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Nonlinear Vibrations of Cantilever Beams and Plates

Pramod Malatkar

(ABSTRACT)

A study of the nonlinear vibrations of metallic cantilever beams and plates subjected to trans-

verse harmonic excitations is presented. Both experimental and theoretical results are presented. The

primary focus is however on the transfer of energy between widely spaced modes via modulation.

This phenomenon is studied both in the presence and absence of a one-to-one internal resonance.

Reduced-order models using Galerkin discretization are also developed to predict experimentally ob-

served motions. A good qualitative agreement is obtained between the experimental and numerical

results.

Experimentally the energy transfer between widely spaced modes is found to be a function of the

closeness of the modulation frequency to the natural frequency of the first mode. The modulation fre-

quency, which depends on various parameters like the amplitude and frequency of excitation, damping

factors, etc., has to be near the natural frequency of the low-frequency mode for significant transfer of

energy from the directly excited high-frequency mode to the low-frequency mode.

An experimental parametric identification technique is developed for estimating the linear and

nonlinear damping coefficients and effective nonlinearity of a metallic cantilever beam. This method

is applicable to any single-degree-of-freedom nonlinear system with weak cubic geometric and inertia

nonlinearities. In addition, two methods, based on the elimination theory of polynomials, are proposed

for determining both the critical forcing amplitude as well as the jump frequencies in the case of

single-degree-of-freedom nonlinear systems.

An experimental study of the response of a rectangular, aluminum cantilever plate to transverse har-

monic excitations is also conducted. Various nonlinear dynamic phenomena, like two-to-one and three-

to-one internal resonances, external combination resonance, energy transfer between widely spaced

modes via modulation, period-doubled motions, and chaos, are demonstrated using a single plate. It is

again shown that the closeness of the modulation frequency to the natural frequency of the first mode

dictates the energy transfer between widely spaced modes.
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Chapter 1

Introduction

1.1 Motivation

The beam is one of the fundamental elements of an engineering structure. It finds use in varied

structural applications. Moreover, structures like helicopter rotor blades, spacecraft antennae, flexible

satellites, airplane wings, gun barrels, robot arms, high-rise buildings, long-span bridges, and subsys-

tems of more complex structures can be modeled as a beam-like slender member. Therefore, studying

the static and dynamic response, both theoretically and experimentally, of this simple structural com-

ponent under various loading conditions would help in understanding and explaining the behavior of

more complex, real structures under similar loading.

Interesting physical phenomena occur in structures in the presence of nonlinearities, which cannot

be explained by linear models. These phenomena include jumps, saturation, subharmonic, superhar-

monic, and combination resonances, self-excited oscillations, modal interactions, and chaos. In reality,

no physical system is strictly linear and hence linear models of physical systems have limitations of

their own. In general, linear models are applicable only in a very restrictive domain like when the

vibration amplitude is very small. Thus, to accurately identify and understand the dynamic behavior

of a structural system under general loading conditions, it is essential that nonlinearities present in the

system also be modeled and studied.

In continuous (or distributed-parameter) systems like structures, nonlinearities essentially couple

1



Pramod Malatkar Chapter 1. Introduction 2

the linearly uncoupled normal modes, and this coupling could lead to modal interactions (i.e., in-

teraction between the modes), resulting in the transfer of energy among modes. Experiments have

demonstrated that sometimes energy is transferred from a directly excited high-frequency mode to a

low-frequency mode, which may be extremely dangerous because the response amplitude of the low-

frequency mode can be very large compared with that of the directly excited high-frequency mode. A

lot of research is under way to understand this and other interesting nonlinear phenomena.

In this dissertation, we study both experimentally and theoretically the nonlinear vibrations of two

flexible, metallic cantilever beams under transverse (or external or additive) harmonic excitations. In

particular, we investigate the transfer of energy between modes whose natural frequencies are widely

spaced — in the absence and presence of an internal resonance. We also develop an experimental

parametric identification technique to estimate the linear and nonlinear damping coefficients of a beam

along with its effective nonlinearity. In addition, we study experimentally the response of a rectangular,

metallic cantilever plate under transverse harmonic excitation.

1.2 Types of Nonlinearity

In theory, nonlinearity exists in a system whenever there are products of dependent variables and their

derivatives in the equations of motion, boundary conditions, and/or constitutive laws, and whenever

there are any sort of discontinuities or jumps in the system. Evan-Iwanowski (1976), Nayfeh and Mook

(1979), and Moon (1987) explain the various types of nonlinearities in detail along with examples.

Here, we briefly describe the relevant nonlinearities. In structural mechanics, nonlinearities can be

broadly classified into the following categories:

1. Damping is essentially a nonlinear phenomenon. Linear viscous damping is an idealization.

Coulomb friction, aerodynamic drag, hysteretic damping, etc. are examples of nonlinear damping.

2. Geometric nonlinearity exists in systems undergoing large deformations or deflections. This

nonlinearity arises from the potential energy of the system. In structures, large deformations

usually result in nonlinear strain- and curvature-displacement relations. This type of nonlinearity

is present, for example, in the equation governing the large-angle motion of a simple pendulum,

in the nonlinear strain-displacement relations due to mid-plane stretching in strings, and due to

nonlinear curvature in cantilever beams.
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3. Inertia nonlinearity derives from nonlinear terms containing velocities and/or accelerations in

the equations of motion. It should be noted that nonlinear damping, which has similar terms,

is different from nonlinear inertia. The kinetic energy of the system is the source of inertia

nonlinearities. Examples include centripetal and Coriolis acceleration terms. It is also present in

the equations describing the motion of an elastic pendulum (a mass attached to a spring) and

those describing the transverse motion of an inextensional cantilever beam.

