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On Independent Reference Priors

Mi Hyun Lee

(ABSTRACT)

In Bayesian inference, the choice of prior has been of great interest. Subjective priors are

ideal if sufficient information on priors is available. However, in practice, we cannot collect

enough information on priors. Then objective priors are a good substitute for subjective

priors.

In this dissertation, an independent reference prior based on a class of objective priors is

examined. It is a reference prior derived by assuming that the parameters are independent.

The independent reference prior introduced by Sun and Berger (1998) is extended and

generalized. We provide an iterative algorithm to derive the general independent reference

prior. We also propose a sufficient condition under which a closed form of the independent

reference prior is derived without going through the iterations in the iterative algorithm.

The independent reference prior is then shown to be useful in respect of the invariance

and the first order matching property. It is proven that the independent reference prior is

invariant under a type of one-to-one transformation of the parameters. It is also seen that

the independent reference prior is a first order probability matching prior under a sufficient

condition. We derive the independent reference priors for various examples. It is observed

that they are first order matching priors and the reference priors in most of the examples.

We also study an independent reference prior in some types of non-regular cases considered

by Ghosal (1997).
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Chapter 1

Introduction

1.1 Overview

In Bayesian inference, the selection of prior has been of great interest and various kinds

of priors have been proposed. There are two categories of priors based on the amount of

information on priors that we could have, which are subjective priors and objective priors

(or noninformative priors). If sufficient information on priors is available, subjective priors

could be a good choice. Unfortunately, in practice, we might not often collect enough

information. Then noninformative priors or objective priors, which are derived only by

using the assumed model and the available data, can be used as a substitute for subjective

priors. Thus the use of noninformative or objective priors has increased in Bayesian analysis.

Many kinds of noninformative priors have been developed: constant priors [Laplace

(1812)], Jeffreys priors [Jeffreys (1961)], reference priors [Bernardo (1979), Berger and

Bernardo (1992)], independent reference priors [Sun and Berger (1998)], probability match-

ing priors [Datta and Mukerjee (2004)], and noninformative priors in non-regular cases

1
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[Ghosal and Samanta (1997), Ghosal (1997), Ghosal (1999)]. We review them precisely in

Section 1.2.

We study an independent reference prior which originated in Sun and Berger (1998). It

is a reference prior derived with the assumption of the independence of the parameters.

In many practical problems, we can obtain partial information on priors such as the in-

dependence of the parameters. Then independent reference priors could be used for such

situations.

In this dissertation, the independent reference prior introduced by Sun and Berger (1998)

is extended and generalized. We consider multiple groups of parameters while Sun and

Berger (1998) used two groups of parameters. An iterative algorithm to compute the gen-

eral independent reference prior is proposed. Then a mild sufficient condition to make an

inference on the result of the iterative algorithm without going through the iterations is also

provided. The independent reference prior holds the invariance and the first order match-

ing property. We prove that our independent reference prior is invariant under a type of

one-to-one reparameterization where the Jacobian matrix is diagonal. A sufficient condition

under which the independent reference prior is a first order matching prior is given. Then

the independent reference priors are derived in numerous examples. It turns out that they

are first matching priors and the reference priors in most of the examples. Additionally,

we present an iterative algorithm to obtain an independent reference prior in some types

of non-regular cases where the support of the data is either monotonically increasing or

decreasing in a non-regular type parameter. It is verified that the independent reference

prior is a first order matching prior under a sufficient condition. Some examples are also

given.



Mi Hyun Lee Chapter 1. Introduction 3

1.2 Literature Review

The history of objective priors is described in this section. Constant priors [Section 1.2.1],

Jeffreys priors [Section 1.2.2], reference priors [Section 1.2.3], independent reference priors

[Section 1.2.4], Probability matching priors [Section 1.2.5], and objective priors in non-

regular cases [Section 1.2.6] are reviewed.

1.2.1 Constant Priors

Objective priors began with a constant prior (or a flat prior) which is just proportional to

1. Laplace (1812) employed it for Bayesian analysis. The constant prior is very simple and

easy to use. However it is not invariant to one-to-one transformations of the parameters.

1.2.2 Jeffreys Priors

Jeffreys (1961) proposed a rule for deriving a prior which is invariant to any one-to-one

reparameterization. It is called a Jeffreys-rule prior which is still one of the popular objective

priors. The Jeffreys-rule prior is proportional to the positive square root of the determinant

of the Fisher information matrix defined as (1.1). The Fisher information is a measure of

the amount of information about the parameters, provided by the data from model. Datta

and Ghosh (1996) pointed out that the Jeffreys-rule prior performs satisfactorily in one-

parameter cases but poorly in multi-parameter cases. An inconsistent Bayes estimator or

an unreasonable posterior were produced in some of multi-parameter examples. Thus the

use of the Jeffreys-rule prior is somewhat controversial in multi-parameter cases. Jeffreys

(1961) recommended an independence Jeffreys prior which could modify the deficiencies of

the Jeffreys-rule prior in multi-parameter cases. It is the product of the Jeffreys-rule priors
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for each group of parameters when the other groups of parameters are held fixed.

1.2.3 Reference Priors

Bernardo (1979) introduced a reference prior which fixes the deficiencies of the Jeffreys-rule

prior in multi-parameter problems. The ad hoc modifications which are required for the

Jeffreys-rule prior in multi-parameter situations are not necessary for the reference prior.

Bernardo (1979) separated the parameters into the parameters of interest and nuisance

parameters, and considered the parameters sequentially in the process of deriving a reference

prior. Then a reference prior is more successful in multi-parameter cases. A reference prior is

defined as a prior which maximizes asymptotically the expected information provided by the

data from model about the parameters, which is the same as the expected Kullback-Leibler

divergence between the posterior and prior. Then the reference prior has minimal influence

since the data has maximal influence on the inference. Bernardo (1979) just introduced

the basic idea of reference priors and posteriors without the mathematical details for their

construction.

The idea of Bernardo (1979) was broadened and generalized by Berger and Bernardo

(1992). They divided the parameters into two or more groups according to their order of

inferential importance. They provided an in-depth description of mathematical methods to

derive a reference prior.

Now the reference prior method is described in detail. Let us start with the notation that

is necessary to explain the method. Consider a parametric family of distributions whose

density is given by f(x; θ) for the data X ∈ X , where θ ∈ Θ ⊂ IRp is a p-dimensional
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unknown parameter vector which can be decomposed into m sub-groups

θ = (θ1, . . . , θm).

Here θi = (θi1, . . . , θi,pi
) ∈ Θi ⊂ IRpi , Θ = Θ1 × · · · ×Θm with p1 + · · ·+ pm = p.

We define the Fisher information matrix of θ

Σ(θ) = −Eθ

[
∂2

∂θi∂θj

log f(X; θ)

]
, i, j = 1, . . . , m, (1.1)

where Eθ denotes expectation over X given θ. We will often write Σ instead of Σ(θ).

Also define, for j = 1, . . . ,m,

θ[j] = (θ1, . . . , θj),

θ[∼j] = (θj+1, . . . , θm),

where θ[∼0] = θ and θ[0] is vacuous.

Let Zt = {X1, . . . , Xt} be the random variable that would arise from t conditionally

independent replications of the original experiment. Then Zt has density

p(zt|θ) =
t∏

i=1

f(xi; θ). (1.2)

First, we see how to develop a reference prior for regular cases in the sense that p(zt | θ),

given by (1.2), is asymptotically normally distributed. Assume that Σ is invertible and let

S = Σ−1. Write S as

S =




A11 At
21 · · · At

m1

A21 A22 · · · At
m2

...
...

. . .
...

Am1 Am2 · · · Amm



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so that Aij is pi× pj, and define Sj to be the upper left
(∑j

k=1 pk

)
×

(∑j
k=1 pk

)
corner of S

with Sm ≡ S and Hj ≡ S−1
j . Then the matrices hj, defined to be the lower right pj × pj

corner of Hj, j = 1, . . . ,m, will be of central importance. Note that h1 ≡ H1 ≡ A−1
11 and

if S is a block diagonal matrix, that is Aij = 0 for all i 6= j, then hj ≡ A−1
jj , j = 1, . . . , m.

Finally, if Θ∗ ⊂ Θ, we define

Θ∗(θ[j]) = {θj+1 : (θ[j],θj+1,θ[∼j+1]) ∈ Θ∗ for some θ[∼j+1]}.

|A| denotes the determinant of A, and 1Ω(y) equals 1 if y ∈ Ω, 0 otherwise.

The reference prior method for regular cases can be described in four steps.

1. Choose a nested sequence Θ1 ⊂ Θ2 ⊂ · · · of compact subsets of Θ such that
⋃∞

l=1 Θl =

Θ. This step is not necessary if the reference priors turn out to be proper.

2. Order the coordinates (θ1, . . . , θm). Usually, the order should typically be according

to inferential importance; in particular, the first group of parameters should be of

interest. Note that (θ1, . . . , θm) is assumed to be ordered for convenience of notation.

3. To start, define

πl
m(θ[∼m−1]|θ[m−1]) = πl

m(θm|θ[m−1])

=
|hm(θ)|1/21Θl(θ[m−1])

(θm)
∫
Θl(θ[m−1])

|hm(θ)|1/2dθm

.

For j = m− 1, . . . , 1, define

πl
j(θ[∼j−1]|θ[j−1]) =

πl
j+1(θ[∼j]|θ[j]) exp

{
1
2
El

j[(log |hj(θ)|)|θ[j]]
}
1Θl(θ[j−1])

(θj)
∫
Θl(θ[j−1])

exp
{

1
2
El

j[(log |hj(θ)|)|θ[j]]
}

dθj

,

where

El
j[g(θ)|θ[j]] =

∫

{θ[∼j]:(θ[j],θ[∼j])∈Θl}
g(θ)πl

j+1(θ[∼j]|θ[j])dθ[∼j].
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For j = 1, write

πl
1(θ) = πl

1(θ[∼0]|θ[0]).

4. Define a reference prior, π(θ), as any prior for which

EX
l D(πl

1(θ|X), π(θ|X)) → 0 as l →∞,

where the Kullback-Leibler divergence between two densities g and h on Θ is denoted

by

D(g, h) =
∫

Θ
g(θ) log

[
g(θ)

h(θ)

]
dθ,

and EX
l is expectation with respect to

pl(x) =
∫

Θ
f(x; θ)πl

1(θ)dθ.

Typically, π(θ) is determined by the simple relation

π(θ) = lim
l→∞

πl
1(θ)

πl
1(θ

∗)
,

where θ∗ is an interior point of Θ.

Definitely, a reference prior depends on the grouping and the ordering of the parameters.

Thus Berger and Bernardo (1992) recommended deriving a reference prior by considering one

parameter per group in Step 2. We call such a reference prior a one-at-a-time reference prior.

However one-at-a-time reference priors still depend on the order of inferential importance

of the parameters. Note that it can be easily shown that a reference prior is equivalent to

the Jeffreys-rule prior in one-parameter cases.

Datta and Ghosh (1996) provided another expression for |hj(θ)|, j = 1, . . . , m. Write

the Fisher information matrix of θ in partitioned form as

Σ =
(
(Σij)

)
, i, j = 1, . . . , m.
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Also write for j = 0, . . . , m− 1,

Σ[∼jj] =
(
(Σik)

)
, i, k = j + 1, . . . ,m.

Then

|hj(θ)| = |Σ[∼j−1,j−1]|
|Σ[∼jj]| , j = 1, . . . , m,

where |Σ[∼mm]| = 1.

Next, the reference prior method for non-regular cases which was proposed by Berger

and Bernardo (1992) is shown. Only Step 3 is different from the regular cases. Thus we

just describe Step 3.

3′. For j = m,m− 1, . . . , 1, iteratively compute densities

πl
j(θ[∼j−1]|θ[j−1]) ∝ πl

j+1(θ[∼j]|θ[j])h
l
j(θj|θ[j−1]),

where πl
m+1 ≡ 1 and hl

j is computed by the following two steps.

3′a: Define pt(θj|θ[j−1]) as

pt(θj|θ[j−1]) ∝ exp
{∫

p(zt|θ[j]) log p(θj|zt,θ[j−1])dzt

}
, (1.3)

where

p(zt|θ[j]) =
∫

p(zt|θ)πl
j+1(θ[∼j]|θ[j])dθ[∼j],

p(θj|zt, θ[j−1]) ∝ p(zt|θ[j])pt(θj|θ[j−1]).

3′b: Assuming the limit exists, define

hl
j(θj|θ[j−1]) = lim

t→∞ pt(θj|θ[j−1]). (1.4)

For j = 1, write

πl
1(θ) = πl

1(θ[∼0]|θ[0]).
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Berger and Bernardo (1992) pointed out that in practice it is very hard to compute the pt,

given by (1.3), and to find their limit in (1.4).

Berger (1992) [attributed to Ghosh and Mukerjee (1992)] introduced a reverse reference

prior, which is obtained by reversing the roles of the interest parameters and nuisance

parameters when deriving a reference prior, in order to satisfy the probability matching

criterion when the parameters are orthogonal. We explain the probability matching criterion

in Section 1.2.5.

According to Datta and Ghosh (1996), the invariance of the reference prior is valid un-

der a type of one-to-one reparameterization where the Jacobian matrix is upper triangular.

However the reverse reference prior does not remain invariant to any one-to-one repara-

meterization. Datta and M. Ghosh (1995) compared reference priors and reverse reference

priors. They provided a sufficient condition under which the two priors agree.

1.2.4 Independent Reference Priors

Sun and Berger (1998) derived conditional reference priors when partial information is

available. They considered three situations. When a subjective conditional prior density is

given, two methods to find a marginal reference prior were described. When a subjective

marginal prior is known, a conditional reference prior was proposed. When two groups of

parameters are assumed to be independent, an independent reference prior was defined.

The independent reference prior is our main focus in this dissertation. In most examples

of Bayesian inference, the reference priors are expressed as the product of marginal reference

priors. If we have information on the independence of the groups of parameters, we can

surely use an independent reference prior which does not depend on the order of inferential
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importance of the groups of parameters instead of a reference prior which depends on it.

Assuming the independence of two groups of parameters, θ1 and θ2, Sun and Berger

(1998) suggested the following iterative algorithm to derive an independent reference prior.

Note that Σ = Σ(θ1, θ2) is the Fisher information matrix of (θ1, θ2), Σ22 = Σ22(θ1,θ2) is

the Fisher information matrix of θ2, given that θ1 is held fixed, and Σ11 = Σ11(θ1, θ2) is

the Fisher information matrix of θ1, given that θ2 is held fixed.

Algorithm A:

Step 0. Choose any initial nonzero marginal prior density for θ2, π
(0)
2 (θ2), say.

Step 1. Define an interim prior density for θ1 by

π
(1)
1 (θ1) ∝ exp

{
1

2

∫
π

(0)
2 (θ2) log

( |Σ|
|Σ22|

)
dθ2

}
.

Step 2. Define an interim prior density for θ2 by

π
(1)
2 (θ2) ∝ exp

{
1

2

∫
π

(1)
1 (θ1) log

( |Σ|
|Σ11|

)
dθ1

}
.

Replace π
(0)
2 in Step 0 by π

(1)
2 and repeat Step 1 and 2 to obtain π

(2)
1 and π

(2)
2 . Conse-

quently, we generate two sequences {π(l)
1 }l≥1 and {π(l)

2 }l≥1. The desired marginal reference

priors will be the limits

πR
i = lim

l→∞
π

(l)
i , i = 1, 2,

if the limits exist.

Sun and Berger (1998) pointed out that in applying the iterative algorithm, it may

be necessary to operate on compact sets, and then let the sets grow as the reference prior

method. They also established a sufficient condition under which the result of the algorithm

is inferred without going through the iterations.
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1.2.5 Probability Matching Priors

The concept of probability matching priors are quite different from the previous objective

priors. Welch and Peers (1963) introduced the basic idea of probability matching priors.

Datta and Mukerjee (2004) summarized and discussed various probability matching priors.

The priors satisfying the criterion that the frequentist coverage probabilities of Bayesian

credible sets agree asymptotically to the Bayesian coverage probabilities of the credible sets

up to a certain order, are defined as probability matching priors or simply matching priors.

In other words, the difference between the frequentist confidence sets and the Bayesian

credible sets should be small in an asymptotic way. There are several matching criteria.

For example, the matching might be carried out through posterior quantiles, distribution

functions, highest posterior density regions, inversion of certain test statistics, or prediction.

For each matching criterion, the differential equations which matching priors must satisfy

were derived.

Matching priors for posterior quantiles are most popular. First and second order matching

priors are widely used for posterior quantile matching priors. We consider only a first order

matching prior in this dissertation. The differential equation which a first order matching

prior must satisfy was introduced by Datta and J. K. Ghosh (1995) and revisited by Datta

and Mukerjee (2004). Referring to Chapter 2 of Datta and Mukerjee (2004), matching priors

for posterior quantiles are defined as follows. Consider priors π(·) for which the relation

Pθ{ψ ≤ ψ(1−α)(π,X)} = 1− α + o(n−r/2), (1.5)

holds for r = 1, 2, . . ., and for each α ∈ (0, 1). n is the sample size, θ = (θ1, . . . , θm), where

θi ∈ Θi ⊂ IR is an unknown parameter vector, ψ = ψ(θ) is the one-dimensional parametric

function of interest, Pθ{·} is the frequentist probability measure under θ, and ψ(1−α)(π, X)
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is the (1−α)th posterior quantile of ψ under π(·), given the data X. Then priors satisfying

(1.5) for r = 1 are called first order matching priors for ψ. First order matching priors πM

for ψ must satisfy the following differential equation,

∂

∂θ1

(ξ1π) + · · ·+ ∂

∂θm

(ξmπ) = 0, (1.6)

where

ξ = (ξ1, . . . , ξm)′ =
Σ−1∇ψ√∇ψ′Σ−1∇ψ

(1.7)

with ∇ψ =
(

∂
∂θ1

ψ, . . . , ∂
∂θm

ψ
)′

and Σ is the Fisher information matrix of θ = (θ1, . . . , θm).

By Welch and Peers (1963), the Jeffreys-rule prior is a first order matching prior in

one-dimensional parameter cases. Thus a reference prior is also a first order matching

prior in one-parameter cases. Remember that a reverse reference prior was introduced by

Berger (1992) to meet the matching criterion under orthogonality. Datta and M. Ghosh

(1995) reaffirmed that a reverse reference prior must be a matching prior under orthogonal

parameterizations but a reference prior does not need to be even under orthogonality. By

Datta and Ghosh (1996), a probability matching prior was shown to be invariant under any

one-to-one reparameterization.

1.2.6 Non-regular Cases

The concept and algorithm for reference priors for non-regular cases were proposed by

Bernardo (1979) and Berger and Bernardo (1992). It is however hard to apply in practice.

See Section 1.2.3 for details.

Ghosal and Samanta (1997) obtained a reference prior in one-parameter non-regular cases

such as a one-parameter family of discontinuous densities where the support of the data is
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either monotonically decreasing or increasing in the parameter. They derived a reference

prior by maximizing the expected Kullback-Leibler divergence between the prior and the

posterior in an asymptotic way.

Ghosal (1997) proposed a reference prior in multi-parameter non-regular cases such as a

multi-parameter family of discontinuous densities where some regular type parameters are

added to the one-parameter family of discontinuous densities used by Ghosal and Samanta

(1997). The reference prior was computed through two procedures when nuisance parameter

exists. One procedure adapted the reference prior method proposed by Berger and Bernardo

(1992) and another was an extension of the reference prior method provided by Ghosal and

Samanta (1997).

The differential equations which first order matching priors for one- and multi-parameter

non-regular cases must satisfy were built by Ghosal (1999). He considered the one- and

multi-parameter family of discontinuous densities used by Ghosal and Samanta (1997) and

Ghosal (1997).

1.3 Outline

This dissertation is organized as follows.

In Chapter 2, a general independent reference prior is developed by extending the results

of Sun and Berger (1998). The invariance under a type of one-to-one transformation of the

parameters is proven. The first order matching property is also obtained.

The independent reference priors are derived in various examples of probability distribu-

tions in Chapter 3. We compare the independent reference priors with the reference priors.
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We also see whether the independent reference priors satisfy the first order matching crite-

rion or not.

In Chapter 4, an independent reference prior in some types of non-regular cases is derived.

We construct a sufficient condition under which the independent reference prior agrees to a

first order matching prior. The independent reference priors are computed in some examples.

We summarize and propose future work in Chapter 5.



Chapter 2

Main Results for Independent

Reference Priors

2.1 Notation

Consider a parametric family of distributions whose density is given by f(x; θ) for the data

X ∈ X , where θ ∈ Θ ⊂ IRp is a p-dimensional unknown parameter vector which can be

decomposed into m sub-vectors

θ = (θ1, . . . , θm). (2.1)

Here θi = (θi1, . . . , θi,pi
) ∈ Θi ⊂ IRpi , where Θ = Θ1 × · · · ×Θm with p1 + · · ·+ pm = p.

We define the partitioned Fisher information matrix of θ

Σ(θ) = −Eθ

[
∂2

∂θi∂θj

log f(X; θ)

]
, i, j = 1, . . . , m, (2.2)

where Eθ denotes expectation over X given θ. We will often write Σ instead of Σ(θ).

15
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2.2 Independent Reference Priors

In this section, we provide an independent reference prior by generalizing the results of Sun

and Berger (1998). We consider more groups of parameters than the two groups considered

by Sun and Berger (1998). We propose an iterative algorithm to find the general independent

reference prior and obtain a mild sufficient condition to deduce the result of it without going

through the iterations. Thus a closed form of the independent reference prior is derived.

The invariance of independent reference priors to a type of one-to-one reparameterization

where the Jacobian matrix is diagonal is proven. A sufficient condition under which the

independent reference prior agrees to a first order matching prior is proposed. Thus two

desired figures of independent reference priors are achieved. Numerous examples are given

in Chapter 3. We study an independent reference prior in some types of non-regular cases

in Chapter 4.

