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Abstract

Ultimate Strength of Clamped Steel-Elastomer Sandwich
Panels under Combined In-plane Compression and Lateral

Pressure

Feng Zhou

An efficient interaction formula and a semi-analytical method are developed for
calculating the ultimate strength of steel-elastomer sandwich panels under combined

in-plane compression and lateral pressure.

By using the Galerkin method and extending the semi-analytical method to
clamped sandwich panels, the governing equations of sandwich panels have been solved
by the Galerkin method. The material nonlinearity is treated by iteration and a
three-dimensional mesh. For the load case of pure lateral pressure, the ultimate strength
from the semi-analytical method is similar to that from hinge line theory and finite
element analysis (FEA). However, the semi-analytical method requires about as much

computation as FEA, and it is therefore not suitable for design.

Finite element modeling and nonlinear analysis are performed to calculate the
ultimate strength of sandwich panels under combined load. The results agree with
experimental results. This verifies the accuracy of the current finite element model. The
verified finite element model is used to obtain the results for a large set of sandwich
panels with various dimensions and load combinations. The FEA results for pure lateral
pressure load cases are used to derive a correction factor for the hinge line formula.
Statistical analysis confirms that the generalized hinge line formula gives accurate values

of ultimate strength of sandwich panels under pure lateral pressure.



Except for the pressure-only FEA data points, the other FEA data points are
corrected so as not to count the in-plane load carried by the elastomer core. Based on the
corrected FEA data points, a general expression is developed for an interaction equation.
The resulting equation has a bias of -0.003 and a standard deviation of 0.029. Since the
radius of the interaction curve is close to 1, this standard deviation is of the order of 3%,
which shows that the ultimate strength given by the equation is very close to the FEA
results. The interaction equation is so simple that the ultimate strength of clamped
sandwich panels under combined in-plane compression and lateral pressure can be easily

calculated.
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Chapter 1 Introduction of Sandwich Panels

Chapter 1

Introduction of Sandwich Panels

1.1 Introduction

A sandwich panel consists of two face plates and a core between them. In this
research, the face plates of the sandwich panels are made of steel and the core is made of
an elastomer. The elastomer is itself a natural adhesive and when it solidifies it forms a
very strong bond to the steel face plates, as shown in Figure 1. Delamination has never
occurred over the ten years that this type of sandwich panel has been in service. The core
acts as a web and provides continuous support to the face plates. Therefore local plate

buckling is avoided and closely spaced stiffeners are not required.

Figure 1.1 Specimen of sandwich panel
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Figures 1.2 and 1.3 are respectively a typical sandwich structure and a conventional
stiffened structure to withstand the same design loads. The difference between these two
structures is obvious. It is feasible that the flexural stiffness and strength of a sandwich
panel can meet particular structural requirements by selecting appropriate thicknesses for
the sandwich elements so as to be structurally equivalent to a stiffened steel plate.

Figure 1.2 Sandwich structure

Figure 1.3 Conventional structure

1.2 Benefits of Sandwich Panels

As presented by Denis Welch (2005), sandwich panels offer many benefits.

1. Simple structure
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Because closely spaced stiffeners are not required, the complexity of sandwich
structures is less. The manufacturing procedure is improved by reducing the welding
work, and therefore both time and materials are saved. At the same time, there is more

internal space and both external surfaces are smooth.

2. Improved performance

Because the elastomer core dissipates strain energy over a large area, the load
concentrations that lead to the formation and propagation of cracks are reduced.
Compared to conventional structures, sandwich structures are more robust against daily

in-service loads and hence have a longer working life.

With the physical properties of the elastomer core, sandwich structures provide
significant damping of structural vibration and noise. Sandwich structures can be used to

replace heavy concrete structures, which use mass for damping vibration.

The elastomer core has excellent insulation properties. It can contain a fire and
prevent it from spreading to adjacent compartments without producing smoke or toxic
gases. Full-scale deck panel and bulkhead tests conducted in laboratories under
International Maritime Organization (IMO) A60 specified conditions have shown that
after exposure to a 945°C fire for 60 minutes, the temperature increase on the
unexposed surface of a sandwich structure was +5°C with insulation (on exposed side)
and +38°C without insulation. The comparable temperature changes for a steel

stiffened plate are +192°C and +710°C respectively.

Blast tests conducted by the US Navy Research Center in Carderock, Maryland,
and by Hitachi Zosen for the Japanese Defense Agency, show that sandwich panels have
superior performance in limiting the damage caused by explosions. Tests carried out by
QinetiQ demonstrate that sandwich panels stop projectiles at shorter strike ranges and

higher attack angles than steel plates.
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1.3 Previous Work Done by Others

Until now there has been no direct (explicit, closed form) formula for the ultimate
strength of clamped steel-elastomer sandwich panels under combined in-plane
compression and lateral pressure. There are, however, some related research and

experiments that provide a starting point and some useful results.

Hinge line theory was originally developed for the design of concrete slabs
(Drucker, 1958). Based on this theory, Save, Massonnet and Saxce (1997) imagined a
roof-like deformation mechanism of plates under lateral pressure (see Figure 2.2). They
applied the Principle of Virtual Work to obtain the lateral pressure which causes collapse
of the plate. Sobotka (1989) derived a different formula for the collapse pressure from a
similar roof-shaped deformation but with four yield fans in the corners (see Figure 2.4).

These formulas are presented in Section 2.1.2.

Padhi, Shenoi, Moy and Hawkins (1998) presented a method to study the ultimate
collapse of laminated composite plates with clamped edges, subjected to lateral pressure.
They used several failure criteria to predict the failure mechanisms. They studied the
effect of aspect ratio on the strength and stiffness of laminated composite plates. A
progressive failure methodology was obtained. Based on this methodology, they
calculated the ultimate collapse load of composite plates under lateral pressure by a

numerical approach.

Paik, Thayamballi, Lee and Kang (2001) presented a semi-analytical method for
the ultimate strength of elastic-plastic large deflection analysis of simply supported,
isotropic unstiffened steel or aluminum plates under combined in-plane and out-of-plane
loads. They solved the geometrical nonlinearity by the Galerkin method and treated the
material nonlinearity by iteration and a three-dimensional mesh.

By using Hamilton’s variational principle, Librescu, Hause and Camarda (1997)

developed a comprehensive geometrically non-linear theory of initially imperfect doubly
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curved sandwich shells. Their theory includes the special cases of buckling and
post-buckling of flat and circular cylindrical sandwich shells compressed by uniaxial
compression and lateral pressure loads. There are five basic assumptions of their theory:
(1) the material of the face plates and core is orthotropic; (2) the face plates and core are
incompressible in the transverse normal direction; (3) the panel is symmetric with respect
to the global mid-surface; (4) the face plates are thin and therefore the Love-Kirchhoff
hypothesis is adopted; (5) the bonding between the face plates and core is perfect

(delamination never happens)

Based on the theory of Librescu et al. (1997) and assuming the face plates and core
are isotropic and the core is relatively soft (carrying only transverse shear stresses), Kim
and Hughes (2005) presented a closed-form analytical solution for the ultimate strength
of simply supported sandwich panels with metal face plates and an elastic isotropic core
under combined in-plane compression and lateral pressure. They solved the geometrically
non-linear governing differential equations by the Galerkin method and obtained results
for load cases in which the in-plane load is dominant. They validated their results by

nonlinear finite element analysis.

Little (2007) conducted experimental tests on three identical clamped
steel-elastomer sandwich panels under combined uniaxial in-plane compression and
uniform lateral pressure. A double-panel testing system was adopted in which the lateral
pressure load was produced by pumping water into the space between two parallel panels.
He measured three “ultimate strength” combinations of in-plane load and lateral pressure

which caused collapse of the sandwich panels.
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1.4 Objective of Present Study

Since steel-elastomer sandwich panels have many benefits as presented in Section
1.2, there have been applications in such areas as ship repair and conversion, oil and gas
drilling platforms, and civil engineering structures such as bridges, stadium risers and

flooring systems.

The most important loads applied on a sandwich panel in a ship are in-plane
compression and lateral pressure. Under this combination of loads, the boundary
condition of a sandwich panel is most closely approximated as clamped on all four edges.
Figure 1.4 is the simplified computational model of a clamped sandwich panel under the

load combination of in-plane compression and lateral pressure.

Clamped on all four edges

/

— -
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o |, -
- =
e e
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Figure 1.4 Computational model of a clamped sandwich panel under in-plane

compression and lateral pressure



Chapter 1 Introduction of Sandwich Panels

For the structural design of such panels, it is important to have a simple, rapid and
yet accurate and efficient method for predicting their ultimate strength against typical
loads. The main purpose of the research in this dissertation is to develop two potential
methods for calculating the ultimate strength:

1) asemi-analytical method similar to that of Paik et al. (2001), but applied to the
more difficult case of a sandwich panel (instead of a bare plate) and clamped

boundaries (instead of simply supported).

2) asimple explicit (closed-form) expression, obtained by starting with hinge-line
theory and extending it to allow for the sandwich properties (face thickness and
core thickness), based on 180 data points obtained from nonlinear finite

element analysis and verified by the experiments of Little (2007).

It will be shown that the semi-analytical method involves too much computation to
be useful for design. In contrast, the simple explicit formula has sufficient accuracy to be

ideally suited for the design of such panels.

1.5 Summary

The work presented in the following chapters can be summarized as follows:

Chapter 2 consists of two parts. The first part presents the hinge line theory. This
theory can only calculate the ultimate strength of plates loaded by pure lateral pressure. In
Chapter 5 it will be generalized to allow for the sandwich properties: face thickness and
core thickness. The second part describes and gives the results of the full-scale
experiments of Little (2007). These are the first and only experimental measurements of
the ultimate strength of clamped steel-elastomer sandwich panels under combined

in-plane compression and lateral pressure. They provide the verification of the nonlinear
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finite element model in Chapter 4, which is used in Chapter 5 to generate data for a wide
range of panels.

For the case of pure in-plane compression, the collapse stress (both experimental
and finite element) exceeded the yield stress by about 5-10% because in both cases the
elastomer core is carrying this portion of the load. This is not the purpose of the core, and
designers would be reluctant to include this small extraneous “extra strength” in their
design calculations. Therefore in Chapter 6 the small load carried by the core is

subtracted, which makes the collapse stress equal to the yield stress.

Chapter 3 presents the semi-analytical method for the ultimate strength of clamped
sandwich panels under combined in-plane compression and lateral pressure. The
geometrical nonlinearity is solved by the Galerkin method. The material nonlinearity is
treated by iteration and a three-dimensional mesh. Some results of this method are
presented and compared to the results of hinge line theory. The method requires about the

same amount of computation as nonlinear finite element analysis.

