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Abstract 
 

 

Ultimate Strength of Clamped Steel-Elastomer Sandwich 

Panels under Combined In-plane Compression and Lateral 

Pressure  
 

Feng Zhou 

 

     An efficient interaction formula and a semi-analytical method are developed for 

calculating the ultimate strength of steel-elastomer sandwich panels under combined 

in-plane compression and lateral pressure. 

 

By using the Galerkin method and extending the semi-analytical method to 

clamped sandwich panels, the governing equations of sandwich panels have been solved 

by the Galerkin method. The material nonlinearity is treated by iteration and a 

three-dimensional mesh. For the load case of pure lateral pressure, the ultimate strength 

from the semi-analytical method is similar to that from hinge line theory and finite 

element analysis (FEA). However, the semi-analytical method requires about as much 

computation as FEA, and it is therefore not suitable for design. 

 

Finite element modeling and nonlinear analysis are performed to calculate the 

ultimate strength of sandwich panels under combined load. The results agree with 

experimental results. This verifies the accuracy of the current finite element model. The 

verified finite element model is used to obtain the results for a large set of sandwich 

panels with various dimensions and load combinations. The FEA results for pure lateral 

pressure load cases are used to derive a correction factor for the hinge line formula. 

Statistical analysis confirms that the generalized hinge line formula gives accurate values 

of ultimate strength of sandwich panels under pure lateral pressure.
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Except for the pressure-only FEA data points, the other FEA data points are 

corrected so as not to count the in-plane load carried by the elastomer core. Based on the 

corrected FEA data points, a general expression is developed for an interaction equation. 

The resulting equation has a bias of -0.003 and a standard deviation of 0.029. Since the 

radius of the interaction curve is close to 1, this standard deviation is of the order of 3%, 

which shows that the ultimate strength given by the equation is very close to the FEA 

results. The interaction equation is so simple that the ultimate strength of clamped 

sandwich panels under combined in-plane compression and lateral pressure can be easily 

calculated. 
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Nomenclature 

 
Roman 

a  = length of the panel in the x direction 

A  = length of the panel long dimension (Hinge line theory) 

ijA , *
ijA   = stiffness quantities associated with the face plates and their inverse 

counterparts, respectively 

b  = length of the panel in the y direction 

B  = length of the panel short dimension (Hinge line theory) 

C  = coefficient of the interaction formula 

ijD , ijF   = stiffness quantities associated with the face plates 

E , cE  = elastic moduli of the face plate and core 

TOTF  = total force applied as in-plane compression 

cG   = transverse shear modulus of the core 

h   = distance between the global mid-surface and the mid-thickness of 

face plates 
2K   = transverse shear correction factor associated with the core (=5/6) 

][ BK   = bending stiffness matrix 

][ MK  = stiffness matrix associated with membrane action 

][ SK   = stiffness matrix associated with transverse shear 

m , n   = serial number of mode shapes in the x , y  directions 

M , N  = maximum number of mode shapes in the x , y  directions 

pM  = plastic bending moment 

l
xM , u

xM  = stress couples of the lower and upper face plates in the x  direction 

(per unit length) 
l
yM , u

yM  = stress couples of the lower and upper face plates in the y  direction 

(per unit length) 
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l
xN , u

xN   = stress resultants (load per unit width) of the lower and upper face 

plates in the x  direction 
l
yN , u

yN   = stress resultants (load per unit width) of the lower and upper face 

plates in the y  direction 

p  = lateral pressure load 

FEultp ,  = finite element collapse pressure 

HLp  = hinge line collapse pressure 

SMp  = collapse pressure calculated by semi-analytical method 

tempultp ,  = ),(, cfHLult ttgp ⋅  

ultp  = collapse lateral pressure load if acted alone 

][ 0P   = stiffness matrix due to the initial stress  

{ }P∆   = vector of external incremental load (length MN) 

ft , ct  = thickness of the face plate and core  

pR   = strength ratio for lateral pressure  

σR  = strength ratio for in-plane compression  
l

xV , u
xV   = tangential displacements of the mid-surface of the lower and upper 

face plates in the x  direction 
l
yV , u

yV   = tangential displacements of the mid-surface of the lower and upper 

face plates in the y  direction 

w , 0w   = added deflection due to applied loads and stress-free initial 

deflection 

{ }w∆   = vector of unknown coefficients  
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Greek 

α  = aspect ratio of the panel )/( ba=  

δ   = cc tGK /4 2  

midδ  = displacement of the midpoint of the panel (hinge line theory) 

xη , yη   = ( ) 2/u
x

l
x VV − , ( ) 2/u

y
l
y VV −  

θ  = out-of-plane rotation angle of the plate (hinge line theory) 

ν  = Poisson’s ratio of the face plates 

cν   
= Poisson’s ratio of the core 

xξ , yξ   = ( ) 2/u
x

l
x VV + , ( ) 2/u

x
l

x VV +  

cσ  = stress in the core 

failσ  = increased in-plane compressive stress at failure 

xσ  = in-plane compressive stress 

ultx )(σ  = collapse in-plane load if acted alone 

Yσ  = yield stress of the face plates 

φ  = Airy stress function 

χ  ]311[
2 2

22

b
a

a
b

++−= (hinge line theory) 
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Chapter 1  

Introduction of Sandwich Panels 

 

1.1 Introduction 

 

A sandwich panel consists of two face plates and a core between them. In this 

research, the face plates of the sandwich panels are made of steel and the core is made of 

an elastomer. The elastomer is itself a natural adhesive and when it solidifies it forms a 

very strong bond to the steel face plates, as shown in Figure 1. Delamination has never 

occurred over the ten years that this type of sandwich panel has been in service. The core 

acts as a web and provides continuous support to the face plates. Therefore local plate 

buckling is avoided and closely spaced stiffeners are not required. 

 

 

 

 

 

 

 

 

 

Figure 1.1 Specimen of sandwich panel 
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Figures 1.2 and 1.3 are respectively a typical sandwich structure and a conventional 

stiffened structure to withstand the same design loads. The difference between these two 

structures is obvious. It is feasible that the flexural stiffness and strength of a sandwich 

panel can meet particular structural requirements by selecting appropriate thicknesses for 

the sandwich elements so as to be structurally equivalent to a stiffened steel plate.  

 

 

 

 

 

 

 

Figure 1.2 Sandwich structure 

 

 

 

 

 

 

 

Figure 1.3 Conventional structure 

 

1.2 Benefits of Sandwich Panels 

 

As presented by Denis Welch (2005), sandwich panels offer many benefits. 

 

1. Simple structure 

 



Chapter 1 Introduction of Sandwich Panels 

3 

Because closely spaced stiffeners are not required, the complexity of sandwich 

structures is less. The manufacturing procedure is improved by reducing the welding 

work, and therefore both time and materials are saved. At the same time, there is more 

internal space and both external surfaces are smooth. 

 
2. Improved performance 

 
Because the elastomer core dissipates strain energy over a large area, the load 

concentrations that lead to the formation and propagation of cracks are reduced. 

Compared to conventional structures, sandwich structures are more robust against daily 

in-service loads and hence have a longer working life.  

 
With the physical properties of the elastomer core, sandwich structures provide 

significant damping of structural vibration and noise. Sandwich structures can be used to 

replace heavy concrete structures, which use mass for damping vibration. 

 
The elastomer core has excellent insulation properties. It can contain a fire and 

prevent it from spreading to adjacent compartments without producing smoke or toxic 

gases. Full-scale deck panel and bulkhead tests conducted in laboratories under 

International Maritime Organization (IMO) A60 specified conditions have shown that 

after exposure to a Co945  fire for 60 minutes, the temperature increase on the 

unexposed surface of a sandwich structure was Co5+  with insulation (on exposed side) 

and Co38+  without insulation. The comparable temperature changes for a steel 

stiffened plate are Co192+  and Co710+  respectively. 

 
Blast tests conducted by the US Navy Research Center in Carderock, Maryland, 

and by Hitachi Zosen for the Japanese Defense Agency, show that sandwich panels have 

superior performance in limiting the damage caused by explosions. Tests carried out by 

QinetiQ demonstrate that sandwich panels stop projectiles at shorter strike ranges and 

higher attack angles than steel plates. 
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1.3 Previous Work Done by Others 

 

Until now there has been no direct (explicit, closed form) formula for the ultimate 

strength of clamped steel-elastomer sandwich panels under combined in-plane 

compression and lateral pressure. There are, however, some related research and 

experiments that provide a starting point and some useful results. 

  

Hinge line theory was originally developed for the design of concrete slabs 
(Drucker, 1958).  Based on this theory, Save, Massonnet and Saxce (1997) imagined a 

roof-like deformation mechanism of plates under lateral pressure (see Figure 2.2). They 

applied the Principle of Virtual Work to obtain the lateral pressure which causes collapse 

of the plate. Sobotka (1989) derived a different formula for the collapse pressure from a 

similar roof-shaped deformation but with four yield fans in the corners (see Figure 2.4). 

These formulas are presented in Section 2.1.2. 

 

Padhi, Shenoi, Moy and Hawkins (1998) presented a method to study the ultimate 

collapse of laminated composite plates with clamped edges, subjected to lateral pressure. 

They used several failure criteria to predict the failure mechanisms. They studied the 

effect of aspect ratio on the strength and stiffness of laminated composite plates. A 

progressive failure methodology was obtained. Based on this methodology, they 

calculated the ultimate collapse load of composite plates under lateral pressure by a 

numerical approach. 

 

Paik, Thayamballi, Lee and Kang (2001) presented a semi-analytical method for 

the ultimate strength of elastic-plastic large deflection analysis of simply supported, 

isotropic unstiffened steel or aluminum plates under combined in-plane and out-of-plane 

loads. They solved the geometrical nonlinearity by the Galerkin method and treated the 

material nonlinearity by iteration and a three-dimensional mesh.  

By using Hamilton’s variational principle, Librescu, Hause and Camarda (1997) 

developed a comprehensive geometrically non-linear theory of initially imperfect doubly 
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curved sandwich shells. Their theory includes the special cases of buckling and 

post-buckling of flat and circular cylindrical sandwich shells compressed by uniaxial 

compression and lateral pressure loads. There are five basic assumptions of their theory: 

(1) the material of the face plates and core is orthotropic; (2) the face plates and core are 

incompressible in the transverse normal direction; (3) the panel is symmetric with respect 

to the global mid-surface; (4) the face plates are thin and therefore the Love-Kirchhoff 

hypothesis is adopted; (5) the bonding between the face plates and core is perfect 

(delamination never happens) 

 

Based on the theory of Librescu et al. (1997) and assuming the face plates and core 

are isotropic and the core is relatively soft (carrying only transverse shear stresses), Kim 

and Hughes (2005) presented a closed-form analytical solution for the ultimate strength 

of simply supported sandwich panels with metal face plates and an elastic isotropic core 

under combined in-plane compression and lateral pressure. They solved the geometrically 

non-linear governing differential equations by the Galerkin method and obtained results 

for load cases in which the in-plane load is dominant. They validated their results by 

nonlinear finite element analysis. 

