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On Independent Reference Priors

Mi Hyun Lee

(ABSTRACT)

In Bayesian inference, the choice of prior has been of great interest. Subjective priors are
ideal if sufficient information on priors is available. However, in practice, we cannot collect
enough information on priors. Then objective priors are a good substitute for subjective

priors.

In this dissertation, an independent reference prior based on a class of objective priors is
examined. It is a reference prior derived by assuming that the parameters are independent.
The independent reference prior introduced by Sun and Berger (1998) is extended and
generalized. We provide an iterative algorithm to derive the general independent reference
prior. We also propose a sufficient condition under which a closed form of the independent
reference prior is derived without going through the iterations in the iterative algorithm.
The independent reference prior is then shown to be useful in respect of the invariance
and the first order matching property. It is proven that the independent reference prior is
invariant under a type of one-to-one transformation of the parameters. It is also seen that
the independent reference prior is a first order probability matching prior under a sufficient
condition. We derive the independent reference priors for various examples. It is observed
that they are first order matching priors and the reference priors in most of the examples.
We also study an independent reference prior in some types of non-regular cases considered

by Ghosal (1997).
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Chapter 1

Introduction

1.1 Overview

In Bayesian inference, the selection of prior has been of great interest and various kinds
of priors have been proposed. There are two categories of priors based on the amount of
information on priors that we could have, which are subjective priors and objective priors
(or noninformative priors). If sufficient information on priors is available, subjective priors
could be a good choice. Unfortunately, in practice, we might not often collect enough
information. Then noninformative priors or objective priors, which are derived only by
using the assumed model and the available data, can be used as a substitute for subjective

priors. Thus the use of noninformative or objective priors has increased in Bayesian analysis.

Many kinds of noninformative priors have been developed: constant priors |[Laplace
(1812)], Jeffreys priors [Jeffreys (1961)], reference priors [Bernardo (1979), Berger and
Bernardo (1992)], independent reference priors [Sun and Berger (1998)], probability match-

ing priors [Datta and Mukerjee (2004)], and noninformative priors in non-regular cases
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[Ghosal and Samanta (1997), Ghosal (1997), Ghosal (1999)]. We review them precisely in

Section 1.2.

We study an independent reference prior which originated in Sun and Berger (1998). It
is a reference prior derived with the assumption of the independence of the parameters.
In many practical problems, we can obtain partial information on priors such as the in-
dependence of the parameters. Then independent reference priors could be used for such

situations.

In this dissertation, the independent reference prior introduced by Sun and Berger (1998)
is extended and generalized. We consider multiple groups of parameters while Sun and
Berger (1998) used two groups of parameters. An iterative algorithm to compute the gen-
eral independent reference prior is proposed. Then a mild sufficient condition to make an
inference on the result of the iterative algorithm without going through the iterations is also
provided. The independent reference prior holds the invariance and the first order match-
ing property. We prove that our independent reference prior is invariant under a type of
one-to-one reparameterization where the Jacobian matrix is diagonal. A sufficient condition
under which the independent reference prior is a first order matching prior is given. Then
the independent reference priors are derived in numerous examples. It turns out that they
are first matching priors and the reference priors in most of the examples. Additionally,
we present an iterative algorithm to obtain an independent reference prior in some types
of non-regular cases where the support of the data is either monotonically increasing or
decreasing in a non-regular type parameter. It is verified that the independent reference
prior is a first order matching prior under a sufficient condition. Some examples are also

given.
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1.2 Literature Review

The history of objective priors is described in this section. Constant priors [Section 1.2.1],
Jeffreys priors [Section 1.2.2], reference priors [Section 1.2.3|, independent reference priors
[Section 1.2.4], Probability matching priors [Section 1.2.5], and objective priors in non-

regular cases [Section 1.2.6] are reviewed.

1.2.1 Constant Priors

Objective priors began with a constant prior (or a flat prior) which is just proportional to
1. Laplace (1812) employed it for Bayesian analysis. The constant prior is very simple and

easy to use. However it is not invariant to one-to-one transformations of the parameters.

1.2.2 Jeffreys Priors

Jeffreys (1961) proposed a rule for deriving a prior which is invariant to any one-to-one
reparameterization. It is called a Jeffreys-rule prior which is still one of the popular objective
priors. The Jeffreys-rule prior is proportional to the positive square root of the determinant
of the Fisher information matrix defined as (1.1). The Fisher information is a measure of
the amount of information about the parameters, provided by the data from model. Datta
and Ghosh (1996) pointed out that the Jeffreys-rule prior performs satisfactorily in one-
parameter cases but poorly in multi-parameter cases. An inconsistent Bayes estimator or
an unreasonable posterior were produced in some of multi-parameter examples. Thus the
use of the Jeffreys-rule prior is somewhat controversial in multi-parameter cases. Jeffreys
(1961) recommended an independence Jeffreys prior which could modify the deficiencies of

the Jeffreys-rule prior in multi-parameter cases. It is the product of the Jeffreys-rule priors
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for each group of parameters when the other groups of parameters are held fixed.

1.2.3 Reference Priors

Bernardo (1979) introduced a reference prior which fixes the deficiencies of the Jeffreys-rule
prior in multi-parameter problems. The ad hoc modifications which are required for the
Jeffreys-rule prior in multi-parameter situations are not necessary for the reference prior.
Bernardo (1979) separated the parameters into the parameters of interest and nuisance
parameters, and considered the parameters sequentially in the process of deriving a reference
prior. Then a reference prior is more successful in multi-parameter cases. A reference prior is
defined as a prior which maximizes asymptotically the expected information provided by the
data from model about the parameters, which is the same as the expected Kullback-Leibler
divergence between the posterior and prior. Then the reference prior has minimal influence
since the data has maximal influence on the inference. Bernardo (1979) just introduced
the basic idea of reference priors and posteriors without the mathematical details for their

construction.

The idea of Bernardo (1979) was broadened and generalized by Berger and Bernardo
(1992). They divided the parameters into two or more groups according to their order of
inferential importance. They provided an in-depth description of mathematical methods to

derive a reference prior.

Now the reference prior method is described in detail. Let us start with the notation that
is necessary to explain the method. Consider a parametric family of distributions whose

density is given by f(x;0) for the data X € X, where 8 € ©® C IR? is a p-dimensional
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unknown parameter vector which can be decomposed into m sub-groups
0= (6,,...,0,).

Here 0; = (0;1,...,0;,,) €0, CR", @ =0 X --- x O, with p; + -+ + p,,, = p.

We define the Fisher information matrix of @

2

0 o
2(0)——E9 mlogf<X,0> s Z,j—l,...,m7 (11)

where Fg denotes expectation over X given 8. We will often write ¥ instead of 3(8).

Also define, for j =1,...,m,

where 0.o) = 6 and 0\ is vacuous.

Let Z; = {Xi,...,X;} be the random variable that would arise from ¢ conditionally

independent replications of the original experiment. Then Z; has density
t
p(]0) = ][ f(z::0). (1.2)
i=1

First, we see how to develop a reference prior for regular cases in the sense that p(z; | 9),
given by (1.2), is asymptotically normally distributed. Assume that X is invertible and let

S =X"1 Write S as

Ay A, - AL
A21 A22 Aan

Aml Am2 Amm
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so that A;; is p; X p;, and define S, to be the upper left (Zizl pk> X (Zizl pk) corner of S
with S,, = § and H; = Sj’l. Then the matrices h;, defined to be the lower right p; x p;
corner of H;, 7 = 1,...,m, will be of central importance. Note that h; = H; = A7l and
if S is a block diagonal matrix, that is A;; = 0 for all ¢ # j, then h; = Aj_jl, j=1,....,m.

Finally, if @* C ©, we define
6*(0[]}) = {0j+1 . (0[]], 0j+17 e[Nj-H]) € ©®* for some 0[~j+1]}-

|A| denotes the determinant of A, and 1g(y) equals 1 if y € Q, 0 otherwise.

The reference prior method for regular cases can be described in four steps.

1. Choose a nested sequence @' C @2 C - - - of compact subsets of @ such that J°, @' =

©. This step is not necessary if the reference priors turn out to be proper.

2. Order the coordinates (64, ...,8,,). Usually, the order should typically be according
to inferential importance; in particular, the first group of parameters should be of

interest. Note that (64, ...,6,,) is assumed to be ordered for convenience of notation.

3. To start, define

Ty (Ofom—1)0m—1]) = o (0m|Opn—1))
’hm<9)’1/2191(0[m_1])(0m)

For j=m —1,...,1, define

71 (01-1101) exp {3 EL[(log |k (0)])6]} Lere, ) (0)

T (011011 =
J Jorta, o exp {55! {10z, (8)]) 61} d6,

Y

where

Ell9(0)10y] = [

0 L 0N4 0. dON-_
{G[Nj]:(e[j]:e[Nj])E@l}g( )7r9+1( [j]| m) [~7]
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For j =1, write
1(8) = 71(81~01l610)).
4. Define a reference prior, m(0), as any prior for which
EXD(r}(01X),7(8|X)) — 0 as [ — oo,

where the Kullback-Leibler divergence between two densities g and h on © is denoted

by

D(g,h) = /89(9) log [] do,

and E}* is expectation with respect to
P(a) = [ flx:0)xi(0)do.

Typically, 7(0) is determined by the simple relation

where 0" is an interior point of ©.

Definitely, a reference prior depends on the grouping and the ordering of the parameters.
Thus Berger and Bernardo (1992) recommended deriving a reference prior by considering one
parameter per group in Step 2. We call such a reference prior a one-at-a-time reference prior.
However one-at-a-time reference priors still depend on the order of inferential importance
of the parameters. Note that it can be easily shown that a reference prior is equivalent to

the Jeffreys-rule prior in one-parameter cases.

Datta and Ghosh (1996) provided another expression for |h;(0)], 7 = 1,...,m. Write

the Fisher information matrix of 8 in partitioned form as

Y= ((zij)), ij=1,...,m.
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Also write for 7 =0,...,m — 1,

Then

where ]E[Nmm]] =1.

Next, the reference prior method for non-regular cases which was proposed by Berger

and Bernardo (1992) is shown. Only Step 3 is different from the regular cases. Thus we

just describe Step 3.

3. For j =m,m —1,...,1, iteratively compute densities
75(0j-1)1015-11) o< 7541 (B |01 15(8510)-1),

where 7!, ., =1 and h; is computed by the following two steps.

3'a: Define p(0;]0-1]) as
2(6101;-1)) o< exp { [ p(z116) og p(6 20,635 1)) |
where

p(z|0y) = / P(24]0)7 1 (01-710p;) B,
(02, 0p-1)) o p(z:|015)p:(6;]60y-1).
3'b: Assuming the limit exists, define
15(0;10y-y) = lim p,(6;]6};1).
For j =1, write

m1(0) = 71 (0)<0)|6/0))-
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Berger and Bernardo (1992) pointed out that in practice it is very hard to compute the p;,

given by (1.3), and to find their limit in (1.4).

Berger (1992) [attributed to Ghosh and Mukerjee (1992)] introduced a reverse reference
prior, which is obtained by reversing the roles of the interest parameters and nuisance
parameters when deriving a reference prior, in order to satisfy the probability matching
criterion when the parameters are orthogonal. We explain the probability matching criterion

in Section 1.2.5.

According to Datta and Ghosh (1996), the invariance of the reference prior is valid un-
der a type of one-to-one reparameterization where the Jacobian matrix is upper triangular.
However the reverse reference prior does not remain invariant to any one-to-one repara-
meterization. Datta and M. Ghosh (1995) compared reference priors and reverse reference

priors. They provided a sufficient condition under which the two priors agree.

1.2.4 Independent Reference Priors

Sun and Berger (1998) derived conditional reference priors when partial information is
available. They considered three situations. When a subjective conditional prior density is
given, two methods to find a marginal reference prior were described. When a subjective
marginal prior is known, a conditional reference prior was proposed. When two groups of

parameters are assumed to be independent, an independent reference prior was defined.

The independent reference prior is our main focus in this dissertation. In most examples
of Bayesian inference, the reference priors are expressed as the product of marginal reference
priors. If we have information on the independence of the groups of parameters, we can

surely use an independent reference prior which does not depend on the order of inferential
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importance of the groups of parameters instead of a reference prior which depends on it.

Assuming the independence of two groups of parameters, 8; and 0,, Sun and Berger
(1998) suggested the following iterative algorithm to derive an independent reference prior.
Note that ¥ = ¥(64,60,) is the Fisher information matrix of (61, 60s), X9y = X99(61,0,) is
the Fisher information matrix of 5, given that 6 is held fixed, and ¥;; = ¥1(61,0,) is

the Fisher information matrix of 8, given that 65 is held fixed.

Algorithm A:

Step 0. Choose any initial nonzero marginal prior density for 65, Wéo)(OQ), say.

Step 1. Define an interim prior density for 6, by

1 by
ng)(el) X exp {2 /7;50)(02) log <‘|22|2|> d02} )

Step 2. Define an interim prior density for 0, by

1 >
Wél)(02) X exp {2 /ﬂl)(&) log <|‘21‘1|> del} .

Replace 71'50) in Step 0 by 71'51) and repeat Step 1 and 2 to obtain 7

52) and 7T£2). Conse-

quently, we generate two sequences {ﬂl)}lzl and {7?51)}121. The desired marginal reference

priors will be the limits

—
—
~

R . .
= limm’, i=1,2,
l—o00

T

if the limits exist.

Sun and Berger (1998) pointed out that in applying the iterative algorithm, it may
be necessary to operate on compact sets, and then let the sets grow as the reference prior
method. They also established a sufficient condition under which the result of the algorithm

is inferred without going through the iterations.
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1.2.5 Probability Matching Priors

The concept of probability matching priors are quite different from the previous objective
priors. Welch and Peers (1963) introduced the basic idea of probability matching priors.
Datta and Mukerjee (2004) summarized and discussed various probability matching priors.
The priors satisfying the criterion that the frequentist coverage probabilities of Bayesian
credible sets agree asymptotically to the Bayesian coverage probabilities of the credible sets
up to a certain order, are defined as probability matching priors or simply matching priors.
In other words, the difference between the frequentist confidence sets and the Bayesian
credible sets should be small in an asymptotic way. There are several matching criteria.
For example, the matching might be carried out through posterior quantiles, distribution
functions, highest posterior density regions, inversion of certain test statistics, or prediction.
For each matching criterion, the differential equations which matching priors must satisfy

were derived.

Matching priors for posterior quantiles are most popular. First and second order matching
priors are widely used for posterior quantile matching priors. We consider only a first order
matching prior in this dissertation. The differential equation which a first order matching
prior must satisfy was introduced by Datta and J. K. Ghosh (1995) and revisited by Datta
and Mukerjee (2004). Referring to Chapter 2 of Datta and Mukerjee (2004), matching priors

for posterior quantiles are defined as follows. Consider priors 7(+) for which the relation
Po{tp < !"™(m, X)} =1—a+o(n™""?), (1.5)

holds for r =1,2,..., and for each a € (0,1). n is the sample size, @ = (04, ...,0,,), where
0; € ©; C R is an unknown parameter vector, 1) = () is the one-dimensional parametric

function of interest, Py{-} is the frequentist probability measure under 8, and ¢!~ (7, X)
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is the (1 — )" posterior quantile of ¥ under 7(-), given the data X. Then priors satisfying
(1.5) for r = 1 are called first order matching priors for ¢). First order matching priors 7

for ¢ must satisfy the following differential equation,

0 0
o4 = 1.
where
21y
= €)= e—e—— 1.7
£ (517 7€ ) v¢/2_1v¢ ( )
with Vi = (a%lw, ce %z/;)l and X is the Fisher information matrix of @ = (64,...,0,,).

By Welch and Peers (1963), the Jeffreys-rule prior is a first order matching prior in
one-dimensional parameter cases. Thus a reference prior is also a first order matching
prior in one-parameter cases. Remember that a reverse reference prior was introduced by
Berger (1992) to meet the matching criterion under orthogonality. Datta and M. Ghosh
(1995) reaffirmed that a reverse reference prior must be a matching prior under orthogonal
parameterizations but a reference prior does not need to be even under orthogonality. By
Datta and Ghosh (1996), a probability matching prior was shown to be invariant under any

one-to-one reparameterization.

1.2.6 Non-regular Cases

The concept and algorithm for reference priors for non-regular cases were proposed by
Bernardo (1979) and Berger and Bernardo (1992). It is however hard to apply in practice.

See Section 1.2.3 for details.

Ghosal and Samanta (1997) obtained a reference prior in one-parameter non-regular cases

such as a one-parameter family of discontinuous densities where the support of the data is
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either monotonically decreasing or increasing in the parameter. They derived a reference
prior by maximizing the expected Kullback-Leibler divergence between the prior and the

posterior in an asymptotic way.