4. When the constitutive law relating the stresses and strains is nonlinear, we have the so-called

material nonlinearity. Rubber is the classic example. Also, for metals, the nonlinear Ramberg-

Osgood material model is used at elevated temperatures.

5. Nonlinearities can also appear in the boundary conditions. A nonlinear boundary condition exists,

for instance, in the case of a pinned-free rod attached to a nonlinear torsional spring at the pinned

end.

6. Many other types of nonlinearities exist: like the ones in systems with impacts, with backlash or

play in their joints, etc.

It is interesting to note that the majority of physical systems belong to the class of weakly nonlinear

(or quasi-linear) system. For certain phenomena, these systems exhibit a behavior only slightly different

from that of their linear counterpart. In addition, they also exhibit phenomena which do not exist in

the linear domain. Therefore, for weakly nonlinear structures, the usual starting point is still the

identification of the linear natural frequencies and mode shapes. Then, in the analysis, the dynamic

response is usually described in terms of its linear natural frequencies and mode shapes. The effect of

the small nonlinearities is seen in the equations governing the amplitude and phase of the structure

response.

1.3 Literature Review

The sheer quantity of material published in the field of nonlinear vibrations of beams makes it almost

impossible to list all of them. But the necessary and relevant articles and books will be included here

to give a gist of the research done in this area. Unfortunately, the review is restricted only to the

English literature.
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1.3.1 Beam Theories

A very detailed and interesting historical account of the development of the theory of elasticity, including

the beam bending problem, is given by Love (1944) and Timoshenko (1983). Beginning with the works

of Galileo, they describe the refinements made to the beam theory by the Bernoullis, Euler, Coulomb,

Saint-Venant, Poisson, Kirchhoff, Rayleigh, and Timoshenko, to name just a few. The present day

beam theories still use the same basic principles developed decades, and in some cases centuries, ago.

In the literature, the words bar and rod are also used for a beam; and beams with cross-sectional areas

having approximately equal principal moments of inertia are referred to as compact beams.

The popular beam theories in use today are (a) the exact elasticity equations, (b) the Euler-

Bernoulli beam theory, and (c) the Timoshenko beam theory. The theory of elasticity approach has

a major drawback that only a few problems can be solved exactly (Cowper, 1968), and hence it is

not very attractive. The Euler-Bernoulli beam theory (Shames and Dym, 1985) assumes that plane

cross sections, normal to the neutral axis before deformation, continue to remain plane and normal to

the neutral axis and do not undergo any strain in their planes (i.e., their shape remains intact). In

other words, the warping and transverse shear-deformation effects and transverse normal strains are

considered to be negligible and hence ignored. These assumptions are valid for slender beams. The no-

transverse-shear assumption means that the rotation of the cross sections is due to bending alone. But

for problems where the beam is thick, or high-frequency modes are excited, or the beam is made up of

a composite material, the transverse shear is not negligible. Incorporating the effect of transverse shear

deformation into the Euler-Bernoulli beam model gives us the Timoshenko beam theory (Timoshenko,

1921,1922; Meirovitch, 1967; Shames and Dym, 1985). In this theory, to simplify the derivation of the

equations of motion, the shear strain is assumed to be uniform over a given cross section. In turn,

a shear correction factor is introduced to account for this simplification, and its value depends on

the shape of the cross section (Timoshenko, 1921; Cowper, 1966,1968). In the presence of transverse

shear, the rotation of the cross section is due to both bending and transverse (or out-of-plane) shear

deformation.

A linear beam model would suffice when dealing with small deformations. But when the deforma-

tions are moderately large, for accurate modeling, several nonlinearities also need to be included. It

is impossible to come up with a very general three-dimensional beam theory incorporating all possible

nonlinearities and secondary effects, like rotatory inertia, shear deformation, warping, damping, static
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deformation, etc. Usually insignificant nonlinearities and secondary effects are dropped to (a) simplify

various expressions, (b) make the model manageable, and (c) facilitate solving the model equations.

The selection of nonlinearities and secondary effects to be dropped depends on the beam properties

(dimensions, material, etc.) and configuration (loading and boundary conditions).

Most of the nonlinear theories of transverse beam vibrations deal with the effect of midplane

stretching for the case of a simply supported uniform beam with an infinite axial restraint. Woinowsky-

Krieger (1950) and Burgreen (1951) considered free oscillations of a beam having hinged ends a fixed

distance apart. Their equation of motion contained a nonlinear term due to midplane stretching, which

results in nonlinear strain-displacement relations. They gave the solution in terms of elliptic functions

and also found that the frequency of vibration varies with the amplitude. Burgreen also studied, both

theoretically and experimentally, the effects of a compressive axial load. Eisley (1964) analyzed the

effect of an axial periodic load on the motion of a hinged beam. He also studied the stability of the

periodic beam response. The above theories are in good agreement with the experiments of Ray and

Bert (1969). Evensen (1968) analyzed the effect of midplane stretching on the vibrations of a uniform

beam with immovable ends for simply supported, clamped, and clamped-simply supported cases. Busby

and Weingarten (1972) used the finite-element method to formulate the nonlinear differential equations

of a beam under periodic loading. Both simply supported and clamped boundary conditions were

considered. Ho, Scott, and Eisley (1975,1976) accounted for the midplane stretching in the study of

large-amplitude nonplanar whirling motions of a simply supported beam.