 

Little (2007) conducted experimental tests on three identical clamped 

steel-elastomer sandwich panels under combined uniaxial in-plane compression and 

uniform lateral pressure. A double-panel testing system was adopted in which the lateral 

pressure load was produced by pumping water into the space between two parallel panels. 

He measured three “ultimate strength” combinations of in-plane load and lateral pressure 

which caused collapse of the sandwich panels. 
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1.4 Objective of Present Study 

 

     Since steel-elastomer sandwich panels have many benefits as presented in Section 

1.2, there have been applications in such areas as ship repair and conversion, oil and gas 

drilling platforms, and civil engineering structures such as bridges, stadium risers and 

flooring systems.  

 

The most important loads applied on a sandwich panel in a ship are in-plane 

compression and lateral pressure. Under this combination of loads, the boundary 

condition of a sandwich panel is most closely approximated as clamped on all four edges. 

Figure 1.4 is the simplified computational model of a clamped sandwich panel under the 

load combination of in-plane compression and lateral pressure. 

 

 

  Figure 1.4 Computational model of a clamped sandwich panel under in-plane 

compression and lateral pressure  

p

xσ  

Clamped on all four edges 
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For the structural design of such panels, it is important to have a simple, rapid and 

yet accurate and efficient method for predicting their ultimate strength against typical 

loads. The main purpose of the research in this dissertation is to develop two potential 

methods for calculating the ultimate strength: 

 

1) a semi-analytical method similar to that of Paik et al. (2001), but applied to the 

more difficult case of a sandwich panel (instead of a bare plate) and clamped 

boundaries (instead of simply supported). 

 

2) a simple explicit (closed-form) expression, obtained by starting with hinge-line 

theory and extending it to allow for the sandwich properties (face thickness and 

core thickness), based on 180 data points obtained from nonlinear finite 

element analysis and verified by the experiments of Little (2007). 

 

     It will be shown that the semi-analytical method involves too much computation to 

be useful for design. In contrast, the simple explicit formula has sufficient accuracy to be 

ideally suited for the design of such panels. 

 

1.5 Summary  

 

The work presented in the following chapters can be summarized as follows: 

 

Chapter 2 consists of two parts. The first part presents the hinge line theory. This 

theory can only calculate the ultimate strength of plates loaded by pure lateral pressure. In 

Chapter 5 it will be generalized to allow for the sandwich properties: face thickness and 

core thickness. The second part describes and gives the results of the full-scale 

experiments of Little (2007). These are the first and only experimental measurements of 

the ultimate strength of clamped steel-elastomer sandwich panels under combined 

in-plane compression and lateral pressure. They provide the verification of the nonlinear 
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finite element model in Chapter 4, which is used in Chapter 5 to generate data for a wide 

range of panels. 

 

For the case of pure in-plane compression, the collapse stress (both experimental 

and finite element) exceeded the yield stress by about 5-10% because in both cases the 

elastomer core is carrying this portion of the load. This is not the purpose of the core, and 

designers would be reluctant to include this small extraneous “extra strength” in their 

design calculations. Therefore in Chapter 6 the small load carried by the core is 

subtracted, which makes the collapse stress equal to the yield stress.  

 

Chapter 3 presents the semi-analytical method for the ultimate strength of clamped 

sandwich panels under combined in-plane compression and lateral pressure. The 

geometrical nonlinearity is solved by the Galerkin method. The material nonlinearity is 

treated by iteration and a three-dimensional mesh. Some results of this method are 

presented and compared to the results of hinge line theory. The method requires about the 

same amount of computation as nonlinear finite element analysis. 

 

Chapter 4 introduces the finite element modeling and nonlinear analysis to 

calculate the ultimate strength of sandwich panels under combined load. The modeling is 

the same as used by Little (2007) and the results agree with his finite element results and 

with his experimental results. This verifies the accuracy of the current finite element 

model, from which further results are obtained in Chapter 5. 

 

Chapter 5 identifies a comprehensive set of 180 finite element ultimate strength 

analyses, involving 3 face plate thicknesses ft , 3 core thicknesses ct , 4 panel aspect 

ratios α  and 5 load combinations. For the case of pure lateral pressure (36 data points), 

these results are used to derive a correction factor which generalizes the hinge-line 

collapse pressure to allow for the sandwich properties: ft , ct and α . 

Chapter 6 derives the final interaction formula for the ultimate strength of 

sandwich panels of usual proportions under any combination of loads. The formula is 
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expressed in terms of “strength ratios” pR  and σR , in which the numerators are the 

actual (interactive) collapse loads (pressure p and in-plane compressive stress xσ ) and 

the denominators are the collapse values of p and xσ  if those loads were acting alone, 

namely the corrected hinge-line collapse pressure ultp  and the yield stress Yσ . The 

formula is:  

1222 =+− σσ RRCRR pp  

 

in which C  is a function of ct and α . The formula is plotted in Figure 6.20 for C = 

0.9 (corresponding to α = 3). When compared to the 180 data points, the formula has a 

standard deviation of 0.029, and since the radius of the interactive collapse curve is never 

very far from 1 (see Figure 6.20), this standard deviation corresponds to a percentage 

error of only 3%. Therefore the formula is not only simple but also has the accuracy 

required for the design of steel-elastomer sandwich panels of standard properties. 
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Chapter 2  

Hinge Line Theory and Experiments 

 

2.1 Hinge Line Theory 

 

2.1.1 Introduction to Hinge Line Theory 

 

Hinge line theory was originally developed for the design of concrete slabs 
(Drucker, 1958). It can provide explicit formulas to calculate the ultimate strength of steel 

plates under pure lateral pressure. Although the results of hinge line theory are 

approximate, it is still employed by many people due to its simple explicit formulas, 

especially for the early design stage.  
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Figure 2.1 Hinge line in a panel 

As can be seen in Figure 2.1, a panel is deformed due to lateral pressure. The 

stress-strain relation is assumed as perfect rigid-plastic, and the loaded panel forms a 

through-thickness fully yielded zone (a plastic hinge line) which is represented by the 

narrow strip in Figure 2.1. By this hinge line, the panel is divided into individual parts 

that can rotate along the lines as shown in Figure 2.2.  
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Figure 2.2 Deformation mechanism of hinge line theory for a clamped plate 

 

Because the stress reaches the yield stress Yσ , there is a plastic bending moment 

pM  per unit length along each hinge line. As shown in Figure 2.3, the plastic bending 

moment of a single layer plate can be calculated as: 

 

4

2tM Yp ⋅= σ                          (2.1) 

                         

All lines are hinge 
lines, including the 
four boundaries 

Section DD 

A

B

δmidθ 
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Figure 2.3 Formation of the plastic bending moment for a single layer plate 

 

2.1.2 Formulas of Hinge Line Theory for Bare Plates 

 

Based on hinge line theory, there are two representative formulas which can be used 

to calculate the ultimate pressure for bare plates. The first of them was developed by Save 

(1997). 

 

A deformation mechanism formed of straight yield lines (hinge lines) is imagined 

as shown in Figure 2.2, where A  is the panel long dimension, and B  is the panel short 

dimension.  

 

Some physical values can be defined as: 

 

midδ : The displacement of the midpoint of the panel  

θ : The out-of-plane rotation angle of the plate along section DD 

HLp : The lateral pressure which causes the collapse of a panel 
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It can be seen from Figure 2.2 that the deformed panel consists of two right 

triangles and two trapezoids. Each trapezoid can then be divided into two small isosceles 

triangles and one rectangle. 

 

The external virtual work needed to form a set of two small isosceles triangles is 

equal to that which is needed for a big right triangle. Therefore the roof-like shape can be 

divided into four right triangles and two rectangles. 

 

It is easy to show that 
3
midδ

 is the displacement of the centroid of an right triangle 

and 
2
midδ

 is the centroid displacement for a rectangle. 

 

The external virtual work EVW done by HLp  can now be calculated: 

 

)3(
3

2
2

)(
2

4
43

2
2

BAB
pBBApBpEVW midHLmid

HL
mid

HL −
⋅

=⋅⋅−⋅⋅+⋅⋅⋅=
δδδ

   (2.2) 

 

By assuming that the out-of-plane rotation angle is small, it can be calculated as:  

 

BB
midmid δδ

θ
2

2/
==                        (2.3) 

 

The four 45 degree hinge lines can each be treated as if they consisted of two 

component hinge lines, each of length 
2
B : one parallel to the width of the panel, and the 

other parallel to the length of the panel. Thus there are eight component hinge lines. 

When viewed from the side, each component has the same rotation angle θ  as in section 

DD of Figure 2.2. The rotation angle of the mid hinge line is θ2 . 

Then the internal virtual work IVW is calculated as: 
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)1(8))(2()22(8)
2

( +=−+++⋅=
B
AMBAMBAMBMIVW pppp δθθθ     (2.4) 

 

The first term corresponds to the eight component (projected) hinge lines; the 

second term corresponds to the four clamped edge hinge lines; the third term corresponds 

to the central hinge line. 

 

By the principle of virtual work, the external virtual work is equal to the internal 

virtual work: 

 

)1(8)3(
3

+=−
⋅

⇒=
B
AMBAB

p
IVWEVW midp

midHL δ
δ

        (2.5) 

 

The displacement midδ  can be cancelled and HLp  is solved as: 

)5.05.1(

)]1(24[

2 −⋅

+
=

B
AB

B
AM

p
p

HL                       (2.6) 

 

The other formula of hinge line theory was developed by Sabotka (1989). The 

derivation of his formula started from a similar roof-shaped deformation but with four 

yield fans in the corners as shown in Figure 2.4.  

 

 

 

 

 



Chapter 2 Hinge Line Theory and Experiments  

16 

 

Figure 2.4 Deformation mechanism of hinge line theory by Sabotka (1989) 

 

With the absence of the four yield fans, he finally gave the formula as: 

)23(

)2(24

2

2

χ
χ

−

+
=

AB

BAM
p

p

HL , ]311[
2 2

22

B
A

A
B

++−=χ        (2.7) 

 

2.1.3 Comparison and Selection of a Formula 

 

The two formulas introduced above are different and so it is necessary to compare 

their results and choose one of them for further applications. Since the calculation of 

pM  is the same for both formulas, pM  is replaced by 1. Therefore only A  and 

B remain as variables. Figures 2.5 and 2.6 are the 3D plots for the results generated by 

the two formulas. As can be seen, the two surfaces are quite similar to each other. The 

difference between these two formulas can be obtained by subtracting Equation (2.7) 

from Equation (2.6). 