Ghosal (1997) proposed a reference prior in multi-parameter non-regular cases such as a
multi-parameter family of discontinuous densities where some regular type parameters are
added to the one-parameter family of discontinuous densities used by Ghosal and Samanta
(1997). The reference prior was computed through two procedures when nuisance parameter
exists. One procedure adapted the reference prior method proposed by Berger and Bernardo
(1992) and another was an extension of the reference prior method provided by Ghosal and

Samanta (1997).

The differential equations which first order matching priors for one- and multi-parameter
non-regular cases must satisfy were built by Ghosal (1999). He considered the one- and

multi-parameter family of discontinuous densities used by Ghosal and Samanta (1997) and

Ghosal (1997).

1.3 Outline

This dissertation is organized as follows.

In Chapter 2, a general independent reference prior is developed by extending the results
of Sun and Berger (1998). The invariance under a type of one-to-one transformation of the

parameters is proven. The first order matching property is also obtained.

The independent reference priors are derived in various examples of probability distribu-

tions in Chapter 3. We compare the independent reference priors with the reference priors.
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We also see whether the independent reference priors satisfy the first order matching crite-
rion or not.

In Chapter 4, an independent reference prior in some types of non-regular cases is derived.
We construct a sufficient condition under which the independent reference prior agrees to a

first order matching prior. The independent reference priors are computed in some examples.

We summarize and propose future work in Chapter 5.



Chapter 2

Main Results for Independent

Reference Priors

2.1 Notation

Consider a parametric family of distributions whose density is given by f(x; @) for the data
X € X, where 8 € © C R? is a p-dimensional unknown parameter vector which can be

decomposed into m sub-vectors
0=(6...,0,). (2.1)

Here 0; = (0i1,...,0:,,) € ©; C R, where ® = ©; x --- x ©,, with p; + -+ + p,,, = p.

We define the partitioned Fisher information matrix of 0

2

e 56,00,

3(0) = log f(X;0)|, i,j=1,...,m, (2.2)

where Eg denotes expectation over X given 6. We will often write 3 instead of 3(8).

15
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2.2 Independent Reference Priors

In this section, we provide an independent reference prior by generalizing the results of Sun
and Berger (1998). We consider more groups of parameters than the two groups considered
by Sun and Berger (1998). We propose an iterative algorithm to find the general independent
reference prior and obtain a mild sufficient condition to deduce the result of it without going
through the iterations. Thus a closed form of the independent reference prior is derived.
The invariance of independent reference priors to a type of one-to-one reparameterization
where the Jacobian matrix is diagonal is proven. A sufficient condition under which the
independent reference prior agrees to a first order matching prior is proposed. Thus two
desired figures of independent reference priors are achieved. Numerous examples are given
in Chapter 3. We study an independent reference prior in some types of non-regular cases

in Chapter 4.

Now we present an iterative algorithm to derive an independent reference prior for 8 =
(01,...,0,,). It is an extension of Algorithm A proposed by Sun and Berger (1998). To
begin with, we note that 3, is the matrix obtained by removing the rows and columns

corresponding to 6; from ¥, and 65 = (6y,...,0,-1,0;41,...,0,,),i=1,...,m.

Algorithm B:

Step 0. Choose any initial nonzero marginal prior densities for 8;, namely 7T£0)(9i) for all

1=2,...,m.

Step 1. Define an interim prior density for 6, by

1 5 b))
k=2

11
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Step i. For i = 2,---,m, define interim prior densities for 6; by
1) Lo 0 DI
n0) ocexpd 5 [TI =" 00| | TT 717(00) | 1og | - | a6
k=1 k=i+1 |25
Replace WEO)(OZ'), i = 2,...,m, in Step 0 by ﬁ”(ez»)? i = 2,...,m, and repeat Step i
to obtain 7r§2)(02-) for + = 1,...,m. Consequently, the sequences of the marginal priors
{wi(”(ei) 14 =1,...,m};>; are generated. The marginal reference priors for 6; will be the
limits

if the limits exist.

In practice, the interim priors {nz(”(ei) : 1 =1,...,m}> could be improper. In such
cases, one might need to implement an algorithm using compact sets as it is recommended
by Sun and Berger (1998). Choose an increasing sequence {@?};5; of compact subsets of

®, such that
Ueli=e, i=1,....,m
j=1
We then could use the following algorithm.
Algorithm B :
Step 0. For fixed j, choose any initial proper marginal prior densities for ; on @{ , namely
WZ(;])(OZ') foralli=2,...,m.

Step 1. Define an interim prior density for 8; on ©J by

1 m by
7TS~)<91> X exp {2/® H w,(g.)(ek) log <||Zf|1|> d@f} )

j
he2®h =2
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Step i. For i = 2,...,m, define interim prior densities for 6; on @{ by
1) 1 -0 T DRy
o) cexpd s [ AT O0] | TI (60| 1og (e ) 465 ¢
2 Jonu0) | k=i+1 |25

Replace WEJ(»))(OZ'), i = 2,...,m, in Step 0 by ﬁﬁ(ei)? i = 2,...,m, and repeat Step i

to obtain 7T(2)(0,-) for © = 1,...,m. Consequently, we have sequences of marginal priors

]
{ﬂgé)(ei) c i = 1,...,m}j>1u>1. Let 6Y be an interior point of ©;, ¢ = 1,...,m. The

marginal reference priors for @; will be the limits

) (8:)

if these limits exist.

The convergence of the iterations is not guaranteed. Then we might not obtain a closed
form of the independent reference prior. Here we have found a sufficient condition for

deriving an independent reference prior without going through the iterations.

Theorem 2.1  Suppose, for allt=1,...,m,

R
|33

= f1i(0:) f2(05), (2.3)

where OF = (0y,...,0,_1,0;41,...,0,,), 3 is the Fisher information matriz of @ = (04, ...,0,,),
and X5, 1s the matriz which is deriwed by removing the rows and columns corresponding to

0; from X. Then the independent reference prior for @ = (64,...,0,,) is

(0) = 11 7(8;), (2.4)
i=1
where the marginal reference priors for 6;, 1 =1,...,m, are

/(6;) m (2.5)
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Proof. It can be easily seen that under Condition (2.3), 7f(0;), i = 1,...,m, do not

i

depend on the choices of 7@?0)(9@-), 1 =2,...,m, in Step 0. Hence the marginal reference
priors for 8;, i = 1, ..., m, have the form of (2.5) and the independent reference prior for 6
is given by (2.4). 0O

In the next corollary an independent reference prior is derived under orthogonality. Con-

sequently it is shown to be same as the the independent reference prior in (2.4).

Corollary 2.1  Consider the following Fisher information matriz of @ = (64,...,6,,),

3= diag(fn(el)le(gf)a e flm(em)fm(eﬁz))-

Then the independent reference prior for @ is the same as (2.4).

Proof. It is clear that for all i = 1,...,m, |X|/|X5] = f1:(0;) f2:(65), which satisfies

Condition (2.3). O

Now we prove that the independent reference prior, given by (2.4), is invariant under a

type of one-to-one transformation of the parameters where the Jacobian matrix is diagonal.

Theorem 2.2 Foranyi=1,---,m, let m; = g;(0;) be a one-to-one transformation of 6;.

Then under Condition (2.3), the independent reference prior for n = (n, -+, M) is formed

as
w(m) = [[ = (n), (2.6)
i=1
where the marginal reference priors form;, i =1,...,m, are

(2.7)

) oo ) | )
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Proof. The Fisher information matrix of n is given by
H=T7%T,

where 3 is the Fisher information matrix of @ = (6y,...,6,,) and

_ o o _
T = d@ag (377191 1(771), cey (f)ngml(ﬂm)> .

The matrix H¢

%)

which is derived by removing the rows and columns corresponding to n;

from H, is of the form

Hj, = T ST

1)

where 3, is the matrix which is derived by removing the rows and columns corresponding

to 8; from 3, and

0 0 0 0
TS = diag | =—g; " 91 (Mic1), 95 (M) - 90 (M) | -
ii = diag (amgl (m),+-s 5 — i) 5 G (i) o 5 =G ()
Thus
m 2
H| = ] oo )] 15,
k=1 k
Hi| = ] ng_l(nj) |35
i=1g#i 19"
From Condition (2.3), it can be shown that
B 2
H| I |pea )| |3
c - m 2 2
|Hu| Hj:Lj;éi |2m|

595 ()]
= igi_l("?i) qu g: (1)) fai (95 (m:)°),
on

where

g M) = (g0 (), g (i), 05 (i), 0 (M) )
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Thus we can write

[H|
| H|

= h1i(n:) has(N5),

where

2

I

hii(m) = fu (gi_1<77i)) ‘a?%gi_l("?i)
hai(ni) = fQi(gi_1<ni)c)'

Hence, by Theorem 2.1, the independent reference prior for 7 is

m

w(n) = [[ =" (n),
i=1
where the marginal reference priors for n;, i = 1,...,m, are

() o \/m = fli(gi_l(ni)> |£9f1(”i) :

The result then follows.

2.3 First Order Matching Priors

21

We propose a sufficient condition under which the independent reference prior, given by

(2.4), is a first order matching prior. Thus we can easily prove that the independent reference

prior is a first order matching prior without solving the differential equation given by (1.6).

Theorem 2.3 Let 0 = (0y,...,0,,), where 0; € ®; C R. For firxedi=1,---,m, assume,

forallj=1,...,m,
|3 J1i(0;) f2: (65), if § =1,

v
6l SO @) F(80), i

(2.8)
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where 0f = (01, ...,01,0111,...,0m), = i, 7, 3 is the Fisher information matriz of 6, 3¢,
is the matriz which is derived by removing the i'™ row and j™ column from X, and fi; fa
for j # i is a positive function of its arqgument. Then the independent reference prior w2(0)

for 8, given by (2.4), is a first order matching prior for 0;.

Proof. For fixed i, let ¢ = ¢(6) = 6,. By (2.8.3) of Datta and Mukerjee (2004), a first

order matching prior 7 = 7 (0, ..., 0,,) for ¢ satisfies the following differential equation,
) e () = 0 (29)
86, 80, " '
where
DI VAT
E = (517"'7€m>/ (210)

T VSTV
where Vi = (8912/1, e B 1/})1 and X is the Fisher information matrix of @ = (6,...,60,,).
We need to show that the reference prior 7%() for 8, given by (2.4), satisfies the equation
(2.9). It is easy to see that Vi) = (0,...,0,1,0,...,0), where 1 is the i-th element of Vi),

and

£ = (&, &)

P =B 3]

From Condition (2.8), for j =1,...,m,

B it ~ |25
& = (1) fu(0;) f2:(6¢) 5]

1 .f . — .
60 i (09) Hr=5n

_Ni+g [ f1i(04) 1 oo .
(=1 f1(05) f3;(05)° if j # 1.

Thus the differential equation (2.9) becomes

a( (6) )+i Wa( fn(n())
90i \ [ f1i(0:) 2 (65) ) 3515 \f15(05) f;(6
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Now, it can be shown that

0 ) m 10 fri(6;) 7(6)
( Fui(6) fai 6 )ﬂ%f V (W i 95)
) (HZH \/f1k:(9k:)) N i (_Diﬂ-i (\/fhil ITis \/flk(gk))
00i \ \/fri(0) f2:(05) ) 5554 09; V11505 f(65
0 (H?Lk# fm(ek))+ SYEICH (W T Fie 9k>)

90; f2i(65) j=1,57 F54(6)

= 0.

Hence the independent reference prior 7(@) for 8, given by (2.4), is a solution for the

differential equation (2.9). The result then holds. 0

Corollary 2.2 Suppose that in Condition (2.8), |35;| = 0 for some j # i. The in-
dependent reference prior ©'(0) for 0, given by (2.4), is a first order matching prior for

0;.

Proof. Clearly, if |X¢,| = 0, then {; = 0 for some j # i. Thus 3 (5] ) =0 for any 7. The

result then follows. 0O



Chapter 3

Examples

In this chapter, various examples of commonly used probability distributions are studied.
We derive the independent reference priors by employing Theorem 2.1 and compare them
with the reference priors. We also verify if the independent reference priors are also first
order matching priors by applying Theorem 2.3. Consequently, the independent reference
priors are shown to be the reference priors and first order matching priors in most of the
examples. Note that most of the probability density functions, the Fisher information
matrices and the reference priors in this chapter were provided by Yang and Berger (1997)

unless other references are cited.

3.1 Binomial Model: Two Independent Samples

For fixed ny and no, let X; and X5 be independent binomial random variables with the

parameters (n1,p;) and (ng, pa), respectively. Then the joint density of (X, X5) is

n ny1—x n € no—I
f($17x2‘plap2) = ( 1)]91“(1 _pl) ' 1( 2)192 2(1 _p2) A (3-1)
xr 4

24
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for x; € {0,1,2,...,n;}, i = 1,2. Here 0 < py,ps < 1. The Fisher information matrix of

(p1,p2) is
e I
2(]?1,]?2) = P P . (32)
0 p2(13p2)

Hence the marginal reference priors for p; and psy are

1
m(p1) < ———, p1 € (0,1), (3.3)
pi(l—p
1
Ty (p2) x ———, p2 € (0,1), (3.4)
pa(l —p2

and the independent reference prior for (pq,p2) is

1
\/Pl(l — p1)p2(1 — pa) .

It is a first order matching prior for p; and py, and the reference prior for (p;, p2) when one

¥ (p1,p2) o (3.5)

of the parameters p; or ps is of interest and the other is nuisance parameter.

3.1.1 Two Binomial Proportions

Sun and Berger (1998) conducted objective Bayesian analysis by using the independent
reference prior for the log-odds ratio of two binomial proportions in the example of a clinical
trial: ECMO (extra corporeal membrane oxygenation). The ECMO example is described
here: n; patients are given standard therapy and no patients are treated with ECMO. The
probability of success under standard therapy is p; and the probability of success under
ECMO is p,. Let X; be the number of survivors from standard therapy and X, be the
number of survivors from ECMO. Then X, is a binomial random variable with parameters
(n1,p1) and independently, X5 is a binomial random variable with parameters (ny, py). The

main interest is to compare the two treatments. Then the log-odds ratio of p; and po,
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defined as d = ny — my with n; = log[p;/(1 — p;)], i = 1,2, is used for comparing them when
71 is nuisance parameter. Under the assumption of the independence of § and n;, Sun and
Berger (1998) obtained the marginal reference priors for § (€ R) and 7, (€ R), which are
given by

R(5) o exp (-217T /Ol{t(l—t)}_o'5log 1+Z:{(1—t)e—5/2+teé/2}2} dt), (3.6)

e /2

mi(m) = Tl ten) (3.7)

Consequently, the independent reference prior for (d,7;) is

h(8)em/?
R
Q (67771) X 1—|—6771 ) (38)
where
1 —05 ny —5/2 §/212
h(6) = exp <—/{t(1—t)} log |14+ ™{(1 = t)e/2 4 te }}dt). (3.9)
21 Jo D)

Now we compare the four priors for (§,7;) with respect to the frequentist matching
property for 4 and mean squared errors of the Bayes estimators of § through simulation
studies. The frequentist matching property is investigated by observing the frequentist
coverage probabilities of the posterior credible interval for §. The four priors considered
here are constant prior, Jeffreys-rule prior, Cauchy prior and independent reference prior

given by (3.8).

First, we compute the joint likelihood of (4, 7;), which is given by

IN(S. ) = [ ™ em \ L L \™™™ (ny edtm  \* 1 neTe
(O.m) = r1) \1+em 1+ em zy) \ 14 edtm 14 ertm

e‘H’"/l
14edtm -

since the likelihood of (p1,py) is given by (3.1) with p; = and ps =

e
1+em
We also derive the priors for (6,7;). The prior for (4,7;) corresponding to the constant

prior for (py,ps) is

€6+2n1

(14 em)*(1 4 edtm)*’

(0, m) (3.10)
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the Jeffreys-rule prior for (§,7;) is

eS+2m 0-5

(14 em)*(1 + ed+m)?

7TJ(57 771) (8

and the Cauchy prior for (,7;) is

1

M) < T

by assuming the independence of § and 7;.

