=$5, and b =$25. If α̂ = 0.3 . The proposer 

will offer the responder $5.5 if k > [α̂(b− a)+ a] , and k / 2 , if k ≤ [α̂(b− a)+ a] . If α̂ = 0.4 and 

y = 0.5 , the offer by the proposer, γ *  will be $6.5 if k > [α̂(b− a)+ a] , and k / 2  otherwise. 

Data Analysis 

fMRI Data Acquisition  

fMRI scanning was performed on a Siemen’s 3.0 Tesla Allegra scanner. Head movement 

was restricted using foam cushions. An eight-channel head coil was used for parallel imaging. 

Initial high-resolution T1-weighted scans were acquired using an MP-RAGE sequence 

(Siemens). These scans were used for coregistration with the functional data. Structural images 

were aligned in the near axial plane defined by the anterior and posterior commissures. Whole 

brain functional images consisted of 30 slices parallel to the AC-PC plane using a BOLD-

sensitive gradient-echo EPI sequence, at TR of 2000 ms (TE: 30 ms; FOV: 22 cm; isotropic 

voxel size: 3.44 Å~ 3.44 Å~ 4.0).  

fMRI Data Processing  

Preprocessing of functional data was accomplished using SPM8 (Wellcome Department 

of Cognitive Neurology, University College London). The analysis was implemented in NiPype, 
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a python-based framework designed for highly pipelined processing of fMRI data from several 

neuroimaging packages (http://nipy.org/nipype). Separation of brain tissue from skull was 

accomplished using FSL’s brain extraction tool (BET). Functional data was slice-timing 

corrected, realigned to the middle image of the functional run, temporal band-pass filtered 

(0.009 Hz < f < 0.08 Hz) and corrected for motion. Motion corrected data was registered to the 

T1-weighted image, and normalized to standard (Montreal Neurological Institute; MNI) 

stereotactic space.  

Estimating  α̂   

The rejection estimation parameter α̂  was calculated individually for every trial in each 

of the three uncertainty conditions. Trials for which it was not possible for the subjects to express 

an α̂ of at least 1.0 were eliminated. These trials were eliminated to provide a more realistic 

appraisal of proposers’ rejection estimation parameters. For example, say a proposer’s a priori 

α̂ is 0.9. In the context of the quantitative model, this proposer believes that unless there is a 

90% chance from the responder’s perspective that the offer is fair, the responder will reject. In 

order to reveal this proposer’s hidden parameter, one need include a pie for which it is possible 

to make an offer reflecting that parameter. If on a given trial, that proposer is drawn $7 (and 

assume the range is $5 - $25) then even a maximum offer of $7 from the proposer, would still 

only reflect a parameter of 0.45 (an incorrect estimate of this proposer’s α̂ ). More generally, to 

accurately estimate a proposer’s α̂ one must not artificially create a ceiling effect, by not 

allowing them to send offers reflective of their α̂ estimate.  

Identifying brain regions implicated in rejection estimation 

To identify brain regions implicated in rejection estimation, all brain activity during the 

decision phase was identified in a fixed-effects (subject-level) model. Then, the point-estimate 
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for α̂  was regressed against all activity during the decision phase. We focused our analysis on 

the decision phase (i.e. prior to the proposal) under the assumption that subjects are actively 

estimating how much the responder will accept or reject during this period.  

Probing for Learning Effects 

 To assess for the presence of learning, subjects’ rejection sensitivity parameter for the 

first versus the second half of runs was compared. Specifically, for each subject, a mean will be 

taken of the trial-wise rejection sensitivity parameters both for the first and second runs, and 

compared with the third and fourth runs. These means were compared via two-tailed t-test to 

assess whether the parameter has changed over time. 

Results 

Probing for the effect of learning on the rejection estimation parameter. Since the 

goal was to ascertain participants’ a priori rejection estimate parameter, the presence of a 

learning effect would confound the parameter. To probe for learning effects, a one-way analysis 

of variance was performed of run number (first/second/third/fourth) on the rejection estimation 

parameter. There was no significant effect of run number on the rejection estimation parameter 

[F(1,16) = 0.326, p = .58], suggesting that the order of the run was not related to the point 

estimate for alpha. 