Now we present an iterative algorithm to derive an independent reference prior for θ =

(θ1, . . . , θm). It is an extension of Algorithm A proposed by Sun and Berger (1998). To

begin with, we note that Σc
ii is the matrix obtained by removing the rows and columns

corresponding to θi from Σ, and θc
i = (θ1, . . . , θi−1,θi+1, . . . , θm), i = 1, . . . , m.

Algorithm B:

Step 0. Choose any initial nonzero marginal prior densities for θi, namely π
(0)
i (θi) for all

i = 2, . . . , m.

Step 1. Define an interim prior density for θ1 by

π
(1)
1 (θ1) ∝ exp

{
1

2

∫ m∏

k=2

π
(0)
k (θk) log

( |Σ|
|Σc

11|

)
dθc

1

}
.
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Step i. For i = 2, · · · ,m, define interim prior densities for θi by

π
(1)
i (θi) ∝ exp





1

2

∫ [
i−1∏

k=1

π
(1)
k (θk)

] 


m∏

k=i+1

π
(0)
k (θk)


 log

( |Σ|
|Σc

ii|

)
dθc

i





Replace π
(0)
i (θi), i = 2, . . . , m, in Step 0 by π

(1)
i (θi), i = 2, . . . , m, and repeat Step i

to obtain π
(2)
i (θi) for i = 1, . . . ,m. Consequently, the sequences of the marginal priors

{π(l)
i (θi) : i = 1, . . . ,m}l≥1 are generated. The marginal reference priors for θi will be the

limits

πR
i (θi) = lim

l→∞
π

(l)
i (θi), i = 1, . . . , m,

if the limits exist.

In practice, the interim priors {π(l)
i (θi) : i = 1, . . . , m}l≥1 could be improper. In such

cases, one might need to implement an algorithm using compact sets as it is recommended

by Sun and Berger (1998). Choose an increasing sequence {Θj
i}j≥1 of compact subsets of

Θi such that

∞⋃

j=1

Θj
i = Θi, i = 1, . . . ,m.

We then could use the following algorithm.

Algorithm B′:

Step 0. For fixed j, choose any initial proper marginal prior densities for θi on Θj
i , namely

π
(0)
ij (θi) for all i = 2, . . . ,m.

Step 1. Define an interim prior density for θ1 on Θj
1 by

π
(1)
1j (θ1) ∝ exp

{
1

2

∫

⊗m
h=2

Θj
h

m∏

k=2

π
(0)
kj (θk) log

( |Σ|
|Σc

11|

)
dθc

1

}
.
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Step i. For i = 2, . . . , m, define interim prior densities for θi on Θj
i by

π
(1)
ij (θi) ∝ exp





1

2

∫

⊗h6=iΘ
j
h

[
i−1∏

k=1

π
(1)
kj (θk)

] 


m∏

k=i+1

π
(0)
kj (θk)


 log

( |Σ|
|Σc

ii|

)
dθc

i



 .

Replace π
(0)
ij (θi), i = 2, . . . , m, in Step 0 by π

(1)
ij (θi), i = 2, . . . , m, and repeat Step i

to obtain π
(2)
ij (θi) for i = 1, . . . , m. Consequently, we have sequences of marginal priors

{π(l)
ij (θi) : i = 1, . . . , m}j≥1,l≥1. Let θ0

i be an interior point of Θi, i = 1, . . . , m. The

marginal reference priors for θi will be the limits

πR
i (θi) = lim

j→∞
lim
l→∞

π
(l)
ij (θi)

π
(l)
ij (θ0

i )
, i = 1, . . . ,m,

if these limits exist.

The convergence of the iterations is not guaranteed. Then we might not obtain a closed

form of the independent reference prior. Here we have found a sufficient condition for

deriving an independent reference prior without going through the iterations.

Theorem 2.1 Suppose, for all i = 1, . . . , m,

|Σ|
|Σc

ii|
= f1i(θi)f2i(θ

c
i ), (2.3)

where θc
i = (θ1, . . . , θi−1,θi+1, . . . , θm), Σ is the Fisher information matrix of θ = (θ1, . . . , θm),

and Σc
ii is the matrix which is derived by removing the rows and columns corresponding to

θi from Σ. Then the independent reference prior for θ = (θ1, . . . , θm) is

πR(θ) =
m∏

i=1

πR
i (θi), (2.4)

where the marginal reference priors for θi, i = 1, . . . , m, are

πR
i (θi) ∝

√
f1i(θi). (2.5)
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Proof. It can be easily seen that under Condition (2.3), πR
i (θi), i = 1, . . . ,m, do not

depend on the choices of π
(0)
i (θi), i = 2, . . . ,m, in Step 0. Hence the marginal reference

priors for θi, i = 1, . . . , m, have the form of (2.5) and the independent reference prior for θ

is given by (2.4).

In the next corollary an independent reference prior is derived under orthogonality. Con-

sequently it is shown to be same as the the independent reference prior in (2.4).

Corollary 2.1 Consider the following Fisher information matrix of θ = (θ1, . . . , θm),

Σ = diag
(
f11(θ1)f21(θ

c
1), . . . , f1m(θm)f2m(θc

m)
)
.

Then the independent reference prior for θ is the same as (2.4).

Proof. It is clear that for all i = 1, . . . , m, |Σ|/|Σc
ii| = f1i(θi)f2i(θ

c
i ), which satisfies

Condition (2.3).

Now we prove that the independent reference prior, given by (2.4), is invariant under a

type of one-to-one transformation of the parameters where the Jacobian matrix is diagonal.

Theorem 2.2 For any i = 1, · · · ,m, let ηi = gi(θi) be a one-to-one transformation of θi.

Then under Condition (2.3), the independent reference prior for η = (η1, · · · ,ηm) is formed

as

πR(η) =
m∏

i=1

πR
i (ηi), (2.6)

where the marginal reference priors for ηi, i = 1, . . . , m, are

πR
i (ηi) ∝

√
f1i

(
g−1

i (ηi)
) ∣∣∣∣∣

∂

∂ηi

g−1
i (ηi)

∣∣∣∣∣ . (2.7)
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Proof. The Fisher information matrix of η is given by

H = T ′ΣT ,

where Σ is the Fisher information matrix of θ = (θ1, . . . , θm) and

T = diag

(
∂

∂η1

g−1
1 (η1), . . . ,

∂

∂ηm

g−1
m (ηm)

)
.

The matrix Hc
ii, which is derived by removing the rows and columns corresponding to ηi

from H , is of the form

Hc
ii = T c′

ii Σ
c
iiT

c
ii,

where Σc
ii is the matrix which is derived by removing the rows and columns corresponding

to θi from Σ, and

T c
ii = diag

(
∂

∂η1

g−1
1 (η1), . . . ,

∂

∂ηi−1

g−1
i−1(ηi−1),

∂

∂ηi+1

g−1
i+1(ηi+1), . . . ,

∂

∂ηm

g−1
m (ηm)

)
.

Thus

|H| =
m∏

k=1

∣∣∣∣∣
∂

∂ηk

g−1
k (ηk)

∣∣∣∣∣
2

|Σ|,

|Hc
ii| =

m∏

j=1,j 6=i

∣∣∣∣∣
∂

∂ηj

g−1
j (ηj)

∣∣∣∣∣
2

|Σc
ii|.

From Condition (2.3), it can be shown that

|H|
|Hc

ii|
=

∏m
k=1

∣∣∣ ∂
∂ηk

g−1
k (ηk)

∣∣∣
2

∏m
j=1,j 6=i

∣∣∣ ∂
∂ηj

g−1
j (ηj)

∣∣∣
2

|Σ|
|Σc

ii|

=

∣∣∣∣∣
∂

∂ηi

g−1
i (ηi)

∣∣∣∣∣
2

f1i

(
g−1

i (ηi)
)
f2i

(
g−1

i (ηi)
c
)
,

where

g−1
i (ηi)

c =
(
g−1
1 (η1), . . . , g

−1
i−1(ηi−1), g

−1
i+1(ηi+1), . . . , g

−1
m (ηm)

)
.
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Thus we can write

|H|
|Hc

ii|
= h1i(ηi)h2i(η

c
i ),

where

h1i(ηi) = f1i

(
g−1

i (ηi)
) ∣∣∣∣∣

∂

∂ηi

g−1
i (ηi)

∣∣∣∣∣
2

,

h2i(η
c
i ) = f2i

(
g−1

i (ηi)
c
)
.

Hence, by Theorem 2.1, the independent reference prior for η is

πR(η) =
m∏

i=1

πR
i (ηi),

where the marginal reference priors for ηi, i = 1, . . . , m, are

πR
i (ηi) ∝

√
h1i(ηi) =

√
f1i

(
g−1

i (ηi)
) ∣∣∣∣∣

∂

∂ηi

g−1
i (ηi)

∣∣∣∣∣ .

The result then follows.

2.3 First Order Matching Priors

We propose a sufficient condition under which the independent reference prior, given by

(2.4), is a first order matching prior. Thus we can easily prove that the independent reference

prior is a first order matching prior without solving the differential equation given by (1.6).

Theorem 2.3 Let θ = (θ1, . . . , θm), where θi ∈ Θi ⊂ IR. For fixed i = 1, · · · ,m, assume,

for all j = 1, . . . , m,

|Σ|
|Σc

ij|
=





f1i(θi)f2i(θ
c
i ), if j = i,

√
f1j(θj)f2i(θc

i ) f3j(θ
c
j), if j 6= i,

(2.8)
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where θc
l = (θ1, . . . , θl−1, θl+1, . . . , θm), l = i, j, Σ is the Fisher information matrix of θ, Σc

ij

is the matrix which is derived by removing the ith row and jth column from Σ, and f1jf2i

for j 6= i is a positive function of its argument. Then the independent reference prior πR(θ)

for θ, given by (2.4), is a first order matching prior for θi.

Proof. For fixed i, let ψ = ψ(θ) = θi. By (2.8.3) of Datta and Mukerjee (2004), a first

order matching prior πM = πM(θ1, . . . , θm) for ψ satisfies the following differential equation,

∂

∂θ1

(ξ1π) + · · ·+ ∂

∂θm

(ξmπ) = 0, (2.9)

where

ξ = (ξ1, . . . , ξm)′ =
Σ−1∇ψ√∇ψ′Σ−1∇ψ

, (2.10)

where ∇ψ =
(

∂
∂θ1

ψ, . . . , ∂
∂θm

ψ
)′

and Σ is the Fisher information matrix of θ = (θ1, . . . , θm).

We need to show that the reference prior πR(θ) for θ, given by (2.4), satisfies the equation

(2.9). It is easy to see that ∇ψ = (0, . . . , 0, 1, 0, . . . , 0)′, where 1 is the i-th element of ∇ψ,

and

ξ = (ξ1, . . . , ξm)′

=

√√√√ |Σ|
|Σc

ii|

{
(−1)i+1 |Σc

i1|
|Σ| , . . . ,

|Σc
ii|

|Σ| , . . . , (−1)i+m |Σc
im|
|Σ|

}′
.

From Condition (2.8), for j = 1, . . . , m,

ξj = (−1)i+j
√

f1i(θi)f2i(θc
i )
|Σc

ij|
|Σ|

=





1√
f1i(θi)f2i(θc

i )
, if j = i,

(−1)i+j

√
f1i(θi)
f1j(θj)

1
f3j(θc

j )
, if j 6= i.

Thus the differential equation (2.9) becomes

∂

∂θi


 π(θ)√

f1i(θi)f2i(θc
i )


 +

m∑

j=1,j 6=i

(−1)i+j ∂

∂θj




√
f1i(θi) π(θ)

√
f1j(θj) f3j(θc

j)


 = 0.
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Now, it can be shown that

∂

∂θi


 πR(θ)√

f1i(θi)f2i(θc
i )


 +

m∑

j=1,j 6=i

(−1)i+j ∂

∂θj




√
f1i(θi) πR(θ)

√
f1j(θj) f3j(θc

j)




∝ ∂

∂θi




∏m
k=1

√
f1k(θk)√

f1i(θi)f2i(θc
i )


 +

m∑

j=1,j 6=i

(−1)i+j ∂

∂θj




√
f1i(θi)

∏m
k=1

√
f1k(θk)√

f1j(θj) f3j(θc
j)




=
∂

∂θi




∏m
k=1,k 6=i

√
f1k(θk)√

f2i(θc
i )


 +

m∑

j=1,j 6=i

(−1)i+j ∂

∂θj




√
f1i(θi)

∏m
k=1,k 6=j

√
f1k(θk)

f3j(θc
j)




= 0.

Hence the independent reference prior πR(θ) for θ, given by (2.4), is a solution for the

differential equation (2.9). The result then holds.

Corollary 2.2 Suppose that in Condition (2.8), |Σc
ij| = 0 for some j 6= i. The in-

dependent reference prior πR(θ) for θ, given by (2.4), is a first order matching prior for

θi.

Proof. Clearly, if |Σc
ij| = 0, then ξj = 0 for some j 6= i. Thus ∂

∂θj
(ξjπ) = 0 for any π. The

result then follows.



Chapter 3

Examples

In this chapter, various examples of commonly used probability distributions are studied.

We derive the independent reference priors by employing Theorem 2.1 and compare them

with the reference priors. We also verify if the independent reference priors are also first

order matching priors by applying Theorem 2.3. Consequently, the independent reference

priors are shown to be the reference priors and first order matching priors in most of the

examples. Note that most of the probability density functions, the Fisher information

matrices and the reference priors in this chapter were provided by Yang and Berger (1997)

unless other references are cited.

3.1 Binomial Model: Two Independent Samples

For fixed n1 and n2, let X1 and X2 be independent binomial random variables with the

parameters (n1, p1) and (n2, p2), respectively. Then the joint density of (X1, X2) is

f(x1, x2|p1, p2) =

(
n1

x1

)
p1

x1(1− p1)
n1−x1

(
n2

x2

)
p2

x2(1− p2)
n2−x2 (3.1)

24
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for xi ∈ {0, 1, 2, . . . , ni}, i = 1, 2. Here 0 < p1, p2 < 1. The Fisher information matrix of

(p1, p2) is

Σ(p1, p2) =




n1

p1(1−p1)
0

0 n2

p2(1−p2)


 . (3.2)

Hence the marginal reference priors for p1 and p2 are

πR
1 (p1) ∝ 1√

p1(1− p1)
, p1 ∈ (0, 1), (3.3)

πR
2 (p2) ∝ 1√

p2(1− p2)
, p2 ∈ (0, 1), (3.4)

and the independent reference prior for (p1, p2) is

πR(p1, p2) ∝ 1√
p1(1− p1)p2(1− p2)

. (3.5)

It is a first order matching prior for p1 and p2, and the reference prior for (p1, p2) when one

of the parameters p1 or p2 is of interest and the other is nuisance parameter.

3.1.1 Two Binomial Proportions

Sun and Berger (1998) conducted objective Bayesian analysis by using the independent

reference prior for the log-odds ratio of two binomial proportions in the example of a clinical

trial: ECMO (extra corporeal membrane oxygenation). The ECMO example is described

here: n1 patients are given standard therapy and n2 patients are treated with ECMO. The

probability of success under standard therapy is p1 and the probability of success under

ECMO is p2. Let X1 be the number of survivors from standard therapy and X2 be the

number of survivors from ECMO. Then X1 is a binomial random variable with parameters

(n1, p1) and independently, X2 is a binomial random variable with parameters (n2, p2). The

main interest is to compare the two treatments. Then the log-odds ratio of p1 and p2,
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defined as δ = η2 − η1 with ηi = log[pi/(1− pi)], i = 1, 2, is used for comparing them when

η1 is nuisance parameter. Under the assumption of the independence of δ and η1, Sun and

Berger (1998) obtained the marginal reference priors for δ (∈ IR) and η1 (∈ IR), which are

given by

πR
1 (δ) ∝ exp

(
− 1

2π

∫ 1

0
{t(1− t)}−0.5 log

[
1 +

n1

n2

{(1− t)e−δ/2 + teδ/2}2
]
dt

)
, (3.6)

πR
2 (η1) =

eη1/2

π(1 + eη1)
. (3.7)

Consequently, the independent reference prior for (δ, η1) is

πR(δ, η1) ∝ h(δ)eη1/2

1 + eη1
, (3.8)

where

h(δ) = exp
(
− 1

2π

∫ 1

0
{t(1− t)}−0.5 log

[
1 +

n1

n2

{(1− t)e−δ/2 + teδ/2}2
]
dt

)
. (3.9)

Now we compare the four priors for (δ, η1) with respect to the frequentist matching

property for δ and mean squared errors of the Bayes estimators of δ through simulation

studies. The frequentist matching property is investigated by observing the frequentist

coverage probabilities of the posterior credible interval for δ. The four priors considered

here are constant prior, Jeffreys-rule prior, Cauchy prior and independent reference prior

given by (3.8).

First, we compute the joint likelihood of (δ, η1), which is given by

LN(δ, η1) =

(
n1

x1

)(
eη1

1 + eη1

)x1( 1

1 + eη1

)n1−x1
(
n2

x2

)(
eδ+η1

1 + eδ+η1

)x2( 1

1 + eδ+η1

)n2−x2

since the likelihood of (p1, p2) is given by (3.1) with p1 = eη1

1+eη1
and p2 = eδ+η1

1+eδ+η1
.

We also derive the priors for (δ, η1). The prior for (δ, η1) corresponding to the constant

prior for (p1, p2) is

πC(δ, η1) ∝ eδ+2η1

(1 + eη1)2(1 + eδ+η1)2 , (3.10)
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the Jeffreys-rule prior for (δ, η1) is

πJ(δ, η1) ∝
[

eδ+2η1

(1 + eη1)2(1 + eδ+η1)2

]0.5

, (3.11)

and the Cauchy prior for (δ, η1) is

πA(δ, η1) ∝ 1

(1 + δ2)(1 + η2
1)

(3.12)

by assuming the independence of δ and η1.

We then obtain the marginal posterior density functions for δ using the four priors. Let

nS = x1 + x2 and nF = n1 + n2 − nS. By using the transformations η1 = log ( t
1−t

) and

δ = log ( u
1−u

), the marginal posterior density function for δ using the constant prior (3.10)

is

πC(δ|x1, x2) =

∫∞
−∞ LN(δ, η1)π

C(δ, η1)dη1∫∞
−∞

∫∞
−∞ LN(δ, η1)πC(δ, η1)dη1dδ

=
(eδ)

x2+1 ∫ 1
0 tnS+1(1− t)nF +1

(
1

1−t+eδt

)n2+2
dt

∫ 1
0

∫ 1
0 ( u

1−u
)x2+1 1

u(1−u)
tnS+1(1− t)nF +1

(
1

1−t+ u
1−u

t

)n2+2

dtdu

,

the marginal posterior density for δ using the Jeffreys-rule prior (3.11) is

πJ(δ|x1, x2) =
(eδ)

x2+0.5 ∫ 1
0 tnS(1− t)nF

(
1

1−t+eδt

)n2+1
dt

∫ 1
0

∫ 1
0 ( u

1−u
)x2+0.5 1

u(1−u)
tnS(1− t)nF

(
1

1−t+ u
1−u

t

)n2+1

dtdu

,

the marginal posterior density function for δ using the Cauchy prior (3.12) is

πA(δ|x1, x2) =

(eδ)
x2

1+δ2

∫ 1
0 tnS−1(1− t)nF−1

(
1

1−t+eδt

)n2 1

1+{log ( t
1−t

)}2 dt

∫ 1
0

∫ 1
0

( u
1−u

)x2

1+{log ( u
1−u

)}2
1

u(1−u)
tnS−1(1− t)nF−1

(
1

1−t+ u
1−u

t

)n2
1

1+{log ( t
1−t

)}2 dtdu
,

and the marginal posterior density for δ using the independent reference prior (3.8) is

πR(δ|x1, x2) =
(eδ)

x2h(δ)
∫ 1
0 tnS−0.5(1− t)nF−0.5

(
1

1−t+eδt

)n2

dt

∫ 1
0 ( u

1−u
)x2h(log{ u

1−u
}) 1

u(1−u)

∫ 1
0 tnS−0.5(1− t)nF−0.5

(
1

1−t+ u
1−u

t

)n2

dtdu
,

where h(·) is given by (3.9).
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Mean Squared Errors

Below are the analytical results for obtaining the mean squared error of the Bayes estimator

of δ. Under the squared loss function, L(θ, a) = (θ − a)2, the Bayes estimator of δ, δ̂l ≡

δ̂l(x1, x2) is its posterior mean which is computed by
∫∞
−∞ δπl(δ|x1, x2)dδ, l = C, J,A,R.

Thus by letting δ = log ( u
1−u

),

δ̂C =

∫ 1
0

∫ 1
0 log ( u

1−u
)( u

1−u
)x2+1 1

u(1−u)
tnS+1(1− t)nF +1

(
1

1−t+ u
1−u

t

)n2+2

dtdu

∫ 1
0

∫ 1
0 ( u

1−u
)x2+1 1

u(1−u)
tnS+1(1− t)nF +1

(
1

1−t+ u
1−u

t

)n2+2

dtdu

,

δ̂J =

∫ 1
0

∫ 1
0 log ( u

1−u
)( u

1−u
)x2+0.5 1

u(1−u)
tnS(1− t)nF

(
1

1−t+ u
1−u

t

)n2+1

dtdu

∫ 1
0

∫ 1
0 ( u

1−u
)x2+0.5 1

u(1−u)
tnS(1− t)nF

(
1

1−t+ u
1−u

t

)n2+1

dtdu

,

δ̂A =

∫ 1
0

∫ 1
0 log ( u

1−u
)

( u
1−u

)x2

1+{log ( u
1−u

)}2
1

u(1−u)
tnS−1(1− t)nF−1

(
1

1−t+ u
1−u

t

)n2
1

1+{log ( t
1−t

)}2 dtdu

∫ 1
0

∫ 1
0

( u
1−u

)x2

1+{log ( u
1−u

)}2
1

u(1−u)
tnS−1(1− t)nF−1

(
1

1−t+ u
1−u

t

)n2
1

1+{log ( t
1−t

)}2 dtdu
,

δ̂R =

∫ 1
0 log ( u

1−u
)( u

1−u
)x2h(log{ u

1−u
}) 1

u(1−u)

∫ 1
0 tnS−0.5(1− t)nF−0.5

(
1

1−t+ u
1−u

t

)n2

dtdu

∫ 1
0 ( u

1−u
)x2h(log{ u

1−u
}) 1

u(1−u)

∫ 1
0 tnS−0.5(1− t)nF−0.5

(
1

1−t+ u
1−u

t

)n2

dtdu
,

where h(·) is given by (3.9).