27

(3.11)

(3.12)

We then obtain the marginal posterior density functions for § using the four priors. Let

ng = x1 + x2 and ngp = ny + ny — ng. By using the transformations n; = log (

) and

§ = log (), the marginal posterior density function for ¢ using the constant prior (3.10)

is
ffooo LN(57 771)77'0(57 771)d771
S50 JZ5 LN (8, m1)mC (6, ) dimi dd
<65>x2+1 fol tnS_H(l B t)nF+1<

7TC(5|x1,x2) =

1—t+edt

T e (R

s\x2+0.5 1,y ng 1
7 (8]xy, 22) = ) b 0 1) (

no+2 ?
) dtdu

the marginal posterior density for ¢ using the Jeffreys-rule prior (3.11) is

1—t+edt

1 p1l/ u \22+0.5 n n
Jo Jo (7%5)7 u(llfu)t s(1—1) F<1t+11“ut>

the marginal posterior density function for ¢ using the Cauchy prior (3.12) is

5\T2 1 _ -1 no
(1€+)52 fo s 1(1 - t)nF (1—tie5t>

7TA(5|x1,x2) =

1+{10g (ﬁ)}

1+{log (ﬁ)}2 u(l—u)

11 (3™ 1 ng—1(1 _ ”F—l( 1
Jo Jo trs=i(1 1) =422t ) 1 {log (15) }

)

sdtdu

and the marginal posterior density for ¢ using the independent reference prior (3.8) is

(eé)zzh((S) fol s =05(1 — t)anO.S(

1—t+edt

7TR(5‘.’E1, 1'2) =

where h(-) is given by (3.9).

fol (ﬁ)ﬁh(log{ﬁ})ﬁ fOl tn5—0.5(1 . t)np0.5<
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Mean Squared Errors

Below are the analytical results for obtaining the mean squared error of the Bayes estimator
of 8. Under the squared loss function, L(f,a) = (6 — a)?, the Bayes estimator of 4, 0, =

1(1, z9) is its posterior mean which is computed by [*_d7!(5|z1,29)dd, | = C,J, A, R.

Thus by letting § = log (%),

no+2
g fO fO log( )( Eu>x2+lﬁtn5+l(1 t)nFJrl(l_H_llfut) dtdu
¢ = na+2 ’
o lo (ﬁyﬁlﬁt"ﬁl(l — )t <1t+1“t> dtdu
1—u
no+1
- S i log (-2 )( fu)x2+05uu>10t”5(1-—t)"F(1_tftiﬁ> dtdu
J e

fl fl (L)$2+0-5 1 (1—¢)"F 1 n2+1dtd 7
0J0 \1—y u(l—u) 1—t+12-t u

u (Z2)"? ng— np—1 "
fol fol 1Og(ﬂ) : 2u(11—u)t ST =)™ <1 t+11“t) ’ oy didu

5 1+{log (1) } 1w 1+{log (75 }
AT T e 1twqu—ww4< 1 )” L _dtdu
e F) s (T
” w \T ” na—0. np—0.5 "
_ Jo log () (7) Zh(log{m})u(ll_u) Jo 01 =) (1—t+11fut> dtdu

I

na
fo (1uu)mh(10g{1uu}) fo tns=05(1 — t)nF_O.S(ltJrll“uJ didu

where h(-) is given by (3.9).

Hence, the mean squared error is given by

MSE, = E { } S S (65— 0 LN (6,m) (3.13)

x1=0 x2=0

forl=C,J, A R.

Computing (3.13) is straightforward if n; and ny are small. However the following ap-

6 +n1

proximation is proposed for large ny and ny. For fixed (6*,77]), pi = and p} = ﬁ

1+ ”1

are obtained. Then, for fixed n; and ns, two sets of independent binomial random variables,
2P pr and @8 |ps with (ny,p?) and (na, p3), respectively, are generated for k = 1,... K.

For the simulated xgk) and xgk), 5l(k), I =C,J, A, R, can be calculated by using the above
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equations. Then (Sl(k) — 5*)2, k=1,...,K, are computed for [ = C,J, A, R. Thus the

estimate of M SE) is

K
MSE, = gjﬁk—ﬁ

forl =C,J A, R.

The results are shown in Table 3.1 in the end of Section 3.1. A prior which has small
mean squared errors is desirable. We considered small (n; = ny = 10) and large sample
sizes (n3 = ny = 50). We then chose 6* = —2,—1,0,1,2 and nf = =2, —1,0, 1, 2 for each ¢*,
and ran K = 5000 replicates for each set of (0*,7n;). It is observed that the mean squared
errors obtained by using the Jeffreys-rule prior and the independent reference prior are larger
than those using the constant prior and the Cauchy prior for both small and large samples.
However the differences are much smaller for large samples. Thus the constant prior and
the Cauchy prior might perform better than the Jeffreys-rule prior and the independent

reference prior in the inference of § with respect to the mean squared errors.

Frequentist Coverage Probabilities

We explain how to compute the frequentist coverage probability of the one-sided posterior
credible interval for §. For any a € (0,1), let ¢!, (71, z2) be the posterior a-quantile of J, i.e.
P(§ < ¢, (21, 29)|z1,29) = a for | = C,J, A, R. Then the frequentist coverage probability
of the one-sided (a x 100)% posterior credible interval (—oco, ¢\, (71, 22)) is defined as, for

I=C,J AR,

Pl (6 < (e = 3 - 1{0< g ama) } LY (0o,

x1=0 x2=0

where I{-} is the indicator function. It is desired that the frequentist coverage probability is

close to a. It could be difficult to compute the frequentist coverage probability if ¢, (z1, x5),
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l=0C,J,A R, is found first. Alternatively, we first consider, for fixed (6%, n;),

5*

{(xl,xg) (0" < qfl(:cl,xg)} = {(xl,xQ) : / 7t (8|21, 29)dS < 04}

forl = C, J, A, R. Then the frequentist coverage probability can be approximated as follows.

For the simulated xgk) and :cgk), k=1,..., K, which are generated as the previous section
on mean squared errors, the posterior density function, 7 (5|a71 ,mg ), L =C,J, A R, can

be computed. Then the estimate of Ps,,)(0 < ¢’ (21, 22)) is given by

é
0o

R 1 K *
Pl (6" < ¢ (z1,29)) = T I {/ 7rl(5|x§k),:v§k))d5 < a}
k=1 -

for I = C, J, A, R. It is shown that by letting § = log (%),

5*
/ Wc((ﬂxl,xg)d5

—00

—u I—t+ %t

no+2
fl+e fO (1u )zerlmtns—i-l(l t)nF+1( 1 - ) dtdu

no—+2 )
1 r1 +1 1 +1 1
i Gy st (1= 0 (g ) b

é‘*
/ WJ(a\xl,:@)d(s

no+1

e u x 0.5 n n
fH fo (i) " u(ll_u)t S(1—1) F<1_t+115ut> dtdu
Jo Jo (7)™ 00— Lgns (1 — ¢)"F (1>n2+1dtdu |
0JO \1—u u(l—u) I—t4+2t

5*
/ 7 (Ola1, )dd

6*
e (127)"2 1 ne—1 nF—l( 1 >n2 1
t STH1 —t z dtdu
B Jo Jo 1+{log( )} u ( ) Ittt ) 1 {log (14))
- )2 1 gne—1(1 _ 4\nr—1 1 " 1 ’
fo fo 1+{1 og( )}2 u(l—u)t s (1 —1) (1—t+1“ut) 1+{10g(1%t)}2dtdu

5
/ 7R (S]1, ) d0
0 - .
f1+e ( U )xzh(log{luu}) 1 tn570.5(1 _ t)nFO.E)(l_H}lzut) dtdu

n2
i ﬁ)”haog{ﬁ})uu&u) f& s 03 (1= )"0 (s )t

)
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where h(-) is given by (3.9).

The output is given in Table 3.2-3.4 in the end of Section 3.1. Table 3.2-3.4 displays
the frequentist coverage probabilities of the one-sided (a x 100)% posterior credible interval
for 6 when a = 0.05,0.5,0.95, respectively. Recall that we want a prior whose frequentist
coverage probabilities are close to a. We considered small (ny = ny = 10) and large sample
sizes (n; = ng = 50). We then chose 6* = —2,—1,0,1,2 and n} = —2,—1,0,1,2 for each
0%, and ran K = 5000 replicates for each set of (6*,7n). From Table 3.2-3.4, it is roughly
seen that the frequentist coverage probabilities computed by using the Jeffreys-rule prior
and the independent reference prior are much closer to o than those using the constant
prior and the Cauchy prior for both small and large samples. It is also observed that the
frequentist coverage probabilities derived by using the constant prior are closer to « than
those using the Cauchy prior. It is clear that the frequentist coverage probabilities are
consistently much closer to « for large samples than small samples. Hence the Jeffreys-rule
prior and the independent reference prior could be better priors for the inference of § than
the constant prior which is better than the Cauchy prior with respect to the frequentist
matching property. This conclusion is the opposite of the one obtained when considering

the mean squared errors.
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Table 3.1: Mean Squared Errors

n1:n2:10

5*

7TJ

7TA

™

2.0207
1.1600
0.9538
1.0413
0.9688

2.2071
1.9900
2.0119
1.8522
1.9893

1.1014
1.6708
2.1184
1.6140
1.5156

1.0707
1.5447
1.5439
1.2355
1.0943

0.7234
0.5274
0.2906
0.2029
0.2761

1.6563
1.0233
0.3562
0.2215
0.3478

1.7609
1.2081
0.3591
0.2372
0.3553

1.5684
0.9465
0.3645
0.2131
0.2877

1.1580
1.0099
0.9081
0.8969
1.0845

2.7084
2.2334
1.3929
1.4533
2.3403

1.3875
1.6232
0.9198
0.7190
1.2581

2.2053
1.9648
1.2212
1.0455
1.6868

0.6331
0.2935
0.1744
0.1892
0.3181

1.1753
0.3504
0.1852
0.2010
0.3771

0.9977
0.2895
0.1603
0.1962
0.3337

1.1996
0.3674
0.1836
0.1939
0.3424

1.1739
0.9795
0.8008
1.0224
1.2169

2.9737
1.7037
1.0526
1.7590
3.0536

1.5390
0.8091
0.4174
0.8079
1.5991

2.6305
1.4414
0.9482
1.4546
2.6568

0.3989
0.2009
0.1575
0.1944
0.4260

0.5046
0.2150
0.1641
0.2080
0.5493

0.2951
0.1427
0.1058
0.1384
0.3124

0.4931
0.2113
0.1609
0.2042
0.5335

1.0892
0.8925
0.8907
1.0986
1.1179

2.3760
1.4068
1.4054
2.4028
2.5853

1.1688
0.7051
0.9467
1.6893
1.3270

1.6387
1.0327
1.2359
2.0667
2.1399

0.3050
0.1888
0.1809
0.3060
0.6171

0.3614
0.2004
0.1913
0.3775
1.1596

0.3160
0.1967
0.1659
0.3235
0.9922

0.3256
0.1934
0.1893
0.3905
1.1855

0.9753
0.9909
0.9761
1.1905
2.0456

2.0445
1.7259
2.0967
2.0721
2.3697

1.4677
1.5285
2.2125
1.7404
1.1405

1.1112
1.1936
1.5867
1.5976
1.2183

0.2883
0.2005
0.2838
0.5000
0.6822

0.3738
0.2161
0.3438
0.9685
1.5668

0.3666
0.2415
0.3473
1.1343
1.6855

0.2958
0.2090
0.3523
0.9104
1.4915
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Table 3.2: Frequentist Coverage Probabilities of One-sided 5% Posterior Credible Interval
for 0

o mp | mw T 74 ™ ™ T T T

-2 1 0.0440 0.0440 0.0445 0.0610 | 0.1000 0.0690 0.1005 0.0415
-1 1 0.0530 0.0520 0.0625 0.0440 | 0.0695 0.0530 0.0800 0.0515
-2 01]0.0540 0.0440 0.1125 0.0440 | 0.0515 0.0495 0.0865 0.0480
0.0600 0.0510 0.1950 0.0485 | 0.0460 0.0360 0.0910 0.0370
21 0.0615 0.0435 0.2980 0.0595 | 0.0430 0.0390 0.1240 0.0415

-210.0275 0.0275 0.0275 0.0265 | 0.0560 0.0505 0.0560 0.0475
-1 1 0.0300 0.0300 0.0340 0.0315 | 0.0520 0.0435 0.0570 0.0460
-1 0]0.0425 0.0425 0.0920 0.0340 | 0.0525 0.0495 0.0760 0.0435
0.0295 0.0295 0.1505 0.0400 | 0.0535 0.0505 0.1225 0.0530
21 0.0385 0.0385 0.2140 0.0965 | 0.0685 0.0620 0.1460 0.0680

-2 1 0.0290 0.0290 0.0005 0.0055 | 0.0450 0.0510 0.0140 0.0375
-1 10.0425 0.0425 0.0055 0.0325 | 0.0520 0.0535 0.0230 0.0440
0 0]0.0550 0.0550 0.0180 0.0580 | 0.0435 0.0435 0.0335 0.0445
0.0505 0.0505 0.0420 0.0810 | 0.0435 0.0465 0.0440 0.0580
210.0370 0.0370 0.0370 0.1090 | 0.0490 0.0540 0.0490 0.0665

-2 1 0.0095 0.0320 0.0005 0.0085 | 0.0425 0.0610 0.0090 0.0420
-1 10.0270 0.0765 0.0065 0.0245 | 0.0500 0.0630 0.0140 0.0460
1 01]0.0300 0.0655 0.0215 0.0585 | 0.0415 0.0535 0.0210 0.0530
0.0090 0.0315 0.0085 0.0625 | 0.0365 0.0490 0.0340 0.0580
21 0.0000 0.0015 0.0000 0.0120 | 0.0240 0.0570 0.0415 0.0685

-2 1 0.0035 0.0440 0.0000 0.0175 | 0.0370 0.0585 0.0195 0.0430
-1 1 0.0165 0.0810 0.0085 0.0795 | 0.0395 0.0440 0.0190 0.0555
2 01]0.0015 0.0590 0.0015 0.0565 | 0.0375 0.0610 0.0300 0.0570
0.0000 0.0025 0.0000 0.0030 | 0.0150 0.0685 0.0520 0.0730
21 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0050 0.0020 0.0120
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Table 3.3: Frequentist Coverage Probabilities of One-sided 50% Posterior Credible Interval
for 0

o mp | mw T 74 ™ ™ T T T

-2 10.9150 0.7175 0.9150 0.4055 | 0.6675 0.4935 0.5700 0.4295
-1 1 0.6755 0.4880 0.6820 0.3730 | 0.5920 0.4885 0.5550 0.4360
-2 0105770 0.4355 0.6630 0.4180 | 0.5520 0.4810 0.6010 0.4810
0.5945 0.4235 0.7730 0.4460 | 0.5130 0.4875 0.6750 0.4995
21 0.5855 0.4450 0.8825 0.5595 | 0.5510 0.4900 0.7135 0.5380

-2 1 0.7475 0.5275 0.5465 0.3545 | 0.5565 0.5085 0.6255 0.4485
-1 1 0.5475 0.5020 0.6235 0.4445 | 0.5190 0.4725 0.5345 0.4770
-1 0]0.5245 0.5245 0.7190 0.4695 | 0.5095 0.4800 0.6310 0.4840
0.4905 0.4890 0.8345 0.5410 | 0.5175 0.4935 0.7000 0.5085
2105565 0.5110 0.9190 0.6445 | 0.5520 0.5080 0.7690 0.5350

-2 1 0.3540 0.3605 0.3540 0.3675 | 0.5230 0.4590 0.4225 0.4290
-1 104390 04875 0.4195 0.4150 | 0.5085 0.5060 0.4685 0.4705
0 0]0.4685 0.5460 0.5410 0.4635 | 0.5035 0.5040 0.5030 0.5200
0.5590 0.5225 0.5885 0.5830 | 0.4985 0.4920 0.5405 0.5585
21 0.6510 0.6450 0.6520 0.6370 | 0.4660 0.5275 0.5740 0.5535

-2 1 0.4650 0.5045 0.0930 0.3400 | 0.4520 0.5070 0.2420 0.4675
-1 1 0.5035 0.5040 0.1690 0.4685 | 0.4685 0.5015 0.2935 0.5025
10104900 0.4910 0.2860 0.5290 | 0.4775 0.5020 0.3735 0.5180
0.4600 0.5040 0.3840 0.5365 | 0.4645 0.5205 0.4505 0.5265
210.2430 0.4740 0.4525 0.6495 | 0.4575 0.5110 0.3830 0.5275

-2 104305 0.5735 0.1250 0.4465 | 0.4715 0.5325 0.3085 0.4705
-1 10.3965 0.5620 0.2260 0.5630 | 0.4710 0.4955 0.3190 0.4980
2 0]04295 0.5630 0.3395 0.5610 | 0.4425 0.5075 0.3955 0.5310
0.3495 0.5225 0.3440 0.6210 | 0.4200 0.5245 0.4465 0.5410
2 10.0875 0.3030 0.0875 0.6065 | 0.3285 0.4980 0.4165 0.5290
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Table 3.4: Frequentist Coverage Probabilities of One-sided 95% Posterior Credible Interval
for 0

o mp | mw T 74 ™ ™ T T T

-2 | 1.0000 1.0000 1.0000 1.0000 | 1.0000 0.9950 0.9970 0.9885
-1 1 1.0000 0.9965 1.0000 0.9965 | 0.9815 0.9290 0.9440 0.9195
-2 0109985 0.9485 0.9985 0.9400 | 0.9585 0.9345 0.9620 0.9345
0.9735 0.9075 0.9870 0.9275 | 0.9485 0.9450 0.9740 0.9480
2109965 0.9520 0.9990 0.9815 | 0.9640 0.9430 0.9815 0.9610