Bolotin (1964) showed that, for beams, inertia nonlinearity effects are more significant than geo-

metric nonlinearity effects. Atluri (1973) studied the nonlinear vibrations of a hinged beam with one

end free to move in the axial direction. He included rotatory inertia and nonlinearities due to inertia

and geometry, but ignored the effects of midplane stretching and transverse shear deformation. Using

the method of multiple scales to solve the governing equations, he found out that the effective nonlin-

earity depends on the contributions of the geometric and inertia nonlinearity terms, which in turn vary

with the mode number. He also noted that the inertia nonlinearity is of the softening type. Crespo

da Silva and Glynn (1978a,b) systematically derived the nonlinear equations of motion and boundary

conditions governing the flexural-flexural-torsional motion of isotropic, inextensional beams. They in-

cluded nonlinearities due to inertia and geometry up to order three and showed that the nonlinearities

arising from the curvature (geometry) are of the same order of magnitude as those due to inertia.

Using the equations derived by Crespo da Silva and Glynn (1978a,b), Pai and Nayfeh (1990b) and
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Anderson, Nayfeh, and Balachandran (1996b) investigated the nonlinear motions of cantilever beams

and observed that, for the first mode, the geometric nonlinearity, which is of the hardening type, is

dominant; whereas for the second and higher modes, the inertia nonlinearity, which is of the softening

type, becomes dominant.

Nordgren (1974) developed a computational method for finite-amplitude three-dimensional motions

of inextensible beams and successfully used it for problems encountered in offshore pipe laying oper-

ations. Epstein and Murray (1976) formulated a theory for the three-dimensional large deformation

analysis of thin-walled beams of arbitrary open cross section. Numerical solutions for the post-buckling

behavior of “I” beams obtained using this theory compared very well with experimental data. Hodges

and Dowell (1974) developed nonlinear equations of motion with quadratic nonlinearities to describe the

dynamics of slender, rotating, extensional helicopter rotor blades undergoing moderately large defor-

mations. Dowell, Traybar, and Hodges (1977) experimentally studied the large deformation of a simple,

non-rotating cantilever beam under a gravity tip load to evaluate the theory of Hodges and Dowell

(1974). Agreement was reasonably good for small bending deflections, but systematic differences oc-

cured for larger deflections. Rosen and Friedmann (1979) derived a more accurate set of equations than

those of Hodges and Dowell (1974) by including some nonlinear terms of order three. Their numerical

results are in good agreement with the experimental data obtained by Dowell, Traybar, and Hodges

(1977). Rosen, Loewy, and Mathew (1987a,b) derived equations for analyzing the nonlinear coupled

bending-torsion motions of pretwisted rods. Comparison of the static results with those from experi-

ments is very good. Rosen, Loewy, and Mathew (1987c) extended the above study to the dynamic case

and once again obtained very good agreement with the experimental results. Danielson and Hodges

(1987) and Hodges (1987b) used the concept of local rotation to account for the warping effects and

obtained a simple matrix expression for the strain components of a beam. Kane, Ryan, and Banerjee

(1987) developed a comprehensive theory dealing with small vibrations of a beam attached to a base

that is performing an arbitrary but prescribed three-dimensional motion (translation and rotation).

This theory is applicable to beams with arbitrary cross section and spatially varying material proper-

ties. Through an example, they highlighted the deficiencies in popular multibody dynamic-simulation

computer programs. Hinnant and Hodges (1988) developed a program, which combines multibody and

finite-element technology, to study the nonlinear static and linearized dynamic behavior of structures.

The results of this program match very closely the experimental data obtained by Dowell, Traybar, and

Hodges (1977). Crespo da Silva, Zaretzky, and Hodges (1991) studied the static equilibrium deflection

and natural frequencies associated with infinitesimally small oscillations about the static equilibrium
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and obtained results almost identical with the finite-element results of Hinnant and Hodges (1988) and

the experimental data of Dowell, Traybar, and Hodges (1977).

Crespo da Silva and Hodges (1986a,b) formulated the nonlinear differential equations of motion for a

rotating beam, with the objective of retaining all possible contributions due to cubic nonlinearities, and

investigated the influence of these terms on the motion of a helicopter rotor blade. They found out that

the most significant cubic nonlinear terms are those associated with the structural geometric nonlinear-

ity in the torsion equation. Equations describing the nonlinear flexural-flexural-torsional-extensional

dynamics of beams were formulated by Crespo da Silva (1988a,1991). Nonlinearities due to curvature,

inertia, and extension were accounted for in a mathematically consistent manner. Pai and Nayfeh

(1990a) also developed the nonlinear equations describing the extensional-flexural-flexural-torsional

vibrations of slewing or rotating metallic and composite beams. The equations contain structural cou-

pling terms and quadratic and cubic nonlinearities due to curvature and inertia. Pai and Nayfeh (1992)

extended the above model to include the effect of transverse shear deformation. Pai and Nayfeh (1994)

derived a geometrically exact nonlinear beam model for naturally curved and twisted solid composite

rotor blades undergoing large vibrations, accounting for warpings and three-dimensional stress effects.

While deriving the equations of motion describing the three-dimensional large-amplitude motion

of a beam, three successive Euler-angle-like rotations are used to relate the deformed and undeformed

configurations. Hodges (1987a) reviewed and compared the standard ways of representing finite rotation

in rigid-body kinematics, including orientation angles, Euler parameters, and Rodrigues parameters.

Hodges, Crespo da Silva, and Peters (1988) discussed some of the common mistakes in the nonlinear

modeling of a cantilever beam.