All lines and curves are 
hinge lines, including the 
four boundaries 

B 

A 
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Figure 2.5 Ultimate strength calculated by Equation (2.6) 

 

 

Figure 2.6 Ultimate strength calculated by Equation (2.7) 

Ultimate strength

B (mm) 

A (mm) 

Ultimate strength

B (mm) 

A (mm) 
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Figure 2.7 Difference between the results of Equation (2.6) and Equation (2.7) 

 

As can be seen in Figure 2.7, the difference is so small as to be negligible. Since 

Equation (2.6) is simpler than Equation (2.7), the former is chosen to calculate the 

ultimate strength of clamped panels under lateral pressure. The resulting HLp  will be 

employed to calculate reference values in the following part of this dissertation. 

 

2.1.4 Plastic Moment for a Sandwich Panel 

 

For sandwich panels, the situation is different. The core of a sandwich panel is 

relatively soft and therefore only carries transverse shear. The yield stress is only 

generated in the face plates.  

 

The formation of the plastic bending moment is plotted in Figure 2.8, where 

ft : the thickness of the steel face plates 

ct : the thickness of the core  

Yσ : the yield stress of the steel face plates 

Difference 

A (mm) 

B (mm)
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Figure 2.8 Formation of the plastic bending moment for a sandwich panel 

 

The neutral surface is the global mid-surface of the sandwich panel. The distance 

between the surfaces of the mid-thickness of face plates is cf tt + . Therefore pM  can 

be calculated as: 

 

)( cffYp tttM +⋅= σ                      (2.8) 

 

By substituting Equation (2.8) into Equation (2.6), the ultimate strength of a 

sandwich panel is 

 

)(
)5.05.1(

)]1(24[

2
cffYHL ttt

B
Ab

B
A

p +⋅⋅
−⋅

+
= σ               (2.9) 
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2.1.5 Limitations 

 

Although hinge line theory is a rapid and easy method to predict the ultimate 

strength of sandwich panels, there are two limitations: 

 

1. The hinge line theory can only calculate ultimate strength for pure lateral 

pressure load. If in-plane compression is present, it cannot be used. 

 

2. For metal-faced and elastomer-cored sandwich panels, the geometry is different, 

and so the collapse pressure HLp  will be different. Therefore it will be necessary to 

correct the hinge line theory formula of Equation (2.9). This will be done in Chapter 5. 

 

2.2 Experiments 

 

There are several ways to calculate the ultimate strength of sandwich panels, such 

as approximate analytical methods (e.g. hinge line theory), finite element analysis, and 

experimental measurements. The most reliable method is to conduct full-scale 

experiments, since this involves fewer assumptions and simplifications. The main 

limitation of experiments is the considerable expense, and until recently there were no 

experimental measurements of the ultimate strength of clamped steel-elastomer sandwich 

panels.  Such experiments have now been performed, and are reported by Little (2007). 

Now that these are available, they can be used to validate finite element analysis (FEA), 

other analytical methods and simplified ultimate strength formulas. Once validated, the 

latter can be used to calculate the ultimate strength for a variety of panel geometries and 

load combinations, as needed in panel design. The experiments by Little (2007) will now 

be described. 
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2.2.1 Test Specimens 

 

Three identical panels were tested. The basic dimensions and material properties 

are listed below: 

 

1. Dimensions 

 

Length: 1800 mm 

Width: 1200 mm 

Core thickness: 32 mm 

Face thickness (each): 5 mm 

 

2. Material properties 

 

Material of face plates: steel 

Yield stress: 355 MPa 

Young’s modulus: 199290 N/mm2 

Poisson’s ratio: 0.3 

 

Material of core: elastomer 

Young’s modulus: 862 N/mm2 

Poisson’s ratio: 0.36 

 

2.2.2 Three Special Features 

 

1. Clamped boundary condition 

 

The boundary condition of the sandwich panels is clamped. As shown in Figure 2.9, 

the actual plan dimensions of the tested sandwich panels are 240mm longer and 270 mm 
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wider than the nominal dimensions, in order for the panels to be clamped into the test 

frame. 

 
 

Figure 2.9 Plan view of test frame 

 

2. Double-panel system 

 

An important issue is how to apply the lateral pressure over the panel surface. As 

shown in Figure 2.10, a double-panel testing system was adopted instead of a single panel 

system. In this system two identical panels were mounted face to face. The lateral 

pressure load was imposed by pumping water into the space between the two panels and 

controlling the inside pressure as desired. 
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Figure 2.10 Double-panel system 

 

3. Two load steps 

 

     The load applied on the sandwich panels was a combination of lateral pressure and 

in-plane compression. For the experiments, the load was applied in two steps. Lateral 

pressure was first applied to some fixed value and kept constant. Then the in-plane load 

was increased until the panel failed. 

 

2.2.3 Results 

 

1. Deflected shape  
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Three sandwich panels were loaded to an ultimate in-plane compressive ultimate 

strength under constant lateral pressures of 207, 415 and 690 kPa. Figure 2.11 shows the 

progressive out-of-plane deflection for the third panel. Results for the other two panels 

were similar. As will be shown in Chapter 3, the deflected shape of the panel just prior to 

collapse can be represented by the superposition of a one half-sine-wave shape and a 

three half-sine-waves shape. This representation of the deflected shape is exploited for 

the semi-analytical method which is presented in Chapter 3. 

 

 

Figure 2.11 Progression of out of plane deflected shape 

 

2. Failure points 

 

For each of the three specimens, the combination of lateral pressure and in-plane 

compression which caused collapse is plotted in Figure 2.12. The lateral pressure is 

non-dimensionalized by HLp , the collapse pressure calculated by hinge line theory as 

given by Equation (2.9). The in-plane load is non-dimensionalized by Yσ (355MPa), the 

yield stress of the steel face plates. In Chapter 4 these full-scale experimental values are 

used to validate the finite element model 
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Figure 2.12 Failure points obtained from experiments 

 

2.2.4 Discussion of Failure Stress Seeming to Exceed Yield Stress 

 

The experiments have confirmed that there is no delamination or buckling of the 

face plates. The elastomer is itself an adhesive, and in the fabrication of the sandwich 

panels the elastomer forms a very strong bond with the face plates, thus preventing 

delamination. Also, the elastomer core is sufficiently rigid to prevent local buckling of 

the face plates. For these reasons, when the load is pure in-plane compression, both face 

plates reach the “squash load”; i.e. they reach a fully yielded condition. 

 

As can be seen in Figure 2.12, for 207=p kPa the ultimate in-plane compressive 

stress exceeds the yield stress by about 10%. It will be shown in Section 4.2.1 that the 

panel is deemed to have failed when the strain reaches 0.005. The elastomer does not 

“yield”; when the panel reaches failure (i.e. when the strain in the face plates is 0.005), 
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the modulus of the elastomer core is still the original value: 862=cE MPa. The strain in 

the core is always the same as in the steel. Therefore the stress in the core is 

31.4862005.0 =×=×= cc Eεσ MPa. The total force will be stress×area. The thickness 

of the core is 32 mm and the combined thickness of the two face plates is 10 mm. 

Therefore the total force is 

 

bbbbtbtF ccfYTOT 36883231.4103552 =×+×=××+××= σσ  

where b is the width of the panel. 

 

     In calculating the failure stress, Little took this total force and divided by (only) the 

face plate area. This seems reasonable since carrying (any of) the in-plane load is not 

considered part of the role of the core. However, the result is to give a slightly increased 

value of the applied external stress at failure: 

 

04.1
355

10/3688)2/(
==

×
=

bbbtF

Y

fTOT

Y

fail

σσ
σ

 

 

This increase also occurs in Little’s FEA results because he used the ANSYS 

option of applying an imposed displacement on the nodes at the loaded edge, including 

the elastomer nodes. (This is the reverse of the usual procedure, which is to impose nodal 

forces.) With this procedure the program calculates the reaction forces at all these nodes, 

including the elastomer nodes. Little then divided the total reaction force by the area of 

(only) the face plates. Therefore the failure stress is again slightly too large, and for pure 

in-plane compression it is slightly above Yσ . 

 

For the sake of comparison, this study used the same method as Little for all of 

the FEA calculations (Chapters 4 and 5). However, before using the FEA results in 

Chapter 6 to obtain the interaction formula, the in-plane failure stresses are 

proportionately reduced such that for pure in-plane compression they are equal to Yσ . 
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The other portion of the exceedance of Yσ is probably due to “strain hardening”: 

i.e. for large values of strain the height of the stress-strain curve steadily increases above 

the nominal yield value Yσ  (here 355 MPa). This is another reason why the 

experimental failure stress in Figure 2.12 exceeds Yσ . It does not occur in the FEA 

results because the steel was taken to be elastic, perfectly plastic.
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Chapter 3  

Semi-Analytical Solution for the Ultimate 

Strength of Clamped Sandwich Panels  

 

3.1 Governing Equations 

 

By using Hamilton’s variational principle, Librescu et al (1997) derived a 

comprehensive geometrically non-linear theory of initially imperfect doubly curved 

sandwich shells. There are five basic assumptions of this theory: 

 

(1) the material of core and faces is orthotropic 

(2) the core and faces are incompressible in the transverse normal direction 

(3) the panel is symmetric with respect to the global mid-surface 

(4) the faces are thin (i.e., the Love-Kirchhoff hypothesis can be adopted) 

(5) the bonding between face and core is perfect (no delamination) 

 

If the faces and core are isotropic and the core is soft (carrying only transverse 

shear stresses), the compatibility equation is: 
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and the equilibrium equations are: 
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The constitutive equations are 
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3.2 Incremental Approach 

 

In order to simulate a clamped edge condition, the assumed added and initial 

deflection functions are: 
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These functions are for the general case of M and N terms in the in the x and y 

directions. Section 3.5 will give the values of M and N that have been assumed in the 

present model, and will present plots of these functions. 

 

By assuming the external load is applied incrementally, the deflection function at 

the end of the )1( −i th incremental load step is:  
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The deflection function at the end of the i th incremental load step is: 
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where w∆  is the increment of the deflection function and can be written as: 
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At the end of the )1( −i th incremental load step, Equation (3.1) and (3.2.a-c) can 

be rewritten as: 
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Equation (3.6) is substituted in Equations (3.9), (3.10.a), and (3.10.b) to solve for 

the functions 1−iφ , 1, −ixη , and 1, −iyη . 