Chapter 4 introduces the finite element modeling and nonlinear analysis to
calculate the ultimate strength of sandwich panels under combined load. The modeling is
the same as used by Little (2007) and the results agree with his finite element results and
with his experimental results. This verifies the accuracy of the current finite element

model, from which further results are obtained in Chapter 5.

Chapter 5 identifies a comprehensive set of 180 finite element ultimate strength

analyses, involving 3 face plate thicknesses t,, 3 core thicknesses t., 4 panel aspect

ratios « and 5 load combinations. For the case of pure lateral pressure (36 data points),
these results are used to derive a correction factor which generalizes the hinge-line

t.and o.

frte

collapse pressure to allow for the sandwich properties: t

Chapter 6 derives the final interaction formula for the ultimate strength of

sandwich panels of usual proportions under any combination of loads. The formula is
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expressed in terms of “strength ratios” R, and R, in which the numerators are the
actual (interactive) collapse loads (pressure p and in-plane compressive stress o, ) and
the denominators are the collapse values of pand o, if those loads were acting alone,
namely the corrected hinge-line collapse pressure p, and the yield stress o, . The
formula is:

R, -CR,’R,”+R, =1

in which C is a function of t.and «. The formula is plotted in Figure 6.20 for C=

0.9 (corresponding to « = 3). When compared to the 180 data points, the formula has a
standard deviation of 0.029, and since the radius of the interactive collapse curve is never
very far from 1 (see Figure 6.20), this standard deviation corresponds to a percentage
error of only 3%. Therefore the formula is not only simple but also has the accuracy

required for the design of steel-elastomer sandwich panels of standard properties.
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Chapter 2

Hinge Line Theory and Experiments

2.1 Hinge Line Theory

2.1.1 Introduction to Hinge Line Theory

Hinge line theory was originally developed for the design of concrete slabs
(Drucker, 1958). It can provide explicit formulas to calculate the ultimate strength of steel
plates under pure lateral pressure. Although the results of hinge line theory are
approximate, it is still employed by many people due to its simple explicit formulas,

especially for the early design stage.

10
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Figure 2.1 Hinge line in a panel

As can be seen in Figure 2.1, a panel is deformed due to lateral pressure. The
stress-strain relation is assumed as perfect rigid-plastic, and the loaded panel forms a
through-thickness fully yielded zone (a plastic hinge line) which is represented by the
narrow strip in Figure 2.1. By this hinge line, the panel is divided into individual parts

that can rotate along the lines as shown in Figure 2.2.

11
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Figure 2.2 Deformation mechanism of hinge line theory for a clamped plate

Because the stress reaches the yield stress o, , there is a plastic bending moment
M, per unit length along each hinge line. As shown in Figure 2.3, the plastic bending

moment of a single layer plate can be calculated as:

M, =0, — (2.1)

12
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Figure 2.3 Formation of the plastic bending moment for a single layer plate

2.1.2 Formulas of Hinge Line Theory for Bare Plates

Based on hinge line theory, there are two representative formulas which can be used
to calculate the ultimate pressure for bare plates. The first of them was developed by Save
(1997).

A deformation mechanism formed of straight yield lines (hinge lines) is imagined
as shown in Figure 2.2, where A is the panel long dimension, and B is the panel short
dimension.

Some physical values can be defined as:

O.iq - The displacement of the midpoint of the panel

6: The out-of-plane rotation angle of the plate along section DD

p,,. : The lateral pressure which causes the collapse of a panel

13
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It can be seen from Figure 2.2 that the deformed panel consists of two right
triangles and two trapezoids. Each trapezoid can then be divided into two small isosceles

triangles and one rectangle.
The external virtual work needed to form a set of two small isosceles triangles is

equal to that which is needed for a big right triangle. Therefore the roof-like shape can be

divided into four right triangles and two rectangles.

It is easy to show that %‘d is the displacement of the centroid of an right triangle

Omid - -
and %‘d is the centroid displacement for a rectangle.

The external virtual work EVW done by p,, can now be calculated:

B? O i B P * Omia 2
—mid (A_B).—.2="1HL “md 3ARB_B 2.2
7 5 ( ) 5 3 ( ) (22)

By assuming that the out-of-plane rotation angle is small, it can be calculated as:

ot

The four 45 degree hinge lines can each be treated as if they consisted of two
component hinge lines, each of length %: one parallel to the width of the panel, and the

other parallel to the length of the panel. Thus there are eight component hinge lines.
When viewed from the side, each component has the same rotation angle & as in section
DD of Figure 2.2. The rotation angle of the mid hinge line is26.

Then the internal virtual work IVW is calculated as:

14
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VW = M pe(g) 8+ M ,0(2A+2B)+ M, (20)(A-B) = 8M p5(§+1) 2.4)

The first term corresponds to the eight component (projected) hinge lines; the
second term corresponds to the four clamped edge hinge lines; the third term corresponds

to the central hinge line.

By the principle of virtual work, the external virtual work is equal to the internal

Virtual Work:
EVW = [IVW — —H_—md —mid (3AB - B) =8M o (— +1) (2 5)
3 p = mid B -

The displacement &, can be cancelled and p,, is solved as:

M, [24(é +1)]
Pu. = 'E (2.6)
B? @.5- E —-0.5)

The other formula of hinge line theory was developed by Sabotka (1989). The
derivation of his formula started from a similar roof-shaped deformation but with four

yield fans in the corners as shown in Figure 2.4.

15
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| | All lines and curves are
‘ hinge lines, including the
four boundaries

Figure 2.4 Deformation mechanism of hinge line theory by Sabotka (1989)

With the absence of the four yield fans, he finally gave the formula as:

2
24Mp(2A+B—) ) .

24 B heshy (2.7)
BTy B2 '

P = B2 3AC 2,)

2.1.3 Comparison and Selection of a Formula

The two formulas introduced above are different and so it is necessary to compare
their results and choose one of them for further applications. Since the calculation of

M, is the same for both formulas, M is replaced by 1. Therefore only A and

B remain as variables. Figures 2.5 and 2.6 are the 3D plots for the results generated by
the two formulas. As can be seen, the two surfaces are quite similar to each other. The
difference between these two formulas can be obtained by subtracting Equation (2.7)

from Equation (2.6).

16
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Ultimate strength

Figure 2.5 Ultimate strength calculated by Equation (2.6)

Ultimate strength

Figure 2.6 Ultimate strength calculated by Equation (2.7)

17
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Difference

20

A (mm) 250

Figure 2.7 Difference between the results of Equation (2.6) and Equation (2.7)

As can be seen in Figure 2.7, the difference is so small as to be negligible. Since
Equation (2.6) is simpler than Equation (2.7), the former is chosen to calculate the

ultimate strength of clamped panels under lateral pressure. The resulting p,, will be

employed to calculate reference values in the following part of this dissertation.

2.1.4 Plastic Moment for a Sandwich Panel

For sandwich panels, the situation is different. The core of a sandwich panel is
relatively soft and therefore only carries transverse shear. The yield stress is only
generated in the face plates.

The formation of the plastic bending moment is plotted in Figure 2.8, where

t, : the thickness of the steel face plates
t, : the thickness of the core

o, : the yield stress of the steel face plates

18
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Figure 2.8 Formation of the plastic bending moment for a sandwich panel

The neutral surface is the global mid-surface of the sandwich panel. The distance

between the surfaces of the mid-thickness of face plates is t; +t . Therefore M can

be calculated as:
M, =0, -t (t; +t.) (2.8)

By substituting Equation (2.8) into Equation (2.6), the ultimate strength of a

sandwich panel is

[24(é+l)]
Pu. = BA oy ot (ty +t) (2.9)
b2(1.5-5—0.5)
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2.1.5 Limitations

Although hinge line theory is a rapid and easy method to predict the ultimate

strength of sandwich panels, there are two limitations:

1. The hinge line theory can only calculate ultimate strength for pure lateral

pressure load. If in-plane compression is present, it cannot be used.

2. For metal-faced and elastomer-cored sandwich panels, the geometry is different,
and so the collapse pressure p,, will be different. Therefore it will be necessary to

correct the hinge line theory formula of Equation (2.9). This will be done in Chapter 5.

2.2 Experiments

There are several ways to calculate the ultimate strength of sandwich panels, such
as approximate analytical methods (e.g. hinge line theory), finite element analysis, and
experimental measurements. The most reliable method is to conduct full-scale
experiments, since this involves fewer assumptions and simplifications. The main
limitation of experiments is the considerable expense, and until recently there were no
experimental measurements of the ultimate strength of clamped steel-elastomer sandwich
panels. Such experiments have now been performed, and are reported by Little (2007).
Now that these are available, they can be used to validate finite element analysis (FEA),
other analytical methods and simplified ultimate strength formulas. Once validated, the
latter can be used to calculate the ultimate strength for a variety of panel geometries and
load combinations, as needed in panel design. The experiments by Little (2007) will now

be described.

20
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2.2.1 Test Specimens

Three identical panels were tested. The basic dimensions and material properties

are listed below:

1. Dimensions

Length: 1800 mm
Width: 1200 mm
Core thickness: 32 mm

Face thickness (each): 5 mm

2. Material properties

Material of face plates: steel
Yield stress: 355 MPa
Young’s modulus: 199290 N/mm?

Poisson’s ratio: 0.3
Material of core: elastomer

Young’s modulus: 862 N/mm?

Poisson’s ratio: 0.36

2.2.2 Three Special Features

1. Clamped boundary condition

The boundary condition of the sandwich panels is clamped. As shown in Figure 2.9,

the actual plan dimensions of the tested sandwich panels are 240mm longer and 270 mm

21
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wider than the nominal dimensions, in order for the panels to be clamped into the test

frame.
1 1470 r
In-plana load lied on this face
> . i Top Clamp Assambly
i ° o L]
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2 o o o6 0o o o & o ’
! i
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i o O O« A325 bolts at 150 mm on center
o o
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o o
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=
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Figure 2.9 Plan view of test frame

2. Double-panel system

An important issue is how to apply the lateral pressure over the panel surface. As
shown in Figure 2.10, a double-panel testing system was adopted instead of a single panel
system. In this system two identical panels were mounted face to face. The lateral
pressure load was imposed by pumping water into the space between the two panels and

controlling the inside pressure as desired.
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Figure 2.10 Double-panel system

3. Two load steps

The load applied on the sandwich panels was a combination of lateral pressure and
in-plane compression. For the experiments, the load was applied in two steps. Lateral
pressure was first applied to some fixed value and kept constant. Then the in-plane load

was increased until the panel failed.

2.2.3 Results

1. Deflected shape

23



strength under constant lateral pressures of 207, 415 and 690 kPa. Figure 2.11 shows the
progressive out-of-plane deflection for the third panel. Results for the other two panels
were similar. As will be shown in Chapter 3, the deflected shape of the panel just prior to
collapse can be represented by the superposition of a one half-sine-wave shape and a

three half-sine-waves shape. This representation of the deflected shape is exploited for

Three sandwich panels were loaded to an ultimate in-plane compressive ultimate

Chapter 2 Hinge Line Theory and Experiments

the semi-analytical method which is presented in Chapter 3.