Hence, the mean squared error is given by

MSEl = E
[
(δ̂l − δ)

2
]

=
n1∑

x1=0

n2∑

x2=0

(δ̂l − δ)
2
LN(δ, η1) (3.13)

for l = C, J,A, R.

Computing (3.13) is straightforward if n1 and n2 are small. However the following ap-

proximation is proposed for large n1 and n2. For fixed (δ∗, η∗1), p∗1 = eη∗1
1+e

η∗
1

and p∗2 = eδ∗+η∗1
1+e

δ∗+η∗
1

are obtained. Then, for fixed n1 and n2, two sets of independent binomial random variables,

x
(k)
1 |p∗1 and x

(k)
2 |p∗2 with (n1, p

∗
1) and (n2, p

∗
2), respectively, are generated for k = 1, . . . , K.

For the simulated x
(k)
1 and x

(k)
2 , δ̂

(k)
l , l = C, J,A, R, can be calculated by using the above
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equations. Then (δ̂
(k)
l − δ∗)

2
, k = 1, . . . , K, are computed for l = C, J,A,R. Thus the

estimate of MSEl is

M̂SEl =
1

K

K∑

k=1

(δ̂
(k)
l − δ∗)

2

for l = C, J,A, R.

The results are shown in Table 3.1 in the end of Section 3.1. A prior which has small

mean squared errors is desirable. We considered small (n1 = n2 = 10) and large sample

sizes (n1 = n2 = 50). We then chose δ∗ = −2,−1, 0, 1, 2 and η∗1 = −2,−1, 0, 1, 2 for each δ∗,

and ran K = 5000 replicates for each set of (δ∗, η∗1). It is observed that the mean squared

errors obtained by using the Jeffreys-rule prior and the independent reference prior are larger

than those using the constant prior and the Cauchy prior for both small and large samples.

However the differences are much smaller for large samples. Thus the constant prior and

the Cauchy prior might perform better than the Jeffreys-rule prior and the independent

reference prior in the inference of δ with respect to the mean squared errors.

Frequentist Coverage Probabilities

We explain how to compute the frequentist coverage probability of the one-sided posterior

credible interval for δ. For any α ∈ (0, 1), let ql
α(x1, x2) be the posterior α-quantile of δ, i.e.

P (δ ≤ ql
α(x1, x2)|x1, x2) = α for l = C, J,A, R. Then the frequentist coverage probability

of the one-sided (α × 100)% posterior credible interval (−∞, ql
α(x1, x2)) is defined as, for

l = C, J,A, R,

P(δ,η1)(δ ≤ ql
α(x1, x2)) =

n1∑

x1=0

n2∑

x2=0

I
{
δ ≤ ql

α(x1, x2)
}

LN(δ, η1),

where I{·} is the indicator function. It is desired that the frequentist coverage probability is

close to α. It could be difficult to compute the frequentist coverage probability if ql
α(x1, x2),
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l = C, J,A, R, is found first. Alternatively, we first consider, for fixed (δ∗, η∗1),

{
(x1, x2) : δ∗ ≤ ql

α(x1, x2)
}

=

{
(x1, x2) :

∫ δ∗

−∞
πl(δ|x1, x2)dδ < α

}

for l = C, J,A, R. Then the frequentist coverage probability can be approximated as follows.

For the simulated x
(k)
1 and x

(k)
2 , k = 1, . . . , K, which are generated as the previous section

on mean squared errors, the posterior density function, πl(δ|x(k)
1 , x

(k)
2 ), l = C, J,A, R, can

be computed. Then the estimate of P(δ,η1)(δ ≤ ql
α(x1, x2)) is given by

P̂(δ,η1)(δ
∗ ≤ ql

α(x1, x2)) =
1

K

K∑

k=1

I

{∫ δ∗

−∞
πl(δ|x(k)

1 , x
(k)
2 )dδ < α

}

for l = C, J,A, R. It is shown that by letting δ = log ( u
1−u

),

∫ δ∗

−∞
πC(δ|x1, x2)dδ

=

∫ eδ∗

1+eδ∗
0

∫ 1
0 ( u

1−u
)x2+1 1

u(1−u)
tnS+1(1− t)nF +1

(
1

1−t+ u
1−u

t

)n2+2

dtdu

∫ 1
0

∫ 1
0 ( u

1−u
)x2+1 1

u(1−u)
tnS+1(1− t)nF +1

(
1

1−t+ u
1−u

t

)n2+2

dtdu

,

∫ δ∗

−∞
πJ(δ|x1, x2)dδ

=

∫ eδ∗

1+eδ∗
0

∫ 1
0 ( u

1−u
)x2+0.5 1

u(1−u)
tnS(1− t)nF

(
1

1−t+ u
1−u

t

)n2+1

dtdu

∫ 1
0

∫ 1
0 ( u

1−u
)x2+0.5 1

u(1−u)
tnS(1− t)nF

(
1

1−t+ u
1−u

t

)n2+1

dtdu

,

∫ δ∗

−∞
πA(δ|x1, x2)dδ

=

∫ eδ∗

1+eδ∗
0

∫ 1
0

( u
1−u

)x2

1+{log ( u
1−u

)}2
1

u(1−u)
tnS−1(1− t)nF−1

(
1

1−t+ u
1−u

t

)n2
1

1+{log ( t
1−t

)}2 dtdu

∫ 1
0

∫ 1
0

( u
1−u

)x2

1+{log ( u
1−u

)}2
1

u(1−u)
tnS−1(1− t)nF−1

(
1

1−t+ u
1−u

t

)n2
1

1+{log ( t
1−t

)}2 dtdu
,

∫ δ∗

−∞
πR(δ|x1, x2)dδ

=

∫ eδ∗

1+eδ∗
0 ( u

1−u
)x2h(log{ u

1−u
}) 1

u(1−u)

∫ 1
0 tnS−0.5(1− t)nF−0.5

(
1

1−t+ u
1−u

t

)n2

dtdu

∫ 1
0 ( u

1−u
)x2h(log{ u

1−u
}) 1

u(1−u)

∫ 1
0 tnS−0.5(1− t)nF−0.5

(
1

1−t+ u
1−u

t

)n2

dtdu
,
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where h(·) is given by (3.9).

The output is given in Table 3.2–3.4 in the end of Section 3.1. Table 3.2–3.4 displays

the frequentist coverage probabilities of the one-sided (α×100)% posterior credible interval

for δ when α = 0.05, 0.5, 0.95, respectively. Recall that we want a prior whose frequentist

coverage probabilities are close to α. We considered small (n1 = n2 = 10) and large sample

sizes (n1 = n2 = 50). We then chose δ∗ = −2,−1, 0, 1, 2 and η∗1 = −2,−1, 0, 1, 2 for each

δ∗, and ran K = 5000 replicates for each set of (δ∗, η∗1). From Table 3.2–3.4, it is roughly

seen that the frequentist coverage probabilities computed by using the Jeffreys-rule prior

and the independent reference prior are much closer to α than those using the constant

prior and the Cauchy prior for both small and large samples. It is also observed that the

frequentist coverage probabilities derived by using the constant prior are closer to α than

those using the Cauchy prior. It is clear that the frequentist coverage probabilities are

consistently much closer to α for large samples than small samples. Hence the Jeffreys-rule

prior and the independent reference prior could be better priors for the inference of δ than

the constant prior which is better than the Cauchy prior with respect to the frequentist

matching property. This conclusion is the opposite of the one obtained when considering

the mean squared errors.
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Table 3.1: Mean Squared Errors

n1 = n2 = 10 n1 = n2 = 50

δ∗ η∗1 πC πJ πA πR πC πJ πA πR

-2 2.0207 2.2071 1.1014 1.0707 0.7234 1.6563 1.7609 1.5684

-1 1.1600 1.9900 1.6708 1.5447 0.5274 1.0233 1.2081 0.9465

-2 0 0.9538 2.0119 2.1184 1.5439 0.2906 0.3562 0.3591 0.3645

1 1.0413 1.8522 1.6140 1.2355 0.2029 0.2215 0.2372 0.2131

2 0.9688 1.9893 1.5156 1.0943 0.2761 0.3478 0.3553 0.2877

-2 1.1580 2.7084 1.3875 2.2053 0.6331 1.1753 0.9977 1.1996

-1 1.0099 2.2334 1.6232 1.9648 0.2935 0.3504 0.2895 0.3674

-1 0 0.9081 1.3929 0.9198 1.2212 0.1744 0.1852 0.1603 0.1836

1 0.8969 1.4533 0.7190 1.0455 0.1892 0.2010 0.1962 0.1939

2 1.0845 2.3403 1.2581 1.6868 0.3181 0.3771 0.3337 0.3424

-2 1.1739 2.9737 1.5390 2.6305 0.3989 0.5046 0.2951 0.4931

-1 0.9795 1.7037 0.8091 1.4414 0.2009 0.2150 0.1427 0.2113

0 0 0.8008 1.0526 0.4174 0.9482 0.1575 0.1641 0.1058 0.1609

1 1.0224 1.7590 0.8079 1.4546 0.1944 0.2080 0.1384 0.2042

2 1.2169 3.0536 1.5991 2.6568 0.4260 0.5493 0.3124 0.5335

-2 1.0892 2.3760 1.1688 1.6387 0.3050 0.3614 0.3160 0.3256

-1 0.8925 1.4068 0.7051 1.0327 0.1888 0.2004 0.1967 0.1934

1 0 0.8907 1.4054 0.9467 1.2359 0.1809 0.1913 0.1659 0.1893

1 1.0986 2.4028 1.6893 2.0667 0.3060 0.3775 0.3235 0.3905

2 1.1179 2.5853 1.3270 2.1399 0.6171 1.1596 0.9922 1.1855

-2 0.9753 2.0445 1.4677 1.1112 0.2883 0.3738 0.3666 0.2958

-1 0.9909 1.7259 1.5285 1.1936 0.2005 0.2161 0.2415 0.2090

2 0 0.9761 2.0967 2.2125 1.5867 0.2838 0.3438 0.3473 0.3523

1 1.1905 2.0721 1.7404 1.5976 0.5000 0.9685 1.1343 0.9104

2 2.0456 2.3697 1.1405 1.2183 0.6822 1.5668 1.6855 1.4915
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Table 3.2: Frequentist Coverage Probabilities of One-sided 5% Posterior Credible Interval

for δ

n1 = n2 = 10 n1 = n2 = 50

δ∗ η∗1 πC πJ πA πR πC πJ πA πR

-2 0.0440 0.0440 0.0445 0.0610 0.1000 0.0690 0.1005 0.0415

-1 0.0530 0.0520 0.0625 0.0440 0.0695 0.0530 0.0800 0.0515

-2 0 0.0540 0.0440 0.1125 0.0440 0.0515 0.0495 0.0865 0.0480

1 0.0600 0.0510 0.1950 0.0485 0.0460 0.0360 0.0910 0.0370

2 0.0615 0.0435 0.2980 0.0595 0.0430 0.0390 0.1240 0.0415

-2 0.0275 0.0275 0.0275 0.0265 0.0560 0.0505 0.0560 0.0475

-1 0.0300 0.0300 0.0340 0.0315 0.0520 0.0435 0.0570 0.0460

-1 0 0.0425 0.0425 0.0920 0.0340 0.0525 0.0495 0.0760 0.0435

1 0.0295 0.0295 0.1505 0.0400 0.0535 0.0505 0.1225 0.0530

2 0.0385 0.0385 0.2140 0.0965 0.0685 0.0620 0.1460 0.0680

-2 0.0290 0.0290 0.0005 0.0055 0.0450 0.0510 0.0140 0.0375

-1 0.0425 0.0425 0.0055 0.0325 0.0520 0.0535 0.0230 0.0440

0 0 0.0550 0.0550 0.0180 0.0580 0.0435 0.0435 0.0335 0.0445

1 0.0505 0.0505 0.0420 0.0810 0.0435 0.0465 0.0440 0.0580

2 0.0370 0.0370 0.0370 0.1090 0.0490 0.0540 0.0490 0.0665

-2 0.0095 0.0320 0.0005 0.0085 0.0425 0.0610 0.0090 0.0420

-1 0.0270 0.0765 0.0065 0.0245 0.0500 0.0630 0.0140 0.0460

1 0 0.0300 0.0655 0.0215 0.0585 0.0415 0.0535 0.0210 0.0530

1 0.0090 0.0315 0.0085 0.0625 0.0365 0.0490 0.0340 0.0580

2 0.0000 0.0015 0.0000 0.0120 0.0240 0.0570 0.0415 0.0685

-2 0.0035 0.0440 0.0000 0.0175 0.0370 0.0585 0.0195 0.0430

-1 0.0165 0.0810 0.0085 0.0795 0.0395 0.0440 0.0190 0.0555

2 0 0.0015 0.0590 0.0015 0.0565 0.0375 0.0610 0.0300 0.0570

1 0.0000 0.0025 0.0000 0.0030 0.0150 0.0685 0.0520 0.0730

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0020 0.0120
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Table 3.3: Frequentist Coverage Probabilities of One-sided 50% Posterior Credible Interval

for δ

n1 = n2 = 10 n1 = n2 = 50

δ∗ η∗1 πC πJ πA πR πC πJ πA πR

-2 0.9150 0.7175 0.9150 0.4055 0.6675 0.4935 0.5700 0.4295

-1 0.6755 0.4880 0.6820 0.3730 0.5920 0.4885 0.5550 0.4360

-2 0 0.5770 0.4355 0.6630 0.4180 0.5520 0.4810 0.6010 0.4810

1 0.5945 0.4235 0.7730 0.4460 0.5130 0.4875 0.6750 0.4995

2 0.5855 0.4450 0.8825 0.5595 0.5510 0.4900 0.7135 0.5380

-2 0.7475 0.5275 0.5465 0.3545 0.5565 0.5085 0.6255 0.4485

-1 0.5475 0.5020 0.6235 0.4445 0.5190 0.4725 0.5345 0.4770

-1 0 0.5245 0.5245 0.7190 0.4695 0.5095 0.4800 0.6310 0.4840

1 0.4905 0.4890 0.8345 0.5410 0.5175 0.4935 0.7000 0.5085

2 0.5565 0.5110 0.9190 0.6445 0.5520 0.5080 0.7690 0.5350

-2 0.3540 0.3605 0.3540 0.3675 0.5230 0.4590 0.4225 0.4290

-1 0.4390 0.4875 0.4195 0.4150 0.5085 0.5060 0.4685 0.4705

0 0 0.4685 0.5460 0.5410 0.4635 0.5035 0.5040 0.5030 0.5200

1 0.5590 0.5225 0.5885 0.5830 0.4985 0.4920 0.5405 0.5585

2 0.6510 0.6450 0.6520 0.6370 0.4660 0.5275 0.5740 0.5535

-2 0.4650 0.5045 0.0930 0.3400 0.4520 0.5070 0.2420 0.4675

-1 0.5035 0.5040 0.1690 0.4685 0.4685 0.5015 0.2935 0.5025

1 0 0.4900 0.4910 0.2860 0.5290 0.4775 0.5020 0.3735 0.5180

1 0.4600 0.5040 0.3840 0.5365 0.4645 0.5205 0.4505 0.5265

2 0.2430 0.4740 0.4525 0.6495 0.4575 0.5110 0.3830 0.5275

-2 0.4305 0.5735 0.1250 0.4465 0.4715 0.5325 0.3085 0.4705

-1 0.3965 0.5620 0.2260 0.5630 0.4710 0.4955 0.3190 0.4980

2 0 0.4295 0.5630 0.3395 0.5610 0.4425 0.5075 0.3955 0.5310

1 0.3495 0.5225 0.3440 0.6210 0.4200 0.5245 0.4465 0.5410

2 0.0875 0.3030 0.0875 0.6065 0.3285 0.4980 0.4165 0.5290
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Table 3.4: Frequentist Coverage Probabilities of One-sided 95% Posterior Credible Interval

for δ

n1 = n2 = 10 n1 = n2 = 50

δ∗ η∗1 πC πJ πA πR πC πJ πA πR

-2 1.0000 1.0000 1.0000 1.0000 1.0000 0.9950 0.9970 0.9885

-1 1.0000 0.9965 1.0000 0.9965 0.9815 0.9290 0.9440 0.9195

-2 0 0.9985 0.9485 0.9985 0.9400 0.9585 0.9345 0.9620 0.9345

1 0.9735 0.9075 0.9870 0.9275 0.9485 0.9450 0.9740 0.9480

2 0.9965 0.9520 0.9990 0.9815 0.9640 0.9430 0.9815 0.9610

-2 1.0000 0.9980 1.0000 0.9865 0.9735 0.9370 0.9585 0.9240

-1 0.9930 0.9740 0.9930 0.9315 0.9610 0.9390 0.9635 0.9415

-1 0 0.9695 0.9310 0.9815 0.9265 0.9615 0.9485 0.9770 0.9550

1 0.9645 0.9175 0.9940 0.9750 0.9490 0.9410 0.9865 0.9495

2 0.9915 0.9710 0.9995 0.9920 0.9620 0.9460 0.9885 0.9615

-2 0.9660 0.9660 0.9665 0.9010 0.9485 0.9425 0.9485 0.9260

-1 0.9560 0.9560 0.9600 0.9150 0.9585 0.9505 0.9545 0.9395

0 0 0.9395 0.9395 0.9830 0.9475 0.9645 0.9645 0.9730 0.9555

1 0.9490 0.9490 0.9940 0.9585 0.9570 0.9540 0.9815 0.9520

2 0.9630 0.9630 0.9980 0.9945 0.9440 0.9420 0.9820 0.9615

-2 0.9625 0.9625 0.7900 0.8980 0.9430 0.9485 0.8525 0.9390

-1 0.9645 0.9645 0.8385 0.9620 0.9420 0.9450 0.8760 0.9500

1 0 0.9630 0.9630 0.9215 0.9590 0.9445 0.9465 0.9160 0.9515

1 0.9610 0.9610 0.9540 0.9565 0.9435 0.9525 0.9365 0.9590

2 0.9775 0.9775 0.9775 0.9745 0.9500 0.9530 0.9500 0.9640

-2 0.9400 0.9565 0.7190 0.9305 0.9550 0.9570 0.8740 0.9410

-1 0.9390 0.9500 0.7985 0.9435 0.9455 0.9580 0.9015 0.9625

2 0 0.9485 0.9645 0.8920 0.9585 0.9445 0.9480 0.9080 0.9515

1 0.9470 0.9475 0.9245 0.9455 0.9420 0.9580 0.9250 0.9510

2 0.9405 0.9405 0.9405 0.9365 0.9065 0.9425 0.9065 0.9595
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3.2 Bivariate Binomial Model

Crowder and Sweeting (1989) considered the following bivariate binomial density

f(x1, x2|p1, p2) =

(
n

x1

)
p1

x1(1− p1)
n−x1

(
x1

x2

)
p2

x2(1− p2)
x1−x2 ,

where for fixed n, x1 ∈ {0, 1, 2, . . . , n}, x2 ∈ {0, 1, 2, . . . , x1}. Here 0 < p1, p2 < 1. Then the

Fisher information matrix of (p1, p2) is

Σ(p1, p2) = n




1
p1(1−p1)

0

0 p1

p2(1−p2)


 . (3.14)

Hence the marginal reference priors for p1 and p2 are

πR
1 (p1) ∝ 1√

p1(1− p1)
, p1 ∈ (0, 1), (3.15)

πR
2 (p2) ∝ 1√

p2(1− p2)
, p2 ∈ (0, 1), (3.16)

and the independent reference prior for (p1, p2) is

πR(p1, p2) ∝ 1√
p1(1− p1)p2(1− p2)

. (3.17)

It is also a first order matching prior for p1 and p2, and the reference prior for (p1, p2)

when one of the parameters p1 or p2 is the parameter of interest and the other is nuisance

parameter.

3.3 Two Binomial Proportions with Pre-screen Test

Extending the ECMO example of Sun and Berger (1998), we now mainly derive two inde-

pendent reference priors for the log-odds ratio of two binomial proportions when an initial

screen test is taken in a clinical trial. We consider the following two cases.
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Figure 3.1: Diagram for Case I

3.3.1 Case I

Suppose that n individuals are chosen for a clinical trial. A pre-screen test is applied

with probability of survival p0. Then the individuals who are alive after the screen test

are randomly given no treatment with probability ρ and a treatment with probability 1-

ρ. Let p1 be the probability of success for the non-treatment (control) group and p2 be

the probability of success for the treatment group. Figure 3.1 shows the diagram for this

example. Then the probability density function is given by

f(k, k1, y1, y2 | p0, p1, p2, ρ) =

(
n

k

)
p0

k(1− p0)
n−k

(
k

k1

)
ρk1(1− ρ)k−k1

×
(
k1

y1

)
p1

y1(1− p1)
k1−y1

(
k − k1

y2

)
p2

y2(1− p2)
k−k1−y2 , (3.18)

where for fixed n, k ∈ {0, 1, 2, . . . , n}, k1 ∈ {0, 1, 2, . . . , k}, y1 ∈ {0, 1, 2, . . . , k1}, y2 ∈

{0, 1, 2, . . . , k − k1}. Thus the Fisher information matrix of (p0, p1, p2, ρ) is

Σ(p0, p1, p2, ρ) = n




1
p0(1−p0)

0 0 0

0 p0ρ
p1(1−p1)

0 0

0 0 p0(1−ρ)
p2(1−p2)

0

0 0 0 p0

ρ(1−ρ)




. (3.19)
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The following result is easy and the proof is omitted.

Proposition 3.1 Consider the model (3.18).