 

At the end of the i th incremental load step, Equations (3.1) and (3.2.a-c) can be 

rewritten as: 
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Equations (3.9) and (3.10.a-c) are respectively subtracted from Equations (3.11) 

and (3.12.a-c), thus giving the incremental governing equations: 
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Equation (3.6) is substituted in Equation (3.13), (3.14.a), and (3.14.b) to solve for 

the incremental functions φ∆ , xη∆ , and yη∆ . As required by the Galerkin Method, 

Equation (3.14.c) must be multiplied by the deflection function and integrated over the 

volume of the face plates and set to zero : 
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where ∆Φ is the LHS of Equation (3.14.c) 

 

The result of Equation (3.15) is a set of linear equations which can be organized in 

matrix form as: 
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where 

][ 0P  is the stiffness matrix due to the initial stress (all matrices are of dimension MN×

MN ) 

][ BK  is the bending stiffness matrix  

][ MK  is the stiffness matrix associated with membrane action 

][ SK  is the stiffness matrix associated with transverse shear 

{ }w∆  is the vector of unknown coefficients (length MN) 

{ }P∆  is the vector of external incremental load (length MN) 

 

Kim and Hughes (2005) applied the Galerkin method to solve Librescu’s governing 

equations of sandwich panels, but not in the form of Equation (3.16). Paik et al. (2001) 

presented a solution for bare steel plates similar to Equation (3.16). The only difference 

between Equation (3.16) and Paik’s equation is that ][ SK  is introduced here due to the 

transverse shear carried by the core. 

 

3.3 Solution for Material Nonlinearity 

 

The unknown { }w∆  in Equation (3.16) can be simply solved by methods for linear 

systems, and the latest deflection function is obtained from Equation (3.7). The stress 

distribution in the face plates can then be calculated by Equation (3.3). 

 

To check the progress of yielding, each of the face plates is divided into mesh 

regions in three dimensions as plotted in Figure 3.1. 
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Figure 3.1 Division of mesh regions for a face plate of a sandwich panel 

 

The von Mises criterion is employed to check yielding as: 

 
2222 3 Yyyxx στσσσσ ≥++−                  (3.17) 

 

If one of the elements of the mesh is yielded, the integration of ][ BK  and ][ SK  

in Equation (3.16) will not include this element. For ][ MK  in Equation (3.16), all the 

elements that have the same x or y coordinates with the yielded element will not be 

included in the integration. 

 

With increasing external load, the stiffness matrix is decreased due to the 

expansion of the yielded region. Once the determinant of the stiffness matrix is equal to 

(or smaller than) zero, the ultimate strength of the sandwich panel is reached.  

 

Since the material nonlinearity is solved iteratively, the overall method is classified 

as a semi-analytical method. 
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3.4 Verification 

 

     Paik et al (2001) applied the semi-analytical method to calculate the ultimate 

strength of simply supported isotropic steel square plates. Before presenting the results 

for clamped sandwich panels, it is necessary to calculate one of their cases and compare 

with their results. The selected case is for pure lateral pressure and the following 

geometric dimensions and material properties: 1000== ba mm, 3.14=t mm, 

205800=E MPa, and 6.264=Yσ MPa.  

The steel panel is simply supported, therefore the panel deflection functions are 

assumed as:  

                            
b
y

a
xww ππ sinsin11=                    (3.18) 

                            
b
y

a
xww ππ sinsin0110 =                  (3.19) 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.2 Load versus deflection curve of a simply supported square panel under lateral 
pressure load 
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The amplitude of initial deflection 011w  is equal to 96.8 mm. The load versus 

deflection curve is plotted in Figure 3.2 (here 1 ton/m2 = 8.9×10-3 MPa). As shown in 

Figure 3.2, the results are almost the same as Paik (2001). Having verified the basic method, 

it will be now used to calculate the ultimate strength of sandwich panels.  

 

3.5 Deflection Function and Solution Procedure 

 

3.5.1 Deflection Function  

 

As presented in Section 2.2.3, two terms (one half wave and three half waves) are 

needed to represent the deformed shape of sandwich panels under in-plane compression 

and lateral pressure. Therefore in Equations (3.4), (3.5), etc., M = 2 and N = 2. The added 

and initial deflection functions now become: 
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The mode shapes of the deflection functions are plotted in Figure 3.3, which 

consists of 
a

xπ2cos1−  (one half wave mode), 
a

x
a

x ππ 4cos2cos − (three half waves 

mode), and ]4cos2[cos45.0]2cos1[1.2
a

x
a

x
a

x πππ
−+− (a combination of these two mode 

shapes).  

 

 
 

Figure 3.3 Mode shapes of the deflection functions 

 

 

3.5.2 Solution Procedure 

 

The solution procedure of the semi-analytical method is shown in Figure 3.4. 
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Figure 3.4 Solution procedure 
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Solve Equation (3.16) for { w∆ }, then }{}{}{ 1 www ii ∆+= −  

Evaluate integrand of Equation (3.15) and use numerical 
integration to assemble the matrices of Equation (3.16) 
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Although the solution procedure is straightforward, the computation time is 

excessive. Most of the time is incurred in evaluating the integrand of Equation (3.15), and 

performing numerical integration, both of which have to be done separately for each 

element. 

 

In these calculations ∆Φ (LHS of Equation (3.14.c)) is divided into four parts:  

 

                    0PKSKMKB ∆Φ+∆Φ+∆Φ+∆Φ=∆Φ              (3.21) 

 

Each of the four parts consists of four groups: 11w∆ , 12w∆ , 21w∆  and 22w∆ , e.g. 

 

224213122111 wBwBwBwBKB ∆+∆+∆+∆=∆Φ          (3.22) 

 

Because there are four mode shapes as shown in Equation (3.19), integration is 

performed four times for each group (r = 1, 2 and s = 1, 2). After the integration, each 

part of ∆Φ  becomes a product of a coefficient matrix and a vector. For example, for the 

BK  matrix,  
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                                                           (3.23) 

 

Therefore for each mesh element, the number of integrations is 4×4×4 = 64. For 

a typical mesh for a sandwich panel with dimension of 1800mm×1200mm, the number 

of elements is about 20×15×4 = 1200. The external load is divided into 100 load steps 
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by a constant small increment. For the beginning load steps, because there are no yielded 

mesh elements, the integration is performed for the whole panel and the number of 

integrations for each load step is 64×1200 = 76800. When the load becomes bigger and 

the number of yielded elements increases, the number of integrations decreases because 

yielded mesh elements are excluded from integration. When all the mesh elements are 

yielded, the number of integrations is zero and the solution procedure is finished. So the 

rough average number of integrations for each load step is 76800/2 = 38400. Then the 

number of integrations in the whole solution procedure is 38400×100 = 3, 840, 000. 

 

This huge number of integrations consumes most of the time of the solution and 

therefore an excessive amount of computation is required (e.g. 4 hours for a pressure-only 

load case, CPU 2.93 GHz). 

 

3.6 Results 

 

The results of ultimate strength of nine different sandwich panels under pure lateral 

pressure are calculated by the semi-analytical method. The yielding stress of the face 

plates of all the nine sandwich panels is 355 MPa. The dimensions of them are listed in 

Table 3.1. The results are plotted in Figure 3.5 along with the results obtained by hinge 

line theory. The surface is the results obtained by hinge line theory and the dots are the 

results calculated by semi-analytical method. 
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Panel 

Number
ft (mm) ct (mm) a (mm) b (mm) 

1 3 30 1800 1200 

2 3 45 1800 1200 

3 3 60 1800 1200 

4 5 30 1800 1200 

5 5 45 1800 1200 

6 5 60 1800 1200 

7 7 30 1800 1200 

8 7 45 1800 1200 

9 7 60 1800 1200 

 

Table 3.1 The dimensions of nine sandwich panels. 

 

 

Figure 3.5 Ultimate strength calculated by hinge line theory and semi-analytical method 
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Panel 

Number 
1 2 3 4 5 6 7 8 9 

HLp  0.837 1.217 1.597 1.479 2.113 2.747 2.189 3.077 3.964

SMp  0.9 1.3 1.7 1.52 2.15 2.76 2.22 3.04 3.85 

e 0.07 0.064 0.061 0.027 0.017 0.004 0.014 -0.012 -0.03

Table 3.2 Comparison of results of semi-analytical method and hinge line theory 

 

The results of the nine sandwich panels are listed in Table 3.2. The normalized 

difference e between the results of the two methods is also listed, where HLp  is the 

lateral pressure which causes the collapse of a panel calculated by hinge line theory, 

SMp is the lateral pressure which causes the collapse of a panel calculated by the 

semi-analytical method, and e is 
SM

HLSM

p
pp − . 

 

As can be seen from Figure 3.5 and Table 3.2, the difference of the results between 

these two methods is quite small.  

 

The results of the semi-analytical method are reasonable. However, it requires an 

excessive amount of computation as shown in Section 3.5.2. Since the original purpose of 

this research is to obtain a fast and easy way for designers to calculate the ultimate 

strength of sandwich panels, the semi-analytical method was not pursued any further. In 

Chapter 4 the results of this method will be compared with those of the finite element 

method.
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Chapter 4  

Nonlinear Finite Element Analysis 

 

 

     This chapter explains the finite element modeling that was used to obtain all of the 

results. Nonlinear finite element analysis is a complex process which can give erroneous 

results if not done properly. Therefore it is very important to validate the modeling and 

analysis techniques, and in this chapter the full-scale experimental results of Little (2007) 

are used to provide such validation. 

 

4.1 Finite Element Modeling of the Experimental Panels 

 

     The properties of the experimental panels were given in Section 2.2.1. This section 

gives the properties of the finite element model. As shown in Figure 4.1, the element used 

for both the face plates and the core is the ANSYS SOLID45 element, which has six 

faces and eight corner nodes, with three degrees of freedom at each node: translations in 

the element x, y and z directions. The element has plasticity, creep, swelling, stress 

stiffening, large deflection, and large strain capabilities.  
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Figure 4.1 Finite element type: SOLID 45 

 

0

100

200

300

400

500

600

0 0.02 0.04 0.06 0.08 0.1

Strain(mm/mm)

St
re

ss
(M

Pa
)

Steel
Elastomer

 
Figure 4.2 Stress versus strain curves for steel and elastomer 
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     Figure 4.2 shows the stress versus strain curves. As shown there, an 

elastic-perfectly plastic constitutive model is used for the steel. The curve of the 

elastomer is far below that of steel, and so the two steel face plates bear most of the 

in-plane load.  

 

4.1.1 Number of Elements 

      

     Figure 4.3 is the overview of the finite element model. Figure 4.4 is the profile of 

the finite element mesh. It shows there are two elements for a steel face plate and four 

elements for the elastomer core in the direction of thickness. 

 

Each steel face plate (2 layers): 75×50×2 = 7,500 

Elastomer core (4 layers): 75×50×4 = 15,000 

Total element number: 30,000 

 

Figure 4.3 Finite element model 
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Figure 4.4 Profile of the sandwich panel element mesh 

 

4.1.2 Boundary Conditions 

 

This project deals with panels that are perfectly clamped at all four edges because 

in Little’s experiments the edges were clamped. The detailed boundary conditions in the 

ANSYS finite element model are listed in Table 4.1. (Note: coupled means an edge is 

free to move with all the nodes along it having the same displacement). 