Out of plane detlection(imm)

2. Failure points

compression which caused collapse is plotted in Figure 2.12. The lateral pressure is
non-dimensionalized by p,, , the collapse pressure calculated by hinge line theory as
given by Equation (2.9). The in-plane load is non-dimensionalized by o, (355MPa), the
yield stress of the steel face plates. In Chapter 4 these full-scale experimental values are

used to validate the finite element model
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Figure 2.11 Progression of out of plane deflected shape

0 Load

—&—=0kN

(691 kPa)

—8—5028 kN

=8—10004 kN

=g=10604 kN

11212 kN

=0=11796 kN

=g | 22471 kN




Chapter 2 Hinge Line Theory and Experiments

1.4

1.2
o *
N b} .
—- ~
2 =
E O 0.6
7 2
[ (3]
g = 0.4

£ * 207 kPa Pressure
0.2 | = 415 kPa Pressure
. 4 690 kPa Pressure . . . .
0 0.2 0.4 0.6 0.8 1 1.2

Non-dimensionalized Lateral Pressure ( p/pw)

Figure 2.12 Failure points obtained from experiments

2.2.4 Discussion of Failure Stress Seeming to Exceed Yield Stress

The experiments have confirmed that there is no delamination or buckling of the
face plates. The elastomer is itself an adhesive, and in the fabrication of the sandwich
panels the elastomer forms a very strong bond with the face plates, thus preventing
delamination. Also, the elastomer core is sufficiently rigid to prevent local buckling of
the face plates. For these reasons, when the load is pure in-plane compression, both face

plates reach the “squash load”; i.e. they reach a fully yielded condition.

As can be seen in Figure 2.12, for p =207 kPa the ultimate in-plane compressive

stress exceeds the yield stress by about 10%. It will be shown in Section 4.2.1 that the
panel is deemed to have failed when the strain reaches 0.005. The elastomer does not

“yield”; when the panel reaches failure (i.e. when the strain in the face plates is 0.005),

25



Chapter 2 Hinge Line Theory and Experiments

the modulus of the elastomer core is still the original value: E; =862 MPa. The strain in
the core is always the same as in the steel. Therefore the stress in the core is
o, =exE,_=0.005x862 = 4.31MPa. The total force will be stress X area. The thickness

of the core is 32 mm and the combined thickness of the two face plates is 10 mm.

Therefore the total force is

Fior =0y x2t, xb+ 0o, xt, xb=355x10b+4.31x 32b = 3688b

where b is the width of the panel.

In calculating the failure stress, Little took this total force and divided by (only) the
face plate area. This seems reasonable since carrying (any of) the in-plane load is not
considered part of the role of the core. However, the result is to give a slightly increased
value of the applied external stress at failure:

O Fror /(2t; xD) _ 3688b/10b

oy oy 355

=1.04

This increase also occurs in Little’s FEA results because he used the ANSYS
option of applying an imposed displacement on the nodes at the loaded edge, including
the elastomer nodes. (This is the reverse of the usual procedure, which is to impose nodal
forces.) With this procedure the program calculates the reaction forces at all these nodes,
including the elastomer nodes. Little then divided the total reaction force by the area of
(only) the face plates. Therefore the failure stress is again slightly too large, and for pure

in-plane compression it is slightly above o, .

For the sake of comparison, this study used the same method as Little for all of
the FEA calculations (Chapters 4 and 5). However, before using the FEA results in
Chapter 6 to obtain the interaction formula, the in-plane failure stresses are

proportionately reduced such that for pure in-plane compression they are equal to o .
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The other portion of the exceedance of o, is probably due to “strain hardening”:
i.e. for large values of strain the height of the stress-strain curve steadily increases above

the nominal yield value o, (here 355 MPa). This is another reason why the
experimental failure stress in Figure 2.12 exceeds o, . It does not occur in the FEA

results because the steel was taken to be elastic, perfectly plastic.
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Chapter 3
Semi-Analytical Solution for the Ultimate

Strength of Clamped Sandwich Panels

3.1 Governing Equations

By using Hamilton’s variational principle, Librescu et al (1997) derived a
comprehensive geometrically non-linear theory of initially imperfect doubly curved

sandwich shells. There are five basic assumptions of this theory:

(1) the material of core and faces is orthotropic

(2) the core and faces are incompressible in the transverse normal direction
(3) the panel is symmetric with respect to the global mid-surface

(4) the faces are thin (i.e., the Love-Kirchhoff hypothesis can be adopted)

(5) the bonding between face and core is perfect (no delamination)

If the faces and core are isotropic and the core is soft (carrying only transverse

shear stresses), the compatibility equation is:
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Ay, oy 2 Aea + (A + Ag) 8;/_ (77x+h_) 0 (3.2.b)
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The constitutive equations are
= A, (e, +vey) /2, Ny=A, (e, +ve,)/2, Ny =Agy,, /2 (3.3.a-C)
=A, (e +vey)l2, Nj=A, (e, +ve,)/2, Ny =Agy, /2 (3.3.d-)
M, =F, (k) +vk,)/2, My =Fgy,, /2 (3.3.g-h)
My =F, (i, +vk)) 12, M =Fgv,, /2 (3.3.i4))

where A, =A,, =2Et, [(1-v?), A,=VA,, Ax=A,1-Vv)/2,
A=A, =2I0-v)A,, A,=-2vIil—vD)A,, A, =1/A,
F,=F, =D, —h*A, =Et] /6(1-v?)

D,, = Et, (3t2 +6t t, +4t?)/6(1—Vv?)

F,=VF, F,=F,0-v)/2, 6=4K®G,/t,, h=(t, +t,)/2,
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3.2 Incremental Approach

In order to simulate a clamped edge condition, the assumed added and initial

deflection functions are:

M N _ —
W= ZZwmn [cos 2(m al)ﬂx —CO0s 2|’T;7ZX:| . {cos 2(n bl)ﬂy —CO0S anﬂy} (3.4)

M N _ —
W, = ZZWOmn [COSM — CoszmTﬂX} . |:COS 2(I’] bl)ﬂy —CO0s 2nb7zyi| (35)

These functions are for the general case of M and N terms in the in the x and y
directions. Section 3.5 will give the values of M and N that have been assumed in the

present model, and will present plots of these functions.

By assuming the external load is applied incrementally, the deflection function at

the end of the (i —1) th incremental load step is:
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M N _
L= Wi {cos 2m =D& _ e, szmﬂx][cosw—coszn—ﬂy} (3.6)
m=1 n=1

a b b

The deflection function at the end of the ith incremental load step is:

W, =W, , + AW (3.7)

where Aw is the increment of the deflection function and can be written as:

M N — —
AW=D > AW, [cosw —Cos Zn;ﬂx} : [cos 2n bl)zzy —Cos anﬂy} (3.8)

At the end of the (i—1)th incremental load step, Equation (3.1) and (3.2.a-c) can

be rewritten as:

o', d'¢, 0'd_
B K T 2k S
Ox“oy
2 2 2 2 2 2 2 2 2
o o'W, , +28 Wiz_1 0 Wiz_l +28 V\2/O 0 Wiz_1 +28 Wiz_1 0 V\ZIO _46 W,_, 0°W, _
OXxoy ox~ oy ox~ oy ox~ oy OXoy oxoy
(3.9)
aznxi— a 77>< i 77 i '
A5+ A S+ (A + Ag)—2 -8, +h ‘l) 0 (3.10.a)
OX oy? OX0y
Cnyia  , O 77 - o', ow,
A, a;; -+ Ay —2 1+(A2+A66) ayl S(Mia + ayl = (3.10.b)

0’ (azwi_l AL ] 0% (azwi_l A J L (82wi_l . azwoJ

ox* | oy® oy’ oxoy \ oxoy oxey | oy® | ox*  ox°
4 ] 4 _ 4 ] a ) 2 _
RO o, v 2R ) I OV g O OV
OX OX* oy oy OX OX
on, ; 2.
+ &1( 7;;"1 +h aa\;vé‘l ] +p, =0 (3.10.c)
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Equation (3.6) is substituted in Equations (3.9), (3.10.a), and (3.10.b) to solve for

the functions ¢, n,,,,and 7, .

At the end of the ith incremental load step, Equations (3.1) and (3.2.a-c) can be

rewritten as:

4 4
A, 0 ¢i + - 0'¢ +2A),) o9,
ox’* ay ox*oy*
2 2 2 2 2 2 2
_26 +26v;/iav;/i+28vgoav;/i+28v;/i8vx2/0_4awiawo_
6x6y oX° oy oxX® oy oX® oy OX0y OXoy
(3.11)
a 77><| 77XI 77 i 8\Ni
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A, ot ) + 5, +h—)=0 3.12.b
ay A66 a 2 (A12 AGG) a ay (77x,| ay ) ( )
o%g, [ 0%w, s o%w, _2 o%¢, ( 0°w, . o%w, 6 ¢, ( 0w, s 0°W,
ox? | oy* oy’ oxoy | oxoy  oxoy ay ox?>  ox?
4 ] 4 : a ) 2 _
R (R, +2F) 0w R, TV | iy O
OX ox2oy? oy OX OX
on, . am
+d’l[ Ty +ha V;/'J+ p,=0 (3.12.c)
oy oy

Equations (3.9) and (3.10.a-c) are respectively subtracted from Equations (3.11)

and (3.12.a-c), thus giving the incremental governing equations:

oA . 0°'A . o'A
KSR O (g vam) S
% xoy* (3.13)
_46 (W, +Ww,) 0*°Aw 2 0% (W, +W,) O°Aw 2 0% (W, +W,) 0°Aw 0
OXoy OXoy ox? oy’® oy° ox?
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0°An 0°An d°An, OAW
=+ L4+ (A, + -8(An, +h—2)=0 3.14.a
All 8X2 AGG ayz (A12 AGG) axay ( 77x 8X ) ( )
0°An 0°An 0%An, AW
Ay, Py L+ A o L+ (A, + Ag) oxdy —-o(An, + hw) =0 (3.14.b)

4 4 4 2 aA 2
Fo LAY o, +2F, ) CAY L, AWl O (O AW gl OOy |y O AW
OX OX“oy oy OX OX oy oy
0’4, O°AwW o 0’4, O°AW 0’4, *AW  O°Ag 0% (W, +W,)
ox? oy’ OXxoy oxoy — oy® ox*  ox? oy’®
o O*AP O* (W y +Wo)  D°AP O° (Wi, +W,)
Oxoy Oxoy oy’® ox?