(a) The marginal reference priors for p0, p1, p2 and ρ are

πR
1 (p0) ∝ 1√

p0(1− p0)
, p0 ∈ (0, 1), (3.20)

πR
2 (p1) ∝ 1√

p1(1− p1)
, p1 ∈ (0, 1), (3.21)

πR
3 (p2) ∝ 1√

p2(1− p2)
, p2 ∈ (0, 1), (3.22)

πR
4 (ρ) ∝ 1√

ρ(1− ρ)
, ρ ∈ (0, 1). (3.23)

(b) The independent reference prior for (p0, p1, p2, ρ) is

πR(p0, p1, p2, ρ) ∝ 1√
p0(1− p0)p1(1− p1)p2(1− p2)ρ(1− ρ)

. (3.24)

(c) The prior in (b) is a first order matching prior for p0, p1, p2 and ρ.

(d) The prior in (b) is the one-at-a-time reference prior for (p0, p1, p2, ρ) with any ordering.

Now consider the log-odds ratio of p1 and p2 defined as

δ = η2 − η1, (3.25)

where

ηi = log

(
pi

1− pi

)
, i = 1, 2. (3.26)

It is the interest parameter to compare the treatment and control group. Then the Fisher

information matrix of (δ, η1, p0, ρ) is

Σ(δ, η1, p0, ρ) =




B B 0 0

B B + C 0 0

0 0 n
p0(1−p0)

0

0 0 0 np0

ρ(1−ρ)




, (3.27)
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where

B =
np0(1− ρ)eδ+η1

(1 + eδ+η1)2
and C =

np0ρeη1

(1 + eη1)2
.

Thus

|Σ| = BC
n2

(1− p0)(1− ρ)ρ
,

|Σc
11| = (B + C)

n2

(1− p0)(1− ρ)ρ
, |Σc

22| = B
n2

(1− p0)(1− ρ)ρ
,

|Σc
33| = BC

np0

ρ(1− ρ)
, |Σc

44| = BC
n

p0(1− p0)
.

Consequently,

|Σ|
|Σc

11|
=

BC

B + C
=

np0ρ(1− ρ)eδ+η1

ρ(1 + eδ+η1)2 + eδ(1− ρ)(1 + eη1)2
,

|Σ|
|Σc

22|
= C =

np0ρeη1

(1 + eη1)2
,

|Σ|
|Σc

33|
=

n

p0(1− p0)
,

|Σ|
|Σc

44|
=

np0

ρ(1− ρ)
.

We note that |Σ|/|Σc
ii|, i = 2, 3, 4, satisfy Condition (2.3) but |Σ|/|Σc

11| does not. Thus

we cannot apply Theorem 2.1 to this problem. We use the iterative algorithm directly to

derive the independent reference prior for (δ, η1, p0, ρ).

Proposition 3.2 Consider the model (3.18) with the new parameterization (3.25) and

(3.26). Then the marginal reference priors for δ, η1, p0 and ρ are

πR
1 (δ) ∝ exp

{
1

2

∫ 1

0

∫ ∞

−∞
πR

2 (η1)π
R
4 (ρ) log[h1(δ, η1, ρ)]dη1dρ

}
, δ ∈ IR, (3.28)

πR
2 (η1) =

eη1/2

π(1 + eη1)
, η1 ∈ IR, (3.29)

πR
3 (p0) =

1

π
√

p0(1− p0)
, p0 ∈ (0, 1), (3.30)

πR
4 (ρ) =

1

π
√

ρ(1− ρ)
, ρ ∈ (0, 1), (3.31)
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where

h1(δ, η1, ρ) =
ρ(1− ρ)eδ+η1

ρ(1 + eδ+η1)2 + eδ(1− ρ)(1 + eη1)2
.

Consequently, the independent reference prior for (δ, η1, p0, ρ) is

πR(δ, η1, p0, ρ) = πR
1 (δ)πR

2 (η1)π
R
3 (p0)π

R
4 (ρ). (3.32)

Proof. Because |Σ|/|Σc
ii|, i = 2, 3, 4, satisfy Condition (2.3), (3.29)–(3.31) hold immedi-

ately. It is easily shown that πR
2 (η1), πR

3 (p0) and πR
4 (ρ) are proper. Thus we need to apply

Algorithm B to derive πR
1 (δ) since |Σ|/|Σc

11| does not meet Condition (2.3). Then

πR
1 (δ) ∝ exp

{
1

2

∫ 1

0

∫ 1

0

∫ ∞

−∞
πR

2 (η1)π
R
3 (p0)π

R
4 (ρ) log

( |Σ|
|Σc

11|

)
dη1dp0dρ

}

= exp
{

1

2

∫ 1

0

∫ 1

0

∫ ∞

−∞
πR

2 (η1)π
R
3 (p0)π

R
4 (ρ) log[h∗1(δ, η1, p0, ρ)]dη1dp0dρ

}
,

where

h∗1(δ, η1, p0, ρ) =
p0ρ(1− ρ)eδ+η1

ρ(1 + eδ+η1)2 + eδ(1− ρ)(1 + eη1)2
.

Clearly,

πR
1 (δ) ∝ exp

{
1

2

∫ 1

0
πR

3 (p0) log(p0)dp0 +
1

2

∫ 1

0

∫ ∞

−∞
πR

2 (η1)π
R
4 (ρ) log[h1(δ, η1, ρ)]dη1dρ

}
.

The result holds.

3.3.2 Case II

Suppose that two groups of n1 and n2 individuals are selected for a clinical trial. First, an

initial screen test is conducted to the group of n1 individuals with probability of survival

p0. Then the individuals who are alive after the screen test are given no treatment. Next,
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Figure 3.2: Diagram for Case II

the same initial screen test is conducted to the group of n2 individuals with probability of

survival p0. Then the individuals who are alive after the screen test are given a treatment.

Let p1 be the probability of success under no treatment and p2 be the probability of success

under treatment. The diagram for this case is given in Figure 3.2. Then the probability

density function is given by

f(k1, y1, k2, y2 | p0, p1, p2) =

(
n1

k1

)
p0

k1(1− p0)
n1−k1

(
k1

y1

)
p1

y1(1− p1)
k1−y1

×
(
n2

k2

)
p0

k2(1− p0)
n2−k2

(
k2

y2

)
p2

y2(1− p2)
k2−y2 , (3.33)

where for fixed n1 and n2, k1 ∈ {0, 1, 2, . . . , n1}, y1 ∈ {0, 1, 2, . . . , k1}, k2 ∈ {0, 1, 2, . . . , n2}, y2 ∈

{0, 1, 2, . . . , k2}. Thus the Fisher information matrix of (p0, p1, p2) is

Σ(p0, p1, p2) =




n1+n2

p0(1−p0)
0 0

0 n1p0

p1(1−p1)
0

0 0 n2p0

p2(1−p2)




. (3.34)

The following proposition is easy and the proof is omitted.

Proposition 3.3 Consider the model (3.33).
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(a) The marginal reference priors for p0, p1 and p2 are

πR
1 (p0) ∝ 1√

p0(1− p0)
, p0 ∈ (0, 1), (3.35)

πR
2 (p1) ∝ 1√

p1(1− p1)
, p1 ∈ (0, 1), (3.36)

πR
3 (p2) ∝ 1√

p2(1− p2)
, p2 ∈ (0, 1). (3.37)

(b) The independent reference prior for (p0, p1, p2) is

πR(p0, p1, p2) ∝ 1√
p0(1− p0)p1(1− p1)p2(1− p2)

. (3.38)

(c) The prior in (b) is a first order matching prior for p0, p1 and p2.

(d) The prior in (b) is the one-at-a-time reference prior for (p0, p1, p2) with any ordering.

As stated in the previous case, we are interested in δ = η2−η1 given by (3.25) and (3.26).

The Fisher information matrix of (δ, η1, p0) is

Σ(δ, η1, p0) =




B B 0

B B + C 0

0 0 n1+n2

p0(1−p0)




, (3.39)

where

B =
n2p0e

δ+η1

(1 + eδ+η1)2
and C =

n1p0e
η1

(1 + eη1)2
.

Clearly,

|Σ| = BC
n1 + n2

p0(1− p0)
, |Σc

11| = (B + C)
n1 + n2

p0(1− p0)
,

|Σc
22| = B

n1 + n2

p0(1− p0)
, |Σc

33| = BC.

Then

|Σ|
|Σc

11|
=

BC

B + C
=

n1n2p0e
δ+η1

n1(1 + eδ+η1)2 + n2eδ(1 + eη1)2
,
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|Σ|
|Σc

22|
= C =

n1p0e
η1

(1 + eη1)2
,

|Σ|
|Σc

33|
=

n1 + n2

p0(1− p0)
.

It is similar to Case I that |Σ|/|Σc
ii|, i = 2, 3, satisfy Condition (2.3) but |Σ|/|Σc

11| does not.

Thus we cannot apply Theorem 2.1 to this problem either. We use the iterative algorithm

to find the independent reference prior for (δ, η1, p0).

Proposition 3.4 Consider the model (3.33) with the new parameterization (3.25) and

(3.26). Then the marginal reference priors for δ, η1 and p0 are

πR
1 (δ) ∝ exp

{
1

2

∫ ∞

−∞
πR

2 (η1) log[h2(δ, η1)]dη1

}
, δ ∈ IR, (3.40)

πR
2 (η1) =

eη1/2

π(1 + eη1)
, η1 ∈ IR, (3.41)

πR
3 (p0) =

1

π
√

p0(1− p0)
, p0 ∈ (0, 1), (3.42)

where

h2(δ, η1) =
eδ+η1

n1(1 + eδ+η1)2 + n2eδ(1 + eη1)2
.

Consequently, the independent reference prior for (δ, η1, p0) is

πR(δ, η1, p0) = πR
1 (δ)πR

2 (η1)π
R
3 (p0). (3.43)

Proof. It is clear that |Σ|/|Σc
22| and |Σ|/|Σc

33| satisfy Condition (2.3) so that (3.41) and

(3.42) hold immediately. It is easy to see that πR
2 (η1) and πR

3 (p0) are proper. Thus we need

to apply Algorithm B to derive πR
1 (δ) since |Σ|/|Σc

11| does not meet Condition (2.3). Then

πR
1 (δ) ∝ exp

{
1

2

∫ 1

0

∫ ∞

−∞
πR

2 (η1)π
R
3 (p0) log

( |Σ|
|Σc

11|

)
dη1dp0

}

= exp
{

1

2

∫ 1

0

∫ ∞

−∞
πR

2 (η1)π
R
3 (p0) log[h∗2(δ, η1, p0)]dη1dp0

}
,
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where

h∗2(δ, η1, p0) =
p0e

δ+η1

n1(1 + eδ+η1)2 + n2eδ(1 + eη1)2
.

Clearly,

πR
1 (δ) ∝ exp

{
1

2

∫ 1

0
πR

3 (p0) log(p0)dp0 +
1

2

∫ ∞

−∞
πR

2 (η1) log[h1(δ, η1)]dη1

}
.

The result then holds.

3.4 Exponential Model: Two Independent Samples

Let X1 and X2 be independent exponential random variables with means 1/θ1 and 1/θ2,

respectively. Here θi > 0 are unknown. The joint density of (X1, X2) is

f(x1, x2 | θ1, θ2) = θ1 exp(−x1θ1)θ2 exp(−x2θ2), x1, x2 ≥ 0.

It is easy to compute the Fisher information matrix of (θ1, θ2), which is given by

Σ(θ1, θ2) =




1
θ2
1

0

0 1
θ2
2


 . (3.44)

Hence the marginal reference priors for θ1 and θ2 are

πR
1 (θ1) ∝ 1

θ1

, θ1 > 0, (3.45)

πR
2 (θ2) ∝ 1

θ2

, θ2 > 0, (3.46)

and the independent reference prior for (θ1, θ2) is

πR(θ1, θ2) ∝ 1

θ1θ2

. (3.47)
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It is a first order matching prior for θ1 and θ2, and also the reference prior for (θ1, θ2) when

one of the parameters θ1 or θ2 is of interest and the other is nuisance parameter.

Alternatively, let φ = θ2

θ1+θ2
, the proportion explained by the mean of X1 in total mean

of X1 and X2, and ω = θ1 + θ2. The Fisher information matrix of (φ, ω) is

Σ(φ, ω) =




φ2+(1−φ)2

φ2(1−φ)2
1−2φ

ωφ(1−φ)

1−2φ
ωφ(1−φ)

2
ω2


 . (3.48)

Clearly,

|Σ| =
1

ω2φ2(1− φ)2
, |Σc

11| =
2

ω2
,

|Σc
22| =

φ2 + (1− φ)2

φ2(1− φ)2
, |Σc

12| = |Σc
21| =

1− 2φ

ωφ(1− φ)
.

Then

|Σ|
|Σc

11|
=

1

2φ2(1− φ)2
,

|Σ|
|Σc

22|
=

1

ω2

{
1

φ2 + (1− φ)2

}
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
=

1

ωφ(1− φ)(1− 2φ)
.

Hence the marginal reference priors for φ and ω are

πR
1 (φ) ∝ 1

φ(1− φ)
, φ ∈ (0, 1), (3.49)

πR
2 (ω) ∝ 1

ω
, ω > 0, (3.50)

and the independent reference prior for (φ, ω) is

πR(φ, ω) ∝ 1

ωφ(1− φ)
. (3.51)

It is a first order matching prior for φ, and the reference prior for (φ, ω) when φ is the

parameter of interest and ω is nuisance parameter.
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We could consider the third set of parameters. Let φ = θ1

θ2
, the ratio of two means, and

ω = θ1θ2. Then the Fisher information matrix of (φ, ω) is

Σ(φ, ω) =
1

4




2
φ2 0

0 2
ω2


 . (3.52)

Hence the marginal reference priors for φ and ω are

πR
1 (φ) ∝ 1

φ
, φ > 0, (3.53)

πR
2 (ω) ∝ 1

ω
, ω > 0, (3.54)

and the independent reference prior for (φ, ω) is

πR(φ, ω) ∝ 1

φω
. (3.55)

It is a first order matching prior for φ and ω. By Datta and M. Ghosh (1995), the indepen-

dent reference prior for (φ, ω) is the same as the reference prior for (φ, ω) when one of the

parameters φ or ω is the interest and the other is nuisance parameter.

3.5 Gamma Model

Consider the gamma density

f(x | α, β) =
βα

Γ(α)
xα−1 exp (−βx), x > 0.

Here α > 0 and β > 0 are unknown paramaters. The Fisher information matrix of (α, β) is

Σ(α, β) =




ξ(α) − 1
β

− 1
β

α
β2


 , (3.56)

where ξ(α) =
∑∞

i=0 (x + i)−2. It is easy to see that

|Σ| = ξ(α)α− 1

β2
, |Σc

11| =
α

β2
, |Σc

22| = ξ(α), |Σc
12| = |Σc

21| = − 1

β
.
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Then we have

|Σ|
|Σc

11|
=

ξ(α)α− 1

α
,

|Σ|
|Σc

22|
=

1

β2

{
ξ(α)α− 1

ξ(α)

}
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
= −ξ(α)α− 1

β
.

Hence the marginal reference priors for α and β are

πR
1 (α) ∝

√
ξ(α)α− 1

α
, α > 0, (3.57)

πR
2 (β) ∝ 1

β
, β > 0. (3.58)

The independent reference prior for (α, β) is

πR(α, β) ∝
√

ξ(α)α− 1√
αβ

. (3.59)

It is a first order matching prior for α, and also the reference prior for (α, β) when α is the

parameter of interest and β is nuisance parameter.

We can also consider alternative reparameterization (α, µ) for the gamma model, where

µ = E(x | α, µ). The density is

f(x | α, µ) =
αα

µαΓ(α)
xα−1 exp

(
−α

µ
x

)
.

Then the Fisher information matrix of (α, µ) is

Σ(α, µ) =




ξ(α)α−1
α

0

0 α
µ2


 . (3.60)

Hence the marginal reference priors for α and µ are

πR
1 (α) ∝

√
ξ(α)α− 1

α
, α > 0, (3.61)

πR
2 (µ) ∝ 1

µ
, µ > 0, (3.62)
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and the independent reference prior for (α, µ) is

πR(α, µ) ∝
√

ξ(α)α− 1√
αµ

. (3.63)

It is a first order matching prior for α and µ, and the reference prior for (α, µ) when one of

α or µ is the parameter of interest and the other is nuisance parameter.

3.6 Inverse Gaussian Model

For x > 0, α > 0, ψ > 0, the inverse Gaussian density is

f(x|α, ψ) =
(

α

2π

)1/2 1

x3/2
exp

{
−αx

2

(
ψ − 1

x

)2
}

.

Then the Fisher information matrix of (α, ψ) is

Σ(α, ψ) =




1
2α2 0

0 α
ψ


 . (3.64)

Hence the marginal reference priors for α and ψ are

πR
1 (α) ∝ 1

α
, α > 0, (3.65)

πR
2 (ψ) ∝ 1√

ψ
, ψ > 0, (3.66)

and the independent reference prior for (α, ψ) is

πR(α, ψ) ∝ 1

α
√

ψ
. (3.67)

It is a first order matching prior for α and ψ, and the reference prior for (α, ψ) when one of

the parameters α or ψ is of interest and the other is nuisance parameter.
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Now we consider alternative parameterization, θ =
√

α
ψ

and β =
√

αψ. The Fisher

information matrix of (θ, β) is

Σ(θ, β) =
1

2




1+2β2

θ2
1−2β2

θβ

1−2β2

θβ
1+2β2

β2


 . (3.68)

Thus

|Σ| = 2

θ2
, |Σc

11| =
1 + 2β2

β2
, |Σc

22| =
1 + 2β2

θ2
, |Σc

12| = |Σc
21| =

1− 2β2

2θβ
,

and then

|Σ|
|Σc

11|
=

1

θ2

(
2β2

1 + 2β2

)
,

|Σ|
|Σc

22|
=

2

1 + 2β2
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
=

4β

θ(1− 2β2)
.

Hence the marginal reference priors for θ and β are

πR
1 (θ) ∝ 1

θ
, θ > 0, (3.69)

πR
2 (β) ∝ 1√

1 + 2β2
, β > 0, (3.70)

and the independent reference prior for (θ, β) is

πR(θ, β) ∝ 1

θ
√

1 + 2β2
. (3.71)

It is also a first order matching prior for β, and the reference prior for (θ, β) when β is the

interest parameter and θ is nuisance parameter.

We now consider the third parameterization for the inverse Gaussian density. Then for

x > 0, µ > 0, σ > 0, the inverse Gaussian density is rewritten as

f(x | µ, σ2) =
1√
2πσ

1

x3/2
exp

{
−(x− µ)2

2σ2µ2x

}
.
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The Fisher information matrix of (µ, σ2) is

Σ(µ, σ2) =




1
µ3σ2 0

0 1
2σ4


 . (3.72)

Hence the marginal reference priors for µ and σ2 are

πR
1 (µ) ∝ 1

µ3/2
, µ > 0, (3.73)

πR
2 (σ2) ∝ 1

σ2
, σ2 > 0, (3.74)

and the independent reference prior for (µ, σ2) is

πR(µ, σ2) ∝ 1

µ3/2σ2
. (3.75)

It is a first order matching prior for µ and σ2. By Datta and M. Ghosh (1995), the inde-

pendent reference prior for (µ, σ2) is equivalent to the reference prior for (µ, σ2) when one

of the parameters µ or σ2 is of interest and the other is nuisance parameter.

3.7 Lognormal Model

The lognormal density is, for x > 0,

f(x | µ, σ2) =
1√
2πσ

1

x
exp

{
−(log x− µ)2

2σ2

}
,

where µ ∈ IR and σ > 0 are unknown parameters. Then the Fisher information matrix of

(µ, σ) is

Σ(µ, σ) =




1
σ2 0

0 2
σ2


 . (3.76)
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Hence the marginal reference priors for µ and σ are

πR
1 (µ) ∝ 1, µ ∈ IR, (3.77)

πR
2 (σ) ∝ 1

σ
, σ > 0, (3.78)

and the independent reference prior for (µ, σ) is

πR(µ, σ) ∝ 1

σ
. (3.79)

It is a first order matching prior for µ and σ, and the reference prior for (µ, σ) when one of

µ or σ is the parameter of interest and the other is nuisance parameter.

Now we consider alternative parameterization. Let θ = exp
(
µ + σ2

2

)
, the mean, and

β = σ2. Then the Fisher information matrix of (θ, β) is

Σ(θ, β) =
1

2




1
θ2β

− 1
2θβ

− 1
2θβ

β+2
4β2


 . (3.80)

It is easy to compute

|Σ| = 1

2θ2β3
, |Σc

11| =
β + 2

4β2
, |Σc

22| =
1

θ2β2
, |Σc

12| = |Σc
21| = − 1

4θβ
.

Then

|Σ|
|Σc

11|
=

1

θ2

{
2

β(β + 2)

}
,

|Σ|
|Σc

22|
=

1

2β2
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
= − 2

θβ2
.

Hence the marginal reference priors for θ and β are

πR
1 (θ) ∝ 1

θ
, θ > 0, (3.81)

πR
2 (β) ∝ 1

β
, β > 0, (3.82)
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and the independent reference prior for (θ, β) is

πR(θ, β) ∝ 1

θβ
. (3.83)

It is a first order matching prior for β. Furthermore, it is also the reference prior when β is

the parameter of interest and θ is the nuisance parameter.

3.8 Normal Model

For x ∈ IR, the normal density is

f(x|µ, σ2) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}
.

Here µ ∈ IR is a unknown mean and σ2 > 0 is a unknown variance. Then the Fisher

information matrix of (µ, σ) is

Σ(µ, σ) =




1
σ2 0

0 2
σ2


 . (3.84)

Hence the marginal reference priors for µ and σ are

πR
1 (µ) ∝ 1, µ ∈ IR, (3.85)

πR
2 (σ) ∝ 1

σ
, σ > 0, (3.86)

and the independent reference prior for (µ, σ) is

πR(µ, σ) ∝ 1

σ
. (3.87)

It is also a first order matching prior for µ and σ, and the reference prior for (µ, σ) when one

of the parameters µ or σ is the parameter of interest and the other is nuisance parameter.
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3.9 Normal Model: Two Independent Samples

3.9.1 Unequal Variances

Let X1 and X2 be independent normal random variables with means µ1 and µ2, and variances

σ2
1 and σ2

2. Then for xi ∈ IR, µi ∈ IR, σi > 0, i = 1, 2, the joint density is

f(x1, x2|µ1, µ2, σ
2
1, σ

2
2) =

1√
2πσ1

exp

{
−(x1 − µ1)

2

2σ2
1

}
1√

2πσ2

exp

{
−(x2 − µ2)

2

2σ2
2

}
.