 

Translation 
 

x-direction y-direction z-direction

Rotation about 

x, y, and z direction 

Left edge Coupled Restrained Restrained Restrained 

Right edge Restrained Restrained Restrained Restrained 

Top edge Free Coupled Restrained Restrained 

Bottom edge Free Restrained Restrained Restrained 

Table 4.1 Boundary conditions of the FEA model 
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Figure 4.5 Boundary conditions of the FEA model 

 

4.1.3 Loads 

 

The total load is divided into two load steps. The first load step is the application of 

the uniform lateral pressure. The second load step is the application of a forced in-plane 

translation in the x-direction in order to generate the in-plane load. 

 

 

 

 

 

 



Chapter 4 Nonlinear Finite Element Analysis 

49 

4.2 Results and Comparison with Experiments 

 

4.2.1 Definition of Failure under In-plane Compression as 0.5% Strain 

 

When a steel plate is subjected to an increasingly large in-plane compression load, 

and if plate buckling is prevented, then the plate will continue to undergo in-plane 

deformation (shortening) indefinitely, as long as the load is further increased. As shown 

in Figure 4.6, the shape of the load vs. in-plane deformation curve may or may not have a 

peak, depending on the amount of lateral pressure. It is necessary to have some consistent 

definition of the “failure load”, and Little (2007) adopted the definition given in ASTM 

A370-05, Standard Test Methods and Definitions for Mechanical Testing of Steel 

Products, in which “failure” is defined as reaching a specified level of in-plane deflection 

(shortening), and the recommended level is 0.5% of the total length. In Figure 4.6 the 

in-plane load is non-dimensionalized by the yield stress Yσ  of the steel face plates and 

then plotted versus deflection in the x-direction. For the experimental sandwich panel, 

with length 1800mm, 0.5% deflection in the x-direction is 9mm. Therefore a vertical line 

is plotted at 9mm. The intersection of this line with the curve of non-dimensionalized 

in-plane load gives the failure load for the panel. 
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Figure 4.6 0.5% strain method 
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Figure 4.7 Non-dimensionalized in-plane load versus in-plane deflection 
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Figure 4.8 Comparison of FEA and test results 

Figure 4.7 shows the five curves of non-dimensionalized in-plane load versus 

in-plane deflection obtained by the current finite element model for five different load 

cases. The figure shows that with an increase of initial lateral pressure, the average level 

of in-plane load decreases. The curve with lateral pressure 1700kPa always goes up, from 

the beginning to the end. The other four curves become flat around 9mm of in-plane 

deflection. With further increase of the in-plane deflection, the curves all converge to the 

“squash load” ( Yσσ = ) because the modulus of the elastomer has become almost zero.  

 

Based on the 0.5% strain criterion for failure, five failure points are read from the 

intersection points (e.g. 0.44 is read from the intersection point of the curve of 1700 kPa 

pressure and the 0.5% deflection line). The resulting interaction curve is plotted with a 

solid line in Figure 4.8. Little’s experimental and FEA results are also shown. Here the 

in-plane load is still non-dimensionalized by Yσ  and the lateral pressure is 

non-dimensionalized by the pressure HLp  which is obtained by hinge line theory. The 

agreement is excellent and this verifies that the current finite element model is accurate. 
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It was noted in Section 2.2.4 that in the experimental results the 

non-dimensionalized in-plane compression for small lateral pressure is bigger than 1. 

Figure 4.8 shows that this also happens for both sets of FEA results. The reason for this 

was given in Section 2.2.4, and in Chapter 6 this small exceedance is removed, such that 

the collapse stress is equal to the yield stress.  

 

4.2.2 Comparison of Yield Expansion Patterns under Pure Lateral 

Pressure 

 

Figures 4.9 to 4.12 show expansion of the plastic zone at mid-thickness of the top 

and bottom face plates from the FEA for pure lateral pressure. As a comparison, Figures 

4.13 to 4.16 are the plots of the plastic zone for of the semi-analytical method. Both 

methods show a similar expansion pattern, as follows: 

 

1. Top face plates 

 

Yield first occurs at the mid-length of the four edges. As pressure increases, the 

plastic zone spreads inward towards the center of the plate, and also sideways towards the 

corners. When the ultimate strength is reached, almost all the plate has yielded except for 

a small area at the center and the four corners. 

 

2. Bottom face plates 

 

Yield first occurs not only from the mid-length of the four edges, but also at the 

center. As pressure increases, both plastic zones become larger. The edge zone spreads 

inwards towards the center, and the center zone spreads outwards. When ultimate 

strength is reached, nearly all of the plate has yielded except for a narrow ring. 
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Figure 4.9 First occurrence of yield at mid-thickness of the top face plate  

 

Figure 4.10 First occurrence of yield at mid-thickness of the bottom face plate  
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Figure 4.11 Yield pattern almost at failure at mid-thickness of the top face plate  

 

 

Figure 4.12 Yield pattern almost at failure at mid-thickness of the bottom face plate  
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Figure 4.13 First occurrence of yield at mid-thickness of the top face plate 

(Semi-analytical method) 
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Figure 4.14 First occurrence of yield at mid-thickness of the bottom face plate 

(Semi-analytical method) 
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Figure 4.15 Yield pattern almost at failure at mid-thickness of the top face plate  

(Semi-analytical method) 
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Figure 4.16 Yield pattern almost at failure at mid-thickness of the bottom face plate  

(Semi-analytical method) 
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4.3 Definition of Failure under Pure Lateral Pressure 

 

Figure 4.17 is a curve of non-dimensionalized lateral pressure versus lateral 

deflection. It shows that deflection always increases when lateral pressure becomes 

bigger. However, in order to plot an entire interaction curve, the failure load of pure 

lateral pressure without in-plane load must be obtained. 
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Figure 4.17 Non-dimensionalized lateral pressure versus lateral deflection 

 

When there is in-plane compression, failure is defined as 0.5% strain based on the 

length of the panel. This definition cannot be used for pure lateral pressure because the 

dominant deformation is out-of-plane, and the in-plane deformation increases more 

slowly than with in-plane compression load. Therefore we must obtain a new and larger 

value of strain that corresponds to failure. Figure 4.18 is a plot of the plastic strain for the 
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same panel (i.e. Little’s experimental panel, which is considered throughout this chapter) 

after it has collapsed. That is, the pressure is even larger and the yielding is even more 

extensive than in Figures 4.11 and 4.12. Unlike yield stress, which is a constant value and 

extends over a large area, the maximum value of plastic strain is always concentrated at 

the clamped edges, where the “plastic hinges” have formed. Figure 4.18 shows that in this 

failure condition the largest plastic strain is about 0.16 ( tensile in the face plate adjacent 

to the pressure and compressive in the other face plate). To be slightly conservative, the 

value chosen in this study is 0.15. That is, for the case of pure lateral pressure, failure of 

the panel is defined as corresponding to a plastic strain of 0.15, compared to 0.005 (0.5%) 

when there is some in-plane compression. 

 

 

 

 

Figure 4.18 Plastic strain distribution on a sandwich panel under later pressure 
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4.4 Comparison of Ultimate Pressure 

 

For the subject panel (which has the same dimensions as the test panels) the 

ultimate pressure from the FEA is 1.85 MPa, and from the semi-analytical method is 1.60 

MPa. The hinge line pressure is HLp  = 1.56 MPa. In Figure 4.19 HLp  is used to obtain 

non-dimensional values. For completeness the FEA ultimate strength points are also 

plotted for the four load combinations involving in-plane compression: the three 

experimental combinations and the case of pure in-plane compression. 
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Figure 4.19 FEA interaction curve, including failure load under pure lateral pressure
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Chapter 5  

Correction Factor 

 

5.1 Introduction; Overall Method 

 

Figure 5.1 is an interaction diagram, in which the curve shows all the possible 

combinations of the two types of load that would interact and cause collapse of the panel. 

The axes are the “ultimate strength ratios”, σR  and pR . The numerator of each is the 

actual load xσ  and p , and the denominator is the collapse load if that load acted alone, 

denoted as ultx )(σ  and ultp . For each type of load there will be a theory that ideally 

provides an explicit expression for the “act alone” collapse load as a function of the panel 

properties (α , ct  and ft ). 

 

If this theory is correct, then for each type of load acting alone, panel collapse 

would correspond to the point 1 along that axis. 

 

The goal of this study is to obtain an explicit expression for the interactive collapse 

of the panel as a function of its properties. This involves three separate tasks. Two of 

them are to obtain explicit expressions for ultx )(σ  and ultp  as a function of the panel 

properties. These will provide the denominators of the ultimate strength ratios σR and pR . 
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The third task is to obtain an explicit expression for the interactive collapse 

equation 1),( =pRRF σ . 

 

Figure 5.1 Interaction Diagram 

 

 

5.1.1 Determination of ultx )(σ  

 

The experiments of Little (2007) and the Kim and Hughes (2005) study have 

shown that for typical panel proportions the ultimate strength under pure in-plane 

compression is equal to the “squash load”: ultx )(σ  = Yσ . That is, the panel has such 

large bending rigidity that it does not buckle. 

 

5.1.2 Determination of ultp  

 

1),( =pRRF σ

pR

σR  
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For ordinary steel panels loaded by lateral pressure, the hinge line equation (2.9) 

gives a reasonably good estimate of ultp . Since the face plates are steel, it is possible that 

the hinge line theory might give at least an approximate estimate for ultp  for a 

steel-elastomer sandwich panel. Indeed, as shown in Chapter 3, Little (2007) calculated 

HLultp ,  using this theory, but in his tests the pressures were much smaller and he did not 

investigate the case of collapse due to pure pressure. 

 

The next section shows that the hinge line equation is not accurate enough, and 

considers how it can be adapted. 

 

5.2 Properties of FEA Models 

 

In Chapter 4, results obtained by ANSYS were presented and compared with 

experimental results. The comparison shows that the finite element model successfully 

simulated the experiment. The next step is to calculate more cases which have different 

dimensions and various combinations of loads. 

 

1. Dimensions 

 

There are four variables in a sandwich panel:  

Length a (in the x-direction, which is also the direction of the applied in-plane 

compressive stress xσ ) 

Width b (in the y-direction) 

Core thickness ct  

Face plate thickness ft  

 

The aspect ratio of a panel is ba /=α , which can be any value (long or short 

panels). In order to cover a variety of aspect ratios, the width b  is fixed to 1200 mm, 
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and four values of length are used: 600 mm, 1200 mm, 1800 mm, and 3600 mm. 