-2 | 1.0000 0.9980 1.0000 0.9865 | 0.9735 0.9370 0.9585 0.9240
-1 109930 0.9740 0.9930 0.9315 | 0.9610 0.9390 0.9635 0.9415
-1 0109695 0.9310 0.9815 0.9265 | 0.9615 0.9485 0.9770 0.9550
0.9645 0.9175 0.9940 0.9750 | 0.9490 0.9410 0.9865 0.9495
2109915 0.9710 0.9995 0.9920 | 0.9620 0.9460 0.9885 0.9615

-2 1 0.9660 0.9660 0.9665 0.9010 | 0.9485 0.9425 0.9485 0.9260
-1 1 0.9560 0.9560 0.9600 0.9150 | 0.9585 0.9505 0.9545 0.9395
0 0]0.939 0.9395 0.9830 0.9475 | 0.9645 0.9645 0.9730 0.9555
0.9490 0.9490 0.9940 0.9585 | 0.9570 0.9540 0.9815 0.9520
2109630 0.9630 0.9980 0.9945 | 0.9440 0.9420 0.9820 0.9615

-2 1 0.9625 0.9625 0.7900 0.8980 | 0.9430 0.9485 0.8525 0.9390
-1 10.9645 0.9645 0.8385 0.9620 | 0.9420 0.9450 0.8760 0.9500
10109630 0.9630 0.9215 0.9590 | 0.9445 0.9465 0.9160 0.9515
0.9610 0.9610 0.9540 0.9565 | 0.9435 0.9525 0.9365 0.9590
2109775 09775 09775 0.9745 | 0.9500 0.9530 0.9500 0.9640

-2 1 0.9400 0.9565 0.7190 0.9305 | 0.9550 0.9570 0.8740 0.9410
-1 10.9390 0.9500 0.7985 0.9435 | 0.9455 0.9580 0.9015 0.9625
2 0]09485 0.9645 0.8920 0.9585 | 0.9445 0.9480 0.9080 0.9515
0.9470 0.9475 0.9245 0.9455 | 0.9420 0.9580 0.9250 0.9510
210.9405 0.9405 0.9405 0.9365 | 0.9065 0.9425 0.9065 0.9595
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3.2 Bivariate Binomial Model

Crowder and Sweeting (1989) considered the following bivariate binomial density

n n—zy | L T xr1—T
f(x1, za|p1, p2) = ( )plxl(l —p1) ( 1)]92 2(1—po)™ 7™,
X1 ]

where for fixed n, 1 € {0,1,2,...,n},25 € {0,1,2,...,21}. Here 0 < p1,ps < 1. Then the

Fisher information matrix of (py, ps) is

1 0
S(pi,ps) =n | PO . (3.14)
0 P1

p2(1—p2)

Hence the marginal reference priors for p; and py are

1
(1) x ———, p1 € (0,1), (3.15)
pi(1—m
1
T3 (p2) x ———, p2 € (0,1), (3.16)
p2(1 —po

and the independent reference prior for (p;, ps) is

1
\/Pl(l —p1)p2(l = Pz).

It is also a first order matching prior for p; and py, and the reference prior for (pq,ps)

™ (p1, p2) ox (3.17)

when one of the parameters p; or ps is the parameter of interest and the other is nuisance

parameter.

3.3 Two Binomial Proportions with Pre-screen Test

Extending the ECMO example of Sun and Berger (1998), we now mainly derive two inde-
pendent reference priors for the log-odds ratio of two binomial proportions when an initial

screen test is taken in a clinical trial. We consider the following two cases.
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Figure 3.1: Diagram for Case I

No Treatment
Pre—screen

Test

£

3.3.1 Casel

Suppose that n individuals are chosen for a clinical trial. A pre-screen test is applied
with probability of survival py. Then the individuals who are alive after the screen test
are randomly given no treatment with probability p and a treatment with probability 1-
p. Let p; be the probability of success for the non-treatment (control) group and ps be
the probability of success for the treatment group. Figure 3.1 shows the diagram for this

example. Then the probability density function is given by
[y g nk( K k1 k—Fk1
f(kaklaybyQ |p07p17p27p) - k Do (1_p0> kl P (1_p)

X (Si)?lyl(l — pl)kl_yl (k - k1>p2y2(1 - p2)k_kl_y27 (3.18)

Y2
where for fixed n, £ € {0,1,2,...,n},k; € {0,1,2,...)k},yn € {0,1,2,... k1},y2 €

{0,1,2,...,k — ki }. Thus the Fisher information matrix of (po, p1, p2, p) is

po(llfpo) 0 0 0
0 e 0
X (po, p1, P2, p) =7 pi=py) . (3.19)
0 0 % 0
0 0 0 Po

p(1=p)
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The following result is easy and the proof is omitted.

Proposition 3.1  Consider the model (3.18).

(a) The marginal reference priors for py, p1, p2 and p are

T (po) o ——i——nmemﬂx (3.20)
\/Po(1 — po)
) o« e e (0,1), (3.21)
Vpi(l—p1)
TRps) 6 e e (0,1), (3.22)
VP2(1 —p2)
7)o ———— pe(0.1). (3:23)
Vel —p)
(b) The independent reference prior for (po,p1,pa, p) is
1
*(po, p1,p2, p) o : (3.24)
TR \/Po(l — po)p1(1 — p1)p2(1 — p2)p(1 — p)

(c) The prior in (b) is a first order matching prior for py, p1, p2 and p.

(d) The prior in (b) is the one-at-a-time reference prior for (po, p1, p2, p) with any ordering.

Now consider the log-odds ratio of p; and ps defined as

0=my — 1, (3.25)

where

Di .
;=1 . i=1,2. 3.26
U %<1—m> i (3.26)

It is the interest parameter to compare the treatment and control group. Then the Fisher

information matrix of (d, 1, po, p) is

B B 0 0
B B+C 0 0
2(57 7717p07p) = s (327)
0 0 po(1—po) 0
0 0 (.

p(1—p)



Mi Hyun Lee Chapter 3. Examples 39

where
npo(l = p)e™™ o npope™
(1+eotm)? (1+em)?
Thus
2
n
3| = BC ,
= (1 =po)(1—p)p
n? n2
3¢ — B+ C ’ S| =B ’
nPo n
¥, = BO——-—, |2y|=BC——.
Consequently,
x _  BC _ npop(l — p)edm
|34, B+C  p(l4edtm)24ed(1—p)(1+emn)?’
EL o e
|35, (14 em)2’
= _n
| 255 po(1 —po)’
=l _npe
|35 p(1—p)

We note that |X|/|X5|, i = 2,3,4, satisfy Condition (2.3) but |X|/|X¢;| does not. Thus
we cannot apply Theorem 2.1 to this problem. We use the iterative algorithm directly to

derive the independent reference prior for (4,71, po, p)-

Proposition 3.2  Consider the model (3.18) with the new parameterization (3.25) and

(8.26). Then the marginal reference priors for &, ni, po and p are

wf0) o« e {5 [ [ o) logl,m, pldmdp}, SE R, (3.29

1/2
m(m) = e meR (3.29)
2 \//1 7_‘_(1 n 6771) y 11 5 .
1
T‘-R(po) = —F7—, Do € (07 1)7 (330)
’ m\/Po(1 — po)
1

m/p(1 = p)
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where

p(1 = p)e’tm
p(LT )+ e (1= )1+

h1(57 771“0) =

Consequently, the independent reference prior for (5,m1, po, p) is
(8, m. o, p) = 71 (8)m5 ()75 (Do) 74 (p).- (3.32)

Proof. Because |X|/|3¢]|, ¢ = 2, 3,4, satisfy Condition (2.3), (3.29)—(3.31) hold immedi-
ately. It is easily shown that w2 (n;), £ (po) and 7f(p) are proper. Thus we need to apply

Algorithm B to derive 7i(§) since |X|/|X¢;| does not meet Condition (2.3). Then

1 1 g1 poo »
0 x el [ [T e onntoos (5 ) dndms )
1 1 r1 poo
— oo {5 [ [ ] ) mi o) e (o) loglhi (6,ms, po. o) dmdpodp |
where

pop(l — p)e’*m
p(1+e¥tm)2 4 ed(1—p)(1+em)?

hi(aa N1, Po, )0)

Clearly,

R Lrtog Lot g R
~li@) cexp {5 [ wlipo) og(po)dpo + 5 [ [ 7wl (o) loglhn (6,1, p)ldmep .
0 0 J—oo

The result holds. O

3.3.2 Case Il

Suppose that two groups of ny; and n, individuals are selected for a clinical trial. First, an
initial screen test is conducted to the group of n; individuals with probability of survival

po- Then the individuals who are alive after the screen test are given no treatment. Next,
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Figure 3.2: Diagram for Case II

Pre—screen

Test

Fa £

b4

w3
&

MNo Treatment

Pre—screen

Test

Fu Fq

Ve

=
6

Treatment

the same initial screen test is conducted to the group of ny individuals with probability of
survival pg. Then the individuals who are alive after the screen test are given a treatment.
Let p; be the probability of success under no treatment and ps be the probability of success
under treatment. The diagram for this case is given in Figure 3.2. Then the probability

density function is given by

n

na—k (K _
f(k1,y1, k2,92 | Do, D1, D2) = (kji)pokl(l —po) M <yi>p1y1(l —p)
n na2—~K2 k 27 Y2
()t () -, (3.3
2 Y2

where for fixed ny and no, k1 € {0,1,2,....n1}, 51 € {0,1,2,... k1 }, ko € {0,1,2,...,n2}, 40 €

{0,1,2,...,ko}. Thus the Fisher information matrix of (pg, p1,p2) is

ni+n
poéfﬂi) 0 0
2(po, p1,p2) = 0  mEo 0 : (3.34)
0 0 pz?ffzz)

The following proposition is easy and the proof is omitted.

Proposition 3.3  Consider the model (3.33).
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(a) The marginal reference priors for py, p1 and py are

1

Trf(p()) X , Do € (07 1)7
po(1 — po)
1
Trf(pl) X , b1 € (07 1)7
pi(1—p
1
Ty (p2) X ———, pr € (0,1).
p2(1 — D2

(b) The independent reference prior for (po,p1,pa) is

1
\/po(l = po)p1(1 = p1)p2(1 — Pz)‘

(c) The prior in (b) is a first order matching prior for py, p1 and ps.

7 (po, p1, p2) ox

42

(3.35)
(3.36)

(3.37)

(3.38)

(d) The prior in (b) is the one-at-a-time reference prior for (po, p1, pe) with any ordering.

As stated in the previous case, we are interested in 0 = 7, —n; given by (3.25) and (3.26).

The Fisher information matrix of (4,71, pg) is

B B 0

2(577717190) = B B+C 0 )

ni+n
0 0 po(ll—;o)
where
o+n1 1
_ Nagpoe _ Mipo€
B = 7(1_1_@6%1)2 and 0_7(1—1—6’71)2'
Clearly,
= = BCM, \2§1|:(B+C)M,
Po(1 — po) Po(1 — po)
ny + No
Yool = B————, |35, = BC.
| 22| p0<1 _pO) | 33|
Then
X BC ninapee’ ™M

=61 T BAC m(L+ et m)2 g nged(1 4 em)?’

(3.39)
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= c— nipoe™
|35 | (L4 em)?’
D N

| 353] a po(1 —po).

It is similar to Case I that |X|/|X5], i = 2, 3, satisfy Condition (2.3) but |3|/|X$,| does not.
Thus we cannot apply Theorem 2.1 to this problem either. We use the iterative algorithm

to find the independent reference prior for (8,7, po).

Proposition 3.4  Consider the model (3.33) with the new parameterization (3.25) and

(8.26). Then the marginal reference priors for 0, m1 and py are

1 00
() o« exp{Q/ 75 (1) log[hs (6, 771)]d771}, )€ R, (3.40)
R e /2
P (771) = 7T(]_ + 6771)7 T < ]R7 (341)
1
R
75 (po) = ———, po € (0,1), (3.42)
7T\/Po(l — Do)
where
5 66+?71
h = .
2( 7771) 7’L1(]. + 65-1—7]1)2 +n266(1 + 6771)2
Consequently, the independent reference prior for (5,m1,po) is
w8, po) = 71" (8) 3" ()75 (po)- (3.43)

Proof. It is clear that |X|/|X5,| and |X|/]|324;] satisfy Condition (2.3) so that (3.41) and
(3.42) hold immediately. It is easy to see that w2%(n;) and 7% (py) are proper. Thus we need

to apply Algorithm B to derive 7f(§) since |2|/|2$;| does not meet Condition (2.3). Then

1 b e by
w0) o et [T w0 los () dmdpy

1 1 roo .
= exp {5 [ [ ) oo) loglhs (6 m, poldmdpo |
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where
S+m
bo€
hi (o )
2(9, 1, 7o) ni(1+ e+m)2 4 nyed(1 4 em)?
Clearly,
1 /1 1 foo
wfi(6) ocexp {5 [ fio) log(po)dpo + 5 [ wi () oglh (6 mn)ldm }.
The result then holds. 0O

3.4 Exponential Model: Two Independent Samples

Let X; and X5 be independent exponential random variables with means 1/6; and 1/6,,

respectively. Here #; > 0 are unknown. The joint density of (X, X5) is
f(z1, 25 | 01,00) = 01 exp(—x10,)0; exp(—w262), 21,79 > 0.

It is easy to compute the Fisher information matrix of (0, 6,), which is given by

L0
2(91, 62) - ! . (344)
O %

Hence the marginal reference priors for #; and 6, are

1

7)) o o 6, > 0, (3.45)
1

Wf(@g) xX 0*2, Oy > 0, (346)

and the independent reference prior for (0, 6,) is

(3.47)
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It is a first order matching prior for #; and 6, and also the reference prior for (6;,602) when

one of the parameters #; or 65 is of interest and the other is nuisance parameter.

Alternatively, let ¢ =

9+9’

of Xj and Xy, and w = 01 + 5. The Fisher information matrix of (¢,w) is

P+(1-¢)?  _1-2¢

S _ | Famer wei-e | '
(¢, w) L ) (3.48)
wo(1—¢) w2
Clearly,
1 2
’2‘ = m> |2 ‘ o2
¢2 +(1-9¢)? 1—2¢
Y5 = ——————, X =125 = ————.
| | ( )2 ) ’ 2| | 1‘ w¢(1 . ¢)
Then
B 1
344 202(1 — ¢)*’
x| 1{ 1 }
|35, | w? [+ (1=9)?2]"
= = 1 |
|35, | 125 wo(l—¢)(1—29)

Hence the marginal reference priors for ¢ and w are

i b
7T1 (¢) X ¢( ¢)7 ¢ S (07 1)7 (349)
i (w) o jj, > 0, (3.50)

and the independent reference prior for (¢,w) is

1

(P, w) x Fb(l—qﬁ)'

(3.51)

It is a first order matching prior for ¢, and the reference prior for (¢,w) when ¢ is the

parameter of interest and w is nuisance parameter.
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We could consider the third set of parameters. Let ¢ = g—;, the ratio of two means, and

w = 0105. Then the Fisher information matrix of (¢,w) is

2
1 == O
S(pw)=-| * (3.52)
4 0 2
Hence the marginal reference priors for ¢ and w are
R 1
T (¢) o & ¢ >0, (3.53)
1
mHw) o« —, w>0, (3.54)
w
and the independent reference prior for (¢,w) is
(), w) L (3.55)
7 ¢w

It is a first order matching prior for ¢ and w. By Datta and M. Ghosh (1995), the indepen-
dent reference prior for (¢,w) is the same as the reference prior for (¢,w) when one of the

parameters ¢ or w is the interest and the other is nuisance parameter.

3.5 Gamma Model

Consider the gamma density

flz|a,p)= Fﬁ(a):vo‘_l exp (—fz), x> 0.
Here o > 0 and ( > 0 are unknown paramaters. The Fisher information matrix of («, 3) is
@) —3
(o, ) = . (3.56)
1 «
B R

where £(a) = %, (z 4+ 1) %, It is easy to see that

5| = M’ |3

62

a 1

:—7 EC :€OC7 EC = EC = — .
=z 1Bl = &a), [¥] =35 = -3
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Then we have

= éa)a-1

|34 o 7
= 1{£<a>a—1}
|35, | 2l ) 7
= 3 a1
|35, | |35, g

Hence the marginal reference priors for o and 3 are

ma) o fm)j_l, a>0, (3.57)
BB x L B0, (3.58)

B

The independent reference prior for («, () is

(a)a—1
Vo

It is a first order matching prior for a, and also the reference prior for («, ) when « is the

(o, B) (3.59)

parameter of interest and [ is nuisance parameter.