Then the Fisher information matrix of (µ1, µ2, σ1, σ2) is

Σ(µ1, µ2, σ1, σ2) =




1
σ2
1

0 0 0

0 1
σ2
2

0 0

0 0 2
σ2
1

0

0 0 0 2
σ2
2




. (3.88)

Hence the marginal reference priors for µ1, µ2, σ1 and σ2 are

πR
1 (µ1) ∝ 1, µ1 ∈ IR, (3.89)

πR
2 (µ2) ∝ 1, µ2 ∈ IR, (3.90)

πR
3 (σ1) ∝ 1

σ1

, σ1 > 0, (3.91)

πR
4 (σ2) ∝ 1

σ2

, σ2 > 0, (3.92)

and the independent reference prior for (µ1, µ2, σ1, σ2) is

πR(µ1, µ2, σ1, σ2) ∝ 1

σ1σ2

. (3.93)

It is a first order matching prior for µ1, µ2, σ1 and σ2, and also the one-at-a-time reference

prior for (µ1, µ2, σ1, σ2) with any ordering.
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Alternatively, let θ = µ1µ2, the product of two means, and ω =
√

µ2

µ1
when µ1, µ2 > 0.

Then the Fisher information matrix of (θ, ω, σ1, σ2) is

Σ(θ, ω, σ1, σ2) =




ω4σ2
1+σ2

2

4θω2σ2
1σ2

2

ω4σ2
1−σ2

2

2ω3σ2
1σ2

2
0 0

ω4σ2
1−σ2

2

2ω3σ2
1σ2

2

θ(ω4σ2
1+σ2

2)

ω4σ2
1σ2

2
0 0

0 0 2
σ2
1

0

0 0 0 2
σ2
2




. (3.94)

Thus

|Σ| =
4

ω2σ4
1σ

4
2

, |Σc
11| =

4θ(ω4σ2
1 + σ2

2)

ω4σ4
1σ

4
2

, |Σc
22| =

ω4σ2
1 + σ2

2

θω2σ4
1σ

4
2

,

|Σc
33| =

2

ω2σ2
1σ

4
2

, |Σc
44| =

2

ω2σ4
1σ

2
2

,

and then

|Σ|
|Σc

11|
=

ω2

θ(ω4σ2
1 + σ2

2)
,

|Σ|
|Σc

22|
=

4θ

ω4σ2
1 + σ2

2

,

|Σ|
|Σc

33|
=

2

σ2
1

,
|Σ|
|Σc

44|
=

2

σ2
2

.

It is clear that |Σ|/|Σc
ii|, i = 1, 3, 4, satisfy Condition (2.3) but |Σ|/|Σc

22| does not. Thus

we cannot apply Theorem 2.1 to this example. We use the iterative algorithm to compute

the independent reference prior for (θ, ω, σ1, σ2).

Proposition 3.5 Let {[1/√j,
√

j], j = 1, 2, . . .} be an increasing sequence of compact

subsets of (0,∞) for σ1 and {[1/√2j,
√

2j], j = 1, 2, . . .} for σ2. Then the marginal reference

priors for θ, ω, σ1 and σ2 are

πR
1 (θ) ∝ 1√

θ
, θ > 0, (3.95)

πR
2 (ω) ∝ 1

ω
, ω > 0, (3.96)
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πR
3 (σ1) ∝ 1

σ1

, σ1 > 0, (3.97)

πR
4 (σ2) ∝ 1

σ2

, σ2 > 0. (3.98)

Consequently, the independent reference prior for (θ, ω, σ1, σ2) is

πR(θ, ω, σ1, σ2) ∝ 1√
θωσ1σ2

. (3.99)

Proof. Clearly, (3.95), (3.97) and (3.98) hold since |Σ|/|Σc
ii|, i = 1, 3, 4, satisfy Condition

(2.3). It is easily shown that πR
1 (θ), πR

3 (σ1) and πR
4 (σ2) are improper. Thus we need

an argument of compact sets and use Algorithm B′ to derive πR
2 (ω) since |Σ|/|Σc

22| does

not meet Condition (2.3). Choose {[aj, bj], j = 1, 2, . . .} as an increasing sequence of

compact subsets of (0,∞) for θ, where aj → 0 and bj → ∞ as j → ∞. Also choose

{[1/√j,
√

j], j = 1, 2, . . .} as an increasing sequence of compact subsets of (0,∞) for σ1 and

{[1/√2j,
√

2j], j = 1, 2, . . .} for σ2. Then by applying Algorithm B′, it can be seen that

π2j(ω) ∝ exp





∫√2j
1/
√

2j

∫√j
1/
√

j

∫ bj
aj

πR
1 (θ)πR

3 (σ1)π
R
4 (σ2) log

( |Σ|
|Σc

22|
)
dθdσ1dσ2

2
∫√2j
1/
√

2j

∫√j
1/
√

j

∫ bj
aj

πR
1 (θ)πR

3 (σ1)πR
4 (σ2)dθdσ1dσ2





= exp





∫√2j
1/
√

2j

∫√j
1/
√

j

∫ bj
aj

1√
θσ1σ2

log
(

4θ
ω4σ2

1+σ2
2

)
dθdσ1dσ2

2
∫√2j
1/
√

2j

∫√j
1/
√

j

∫ bj
aj

1√
θσ1σ2

dθdσ1dσ2





∝ exp





√
bj log bj −√aj log aj

2(
√

bj −√aj)
−

∫√2j
1/
√

2j

∫√j
1/
√

j

log(ω4σ2
1+σ2

2)

σ1σ2
dσ1dσ2

2 log j log(2j)





.

Set ω0 = 1. Then

πR
2 (ω) = lim

j→∞
π2j(ω)

π2j(ω0)
= lim

j→∞
π2j(ω)

π2j(1)

∝ lim
j→∞

exp





∫√2j
1/
√

2j

∫√j
1/
√

j

log(σ2
1+σ2

2)

σ1σ2
dσ1dσ2 −

∫√2j
1/
√

2j

∫√j
1/
√

j

log(ω4σ2
1+σ2

2)

σ1σ2
dσ1dσ2

2 log j log(2j)





.

By using several transformations and Taylor expansions in the integration,

∫ √
2j

1/
√

2j

∫ √
j

1/
√

j

log(ω4σ2
1 + σ2

2)

σ1σ2

dσ1dσ2 ≈ log(2j) log2(ω4j)

4
+

(
1

8j2
− 1

2

) (
ω4 +

1

ω4

)
+

log3(2j)

12
,

∫ √
2j

1/
√

2j

∫ √
j

1/
√

j

log(σ2
1 + σ2

2)

σ1σ2

dσ1dσ2 ≈ log(2j) log2 j

4
+

1

4j2
− 1 +

log3(2j)

12
.
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Thus

πR
2 (ω) ∝ lim

j→∞
exp

{
B1j + B2j

2 log j log(2j)

}
,

where

B1j =
log(2j){log2 j − log2(ω4j)}

4
= −2 log(2j)(log j log ω + 2 log2 ω),

B2j =

(
1

8j2
− 1

2

) (
2− ω4 − 1

ω4

)
.

It is easily proven that

lim
j→∞

B1j

2 log j log(2j)
= − log ω,

lim
j→∞

B2j

2 log j log(2j)
= 0.

Consequently,

πR
2 (ω) ∝ exp (− log ω) =

1

ω
.

The result holds.

By Sun and Ye (1999), the reference prior for (θ, ω, σ1, σ2) in the grouped ordering of

{θ, (ω, σ1, σ2)}, where θ is the interest parameter and (ω, σ1, σ2) is the group of nuisance

parameters with the same importance, is expressed as

π(θ, ω, σ1, σ2) ∝ g(θ)√
θσ2

1σ
2
2

√
σ2

1 +
σ2

2

ω4
,

where g(θ) is any positive real function. Previously, Berger and Bernardo (1989) computed

the reference prior for (θ, ω) where σ1 and σ2 are known, when the parameter of interest is

θ and nuisance parameter is ω. Sun and Ye (1995) extended it by considering more normal

means.
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3.9.2 Equal Variances

Assume σ2
1 = σ2

2 = σ2. Let

θ1 =
µ1 − µ2

σ
and θ2 =

µ1 + µ2

σ
.

The Fisher information matrix of (θ1, θ2, σ) is

Σ(θ1, θ2, σ) =
1

2




1 0 θ1

σ

0 1 θ2

σ

θ1

σ
θ2

σ

θ2
1+θ2

2+8

σ2




. (3.100)

It is easy to show

|Σ| =
1

σ2
, |Σc

11| =
θ2
1 + 8

4σ2
, |Σc

22| =
θ2
2 + 8

4σ2
, |Σc

33| =
1

4
,

|Σc
12| = |Σc

21| = −θ1θ2

4σ2
, |Σc

13| = |Σc
31| = − θ1

4σ
, |Σc

23| = |Σc
32| =

θ2

4σ
.

Then

|Σ|
|Σc

11|
=

4

θ2
1 + 8

,
|Σ|
|Σc

22|
=

4

θ2
2 + 8

,

|Σ|
|Σc

33|
=

4

σ2
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
= − 4

θ1θ2

,

|Σ|
|Σc

13|
=

|Σ|
|Σc

31|
= − 4

θ1σ
,

|Σ|
|Σc

23|
=

|Σ|
|Σc

32|
=

4

θ2σ
.

Hence the marginal reference priors for θ1, θ2 and σ are

πR
1 (θ1) ∝ 1√

θ2
1 + 8

, θ1 ∈ IR, (3.101)

πR
2 (θ2) ∝ 1√

θ2
2 + 8

, θ2 ∈ IR, (3.102)

πR
3 (σ) ∝ 1

σ
, σ > 0, (3.103)

and the independent reference prior for (θ1, θ2, σ) is

πR(θ1, θ2, σ) ∝ 1

σ
√

(θ2
1 + 8)(θ2

2 + 8)
. (3.104)
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3.9.3 Behrens-Fisher Problem

We are intrerested in θ = µ1 − µ2, the difference between two means, under the unequal

variances. We define ω = µ1 + µ2, the sum of two means. It is easy to show that the Fisher

information matrix of (θ, ω, σ1, σ2) is

Σ(θ, ω, σ1, σ2) =




σ2
1+σ2

2

4σ2
1σ2

2

σ2
2−σ2

1

4σ2
1σ2

2
0 0

σ2
2−σ2

1

4σ2
1σ2

2

σ2
1+σ2

2

4σ2
1σ2

2
0 0

0 0 2
σ2
1

0

0 0 0 2
σ2
2




. (3.105)

Thus

|Σ| =
1

σ4
1σ

4
2

, |Σc
11| = |Σc

22| =
σ2

1 + σ2
2

σ4
1σ

4
2

,

|Σc
33| =

1

2σ2
1σ

4
2

, |Σc
44| =

1

2σ4
1σ

2
2

,

|Σc
ij| =





σ2
2−σ2

1

4σ4
1σ4

2
, if (i, j) = (1, 2), (2, 1),

0, otherwise,

and then

|Σ|
|Σc

11|
=

|Σ|
|Σc

22|
=

1

σ2
1 + σ2

2

,

|Σ|
|Σc

33|
=

2

σ2
1

,
|Σ|
|Σc

44|
=

2

σ2
2

,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
=

4

σ2
2 − σ2

1

.

Hence the marginal reference priors for θ, ω, σ1 and σ2 are

πR
1 (θ) ∝ 1, θ ∈ IR, (3.106)

πR
2 (ω) ∝ 1, ω ∈ IR, (3.107)

πR
3 (σ1) ∝ 1

σ1

, σ1 > 0, (3.108)

πR
4 (σ2) ∝ 1

σ2

, σ2 > 0, (3.109)
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and the independent reference prior for (θ, ω, σ1, σ2) is

πR(θ, ω, σ1, σ2) ∝ 1

σ1σ2

. (3.110)

It is also a first order matching prior for θ, ω, σ1 and σ2, and the one-at-a-time reference

prior for (θ, ω, σ1, σ2) with any ordering.

3.9.4 Fieller-Creasy Problem

We are intrerested in the ratio of the two means, θ = µ1

µ2
, under the equal variances σ2

1 =

σ2
2 ≡ σ2. Then the Fisher information matrix of (θ, µ2, σ) is

Σ(θ, µ2, σ) =
1

σ2




µ2
2 θµ2 0

θµ2 1 + θ2 0

0 0 4




. (3.111)

Thus

|Σ| =
4µ2

2

σ6
, |Σc

11| =
4(1 + θ2)

σ4
, |Σc

22| =
4µ2

2

σ4
, |Σc

33| =
µ2

2

σ4
,

|Σc
ij| =





4θµ2

σ4 , if (i, j) = (1, 2), (2, 1),

0, otherwise,

and then

|Σ|
|Σc

11|
=

µ2
2

σ2

(
1

1 + θ2

)
,

|Σ|
|Σc

22|
=

1

σ2
,

|Σ|
|Σc

33|
=

4

σ2
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
=

µ2

θσ2
.

Hence the marginal reference priors for θ, µ2 and σ are

πR
1 (θ) ∝ 1√

1 + θ2
, θ ∈ IR, (3.112)
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πR
2 (µ2) ∝ 1, µ2 ∈ IR, (3.113)

πR
3 (σ) ∝ 1

σ
, σ > 0, (3.114)

and the independent reference prior for (θ, µ2, σ) is

πR(θ, µ2, σ) ∝ 1

σ
√

1 + θ2
. (3.115)

It is a first order matching prior for θ and σ. The independent reference prior for (θ, µ2, σ)

is identical to the one-at-a-time reference prior for (θ, µ2, σ) which was derived by Bernardo

(1977), when θ is of interest.

3.10 Bivariate Normal Model

Let (X1, X2)
′ be a bivariate normal random vector with unknown mean parameters (µ1, µ2)

′

and unknown covariance matrix Σ =




σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


, whose density is given by

f(x1, x2 | µ1, µ2, σ1, σ2, ρ)

=
1

2πσ1σ2

√
1− ρ2

exp

{
−σ2

2(x1 − µ1)
2 + σ2

1(x2 − µ2)
2 − 2ρσ1σ2(x1 − µ1)(x2 − µ2)

2σ2
1σ

2
2(1− ρ2)

}
.

Here ρ ∈ (−1, 1) is the correlation between X1 and X2, and xi ∈ IR, µi ∈ IR, σi > 0 for

i = 1, 2.

All the reparameterizations in this section were considered by Berger and Sun (2007).

The Fisher information matrices and the reference priors referred here were also derived by

Berger and Sun (2007).
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3.10.1 Commonly Used Parameters

The Fisher information matrix of (µ1, µ2, σ1, σ2, ρ) is

Σ(µ1, µ2, σ1, σ2, ρ) =
1

1− ρ2




1
σ2
1

− ρ
σ1σ2

0 0 0

− ρ
σ1σ2

1
σ2
2

0 0 0

0 0 2−ρ2

σ2
1

− ρ2

σ1σ2
− ρ

σ1

0 0 − ρ2

σ1σ2

2−ρ2

σ2
2

− ρ
σ2

0 0 − ρ
σ1

− ρ
σ2

1+ρ2

1−ρ2




. (3.116)

Thus

|Σ| =
4

σ4
1σ

4
2(1− ρ2)4

, |Σc
11| =

4

σ2
1σ

4
2(1− ρ2)4

, |Σc
22| =

4

σ4
1σ

2
2(1− ρ2)4

,

|Σc
33| =

2

σ2
1σ

4
2(1− ρ2)4

, |Σc
44| =

2

σ4
1σ

2
2(1− ρ2)4

, |Σc
55| =

4

σ4
1σ

4
2(1− ρ2)2

,

|Σc
12| = |Σc

21| = − 4ρ

σ3
1σ

3
2(1− ρ2)4

, |Σc
34| = |Σc

43| = − 2ρ2

σ3
1σ

3
2(1− ρ2)4

,

|Σc
35| = |Σc

53| =
2ρ

σ3
1σ

4
2(1− ρ2)3

, |Σc
45| = |Σc

54| = − 2ρ

σ4
1σ

3
2(1− ρ2)3

,

|Σc
13| = |Σc

31| = |Σc
14| = |Σc

41| = |Σc
15| = |Σc

51| = 0,

|Σc
23| = |Σc

32| = |Σc
24| = |Σc

42| = |Σc
25| = |Σc

52| = 0,

and then

|Σ|
|Σc

11|
=

1

σ2
1

,
|Σ|
|Σc

22|
=

1

σ2
2

,

|Σ|
|Σc

33|
=

2

σ2
1

,
|Σ|
|Σc

44|
=

2

σ2
2

,

|Σ|
|Σc

55|
=

1

(1− ρ2)2
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
= − 1

σ1σ2ρ
,

|Σ|
|Σc

34|
=

|Σ|
|Σc

43|
= − 2

σ1σ2ρ2
,

|Σ|
|Σc

35|
=

|Σ|
|Σc

53|
=

2

σ1ρ(1− ρ2)
,

|Σ|
|Σc

45|
=

|Σ|
|Σc

54|
= − 2

σ2ρ(1− ρ2)
.
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Hence the marginal reference priors for µ1, µ2, σ1, σ2 and ρ are

πR
1 (µ1) ∝ 1, µ1 ∈ IR, (3.117)

πR
2 (µ2) ∝ 1, µ2 ∈ IR, (3.118)

πR
3 (σ1) ∝ 1

σ1

, σ1 > 0, (3.119)

πR
4 (σ2) ∝ 1

σ2

, σ2 > 0, (3.120)

πR
5 (ρ) ∝ 1

1− ρ2
, ρ ∈ (−1, 1), (3.121)

and the independent reference prior for (µ1, µ2, σ1, σ2, ρ) is

πR(µ1, µ2, σ1, σ2, ρ) ∝ 1

σ1σ2(1− ρ2)
. (3.122)

It is a first order matching prior for µ1, µ2 and ρ, and the one-at-a-time reference prior

for (µ1, µ2, σ1, σ2, ρ) in the ordering of {ρ, σ1, σ2, µ1, µ2}, {ρ, σ2, σ1, µ1, µ2}, {µ1, µ2, ρ, σ1, σ2}

and {µ1, µ2, ρ, σ2, σ1}. Note that Berger and Sun (2007) also derived the Jeffreys-rule prior,

πJ and the independence Jeffreys prior, πIJ . They are given by

πJ(µ1, µ2, σ1, σ2, ρ) =
1

σ2
1σ

2
2(1− ρ2)

, (3.123)

πIJ(µ1, µ2, σ1, σ2, ρ) =
1

σ1σ2(1− ρ2)3/2
. (3.124)

Any of the Jeffreys priors are not the same as the independent reference prior given by

(3.122).

We can consider alternative reparameterization, θ =
σ2
2

σ2
1

and ξ = σ1σ2. Then the Fisher
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information matrix of (µ1, µ2, θ, ρ, ξ) is

Σ(µ1, µ2, θ, ρ, ξ) =
1

1− ρ2




√
θ

ξ
−ρ

ξ
0 0 0

−ρ
ξ

1
ξ
√

θ
0 0 0

0 0 1
θ2 0 0

0 0 0 1 + ρ2 −ρ
ξ

0 0 0 −ρ
ξ

1
ξ2




. (3.125)

Thus

|Σ| =
1

θ2ξ4(1− ρ2)4
, |Σc

11| =
1

θ5/2ξ3(1− ρ2)4
,

|Σc
22| =

1

θ3/2ξ3(1− ρ2)4
, |Σc

33| =
1

ξ4(1− ρ2)3
,

|Σc
44| =

1

θ2ξ4(1− ρ2)2
, |Σc

55| =
1 + ρ2

θ2ξ2(1− ρ2)3
,

|Σc
ij| =





− ρ
θ2ξ3(1−ρ2)4

, if (i, j) = (1, 2), (2, 1),

− ρ
θ2ξ3(1−ρ2)3

, if (i, j) = (4, 5), (5, 4),

0, otherwise,

and then

|Σ|
|Σc

11|
=

√
θ

ξ
,

|Σ|
|Σc

22|
=

1

ξ
√

θ
,

|Σ|
|Σc

33|
=

1

θ2(1− ρ2)
,

|Σ|
|Σc

44|
=

1

(1− ρ2)2
,

|Σ|
|Σc

55|
=

1

ξ2(1− ρ4)
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
= − 1

ξρ
,

|Σ|
|Σc

45|
=

|Σ|
|Σc

54|
= − 1

ξρ(1− ρ2)
.

Hence the marginal reference priors for µ1, µ2, θ, ρ and ξ are

πR
1 (µ1) ∝ 1, µ1 ∈ IR, (3.126)

πR
2 (µ2) ∝ 1, µ2 ∈ IR, (3.127)

πR
3 (θ) ∝ 1

θ
, θ > 0, (3.128)
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πR
4 (ρ) ∝ 1

1− ρ2
, ρ ∈ (−1, 1), (3.129)

πR
5 (ξ) ∝ 1

ξ
, ξ > 0, (3.130)

and the independent reference prior for (µ1, µ2, θ, ρ, ξ) is

πR(µ1, µ2, θ, ρ, ξ) ∝ 1

θξ(1− ρ2)
. (3.131)

It is is a first order matching prior for µ1, µ2, θ and ρ, and also the one-at-a-time reference

prior for (µ1, µ2, θ, ρ, ξ) in the ordering of {θ, ρ, ξ, µ1, µ2} and {ρ, θ, ξ, µ1, µ2}.

3.10.2 Cholesky Decomposition

Define

η1 =
1

σ1

, η2 =
1

σ2

√
1− ρ2

and η3 = − ρ

σ1

√
1− ρ2

. (3.132)

It is easy to verify that

Ω−1 =




η1 η3

0 η2







η1 0

η3 η2


 .