1.3.2 Secondary Effects

Strutt (1945), well known as Lord Rayleigh, was the first to consider the effect of rotatory inertia in

his book ‘The Theory of Sound’, which first appeared in 1877. This was later extended by Timoshenko

(1921,1922) to include the effect of transverse-shear deformation. Timoshenko (1921) showed, for a

simply supported beam, that the correction for shear is four times greater than the correction for

rotatory inertia and that the shear and rotatory inertia effects increase with an increase in the mode

number. Mindlin (1951) showed that the rotatory inertia effect is almost invariably small for lower

modes of plates. Huang (1961) studied the influence of rotatory inertia and shear deformation on the
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natural frequencies and mode shapes of uniform Timoshenko beams with simple boundary conditions.

He showed that the influence of the two secondary effects on the natural frequencies increases with an

increase in the mode number or the cross-section dimensions. But the comparative influence on the

normal mode shapes seems to be very small. Murty (1970) derived linear approximate equations for

transverse vibrations of uniform short beams including shear deformation and rotatory inertia effects.

His values of the natural frequencies were in better agreement with the experimental trends compared

to those obtained using the shear correction factors suggested by Timoshenko (1921) and Cowper

(1966). Adams and Bacon (1973) stated that the shear-deformation effect is a function of the aspect

ratio (i.e., ratio of length to thickness) and is less than 1% for isotropic materials with aspect ratio

greater than twenty.

Nayfeh (1973a) studied the nonlinear transverse vibration of inhomogeneous beams with finite axial

restraints, taking into account the effects of transverse shear and rotatory inertia. The results show that

the frequency of vibration increases with amplitude and axial restraint and that the transverse shear and

rotatory inertia decrease the natural frequency. Rao, Raju, and Raju (1976) studied large-amplitude

free vibrations of beams including the shear-deformation and rotatory-inertia effects. Using their

nonlinear beam model, they showed that the two secondary effects have negligible influence when l/r >

100, where l and r denote the beam length and radius of gyration, respectively. Sinclair (1979), using

his nonlinear beam model, concluded that the effects of shear deformation and longitudinal deformation

(i.e., beam extension) are of the same order. Crespo da Silva (1988b,1991) showed that beams with

one end free to move behave essentially as if they were inextensional when the value of EAl2/Dη or

EAl2/Dζ (i.e., the ratio l/r squared) is large, where E, A, Dη, and Dζ denote Young’s modulus, area of

cross section, and flexural rigidities, respectively. In most studies with slender beams, the out-of-plane

(transverse) shear induced warping is usually neglected, but the torsion induced warping is used to

account for its influence on the torsional rigidity and hence the torsional frequencies (Timoshenko and

Goodier, 1970; Rosen and Friedmann, 1979; Crespo da Silva, 1988a). In the case of slender beams,

Poisson’s effect is generally very small and hence is also neglected.

Caughey and O’Kelly (1961) studied the effect of weak damping on the natural frequencies of

a multi-degree-of-freedom linear system. They showed that the highest natural frequency is always

decreased by damping, but the lower natural frequencies may either increase or decrease, depending on

the form of the damping matrix. Adams and Bacon (1973) showed experimentally that air damping

in beams is significant, and that it is a function of the beam geometry, mode shape, amplitude, and
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frequency of vibration. Anderson, Nayfeh, and Balachandran (1996b), while studying the nonlinear

vibrations of a parametrically excited beam, showed that inclusion of quadratic air damping in the

analytical model significantly improves the agreement between experimental and theoretical results.

In the case of harmonic excitation, the energy loss for both viscous damping and structural damping

is proportional to the square of the displacement amplitude. Thus, for structurally damped systems

subjected to a harmonic excitation, it is convenient to replace the structural damping by an equivalent

viscous damping term (Meirovitch, 1997).

Evensen (1968) showed that, for higher modes of vibration, the amplitude-frequency curves for a

clamped-clamped beam or a clamped-supported beam tend to approach that of a simply supported

beam. In other words, the influence of the boundary conditions on the response becomes less and less

pronounced as the mode number increases. Aravamudan and Murthy (1973) also observed the same

behavior while studying the effect of time-dependent boundary conditions on the nonlinear vibrations of

beams. In reality, an ideal clamped boundary condition, for example, is impossible to obtain. Thus, to

model real joints, it becomes necessary to add damping and mass elements in addition to rotational and

translational springs (Gorman, 1975). Tabaddor (2000) replaced the clamped-end boundary condition

of a cantilever beam by a torsional spring possessing linear and cubic stiffness components. This helped

improve dramatically the agreement between experimental and theoretical results. Chun (1972) derived

expressions for the mode shapes and natural frequencies of a beam hinged at one end by a rotational

spring and the other end free. Arafat and Nayfeh (2001) studied the influence of nonlinear boundary

conditions on the nonplanar autoparametric responses of an inextensible cantilever beam, whose free

end was restrained by nonlinear springs. They found out that the effective nonlinearity is sensitive to

the stiffness components of the springs.

It is well known that static deflection of a nonlinear beam affects its natural frequencies. Governing

equations, originally containing only cubic nonlinearities, would also have quadratic nonlinearities

when a static deflection is present. Sato, Saito, and Otomi (1978) studied the influence of gravity

on the parametric resonance of a simply supported horizontal beam carrying a concentrated mass at

an arbitrary point. Their results show that the change in the value of the first natural frequency is

proportional to the static deflection caused by the concentrated mass and that the static deflection has

a softening effect, which depends on the location and weight of the concentrated mass. This softening

effect could overcome the hardening terms if the static deflection is large or when the beam is very

slender (Hughes and Bert, 1990).
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1.3.3 Modal Interactions

In recent years, many examples of modal interactions have been studied both experimentally and

analytically. Modal interactions may be the result of internal (autoparametric) resonances, external

combination resonances, parametric combination resonances, or nonresonant interactions (Nayfeh and