Ap=0 (3.14.c)

Equation (3.6) is substituted in Equation (3.13), (3.14.a), and (3.14.b) to solve for
the incremental functions Ag, An,, and An,. As required by the Galerkin Method,

Equation (3.14.c) must be multiplied by the deflection function and integrated over the
volume of the face plates and set to zero :

” j AD - {cos 2(r ;1) ™ _cos Zzﬂx}[cos 2(s _bl)ﬁy —cos Zsb;zy }dvol =0 (3.15)

where A® is the LHS of Equation (3.14.c)

The result of Equation (3.15) is a set of linear equations which can be organized in
matrix form as:

([P1+[Kg1+[Ky 1+ [K s D){aw) = {AP} (3.16)
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where

[P,] is the stiffness matrix due to the initial stress (all matrices are of dimension MN X
MN )

[Kg] isthe bending stiffness matrix

[K\, 1 is the stiffness matrix associated with membrane action

[Ks] is the stiffness matrix associated with transverse shear

{Aw} is the vector of unknown coefficients (length MN)

{AP} is the vector of external incremental load (length MN)

Kim and Hughes (2005) applied the Galerkin method to solve Librescu’s governing
equations of sandwich panels, but not in the form of Equation (3.16). Paik et al. (2001)
presented a solution for bare steel plates similar to Equation (3.16). The only difference

between Equation (3.16) and Paik’s equation is that [K ] is introduced here due to the

transverse shear carried by the core.

3.3 Solution for Material Nonlinearity

The unknown {AW} in Equation (3.16) can be simply solved by methods for linear

systems, and the latest deflection function is obtained from Equation (3.7). The stress

distribution in the face plates can then be calculated by Equation (3.3).

To check the progress of yielding, each of the face plates is divided into mesh

regions in three dimensions as plotted in Figure 3.1.
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Figure 3.1 Division of mesh regions for a face plate of a sandwich panel

The von Mises criterion is employed to check yielding as:
2 2 2 2
o, —o,0,+0, +3t" 20, (3.17)

If one of the elements of the mesh is yielded, the integration of [K;] and [K,]

in Equation (3.16) will not include this element. For [K,,] in Equation (3.16), all the

elements that have the same x or y coordinates with the yielded element will not be
included in the integration.

With increasing external load, the stiffness matrix is decreased due to the
expansion of the yielded region. Once the determinant of the stiffness matrix is equal to

(or smaller than) zero, the ultimate strength of the sandwich panel is reached.

Since the material nonlinearity is solved iteratively, the overall method is classified

as a semi-analytical method.
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3.4 Verification

Paik et al (2001) applied the semi-analytical method to calculate the ultimate
strength of simply supported isotropic steel square plates. Before presenting the results
for clamped sandwich panels, it is necessary to calculate one of their cases and compare
with their results. The selected case is for pure lateral pressure and the following
geometric dimensions and material properties: a=b=1000 mm, t=14.3 mm,
E =205800 MPa, and o, =264.6 MPa.

The steel panel is simply supported, therefore the panel deflection functions are

assumed as:
. X .7y
W =W,, SIn—Sin — 3.18
ysin=—=sin 2 (3.18)
. X .7y
W, = W,,, SIn—Ssin —= 3.19
0 011 a b ( )
1000
80 r
BT

7 (lun.-’lng}

40 // ------ Present
—— Pail's Results
a0 r /

Figure 3.2 Load versus deflection curve of a simply supported square panel under lateral
pressure load
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The amplitude of initial deflection w,, is equal to 8.96 mm. The load versus

deflection curve is plotted in Figure 3.2 (here 1 ton/m* = 8.9x10° MPa). As shown in
Figure 3.2, the results are almost the same as Paik (2001). Having verified the basic method,

it will be now used to calculate the ultimate strength of sandwich panels.

3.5 Deflection Function and Solution Procedure

3.5.1 Deflection Function

As presented in Section 2.2.3, two terms (one half wave and three half waves) are
needed to represent the deformed shape of sandwich panels under in-plane compression
and lateral pressure. Therefore in Equations (3.4), (3.5), etc., M =2 and N = 2. The added
and initial deflection functions now become:

W =W, 1—c052—7ZX 1—0032—7Zy + W, 1—c0327ZX cosZﬂy—cosMy
a b a b b

+ wu[cosz—ﬂx —CO0S 4—“}{1 —COoS Z—ﬂy} + W, {c052—7ZX —COoS 4—ﬂx}{cosz—ﬂy —COoS 4—ﬂy}
a a b a a b b

(3.19)

W, = Wy, [1 —Cos %ﬂ[l —Cos ZTny} + Wy, {1 —Cos %ﬂ[cos ZTﬂy —COs %W}

+ W(m[cosz—ﬂx —CO0S 4—“}[1— cos Z—ﬂy} + Wy, [cos 27 —CO0S 4 }{cos 27y —CO0S 4—ﬂy}
a a b a a b b

(3.20)
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The mode shapes of the deflection functions are plotted in Figure 3.3, which

: 2 2 4
consists of 1—cos<X (one half wave mode), cos % _cos 2% (three half waves
a a a

mode), and 2.1[1—c032—ﬂx] +0.45[cosz—ﬂx—cos4—ﬂx] (a combination of these two mode
a a a

shapes).

2.1(1-cos 2—m() + O.45(cosz—ﬂx —Cos 4—ﬂx)
a a a

27X 47X
€0S ———C0S ——
a a

1] 0.1 02 03 04 0.3 06 o7 0& ne

x/a

Figure 3.3 Mode shapes of the deflection functions

3.5.2 Solution Procedure

The solution procedure of the semi-analytical method is shown in Figure 3.4.
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»
»
A

y

Increase load

For each mesh element,
if not yielded

Evaluate integrand of Equation (3.15) and use numerical
integration to assemble the matrices of Equation (3.16)

v

Solve Equation (3.16) for { Aw }, then {w.} ={w, ,}+{Aw}

v

Calculate w(X, y) from Equation (3.19),
then calculate o(X,y) from Equation (3.3)

A 4
Check each mesh element for yielding

No

Determinant of
stiffness matrix < 07?

Figure 3.4 Solution procedure
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Although the solution procedure is straightforward, the computation time is
excessive. Most of the time is incurred in evaluating the integrand of Equation (3.15), and
performing numerical integration, both of which have to be done separately for each

element.

In these calculations A® (LHS of Equation (3.14.c)) is divided into four parts:

AD = AD , +AD ,, +AD  +AD (3.21)

Each of the four parts consists of four groups: Aw,,, Aw,,, Aw, and Aw,,,e.g.

AD , = B,AwW,;, + B,Aw,, + B,Aw,, + B,Aw,, (3.22)

Because there are four mode shapes as shown in Equation (3.19), integration is
performed four times for each group (r = 1, 2 and s = 1, 2). After the integration, each
part of A® becomes a product of a coefficient matrix and a vector. For example, for the

Ky matrix,

HIACD - [cos ar _al)ﬂx —cos ZIZX cosw —cos 28Tﬂy}dvol

KBy, KB, KB, KB, |[Aw,

KB,, KB,, KB, KB, ||Aw
_ 2 2 23 2 2| _ [KB ]{AW}

KB;, KB;, KBy KBy, [|AW,,

KB,, KB, KB, KB, [[AW,

(3.23)

Therefore for each mesh element, the number of integrations is 4 X4 X4 = 64. For
a typical mesh for a sandwich panel with dimension of 1800mm1200mm, the number

of elements is about 20X 15X 4 = 1200. The external load is divided into 100 load steps
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by a constant small increment. For the beginning load steps, because there are no yielded
mesh elements, the integration is performed for the whole panel and the number of
integrations for each load step is 64X 1200 = 76800. When the load becomes bigger and
the number of yielded elements increases, the number of integrations decreases because
yielded mesh elements are excluded from integration. When all the mesh elements are
yielded, the number of integrations is zero and the solution procedure is finished. So the
rough average number of integrations for each load step is 76800/2 = 38400. Then the
number of integrations in the whole solution procedure is 38400< 100 = 3, 840, 000.

This huge number of integrations consumes most of the time of the solution and
therefore an excessive amount of computation is required (e.g. 4 hours for a pressure-only
load case, CPU 2.93 GHz).

3.6 Results

The results of ultimate strength of nine different sandwich panels under pure lateral
pressure are calculated by the semi-analytical method. The yielding stress of the face
plates of all the nine sandwich panels is 355 MPa. The dimensions of them are listed in
Table 3.1. The results are plotted in Figure 3.5 along with the results obtained by hinge
line theory. The surface is the results obtained by hinge line theory and the dots are the

results calculated by semi-analytical method.
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Panel
Number t, (mm) t. (mm) a (mm) b (mm)
1 3 30 1800 1200
2 3 45 1800 1200
3 3 60 1800 1200
4 5 30 1800 1200
5 5 45 1800 1200
6 5 60 1800 1200
7 7 30 1800 1200
8 7 45 1800 1200
9 7 60 1800 1200

Table 3.1 The dimensions of nine sandwich panels.

Ultirmate lateral pressure (MPa)

Figure 3.5 Ultimate strength calculated by hinge line theory and semi-analytical method
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Panel

Number

P 0.837 | 1.217 | 1.597 | 1.479 | 2.113 | 2.747 | 2.189 | 3.077 | 3.964

Psm 0.9 1.3 1.7 152 | 215 | 276 | 222 | 3.04 | 3.85

e 0.07 | 0.064 | 0.061 | 0.027 | 0.017 | 0.004 | 0.014 | -0.012 | -0.03

Table 3.2 Comparison of results of semi-analytical method and hinge line theory

The results of the nine sandwich panels are listed in Table 3.2. The normalized
difference e between the results of the two methods is also listed, where p,, is the
lateral pressure which causes the collapse of a panel calculated by hinge line theory,
pgy IS the lateral pressure which causes the collapse of a panel calculated by the

Psu = P
Psm

semi-analytical method, and e is

As can be seen from Figure 3.5 and Table 3.2, the difference of the results between

these two methods is quite small.

The results of the semi-analytical method are reasonable. However, it requires an
excessive amount of computation as shown in Section 3.5.2. Since the original purpose of
this research is to obtain a fast and easy way for designers to calculate the ultimate
strength of sandwich panels, the semi-analytical method was not pursued any further. In
Chapter 4 the results of this method will be compared with those of the finite element
method.

43



Chapter 4 Nonlinear Finite Element Analysis

Chapter 4

Nonlinear Finite Element Analysis

This chapter explains the finite element modeling that was used to obtain all of the
results. Nonlinear finite element analysis is a complex process which can give erroneous
results if not done properly. Therefore it is very important to validate the modeling and
analysis techniques, and in this chapter the full-scale experimental results of Little (2007)

are used to provide such validation.