So (η1, η2, η3) is a set of parameters for a type of Cholesky decomposition of Ω−1. The

Fisher information matrix of (µ1, µ2, η1, η2, η3) is

Σ(µ1, µ2, η1, η2, η3) =




η2
1 + η2

3 η2η3 0 0 0

η2η3 η2
2 0 0 0

0 0 2
η2
1

0 0

0 0 0
2η2

1+η2
3

η2
1η2

2
− η3

η2
1η2

0 0 0 − η3

η2
1η2

1
η2
1




. (3.133)
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Thus

|Σ| =
4

η2
1

, |Σc
11| =

4

η4
1

, |Σc
22| =

4(η2
1 + η2

3)

η4
1η

2
2

,

|Σc
33| = 2, |Σc

44| =
2η2

2

η2
1

, |Σc
55| =

4(η2
1 + η2

3/2)

η2
1

,

and then

|Σ|
|Σc

11|
= η2

1,
|Σ|
|Σc

22|
=

η2
1η

2
2

η2
1 + η2

3

,

|Σ|
|Σc

33|
=

2

η2
1

,
|Σ|
|Σc

44|
=

2

η2
2

,

|Σ|
|Σc

55|
=

1

η2
1 + η2

3/2
.

It is easily seen that |Σ|/|Σc
ii|, i = 1, . . . , 4, satisfy Condition (2.3) but |Σ|/|Σc

55| does not.

Thus we cannot apply Theorem 2.1 to this case. Now, we return to the iterative algorithm

and use it to compute the independent reference prior for (µ1, µ2, η1, η2, η3).

Proposition 3.6 Suppose that {[1/j, jj], j = 1, 2, . . .} is an increasing sequence of com-

pact subsets of (0,∞) for η1. Then the marginal reference priors for µ1, µ2, η1, η2 and η3

are

πR
1 (µ1) ∝ 1, µ1 ∈ IR, (3.134)

πR
2 (µ2) ∝ 1, µ2 ∈ IR, (3.135)

πR
3 (η1) ∝ 1

η1

, η1 > 0, (3.136)

πR
4 (η2) ∝ 1

η2

, η2 > 0, (3.137)

πR
5 (η3) ∝ 1, η3 ∈ IR. (3.138)

Consequently, the independent reference prior for (µ1, µ2, η1, η2, η3) is

πR(µ1, µ2, η1, η2, η3) ∝ 1

η1η2

. (3.139)
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Proof. It is shown that |Σ|/|Σc
ii|, i = 1, . . . , 4, satisfy Condition (2.3) so that (3.134)–

(3.137) hold immediately. It is easily seen that πR
1 (µ1), πR

2 (µ2), πR
3 (η1) and πR

4 (η2) are

improper. Thus we need an argument of compact sets and use Algorithm B′ to derive

πR
5 (η3) since |Σ|/|Σc

55| does not meet Condition (2.3). Choose {[aij, bij], j = 1, 2, . . .},

i = 1, 2, as an increasing sequence of compact subsets of IR for µ1 and µ2 respectively,

where aij → −∞ and bij → ∞ as j → ∞ for i = 1, 2. Also choose {[1/j, jj], j = 1, 2, . . .}

as an increasing sequence of compact subsets of (0,∞) for η1 and {[a3j, b3j], j = 1, 2, . . .}

for η2, where a3j → 0 and b3j → ∞ as j → ∞. Then by applying Algorithm B′, it can be

shown that

π5j(η3) ∝ exp





∫ b3j
a3j

∫ jj

1/j

∫ b2j
a2j

∫ b1j
a1j

πR
1 (µ1)π

R
2 (µ2)π

R
3 (η1)π

R
4 (η2) log

( |Σ|
|Σc

55|
)
dµ1dµ2dη1dη2

−2
∫ b3j
a3j

∫ jj

1/j

∫ b2j
a2j

∫ b1j
a1j

πR
1 (µ1)πR

2 (µ2)πR
3 (η1)πR

4 (η2)dµ1dµ2dη1dη2





= exp





∫ b3j
a3j

∫ jj

1/j
1

η1η2
log

(
η2

1 +
η2
3

2

)
dη1dη2

−2
∫ b3j
a3j

∫ jj

1/j
1

η1η2
dη1dη2





= exp





∫ jj

1/j
1
η1

log
(
η2

1 +
η2
3

2

)
dη1

−2(j + 1) log j





.

Set η0
3 = 0. Then

πR
5 (η3) = lim

j→∞
π5j(η3)

π5j(η0
3)

= lim
j→∞

π5j(η3)

π5j(0)

∝ lim
j→∞

exp





2
∫ jj

1/j
1
η1

log η1dη1 −
∫ jj

1/j
1
η1

log
(
η2

1 +
η2
3

2

)
dη1

2(j + 1) log j





= lim
j→∞

exp





(j − 1) log j

2
−

∫ jj

1/j
1
η1

log
(
η2

1 +
η2
3

2

)
dη1

2(j + 1) log j





.

By using several transformations and Taylor expansions in the integration, we obtain

∫ jj

1/j

1

η1

log

(
η2

1 +
η2

3

2

)
dη1 ≈ j2 log2 j + log j log

(
η2

3

2

)
− 2

j2η2
3

+
η2

3

4j2j
+

log2(η2
3/2)

4
.

Thus

πR
5 (η3) ∝ lim

j→∞
exp

{
− B1j + B2j

2(j + 1) log j

}
,
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where

B1j = log2 j and B2j = log j log

(
η2

3

2

)
− 2

j2η2
3

+
η2

3

4j2j
+

log2(η2
3/2)

4
.

It is easily shown that since lim
j→∞

log j/(j + 1) = 0,

lim
j→∞

B1j

2(j + 1) log j
= lim

j→∞
B2j

2(j + 1) log j
= 0.

Hence

πR
5 (η3) ∝ exp(0) = 1.

The result then holds.

Berger and Sun (2007) derived the reference priors for (µ1, µ2, η1, η2, η3) in the ordering

of {µ1, µ2, η1, η2, η3}, {µ1, µ2, η1, η3, η2} and {µ1, µ2, η1, (η2, η3)}. The reference prior for the

ordering of {µ1, µ2, η1, η2, η3} and {µ1, µ2, η1, (η2, η3)} is

π(µ1, µ2, η1, η2, η3) ∝ 1

η1η2

,

which is the same as the independent reference prior for (µ1, µ2, η1, η2, η3) given by (3.139).

For the ordering of {µ1, µ2, η1, η3, η2}, the reference prior is

π(µ1, µ2, η1, η2, η3) ∝ 1

η1η2

√
η2

1 + η2
3/2

.

3.10.3 Orthogonal Parameterizations

Define

ω =
η3

η2

= −ρσ2

σ1

. (3.140)



Mi Hyun Lee Chapter 3. Examples 68

It is easy to show that

Ω−1 =




1 ω

0 1







η2
1 0

0 η2
2







1 0

ω 1


 =




η1 η2ω

0 η2







η1 0

η2ω η2




since



η1 η3

0 η2


 =




1 ω

0 1







η1 0

0 η2


 .

Thus (η1, η2, ω) is a set of parameters for a type of Cholesky decomposition of Ω−1. The

Fisher information matrix of (µ1, µ2, η1, η2, ω) is

Σ(µ1, µ2, η1, η2, ω) =




η2
1 + η2

2ω
2 η2

2ω 0 0 0

η2
2ω η2

2 0 0 0

0 0 2
η2
1

0 0

0 0 0 2
η2
2

0

0 0 0 0
η2
2

η2
1




. (3.141)

Note that the Fisher information matrix is almost diagonal, except for the left-top corner

corresponding to (µ1, µ2). Thus

|Σ| =
4η2

2

η2
1

, |Σc
11| =

4η2
2

η4
1

, |Σc
22| =

4(η2
1 + η2

2ω
2)

η4
1

,

|Σc
33| = 2η2

2, |Σc
44| =

2η4
2

η2
1

, |Σc
55| = 4,

|Σc
ij| =





4η2
2ω

η4
1

, if (i, j) = (1, 2), (2, 1),

0, otherwise,

and then

|Σ|
|Σc

11|
= η2

1,
|Σ|
|Σc

22|
=

η2
1η

2
2

η2
1 + η2

2ω
2
,

|Σ|
|Σc

33|
=

2

η2
1

,
|Σ|
|Σc

44|
=

2

η2
2

,
|Σ|
|Σc

55|
=

η2
2

η2
1

,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
=

η2
1

ω
.
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Hence the marginal reference priors for µ1, µ2, η1, η2 and ω are

πR
1 (µ1) ∝ 1, µ1 ∈ IR, (3.142)

πR
2 (µ2) ∝ 1, µ2 ∈ IR, (3.143)

πR
3 (η1) ∝ 1

η1

, η1 > 0, (3.144)

πR
4 (η2) ∝ 1

η2

, η2 > 0, (3.145)

πR
5 (ω) ∝ 1, ω ∈ IR, (3.146)

and the independent reference prior for (µ1, µ2, η1, η2, ω) is

πR(µ1, µ2, η1, η2, ω) ∝ 1

η1η2

. (3.147)

It is also a first order matching prior for µ1, µ2, η1, η2 and ω, and the one-at-a-time reference

prior for (µ1, µ2, η1, η2, ω) with any ordering.

Alternatively, define

ξ1 = η1η2 =
1

σ1σ2

√
1− ρ2

and ξ2 =
η1

η2

=
σ2

√
1− ρ2

σ1

. (3.148)

Then the Fisher information matrix of (µ1, µ2, ξ1, ξ2, ω) is

Σ(µ1, µ2, ξ1, ξ2, ω) =




ξ1(ξ2
2+ω2)

ξ2

ωξ1
ξ2

0 0 0

ωξ1
ξ2

ξ1
ξ2

0 0 0

0 0 1
ξ2
1

0 0

0 0 0 1
ξ2
2

0

0 0 0 0 1
ξ2
2




. (3.149)

Note again that the Fisher information matrix is almost diagonal, except for the left-top

corner corresponding to (µ1, µ2). Thus

|Σ| =
1

ξ4
2

, |Σc
11| =

1

ξ1ξ5
2

, |Σc
22| =

ξ2
2 + ω2

ξ1ξ5
2

,
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|Σc
33| =

ξ2
1

ξ4
2

, |Σc
44| = |Σc

55| =
1

ξ2
2

,

|Σc
ij| =





ω
ξ1ξ5

2
, if (i, j) = (1, 2), (2, 1),

0, otherwise,

and then

|Σ|
|Σc

11|
= ξ1ξ2,

|Σ|
|Σc

22|
=

ξ1ξ2

ξ2
2 + ω2

,

|Σ|
|Σc

33|
=

1

ξ2
1

,
|Σ|
|Σc

44|
=

|Σ|
|Σc

55|
=

1

ξ2
2

,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
=

ξ1ξ2

ω
.

Hence the marginal reference priors for µ1, µ2, ξ1, ξ2 and ω are

πR
1 (µ1) ∝ 1, µ1 ∈ IR, (3.150)

πR
2 (µ2) ∝ 1, µ2 ∈ IR, (3.151)

πR
3 (ξ1) ∝ 1

ξ1

, ξ1 > 0, (3.152)

πR
4 (ξ2) ∝ 1

ξ2

, ξ2 > 0, (3.153)

πR
5 (ω) ∝ 1, ω ∈ IR, (3.154)

and the independent reference prior for (µ1, µ2, ξ1, ξ2, ω) is

πR(µ1, µ2, ξ1, ξ2, ω) ∝ 1

ξ1ξ2

. (3.155)

It is a first order matching prior for µ1, µ2, ξ1, ξ2 and ω, and also the one-at-a-time reference

prior for (µ1, µ2, ξ1, ξ2, ω) with any ordering.
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3.11 Poisson Model: Two Independent Samples

Let X1 and X2 be independent Poisson random variables with means λ1 and λ2. Then for

xi ∈ {0, 1, 2, . . .}, λi > 0, i = 1, 2, the joint density of (X1, X2) is

f(x1, x2|λ1, λ2) =
e−λ1λx1

1

x1!

e−λ2λx2
2

x2!
.

Then the Fisher information matrix of (λ1, λ2) is

Σ(λ1, λ2) =




1
λ1

0

0 1
λ2


 . (3.156)

Hence the marginal reference priors for λ1 and λ2 are

πR
1 (λ1) ∝ 1√

λ1

, λ1 > 0, (3.157)

πR
2 (λ2) ∝ 1√

λ2

, λ2 > 0, (3.158)

and the independent reference prior for (λ1, λ2) is

πR(λ1, λ2) ∝ 1√
λ1λ2

. (3.159)

It is also a first order matching prior for λ1 and λ2, and the reference prior for (λ1, λ2)

when one of the parameters λ1 or λ2 is the interest parameter and the other is nuisance

parameter.

We consider alternative reparameterization, θ = λ1

λ2
, the ratio of two means. Then the

Fisher information matrix of (θ, λ2) is

Σ(θ, λ2) =




λ2

θ
1

1 1+θ
λ2


 . (3.160)

Thus

|Σ| = 1

θ
, |Σc

11| =
1 + θ

λ2

, |Σc
22| =

λ2

θ
, |Σc

12| = |Σc
21| = 1,
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and then

|Σ|
|Σc

11|
=

λ2

θ(1 + θ)
,

|Σ|
|Σc

22|
=

1

λ2

,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
=

1

θ
.

Hence the marginal reference priors for θ and λ2 are

πR
1 (θ) ∝ 1√

θ(1 + θ)
, θ > 0, (3.161)

πR
2 (λ2) ∝ 1√

λ2

, λ2 > 0, (3.162)

and the independent reference prior for (θ, λ2) is

πR(θ, λ2) ∝ 1√
λ2θ(1 + θ)

. (3.163)

It is a first order matching prior for θ, and also the reference prior for (θ, λ2) when θ is of

interest and λ2 is nuisance parameter.

3.12 Weibull Model

The Weibull density, denoted by W (η, β), is

f(x|η, β) =
βxβ−1

ηβ
exp



−

(
x

η

)β


, x > 0. (3.164)

Here η > 0 is a unknown scale parameter and β > 0 is a unknown shape parameter. Then

the Fisher information matrix of (η, β) is

Σ(η, β) =




β2

η2 −1+γ1

η

−1+γ1

η
γ2+2γ1+1

β2


 , (3.165)
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where γi =
∫∞
0 [log (z)]ie−zdz. Thus

|Σ| =
γ2 − γ2

1

η2
, |Σc

11| =
γ2 + 2γ1 + 1

β2
,

|Σc
22| =

β2

η2
, |Σc

12| = |Σc
21| = −1 + γ1

η
,

and then

|Σ|
|Σc

11|
=

1

η2

{
β2(γ2 − γ2

1)

γ2 + 2γ1 + 1

}
,

|Σ|
|Σc

22|
=

γ2 − γ2
1

β2
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
= − γ2 − γ2

1

η(1 + γ1)
.

Hence the marginal reference priors for η and β are

πR
1 (η) ∝ 1

η
, η > 0, (3.166)

πR
2 (β) ∝ 1

β
, β > 0, (3.167)

and the independent reference prior for (η, β) is

πR(η, β) ∝ 1

ηβ
. (3.168)

It is also a first order matching prior for η and β, and the reference prior for (η, β) when

one of the parameters η or β is the interest and the other is nuisance parameter.

There are three other Weibull densities which are given by

f(x|α, β) = αββxβ−1 exp
{
−(αx)β

}
, x > 0, α > 0, β > 0, (3.169)

f(x|θ, β) =
βxβ−1

θ
exp

(
−xβ

θ

)
, x > 0, θ > 0, β > 0, (3.170)

f(x|λ, β) = λβxβ−1 exp
(
−λxβ

)
, x > 0, λ > 0, β > 0. (3.171)

The parameters (η, β) in (3.164) and (α, β) in (3.169) perform in parallel. Also the behaviors

of (θ, β) in (3.170) and (λ, β) in (3.171) are parallel. Refer to Sun (1997) for details. Thus

only the model (3.170) is considered here.
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The Fisher information matrix of (θ, β) for the Weibull model (3.170) is

Σ(θ, β) =




1
θ2 −1+γ1+log θ

θβ

−1+γ1+log θ
θβ

γ2−γ2
1+(1+γ1+log θ)2

β2


 , (3.172)

where γi =
∫∞
0 [log (z)]ie−zdz. Thus

|Σ| =
γ2 − γ2

1

θ2β2
, |Σc

11| =
γ2 − γ2

1 + (1 + γ1 + log θ)2

β2
,

|Σc
22| =

1

θ2
, |Σc

12| = |Σc
21| = −1 + γ1 + log θ

θβ
,

and then

|Σ|
|Σc

11|
=

γ2 − γ2
1

θ2{γ2 − γ2
1 + (1 + γ1 + log θ)2} ,

|Σ|
|Σc

22|
=

γ2 − γ2
1

β2
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
= − γ2 − γ2

1

θβ(1 + γ1 + log θ)
.

Hence the marginal reference priors for θ and β are

πR
1 (θ) ∝ g(θ)

θ
, θ > 0, (3.173)

πR
2 (β) ∝ 1

β
, β > 0, (3.174)

and the independent reference prior for (θ, β) is

πR(θ, β) ∝ g(θ)

θβ
, (3.175)

where

g(θ) =
1√

γ2 − γ2
1 + (1 + γ1 + log θ)2

.

It is a first order matching prior for θ, and the reference prior for (θ, β) when θ is the

parameter of interest and β is nuisance parameter.
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3.13 Weibull Model: Two Independent Samples with

the Same Shape Parameter

Consider the stress-strength system, where Y is the strength of a system subject to the

stress X. The system is reliable when the applied stress (X) is less than its strength (Y ).

Thus the reliability of the system is defined as

ω1 = P (X < Y ). (3.176)

This is used in many areas, especially in structural and aircraft industries. Sun, Ghosh

and Basu (1998) performed the objective Bayesian analysis for ω1 by using reference and

matching priors when both of the stress and strength follow the Weibull distribution. Here

we develop the independent reference priors.

Suppose that X1, . . . , Xm are iid W (η1, β) and independently, Y1, . . . , Yn are iid W (η2, β)

with the Weibull density given by (3.164). Then for xi > 0, yj > 0, ηk > 0, β > 0, i =

1, . . . , m, j = 1, . . . , n, k = 1, 2, the joint density of x = (x1, . . . , xm) and y = (y1, . . . , yn) is

f(x, y|η1, η2, β) =




m∏

i=1

βxβ−1
i

ηβ
1

exp



−

(
xi

η1

)β










n∏

j=1

βyβ−1
j

ηβ
2

exp



−

(
yj

η2

)β





 .

First, we derive the independent reference prior for (η1, η2, β). The Fisher information

matrix of (η1, η2, β) is

Σ(η1, η2, β) =




mβ2

η2
1

0 −m(1+γ1)
η1

0 nβ2

η2
2

−n(1+γ1)
η2

−m(1+γ1)
η1

−n(1+γ1)
η2

(m+n)(γ2+2γ1+1)
β2




, (3.177)

where γi =
∫∞
0 [log (z)]ie−zdz. Thus

|Σ| =
mn(m + n)(γ2 − γ2

1)β
2

η2
1η

2
2

, |Σc
11| =

n2(γ2 − γ2
1) + mn(γ2 + 2γ1 + 1)

η2
2

,
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|Σc
22| =

m2(γ2 − γ2
1) + mn(γ2 + 2γ1 + 1)

η2
1

, |Σc
33| =

mnβ4

η2
1η

2
2

,

|Σc
12| = |Σc

21| = −mn(1 + γ1)
2

η1η2

, |Σc
13| = |Σc

31| =
mn(1 + γ1)β

2

η1η2
2

,

|Σc
23| = |Σc

32| = −mn(1 + γ1)β
2

η2
1η2

,

and then

|Σ|
|Σc

11|
=

1

η2
1

{
mn(m + n)(γ2 − γ2

1)β
2

n2(γ2 − γ2
1) + mn(γ2 + 2γ1 + 1)

}
,

|Σ|
|Σc

22|
=

1

η2
2

{
mn(m + n)(γ2 − γ2

1)β
2

m2(γ2 − γ2
1) + mn(γ2 + 2γ1 + 1)

}
,

|Σ|
|Σc

33|
=

(m + n)(γ2 − γ2
1)

β2
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
= −(m + n)(γ2 − γ2

1)β
2

η1η2(1 + γ1)2
,

|Σ|
|Σc

13|
=

|Σ|
|Σc

31|
=

(m + n)(γ2 − γ2
1)

η1(1 + γ1)
,

|Σ|
|Σc

23|
=

|Σ|
|Σc

32|
= −(m + n)(γ2 − γ2

1)

η2(1 + γ1)
.

Hence the marginal reference priors for η1, η2 and β are

πR
1 (η1) ∝ 1

η1

, η1 > 0, (3.178)

πR
2 (η2) ∝ 1

η2

, η2 > 0, (3.179)

πR
3 (β) ∝ 1

β
, β > 0, (3.180)

and the independent reference prior for (η1, η2, β) is

πR(η1, η2, β) ∝ 1

η1η2β
. (3.181)

It is also a first order matching prior for η1, η2 and β, and the one-at-a-time reference prior

for (η1, η2, β) with any ordering.