Corresponding aspect ratios are 0.5, 1, 1.5 and 3.  

 

The in-plane load is always applied in the lengthwise ( x ) direction. 

To have sufficient data for curve fitting, three values are given to both ct  and ft : 

ct : 30 mm, 45 mm, 60 mm 

ft  3 mm, 5 mm, 7 mm 

With these combinations of aspect ratios and thicknesses, the final number of 

models to be analyzed is 36 ( 334 ×× ). 

 

The length, width, core thickness, face plate thickness and number of finite 

elements are listed for each model in Table 5.1 below. 

 

Model 

Number 
ft (mm) ct (mm) a (mm) b (mm) 

No. of 

Elements  

1 3 30 600 1200 11250 

2 3 45 600 1200 11250 

3 3 60 600 1200 11250 

4 5 30 600 1200 11250 

5 5 45 600 1200 11250 

6 5 60 600 1200 11250 

7 7 30 600 1200 11250 

8 7 45 600 1200 11250 

9 7 60 600 1200 11250 

10 3 30 1200 1200 22500 

11 3 45 1200 1200 22500 

12 3 60 1200 1200 22500 

13 5 30 1200 1200 22500 

14 5 45 1200 1200 22500 

15 5 60 1200 1200 22500 
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16 7 30 1200 1200 22500 

17 7 45 1200 1200 22500 

18 7 60 1200 1200 22500 

19 3 30 1800 1200 33750 

20 3 45 1800 1200 33750 

21 3 60 1800 1200 33750 

22 5 30 1800 1200 33750 

23 5 45 1800 1200 33750 

24 5 60 1800 1200 33750 

25 7 30 1800 1200 33750 

26 7 45 1800 1200 33750 

27 7 60 1800 1200 33750 

28 3 30 3600 1200 67500 

29 3 45 3600 1200 67500 

30 3 60 3600 1200 67500 

31 5 30 3600 1200 67500 

32 5 45 3600 1200 67500 

33 5 60 3600 1200 67500 

34 7 30 3600 1200 67500 

35 7 45 3600 1200 67500 

36 7 60 3600 1200 67500 

 

Table 5.1 General properties of 36 FEA models 

 

5.3 Generalizing the Hinge Line Collapse Pressure Equation 

for a Steel-Elastomer Sandwich Panel 
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Figure 5.2 is an interaction diagram of the type described in Section 5.1. Based on 
Section 5.1.1, the value selected for ultx )(σ  is simply the yield stress for steel, Yσ . The 
denominator of the other ultimate strength ratio is the collapse pressure predicted by 
hinge line theory, HLultp , . The data points are finite element results for three sandwich 
panels with 5.1=α , 5=ft mm, three values of ct (30, 45 and 60 mm) and five 
combinations of xσ  and p  as follows: 
 
1. Zero lateral pressure and compressive stress xσ . 
2.  0.25 HLultp ,  and compressive stress xσ . 
3.  0.5 HLultp ,  and compressive stress xσ . 
4.  0.75 HLultp ,  and compressive stress xσ . 
5.  The collapse value of HLultp ,  for zero compressive stress xσ . 
 
     The data points have been joined by straight line segments in order to see what 

shape the final interaction curves need to be. 

 

 

 

Figure 5.2 FEA Interaction Diagram (a = 1800 mm  b = 1200 mm ft = 5 mm) 
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In general the curves are similar. At the upper end point (pure in-plane 

compression), all three coincide at a point slightly above the “squash load” ( )1/ =Yx σσ . 

As xσ  decreases and p  increases, the curves diverge slightly. Then there is a 

crossover point where they reverse their relative positions. If the hinge line theory exactly 

accounted for the effect of ct , all three curves would end at 1/ , =HLultpp . Thus hinge 

line theory must be generalized to account for ct , so as to give a common end point and 

eliminate the crossover. However, the three curves will probably still diverge between the 

two end points, and the interaction equation will need to be further generalized to account 

for ct  for the intermediate load combinations. 

 

5.4 Modification of the Hinge Line Collapse Pressure  

 
This section uses curve fitting of the finite element data for the “pure pressure” 

case to derive a correction factor f  which is applied to the hinge line value HLultp , , in 

order to account for the effect of ct ， ft  and α . The corrected value of collapse 

pressure will be: 

                 ),,(, αfcHLultult ttfpp ⋅=                       (5.1) 

 

There are 36 values of finite element collapse pressure FEultp , . Table 5.2 gives the 

ratio HLultFEult pp ,, /  for the 36 cases. 
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ft =3mm α =0.5 α =1 α =1.5 α =3 

30 1.245 1.36 1.34 1.4 

45 1.2 1.25 1.22 1.305 

60 1.19 1.25 1.23 1.305 

     

ft =5mm α =0.5 α =1 α =1.5 α =3 

30 1.185 1.3 1.2 1.27 

45 1.08 1.11 1.09 1.155 

60 1.035 1.078 1.07 1.125 

     

ft =7mm α =0.5 α =1 α =1.5 α =3 

30 1.185 1.32 1.22 1.26 

45 1.02 1.128 1.065 1.11 

60 0.95 1.04 1.02 1.07 

 

Table 5.2 Ratios of HLultFEult pp ,, /  

 

     Since ct ， ft  and α  might have different effects on the correction factor, 

),,( αfc ttf  is separated into 2 parts: ),( fc ttg  and )(αh . ),( fc ttg  depends on ct ， ft ,  

and )(αh  only accounts for the effect of α . Thus: 

 

                     ),,( αfc ttf  = ),( fc ttg )(αh                     (5.2) 

 

In order that the correction factor f  will be valid for any system of units, it is 

necessary to deal with dimensionless values, say ft  and ct  ( ba /=α  is already 

dimensionless). Since the plate width b  is the same for all the finite element models 

(1200 mm), it is logical to choose b  as the non-dimensionalizing denominator. 

However, 1200 mm is too large as a number, and so 1.2 mm has been used instead. Thus 
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in all the plots that illustrate the curve fitting, the values of ft  are 3/1.2 = 2.5, 5/1.2 = 

4.17, and 7/1.2 = 5.83, and the values of ct  are 30/1.2 = 25, 45/1.2 = 37.5 , and 60/1.2 = 

50.  

 

5.4.1 The Part of the Correction Factor Accounting for ct  and ft : 

),( cf ttg  

 

There are many possible choices for the form of ),( cf ttg : polynomials, ratios of 

polynomials, etc. Many forms were tried and eventually a suitable form was found. For 

constant ct  the form for ft  is: 

 

3

3
21

f

ff

t
tctc

g
+

=                         (5.3) 

 

where 1c  and 2c  are constants to be determined for the three values of ct . 

 

After many attempts, some suitable values of 1c  and 2c  were found and the 

corresponding g  functions are: 

 

 

25=ct :    3

3

1
25.149.0

f

ff

t
ttg +

=                                    (5.4) 

5.37=ct : 3

3

2
06.126.1

f

ff

t
ttg +

=                                      (5.5) 

50=ct :   3

3

3
95.02

f

ff

t
ttg +

=                                       (5.6) 
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These three correction factor functions are plotted with the ratios of FEA results 

over hinge line theory results HLultFEult pp ,, / , in Figures 5.3 to 5.5, where 1α , 2α , 3α  

and 4α  correspond to aspect ratios 0.5, 1, 1.5, and 3. It can be seen that the values of 

HLultFEult pp ,, /  are satisfactorily fit by the three correction factor functions. 

 

 

 

 

Figure 5.3 1g  for 25=ct  
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Figure 5.4 2g  for 5.37=ct  

 

 

Figure 5.5 3g  for 50=ct  
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The correction factor function g  must allow for the effect of both ft  and ct . 

We have already allowed for ft . Now we have to consider how to place ct  into g . In 

Equations (5.4) to (5.6) the only difference among 1g , 2g  and 3g  is the values of 1c  

and 2c . The corresponding values are: 

 

 1g  ( 25=ct ):    1c  = 0.49,  2c  = 1.25 

 2g  ( 5.37=ct ):  1c  = 1.26,  2c  = 1.06 

 3g  ( 50=ct ):    1c  = 2,    2c  = 0.95 

 

The values of 1c  and 2c  are plotted versus ct  in Figures 5.6 and 5.7. 

 

 

Figure 5.6 1c  versus ct  
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Figure 5.7 2c  versus ct  

 

It can be seen from Figure 5.6 that 1c  could be approximated by a straight line, 

and 2c  could be fit by a curve which is a ratio of polynomials. 

 

Equation (5.7) is the straight line for 1c . After trying many different combinations 

of polynomials, Equation (5.8) was obtained for 2c .  

 

)106.0()(1 −= cc ttc                     (5.7) 

c

c
c

t
ttc

+
⋅+

=
12

5.06.33)(2                    (5.8) 

 

These functions of 1c  and 2c  are plotted with the data points in Figures 5.8 and 

5.9, which show that the curve fitting for 1c  and 2c  is satisfactory. 
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Figure 5.8 1c  and )(1 ctc  versus ct  

 

 

Figure 5.9 2c  and )(2 ctc  versus ct  
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With Equations (5.7) and (5.8), Equation (5.3) is now a function of both ft  and 

ct : 

3

3

12
5.06.33)106.0(

),(
f

c

c
ffc

cf
t

t
tttt

ttg +

⋅+
+−

=           (5.9) 

Before proceeding to allow for α, we must verify that ),( cf ttg  allows for ct  and 

ft  satisfactorily. For this purpose we define a temporary value of collapse pressure: 

),(,, cfHLulttempult ttgpp ⋅=                  (5.10)  

This value tempultp ,  can be used as the denominator to non-dimensionalize the 

lateral pressure of the FEA results. Figure 5.10 is a plot of the interaction diagram 

updated by ),( cf ttg . 

 

 

Figure 5.10 FEA Interaction Diagram (a = 1800 mm b = 1200 mm ft = 5 mm) 

Rp = p/pult,temp 

Rσ = 
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σ
σ

 

tc = 30 mm 

tc = 45 mm 

tc = 60 mm 
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In general the curves are similar. For the pure compressive case all three converge 

to a point slightly above the “squash load” ( )1/ =Yx σσ . As xσ  decreases and p  

increases, the curves diverge slightly, but the most important point is that the cross-over 

point in Figure 5.2 is now removed. The curves always keep their relative positions, until 

they end around 1/ , =tempultpp .  

The intermediate load combinations were originally located at pR  = 0.25, 0.5 and 

0.75. Because the denominator of pR  has been changed from HLultp ,  to tempultp , , these 

load combinations are moved slightly. 

 

In Fig 5.11 the correction factor is plotted along with the ratios of finite element 

results over hinge line theory results, HLultFEult pp ,, / , in a 3-dimensional plot. The surface 

with grids is ),( cf ttg  and the dots are HLultFEult pp ,, / . 