Relating social anxiety symptomatology with the rejection estimation parameter. 

Given that rejection sensitivity has been implicated in the development and maintenance of 

social phobia symptomology, we hypothesized that social phobia symptomatology would 

correlate positively with the rejection estimation parameter. The specific prediction was that 

participants high in social anxiety would estimate responders to require higher monetary offers in 

order to accept. To test the hypothesis, a univariate linear regression was performed between the 
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rejection estimation parameter averaged over all runs as a dependent variable and LSAS score as 

the independent variable. This correlation was not significant [b = 0.01, t(15) = 0.12, p = 0.90].  

The same regression was conducted separately using the SPAI-23 difference score, as well as the 

RSQ score, as independent variables. In both cases the correlation was not significant [SPAI, b = 

0.01, t(15) = 0.08, p = 0.94; RSQ, b = 0.01, t(13) = 0.29, p = 0.78). Unstandardized regression 

coefficients reported.  

Replication of previous one-sided uncertainty ultimatum game findings.  Consistent 

with prior results, proposers offered lower percentages of the pie as responder uncertainty 

increased (Rapoport & Sundali, 1996). Specifically, a two-way mixed analysis of variance 

(ANOVA) was conducted for Group (low social anxiety/high social anxiety) × Certainty 

(certainty/low uncertainty/mid uncertainty/high uncertainty) on the percentage of the pie given 

by responders. There was a highly significant main effect of Certainty [F(3,45) = 56.14, p < 

0.001], such that proposers offered less as the level of uncertainty increased. Both the main effect 

of Group [F(1,15) = 0.003, p=0.95], as well as the interaction between Group and Anxiety 

[F(3,45) = 0.88, p=0.46] were not significant (see Figure 1).  

Brain regions correlating with degree of responder uncertainty. We hypothesized 

that the VMPFC, and TPJ would scale positively with increasing responder uncertainty. We 

conducted a random effects (second level) analysis assessing for brain regions that scaled 

monotonically with increasing uncertainty. To do this, we performed a linear trend analysis in 

which we weighted the scan run [certainty, low uncertainty, medium uncertainty, high 

uncertainty] as [1,2,3,4], respectively. Results of a whole-brain analysis during the decision 

phase indicted activation bilaterally in the caudate head (Figure 2) and insula (Figure 3) as well 

as areas including the bilateral VMPFC, RTPJ (p < .001, FDR corrected).  
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Between group differences in brain activity related to mentalizing. We compared the 

mean activation of brain regions surviving this linear trend analysis across low and high social 

anxiety groups. There were no significant clusters of activation (using a threshold of p < .05, 

FDR corrected). Since we hypothesized that high social anxiety subjects would exhibit reduced 

activation in TOM regions during perspective taking, the mean activation during the decision 

phase (across all certainty conditions) was compared between groups. Specifically we weighted 

group [low social anxiety, high social anxiety] as [1,-1], to assess for regions that were activated 

less in low social anxiety versus high anxiety subjects. This analysis yielded decreased activation 

in bilateral putamen, left precentral gyrus, left superior frontal gyrus, and left supra marginal 

gyrus (p < .05, FDR corrected). High social anxiety was not associated with increased activity 

during the decision pahse in any areas (p < .05, FDR corrected). 

Brain regions correlating with the rejection estimation parameter. A central goal of 

the study was to highlight brain regions involved in rejection estimation, in addition to 

mentalizing more generally. To probe regions implicated in rejection estimation, all brain 

activity during the decision phase was identified in a fixed-effects (subject-level) model. Then, 

the point-estimate for α̂  was regressed against all activity during the decision phase. A set of 

regions were negatively correlated with the rejection estimation parameter during the decision 

phase (p < .001, FDR corrected) including bilateral frontal pole, bilateral anterior insula, bilateral 

caudate, and bilateral paracingulate gyrus. The left post central gyrus was the only region that 

positively correlated with the rejection estimation parameter during the decision phase (p < .001, 

FDR corrected). At a threshold of p < .01 (FDR corrected) additional regions exhibited positive 

correlations with the rejection estimation parameter, including bilateral anterior paracingulate 
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gyrus, bilateral subcallosal cortex, bilateral anterior superior temporal gyrus, and bilateral 

posterior parahippocampal gyrus. 