4.1 Finite Element Modeling of the Experimental Panels

The properties of the experimental panels were given in Section 2.2.1. This section
gives the properties of the finite element model. As shown in Figure 4.1, the element used
for both the face plates and the core is the ANSYS SOLID45 element, which has six
faces and eight corner nodes, with three degrees of freedom at each node: translations in
the element X, y and z directions. The element has plasticity, creep, swelling, stress

stiffening, large deflection, and large strain capabilities.
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Figure 4.2 Stress versus strain curves for steel and elastomer
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Figure 4.2 shows the stress versus strain curves. As shown there, an
elastic-perfectly plastic constitutive model is used for the steel. The curve of the
elastomer is far below that of steel, and so the two steel face plates bear most of the
in-plane load.

4.1.1 Number of Elements

Figure 4.3 is the overview of the finite element model. Figure 4.4 is the profile of
the finite element mesh. It shows there are two elements for a steel face plate and four

elements for the elastomer core in the direction of thickness.

Each steel face plate (2 layers): 75X50X2 = 7,500
Elastomer core (4 layers): 75X50X4 = 15,000

Total element number: 30,000

Figure 4.3 Finite element model
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Figure 4.4 Profile of the sandwich panel element mesh

4.1.2 Boundary Conditions

This project deals with panels that are perfectly clamped at all four edges because
in Little’s experiments the edges were clamped. The detailed boundary conditions in the
ANSYS finite element model are listed in Table 4.1. (Note: coupled means an edge is

free to move with all the nodes along it having the same displacement).

Translation Rotation about
x-direction | y-direction | z-direction X, Y, and z direction
Left edge Coupled | Restrained | Restrained Restrained
Right edge Restrained | Restrained | Restrained Restrained
Top edge Free Coupled | Restrained Restrained
Bottom edge Free Restrained | Restrained Restrained

47
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UZ=0
UY:Coupled

J

UY=UZ=0
UX: Coupled =
N UX=UY=UZ=0

X UY=UZ=0
}' X
Z
Figure 4.5 Boundary conditions of the FEA model
4.1.3 Loads

The total load is divided into two load steps. The first load step is the application of
the uniform lateral pressure. The second load step is the application of a forced in-plane

translation in the x-direction in order to generate the in-plane load.
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4.2 Results and Comparison with Experiments

4.2.1 Definition of Failure under In-plane Compression as 0.5% Strain

When a steel plate is subjected to an increasingly large in-plane compression load,
and if plate buckling is prevented, then the plate will continue to undergo in-plane
deformation (shortening) indefinitely, as long as the load is further increased. As shown
in Figure 4.6, the shape of the load vs. in-plane deformation curve may or may not have a
peak, depending on the amount of lateral pressure. It is necessary to have some consistent
definition of the “failure load”, and Little (2007) adopted the definition given in ASTM
A370-05, Standard Test Methods and Definitions for Mechanical Testing of Steel
Products, in which “failure” is defined as reaching a specified level of in-plane deflection
(shortening), and the recommended level is 0.5% of the total length. In Figure 4.6 the

in-plane load is non-dimensionalized by the yield stress o, of the steel face plates and

then plotted versus deflection in the x-direction. For the experimental sandwich panel,
with length 1800mm, 0.5% deflection in the x-direction is 9mm. Therefore a vertical line
is plotted at 9mm. The intersection of this line with the curve of non-dimensionalized

in-plane load gives the failure load for the panel.
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12
1 [
08 | T
06 - O
;7 . — Zero or moderate lateral pressure
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Figure 4.6 0.5% strain method
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Figure 4.7 Non-dimensionalized in-plane load versus in-plane deflection
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=  Test Results
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Non-dimensionalized Lateral Pressure ( p/pnL)

Figure 4.8 Comparison of FEA and test results

Figure 4.7 shows the five curves of non-dimensionalized in-plane load versus
in-plane deflection obtained by the current finite element model for five different load
cases. The figure shows that with an increase of initial lateral pressure, the average level
of in-plane load decreases. The curve with lateral pressure 1700kPa always goes up, from
the beginning to the end. The other four curves become flat around 9mm of in-plane
deflection. With further increase of the in-plane deflection, the curves all converge to the

“squash load” (o = o, ) because the modulus of the elastomer has become almost zero.

Based on the 0.5% strain criterion for failure, five failure points are read from the
intersection points (e.g. 0.44 is read from the intersection point of the curve of 1700 kPa
pressure and the 0.5% deflection line). The resulting interaction curve is plotted with a
solid line in Figure 4.8. Little’s experimental and FEA results are also shown. Here the
in-plane load is still non-dimensionalized by o, and the lateral pressure is
non-dimensionalized by the pressure p,, which is obtained by hinge line theory. The

agreement is excellent and this verifies that the current finite element model is accurate.
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It was noted in Section 2.2.4 that in the experimental results the
non-dimensionalized in-plane compression for small lateral pressure is bigger than 1.
Figure 4.8 shows that this also happens for both sets of FEA results. The reason for this
was given in Section 2.2.4, and in Chapter 6 this small exceedance is removed, such that

the collapse stress is equal to the yield stress.

4.2.2 Comparison of Yield Expansion Patterns under Pure Lateral

Pressure

Figures 4.9 to 4.12 show expansion of the plastic zone at mid-thickness of the top
and bottom face plates from the FEA for pure lateral pressure. As a comparison, Figures
4.13 to 4.16 are the plots of the plastic zone for of the semi-analytical method. Both

methods show a similar expansion pattern, as follows:

1. Top face plates

Yield first occurs at the mid-length of the four edges. As pressure increases, the
plastic zone spreads inward towards the center of the plate, and also sideways towards the
corners. When the ultimate strength is reached, almost all the plate has yielded except for

a small area at the center and the four corners.
2. Bottom face plates

Yield first occurs not only from the mid-length of the four edges, but also at the
center. As pressure increases, both plastic zones become larger. The edge zone spreads

inwards towards the center, and the center zone spreads outwards. When ultimate

strength is reached, nearly all of the plate has yielded except for a narrow ring.
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Figure 4.10 First occurrence of yield at mid-thickness of the bottom face plate
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Figure 4.11 Yield pattern almost at failure at mid-thickness of the top face plate
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Figure 4.12 Yield pattern almost at failure at mid-thickness of the bottom face plate
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o
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Figure 4.13 First occurrence of yield at mid-thickness of the top face plate

(Semi-analytical method)

0

Figure 4.14 First occurrence of yield at mid-thickness of the bottom face plate
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(Semi-analytical method)
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o
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Figure 4.15 Yield pattern almost at failure at mid-thickness of the top face plate

(Semi-analytical method)

o
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Figure 4.16 Yield pattern almost at failure at mid-thickness of the bottom face plate

(Semi-analytical method)
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4.3 Definition of Failure under Pure Lateral Pressure

Figure 4.17 is a curve of non-dimensionalized lateral pressure versus lateral
deflection. It shows that deflection always increases when lateral pressure becomes
bigger. However, in order to plot an entire interaction curve, the failure load of pure

lateral pressure without in-plane load must be obtained.

Non-dimensionalized Lateral
Pressure (p/py)

0 50 100 150 200 250 300
Lateral Deflection (mm)

Figure 4.17 Non-dimensionalized lateral pressure versus lateral deflection

When there is in-plane compression, failure is defined as 0.5% strain based on the
length of the panel. This definition cannot be used for pure lateral pressure because the
dominant deformation is out-of-plane, and the in-plane deformation increases more
slowly than with in-plane compression load. Therefore we must obtain a new and larger

value of strain that corresponds to failure. Figure 4.18 is a plot of the plastic strain for the
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same panel (i.e. Little’s experimental panel, which is considered throughout this chapter)
after it has collapsed. That is, the pressure is even larger and the yielding is even more
extensive than in Figures 4.11 and 4.12. Unlike yield stress, which is a constant value and
extends over a large area, the maximum value of plastic strain is always concentrated at
the clamped edges, where the “plastic hinges” have formed. Figure 4.18 shows that in this
failure condition the largest plastic strain is about 0.16 ( tensile in the face plate adjacent
to the pressure and compressive in the other face plate). To be slightly conservative, the
value chosen in this study is 0.15. That is, for the case of pure lateral pressure, failure of
the panel is defined as corresponding to a plastic strain of 0.15, compared to 0.005 (0.5%)

when there is some in-plane compression.

HODAL SOLUTICH
STEP=1
3UR =2
TIME=.42451%
EDPLY AVE
RS¥S=0
DMH =102.367
SMI =-.04334
SME =.161314
-
ot
-.04334 .034582 118063
-.007888 076812 161314

Figure 4.18 Plastic strain distribution on a sandwich panel under later pressure
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4.4 Comparison of Ultimate Pressure

For the subject panel (which has the same dimensions as the test panels) the
ultimate pressure from the FEA is 1.85 MPa, and from the semi-analytical method is 1.60
MPa. The hinge line pressure is p,, = 1.56 MPa. In Figure 4.19 p,, isused to obtain
non-dimensional values. For completeness the FEA ultimate strength points are also
plotted for the four load combinations involving in-plane compression: the three

experimental combinations and the case of pure in-plane compression.

1.4 1
=  Test Results
1.2
—%— FEA Results

- 5 7 O  Semi-Analytical Method
N b
_—
(-U >

0.8
5
(7]
c O
O B 46 |
E 9
'Cli (<)
S & o4
Zz

£
0.2
0 =
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Non-dimensionalized Lateral Pressure (p/ph)

Figure 4.19 FEA interaction curve, including failure load under pure lateral pressure
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Chapter 5

Correction Factor

5.1 Introduction; Overall Method

Figure 5.1 is an interaction diagram, in which the curve shows all the possible
combinations of the two types of load that would interact and cause collapse of the panel.

The axes are the “ultimate strength ratios”, R, and R,. The numerator of each is the
actual load o, and p, and the denominator is the collapse load if that load acted alone,

denoted as (o,),, and p, . For each type of load there will be a theory that ideally

provides an explicit expression for the “act alone” collapse load as a function of the panel

properties (e, t, and t;).

c

If this theory is correct, then for each type of load acting alone, panel collapse

would correspond to the point 1 along that axis.

The goal of this study is to obtain an explicit expression for the interactive collapse
of the panel as a function of its properties. This involves three separate tasks. Two of

them are to obtain explicit expressions for (o,), andp, as a function of the panel

properties. These will provide the denominators of the ultimate strength ratios R, andR,.
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The third task is to obtain an explicit expression for the interactive collapse
equationF(R,,R,) =1.

F(R,,R,)=1

08 .
R, o6 .
0.4 .
02 .
’ 0.2 0.4 06 03 1
Rp

Figure 5.1 Interaction Diagram

5.1.1 Determination of (o))

ult

The experiments of Little (2007) and the Kim and Hughes (2005) study have
shown that for typical panel proportions the ultimate strength under pure in-plane

compression is equal to the “squash load”: (o), =o,. That is, the panel has such

large bending rigidity that it does not buckle.