Consider alternative reparameterization, θ1 = ηβ
1 and θ2 = ηβ

2 . As you can see in (3.187),

the reliability of the system, ω1 defined as (3.176), is composed of θ1 and θ2. The Fisher
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information matrix of (θ1, θ2, β) is

Σ(θ1, θ2, β) =




m
θ2
1

0 −m(log θ1+1+γ1)
θ1β

0 n
θ2
2

−n(log θ2+1+γ1)
θ2β

−m(log θ1+1+γ1)
θ1β

−n(log θ2+1+γ1)
θ2β

K(θ1, θ2, β)




, (3.182)

where γi =
∫∞
0 [log (z)]ie−zdz and K(θ1, θ2, β) = {m(log θ1 + 1 + γ1)

2 + n(log θ2 + 1 + γ1)
2 +

(m + n)(γ2 − γ2
1)}/β2. Thus

|Σ| =
mn(m + n)(γ2 − γ2

1)

θ2
1θ

2
2β

2
,

|Σc
11| =

n{m(log θ1 + 1 + γ1)
2 + (m + n)(γ2 − γ2

1)}
θ2
2β

2
,

|Σc
22| =

m{n(log θ2 + 1 + γ1)
2 + (m + n)(γ2 − γ2

1)}
θ2
1β

2
,

|Σc
33| =

mn

θ2
1θ

2
2

,

|Σc
12| = |Σc

21| = −mn(log θ1 + 1 + γ1)(log θ2 + 1 + γ1)

θ1θ2β2
,

|Σc
13| = |Σc

31| =
mn(log θ1 + 1 + γ1)

θ1θ2
2β

,

|Σc
23| = |Σc

32| = −mn(log θ2 + 1 + γ1)

θ2
1θ2β

,

and then

|Σ|
|Σc

11|
=

m(m + n)(γ2 − γ2
1)

θ2
1{m(log θ1 + 1 + γ1)2 + (m + n)(γ2 − γ2

1)}
,

|Σ|
|Σc

22|
=

n(m + n)(γ2 − γ2
1)

θ2
2{n(log θ2 + 1 + γ1)2 + (m + n)(γ2 − γ2

1)}
,

|Σ|
|Σc

33|
=

(m + n)(γ2 − γ2
1)

β2
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
= − (m + n)(γ2 − γ2

1)

θ1θ2(log θ1 + 1 + γ1)(log θ2 + 1 + γ1)
,

|Σ|
|Σc

13|
=

|Σ|
|Σc

31|
=

(m + n)(γ2 − γ2
1)

βθ1(log θ1 + 1 + γ1)
,

|Σ|
|Σc

23|
=

|Σ|
|Σc

32|
= − (m + n)(γ2 − γ2

1)

βθ2(log θ2 + 1 + γ1)
.
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Hence the marginal reference priors for θ1, θ2 and β are

πR
1 (θ1) ∝ 1

θ1

√
m(log θ1 + 1 + γ1)2 + (m + n)(γ2 − γ2

1)
, θ1 > 0, (3.183)

πR
2 (θ2) ∝ 1

θ2

√
n(log θ2 + 1 + γ1)2 + (m + n)(γ2 − γ2

1)
, θ2 > 0, (3.184)

πR
3 (β) ∝ 1

β
, β > 0, (3.185)

and the independent reference prior for (θ1, θ2, β) is

πR(θ1, θ2, β) = πR
1 (θ1)π

R
2 (θ2)π

R
3 (β). (3.186)

Next, two independent reference priors under the Weibull stress-strength model are de-

rived by considering two different sets of nuisance parameters. When the stress and strength

are Weibull random samples, the parameter of interest in (3.176) can be rewritten as

ω1 =
η−β

1

η−β
1 + η−β

2

=
ηβ

2

ηβ
1 + ηβ

2

. (3.187)

Sun, Ghosh and Basu (1998) chose ω2 = 1/(η−β
1 + η−β

2 ) = ηβ
1 ηβ

2 /(ηβ
1 + ηβ

2 ) and β as

nuisance parameters and computed various reference priors. The independent reference

prior for (ω1, ω2, β) is derived here. The Fisher information matrix of (ω1, ω2, β) was given

by Sun, Ghosh and Basu (1998) as follows,

Σ(ω1, ω2, β) = (Iij)3×3, (3.188)

where

I11 =
m

ω2
1

+
n

(1− ω1)2
, I12 =

m

ω1ω2

− n

(1− ω1)ω2

,

I13 =
m{1 + γ1 − log (ω1ω2)}

ω1β
− n[1 + γ1 − log {(1− ω1)ω2}]

(1− ω1)β
,

I22 =
m + n

ω2
2

, I23 =
(m + n)(1 + γ1)−m log (ω1ω2)− n log {(1− ω1)ω2}

ω2β
,

I33 =
(m + n)(γ2 − γ2

1) + m{1 + γ1 − log (ω1ω2)}2 + n[1 + γ1 − log {(1− ω1)ω2}]2
β2

,
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where γi =
∫∞
0 [log (z)]ie−zdz. Thus

|Σ| =
mn(m + n)(γ2 − γ2

1)

ω2
1(1− ω1)2ω2

2β
2

,

|Σc
11| =

(m + n)2(γ2 − γ2
1) + mn log2

(
1−ω1

ω1

)

ω2
2β

2
,

|Σc
22| =

(m + n)(γ2 − γ2
1){m(1− ω1)

2 + nω2
1}

ω2
1(1− ω1)2β2

+
mn

[
1 + γ1 + ω1 log

(
1−ω1

ω1

)
− log {(1− ω1)ω2}

]2

ω2
1(1− ω1)2β2

,

|Σc
33| =

mn

ω2
1(1− ω1)2ω2

2

,

and then

|Σ|
|Σc

11|
=

an(γ2 − γ2
1)

ω2
1(1− ω1)2

{
γ2 − γ2

1 + a(1− a) log2
(

1−ω1

ω1

)} ,

|Σ|
|Σc

22|
=

mn(γ2 − γ2
1)g(ω1, ω2)

ω2
2

,

|Σ|
|Σc

33|
=

(m + n)(γ2 − γ2
1)

β2
,

where

g(ω1, ω2) =
1

(γ2 − γ2
1){m(1− ω1)2 + nω2

1}+ an
[
1 + γ1 + ω1 log

(
1−ω1

ω1

)
− log {(1− ω1)ω2}

]2

and a = m
m+n

. It is obvious that |Σ|/|Σc
ii|, i = 1, 3, satisfy Condition (2.3) but |Σ|/|Σc

22|

does not. So we cannot apply Theorem 2.1 in direct to this case. Thus we use the iterative

algorithm to derive the independent reference prior for (ω1, ω2, β).

Proposition 3.7 Choose any constants aj and bj such that aj → 0 and bj → 1 as j →∞.

Then the marginal reference priors for ω1, ω2 and β are

πR
1 (ω1) ∝ g1(ω1)

ω1(1− ω1)
, ω1 ∈ (0, 1), (3.189)

πR
2 (ω2) = lim

j→∞
Aj(ω2)

Aj(1)
, ω2 > 0, (3.190)

πR
3 (β) ∝ 1

β
, β > 0, (3.191)
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where

Aj(ω2) = exp





∫ bj
aj

g1(ω1)
ω1(1−ω1)

log h(ω1, ω2)dω1

2
∫ bj
aj

g1(ω1)
ω1(1−ω1)

dω1



 ,

g1(ω1) =
1√

γ2 − γ2
1 + a(1− a) log2

(
1−ω1

ω1

) ,

h(ω1, ω2) =
g(ω1, ω2)

ω2
2

,

g(ω1, ω2) =
1

(γ2 − γ2
1){m(1− ω1)2 + nω2

1}+ an
[
1 + γ1 + ω1 log

(
1−ω1

ω1

)
− log {(1− ω1)ω2}

]2 .

Consequently, the independent reference prior for (ω1, ω2, β) is

πR(ω1, ω2, β) = πR
1 (ω1)π

R
2 (ω2)π

R
3 (β). (3.192)

Proof. It is seen that |Σ|/|Σc
ii|, i = 1, 3, satisfy Condition (2.3) so that (3.189) and

(3.191) hold immediately. It is clear that πR
1 (ω1) and πR

3 (β) are improper. Thus we need

an argument of compact sets and use Algorithm B′ to derive πR
2 (ω2) since |Σ|/|Σc

22| does

not meet Condition (2.3). Choose any constants aj and bj such that aj → 0 and bj → 1

as j → ∞. Also choose any constants cj and dj such that cj → 0 and dj → ∞ as j → ∞.

Then by applying Algorithm B′, it can be shown that

π2j(ω2) ∝ exp





∫ dj
cj

∫ bj
aj

πR
1 (ω1)π

R
3 (β) log

( |Σ|
|Σc

22|
)
dω1dβ

2
∫ dj
cj

∫ bj
aj

πR
1 (ω1)πR

3 (β)dω1dβ





= exp





∫ dj
cj

∫ bj
aj

g1(ω1)
βω1(1−ω1)

log h(ω1, ω2)dω1dβ

2
∫ dj
cj

∫ bj
aj

g1(ω1)
βω1(1−ω1)

dω1dβ





= exp





∫ bj
aj

g1(ω1)
ω1(1−ω1)

log h(ω1, ω2)dω1

2
∫ bj
aj

g1(ω1)
ω1(1−ω1)

dω1





≡ Aj(ω2).

Set ω0
2 = 1. Thus

πR
2 (ω2) = lim

j→∞
π2j(ω2)

π2j(ω0
2)

= lim
j→∞

π2j(ω2)

π2j(1)
= lim

j→∞
Aj(ω2)

Aj(1)
.
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The result then holds.

The independent reference prior for (ω1, ω2, β) does not have a closed form because it

is practically impossible to calculate Aj(·) in πR
2 (ω2). Thus we now choose a new set of

nuisance parameters so that the independent reference prior using it has a closed form.

Consider ω2 = ηβ
2 and β as nuisance parameters. Define γi =

∫∞
0 [log (z)]ie−zdz for i ≥ 0.

Then the Fisher information matrix of (ω1, ω2, β) is

Σ(ω1, ω2, β) = (Iij)3×3, (3.193)

where

I11 =
m

ω2
1(1− ω1)2

, I12 = − m

ω1(1− ω1)ω2

,

I13 =
m

[
1 + γ1 + log

{
(1−ω1)ω2

ω1

}]

ω1(1− ω1)β
, I22 =

m + n

ω2
2

,

I23 = −
m

[
1 + γ1 + log

{
(1−ω1)ω2

ω1

}]
+ n(1 + γ1 + log ω2)

ω2β
,

I33 =
(m + n)(γ2 − γ2

1) + m
[
1 + γ1 + log

{
(1−ω1)ω2

ω1

}]2
+ n(1 + γ1 + log ω2)

2

β2
.

Thus

|Σ| =
mn(m + n)(γ2 − γ2

1)

ω2
1(1− ω1)2ω2

2β
2

,

|Σc
11| =

(m + n)2(γ2 − γ2
1) + mn log2

(
1−ω1

ω1

)

ω2
2β

2
,

|Σc
22| =

m(m + n)(γ2 − γ2
1) + mn(1 + γ1 + log ω2)

2

ω2
1(1− ω1)2β2

,

|Σc
33| =

mn

ω2
1(1− ω1)2ω2

2

,

|Σc
12| = |Σc

21| = −
m(m + n)(γ2 − γ2

1)−mn(1 + γ1 + log ω2) log
(

1−ω1

ω1

)

ω1(1− ω1)ω2β2
,

|Σc
13| = |Σc

31| =
mn log

(
ω1

1−ω1

)

ω1(1− ω1)ω2
2β

,
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|Σc
23| = |Σc

32| = −mn(1 + γ1 + log ω2)

ω2
1(1− ω1)2ω2β

.

Let a = m/(m + n). Then we have

|Σ|
|Σc

11|
=

an(γ2 − γ2
1)

ω2
1(1− ω1)2

{
γ2 − γ2

1 + a(1− a) log2
(

1−ω1

ω1

)} ,

|Σ|
|Σc

22|
=

n(γ2 − γ2
1)

ω2
2 {γ2 − γ2

1 + (1− a)(1 + γ1 + log ω2)2} ,

|Σ|
|Σc

33|
=

(m + n)(γ2 − γ2
1)

β2
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
= − n(γ2 − γ2

1)

ω2ω1(1− ω1)
{
(γ2 − γ2

1)− (1− a)(1 + γ1 + log ω2) log
(

1−ω1

ω1

)} ,

|Σ|
|Σc

13|
=

|Σ|
|Σc

31|
=

(m + n)(γ2 − γ2
1)

βω1(1− ω1) log
(

ω1

1−ω1

) ,

|Σ|
|Σc

23|
=

|Σ|
|Σc

32|
= − (m + n)(γ2 − γ2

1)

βω2(1 + γ1 + log ω2)
.

Thus the marginal reference priors for ω1, ω2 and β are

πR
1 (ω1) ∝ g1(ω1)

ω1(1− ω1)
, ω1 ∈ (0, 1), (3.194)

πR
2 (ω2) ∝ g2(ω2)

ω2

, ω2 > 0, (3.195)

πR
3 (β) ∝ 1

β
, β > 0, (3.196)

where

g1(ω1) =
1√

γ2 − γ2
1 + a(1− a) log2

(
1−ω1

ω1

) ,

g2(ω2) =
1√

γ2 − γ2
1 + (1− a)(1 + γ1 + log ω2)2

.

Consequently, the independent reference prior for (ω1, ω2, β) is

πR(ω1, ω2, β) ∝ g1(ω1)g2(ω2)

(1− ω1)ω1ω2β
. (3.197)

The reference priors for (ω1, ω2, β) when ω2 = ηβ
2 are the same as those when ω2 = 1/(η−β

1 +

η−β
2 ) = ηβ

1 ηβ
2 /(ηβ

1 + ηβ
2 ). However the independent reference prior for (ω1, ω2, β), given by

(3.197), is different from all of the reference priors.



Mi Hyun Lee Chapter 3. Examples 83

3.14 One-way Random Effects ANOVA Model

The unbalanced one-way random effects ANOVA model is

Xij = µ + αi + εij, i = 1, . . . , k, j = 1, . . . , ni,

where µ ∈ IR, αi iid N(0, τ 2), τ > 0, εij iid N(0, σ2), σ > 0, and αi and εij are mutually

independent.

Let η = τ2

σ2 . Then the Fisher information matrix of (η, σ2, µ) is

Σ(η, σ2, µ) =




s22(η)
2

s11(η)
2σ2 0

s11(η)
2σ2

n
2σ4 0

0 0 s11(η)
σ2




, (3.198)

where n =
∑k

i=1 ni and spq(x) =
∑k

i=1
np

i

(1+nix)q . Thus

|Σ| =
s11(η){ns22(η)− s11(η)2}

4σ6
, |Σc

11| =
ns11(η)

2σ6
,

|Σc
22| =

s11(η)s22(η)

2σ2
, |Σc

33| =
ns22(η)− s11(η)2

4σ4
,

|Σc
ij| =





s11(η)2

2σ4 , if (i, j) = (1, 2), (2, 1),

0, otherwise,

and then

|Σ|
|Σc

11|
=

ns22(η)− s11(η)2

2n
,

|Σ|
|Σc

22|
=

1

σ4

{
ns22(η)− s11(η)2

2s22(η)

}
,

|Σ|
|Σc

33|
=

s11(η)

σ2
,

|Σ|
|Σc

12|
=

|Σ|
|Σc

21|
=

ns22(η)− s11(η)2

2σ2s11(η)
.

Hence the marginal reference priors for η, σ2 and µ are

πR
1 (η) ∝

√
ns22(η)− s11(η)2, η > 0, (3.199)
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πR
2 (σ2) ∝ 1

σ2
, σ2 > 0, (3.200)

πR
3 (µ) ∝ 1, µ ∈ IR, (3.201)

and the independent reference prior for (η, σ2, µ) is

πR(η, σ2, µ) ∝
√

ns22(η)− s11(η)2

σ2
. (3.202)

It is also a first order matching prior for η and µ, and the one-at-a-time reference prior for

(η, σ2, µ) in the ordering of {µ, η, σ2}, {η, µ, σ2} and {η, σ2, µ}.

3.15 Two-parameter Exponential Family

Referring to Sun and Ye (1996), a two-parameter exponential family has a density of

f(x|µ, β) = exp {β[U1(x) + g(µ)U2(x) + µG′
1(µ)−G1(µ)]−G2(β)} ,

where both G1(µ) = − ∫
g(µ)dµ and G2(β), β < 0 are infinitely differentiable and strictly

convex functions. See Sun and Ye (1996) for details on the two-parameter exponential family.

The gamma [Section 3.5], inverse Gaussian [Section 3.6], lognormal [Section 3.7] and normal

[Section 3.8] models are some well-known examples of the two-parameter exponential family.

The Fisher information matrix of (µ, β) is

Σ(µ, β) =



−βG′′

1(µ) 0

0 G′′
2(β)


 . (3.203)

Hence the marginal reference priors for µ and β are

πR
1 (µ) ∝

√
G′′

1(µ), (3.204)

πR
2 (β) ∝

√
G′′

2(β), (3.205)
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and the independent reference prior for (µ, β) is

πR(µ, β) ∝
√

G′′
1(µ)G′′

2(β). (3.206)

It is a first order matching prior for µ and β. The independent reference prior for (µ, β) is

the same as the reference prior for (µ, β), derived by Sun and Ye (1996), when one of the

parameters µ or β is the interest parameter and the other is nuisance parameter.

3.16 Proper Two-parameter Dispersion Model

A two-parameter dispersion model is defined as

f(y|µ, λ) = c(λ, y) exp{λt(y, µ)}

for some functions c(·) (> 0) and t(·). When c(λ, y) can be expressed as a(λ)b(y), such

models are called as proper dispersion models. In general, µ is the mean of the distribution.

A two-parameter exponential family in Section 3.15 is an example of proper two-parameter

dispersion model. Garvan and Ghosh (1997) derived noninformative priors, such as Jeffreys,

reference and probability matching priors, for two-parameter dispersion models. In this

section, only a proper two-parameter dispersion model is considered. Then the Fisher

information matrix of (µ, λ) has the form of

Σ(µ, λ) =




h11(µ)h12(λ) 0

0 h21(λ)h22(µ)


 (3.207)

for some positive functions h11(·), h12(·), h21(·) and h22(·). Thus the marginal reference

priors for µ and λ are

πR
1 (µ) ∝

√
h11(µ), (3.208)

πR
2 (λ) ∝

√
h21(λ), (3.209)
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and the independent reference prior for (µ, λ) is

πR(µ, λ) ∝
√

h11(µ)h21(λ). (3.210)

It is also a first order matching prior for µ and λ. The independent reference prior for

(µ, λ) is the same as the reference prior, which is computed by Garvan and Ghosh (1997),

whichever of µ and λ is the parameter of interest.

3.16.1 Typical Examples

We provide the summary of component functions for some typical members of the proper

dispersion family by referring to Garvan and Ghosh (1997). The independent reference

priors are then derived.

For the Fisher-von Mises distribution,

a(λ) =
1

2πI0(λ)
, b(y) = 1, t(y, µ) = cos(y − µ),

h11(µ) = 1, h21(λ) = 1− A(λ)

λ
− A2(λ),

where Iν(λ) = (1/π)
∫ π
0 eλ cos(x) cos(νx)dx and A(λ) = I1(λ)/I0(λ). Thus the marginal

reference priors for µ and λ are

πR
1 (µ) ∝ 1, (3.211)

πR
2 (λ) ∝

√
1− A(λ)

λ
− A2(λ), (3.212)

and the independent reference prior for (µ, λ) is

πR(µ, λ) ∝
√

1− A(λ)

λ
− A2(λ). (3.213)

For the Student-t distribution,

a(λ) =
Γ(λ)√

π Γ(λ− 1
2
)
, b(y) = 1, t(y, µ) = − log{1 + (y − µ)2},
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h11(µ) = 1, h21(λ) =
d2

dλ2
log

Γ(λ)

Γ(λ− 1
2
)
.

Thus the marginal reference priors for µ and λ are

πR
1 (µ) ∝ 1, (3.214)

πR
2 (λ) ∝

√√√√ d2

dλ2
log

Γ(λ)

Γ(λ− 1
2
)
, (3.215)

and the independent reference prior for (µ, λ) is

πR(µ, λ) ∝
√√√√ d2

dλ2
log

Γ(λ)

Γ(λ− 1
2
)
. (3.216)

For the power family,

a(λ) =
λγ

2γΓ(λ)
, b(y) = 1, t(y, µ) = −|y − µ|δ,

h11(µ) = 1, h21(λ) =
1

λ2
.

Thus the marginal reference priors for µ and λ are

πR
1 (µ) ∝ 1, (3.217)

πR
2 (λ) ∝ 1

λ
, (3.218)

and the independent reference prior for (µ, λ) is

πR(µ, λ) ∝ 1

λ
. (3.219)

For the McCullagh distribution,

a(λ) =
1

B(λ + 1
2
, 1

2
)
, b(y) =

1√
1− y2

, t(y, µ) = log
1− y2

1− 2yµ + µ2
,

h11(µ) =
1

1− µ2
, h21(λ) =

d2

dλ2
log B

(
λ +

1

2
,
1

2

)
,



Mi Hyun Lee Chapter 3. Examples 88

where B(p, q) = Γ(p)Γ(q)
Γ(p+q)

=
∫ 1
0 up−1(1 − u)q−1du. Thus the marginal reference priors for µ

and λ are

πR
1 (µ) ∝ 1√

1− µ2
, (3.220)

πR
2 (λ) ∝

√
d2

dλ2
log B

(
λ +

1

2
,
1

2

)
, (3.221)

and the independent reference prior for (µ, λ) is

πR(µ, λ) ∝
√√√√ d2

dλ2 log B(λ + 1
2
, 1

2
)

1− µ2
. (3.222)

3.17 Student-t Regression Model

The Student-t regression model is given by, for xi ∈ IRp and β ∈ IRp,

yi = x′iβ + εi, i = 1, . . . , n,

where εi iid tν(0, σ
2), ν > 0, σ > 0. Ferreira (2007) derived the independence Jeffreys prior

and Jeffreys-rule prior for (β, σ, ν). He also computed the one-at-a-time reference priors

for (β, σ, ν) by considering the different orders of the parameters. The Fisher information

matrix of (β, σ, ν) is given by

Σ(β, σ, ν) =




1
σ2

ν+1
ν+3

∑n
i=1 xix

′
i 0 0

0 2n
σ2

ν
ν+3

−2n
σ

1
(ν+1)(ν+3)

0 −2n
σ

1
(ν+1)(ν+3)

n
4
φ(ν)




, (3.223)

where

φ(ν) = ψ′
(

ν

2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 5)

ν(ν + 1)(ν + 3)
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with ψ(a) = d
da

log Γ(a) and ψ′(a) = d
da

ψ(a). Thus

|Σ| =
4n2

σ2

1

ν + 3

∣∣∣∣∣
1

σ2

ν + 1

ν + 3

n∑

i=1

xix
′
i

∣∣∣∣∣

{
ν

8
φ(ν)− 1

(ν + 1)2(ν + 3)

}
,

|Σc
11| =

4n2

σ2

1

ν + 3

{
ν

8
φ(ν)− 1

(ν + 1)2(ν + 3)

}
,

|Σc
22| =

n

4
φ(ν)

∣∣∣∣∣
1

σ2

ν + 1

ν + 3

n∑

i=1

xix
′
i

∣∣∣∣∣ ,

|Σc
33| =

2n

σ2

ν

ν + 3

∣∣∣∣∣
1

σ2

ν + 1

ν + 3

n∑

i=1

xix
′
i

∣∣∣∣∣ ,

|Σc
ij| =





−2n
σ

1
(ν+1)(ν+3)

∣∣∣ 1
σ2

ν+1
ν+3

∑n
i=1 xix

′
i

∣∣∣ , if (i, j) = (2, 3), (3, 2),

0, otherwise,

and then

|Σ|
|Σc

11|
=

∣∣∣∣∣
1

σ2

ν + 1

ν + 3

n∑

i=1

xix
′
i

∣∣∣∣∣ ,

|Σ|
|Σc

22|
=

4n

σ2

{
ν

8(ν + 3)
− 1

(ν + 1)2(ν + 3)2φ(ν)

}
,

|Σ|
|Σc

33|
=

n

2

{
φ(ν)

8
− 1

ν(ν + 1)2(ν + 3)

}
=

n

16

{
ψ′

(
ν

2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2

}
,

|Σ|
|Σc

23|
=

|Σ|
|Σc

32|
= −2n

σ

{
ν(ν + 1)

8
φ(ν)− 1

(ν + 1)(ν + 3)

}
.