We can also consider alternative reparameterization («, p) for the gamma model, where
= FE(x | a,u). The density is

O{Oé

a—1 e _g
f(x’ahu)_'uar(a)x ep( /iw)

Then the Fisher information matrix of (v, u) is

§(azxa—1 0
Y(a,p) = : (3.60)
0 i
n

Hence the marginal reference priors for a and p are

() o

E(a)a—1

(07

L a >0, (3.61)

1
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and the independent reference prior for (o, u) is

Ela)a—1

By -t (3.63)

(o, ) o

It is a first order matching prior for o and p, and the reference prior for («, 1) when one of

a or i is the parameter of interest and the other is nuisance parameter.

3.6 Inverse Gaussian Model

For x > 0,a > 0, > 0, the inverse Gaussian density is

pn) = (52) "m0 2) )

Then the Fisher information matrix of («, ) is

= 0
202
(0, ) = (3.64)
0z
Hence the marginal reference priors for v and ¢ are
R 1
m () o o> 0, (3.65)
R 1
U (¢) X ﬁ, ¢ > O, (366)
and the independent reference prior for («, 1)) is
R 1
T, 1Y) o (3.67)

It is a first order matching prior for « and 1, and the reference prior for («,v)) when one of

the parameters o or v is of interest and the other is nuisance parameter.
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Now we consider alternative parameterization, 6 = % and f = y/ay. The Fisher

information matrix of (6, 3) is

14282 1-2p2

1 2 9
2(6.5) = 5 o (3.68)
1-282 14282
08 5?2
Thus
2 e l¥28 o 1428 . 1-2p
|E|:@a |EH|:T’ |222|:T7 |212|:’221|:W7
and then
iz 1/ 2p
136, 62 \1+252)°
= 2
36 1+26%
= Is 48
|25 125, 6(1—2p6%)

Hence the marginal reference priors for 6 and 3 are

TH0) o ; 0 >0, (3.69)
1
m(B) o VeI B >0, (3.70)

and the independent reference prior for (0, 3) is

1
01+ 232

It is also a first order matching prior for 3, and the reference prior for (6, 3) when (3 is the

(0, 8) (3.71)

interest parameter and 6 is nuisance parameter.

We now consider the third parameterization for the inverse Gaussian density. Then for

x>0, > 0,0 >0, the inverse Gaussian density is rewritten as

11 (v — p)?
2\ - _
f(SU | M? o ) - /271'0' xg/g exp{ 20’2/,62$ .
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The Fisher information matrix of (u,0?) is

S(uo?)=| " . (3.72)

204

Hence the marginal reference priors for 1 and o? are

i(p) o M;/Q’ >0, (3.73)
Ty (0%) x =, 0? >0, (3.74)
and the independent reference prior for (u,0?) is
" (1,0%) o —7 . (3.75)
w32o

It is a first order matching prior for p and ¢%. By Datta and M. Ghosh (1995), the inde-
pendent reference prior for (i, 0?) is equivalent to the reference prior for (u,0?) when one

of the parameters p or o2 is of interest and the other is nuisance parameter.

3.7 Lognormal Model

The lognormal density is, for z > 0,

e )= o Ly (L2

where ¢ € R and ¢ > 0 are unknown parameters. Then the Fisher information matrix of

(k. 0) is
5 0
Y(p,0) = e (3.76)
0 2
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Hence the marginal reference priors for p and o are

() o« 1, peR,

(o) o p g >0,

and the independent reference prior for (p, o) is

1
7 (u,0) oc =
o

51

(3.77)

(3.78)

(3.79)

It is a first order matching prior for p and o, and the reference prior for (u, o) when one of

(1 or o is the parameter of interest and the other is nuisance parameter.

Now we consider alternative parameterization. Let 6 = exp (,u + %2), the mean, and

(3 = o2. Then the Fisher information matrix of (6, 3) is

1 023 203
3(0,0) = 5
_ 1 p+2
208 457
It is easy to compute
1 8+ 2

‘2’ = 29263’ ’251‘ = 462 )

Then

s = 7 )
DA AR

x 1
35, 28%
s s 2
|24, 1354 062

Hence the marginal reference priors for # and ( are

i)

T (6) o

C 1 C C
1222’ = 927527 ‘212’ = ‘221’ = =

1

105

(3.80)

(3.81)

(3.82)
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and the independent reference prior for (6, (3) is
(0, 8) x —. (3.83)

It is a first order matching prior for 3. Furthermore, it is also the reference prior when [ is

the parameter of interest and 6 is the nuisance parameter.

3.8 Normal Model

For x € IR, the normal density is

Flalno®) = exp{—“;gf)?}.

2

Here 1 € IR is a unknown mean and o > 0 is a unknown variance. Then the Fisher

information matrix of (u, o) is

L0
0-2

(o) = . (3.84)
0 2

Hence the marginal reference priors for p and o are

T (p) o« 1, peR, (3.85)
1
(o) o P 0, (3.86)

and the independent reference prior for (p, o) is

7, o) i. (3.87)

It is also a first order matching prior for ¢ and o, and the reference prior for (i, o) when one

of the parameters p or o is the parameter of interest and the other is nuisance parameter.
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3.9 Normal Model: Two Independent Samples

3.9.1 Unequal Variances

Let X7 and X5 be independent normal random variables with means p; and 9, and variances

o? and 03. Then for z; € R, u; € R,0; > 0, i = 1,2, the joint density is
1 2 K

1 (.Z’l B /1‘1>2 1 (I'Q — ,[,L2)2
f(l’l,xz!m,uz,(ff,ag) - V2ro exp{— 207 V2mo P _Tf% '
1 2

Then the Fisher information matrix of (u1, ps, 01, 09) is

ﬁ 0 0 O
0 % 0 0
E(ul,u?;ghoé) = 2 (388)
0 0 02—2 0
00 0 %
2
Hence the marginal reference priors for py, pse, o1 and oy are
() o 1, p € R, (3.89)
o) o< 1, py € R, (3.90)
1
o) < —, o1 >0, (3.91)
o1
1
m(og) o< —, 09 >0, (3.92)
02
and the independent reference prior for (pq, 2, 01, 09) is
R 1
(e, p2, 01, 02) X . (3.93)
0109

It is a first order matching prior for u,, ps, 01 and o9, and also the one-at-a-time reference

prior for (i1, pe, 01, 09) with any ordering.
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Alternatively, let 6 = puius, the product of two means, and w = ,/% when gy, g > 0.

Then the Fisher information matrix of (6, w, o1, 09) is

wWio?1o2 whe?2— o2
49w210%02§ 2w310%cr§ 0 0
s s o o
Y(0,w,01,09) = 172 172 : (3.94)
0 0 U% 0
2
0 0 0 P
Thus
3 = 4 |g§1|:w |§;§2|:M
w2otal’ wiotoy Ow2cioy ’
2 2
YOl o= — 2 s = 2
‘ 33’ wgo_%o_ép ‘ 44’ w%i‘a%’
and then
5w
241 O(wioi + 03)’
= 40
35 wiof+ o3
= 2 xE 2
|25 ot B4l o3

It is clear that |%|/|X5], ¢ = 1,3,4, satisfy Condition (2.3) but |%|/|X$,| does not. Thus
we cannot apply Theorem 2.1 to this example. We use the iterative algorithm to compute

the independent reference prior for (6,w, o1, 09).

Proposition 3.5  Let {[1/v/7,V/J], 7 = 1,2,...} be an increasing sequence of compact
subsets of (0,00) foroy and {[1/v/27,v2j], j =1,2,...} for o5. Then the marginal reference

priors for 0, w, o1 and oy are

1
1
T (w) o = w>0, (3.96)



Mi Hyun Lee Chapter 3. Examples 55

1

(o)) o g o1 >0, (3.97)
1

i (0g) o g ag > 0. (3.98)

Consequently, the independent reference prior for (0,w,oq,03) is

1
\/gwﬁ@.

Proof. Clearly, (3.95), (3.97) and (3.98) hold since |X|/|X5]|, i = 1, 3, 4, satisfy Condition

WR(ea w,o1, 02) X

(3.99)

(2.3). Tt is easily shown that 7#(), 7f(oy) and 7l (o) are improper. Thus we need
an argument of compact sets and use Algorithm B’ to derive mf(w) since |3|/|XS,| does
not meet Condition (2.3). Choose {[a;j,b;], 7 = 1,2,...} as an increasing sequence of
compact subsets of (0,00) for 6, where a; — 0 and b; — oo as j — oo. Also choose
{[1/V7,V7], 7 =1,2,...} as an increasing sequence of compact subsets of (0, c0) for o1 and

{[1/324,v/27], j =1,2,...} for o9. Then by applying Algorithm B, it can be seen that

1% 1 02 w0007 (02) log (52 ) dbdondoy
mi(w) o ex N, I S ye—— -
2 1Y) a5 1y Jad w1 (0) 75t (01) i (02)dOdo dory
Jms 15 1) i 108 <w4a2+ ;) dfdordo
= X
2 1055 K5 1o iy 0o
Vi log(wo4o
o \Flog b= aloga; [ s e dodoy
2(y/b; — /a;) 21og jlog(2y)
Set w® = 1. Then
miw) = 1l m2(0) = i 24 ()

J—00 7T2j(w0) Jj—00 7T2j(1)
log(o?+02 log(wo2+02
o« lim exp fl/r fl/‘[ #dald(h fl/\f fl/\f #dald@
j—00 21log jlog(2j)

By using several transformations and Taylor expansions in the integration,
/ /\f log(w'of + 02)d01d02 ~ log(2) log® (w*)) 4 i 1 <w4 i 1) 4 10g3(2j)’
1/\ﬁ 1 0102 4 852 2 wh 12

o1eo = 1 152 2
1/v/25 J1/ 0102 )
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Thus
. By + By
R 1 1j J
2 (w)ocjggoexp 2log jlog(27) |’
where
log(25){log* j — log*(w*j
By; = 08(2j){log” j — log™(w'j)} = —21log(2j)(log j logw + 2log® w),

11 L1

It is easily proven that

lim By = —logw

j—oo 21og jlog(27) S

im — D% _

j—oo 21og jlog(27)
Consequently,

R 1

7o' (w) ox exp (— logw) = -

The result holds. 0O

By Sun and Ye (1999), the reference prior for (6,w, oy, 02) in the grouped ordering of
{0, (w,01,02)}, where € is the interest parameter and (w, o1, 09) is the group of nuisance

parameters with the same importance, is expressed as

9(0) o3
0

2
(0, w,01,09) X Voolo? o} +—

)
w4

where ¢(0) is any positive real function. Previously, Berger and Bernardo (1989) computed
the reference prior for (6,w) where o1 and o9 are known, when the parameter of interest is
0 and nuisance parameter is w. Sun and Ye (1995) extended it by considering more normal

means.
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3.9.2 Equal Variances

Assume 0} = 02 = 02. Let

@lzm_m and 92:M1+M2
o o

The Fisher information matrix of (61,605, 0) is

1 0

a|®

o |, (3.100)

[

]
—

1
2(01,92,0') = 5

0, 0 0§+92§+8
It is easy to show
1 o, 07438 o 05+38 . 1
’2| = ;7 \211|:1477 |E22’:2477 ’233‘:1,
c c 0,0, c . 601 . . 0,
29| = ’221‘:_402, |213‘:|231’:_£a |223’:|E32|:£-
Then
x4 x4
6] 07 +8 35 65+
=4 I® 4
| 255 o2’ |5 | 251 ] 6105
= _ Z_ 4 B E_ 4
| 343] 361 o’ |25 3%, G20
Hence the marginal reference priors for 61, 6 and o are
R 1
m(0h) o , h € R, (3.101)
62 + 8
R 1
Ty (f2) o , 05 € R, (3.102)
03 +8
1
(o) x =, 0>0, (3.103)
o

and the independent reference prior for (61, 6,,0) is

1
\/(03 +8)(63 +8)

(0,0, 0) (3.104)
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3.9.3 Behrens-Fisher Problem

58

We are intrerested in 6 = uy — p9, the difference between two means, under the unequal

variances. We define w = 1 4 p2, the sum of two means. It is easy to show that the Fisher

information matrix of (0, w, oy, 09) is

02402  o02-02
417%0%2 4?7%0%1 O O
02—02 o242
2(9&) o 0_)_ 4?7%0%1 4;%0'32 O O
yWytvl1,02) —
0 0 % 0
1
0 0 0 %
2
Thus
1 o2 + o2
’2| = @v |2§1|:’2§2‘:ﬁ7
1 1
EC = —_— EC = —_—
| 33| 20%03’ | 44| 20%057
_2 . . .
3¢ | it 1 (7)) = (1,2),(2,1),
ijl =
0, otherwise,
and then
= _ I3
13364 |25 of 403’
2 I3 2
| 353] ot Bl o3’
= 4
|2f2| |2§1| U% - U%

Hence the marginal reference priors for 6, w, o1 and oy are

R0 « 1, 0eR,

i (w) « 1, weR,

7T§(0‘1> o = o1 > 0,
1

Wf(ag) o o o9 >0,

(3.105)

(3.106)
(3.107)
(3.108)

(3.109)
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and the independent reference prior for (0, w, o1, 09) is

1

0102.

(3.110)

7TR(67 w,01, 02) X

It is also a first order matching prior for 6, w, oy and o5, and the one-at-a-time reference

prior for (6, w, 01, 05) with any ordering.

3.9.4 Fieller-Creasy Problem

We are intrerested in the ratio of the two means, 6§ = %, under the equal variances 0% =

05 = 02. Then the Fisher information matrix of (6, ys, o) is

py o Opp 0
1
E(@,,ug,a):; Ous 1+62 0 |- (3.111)
0 0 4
Thus
R O IV N 1
|2| = 7;: |211|:T7 |222|:T42> |E33|:ﬁ7
T, i (4,g) = (1,2), (2, 1),
|E§j| =
0, otherwise,
and then
2 - 4 )
|35 o2 \1+62)’
= 1 =4
|35, o Bl o
= 1= e
| 25| X5, bo?
Hence the marginal reference priors for 6, py and o are
R 1
m'(0) x ——, 0 €, (3.112)

NE
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i (s) o< 1, py € R, (3.113)

1
(o) o — 0>0, (3.114)

and the independent reference prior for (0, uo, o) is

1

—_— 3.115
ov'1 -+ 62 ( )

WR(H,MQ,U) o

It is a first order matching prior for # and o. The independent reference prior for (6, o, o)
is identical to the one-at-a-time reference prior for (6, ps, o) which was derived by Bernardo

(1977), when 6 is of interest.

3.10 Bivariate Normal Model

Let (X7, X3)' be a bivariate normal random vector with unknown mean parameters (1, p2)’

. . of  por02 o
and unknown covariance matrix 3 = , whose density is given by

2
pPO102 05

f(ajlaxQ ‘ Ml?ﬂ%alao_?ap)

- : exp | T30 = )" + 0122 — 1a)” = 2p0105 (1 — i) (w2 — pr2)
20102/T 17 202031~ ¢7) .

Here p € (—1,1) is the correlation between X; and X5, and z; € R, u; € R,0; > 0 for

i=1,2.