5.1.2 Determination of p,,
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For ordinary steel panels loaded by lateral pressure, the hinge line equation (2.9)

gives a reasonably good estimate of p, . Since the face plates are steel, it is possible that
the hinge line theory might give at least an approximate estimate for p, for a

steel-elastomer sandwich panel. Indeed, as shown in Chapter 3, Little (2007) calculated

Pucn Using this theory, but in his tests the pressures were much smaller and he did not

investigate the case of collapse due to pure pressure.

The next section shows that the hinge line equation is not accurate enough, and

considers how it can be adapted.

5.2 Properties of FEA Models

In Chapter 4, results obtained by ANSYS were presented and compared with
experimental results. The comparison shows that the finite element model successfully
simulated the experiment. The next step is to calculate more cases which have different

dimensions and various combinations of loads.
1. Dimensions

There are four variables in a sandwich panel:

Length a(in the x-direction, which is also the direction of the applied in-plane
compressive stress o, )

Width b (in the y-direction)

Core thickness t,

Face plate thickness t,

The aspect ratio of a panel is « =a/b, which can be any value (long or short

panels). In order to cover a variety of aspect ratios, the width b is fixed to 1200 mm,
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and four values of length are used: 600 mm, 1200 mm, 1800 mm, and 3600 mm.

Corresponding aspect ratios are 0.5, 1, 1.5 and 3.

The in-plane load is always applied in the lengthwise (x) direction.

To have sufficient data for curve fitting, three values are given to both t, and t;:
t.: 30 mm, 45 mm, 60 mm
t, 3mm,5mm,7 mm

With these combinations of aspect ratios and thicknesses, the final number of

models to be analyzed is 36 (4 x3x3).

The length, width, core thickness, face plate thickness and number of finite

elements are listed for each model in Table 5.1 below.

Model No. of

Number e {mm) to{mm) a(mm) b (mm) Elements
1 3 30 600 1200 11250
2 3 45 600 1200 11250
3 3 60 600 1200 11250
4 5 30 600 1200 11250
5 5 45 600 1200 11250
6 5 60 600 1200 11250
7 7 30 600 1200 11250
8 7 45 600 1200 11250
9 7 60 600 1200 11250
10 3 30 1200 1200 22500
11 3 45 1200 1200 22500
12 3 60 1200 1200 22500
13 5 30 1200 1200 22500
14 5 45 1200 1200 22500
15 5 60 1200 1200 22500
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16 7 30 1200 1200 22500
17 7 45 1200 1200 22500
18 7 60 1200 1200 22500
19 3 30 1800 1200 33750
20 3 45 1800 1200 33750
21 3 60 1800 1200 33750
22 5 30 1800 1200 33750
23 5 45 1800 1200 33750
24 5 60 1800 1200 33750
25 7 30 1800 1200 33750
26 7 45 1800 1200 33750
27 7 60 1800 1200 33750
28 3 30 3600 1200 67500
29 3 45 3600 1200 67500
30 3 60 3600 1200 67500
31 5 30 3600 1200 67500
32 5 45 3600 1200 67500
33 5 60 3600 1200 67500
34 7 30 3600 1200 67500
35 7 45 3600 1200 67500
36 7 60 3600 1200 67500

Table 5.1 General properties of 36 FEA models

5.3 Generalizing the Hinge Line Collapse Pressure Equation

for a Steel-Elastomer Sandwich Panel
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Figure 5.2 is an interaction diagram of the type described in Section 5.1. Based on
Section 5.1.1, the value selected for (o,),, issimply the yield stress for steel, o, . The

denominator of the other ultimate strength ratio is the collapse pressure predicted by
hinge line theory, p, .. . The data points are finite element results for three sandwich

panels with =15, t, =5mm, three values of t (30, 45 and 60 mm) and five
combinations of o, and p as follows:

Zero lateral pressure and compressive stress o, .
0.25 p,, . @nd compressive stress o, .

1

2

3. 0.5py . andcompressive stress o, .
4. 0.75p,, ., and compressive stress o, .
5

The collapse value of p,,,, forzerocompressive stresso, .

The data points have been joined by straight line segments in order to see what

shape the final interaction curves need to be.

1.4 1

1.2 |

0 025 0.5 0.7 1 1.25 1.5

Rp = p/pult,HL

Figure 5.2 FEA Interaction Diagram (a = 1800 mm b =1200 mm t, =5 mm)
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In general the curves are similar. At the upper end point (pure in-plane

compression), all three coincide at a point slightly above the “squash load” (o, /o, =1).
As o, decreases and p increases, the curves diverge slightly. Then there is a

crossover point where they reverse their relative positions. If the hinge line theory exactly

accounted for the effect of t_, all three curves would end at p/p,,, =1. Thus hinge

line theory must be generalized to account for t_, so as to give a common end point and

eliminate the crossover. However, the three curves will probably still diverge between the
two end points, and the interaction equation will need to be further generalized to account

for t. for the intermediate load combinations.

5.4 Modification of the Hinge Line Collapse Pressure

This section uses curve fitting of the finite element data for the “pure pressure”

case to derive a correction factor f which is applied to the hinge line value p,, , , in
order to account for the effect of t., t, and «. The corrected value of collapse

pressure will be:
pult = pult,HL ' f(tc’tf ,0() (51)

There are 36 values of finite element collapse pressure p,, .. Table 5.2 gives the

ratio P, e / Py for the 36 cases.
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t;=3mm | =05 a=1 a=15 a=
30 1.245 1.36 1.34 14
45 1.2 1.25 1.22 1.305
60 1.19 1.25 1.23 1.305

t; =5mm | =05 a=1 a=15 a =3
30 1.185 1.3 1.2 1.27
45 1.08 1.11 1.09 1.155
60 1.035 1.078 1.07 1.125

t,=7Tmm | =05 a=1 a=15 a=
30 1.185 1.32 1.22 1.26
45 1.02 1.128 1.065 111
60 0.95 1.04 1.02 1.07

Since t,, t, and « might have different effects on the correction factor,
f(t,,t;,a) isseparated into 2 parts: g(t.,t;) and h(e). g(t.,t;) dependson t,, t,,

and h(«) only accounts for the effect of « . Thus:

Table 5.2 Ratios of p e / Py e

ft..tr.a) = g(t.t;) hia)

In order that the correction factor f will be valid for any system of units, it is

necessary to deal with dimensionless values, say te and tc (a=alb is already
dimensionless). Since the plate width b is the same for all the finite element models
(1200 mm), it is logical to choose b as the non-dimensionalizing denominator.

However, 1200 mm is too large as a number, and so 1.2 mm has been used instead. Thus
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in all the plots that illustrate the curve fitting, the values of t: are 3/1.2 = 2.5, 5/1.2 =

417, and 7/1.2 = 5.83, and the values of t. are 30/1.2 = 25, 45/1.2 =37.5, and 60/1.2 =
50.

5.4.1 The Part of the Correction Factor Accounting for t. and t;:

g(ff !EC)

There are many possible choices for the form of g(t+,tc): polynomials, ratios of
polynomials, etc. Many forms were tried and eventually a suitable form was found. For

constant t. the form for t; is:

L otr ot

te®

(5.3)

where ¢, and c, are constants to be determined for the three values of t..

After many attempts, some suitable values of c, and c, were found and the

corresponding g functions are:

_ 0.49t¢ +1.25t°

te=25: g, — (5.4)
¥}
+ + 3
{, =375 g, = 1.26tf_+3..06tf (5.5)
ts
+ + 3
t.=50: g, :m (5.6)

'[f3
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These three correction factor functions are plotted with the ratios of FEA results

over hinge line theory results p, e / Py, in Figures 5.3 to 5.5, where o, «,, a,
and «, correspond to aspect ratios 0.5, 1, 1.5, and 3. It can be seen that the values of

Pucre / Py are satisfactorily fit by the three correction factor functions.

[ [ [ [
1.5 —
[ |
| |
] ]
DLI | | | |
L, ]
&3 1+ _
L [ [ |
g
Gy
| { | |
nir =
£1
i | | = | |
n 2 4 iy f 3 10

Figure 5.3 g, for t. =25
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1.5 _
1F _
05 _
o :
1.5

|

05 _
o ————

Figure 5.5 g, for t. =50
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The correction factor function g must allow for the effect of both t¢ and t..

We have already allowed for t;. Now we have to consider how to place t. into g. In
Equations (5.4) to (5.6) the only difference among g,, g, and g, is the values of c,

and c,. The corresponding values are:

g, (tc=25) ¢ =049, c, =1.25
g, (tc=375): ¢, =126, c, =106

g; (te =50): c, =2, c, =0.95

The values of ¢, and c, are plotted versus t, in Figures 5.6 and 5.7.

4 T T T
3_ p—
0y 2+ ] —
PR
m
1_ p—
m
i ] ] ]
1] 20 40 al 20
te

Figure 5.6 ¢, Versus te
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4 T T T

3 I p—
Cz 2 — —
Y

m
1 = - -
0 | | |
0 20 40 ] 20
te

Figure 5.7 ¢, versus te

It can be seen from Figure 5.6 that c, could be approximated by a straight line,

and c, could be fit by a curve which is a ratio of polynomials.

Equation (5.7) is the straight line for c,. After trying many different combinations

of polynomials, Equation (5.8) was obtained for c,.

¢, (tc) = (0.06t; —1) (5.7)
-~ 336+05-t
C,(te) = BRI (5.8)

These functions of ¢, and c, are plotted with the data points in Figures 5.8 and

5.9, which show that the curve fitting for ¢, and c, is satisfactory.
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Figure 5.9 ¢, and c,(tc) versus tc
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With Equations (5.7) and (5.8), Equation (5.3) is now a function of both t; and

(0.06t; —1)t ¢ 41,2 336405t
12+tc

g(ts te) = = (5.9)

Before proceeding to allow for a, we must verify that g(t¢,tc) allows for t. and
t, satisfactorily. For this purpose we define a temporary value of collapse pressure:
pult,temp = Puite g(tf ’tc) (5-10)
This value p .., can be used as the denominator to non-dimensionalize the

lateral pressure of the FEA results. Figure 5.10 is a plot of the interaction diagram

updated by g(ts,tc).

0 0. 25 0.5 0. 75 1 1. 25

Rp = p/pult,temp

Figure 5.10 FEA Interaction Diagram (a = 1800 mm b = 1200 mm t, =5 mm)
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In general the curves are similar. For the pure compressive case all three converge

to a point slightly above the “squash load” (o, /o, =1). As o, decreases and p

increases, the curves diverge slightly, but the most important point is that the cross-over
point in Figure 5.2 is now removed. The curves always keep their relative positions, until

they end around  p/ Py em, =1-
The intermediate load combinations were originally located at R, =0.25, 0.5 and
0.75. Because the denominator of R, has been changed from p,, ., 10 Py en, these

load combinations are moved slightly.