Mook, 1979; Nayfeh, 2000). Internal resonances may occur in systems where the linear natural frequen-

cies ωi are commensurate or nearly commensurate; that is, there exist non-zero integers ki such that

k1ω1+k2ω2+ · · ·+knωn ≈ 0. When the nonlinearity is cubic, internal resonances can occur if ωn ≈ ωm,

ωn ≈ 3ωm, ωn ≈ |2ωm ± ωk|, or ωn ≈ |ωm ± ωk ± ωl|. When the nonlinearity is quadratic, besides the
above resonances, internal resonances can also occur if ωn ≈ 2ωm or ωn ≈ ωm±ωk. External combina-
tion resonances may occur if the excitation frequency Ω is commensurate or nearly commensurate with

two or more natural frequencies. For systems with cubic nonlinearities, external combination resonance

may occur if Ω ≈ |2ωm ± ωn|, Ω ≈ 1
2(ωm ± ωn), or Ω ≈ |ωm ± ωn ± ωk|. If quadratic nonlinearities are

added, additional external combination resonances may occur if Ω ≈ ωm±ωn. Parametric combination
resonances may occur whenever Ω ≈ ωm±ωn. For a detailed account of many combination resonances
in different mechanical and structural systems, we refer the reader to Evan-Iwanowski (1976).

In contrast, nonresonant modal interactions channel energy from a high-frequency mode to a low-

frequency mode even if there is no special relationship between their frequencies. The only requirement

for such an energy transfer is that the modes be widely spaced; that is, ωi ωj . The signature of

this type of modal interaction appears to be the presence of asymmetric sidebands around the high-

frequency component in the response spectrum, with the sideband spacing being approximately equal

to the natural frequency of the low-frequency mode. The sidebands and their asymmetry point to

phase and amplitude modulations of the high-frequency mode. This type of interaction, where energy

is transferred from a high-frequency to a low-frequency mode via modulation, is sometimes also referred

to as zero-to-one internal resonance or as Nayfeh’s resonance (Langford, 2001).

Resonant Modal Interactions

McDonald (1955) worked with the governing equations developed by Woinowsky-Krieger (1950) and

Burgreen (1951), but did not consider axial prestressing. He represented the beam response in terms

of the linear mode shapes and solved the nonlinear equations for the coefficients in terms of elliptic
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functions. He concluded that the problem is inherently nonlinear even for small-amplitude vibrations,

there is dynamic coupling between the modes, and the frequencies of the various modes are functionally

related to the amplitudes of all of the modes. Henry and Tobias (1961) studied theoretically and

experimentally an undamped two-degree-of-freedom system when the two natural frequencies are almost

equal. They discussed the conditions necessary for the existence of motion in a single mode and for

the mode at rest to lose stability. Ginsberg (1972) examined the forced response of a two-degree-of-

freedom system with equal frequencies. Two-mode responses were observed, which disappeared when

the damping was increased beyond a critical value.

Nayfeh, Mook, and Sridhar (1974) used the method of multiple scales to obtain the nonlinear

response of structural elements subjected to harmonic excitation, with a special emphasis on modal

interactions. In the case of a clamped-hinged beam with the ratio of their first two natural frequencies

being close to 1/3, they observed that it is possible for the response to be dominated by the first

mode when the excitation frequency is near the second natural frequency. To study the stability of

the periodic motions, they perturbed the amplitudes and phases of the directly- and indirectly-excited

modes, linearized the modulation equations describing the evolution of the amplitudes and phases of

the excited modes, and obtained a set of first-order equations with constant coefficients governing the

small disturbances. But in earlier stability studies, the periodic solutions were perturbed and were put

back into the nonlinear equations of motion; thus resulting in coupled equations of the Mathieu type,

which would require in general more effort to determine the stability. Nayfeh, Mook, and Lobitz (1974)

extended the above work to structural elements having complicated boundaries and/or composition.

Tezak, Mook, and Nayfeh (1978) studied the nonlinear response of a hinged-clamped beam when the

excitation frequencies are away from the natural frequencies, but near a multiple or combination of the

natural frequencies. They observed multiple jumps in the response curves and the excitation of two

modes, initially at rest, due to a combination resonance.

Nonplanar motions are possible when the frequencies of an in-plane and an out-of-plane mode

are involved in an internal resonance. Murthy and Ramakrishna (1965) studied theoretically and

experimentally the nonplanar motion near resonance of stretched strings. They observed that beyond

a critical forcing value, nonplanar whirling (or ballooning) motions exist for a range of frequency values.

Miles (1965) investigated in detail the stability of such motions in the absence of damping. Anand

(1966,1969) studied the nonlinear motions of stretched strings with the addition of viscous damping

and determined their stabilities.
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Haight and King (1971,1972) theoretically and experimentally investigated the responses of compact

cantilever beams to external (additive) and parametric (multiplicative) excitations. Nonlinear inertia

with linear curvature was considered while deriving the equations of motion, which were later solved

using the Galerkin method. They found out that, for certain values of excitation amplitudes and

frequencies, the planar response is unstable, and a nonplanar motion gets parametrically excited. But

they did not quantify the nonplanar motions. Their results show that, when the planar motion loses

stability, every point on the cross section traces an elliptical path in a plane normal to the rod axis

and that the planar instability is not a large-amplitude phenomenon.

Ho, Scott, and Eisley (1975) analyzed the forced response of a simply supported, compact beam.