All the reparameterizations in this section were considered by Berger and Sun (2007).
The Fisher information matrices and the reference priors referred here were also derived by

Berger and Sun (2007).
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3.10.1 Commonly Used Parameters

The Fisher information matrix of (u1, p, 01, 09, p) is

1
= _alp@ 0 0 0
—-L % 0 0 0
1 g102 0'2
2(ul,uz,al,02,p)=1_p2 0 0 2;52 e (3.116)
0 0 R
0102 o5 o2
1+p?
0 0 _o% _U% 1—22
Thus
4 4 4
2 = S —— EC = -— EC = —-—
R U Il e TG ER e TG
2 2 4
2 = _— EC = —-— e —
Ml = - Pul = aga o P8I pma e
4p 2p?
Xl = 1Bl = —mmr—ag Bl = 1Esl s
ata3(1 —p?) ot (1 — p?)*
2p 2p
Y5l = 1Bsl= =, Xl = 1320
‘ | | 3’ 0'%0'%(1—[)2)37 ’ 45| | 54‘ O_i;o_g(l_pg)g)?
X5l = 1B =120 = 2] = 1355 = 135 =0,
‘2 ‘ = 122’—@4’—‘22’—‘2&—‘2 |:0>
and then
X1 3 1
|34 S
2 |35 2
| 3255 U% 124, 057
D2 1
355 (1—p?)?
= _ =1 = B2
’Efﬂ |E§1’ 01‘72P7 |2§4| ‘233| 0102/)27
3 X 2 D 2

3555 B8] oip(1—p?)" B4 (B8l oep(l—p?)
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Hence the marginal reference priors for uy, ps, 01, 09 and p are

() o< 1, p1 € R, (3.117)
i (s) o< 1, py € R, (3.118)
1
(o)) o« —, o1 >0, (3.119)
g1
1
(o) o —, g9 >0, (3.120)
02
1
m(p) o = €(-11), (3.121)

and the independent reference prior for (p1, p2, 01, 09, p) is

1

ol (3.122)

7TR(M1>H2701702aP) X

It is a first order matching prior for uy, ps and p, and the one-at-a-time reference prior

for (/*617 2,01, UQap) in the Ordering of {p> 01,02, U1, MZ}? {p7 02,01, 1, MQ}? {Mla M2, p, 01702}

and {1, p2, p, 02,01} Note that Berger and Sun (2007) also derived the Jeffreys-rule prior,

7/ and the independence Jeffreys prior, w//. They are given by

1
7 (1, pig, 01,02, p) = Sl ) (3.123)
1

w7 (1, pay 01,09, p) = oo (3.124)

Any of the Jeffreys priors are not the same as the independent reference prior given by

(3.122).

q
= RO b

We can consider alternative reparameterization, f = %3 and ¢ = 0,05. Then the Fisher
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information matrix of (ug, e, 8, p,€) is

Yo _p
z ¢ 0 0 0
_p _1_
. £ &vo 0 0 0
E(M17M2707P75> = 1 _p2 0 0 0% 0 0 (3125)
0 0 0 1+p* —&
_P 1
0 0 0 3 &
Thus
1 . 1
% = 02¢4(1 — p2)*’ 30 = 05/2¢3(1 — p2)4
C 1 (& 1
’222‘ = 93/253(1 _p2>47 ’233‘ = 54(1 _p2)37
1 1+ p?
ul = ——, |25 = ————
= (o
_Wa if (Z)]> = <1a2)’(271)7
|2@CJ‘ - _Wa if (Z)j> = (4a 5)) (574)7
0, otherwise,
and then
= _ Ve I3 1
344 7 125 &V
= 1 x 1 X _ 1
|353] 2(1—p?)" B4 Q-9 |55 &(1-p")
Do T T I > I
|24, 1351 Ep’ 2G5 |34, Ep(1 — p?)
Hence the marginal reference priors for py, pe, 0, p and & are
() o 1, py € R, (3.126)
i (ue) o< 1, py € R, (3.127)
1
i) < =, 6>0, (3.128)
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1
m1(p) o —p € (-1,1), (3.129)

, £>0, (3.130)

and the independent reference prior for (pq, 2,0, p,€) is

1
7 (1, 2, 0, p, €) o m (3.131)

It is is a first order matching prior for uq, pse, 8 and p, and also the one-at-a-time reference

pI’iOl” for (ﬂlvﬂ?a 97 Ps 5) in the Ordering of {&/@57#17 ,U2} and {pa 97 67,“17:“2}'

3.10.2 Cholesky Decomposition

Define

and 73 = ———F—. (3.132)

It is easy to verify that

a1 m 13 m 0
U N3 12
So (m1,1m2,m3) is a set of parameters for a type of Cholesky decomposition of ©~!. The

Fisher information matrix of (p1, g2, m1,72,m3) is

m+n mens 00 0
1273 77% 0 0 0
(e, p2, iy m2,m3) = 0 0 n% 0 0 (3.133)
2124132 )
0 0 0 771%7733 _n?fvz
0 0 0 - 3L

nime n?
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Thus
4 4 4(n? +n3)
Z| = 5, [Bhl=— [35%]= 14723
m 7] 7717]2
2 2
771
and then
D 2 = i
c - 1 c | )
1335, | 125,  ni+n3
2 E 2
| 353] Bl s
= 1
|25 m+n3/2

It is easily seen that |X|/|X5], i = 1,...,4, satisfy Condition (2.3) but |X|/|X¢;| does not.
Thus we cannot apply Theorem 2.1 to this case. Now, we return to the iterative algorithm

and use it to compute the independent reference prior for (1, p2, 71,72, 13)-

Proposition 3.6  Suppose that {[1/j,5%], j =1,2,...} is an increasing sequence of com-
pact subsets of (0,00) for my. Then the marginal reference priors for uy, pa, M, ne and 13

are

() o 1, p € R, (3.134)
m(p2) o 1, pp € R, (3.135)
w3 (m) o 7711 m >0, (3.136)
() o ;2 >0, (3.137)
mi(ns) o 1, ms € R. (3.138)

Consequently, the independent reference prior for (py, o, M1, M2, N3) 1S

1

7 (s iz, M1, 112, 13) X —— (3.139)
M
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Proof. It is shown that |X|/|X5|, ¢ = 1,...,4, satisfy Condition (2.3) so that (3.134)-
(3.137) hold immediately. It is easily seen that 7f(uy), 78 (us), 7(m) and 7l (n,) are
improper. Thus we need an argument of compact sets and use Algorithm B to derive
mi(n3) since |X|/|X¢5| does not meet Condition (2.3). Choose {[a;j,bij], j = 1,2,...},
1 = 1,2, as an increasing sequence of compact subsets of R for p; and puo respectively,
where a;; — —oo and b;; — 00 as j — oo for i = 1,2. Also choose {[1/4,7/], j =1,2,...}
as an increasing sequence of compact subsets of (0,00) for 7y and {[as;, bs;], j =1,2,...}
for n,, where az; — 0 and b3; — 0o as j — oo. Then by applying Algorithm B, it can be

shown that

ffjj fl/] ffjj fffllj] (Nl)% <N2)7T:§(77 )7T4 (12) log ( SR ) dpuydpiadn,dns
;;] fl/y ffj; ffllf 1 (pa )75t () 05F (0 ) ¥ (2 ) dp d o iy g
23 11 s Lo (771 ) diydigy
-9 beJ f/] o dnld%

ff/JJ L ]og (771 + é”) dm
—2(j +1)logj

ms5(n3) o< exp

= exp

= exp

Set n = 0. Then
Ry~ pig 7)o T (70s)
s (12) e 755 (n5) jggo ms53(0)

y .
x lim ex 2 1/7 m ) logmdn — fl/]J T]il log (77% + %3) dny
i 2(j +1)logj

i 2

| (- Vlogj [ log (nt + %) dm
= lim exp — : :
j—o0 2 2(7+1)logy

By using several transformations and Taylor expansions in the integration, we obtain

P 1 3 2 2 ni  log*(ni/2)
2 dny ~ 21og? j +log j1 S ST .
/1/] —_— (771 > m = j*log® j + log jlog ( 2 ) T |

Thus

By + B,
R li 1j J
7T5 (7]3> X LI& exp 2(] 4 1) logj )
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where

2 2 2/, 2
) . 73 2 13 log (773/2)
By = log? d By, =logijl B - : .

It is easily shown that since lim logj/(j + 1) =0,
j—oo

. By - Bs;
lim ————— =lim ——— =0
j=2(j+1)logj =0 2(j +1)log

Hence

ma(ns) o exp(0) = 1.

The result then holds. O

Berger and Sun (2007) derived the reference priors for (u1, o, 71,m2,73) in the ordering

of {1, 2, m1,m2, M3}, {pen, po, M1, M3, M2} and { g, pi2, M1, (M2, m3)}. The reference prior for the

ordering of {Mlaﬂzﬂha U2>773} and {Hb M2, M1, (7727773)} 18

1
7T(,u1, M2, 71, 72, 773) X —,
mne

which is the same as the independent reference prior for (uy, p, 71,72, 13) given by (3.139).

For the ordering of {11, p2, 71, M3, 72}, the reference prior is

1
W(Ml?ﬂ’?aﬁla”%ﬁfﬂ) X 5 5 .
Mne\/ Nt +13/2

3.10.3 Orthogonal Parameterizations

Define

13 PO2
Ww=—=——=

3.140
T2 01 ( )
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It is easy to show that

-1 _ 1 w n 0 1 0 _ mo Mow m 0
01 0 n? w 1 0 Now 1o
since
mons | (1w m 0
0 01)\0 n

Thus (11,72,w) is a set of parameters for a type of Cholesky decomposition of 2~1. The
Fisher information matrix of (p, t2, 71, 172, w) is
n+nw? pw 0 0 0

naw ny 0 0 0

S g, iy M1, M2y W) = 0 0 n% 0 0 (3.141)
1
0 0 0 n% 0
2
0 0 0 0 %

Note that the Fisher information matrix is almost diagonal, except for the left-top corner

corresponding to (p1, pe). Thus

4 we A e A0 3w
‘E’ = 77%27 ’211\:777;» |222’:%,
C C 2774 C
|233| = 27737 |E44|:7227 |E55|:4,
m
417%0.) f N 12 2 1
c ‘,741177 1 (ZJJ)_(7 )7(7 )7
|Eij| =
0, otherwise,
and then
S . IS
|35, | VOSS nE A+ niw?
=2 s 2 |® B
| 3253] R DT 7R D Vi Y R
D2 D |

|E§2| B |E§1| Cw
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Hence the marginal reference priors for puy, ps, 71, 72 and w are

() o 1, p1 € R, (3.142)

w5 (pa) o 1, pp € R, (3.143)
1

Ty (m) o >0, (3.144)
1
R 1

Ty (1) o< —, M2 >0, (3.145)
2

i w) « 1, weR, (3.146)

and the independent reference prior for (p1, p2, m1, 72, w) is

1

WR(/“LD M2, 11, 7]2,(,{)) X —

. 3.147
nin2 ( )

It is also a first order matching prior for p, o, 71, 72 and w, and the one-at-a-time reference

prior for (w1, pa, 1,2, w) with any ordering.

Alternatively, define

1 m o oV1l—p?
=iy = ————= and = — = . 3.148
51 2 Ulagm an 52 o o1 ( )
Then the Fisher information matrix of (u1, ps, &1, &2, w) is
L(E+w?)  we
& >y 0 0 O
w1 &
521 fé 00 0
(1, pr2, &1, 62, w) = 0 o L o0 o |- (3.149)
1
1
0 0 O 3] 0
0 0 0 0 %

Note again that the Fisher information matrix is almost diagonal, except for the left-top

corner corresponding to (py, p2). Thus

1 1 &2 + w?
B = =, T = —, TS, = ,
1= &4 il 6165 122 165
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=5 = i 3
= e i (1) = (1,2),(2,1),
iyl =
0, otherwise,
and then
= _ = L
c - 515% -1 29
’211‘ |222| &+ w
= _ 1 3 IE 1
|325s] 2 3s, B &2
| 3355 |35, | w

Hence the marginal reference priors for py, po, &, & and w are

W{%(Ml) & 17 M1€R>
T (2) o 1, py €R,

&) o x & >0,

&

1
Wf(€2) (8 57 52 > 07
mw) x 1, weR,

and the independent reference prior for (pq, o, &1, &2, w) is

WR(M17M27§17§27W) 0.8 51162

70

(3.150)
(3.151)
(3.152)
(3.153)

(3.154)

(3.155)

It is a first order matching prior for py, s, &1, & and w, and also the one-at-a-time reference

prior for (uq, pe, &1, &, w) with any ordering,.
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3.11 Poisson Model: Two Independent Samples

Let X; and X5 be independent Poisson random variables with means A\; and Ay. Then for
x; € {0,1,2,...},\; >0, i = 1,2, the joint density of (X7, X5) is

e—)\l )\fl e—)xz )\%32

131! .’L’Q!

f(xl,l’z’)\h)\z) =

Then the Fisher information matrix of (Ay, Ao) is

L0
SALA) = | M (3.156)
0 L
A2
Hence the marginal reference priors for A\; and Ay are
R 1
™ ()\1) X T, A1 > 0, (3157)
1
1
) o ——=, Ao >0, (3.158)
A2
and the independent reference prior for (Aj, Ag) is
R ].
m ()\1, )\2) X (3159)

VA
It is also a first order matching prior for A; and Ao, and the reference prior for (A, A2)
when one of the parameters A\; or )\, is the interest parameter and the other is nuisance

parameter.

We consider alternative reparameterization, 6 = i—;, the ratio of two means. Then the

Fisher information matrix of (6, \s) is

2 1
1 0
A2
Thus
]_ c 1+0 c )\2 c Cc
13| = 0’ 4] = DY 35| = 9’ X0 = [E5] =1,
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and then
3]
=40 01 +0)
D
5] A
D >
P

Hence the marginal reference priors for # and A, are
R ].
mm'(0) x ——m——, >0, (3.161)

1
m(g) o oS Ay > 0, (3.162)

and the independent reference prior for (0, \y) is

(0, \y) S (3.163)
A0 (1 +0)

It is a first order matching prior for 6, and also the reference prior for (6, o) when @ is of

interest and A5 is nuisance parameter.

3.12 Weibull Model

The Weibull density, denoted by W (n, ), is

— g
f(z|n,B) = 63;; : exp {— (i) }, x> 0. (3.164)

Here n > 0 is a unknown scale parameter and § > 0 is a unknown shape parameter. Then

the Fisher information matrix of (7, ) is

B2 _l4m

E(n,0) = ! ! , (3.165)
14y yet2y+1
n B2
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where v; = [7°[log (2)]’e *dz. Thus

2

Yo — Y2+ 27+ 1

x| = = L, |53‘1’1|=—52 :
C /82 C C 1+’}/1
|E22’ = ?7 |212|:|221’:_ 1 )

and then

D 1{52(72—7%) }’

|26 ”? |72 +2m+1
%] _ 2 — 7

|35, | CE

2] _ 2] _ Yo — 1
|25 354 n(l+m)

Hence the marginal reference priors for n and ( are

1
() o 5 1> 0 (3.166)
R 1
T (8) 5 B >0, (3.167)
and the independent reference prior for (n, 3) is
7R (0, ) ox —. (3.168)
np

It is also a first order matching prior for n and (3, and the reference prior for (n,3) when

one of the parameters 1 or 3 is the interest and the other is nuisance parameter.

There are three other Weibull densities which are given by

f(zla, B) = o’BaP~texp {—(ozx)ﬁ}, x>0,a0a>0,0>0, (3.169)
Bl 2’

f(zl0,p) = 5 exp (—0>, x>0,0>0,0>0, (3.170)

F(xl\B) = A" lexp(-Aa?), >0,1>0,8>0. (3.171)

The parameters (7, 5) in (3.164) and («, ) in (3.169) perform in parallel. Also the behaviors
of (6,5) in (3.170) and (A, 3) in (3.171) are parallel. Refer to Sun (1997) for details. Thus

only the model (3.170) is considered here.
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The Fisher information matrix of (6, 3) for the Weibull model (3.170) is

% _ 14v1+logh
(6, 8) = ’ o (3.172)
_ 14+vi+log Y2—71 +(1+71+log 0)?
0B 62
where v; = [7°[log (2)]’e *dz. Thus
s Yo — 1 ye | Y2 =i + (1 4+ 7 +log6)?
’ | - 9262 ) ’ 11‘ - 62 )
c 1 c c 1+ Al + IOg 0
35| = 92’ | X0,| = 35| = _T7
and then
D Y2 =i
|35 0*{12 =% + (1 +m +log0)*}
2] _ i
|35, | B2
=B e
|25, 13354 03(1 471 + log0)
Hence the marginal reference priors for 6 and 3 are
0
) o 9(9), 6 >0, (3.173)
R 1
R(3) 5 B>, (3.174)
and the independent reference prior for (6, 3) is
0
(0, 3) ge(ﬁ)’ (3.175)
where
1

9(0)

\/72 — 7+ (14 71 + log 0)?
It is a first order matching prior for 6, and the reference prior for (6,) when @ is the

parameter of interest and [ is nuisance parameter.
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3.13 Weibull Model: Two Independent Samples with

the Same Shape Parameter

Consider the stress-strength system, where Y is the strength of a system subject to the
stress X. The system is reliable when the applied stress (X) is less than its strength (V).

Thus the reliability of the system is defined as
w =P(X <Y). (3.176)

This is used in many areas, especially in structural and aircraft industries. Sun, Ghosh
and Basu (1998) performed the objective Bayesian analysis for w; by using reference and
matching priors when both of the stress and strength follow the Weibull distribution. Here

we develop the independent reference priors.