 

 

Figure 5.11 ),( cf ttg  and HLultFEult pp ,, /  versus ft  and ct  
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As shown in Figure 5.11, ),( cf ttg  appears to give a satisfactory fitting for the 

ratios of FEA results over hinge line theory results, HLultFEult pp ,, / . It will be shown in 

section 5.5 that the mean error and standard deviation for the complete correction factor 

f are indeed satisfactory. 

 

5.4.2 The Part of the Correction Factor Accounting for α : )(αh  

 

     Before starting to deduce )(αh , it is necessary to get a first view of how 

significant the effect of α  is on collapse pressure. In Figure 5.12, four interaction 

curves are plotted for sandwich panels with different values of α . It should be 

mentioned that the value of pR  has already been updated by ),( cf ttg . 

    

Figure 5.12 FEA Interaction Diagram ( ft = 7 mm ct = 60 mm) 

Rp = p/pult,temp 

Rσ = 
Y

x

σ
σ
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As shown in Figure 5.12, the four curves do not intersect with the x-axis at a value 

of 1. It is very clear that α  needs to be included in the correction factor. In order to 

account for the effect of α , a correction factor function )(αh  must be obtained. 

 

The collapse pressures of all the 36 sandwich panels are non-dimensionalized by 

tempultp ,  and divided into four groups 1p , 2p , 3p  and 4p  corresponding to different 

α : 0.5, 1, 1.5 and 3. These are plotted versus α  in Figure 5.13.  

 

 

Figure 5.13 
),(,

,

fcHLult

FEult

ttgp
p
⋅

 versus α  

 

As seen in Figure 5.13, the difference between the four groups of values is 

perceptible. The values of non-dimensionalized collapse pressure for 5.0=α  are 

relatively small. The values for 3=α  are bigger than the others, and the values of 

1=α  and 5.1=α  are in the middle. 
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Based on the distribution of the data, a hyperbolic tangent function is adopted:  

8.0)5.1tanh(23.0)( += ααh                  (5.11) 

In Figure 5.14 the above fitting function is plotted along with the data points. 

 

 

Figure 5.14 
),(,

,

fcHLult

FEult

ttgp
p
⋅

 and )(αh  versus α  

 

As shown in Figure 5.14, the values for 5.1=α  are below the fitting function, but 

overall the function gives a satisfactory fit. 

 

Since function )(αh  has now been obtained, the complete correction factor is: 
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With the combination of Equation (2.9) and Equation (5.12), the collapse lateral 

pressure load ultp  in Equation (5.1) is now a product of three terms:   

   

[ ]8.0)5.1tanh(23.012
5.06.33)106.0(

3

3

+×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
⋅+

+−
×= α

f

c

c
ffc

HLult t
t

tttt
pp          (5.13) 

 

5.5 Verification of the Correction Factor 

 

To verify the correction factor, the relative errors 
FEult

ultFEult

p
pp

e
,

, −
=  are calculated. 

Since there are 36 analyzed sandwich panels, the number of values of e  is also 36. The 

value range of e  is divided into 13 bands. Within each band the number of errors is 

divided by the total number and plotted in Figure 5.15.  

 

It can be seen from Figure 5.15 that the mean value of all the errors is close to zero 

and larger error values have low frequency of occurrence. The average value of e is 

-0.007, and the standard deviation is 0.03. These statistical results confirm that the 

correction factor gives an ultimate pressure which agrees well with the FEA results. 

 

We can now use the correction factor to modify the original hinge line theory. The 

corrected values of ultp  in Equation (5.13) are used as the reference values to 

non-dimensionalize the lateral pressure, and Figure 5.12 is replotted in Figure 5.16. It can 

be seen that now all four curves intersect the pR  axis close to 1. 
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Figure 5.15 Distribution of the error of the correction factor  

   

Figure 5.16 Updated FEA Interaction Diagram ( ft = 7 mm ct = 60 mm)
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Chapter 6  

Method for Obtaining an Explicit 

Equation for the Interactive Collapse of a 

Steel-Elastomer Sandwich Panel 

 

In Chapter 5, the results of finite element analyses are used to obtain a correction 

factor that is applied to the hinge line collapse pressure HLultp ,  to make the interaction 

curves converge at 1=pR . The next step is to find a method to calculate the interactive 

ultimate strength of a sandwich panel for various combinations of load.  

 

One of the best ways of dealing with this complicated situation is to make use of 

interaction formulas in which the variables are the ratios of each load to its ultimate 

strength. If just one type of load acted, a value of unity for that load ratio would 

correspond to collapse. As shown in Figure 5.1, for a combination of in-plane and lateral 

load, collapse occurs when the interactive collapse function satisfies 1),( =pRRF σ . The 

purpose of this Chapter is to derive this function, thus giving an explicit formula for 

calculating the ultimate strength of sandwich panels.  
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6.1 Samples of Interactive Ultimate Strength Data Points 

 

     There are four dimensions for a sandwich panel: length a , widthb , face plates 

thickness ft , and core thickness ct . The aspect ratio ba /=α  accounts for the effect of 

both a and b . As seen from Figure 6.1, the sandwich panels with different ft  have 

similar interaction curves. Therefore ft  only influences pult which is the denominator of 

Rp and is given by Equation (5.13). However Figure 6.2 shows that for different ct  the 

shapes of the interaction curves are different. Figure 6.3 illustrates interaction curve 

shapes for sandwich panels with different α . For sandwich panels with small α  such 

as 0.5, the interaction curve is almost straight from coordinate (0,1) to (1,0). When the 

aspect ratio is increased, the outward bulge of the interaction curve steadily increases. For 

aspect ratio 3, the interaction curve has a distinct knee at mid-length. From these 

observations, only two variables, ct  and α , need to be included in the desired formula. 

 α = 1, t c  = 60mm
t f  = 3mm
t f  = 5mm
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Figure 6.1 Interaction curves of sandwich panels with different face plate thickness 
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 α = 1, t f  = 5mm
t c  = 30mm
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Figure 6.2 Interaction curves of sandwich panels with different core thickness 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

R p

R σ

α = 0.5
α = 1
α = 1.5
α = 3

 

Figure 6.3 Interaction curves of sandwich panels with different aspect ratios 
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6.2 Finding an Interaction Equation 

 

In spite of the differences of the curves, there is one common feature for all of them. 

The slope of the intersection with σR axis must be zero for all sandwich panels. This 

characteristic is due to the natural symmetry of the pressure load. No matter whether the 

lateral pressure is applied on the upper face plate or the lower face plate, the in-plane 

compression causing collapse would be the same. 

 

In contrast, at the (1,0) position there is no such symmetry, and hence the curves do 

not intersect the pR  axis at 90°.  

 

A general form of the interaction equation which has this desired shape is: 

 

122 =+− nm YYCXX                      (6.1) 

 

where X  and Y  respectively stand for pR and σR . The coefficient C  is 

dependent on ct  and α , and would be changed in order to generate required curve 

shapes. The exponents of the both X terms in Equation (6.1) are fixed at 2 because of the 

need for zero slope at (0,1). 

 

In order to show that the linear variation of X  must be avoided, the following 

equation  

12 =+− YCXYX                        (6.2) 

 

is plotted in Figure 6.4. As can be seen, the curves generated by this function do not have 

the characteristic of symmetry about the σR -axis. 
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Figure 6.4 Curve shapes of Equation (6.2) 12 =+− YCXYX  

 

Next we need to obtain the exponents m and n. Four combinations of m and n are 

substituted in Equation (6.1): 

 

1,1 == nm         122 =+− YYCXX                                 (6.3) 

2,1 == nm         1222 =+− YYCXX                                (6.4) 

1,2 == nm         1222 =+− YYCXX                               (6.5) 

2,2 == nm         12222 =+− YYCXX                              (6.6) 

 

The four equations are respectively plotted in Figures 6.5, 6.6, 6.7 and 6.8. 

 

X

Y 

C = 0.2 

C = 0.5 

C = -1 

C = -0.4
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Figure 6.5 Curve shapes of Equation (6.3) 122 =+− YYCXX  

 

 

Figure 6.6 Curve shapes of Equation (6.4) 1222 =+− YYCXX  
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Figure 6.7 Curve shapes of Equation (6.5) 1222 =+− YYCXX  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Curve shapes of Equation (6.6) 12222 =+− YYCXX  
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As illustrated in Figures 6.5, 6.6 and 6.8, Equations (6.3), (6.4) and (6.6) can 

produce different curve shapes but they cannot produce a knee for large α . Only 

Equation (6.5) can generate a large outward bulge, as shown for 9.0=C . Therefore 

Equation (6.5) 1222 =+− YYCXX  is chosen as the interaction formula. 

 

The next step is to adjust the variable C  to generate curves to fit the FEA results. 

Before that, a correction needs to be made to the FEA results. As noted in Sections 2.2.4 

and 4.2.1, for the case of pure in-plane compression the collapse stress (both 

experimental and finite element) exceeded the yield stress by 5-10% because in both 

cases the elastomer core is carrying this portion of the load. This is not the purpose of the 

core, and designers would be reluctant to include this small extraneous “extra strength” in 

their design calculations.  

 

Therefore the FEA results are treated in three ways according to the proportion of 

in-plane load:  

 

1. Pure in-plane compression: σR is set to 1 which makes the pure in-plane load case 

collapse stress equal to the yield stress. 

 

2. Pure lateral pressure: Results are kept the same because there is no in-plane load. 

 

3. Combined load: pR  is still the same and σR is proportionally reduced. The extra 

strength of the pure in-plane load case is defined as extraR ,σ . This value is scaled 

down smoothly in proportion to the ratio of the two load types. The scaled value is 

)]/(sin[arctan pRRσ  * extraR ,σ  and this value is subtracted from the original in-plane 

strength. 