They found out that, as the beam approached resonance, it would start whirling. They also determined

the in-plane and out-of-plane responses and the stability zones of such motions. Crespo da Silva and

Glynn (1978b) studied the nonlinear response of a compact cantilever beam under external excitation,

using the equations derived by the same authors (1978a). They obtained response curves similar to

those of Haight and King (1972). This work was extended by Crespo da Silva and Glynn (1979a,b)

to clamped-clamped/sliding beams and to fixed-free beams with support asymmetry. Crespo da Silva

(1978a) determined the nonlinear response of a column with a follower force (Beck’s column) subjected

to either a distributed periodic lateral excitation or a support excitation. Crespo da Silva (1978b)

extended the above problem to nonplanar motions by considering an internal resonance. Crespo da Silva

and Zaretzky (1990) studied the nonlinear responses of compact cantilever and clamped-pinned/sliding

beams in the presence of a one-to-three internal resonance. Zaretzky and Crespo da Silva (1994a)

experimentally investigated the nonlinear modal coupling in the response of compact cantilever beams

and obtained excellent agreement with the theoretical predictions of Crespo da Silva and Glynn (1978b).

Hyer (1979) used the equations of Haight and King (1972) and studied the whirling motions of

an undamped cantilever beam, with square or circular cross section, under external excitation. He

concluded that stable whirling motions exist over a range of frequency near the resonant frequencies

of the beam and that no unstable whirling motions are present in this range. Crespo da Silva (1980)

pointed out that nonplanar whirling motions can indeed be unstable even when damping and nonlinear

curvature are not considered. Pai and Nayfeh (1990b) analyzed the nonlinear nonplanar oscillations

of a cantilever beam under external excitations using the equations developed by Crespo da Silva and

Glynn (1978a,b). They obtained quantitative results for nonplanar motions and investigated their

dynamic behavior. They found the nonplanar motions to be either steady whirling motions, whirling
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motions of the beating type (quasiperiodic motion), or chaotic.

Simplifying the equations, derived by Crespo da Silva (1988a), for beams with high torsional fre-

quencies and neglecting rotatory inertia, Crespo da Silva (1988b) investigated the planar response of

an extensional beam to a periodic excitation. The results show that the effect of the nonlinearity due

to midplane stretching is dominant and that neglecting the nonlinearities due to curvature and inertia

does not introduce significant error in the results. Also, unlike the response of an inextensional beam,

the single-mode response of an extensional beam is always hardening.

When the torsional frequencies of the beam are much higher than its bending frequencies, the

torsional inertia has no significant effect on the beam motion. In such a case, the torsional deformation

is only due to the nonlinear coupling between in-plane and out-of-plane bending. But for beams

having, for example, a cross section with high aspect ratio, the first torsional natural frequency is of

the order of a lower bending natural frequency. Then, the nonlinear coupling between torsional and

bending motions may cause an exchange of energy between such motions. In the governing equations

of inextensional beams with high torsional frequencies, only cubic nonlinearities are present. But

when torsional dynamics is accounted for as in the case of beams with low torsional frequencies,

nonlinear quadratic terms also appear in the equations of motion. Crespo da Silva and Zaretzky (1994)

examined such coupling in inextensional beams by taking into account the torsional dynamics of the

beam. Considering a one-to-one internal resonance between an in-plane bending mode and a torsional

mode and exciting the in-plane mode, they observed that coupled bending-torsion exists. Also, within

certain regions of the excitation amplitude, the in-plane bending component of the coupled response

saturates so that any further energy pumped into the system is transferred to the torsional motion via

the internal resonance. Zaretzky and Crespo da Silva (1994b) extended the work of Crespo da Silva

and Zaretzky (1994) to the case of an internal combination resonance involving modes associated with

bending in two directions and torsion. Their results show that the occurence of a coupled bending-

torsion response depends on the physical properties of the beam. When the coupled response exists,

the out-of-plane bending and torsional components are simply related by a constant.

Tso (1968) studied parametrically induced torsional vibrations in a cantilever beam, of rectangular

cross section, under dynamic axial loading. He found out that, when the applied frequency is close

to twice one of the torsional natural frequencies, the corresponding torsional modes may be excited

parametrically. In addition, the frequency range, over which torsional vibrations are present, increases
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tremendously when the applied frequency is near a longitudinal natural frequency close to twice one of

the torsional frequencies. Dugundji and Mukhopadhyay (1973) investigated the response of a cantilever

beam excited parametrically at a frequency close to the sum of the first bending and torsional frequen-

cies. They observed a large contribution from the low-frequency first bending mode besides those at

the excitation frequency and the first torsional mode. Dokumaci (1978) studied, both theoretically and

experimentally, the coupled bending-torsion vibrations, due to combination resonances, of a cantilever

beam under lateral parametric excitation. He obtained the instability boundaries with and without

damping and found out that damping widens the unstable regions. His experimental and theoretical

results match very well.

Shyu, Mook, and Plaut (1993a,b) studied the nonlinear response of a slender cantilever beam

subjected to primary- and secondary-resonance excitations, including the effects of static deflection.

Shyu, Mook, and Plaut (1993c) extended the above study to nonstationary excitations, where the

excitation frequency is varied with time. They found out that, when the sweep rate (i.e., rate of change

of excitation frequency) is small, the nonstationary amplitude closely follows the stationary amplitude;

otherwise, there is a deviation which increases with an increase in the sweep rate. Also, the maximum

amplitude during passage through resonance depends on the sweep rate. Ibrahim and Hijawi (1998)

investigated the deterministic and stochastic response of a cantilever beam with a tip mass in the

neighborhood of a combination parametric resonance. The results show that, for low excitation levels,

the response is almost stationary and that its statistical parameters like the mean square, etc. possess

unique values.