Suppose that X, ..., X,, are iid W (n, §) and independently, Y, ... Y, are iid W (s, )
with the Weibull density given by (3.164). Then for z; > 0,y; > 0,7, > 0,8 > 0, i =

L....om,g=1,...,nk = 1,2, the joint density of & = (z1,...,2,) and y = (y1,...,yn) I8

st (e [ —<%>B
f(w,ylm,na,ﬁ)—[i_l_[l .7 eXp{ (771) H L]:[l g o n :

First, we derive the independent reference prior for (7,79, 3). The Fisher information

matrix of (91,19, ) is

mﬁQ 0 _m(1+’Yl)
n m
(1, n2, 8) = 0 s b : (3.177)
2
~ m(4y1)  n(l4vy1)  (mAn)(y2+271+1)
m 72 52

where v; = [°[log (2)]’e *dz. Thus

n?(vo — ) + mn(ye + 2y + 1)
2
2

mn(m+n)(y2 — 1) 5°
3

%) = , 1Enl =

Y
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| = m*(y2 = 77) + mn(ye + 20 + 1) e _mnﬁ4
‘ | - 2 ’ | 3’ 2 92
m 112
mn(1+ v;)? mn(1 + )52
XLl = IEyl=-—7—7—7—, |23!—|21!——2
mmne mmn3
mn(l—i—”yl)ﬂ?
Sl = [l = -
mne
and then
D 1{ mn(m +n)(ye — 77)5? }
|36 | ni —71) + mn(y, + 271 + 1)
S 1{ it ) ) }
|35, ] s m2 72 Y1) +mn(y + 27 + 1)
S e 1d)
| 353] 62 ’
= B[ (mtn)(n—97)F
| 336 1335 mna(l+m)% 7
=S mn)te—)
|35 1325 m(1+7)
= = men)e-ad)
| 3355 b n2(1 4 71)

Hence the marginal reference priors for 7y, 1o and [ are

and the independent reference prior for (11,72, ) is

1
T (m) o o >0, (3.178)
1
1
my (112) o o >0, (3.179)
2
R 1
T3 (3) o 3 g >0, (3.180)
(1,7, B) o L (3.181)
e

It is also a first order matching prior for 7y, 7y and (3, and the one-at-a-time reference prior

for (1,19, 3) with any ordering.

Consider alternative reparameterization, 6, = nlﬂ and 6y = 775 . As you can see in (3.187),

the reliability of the system, w; defined as (3.176), is composed of 6; and 5. The Fisher
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information matrix of (6, 02, (3) is

2(9179275) =

m 0 __m(logf14+1471)

02 018

0 n __ n(log 624+1471)
62 623

__m(logfi+1+v1) _ n(logfa+1+71) K(01,05, )

618 62

77

(3.182)

where ; = [°[log (2)]’e *dz and K (01,04, 3) = {m(log0; + 1+ v1)* + n(log s + 1+ 1) +

(m+n)(y2 — %) }/B% Thus

3]
3]
|35
335
35|
|351]

|335]

and then

3]
|34
=]
|35
3]
3355
%]
|31
=]
|335s]
3]
335

mn(m +n)(yv2 —77)

61632 ’
n{m(log b +1+)*+ (m+n)(y —7)}
0532 ’
m{n(logf + 1+ v)* 4+ (m +n)(y2 — 1)}
01 3? ’
mn
6203’
e | _mn(logf +1+y)(logbs +1+ 1)
ul= 10,7 /
. mn(logfh; + 1+ v1)
|231| = 2 )
0,055
. mn(logfs + 1+ 1)
’232‘ = - QQQ 5 )
10>

m(m +n)(v2 —77)

O {m(logb + 1 +7)* + (m +n)(72 =)}’
n(m+n)(7: = 1)

05{n(log by + 1+ )2+ (m +n)(y2 — 1)}’
(m +n)(v2 —77)

32 ’
= (m+n)(y2 — 1)
135,  6162(logfy + 1+ 1) (logfy + 1+ 1)
1 (m+n)(e—11)
35| B0:1(logby +1+7)
= (m+n)(e—97)

25| Bbs(logly +1+)
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Hence the marginal reference priors for 67, 65 and 3 are

1
(6,) o , 01 >0, (3.183)
91\/m(10g 0 +14+7)2+ (m+n)(y2—11)
1
T (0) o , 0y >0, (3.184)
Ba\/n(log Oy + L+ )% + (m + n)(v2 — 73)
1
T3 (8) o 5 >0, (3.185)
and the independent reference prior for (01, 6, 3) is
7TR<01, 62,6) = F{%(Ql)ﬂf(92>ﬂg(ﬁ) (3186)

Next, two independent reference priors under the Weibull stress-strength model are de-
rived by considering two different sets of nuisance parameters. When the stress and strength

are Weibull random samples, the parameter of interest in (3.176) can be rewritten as

T

e+’ ol s

(3.187)

w1 =

Sun, Ghosh and Basu (1998) chose wy = 1/(n;” + ;") = nins /(Y + n3) and 3 as
nuisance parameters and computed various reference priors. The independent reference

prior for (wy,ws, 3) is derived here. The Fisher information matrix of (w;,ws, ) was given

by Sun, Ghosh and Basu (1998) as follows,

Y (wr, w2, B) = (1ij)3xs, (3.188)
where
m n m n
o= 2y g, = .
H w? * 1T—w)? 27 wws (1—wwn
[ m{l+ v —log (wiws)} n[l+y —log{(1l —wi)ws}]
13 = - ;
w13 (I —wi)B
m+n (m+4n)(1+v) —mlog (wiws) —nlog {(1 —wy)ws}
Iy = —5—, In= ;
ws wa 3
oo — (mAn)(r = 97) +m{l 4+ 3 —log (wiws)}? + nfl + 7 — log {(1 — wi)wn}”
33 — )

62
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where v; = [7°[log (2)]’e *dz. Thus

mn(m +n)(v2 — 77)
Wi (1 — wy)?w3 (2
Lo (man) (e — )+ mnlog? ()
|211| = 352 !
(m+n)(v2 =) {m —wi)® + nwi}
W1 — wy)?B?
2
mn [1 47 + wi log (224) —log {(1 — wi)ws}|
wi (1 — wy)? (2 ’

3]

?

35 =

+

mn

yef =
Ml = B ogr

and then

| an(y2 —71)

|34, W1 — w)? {72 7} + a(l — a) log® (1 “’1)}’
| mn(ys —7)g(wi, wa)

5ol w3 ’

| (mt+n)(e—1)

|35s] 3 7

where

1
(12 = AB{m(1 — w1)? +nw?} +an [1+ 71 +w; log (122) —log {(1 — wr)wn}]”

and a = "t It is obvious that |3|/|X§[, i = 1,3, satisfy Condition (2.3) but |X|/|%5,]

g(wh WQ) =

does not. So we cannot apply Theorem 2.1 in direct to this case. Thus we use the iterative

algorithm to derive the independent reference prior for (wy,ws, 3).

Proposition 3.7 Choose any constants a; and b; such that a; — 0 and b; — 1 as j — oo.

Then the marginal reference priors for wi, wo and (B are

Rw) o M, w € (0,1), (3.189)
i (wy) = ]lggo /Z](E‘f)), wy > 0, (3.190)
@) x L8>0, (3.191)

g
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where

f;)J] Wig(llwi))l) log h(wlv WQ)dwl }

bj  g1(w1
2fa] ol _m)dw

Aj(we) = eXP{

1
gl(wl) - )
\/72 73+ a(l - a) log” (152)
w1, w
h(w1>w2) = g<:)%2)7
1
g(whw?) -

(2 = AR {m(1L = w)? + nwt} + an [14+ 7 +wi log (152) ~ log {(1 —wi)ws}]”

Consequently, the independent reference prior for (wi,ws, 3) is
TR (w1, B) = Tl ()7 (w2 T() (3.192)

Proof. It is seen that |X|/|3|, i = 1,3, satisfy Condition (2.3) so that (3.189) and
(3.191) hold immediately. It is clear that 7 (w;) and 7£(3) are improper. Thus we need
an argument of compact sets and use Algorithm B’ to derive 7it(w,) since |X|/|XS,| does
not meet Condition (2.3). Choose any constants a; and b; such that a; — 0 and b; — 1
as j — oo. Also choose any constants ¢; and d; such that ¢; — 0 and d; — 0o as 7 — oo.

Then by applying Algorithm B, it can be shown that
S f2 (@) () log (15 ) dund)s
2 [ J5 7 () e (B)dandB
fc fa gl(w_l log h<wlaw2)dw1dﬁ
Xp J J Bwl Wl

Taj(we) o exp

2 [% [ G2 duwndf

j Bwi(l—w1)

{ffj % log h(w1, wo)dw; }
exp

fbj 91(w1)
a; wy(l-wi)

dwl

Aj(wa).

Set w) = 1. Thus

n oy moj(w2) _ i mo(w2) _ :
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The result then holds. O

The independent reference prior for (wy,ws, ) does not have a closed form because it
is practically impossible to calculate A;(-) in 75 (wy). Thus we now choose a new set of

nuisance parameters so that the independent reference prior using it has a closed form.

Consider ws = 1% and 3 as nuisance parameters. Define ~; = I llog (2)])'e~*dz for i > 0.

Then the Fisher information matrix of (wy,ws, ) is

Y (wi,wa, B) = (1ij)3x3, (3.193)
where
m m
Ly — ™ o™
" w21 —w)? P wi (1 — wy)wy’
[ {14—’71—!—10%{7(1 wl)QH ] _m+n
v wi(l—w)p I
{1 + 71 + log {MH +n(l+ v + logws)
-[23 = ’
wa/3
2
(m+n)(v2 —71) +m [1 + 71+ log{i(1 w1 )2 H + n(1+ 91 + logws)?
Iy = 52 :
Thus
2
3 = mn(m +n)(vs —71)

A0 =R P

(m +n)%(y2 —2) + mnlog® (1 “’1)

X4 = |
|34 7
~ m(m+n)(y2 —77) + mn(l + v + logwy)?
|2 | B 2 _ 2732 9
wi(l —wq)?p
mn
S = s
’ | w%<1 _ wl)nga
e = s — m(m +n)(y2 — 73) — mn(1 + 7 + logw,) log (1=21)
- wi(l — wy)wy/3 :
mnlog (125
Bl = 25 = — (1 )7
wi(l —wi)wif
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mn(1l + 7 + logw,)

W1 — wy)2wef3

Let a = m/(m + n). Then we have

|2§3| = ‘2§2|:_

= _ an(y2 — 1)

|25 W (1 — wy)? {’}/2 —~? 4 a(l — a)log? (%)}’
= n(y2 — 1)

35 wi{n—f+ 1 -a)l+n+logws)?}’

%] (m+n)(e—i)

36 b5 7

s = (s~ 72)
| 24| | 251 ] wowi (1 — wr) {(72 —v3) — (1 —a)(1 4+ + logws) log (%)}’
S IS men)—d)

|336s] 126 Bur (1 —wi)log (lf—il)

S = minte-d)

365 (Bl Bwa(l+ 7 +logws)”

Thus the marginal reference priors for wq, we and [ are

R g1(w1)
— 1 194
™ (wl) X w1<1_w1)7 wy € (07 )7 (3 9 )
T (wg) o gg(w2)7 wy >0, (3.195)
Wo
1
T3 (8) o 3 >0, (3.196)
where
1
gl<w1) = )
\/72 — %+ a(l — a)log? (%)
1
g2(w2)

\/72 — ¥+ (1—a)(1+ 7 +logws)?

Consequently, the independent reference prior for (wy,ws, 3) is

T (w1, wa, B) o (fiﬁw;i?i(ffg)ﬁ (3.197)

The reference priors for (wy,ws, ) when wy = 75 are the same as those when wy = 1/(n;” +

ny ™) = nind /(P + nf). However the independent reference prior for (wy,ws, ), given by

(3.197), is different from all of the reference priors.
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3.14 One-way Random Effects ANOVA Model

Chapter 3. Examples

The unbalanced one-way random effects ANOVA model is

Xz-j:u—i-ozi—ke,;j, 121,

83

where u € R, a; 7id N(0,72),7 > 0, €; iid N(0,06%),0 > 0, and a; and ¢;; are mutually

independent.

Let n = ;—z Then the Fisher information matrix of (n, 0%, u) is

where n = Y% | n; and s,,(z) =

and then

351

Hence the marginal reference priors for n, o and pu are

() oc y/nsae(n) — su(n)? n >0,

s22(n)  s11(n)
2(77 2027] O
2 s n
S0t p) = ap no g |,
0 0 Sug’])
i=1 m Thus
s11(n){nsa2(n) — 511(77)2} c
|E| = 406 ) |E11| =
c s11(1)s22(1) ¢ nso2(n) — 511(77)2
|222‘ = T 92 |233| = Aot
sl if (4, 5) = (1,2), (2,1),
0, otherwise,
’E| _ n822(77) - 811(77)2
1335 | 2n ,
2] _ i {n822(77) - 811(77)2}
|2§2’ ot 2822(77) ’
|2| _ 311(77)
|E§3| o’
’2| _ |2‘ _ n322(?7) - 511(77)2
’252’ ‘2(2:1| 2‘72311(77)

(3.198)

(3.199)
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1
m(0?) ot o >0, (3.200)
mi(u) o« 1, p € R, (3.201)

and the independent reference prior for (n, o2, i) is

7,02 1) o (3.202)

It is also a first order matching prior for n and u, and the one-at-a-time reference prior for

(1,07, 1) in the ordering of {y,n, 0}, {n, u,0*} and {n, 0, u}.

3.15 Two-parameter Exponential Family

Referring to Sun and Ye (1996), a two-parameter exponential family has a density of

f@lp, B) = exp {B[U1(x) + g(n)Uz(x) + pG (1) — G1(p)] — G2(B)}

where both Gi(u) = — [ g(p)dp and Go(5), 8 < 0 are infinitely differentiable and strictly
convex functions. See Sun and Ye (1996) for details on the two-parameter exponential family.
The gamma [Section 3.5], inverse Gaussian [Section 3.6], lognormal [Section 3.7] and normal
[Section 3.8] models are some well-known examples of the two-parameter exponential family.

The Fisher information matrix of (u, ) is

—BG{(p) 0
(p, B) = . (3.203)
0 G5(0)
Hence the marginal reference priors for p and 3 are

™ () o< G (), (3.204)

T (8) o \JG3(9), (3.205)
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and the independent reference prior for (u, 3) is

(11, B) o< \JGH ()G (5). (3.206)

It is a first order matching prior for 4 and 5. The independent reference prior for (u, 3) is
the same as the reference prior for (u,3), derived by Sun and Ye (1996), when one of the

parameters p or 3 is the interest parameter and the other is nuisance parameter.

3.16 Proper Two-parameter Dispersion Model

A two-parameter dispersion model is defined as

Fl, A) = (A y) exp{At(y, )}

for some functions ¢(-) (> 0) and ¢(-). When ¢(\,y) can be expressed as a(A)b(y), such
models are called as proper dispersion models. In general, i is the mean of the distribution.
A two-parameter exponential family in Section 3.15 is an example of proper two-parameter
dispersion model. Garvan and Ghosh (1997) derived noninformative priors, such as Jeffreys,
reference and probability matching priors, for two-parameter dispersion models. In this
section, only a proper two-parameter dispersion model is considered. Then the Fisher

information matrix of (u, \) has the form of

e 0
S, \) = nwhiz() (3.207)
0 ha1(A)haz (1)
for some positive functions hqi(-), hi2(+), hoi(-) and hgo(-). Thus the marginal reference

priors for pu and A\ are

m () o \ha (), (3.208)

w5 (A) oy ha(N), (3.200)
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and the independent reference prior for (p, A) is

7 (1, N) o< \/hay (i) hat (V). (3.210)

It is also a first order matching prior for ;4 and A. The independent reference prior for
(i, A) is the same as the reference prior, which is computed by Garvan and Ghosh (1997),

whichever of u and ) is the parameter of interest.

3.16.1 Typical Examples

We provide the summary of component functions for some typical members of the proper
dispersion family by referring to Garvan and Ghosh (1997). The independent reference

priors are then derived.

For the Fisher-von Mises distribution,

a(A) = QWIi(A)’ b(y) =1, t(y,p) = cos(y — p),
() = 1 ha()=1- 2N ae),

where I,(\) = (1/7) [ e*<@ cos(va)dr and A(\) = I;(\)/Io()\). Thus the marginal

reference priors for g and \ are

(p) o« 1, (3.211)
() \/1 — A(;) — A2(\), (3.212)

and the independent reference prior for (u, A) is

AN

R\ 1—
(1, A) o 3

— A2(\). (3.213)

For the Student-t distribution,

r(\)

N Yo

, b(y) =1, t(y,p) =—log{l+ (y — p)*},
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e T
a2 T -1y

hn(ﬂ) = 1, h21<>\):

Thus the marginal reference priors for p and A are

i) o 1, (3.214)

() o Jdd;logr(/\) (3.215)

and the independent reference prior for (p, \) is

d? I'(\)
R, \ log ————. 21
For the power family,
) = = by =1, ty,p) = —ly— ul
- 2/71—‘()\)7 ?/ - 9 ywu - y ,LL )
1
hll(ﬂ) = 17 hgl(/\): )\2.

Thus the marginal reference priors for p and A are

i (u) o 1, (3.217)
R 1
T (\) o T (3.218)

and the independent reference prior for (p, A) is

1
7, \) o T (3.219)
For the McCullagh distribution,
8 L W= ) —log L
a = ) = ) ) =10 )
Bt T VT TR e
1 2 1
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where B(p,q) = FF(ZZJFFE] = [y uP™' (1 — u)?'du. Thus the marginal reference priors for y
and \ are
R 1
() X —e— (3.220)
\/ log B /\+1 1) (3.221)
e 8 22 |

and the independent reference prior for (u, \) is

log B(A + 2

2 2). (3.222)
1—p?