Discussion 

This study leveraged a neuroeconomic approach to assess neural and behavioral 

correlates of theory of mind, with a focus on rejection estimation. We also sought to clarify 

whether specific behavioral or neural biomarkers related systematically to social anxiety 

symptomatology. To assess for brain regions implicated in TOM, we used a behavioral economic 

approach to identify which brain regions were shown to parametrically track with rejection 

estimation, as well as perspective taking under varying levels of responder uncertainty. In the 

current study, the ventral MPFC and the TPJ were implicated in perspective taking under 

conditions of uncertainty. The current result that the VMPFC parametrically tracks with 

increasing uncertainty is potentially consistent with prior quantitative approaches implicating the 

VMPFC in complex strategic thinking. Specifically, Coricelli and Nagel (2009) found the 

VMPFC to mediate activity when people interacted with high-level, but not low-level thinkers, 

suggesting the VMPFC is involved with more sophisticated mentalizing. Furthermore, the 

VMPFC has been shown to scale with depth of mentalizing (Coricelli & Nagel, 2009).  

Several unexpected results were also observed. A set of additional regions beyond the 

traditional TOM network, including the caudate and insula, were found to increase with degree 

of responder uncertainty. Activity in the caudate under conditions of uncertainty is potentially 

consistent with literature implicating the caudate in expected value computations (Zhu, 

Mathewson & Hsu, 2012; Montague, King-Casas, & Cohen, 2006; Knutson, Adams, Fong, & 

Hommer, 2001). Specifically, in the current study we found a highly significant behavioral 

result, that as the level of uncertainty increases, proposers offer a lower percentage of the pie to 
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proposers (and hence keeping more for themselves). Therefore, one potential interpretation is 

that the caudate is tracking the increased expected value associated with the relatively higher 

amounts of money kept by proposers under conditions of increasing uncertainty.  

The finding of increased insula activity under increasing levels of uncertainty is further 

consistent with this interpretation. The insula has been associated with risk taking (Platt and 

Huettel, 2008). One interpretation is that the insula is tracking increased risk taking associated 

with the relatively smaller offers made by proposers under conditions of increasing uncertainty. 

It might be argued though that the lower offers made under conditions of increasing responder 

are not necessarily more risky, since the responder is less sure of whether the proposer is being 

fair. The insula has also been implicated in norm violation (King-Casas et al., 2008). When 

proposers offer less, they do so only responders are unsure of whether proposers are being fair. 

As such, the element of deception associated with lower proposer offers under conditions of 

uncertainty may be represented by the insula as a norm violation.   

An additional hypothesis of the current study was that the rejection estimation parameter 

would positively correlate with social phobia symptomatology. This hypothesis was not 

supported. In clinically focused neuroimaging studies, it is not uncommon for between-group 

differences to manifest at the neural, but not at the behavior level. As an example, Sripada et al. 

(2009) found no behavioral differences between social phobia participants and controls in the 

context of a trust game designed to probe mentalizing. At the neural level though, individuals 

with social phobia were marked by diminished activity in the MPFC. Similarly, in the context of 

neuroimaging research on autism, a neural but not behavioral marker was found to distinguish 

high functioning autism participants from controls in a neuroeconmic trust game (Chiu et al., 

2008).  
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The absence of a positive correlation between social phobia symptomatology and the 

rejection estimation parameter still deserves careful consideration, since this was a central 

hypothesis. One interpretation is that individuals both high and low in social phobia 

symptomology make similar inferences about the rejection thresholds of other individuals. 