Hence the marginal reference priors for β, σ and ν are

πR
1 (β) ∝ 1, β ∈ IRp, (3.224)

πR
2 (σ) ∝ 1

σ
, σ > 0, (3.225)

πR
3 (ν) ∝

√√√√ψ′
(

ν

2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2
, ν > 0. (3.226)

Consequently, the independent reference prior for (β, σ, ν) is

πR(β, σ, ν) ∝ 1

σ

√√√√ψ′
(

ν

2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2
. (3.227)

By Ferreira (2007), it is the same as the one-at-a-time reference prior for (β, σ, ν) in the

ordering of {β, ν, σ}, {ν, β, σ} and {ν, σ, β}. Assuming that xi and β are real scalars such
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that xi ∈ IR and β ∈ IR, the independent reference prior for (β, σ, ν) is also a first order

matching prior for β and ν.

3.18 Zero-inflated Poisson (ZIP) Model

A zero-inflated Poisson (ZIP) distribution is a useful model for count data which include

more zero counts than compatible with the Poisson model. Accoding to Bayarri, Berger

and Datta (2007), a ZIP mass function is given by

f(x | λ, p) = pI(x = 0) + (1− p)f0(x|λ), x = 0, 1, 2, . . . , (3.228)

where 0 < p ≤ 1, λ > 0, I(·) is the indicator function and

f0(x | λ) =
e−λλx

x!
, x = 0, 1, 2, . . . ,

is the Poisson probability density function. The parameter p is called the zero-inflated

parameter. If p = 0, the ZIP density function is the same as the Poisson density function.

Bayarri, Berger and Datta (2007) conducted the objective testing of a regular Poisson

versus a ZIP model using objective Bayesian methodology. They used

H0 : p = 0 versus H1 : p > 0

as the null and alternative hypotheses, respectively. They derived two objective priors for

(λ, p) and computed the Bayes factor of a ZIP to a Poisson model by using the objective

priors.

Here we consider a new ZIP model in which the parameters are orthogonal so that an

independent reference prior should have a closed form. By Bayarri, Berger and Datta (2007),
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we can rewrite f(x | λ, p), given by (3.228), as

f ∗(x | λ, p∗) = p∗I(x = 0) + (1− p∗)fT (x|λ), x = 0, 1, 2, . . . , (3.229)

where p∗ = p + (1− p)e−λ, e−λ < p∗ ≤ 1, and

fT (x | λ) =
e−λλx

x!(1− e−λ)
, x = 1, 2, . . . ,

is the zero-truncated version of the Poisson density function with parameter λ. The para-

meter of λ in the new ZIP model has the same meaning as that in the original ZIP model.

Clearly, if p∗ = e−λ, then the new ZIP density function is equivalent to the Poisson density

function. Bayarri, Berger and Datta (2007) derived two objective priors for (λ, p∗) which

are given by

πl(λ, p∗) ∝ k(λ)l

√
λ

I(e−λ < p∗ ≤ 1)

1− e−λ
, l = 0 or 1, (3.230)

where

k(λ) =

√
1− (λ + 1)e−λ

1− e−λ
.

To derive the independent reference prior for (λ, p∗), we see the Fisher information matrix

of (λ, p∗) given by

Σ(λ, p∗) =




{1−(λ+1)e−λ}(1−p∗)
λ(1−e−λ)2

0

0 1
p∗(1−p∗)


 . (3.231)

It is clear that λ and p∗ are orthogonal since the Fisher information matrix of (λ, p∗) is

diagonal. The marginal reference priors for λ and p∗ are then

πR
1 (λ) ∝

√
1− (λ + 1)e−λ

(1− e−λ)
√

λ
, λ > 0, (3.232)

πR
2 (p∗) ∝ 1√

p∗(1− p∗)
, e−λ < p∗ ≤ 1. (3.233)
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Consequently, the independent reference prior for (λ, p∗) is

πR(λ, p∗) ∝ k(λ)√
λ

I(e−λ < p∗ ≤ 1)√
p∗(1− p∗)

, (3.234)

where

k(λ) =

√
1− (λ + 1)e−λ

1− e−λ
.

It is a first order matching prior for λ and p∗. It is seen that the independent reference prior

for (λ, p∗) is different from the two objective priors, given by (3.230), derived by Bayarri,

Berger and Datta (2007).



Chapter 4

Non-regular Cases

4.1 Setup

In Chapter 2 and 3, we provided the results for regular cases, where the data has common

support and the Fisher information is available. In this chapter, we consider some types of

non-regular cases, where the support of the data is monotonically decreasing or monotoni-

cally increasing in a non-regular type parameter, and the Fisher information matrix cannot

be computed. An iterative algorithm to derive an independent reference prior for some types

of non-regular cases is presented. We then propose a sufficient condition under which we

obtain a closed form of the independent reference prior without going through the iterations.

A sufficient condition under which the independent reference prior agrees to a first order

matching prior is also given. We derive the independent reference priors in some examples

in Section 4.2.

Ghosal and Samanta (1997) derived the reference prior for a one-parameter family of dis-

continuous densities where the support of the data is monotonically decreasing or monoton-

93



Mi Hyun Lee Chapter 4. Non-regular Cases 94

ically increasing in the parameter. Ghosal (1997) also computed the reference priors in

multi-parameter non-regular cases where some regular type parameters are added to the

one-parameter family of discontinuous densities used by Ghosal and Samanta (1997).

Now we propose an iterative algorithm to find an independent reference prior in non-

regular cases considered by Ghosal (1997). It is an extension of Algorithm A introduced

by Sun and Berger (1998) for non-regular cases. We consider a multi-parameter family of

discontinuous densities used in Ghosal (1997). Suppose a density f(x; θ, φ), where θ ∈ Θ ⊂

IR,φ = (ϕ1, . . . , ϕd)
′ ∈ Φ ⊂ IRd. The family {f(x; θ, φ) : θ ∈ Θ,φ ∈ Φ} is regular with

respect to φ and non-regular with respect to θ where the support of X is either monotonically

decreasing or monotonically increasing in θ. In other words, x 7→ f(x; θ, φ) is discontinuous

at some points which depend on θ only, while for fixed θ, the family {f(x; θ, φ) : φ ∈ Φ} is

regular.

Define

c(θ, φ) = E

{
∂

∂θ
log f(X; θ, φ)

}
, (4.1)

λ(θ, φ) = −E

{
∂2

∂ϕj∂ϕk

log f(X; θ, φ)

}
, j, k = 1, . . . , d, (4.2)

where E is the expectation over X given θ and φ.

Algorithm C:

Step 0. Choose any initial nonzero marginal prior density for φ, namely π
(0)
2 (φ).

Step 1. Define an interim prior density for θ by

π
(1)
1 (θ) ∝ exp

{∫
π

(0)
2 (φ) log c(θ, φ)dφ

}
.
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Step 2. Define an interim prior density for φ by

π
(1)
2 (φ) ∝ exp

{
1

2

∫
π

(1)
1 (θ) log |λ(θ, φ)|dθ

}
.

Replace π
(0)
2 in Step 0 by π

(1)
2 and repeat Step 1 and 2 to obtain π

(2)
i for i = 1, 2. Finally,

the sequences {π(l)
i }l≥1, i = 1, 2, are generated. The desired marginal reference priors will

be the limits

πR
i = lim

l→∞
π

(l)
i , i = 1, 2,

if the limits exist. When we apply the iterative algorithm to derive an independent reference

prior, the iterative algorithm might need to operate on compact sets as the regular cases.

The following theorem provides a sufficient condition under which we can have a closed

form of the independent reference prior for non-regular cases without doing the iterations.

Theorem 4.1 Suppose

c(θ, φ) =

|λ(θ, φ)| =

c1(θ)c2(φ),

λ1(θ)λ2(φ),

(4.3)

where

c(θ, φ) = E

{
∂

∂θ
log f(X; θ, φ)

}
,

λ(θ, φ) = −E

{
∂2

∂ϕj∂ϕk

log f(X; θ, φ)

}
, j, k = 1, . . . , d.

Then the independent reference prior for (θ, φ) is

πR(θ, φ) = πR
1 (θ)πR

2 (φ), (4.4)

where the marginal reference priors for θ and φ are

πR
1 (θ) ∝ c1(θ), (4.5)

πR
2 (φ) ∝

√
λ2(φ). (4.6)
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Proof. It can be easily shown that under Condition (4.3), πR
i , i = 1, 2, do not depend on

the choices of π
(0)
2 (φ) in Step 0. Hence the marginal reference priors for θ and φ are formed

of (4.5), and the independent reference prior for (θ, φ) is given by (4.4).

Ghosal (1999) investigated first order matching priors in non-regular cases. He considered

the families of discontinuous densities used by Ghosal and Samanta (1997) and Ghosal

(1997). He derived two differential equations which a first order matching prior for θ and

a first order matching prior for φ should satisfy, respectively. Now a sufficient condition

under which the independent reference prior, given by (4.4), is a first order matching prior

is provided.

Theorem 4.2 Suppose

c(θ, φ) =

|λ(θ, φ)| =

|γ(θ, φ)| ∝

c1(θ)c2(φ),

λ1(θ)λ2(φ),

c(θ, φ)|λ(θ, φ)|1/2 = c1(θ)c2(φ)
√

λ1(θ)λ2(φ),

(4.7)

where

c(θ, φ) = E

{
∂

∂θ
log f(X; θ, φ)

}
,

λ(θ, φ) = −E

{
∂2

∂ϕj∂ϕk

log f(X; θ, φ)

}
, j, k = 1, . . . , d,

γ(θ, φ) = E

{
∂2

∂θ∂ϕj

log f(X; θ, φ)

}
, j = 1, . . . , d.

Then the independent reference prior πR(θ, φ) for (θ, φ), given by (4.4), is a first order

matching prior for θ and φ.

Proof. By Ghosal (1999), a first order matching prior π(θ, φ) satisfies the following

differential equation when θ is the parameter of interest,

1

c(θ, φ)

∂

∂θ
log π(θ, φ) +

|γ(θ, φ)|
c(θ, φ)|λ(θ, φ)|

∂

∂φ
log π(θ, φ)
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= − ∂

∂θ

{
1

c(θ, φ)

}
− ∂

∂φ

{ |γ(θ, φ)|
c(θ, φ)|λ(θ, φ)|

}
. (4.8)

When φ is the interest parameter, a matching prior π(θ, φ) satisfies

1

|λ(θ, φ)|1/2

∂

∂φ
log π(θ, φ) = − ∂

∂φ

{
1

|λ(θ, φ)|1/2

}
. (4.9)

We thus need to prove that the independent reference prior πR(θ, φ) for (θ, φ), given by

(4.4), is a solution to the equations, given by (4.8) and (4.9), under Condition (4.7). It is

shown that

1

c(θ, φ)

∂

∂θ
log πR(θ, φ) +

|γ(θ, φ)|
c(θ, φ)|λ(θ, φ)|

∂

∂φ
log πR(θ, φ)

∝ 1

c1(θ)c2(φ)

∂

∂θ
log

[
c1(θ)

√
λ2(φ)

]
+

c1(θ)c2(φ)
√

λ1(θ)λ2(φ)

c1(θ)c2(φ)λ1(θ)λ2(φ)

∂

∂φ
log

[
c1(θ)

√
λ2(φ)

]

=
1

c1(θ)2c2(φ)
+

1

2
√

λ1(θ)λ2(φ)3/2

and

− ∂

∂θ

{
1

c(θ, φ)

}
− ∂

∂φ

{ |γ(θ, φ)|
c(θ, φ)|λ(θ, φ)|

}

∝ − ∂

∂θ

{
1

c1(θ)c2(φ)

}
− ∂

∂φ





c1(θ)c2(φ)
√

λ1(θ)λ2(φ)

c1(θ)c2(φ)λ1(θ)λ2(φ)





=
1

c1(θ)2c2(φ)
+

1

2
√

λ1(θ)λ2(φ)3/2
.

Thus πR(θ, φ) satisfies the equation (4.8). Now it is also seen that

1

|λ(θ, φ)|1/2

∂

∂φ
log πR(θ, φ) ∝ 1√

λ1(θ)λ2(φ)

∂

∂φ
log

[
c1(θ)

√
λ2(φ)

]

=
1

2
√

λ1(θ)λ2(φ)3/2

and

− ∂

∂φ

{
1

|λ(θ, φ)|1/2

}
= − ∂

∂φ





1√
λ1(θ)λ2(φ)





=
1

2
√

λ1(θ)λ2(φ)3/2
.
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Thus πR(θ, φ) is a solution to the equation (4.9). Hence the independent reference prior

πR(θ, φ) for (θ, φ), given by (4.4), satisfies both of the differential equations (4.8) and (4.9).

The result then holds.

Remark 4.1 The independent reference prior πR(θ, φ) for (θ, φ), given by (4.4), is always

a first order matching prior for φ under Condition (4.3).

4.2 Examples

Some examples of non-regular cases, which were considered by Ghosal (1997) and Ghosal

(1999), are studied in this section.

4.2.1 Location-scale Family

The density of a location-scale family with unknown location parameter θ (∈ IR) and scale

parameter ϕ (> 0) is

f(x; θ, ϕ) =
1

ϕ
f0

(
x− θ

ϕ

)
, x > θ,

where f0(·) is a strictly positive density on [0,∞). Then

c(θ, ϕ) =
1

ϕ
f0(0+),

|λ(θ, ϕ)| =
1

ϕ2

∫ (1 + xf ′0(x))2

f0(x)
dx,

|γ(θ, ϕ)| =
2a

ϕ2
for some constant a.

Thus the marginal reference priors for θ and ϕ are

πR
1 (θ) ∝ 1, θ ∈ IR, (4.10)
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πR
2 (ϕ) ∝ 1

ϕ
, ϕ > 0, (4.11)

and the independent reference prior for (θ, ϕ) is

πR(θ, ϕ) ∝ 1

ϕ
. (4.12)

It is a first order matching prior for θ and ϕ, which is the same result as Ghosal (1999).

By Ghosal (1997), the independent reference prior for (θ, ϕ) is the reference prior for (θ, ϕ)

when one of the parameters θ or ϕ is the parameter of interest and the other is nuisance

parameter.

4.2.2 Truncated Weibull Model

Consider the Weibull distribution with known shape parameter α (> 0), unknown scale

parameter ϕ (> 0), and truncated at the left at some unknown point θ (> 0). Then for

x > θ, the density is

f(x; θ, ϕ) = αϕαxα−1 exp[−ϕα(xα − θα)].

Thus

c(θ, ϕ) = αθα−1ϕα,

|λ(θ, ϕ)| =
α2

ϕ2
,

|γ(θ, ϕ)| = 2α2θα−1ϕα−1.

Hence the marginal reference priors for θ and ϕ are

πR
1 (θ) ∝ θα−1, θ > 0, (4.13)

πR
2 (ϕ) ∝ 1

ϕ
, ϕ > 0, (4.14)
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and the independent reference prior for (θ, ϕ) is

πR(θ, ϕ) ∝ θα−1

ϕ
. (4.15)

It is also a first order matching prior for θ and ϕ. Ghosal (1999) also obtained the same

first order matching priors. The independent reference prior for (θ, ϕ) is equivalent to the

reference prior for (θ, ϕ), derived by Ghosal (1997), when one of the parameters θ or ϕ is

the interest parameter and the other is nuisance parameter.



Chapter 5

Summary and Future Work

In Bayesian inference, sufficient information on priors is not often available. Then objective

priors could be a good choice instead of subjective priors. Thus developing objective priors

has been of great interest in Bayesian methdology. There are various objective priors other

than a constant prior; for example, the Jeffreys prior, a reference prior, an independent

reference prior and a probability matching prior.

We studied a class of objective (noninformative) priors based on the independent reference

prior which was introduced by Sun and Berger (1998). An independent reference prior is

derived by assuming that the groups of parameters are independent. Most of the reference

priors have the independence property in the sense that they formed as the product of

marginal reference priors. Independent reference priors do not depend on the order of

inferential importance of the parameters while reference priors definitely do. In practice,

partial information on priors such as the independence of the parameters might be available.

Hence, in real applications of Bayesian inference, an independent reference prior could be

used.
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In Chapter 2, we extended and generalized the independent reference prior by considering

multiple groups of parameters while Sun and Berger (1998) used two groups of parameters.

An iterative algorithm to derive the general independent reference prior was given first. A

mild sufficient condition under which we obtain a closed form of the independent reference

prior without going through the iterations was then provided. Two useful results from the

independent reference prior were provided. First, the invariance of the independent reference

prior was proven under a type of one-to-one reparameterization where the Jacobian matrix

is diagonal. Second, it was shown that the independent reference prior is a first order

matching prior under a sufficient condition. In Chapter 3, the independent reference priors

were derived for various examples. It turned out that they are identical to the reference

priors in most cases. It was also observed that the independent reference priors are the

first order matching priors in most of the examples. In Chapter 4, we provided an iterative

algorithm to obtain an independent reference prior for some types of non-regular cases where

the support of the data is monotonically decreasing or increasing in a non-regular type

parameter. A sufficient condition under which a closed form of the independent reference

prior is derived was established. It was proven that the independent reference prior is a first

order matching prior under a sufficient condition. Some examples were also given.

In most of the examples in Chapter 3, the sufficient condition, given by (2.3), in Theorem

2.1 and the sufficient condition, given by (2.8), in Theorem 2.3 were satisfied. Thus we

obtained the closed forms of independent reference priors which were also the first order

matching priors. However in the five examples the conditions were not satisfied. The

independent reference priors were derived by using the iterative algorithm for such examples.

They are given in Proposition 3.2, 3.4 and 3.5–3.7. The marginal reference priors were proper

in Proposition 3.2 and 3.4 so that we did not use compact sets in the algorithm. However
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we implemented the algorithm using compact sets in Proposition 3.5–3.7 since there were

improper marginal reference priors. In Proposition 3.5 and 3.6, we obtained the closed form

of the independent reference prior by choosing a specific sequence of compact sets for an

improper marginal reference prior. In Proposition 3.7, it was practically hard to derive a

closed form of the independent reference prior since the integration on a sequence of compact

sets was impossible. Thus choice of a sequence of compact sets for an improper marginal

reference prior or calculation with respect to a sequence of compact sets could be an issue.

Hence we might need to define an explicit expression for the independent reference prior

which excludes the iterations and any compact set operations as Berger, Bernardo and Sun

(2007) did for the reference prior.

We derived and investigated an independent reference prior for regular cases where the

data has common support and the Fisher information matrix is available. All of the examples

considered in Chapter 3 are apparently the regular cases. In Chapter 4, we derived and

studied an independent reference prior only for some types of non-regular cases where the

support of the data is either monotonically decreasing or increasing in a non-regular type

parameter. Thus our current results do not include all the cases. Hence the results for more

general cases need to be developed.
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Laplace, P. (1812). Théorie Analytique des Probabilités. Courcier.

Sun, D. (1997). A note on noninformative priors for Weibull distributions. Journal of

Statistical Planning and Inference, 61, 319-338.

Sun, D. and Berger, J. O. (1998). Reference priors with partial information. Biometrika,

85, 55-71.

Sun, D., Ghosh, M. and Basu, A. P. (1998). Bayesian analysis for a stress-strength system

under noninformative priors. The Canadian Journal of Statistics, 26, 323-332

Sun, D. and Ye, K. (1995). Reference prior Bayesian analysis for normal mean products.

Journal of the American Statistical Association, 90, 589-597.

Sun, D. and Ye, K. (1996). Frequentist validity of posterior quantiles for a two-parameter

exponential family. Biometrika, 83, 55-65.

Sun, D. and Ye, K. (1999). Reference priors for a product of normal means when variances

are unknown. The Canadian Journal of Statistics, 27, 97-103.



Mi Hyun Lee Bibliography 107

Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on intervals

of weighted likelihoods. Journal of the Royal Statistical Society, Series B, 25, 318-329.

Yang, R. and Berger, J. O. (1997). A catalog of noninformative priors. Discussion Paper,

1997-42, ISDS, Duke University, Durham, NC.



Vita

Mi Hyun Lee was born in Seoul, Republic of Korea. She received her Bachelor of Science

degree and Master of Science degree in Statistics from the department of Statistics, Ewha

Womans University, Seoul, Korea in February, 1999 and 2001, respectively. She then earned

her Master of Statistics degree from the department of Statistics, North Carolina State

University in May, 2004. She completed her Doctor of Philosophy degree in Statistics in the

department of Statistics, Virginia Polytechnic Institute and State University in December,

2007. The author is a member of the National Statistics Honorary Society (Mu Sigma Rho).

108