(1, A) o J o

3.17 Student-t Regression Model

The Student-t regression model is given by, for x; € R? and B € IR?,
Yi :w;BJFEi, 1= 17"'7”7

where ¢; 1id t,(0,0%), v > 0, 0 > 0. Ferreira (2007) derived the independence Jeffreys prior
and Jeffreys-rule prior for (3,0,v). He also computed the one-at-a-time reference priors
for (3,0,v) by considering the different orders of the parameters. The Fisher information

matrix of (3,0, v) is given by

%Z—i; > T 0 0
— 2n v _2n 1
(B, 0,v) 0 v o | (3.223)
_2n 1 n
0 o WD (+3) o)

where

o) =v (5) v (55 1) B V(VQJSVl;Ef)Jr 3)
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with ¢(a) = £ logT'(a) and ¢'(a) = “L1)(a). Thus

4n? 1 lv+1& v 1
N = — - i ny_ _
| | O'2V+3 021/_'_3;33331 {8¢(V) (V+1)2<V+3)}’
an? 1 1% 1
3¢ - - = _
| 11| 0,2 V+3 {8¢(V) (V+1)2(V+3)}7
. n lv+1&
125 = Zﬁb(’/) gm;mzm; ,
2n v lv+1d
Yo = — - !
| 353] 243 02y+3;mml,
= | 2 o [ T wal] i (i) = (2,3),(3,2),
ijl =
0, otherwise,
and then
X [1Tr+1g .
P a2u+3;wlw"’
D2 v 1
135, o2 |8(r+3) (w+ 12(v+3)26(v) ]’
1l n o) 1 _n W (1/) _w,(V—I—l) _ 2(v+3)
3% 2] 8 viv+1)2(v+3)[ 16 2 2 v(iv+1)2 [’
RS T PR DN
el T Ime V) .
| 255 |35 | o 8 (v+1)v+3)

Hence the marginal reference priors for 3, o and v are

m(B) « 1, BcR?, (3.224)
1
o) o P 0, (3.225)
R AN V+1)_2(l/+3) 99
) o J¢<Q @9<2 e v (3.226)
Consequently, the independent reference prior for (3,0, v) is
1 v v+1 2(v +3)

R U (=)= — : 22
oo v (5) - () - 2, 0221

By Ferreira (2007), it is the same as the one-at-a-time reference prior for (3,0,v) in the

ordering of {B,v,0}, {v,3,0} and {v, 0, B}. Assuming that x; and 3 are real scalars such
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that x; € R and § € R, the independent reference prior for (3,0,v) is also a first order

matching prior for 5 and v.

3.18 Zero-inflated Poisson (ZIP) Model

A zero-inflated Poisson (ZIP) distribution is a useful model for count data which include
more zero counts than compatible with the Poisson model. Accoding to Bayarri, Berger

and Datta (2007), a ZIP mass function is given by
where 0 <p <1, A > 0, I(-) is the indicator function and

—A)\ac
f0($|>\)=€ —, v=0,1,2,...,
x!

is the Poisson probability density function. The parameter p is called the zero-inflated

parameter. If p = 0, the ZIP density function is the same as the Poisson density function.
Bayarri, Berger and Datta (2007) conducted the objective testing of a regular Poisson
versus a ZIP model using objective Bayesian methodology. They used

Ho:p=0versus Hy:p >0

as the null and alternative hypotheses, respectively. They derived two objective priors for
(A, p) and computed the Bayes factor of a ZIP to a Poisson model by using the objective

priors.

Here we consider a new ZIP model in which the parameters are orthogonal so that an

independent reference prior should have a closed form. By Bayarri, Berger and Datta (2007),
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we can rewrite f(z | A, p), given by (3.228), as
x| \Np")=pI(x=0)+1—-p)f (z|]\), v=0,1,2,..., (3.229)

where p* = p+ (1 —ple ™, e < p* < 1, and

e\
zl(1—e )’

[N = r=1,2,...,

is the zero-truncated version of the Poisson density function with parameter A. The para-
meter of A in the new ZIP model has the same meaning as that in the original ZIP model.
Clearly, if p* = e, then the new ZIP density function is equivalent to the Poisson density
function. Bayarri, Berger and Datta (2007) derived two objective priors for (A, p*) which

are given by

kN I(e™? < pr<1)
vV 1—e? ’

7t(\, p*) o [=0orl, (3.230)

where

To derive the independent reference prior for (A, p*), we see the Fisher information matrix

of (A, p*) given by

L-Qae i)
S\ p) = A=) (3.231)
0 =
p*(1—p*)

It is clear that A and p* are orthogonal since the Fisher information matrix of (A, p*) is

diagonal. The marginal reference priors for A and p* are then

V1= A+ 1)e

() o TEP=Wou A >0, (3.232)
1
e (2 I S——— R G (3.233)
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Consequently, the independent reference prior for (A, p*) is

k(A)I(e? <pr<1)
VA (=)

(A, p) o

where

V1= (A+ e
N 1—e ’

k(A)

92

(3.234)

It is a first order matching prior for A and p*. It is seen that the independent reference prior

for (A, p*) is different from the two objective priors, given by (3.230), derived by Bayarri,

Berger and Datta (2007).



Chapter 4

Non-regular Cases

4.1 Setup

In Chapter 2 and 3, we provided the results for regular cases, where the data has common
support and the Fisher information is available. In this chapter, we consider some types of
non-regular cases, where the support of the data is monotonically decreasing or monotoni-
cally increasing in a non-regular type parameter, and the Fisher information matrix cannot
be computed. An iterative algorithm to derive an independent reference prior for some types
of non-regular cases is presented. We then propose a sufficient condition under which we
obtain a closed form of the independent reference prior without going through the iterations.
A sufficient condition under which the independent reference prior agrees to a first order
matching prior is also given. We derive the independent reference priors in some examples

in Section 4.2.

Ghosal and Samanta (1997) derived the reference prior for a one-parameter family of dis-

continuous densities where the support of the data is monotonically decreasing or monoton-

93
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ically increasing in the parameter. Ghosal (1997) also computed the reference priors in
multi-parameter non-regular cases where some regular type parameters are added to the

one-parameter family of discontinuous densities used by Ghosal and Samanta (1997).

Now we propose an iterative algorithm to find an independent reference prior in non-
regular cases considered by Ghosal (1997). It is an extension of Algorithm A introduced
by Sun and Berger (1998) for non-regular cases. We consider a multi-parameter family of
discontinuous densities used in Ghosal (1997). Suppose a density f(x; 6, ¢), where § € © C
R,¢ = (¢1,...,04) € ® C R The family {f(z;0,¢) : 0 € ©,¢ € ®} is regular with
respect to ¢ and non-regular with respect to € where the support of X is either monotonically
decreasing or monotonically increasing in 6. In other words, = — f(x;6, ¢) is discontinuous

at some points which depend on 6 only, while for fixed 6, the family {f(x;0,¢) : ¢ € ®} is

regular.
Define

(0.0) = B{giousxi0.0)}. (@)

A0, ¢) — —E{ag;pklogf(x;e,gb)}, k=1, .d (4.2)

where F is the expectation over X given 6§ and ¢.

Algorithm C:

Step 0. Choose any initial nonzero marginal prior density for ¢, namely Wéo) (@).

Step 1. Define an interim prior density for 6 by

wV(0) o exp { [ 77(g) log (0, §)de}
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Step 2. Define an interim prior density for ¢ by
(1) L
(@) o exp {5 [ 7" (0)1og |G, @)ld0}

Replace 750) in Step 0 by Wél) and repeat Step 1 and 2 to obtain 7T§2) for 1 = 1,2. Finally,
the sequences {7&([)}121, 1 = 1,2, are generated. The desired marginal reference priors will

be the limits

R : (ON
m = limm’, i=1,2,
l—o0

if the limits exist. When we apply the iterative algorithm to derive an independent reference

prior, the iterative algorithm might need to operate on compact sets as the regular cases.
The following theorem provides a sufficient condition under which we can have a closed

form of the independent reference prior for non-regular cases without doing the iterations.

Theorem 4.1  Suppose

c(0,0) = cr(f)ca(d),

(4.3)
A0, @) = M(0)ra(d),
where
0
82
(0, = —F 1 X0, . g k=1,...,d.
(6, ¢) {8%&% og f( ¢)} j
Then the independent reference prior for (6, @) is
(0, @) = n{'(0)75'(¢), (4.4)
where the marginal reference priors for 6 and ¢ are
(@) o (), (4.5)

T (@) o<\ Aa(9). (4.6)
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Proof. It can be easily shown that under Condition (4.3), 7, i = 1,2, do not depend on
the choices of Wéo)(qb) in Step 0. Hence the marginal reference priors for # and ¢ are formed

of (4.5), and the independent reference prior for (0, ¢) is given by (4.4). 0

Ghosal (1999) investigated first order matching priors in non-regular cases. He considered
the families of discontinuous densities used by Ghosal and Samanta (1997) and Ghosal
(1997). He derived two differential equations which a first order matching prior for 6 and
a first order matching prior for ¢ should satisfy, respectively. Now a sufficient condition
under which the independent reference prior, given by (4.4), is a first order matching prior

is provided.

Theorem 4.2  Suppose
c(0,9) = ci(f)c(d),
A0, )] = Ai(0) (o), (4.7)
Y0, @) o< (0, B) N0, $)|'* = c1(0)ca2() |/ M (0)Na(9),

where

(0.6) = B{gionsxi0.0)|.

0? ,
A(97¢) - _E{awjagpklogf(X707¢)}7 ]7k_17“'7d7

0? .
Y0, 0) = {806 log f(X;6 ¢)} j=1,...,d.
Then the independent reference prior w0, @) for (0, @), given by (4.4), is a first order

matching prior for 6 and ¢.

Proof. By Ghosal (1999), a first order matching prior 7(6, @) satisfies the following

differential equation when 6 is the parameter of interest,

19 6.9) D
0.9)00" 5709+ log (6, ¢)

(0. $)IA(0, ¢)| 09
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- wlww] 96w P )

When ¢ is the interest parameter, a matching prior 7(6, ¢) satisfies

1 0 1
NG 7 5 0. 9) = aczv{we,w/?}‘ (49)

We thus need to prove that the independent reference prior 7%(6, ¢) for (6, ¢), given by
(4.4), is a solution to the equations, given by (4.8) and (4.9), under Condition (4.7). It is

shown that

I
c(0, ¢) 06 0, 6) 0o
1 c1(0)ca(@)\/A1(0)A2(9) 0

0
@@ % O] G i) 96 OV 09)

0 log 776, ¢)

and

- (@) o AL () Ao ()32

Q
R
~~
e
~
™

Thus 7(0, ¢) satisfies the equation (4.8). Now it is also seen that

19 )
X0, )2 0¢ log 7" (0, ¢p) o W&b log [01(9) AQ(@}

- 2\/A1<0>A2<¢>3/z

_3{1} _ oy 1
¢ IO )12] 08 | /) (0)re(0)

1
2, /M (0)Aa($)3/2

and
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Thus 770, ¢) is a solution to the equation (4.9). Hence the independent reference prior
(0, @) for (0, ¢), given by (4.4), satisfies both of the differential equations (4.8) and (4.9).

The result then holds. 0O

Remark 4.1 The independent reference prior m2(0, @) for (0, ), given by (4.4), is always

a first order matching prior for ¢ under Condition (4.53).

4.2 Examples

Some examples of non-regular cases, which were considered by Ghosal (1997) and Ghosal
(1999), are studied in this section.
4.2.1 Location-scale Family

The density of a location-scale family with unknown location parameter 6 (€ R) and scale

parameter ¢ (> 0) is

f(x;e,w:lfo(‘””‘e), >0

where fo(+) is a strictly positive density on [0, 00). Then

(0, ¢) = 3 fol04),

A0 = f/ (o,

v(0,0)] = —2 for some constant a.
@

Thus the marginal reference priors for § and ¢ are

) x 1, 0 € R, (4.10)
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1

and the independent reference prior for (0, ¢) is

(0, p) x o (4.12)

It is a first order matching prior for  and ¢, which is the same result as Ghosal (1999).
By Ghosal (1997), the independent reference prior for (6, ¢) is the reference prior for (6, ¢)
when one of the parameters 6 or ¢ is the parameter of interest and the other is nuisance

parameter.

4.2.2 Truncated Weibull Model

Consider the Weibull distribution with known shape parameter a (> 0), unknown scale
parameter ¢ (> 0), and truncated at the left at some unknown point 6 (> 0). Then for

x > 0, the density is
f(z;0,0) = ap®z® exp[—p®(z* — 0))].
Thus

c(f,9) = ad* 'y,
2

0]
A8, 9)] = o
(0, 9)] = 2a20°

Hence the marginal reference priors for 6 and ¢ are

™0 o« 0*7F 0 >0, (4.13)

1
Ty () o o ¢>0 (4.14)
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and the independent reference prior for (0, ¢) is

ea—l

720, p) x )
(0, ) p

(4.15)

It is also a first order matching prior for # and ¢. Ghosal (1999) also obtained the same
first order matching priors. The independent reference prior for (6, ¢) is equivalent to the
reference prior for (6, ), derived by Ghosal (1997), when one of the parameters 6 or ¢ is

the interest parameter and the other is nuisance parameter.



Chapter 5

Summary and Future Work

In Bayesian inference, sufficient information on priors is not often available. Then objective
priors could be a good choice instead of subjective priors. Thus developing objective priors
has been of great interest in Bayesian methdology. There are various objective priors other
than a constant prior; for example, the Jeffreys prior, a reference prior, an independent

reference prior and a probability matching prior.

We studied a class of objective (noninformative) priors based on the independent reference
prior which was introduced by Sun and Berger (1998). An independent reference prior is
derived by assuming that the groups of parameters are independent. Most of the reference
priors have the independence property in the sense that they formed as the product of
marginal reference priors. Independent reference priors do not depend on the order of
inferential importance of the parameters while reference priors definitely do. In practice,
partial information on priors such as the independence of the parameters might be available.
Hence, in real applications of Bayesian inference, an independent reference prior could be

used.

101
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In Chapter 2, we extended and generalized the independent reference prior by considering
multiple groups of parameters while Sun and Berger (1998) used two groups of parameters.
An iterative algorithm to derive the general independent reference prior was given first. A
mild sufficient condition under which we obtain a closed form of the independent reference
prior without going through the iterations was then provided. Two useful results from the
independent reference prior were provided. First, the invariance of the independent reference
prior was proven under a type of one-to-one reparameterization where the Jacobian matrix
is diagonal. Second, it was shown that the independent reference prior is a first order
matching prior under a sufficient condition. In Chapter 3, the independent reference priors
were derived for various examples. It turned out that they are identical to the reference
priors in most cases. It was also observed that the independent reference priors are the
first order matching priors in most of the examples. In Chapter 4, we provided an iterative
algorithm to obtain an independent reference prior for some types of non-regular cases where
the support of the data is monotonically decreasing or increasing in a non-regular type
parameter. A sufficient condition under which a closed form of the independent reference
prior is derived was established. It was proven that the independent reference prior is a first

order matching prior under a sufficient condition. Some examples were also given.

In most of the examples in Chapter 3, the sufficient condition, given by (2.3), in Theorem
2.1 and the sufficient condition, given by (2.8), in Theorem 2.3 were satisfied. Thus we
obtained the closed forms of independent reference priors which were also the first order
matching priors. However in the five examples the conditions were not satisfied. The
independent reference priors were derived by using the iterative algorithm for such examples.
They are given in Proposition 3.2, 3.4 and 3.5-3.7. The marginal reference priors were proper

in Proposition 3.2 and 3.4 so that we did not use compact sets in the algorithm. However
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we implemented the algorithm using compact sets in Proposition 3.5-3.7 since there were
improper marginal reference priors. In Proposition 3.5 and 3.6, we obtained the closed form
of the independent reference prior by choosing a specific sequence of compact sets for an
improper marginal reference prior. In Proposition 3.7, it was practically hard to derive a
closed form of the independent reference prior since the integration on a sequence of compact
sets was impossible. Thus choice of a sequence of compact sets for an improper marginal
reference prior or calculation with respect to a sequence of compact sets could be an issue.
Hence we might need to define an explicit expression for the independent reference prior
which excludes the iterations and any compact set operations as Berger, Bernardo and Sun

(2007) did for the reference prior.

We derived and investigated an independent reference prior for regular cases where the
data has common support and the Fisher information matrix is available. All of the examples
considered in Chapter 3 are apparently the regular cases. In Chapter 4, we derived and
studied an independent reference prior only for some types of non-regular cases where the
support of the data is either monotonically decreasing or increasing in a non-regular type
parameter. Thus our current results do not include all the cases. Hence the results for more

general cases need to be developed.
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