In Fig 5.11 the correction factor is plotted along with the ratios of finite element

results over hinge line theory results, p, e / Py . iN @ 3-dimensional plot. The surface

with grids is g(tr,tc) and the dotsare Py, re / Pug s -

& (i.i" f;} d Py s -";Pm,arz

15 =

Figure 5.11 g(t+,tc) and Py re / Pucre VErsus tr and te
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As shown in Figure 5.11, g(tr,tc) appears to give a satisfactory fitting for the
ratios of FEA results over hinge line theory results, P, e / Py - It Will be shown in

section 5.5 that the mean error and standard deviation for the complete correction factor

f are indeed satisfactory.

5.4.2 The Part of the Correction Factor Accounting for o : h(a)

Before starting to deduce h(«), it is necessary to get a first view of how

significant the effect of « is on collapse pressure. In Figure 5.12, four interaction

curves are plotted for sandwich panels with different values of « . It should be

mentioned that the value of R has already been updated by g(ts,tc).

1.2 1

0 0,2 0. 4 0. 6 0.8 1 1.2
Rp = p/pult,temp

Figure 5.12 FEA Interaction Diagram (t, = 7 mm t_= 60 mm)
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As shown in Figure 5.12, the four curves do not intersect with the x-axis at a value
of 1. It is very clear that « needs to be included in the correction factor. In order to

account for the effect of «, a correction factor function h(e) must be obtained.

The collapse pressures of all the 36 sandwich panels are non-dimensionalized by

Putem, and divided into four groups p,, p,, p; and p, corresponding to different

a:0.5,1, 1.5and 3. These are plotted versus « in Figure 5.13.

[ I I I I I
11k —
Fj
L ™ I
22 [ [
ssa | - |
?3 . i
Py I
| { | |
09} —
i | | | | | |
0 0.5 1 15 o 2 2.5 3 3.5
. Put,Fe
Figure 5.13 — Versus o

Putt, He g(Eclff)

As seen in Figure 5.13, the difference between the four groups of values is
perceptible. The values of non-dimensionalized collapse pressure for « =0.5 are
relatively small. The values for « =3 are bigger than the others, and the values of

a=1 and a =1.5 arein the middle.
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Based on the distribution of the data, a hyperbolic tangent function is adopted:
h(a) = 0.23tanh(1.5«) + 0.8 (5.11)

In Figure 5.14 the above fitting function is plotted along with the data points.

B o)

0 0.5 1 13 g 2 2.5 3 3.5

pult,FE

Puit, HL g(fciff)

Figure 5.14 and h(a) versus o

As shown in Figure 5.14, the values for « =1.5 are below the fitting function, but

overall the function gives a satisfactory fit.

Since function h(a) has now been obtained, the complete correction factor is:

f(te,tr,a)=g(tr,tc)-h(a)

(0.0, — 1)t +1,° o0 +05-te
- 12+t |, [0.23tanh(1.5¢) +0.8]

- K

ts

(5.12)
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With the combination of Equation (2.9) and Equation (5.12), the collapse lateral

pressure load p,, in Equation (5.1) is now a product of three terms:

(0.06t, — 1)ty +1,° S0+ 05te
12 +tc

Pur = P X = x [0.23tanh(1.5¢) + 0.8] (5.13)
f

5.5 Verification of the Correction Factor

pult,FE - pult

pult,FE

To verify the correction factor, the relative errors e = are calculated.

Since there are 36 analyzed sandwich panels, the number of values of e is also 36. The
value range of e is divided into 13 bands. Within each band the number of errors is

divided by the total number and plotted in Figure 5.15.

It can be seen from Figure 5.15 that the mean value of all the errors is close to zero
and larger error values have low frequency of occurrence. The average value of eis
-0.007, and the standard deviation is 0.03. These statistical results confirm that the

correction factor gives an ultimate pressure which agrees well with the FEA results.

We can now use the correction factor to modify the original hinge line theory. The

corrected values of p, in Equation (5.13) are used as the reference values to

non-dimensionalize the lateral pressure, and Figure 5.12 is replotted in Figure 5.16. It can

be seen that now all four curves intersect the R, axis close to 1.
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-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06
Error

Figure 5.15 Distribution of the error of the correction factor

0 0.2 0.4 0.8 0.8 1 1.

Rp = p/purt

Figure 5.16 Updated FEA Interaction Diagram (t, =7 mm t_= 60 mm)
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Chapter 6
Method for Obtaining an Explicit
Equation for the Interactive Collapse of a

Steel-Elastomer Sandwich Panel

In Chapter 5, the results of finite element analyses are used to obtain a correction

factor that is applied to the hinge line collapse pressure p, ., to make the interaction
curves converge at R, =1. The next step is to find a method to calculate the interactive

ultimate strength of a sandwich panel for various combinations of load.

One of the best ways of dealing with this complicated situation is to make use of
interaction formulas in which the variables are the ratios of each load to its ultimate
strength. If just one type of load acted, a value of unity for that load ratio would
correspond to collapse. As shown in Figure 5.1, for a combination of in-plane and lateral

load, collapse occurs when the interactive collapse function satisfies F(R,,R,)=1. The

purpose of this Chapter is to derive this function, thus giving an explicit formula for

calculating the ultimate strength of sandwich panels.
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6.1 Samples of Interactive Ultimate Strength Data Points

There are four dimensions for a sandwich panel: lengtha, widthb, face plates

thickness t,, and core thicknesst_. The aspect ratio « =a/b accounts for the effect of
both aand b. As seen from Figure 6.1, the sandwich panels with different t, have
similar interaction curves. Therefore t, only influences py:which is the denominator of

Rp and is given by Equation (5.13). However Figure 6.2 shows that for different t. the

shapes of the interaction curves are different. Figure 6.3 illustrates interaction curve
shapes for sandwich panels with different « . For sandwich panels with small « such
as 0.5, the interaction curve is almost straight from coordinate (0,1) to (1,0). When the
aspect ratio is increased, the outward bulge of the interaction curve steadily increases. For
aspect ratio 3, the interaction curve has a distinct knee at mid-length. From these

observations, only two variables, t. and «, need to be included in the desired formula.

1.2 1
L
3
1 a =1,t, =60mm
—— t; =3mm
—=— t; =5mm
0.8 r f
—— t; =7mm
R,0.6 -
0.4 r
0.2 r
0
0 0.2 0.4 0.6 0.8 1 1.2

Figure 6.1 Interaction curves of sandwich panels with different face plate thickness
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I.ZL

Figure 6.3 Interaction curves of sandwich panels with different aspect ratios
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6.2 Finding an Interaction Equation

In spite of the differences of the curves, there is one common feature for all of them.

The slope of the intersection with R_axis must be zero for all sandwich panels. This

characteristic is due to the natural symmetry of the pressure load. No matter whether the
lateral pressure is applied on the upper face plate or the lower face plate, the in-plane

compression causing collapse would be the same.

In contrast, at the (1,0) position there is no such symmetry, and hence the curves do

not intersect the Rp axis at 90°.

A general form of the interaction equation which has this desired shape is:
X2 -CX2Y™+Y"=1 (6.1)

where X and Y respectively stand for R and R, . The coefficient C is
dependent on t, and «, and would be changed in order to generate required curve

shapes. The exponents of the both X terms in Equation (6.1) are fixed at 2 because of the

need for zero slope at (0,1).
In order to show that the linear variation of X must be avoided, the following
equation

X2 -CXY +Y =1 (6.2)

is plotted in Figure 6.4. As can be seen, the curves generated by this function do not have

the characteristic of symmetry about the R_ -axis.
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Figure 6.4 Curve shapes of Equation (6.2) X* —CXY +Y =1

Next we need to obtain the exponents m and n. Four combinations of m and n are
substituted in Equation (6.1):

m=1n=1 X2 -CX?Y +Y =1 (6.3)
m=1n=2 X2-CX?% +Y?=1 (6.4)
m=2n=1 X2 -CX?%Y2+Y =1 (6.5)
m=2,n=2 X2-CX?%Y24+Y?=1 (6.6)

The four equations are respectively plotted in Figures 6.5, 6.6, 6.7 and 6.8.
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Figure 6.6 Curve shapes of Equation (6.4) X?—CX?Y +Y? =1
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0z

Y ne

04

nz

Figure 6.7 Curve shapes of Equation (6.5) X? —CX?Y?+Y =1

I I I I I
L C=0 :
“‘~/ C=06
nzp . =
.\.\-. -\.
Y 0ér K -
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C=
02k -
. ! ! ! !
0 02 04 06 08 1

Figure 6.8 Curve shapes of Equation (6.6) X*—-CX?Y?*+Y?=1
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As illustrated in Figures 6.5, 6.6 and 6.8, Equations (6.3), (6.4) and (6.6) can
produce different curve shapes but they cannot produce a knee for large « . Only

Equation (6.5) can generate a large outward bulge, as shown for C =0.9. Therefore

Equation (6.5) X > —CX2Y? +Y =1 is chosen as the interaction formula.

The next step is to adjust the variable C to generate curves to fit the FEA results.
Before that, a correction needs to be made to the FEA results. As noted in Sections 2.2.4
and 4.2.1, for the case of pure in-plane compression the collapse stress (both
experimental and finite element) exceeded the yield stress by 5-10% because in both
cases the elastomer core is carrying this portion of the load. This is not the purpose of the
core, and designers would be reluctant to include this small extraneous “extra strength” in

their design calculations.

Therefore the FEA results are treated in three ways according to the proportion of

in-plane load:

1. Pure in-plane compression: R_is set to 1 which makes the pure in-plane load case

collapse stress equal to the yield stress.

2. Pure lateral pressure: Results are kept the same because there is no in-plane load.

3. Combined load: R, is still the same and R, is proportionally reduced. The extra

strength of the pure in-plane load case is defined as R This value is scaled

o,extra*
down smoothly in proportion to the ratio of the two load types. The scaled value is
sinfarctan(R, /R )] *R and this value is subtracted from the original in-plane

o extra

strength.