Nonresonant Modal Interactions

Haddow and Hasan (1988) observed an indirect excitation of a low-frequency mode when a cantilever

beam was parametrically excited near twice its fourth natural frequency, which they described as an

“extremely low subharmonic response.” Burton and Kolowith (1988) conducted an experiment similar

to that of Haddow and Hasan (1988). For certain excitation frequencies, they observed chaotic motions

where the first seven in-plane bending modes as well as the first torsional mode were present in the

response. Cusumano and Moon (1990,1995a,b) conducted an experiment with an externally excited

cantilever beam, and they observed a cascading of energy into the low-frequency modes in the response

associated with chaotic nonplanar motions.
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In experiments with cantilever metallic beams, Anderson, Balachandran, and Nayfeh (1992,1994)

and S. Nayfeh and Nayfeh (1994) displayed the transfer of energy between widely spaced modes.

Anderson, Balachandran, and Nayfeh (1992,1994) conducted an experiment with a beam that was

parametrically excited near twice its third-mode frequency. For certain excitation amplitudes and

frequencies, they observed a large-amplitude planar motion consisting of the fourth, third, and first

modes accompanied by amplitude and phase modulations of the third-mode response. S. Nayfeh and

Nayfeh (1994) conducted an experiment with a circular metallic rod that was transversely excited near

the natural frequency of its fifth mode. Because of axial symmetry, one-to-one internal resonances

occur at each natural frequency of the beam, and the mode in the plane of excitation interacts with

the out-of-plane mode of equal frequency, resulting in nonplanar whirling motions. For a certain range

of parameters, they observed large-amplitude first-mode responses. As in the experiment of Anderson,

Balachandran, and Nayfeh (1992,1994), the appearance of the first-mode response was accompanied by

a modulation of the amplitude and phase of the fifth-mode response, with the modulation frequency

being approximately equal to the natural frequency of the first mode. Smith, Balachandran, and Nayfeh

(1992) examined the on-orbit data from the Hubble space telescope for indications of modal interactions.

From the time history data, an energy transfer from high-frequency modes to a low-frequency mode is

apparent. Also, the response spectra show sidebands which are indicative of modulated motions.

Popovic et al. (1995) demonstrated the transfer of energy between widely spaced modes in a three-

beam frame structure with two corner masses, while Oh and Nayfeh (1998) experimentally documented

such an energy transfer between a torsional mode and a bending mode of a stiff composite cantilever

plate. Tabaddor and Nayfeh (1997) observed the same phenomenon with a cantilever steel beam

externally excited around its fourth natural frequency. Exciting a horizontal metallic cantilever beam

transversely near its first torsional frequency, Arafat and Nayfeh (1999) noted the activation of the

first in-plane bending mode by a similar mechanism.

From the above experiments, conducted on various structures like a stiff composite plate, a portal

frame (with dominant quadratic nonlinearities), and flexible cantilever beams (with dominant cubic

nonlinearities), it is evident that energy transfer from a low-amplitude, high-frequency excitation to a

high-amplitude, low-frequency response can occur in a structure irrespective of its stiffness, configu-

ration, and inherent nonlinearities, as long as there exist modes whose natural frequencies are much

lower than the natural frequencies of the modes being directly driven. In many engineering applica-

tions, high-frequency excitations can be caused by rotating machinery, and in space structures, for
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instance, there exists a large number of modes with very low natural frequencies.

S. Nayfeh and Nayfeh (1993) presented a paradigm for the transfer of energy among widely spaced

modes in structures under external excitation. They studied a representative system made up of two

nonlinearly coupled oscillators with cubic nonlinearities and widely spaced frequencies. S. Nayfeh

(1993) studied a system comprising two nonlinearly coupled oscillators with quadratic nonlinearities

and widely spaced frequencies. Results qualitatively similar to the experimental observations were

obtained in both cases. S. Nayfeh (1993) also investigated the possibility of energy transfer from low-

to high-frequency modes. Using a model similar to the one used to study the energy transfer from high-

to low-frequency modes, S. Nayfeh (1993) found out that excitation of the low-frequency mode will not

cause an energy transfer to the high-frequency mode. To date many experiments have been performed

on the forced oscillations of the first few modes of continuous systems by many researchers. But, to

the best of our knowledge, no report of the transfer of energy from low- to high-frequency modes exists

in the literature.

Nayfeh and Chin (1995) extended the analysis of S. Nayfeh and Nayfeh (1993) to parametrically

excited systems. They showed that exciting the high-frequency mode with a principal parametric

resonance may result in a large-amplitude, low-frequency response accompanied by a slow modulation of

the amplitude and phase of the high-frequency response, again similar to the experimental observations.

Anderson, Nayfeh, and Balachandran (1996a) developed a theoretical model, based on the method of

averaging, to study the energy transfer between widely spaced modes of a cantilever beam under

parametric excitation. They obtained results that are in qualitative agreement with the experimental

observations. Feng (1995) studied energy transfer from a high-frequency to a low-frequency mode in

a mechanical system modeled as a linearly dissipative Hamiltonian system. Haller (1999) extended

the work of Feng (1995) by including viscous damping and additional nonlinearity in the system and

proved the existence of a Shilnikov-type orbit homoclinic to a saddle-focus.