Notably though, responders in the current task provided immediate feedback as to whether they 

accepted or rejected the proposals. Therefore, while steps in the current study were taken to 

prevent proposers learning about the behavior of specific responders, high social anxiety subjects 

may still have learned and adjusted to the overall probabilistic tendency for a responder to accept 

or reject. This is particularly possible since responder behavior in the ultimatum game is 

relatively stable across individuals. As an example, in a regular ultimatum game, responders tend 

to accept almost all offers for which they receive forty percent of the split or greater (Slonim & 

Roth, 1998). Learning about the overall response tendencies of responders may have diminished 

the ability to detect participants’ a priori rejection estimation parameter. 

We further hypothesized that high social anxiety individuals would exhibit relatively 

decreased activity in the MPFC and TPJ while engaging in mental state reasoning, and further 

that. However a between-groups analysis indicated that high social anxiety individuals were 

characterized by reduced activity in bilateral putamen versus low social anxiety subjects during 

the decision making phase of the task. In a clinical context, a reduction in putamen activity has 

been found in patients with bipolar disorder while mentalizing. The putamen has been found to 

be involved in reward-based and belief-based learning in a social context. Where as reward-

based learning only takes expected and received rewards into account (ignoring social context) 

belief-based learning in involves understanding and anticipating the behaviors of others (Zhu, 
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Mathewson & Hsu, 2012). Consequently, the current findings point to a potential inroad 

regarding altered social learning computations at the neural level in the context of social anxiety.  

Results of this study should be evaluated in light of study limitations. Specifically, a 

relatively low sample-size limits the ability to make between group statistical inferences. In 

addition, despite the sample being ‘non-clinical’, self-report of high social anxiety subjects 

suggests, for a subset at least, that a diagnosis of social phobia is possible. As such 

generalizations to a non-clinical sample may be problematic. In addition, as noted previously in 

the discussion, it is possible that proposers may have learned about the relatively stable response 

tendencies across responders, making it potentially problematic to ascertain proposers’ a priori 

rejection estimation parameters. Future studies might consider eliminating responder feedback 

completely, with the function of preventing proposers from learning about responder 

preferences.  

In conclusion, this study utilized a modified ultimatum game in a neuroimaging 

framework, to evaluate regions of the brain that are associated with estimating a probability 

distribution for a counterpart under conditions of one-sided uncertainty. Uncertainty is 

ubiquitous in social interaction. Specifically, humans are rarely fully aware of the complex set of 

personal histories, possessions, and intentions of those in their social group. Therefore, humans 

must frequently assess how their behaviors will be perceived by agents with incomplete 

information. Quantitative approaches in neuroeconomics make it possible to represent abstract 

social processes in a quantifiable and explicit form. The current study sheds light on an array of 

mental processes implicated in social interaction characterized by uncertainty.   
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Appendix A 

	
  

Figure 1: Relationship Between Responder Uncertainty and Proposer Offers. Mean percentage of the pie offered by 
proposers for ‘certainty’, ‘low uncertainty’, ‘mid uncertainty,’ and ‘high uncertainty’ conditions, for both low (solid line) and 
high (dashed line) social anxiety participants. The ‘certainty’ condition refers to trials for which the responder knows the size of 
the pie. For the remaining three conditions, which are characterized by low (range =10), mid (range = 20), and high (range = 30) 
uncertainty, the responder does not know the size of the pie, but only knows the range the pie is drawn from.  
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Appendix B 

 

Figure 2. Bilateral Caudate Activation to Increasing Responder Uncertainty. Random effects (second level) analysis 
assessing for brain regions that scaled monotonically with increasing uncertainty (1 = certainty; 2 = low uncertainty; 3 = mid 
uncertainty; 4 = high uncertainty) during the decision phase (p < .001, FDR corrected). Error bars indicate 95% confidence 
intervals. 
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Appendix C 

	
  

Figure 3. Bilateral Insula Activation to Increasing Responder Uncertainty. Random effects (second level) analysis assessing 
for brain regions that scaled monotonically with increasing uncertainty (1 = certainty; 2 = low uncertainty; 3 = mid uncertainty; 4 
= high uncertainty) during the decision phase (p < .001, FDR corrected). Error bars indicate 95% confidence intervals. 

 

 