Finally the corrected results are fit by Equation (6.5). As shown in the plots of

Figures 6.9 to 6.20, values of C have been chosen such that the formula

X?-CX?Y?+Y =1 gives agood fit to the FEA results.
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1 FEA Fesults -]
\ mam i, = Spun

0sF £y = Swum

o0 £, = T

T T T T
FEA Besults
1'_\ AN (= LT
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0ar -
D ] -

Figure 6.10 Interaction Diagram of sandwich panels with t,=45mm, « =0.5
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T T T T
1 FEA Results —
mEE i, = 3w
08l ty = Swmm
o0 {, = T
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04 =
nar =
i ] ]

nz 04 0.6 03 1

Figure 6.11 Interaction Diagram of sandwich panels with t,=60mm, « =0.5

1 FEA Results= —
mam {, = 2
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Rz06F —
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Figure 6.12 Interaction Diagram of sandwich panels with t,.=30mm, o =1
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1 FEA Besults —
mEE = S

nek f’f = 5mm -

o0 {, = Twm

“Ronal .
o C=-05
nar [ _|
02k —
0 ] ] ] ] —
02 0.4 04 08 1
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Figure 6.13 Interaction Diagram of sandwich panels with t,=45mm, o =1
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Figure 6.14 Interaction Diagram of sandwich panels with t,.=60mm, o =1
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1 FEA Besults -
mam ;= S

0EF -EJP = 5??2??2 —

oee ;. = T

Rcr nar —
=-07
04r [ -
02r =
i | | | | -
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Figure 6.15 Interaction Diagram of sandwich panels witht,=30mm, « =1.5
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Figure 6.16 Interaction Diagram of sandwich panels witht,=45mm, « =1.5
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T T T T T
FEA Results
I mEm f, = 3mm ]
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Figure 6.17 Interaction Diagram of sandwich panels with t,=60mm, « =1.5
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Figure 6.18 Interaction Diagram of sandwich panels with t,=30mm, o« =3
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Figure 6.19 Interaction Diagram of sandwich panels with t,=45mm, o« =3
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Figure 6.20 Interaction Diagram of sandwich panels with t,= 60mm, o =3
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6.3 Obtaining an Expression for the Coefficient C

t. =25 t.=37.5 tc =50
a =05 -4 -1.6 -0.6
a =1 -2.5 -0.5 0.1
a =15 -0.7 0.2 0.5
a =3 0.5 0.8 0.9

Table 6.1 Values of C for different sandwich panels

The various values of coefficient C for different sandwich panels are listed in
Table 6.1. As in Chapter 5, the core thickness is normalized by 0.1% of b, the sandwich
panel width.

As discussed in section 6.1, there are only two variables for C. One is the core

thickness t. and the other is the aspect ratio « .

1. Allowing for core thickness

Since there are four aspect ratios, four corresponding expressions for C, (fc)

(i =1, 4) have been obtained by trying various ratios of polynomials and choosing the

simplest expressions which gave a satisfactory fit to the FEA data.

;2

a=05: Cal(tc)=_40?# 6.7)
L 2

@ =1: caz(tc);zmt;"# (6.8)
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y 2

a=15: C,,(t) = 10+t 6.9)
: 2

a=3: ca4(tc)=_31{# (6.10)

The four functions are plotted with the FEA data in Figures 6.21 to 6.24. As can be
seen, the functions give a good fit to the FEA data. As the core becomes thicker, its

influence diminishes and C tends towards 1.

T T T T
I:I — ) —
E
n’
_2 — I'I —
o . mmm FEA Eesuls
- e Cye) .
_6 — —
g L | | |
n 20 40 - al 20 100

Figure 6.21 C versus t. for o =0.5
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Figure 6.23 C versus t. for o =1.5
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Figure 6.24 C versus t. for o =3

2. Allowing for aspect ratio

Since there are three core thicknesses, three corresponding expressions for C. . («)

(i =1, 3) have been obtained by trying various ratios of polynomials and choosing the

simplest expressions which gave a satisfactory fit to the FEA data.

" ~42+a’

tc =25: C. (¢)=——— 6.11
tcl( ) 0.5+a2 ( )

- —1.6+a?

te=375: C. (a)=—— 6.12
tcz( ) O.5+a2 ( )

- —0.7+a?

tc =50: C. = 6.13
t°3(a) 05+’ ( )

The three functions are plotted with the FEA data in Figures 6.25 to 6.27. As can
be seen, the functions give a good fit to the FEA data. As the aspect ratio increases, its
influence diminishes and C tends towards 1.
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Figure 6.26 C versus « for t. =375
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s mzs FEA Eesults
|::_" . T
C; (@)

Figure 6.27 C versus « for t. =50

Based on the two obtained functions Ca(fc) and C. (), the final form of

function C(a,t.)is:

3000

Clate)=1-——""
(L) 0.5+ a?)t.’

(6.14)

C(a,tc) is plotted in Figure 6.28 along with the values in Table 6.1. From the 3D

plot below, it can be seen that C(«,t.) fits with the values in Table 6.1 satisfactorily.
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Figure 6.28 Cversus « and normalized t.

Now that the function C(«,t.) has been obtained, the C values can then be

calculated by inputting values of « and t., and the desired interaction curves can be
generated.

Figure 6.29 is the plot of the interaction surface for all values of R,, R, and C. If a
load combination point is under the surface, the sandwich panel would not collapse. If a
load combination point is on or above the surface, the ultimate strength is reached.
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Figure 6.29 Interaction surface

Thus the final interaction equation is given by Equation (6.5) with X and Y replaced
by Rp and R, :

2 " 2 2
R,” ~C(a,t:)R,’R,> +R, =1 (6.15)

in which C(a,fc) is given by Equation (6.14). The denominator of R, is pu, given by
Equation (5.13).
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6.4 Verification

In order to verify the interaction formula, the errors between the FEA results and
the values obtained by the formula are defined as:

For the 36 Pressure-only points:
e=(R,)ee — R, (tr,tc, @) (6.16.a)
The other 141 points:
e=(R,) —R, (tr,tc, ) (6.16.b)

The bias (average value) and the standard deviation of all the errors are calculated.
The value range of e is divided into 24 bands. The relative frequency of occurrence of
errors in each band are calculated and plotted in Figure 6.30. The resulting overall bias is
-0.003, and the standard deviation is 0.029. Based on this bias and standard deviation, the

standard normal distribution is plotted in Figure 6.31.

0.4

0.35 ]

0.3 i

0.25 i

0.2

Frequency of occurrence

0.1

o ,—l—l_l—i—l—l_l—l_l_‘_ |
O | e

-0. 15 0.1 -0.05 0 0.05 0.1 0.15

Error

Figure 6.30 Probabilities of the errors of the interaction formula
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Figure 6.31 Standard normal distribution of the errors of the interaction formula

It is clear that most errors are among the range from -0.03 to 0.03, and the average
value is very close to zero. Since the standard deviation is 0.029 and the radius of the
interactive collapse curve is never very far from 1 (see Figure 6.7), the standard deviation
corresponds to a percentage error of only 3%. Therefore the interaction formula is not
only simple but also has the accuracy required for the design of steel-elastomer sandwich

panels of standard proportions.

The FEA data points covered the range of standard proportions of t, /b, t /b

and « . The interaction equation can be used within the following limits:

0.002< t, /b <0.006

0.020< t,/b <0.060

05< a < w
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We then can employ the interaction formula to calculate R or R, by inputting
one of them to obtain the other one. Once the values of R, and R, are acquired, the
real value of ultimate strength can be obtained by multiplying R, by o, and R, by

P » Which is given by Equation (5.13).

6.5 Some Observations about the Interaction Formula

The interaction formula is Equation (6.5): X? —CX?Y?+Y =1. As can be seen
from Figure 6.7, when C is increased from -1.5 to 0.9, a knee emerges around the center

of the interaction curve and becomes bigger and bigger.

Since the largest value of C in Table 6.1 is 0.9, Equation (6.14) was chosen such
that C is always less than 1. In this Section, C is separately set to be bigger than 1 and
equal to 1, and the properties of the corresponding curves are investigated.

1.C>1

If Equation (6.5) is solved for Y, the following equation is obtained:

v 1-1+4C(X2 -1)X?
- 2CX 2

(6.17)

If C>1, 1+4C(X?-1)X*would be smaller than zero within some range of X,
therefore Y would be complex within this range of X . Figure 6.32 is the plot of
Equation (6.17) for C =1.01. As can be seen, the curve consists of two separate parts

because there are some values of X for which Y is a complex number. Therefore C

cannot be larger than 1.
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Figure 6.32 Curve shapes of function X?-CX?Y?+Y =1 when C =1.01
2.C=1

WhenC in Equation (6.17) is set to 1, the equation becomes:

y =17 J@X7 -1 (6.18)

2X?

As plotted in Figure 6.33, there are two possibilities for Equation (6.18):

If X>£, Y:iz—l (6.19)
2 X
If XSg, Y =1 (6.20)
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Figure 6.33 Curve shapes of function X?-CX?Y?+Y =1 when C =1
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Chapter 7

Summary and Conclusions

1. Hinge line theory can only calculate ultimate strength for pure lateral pressure
load. For metal-faced and elastomer-cored sandwich panels, the actual ultimate strength
is different, and so the hinge line equation needs to be generalized to allow for the

sandwich properties.

2. By using the Galerkin method and extending the semi-analytical method to
clamped sandwich panels, the governing equations of sandwich panels derived by
Librescu et al. (1997) have been solved. For the load case of pure lateral pressure, the
results of ultimate strength obtained by the semi-analytical method are similar to those
obtained by hinge line theory. For the experimental panel, the semi-analytical method
gave a collapse pressure of 1.6 MPa compared to 1.85 MPa from the FEA. Unfortunately,
the semi-analytical method requires too much computation. Therefore the hinge line

theory is used as the starting point for the pressure-only case.

3. Little (2007) presents full-scale test results for three clamped sandwich panels
involving three combinations of in-plane compression and lateral pressure. All three test
results closely matched the results from the finite element model that was used in this
study, thus verifying the accuracy of the latter. Little (2007) also made a similar finite

element model, and his results also matched the test data.
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4. The verified finite element model was then used to obtain the results for a large
set of sandwich panels with various dimensions and load combinations. Altogether 3 X3
X 4X 52180 FEA data points were calculated for interactive collapse. For pure pressure
there are 3X3X4 = 36 data points. These data points were used to derive a correction
factor for the hinge line formula in order to account for sandwich propertiest,, t.and« .
To verify the correction factor, the relative errors between the corrected hinge line theory
and FEA results were calculated. The bias of the relative errors is -0.007, and the

standard deviation is 0.03, which confirms that the generalized hinge line formula gives

accurate values of ultimate strength of sandwich panels under pure lateral pressure.

5. Except for the pressure-only FEA data points, the other 3X3X4X4~144 FEA
data points were corrected so as not to count the small in-plane load carried by the
elastomer core. Based on the corrected FEA data points, a general expression was
developed for an interaction equation. The resulting equation has a bias of -0.003 and a
standard deviation of 0.029. Since the radius of the interaction curve is close to 1, this
standard deviation is of the order of 3%, which shows that the ultimate strength values
given by the interaction equation are very close to the FEA results. The interaction
equation is so simple that the ultimate strength of clamped sandwich panels under
combined in-plane compression and lateral pressure can be easily calculated as a function

of t,, t,anda . The data points covered the range of standard proportions of t, /b,

t./b and« , and the interaction equation can be used within the following limits:

0.002< t, /b <0.006

0.020< t./b <0.060

05< g < o
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