  

Finally the corrected results are fit by Equation (6.5). As shown in the plots of 

Figures 6.9 to 6.20, values of C have been chosen such that the formula 

1222 =+− YYCXX  gives a good fit to the FEA results. 
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Figure 6.9 Interaction Diagram of sandwich panels with ct = 30mm, α = 0.5 

 

 

Figure 6.10 Interaction Diagram of sandwich panels with ct = 45mm, α  = 0.5 

C = -4 

C = -1.6 
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Figure 6.11 Interaction Diagram of sandwich panels with ct = 60mm, α  = 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 Interaction Diagram of sandwich panels with ct = 30mm, α  = 1 

C = -0.6

C = C = -2.5 
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Figure 6.13 Interaction Diagram of sandwich panels with ct = 45mm, α  = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 Interaction Diagram of sandwich panels with ct = 60mm, α  = 1 

C = -0.5

C = C = 0.1
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Figure 6.15 Interaction Diagram of sandwich panels with ct = 30mm, α  = 1.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16 Interaction Diagram of sandwich panels with ct = 45mm, α  = 1.5 
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Figure 6.17 Interaction Diagram of sandwich panels with ct = 60mm, α  = 1.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18 Interaction Diagram of sandwich panels with ct = 30mm, α  = 3 

C = C = 0.5 

C = C = 0.5 
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Figure 6.19 Interaction Diagram of sandwich panels with ct = 45mm, α  = 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20 Interaction Diagram of sandwich panels with ct = 60mm, α  = 3 

C = 0.8

C = C = 0.2C = 0.9 
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6.3 Obtaining an Expression for the Coefficient C 

 

 ct =25 ct =37.5 ct =50 

α  = 0.5 -4 -1.6 -0.6 

α  = 1 -2.5 -0.5 0.1 

α  = 1.5 -0.7 0.2 0.5 

α  = 3 0.5 0.8 0.9 

 

Table 6.1 Values of C  for different sandwich panels 

 

The various values of coefficient C  for different sandwich panels are listed in 

Table 6.1. As in Chapter 5, the core thickness is normalized by 0.1% of b , the sandwich 

panel width. 

 

As discussed in section 6.1, there are only two variables for C . One is the core 

thickness ct  and the other is the aspect ratio α . 

 

1. Allowing for core thickness 

     

Since there are four aspect ratios, four corresponding expressions for )( ci tCα  

(i = 1, 4) have been obtained by trying various ratios of polynomials and choosing the 

simplest expressions which gave a satisfactory fit to the FEA data. 

 

5.0=α :  2

2

1
4000)(

c

c
c

t
ttC +−

=α                                      (6.7) 

1=α :    2

2

2
2000)(

c

c
c

t
ttC +−

=α                                      (6.8) 



Chapter 6 Method for Obtaining an Explicit Equation for the Interactive Collapse of a Steel-Elastomer Sandwich Panel  

96 

5.1=α : 2

2
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t
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3=α :   2
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c

c
c

t
ttC +−

=α                                      (6.10) 

 

The four functions are plotted with the FEA data in Figures 6.21 to 6.24. As can be 

seen, the functions give a good fit to the FEA data. As the core becomes thicker, its 

influence diminishes and C  tends towards 1. 

 

 

 

Figure 6.21 C  versus ct  for 5.0=α  
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Figure 6.22 C  versus ct  for 1=α  

 

 

 

 

Figure 6.23 C  versus ct  for 5.1=α  
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Figure 6.24 C  versus ct  for 3=α  

 

2. Allowing for aspect ratio 

     

Since there are three core thicknesses, three corresponding expressions for )(α
it c

C  

(i = 1, 3) have been obtained by trying various ratios of polynomials and choosing the 

simplest expressions which gave a satisfactory fit to the FEA data. 

25=ct ：  2

2

1 5.0
2.4)(

α
αα

+
+−

=
ct

C                                      (6.11) 

5.37=ct ： 2

2

2 5.0
6.1)(

α
αα

+
+−

=
ct

C                                      (6.12) 

50=ct ：  2

2

3 5.0
7.0)(

α
αα

+
+−

=
ct

C                                      (6.13) 

 

The three functions are plotted with the FEA data in Figures 6.25 to 6.27. As can 

be seen, the functions give a good fit to the FEA data. As the aspect ratio increases, its 

influence diminishes and C  tends towards 1. 
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Figure 6.25 C  versus α  for 25=ct  

 

Figure 6.26 C  versus α  for 5.37=ct  
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Figure 6.27 C  versus α  for 50=ct  

 

Based on the two obtained functions )( ctCα  and )(α
ct

C , the final form of 

function ),( ctC α is: 

22 )5.0(
30001),(

c
c

t
tC

α
α

+
−=                     (6.14) 

 

),( ctC α  is plotted in Figure 6.28 along with the values in Table 6.1. From the 3D 

plot below, it can be seen that ),( ctC α  fits with the values in Table 6.1 satisfactorily.  
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Figure 6.28 C versus α  and normalized ct  

 

Now that the function ),( ctC α  has been obtained, the C  values can then be 

calculated by inputting values of α  and ct , and the desired interaction curves can be 

generated. 

 

     Figure 6.29 is the plot of the interaction surface for all values of Rσ, Rp and C. If a 

load combination point is under the surface, the sandwich panel would not collapse. If a 

load combination point is on or above the surface, the ultimate strength is reached. 
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Figure 6.29 Interaction surface

 

 

     Thus the final interaction equation is given by Equation (6.5) with X and Y replaced 

by Rp and Rσ :  

 

                       1),( 222 =+− σσα RRRtCR pcp                 (6.15) 

 

in which ),( ctC α  is given by Equation (6.14). The denominator of Rp is pult, given by 

Equation (5.13). 

 

 

 

 

 

 

Rp 

Rσ 

C 
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6.4 Verification 

 

In order to verify the interaction formula, the errors between the FEA results and 

the values obtained by the formula are defined as:  

For the 36 Pressure-only points:  

                        e = ),,()( αcfpFEp ttRR −                   (6.16.a) 

The other 141 points:  

   e = ),,()( ασσ cfFE ttRR −                    (6.16.b) 

 

The bias (average value) and the standard deviation of all the errors are calculated. 

The value range of e  is divided into 24 bands. The relative frequency of occurrence of 

errors in each band are calculated and plotted in Figure 6.30. The resulting overall bias is 

-0.003, and the standard deviation is 0.029. Based on this bias and standard deviation, the 

standard normal distribution is plotted in Figure 6.31.  
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Figure 6.30 Probabilities of the errors of the interaction formula 
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Figure 6.31 Standard normal distribution of the errors of the interaction formula 

 

It is clear that most errors are among the range from -0.03 to 0.03, and the average 

value is very close to zero. Since the standard deviation is 0.029 and the radius of the 

interactive collapse curve is never very far from 1 (see Figure 6.7), the standard deviation 

corresponds to a percentage error of only 3%. Therefore the interaction formula is not 

only simple but also has the accuracy required for the design of steel-elastomer sandwich 

panels of standard proportions. 

 

The FEA data points covered the range of standard proportions of bt f / , btc /  

and α . The interaction equation can be used within the following limits: 
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We then can employ the interaction formula to calculate σR or pR  by inputting 

one of them to obtain the other one. Once the values of σR and pR  are acquired, the 

real value of ultimate strength can be obtained by multiplying σR  by Yσ  and  pR  by 

ultp , which is given by Equation (5.13). 

 

6.5 Some Observations about the Interaction Formula 

 

The interaction formula is Equation (6.5): 1222 =+− YYCXX . As can be seen 

from Figure 6.7, when C is increased from -1.5 to 0.9, a knee emerges around the center 

of the interaction curve and becomes bigger and bigger.  

 

Since the largest value of C in Table 6.1 is 0.9, Equation (6.14) was chosen such 

that C is always less than 1. In this Section, C is separately set to be bigger than 1 and 

equal to 1, and the properties of the corresponding curves are investigated. 

 

1. C > 1 

 

If Equation (6.5) is solved for Y, the following equation is obtained: 

 

2

22

2
)1(411

CX
XXC

Y
−+−

=                  (6.17) 

 

If 1>C , 22 )1(41 XXC −+ would be smaller than zero within some range of X , 

therefore Y would be complex within this range of X . Figure 6.32 is the plot of 

Equation (6.17) for 01.1=C . As can be seen, the curve consists of two separate parts 

because there are some values of X  for which Y  is a complex number. Therefore C 

cannot be larger than 1. 
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Figure 6.32 Curve shapes of function 1222 =+− YYCXX  when 01.1=C  

 

2. C = 1 

 

WhenC  in Equation (6.17) is set to 1, the equation becomes: 

 

2

22

2
)12(1

X
X

Y
−−

=                     (6.18) 

 

As plotted in Figure 6.33, there are two possibilities for Equation (6.18): 

 

If 
2
2

>X , 11
2 −=

X
Y

                   
(6.19)

 

If 
2
2

≤X , 1=Y                      (6.20) 
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Figure 6.33 Curve shapes of function 1222 =+− YYCXX  when 1=C  
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Chapter 7  

Summary and Conclusions 

 
1. Hinge line theory can only calculate ultimate strength for pure lateral pressure 

load. For metal-faced and elastomer-cored sandwich panels, the actual ultimate strength 

is different, and so the hinge line equation needs to be generalized to allow for the 

sandwich properties. 

 

2. By using the Galerkin method and extending the semi-analytical method to 

clamped sandwich panels, the governing equations of sandwich panels derived by 

Librescu et al. (1997) have been solved. For the load case of pure lateral pressure, the 

results of ultimate strength obtained by the semi-analytical method are similar to those 

obtained by hinge line theory. For the experimental panel, the semi-analytical method 

gave a collapse pressure of 1.6 MPa compared to 1.85 MPa from the FEA. Unfortunately, 

the semi-analytical method requires too much computation. Therefore the hinge line 

theory is used as the starting point for the pressure-only case. 

 

3. Little (2007) presents full-scale test results for three clamped sandwich panels 

involving three combinations of in-plane compression and lateral pressure. All three test 

results closely matched the results from the finite element model that was used in this 

study, thus verifying the accuracy of the latter. Little (2007) also made a similar finite 

element model, and his results also matched the test data. 
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4. The verified finite element model was then used to obtain the results for a large 

set of sandwich panels with various dimensions and load combinations. Altogether 3×3

×4×5≈180 FEA data points were calculated for interactive collapse. For pure pressure 

there are 3×3×4 = 36 data points. These data points were used to derive a correction 

factor for the hinge line formula in order to account for sandwich properties ft , ct andα . 

To verify the correction factor, the relative errors between the corrected hinge line theory 

and FEA results were calculated. The bias of the relative errors is -0.007, and the 

standard deviation is 0.03, which confirms that the generalized hinge line formula gives 

accurate values of ultimate strength of sandwich panels under pure lateral pressure. 

 

5. Except for the pressure-only FEA data points, the other 3×3×4×4≈144 FEA 

data points were corrected so as not to count the small in-plane load carried by the 

elastomer core. Based on the corrected FEA data points, a general expression was 

developed for an interaction equation. The resulting equation has a bias of -0.003 and a 

standard deviation of 0.029. Since the radius of the interaction curve is close to 1, this 

standard deviation is of the order of 3%, which shows that the ultimate strength values 

given by the interaction equation are very close to the FEA results. The interaction 

equation is so simple that the ultimate strength of clamped sandwich panels under 

combined in-plane compression and lateral pressure can be easily calculated as a function 

of ft , ct andα . The data points covered the range of standard proportions of bt f / , 

btc /  andα , and the interaction equation can be used within the following limits: 

 

0.002 < bt f /  < 0.006 

0.020 < btc /  < 0.060 

0.5 < α  < ∞
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