Finally, it is noteworthy to cite a few books providing a comprehensive study of the various modal

interactions and relevant review papers. Kármán (1940) gave a review of nonlinear problems in en-

gineering along with their solutions. Bolotin (1964), Evan-Iwanowski (1976), Nayfeh (1973b,1981),

Nayfeh and Mook (1979), and Nayfeh (2000) provided examples and detailed analyses of the various

resonances and modal interactions in nonlinear systems. Rosenberg (1961) presented a short and in-

structive survey on nonlinear oscillations. Evan-Iwanowski (1965) gave a review of articles concerned
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with the parametric resonance in structures like beams, columns, arches, rings, plates, shells, etc. Wag-

ner and Ramamurti (1977) presented a review of work done in the area of deterministic and random

vibrations of beams using both linear and nonlinear theories. Sathyamoorthy (1982a) gave a survey of

the literature on the nonlinear analysis of beams, considering both geometric and material nonlineari-

ties. Nayfeh (1986) gave an overview of the perturbation methods used to obtain analytical solutions

of nonlinear dynamical systems. Nayfeh and Balachandran (1989) presented a review of theoretical

and experimental studies on modal interactions in dynamical and structural systems. Nayfeh and

Mook (1995) presented a perspective of the mechanisms by which energy is transferred from high- to

low-frequency modes. Nayfeh and Arafat (2001) gave an overview of nonlinear system dynamics.

1.3.4 System Identification

In recent years, identification of structural system models through the use of experimental data has

received considerable attention owing to the increased importance given to the accurate prediction of the

response of structures to various loading environments. The assumption that the effect of nonlinearity

is negligible when the level of excitation is low is not always true. Also, the presence of nonlinearities in

structures leads to many interesting physical phenomenon that cannot be explained by linear models

(Nayfeh and Mook, 1979; Nayfeh, 2000). Therefore, emphasis is now on developing nonlinear system

identification techniques that can predict those physical phenomena. Zavodney (1987) stressed the

need to be aware and knowledgeable about nonlinear phenomena while estimating system parameters

experimentally.

Nonlinear system identification techniques can be broadly classified into parametric and nonpara-

metric methods. Parametric methods seek to determine the values of the parameters in an assumed

model of the system to be identified, whereas nonparametric methods seek to determine the functional

representation of the system to be identified. Most of the parametric and nonparametric identification

methods employ, in one way or other, the least-squares approach in which the square of the error

between the measured response and that of the identified model is minimized, thus providing the best

estimate. Nonparametric identification methods are appropriate for systems whose model structures

are unknown. The most commonly used nonparametric methods employ the Volterra series (Lee, 1997)

and the restoring force-surface or force-state mapping method (Masri and Caughey, 1979; Masri, Sassi,

and Caughey, 1982; Crawley and Aubert, 1986; Worden and Tomlinson, 2001). The Volterra series



Pramod Malatkar Chapter 1. Introduction 18

approach is computationally expensive, requires large storage space, has serious convergence problems,

and cannot describe systems with multi-valued responses. In the restoring force-surface approach,

simultaneous and accurate measurements of the input force and acceleration response are required.

The corresponding displacement and velocity values are either obtained by direct measurements or

through integration of the acceleration. Also, it is assumed that the restoring force is a function of the

displacement and velocity only, which need not always be the case (Krauss and Nayfeh, 1999b).

Most of the parametric identification methods are time-domain based (Yasuda and Kamiya, 1999;

Kapania and Park, 1997; Mohammad, Worden, and Tomlinson, 1992). The time-domain techniques

have the advantages of requiring less time and effort for data acquisition than the sine-dwell method

used for frequency-domain techniques and can be used for the identification of strongly nonlinear sys-

tems. Potential drawbacks of these approaches include problems of differentiating noisy signals and

being unable to accurately estimate the coefficients of terms which are small. Frequency-domain tech-

niques include approaches based on the backbone (or skeleton) curve and limit envelope (Tondl, 1975;

Benhafsi, Penny, and Friswell, 1995; Fahey and Nayfeh, 1998), curve-fitting experimental frequency-

and force-response data points (Krauss and Nayfeh, 1999a,b), the harmonic balance method (Yasuda,

Kamiya, and Komakine, 1997), and methods exploiting nonlinear resonances (Nayfeh, 1985; Fahey

and Nayfeh, 1998). Frequency-domain techniques avoid the problems associated with differentiation

and observability of small terms, but require considerably more theoretical effort and are generally

applicable only to weakly nonlinear systems.

1.3.5 Solution Methodologies

The equations of motion and the boundary conditions governing the nonlinear vibrations of a beam

can be derived either by the Newtonian approach or by a variational approach. Hamilton’s principle is

the most widely used variational method. It is noteworthy to mention here that Hamilton’s principle

is a special case of Hamilton’s law of varying action and can be used to obtain only the equations of

motion and boundary conditions for dynamical problems. Hamilton’s law, on the other hand, can be

used to obtain approximate analytical solutions in addition to the equations of motion and boundary

conditions (Bailey, 1975a,b). Having derived the governing equations and boundary conditions, the

next step is to solve them. The principle of superposition, so commonly used in linear systems, is not

applicable to nonlinear systems; thus making the determination of the response of nonlinear systems
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more difficult and equally challenging.

The nonlinear terms in the beam equations, for moderate rotations with small strains, are small

compared to the linear terms. So, we restrict ourselves to the solution of weakly nonlinear continuous

(distributed-parameter) systems. The equations of motion and/or boundary conditions, being nonlin-

ear in nature, do not lend themselves to closed-form solutions. One, therefore, resorts to numerical

techniques like the finite-element method or to approximate analytical techniques like discretization

and/or perturbation methods. Here, we are primarily interested in the discussion of approximate an-

alytical methods, and the method of multiple scales and the Galerkin discretization in particular. A

review of the application of finite-element methods to the solution of nonlinear beam problems is given

by Sathyamoorthy (1982b).

In the analysis of a weakly nonlinear continuous system, which has an infinite number of degrees of

freedom, a modal discretization is often employed to obtain a reduced-order model of the system. By

definition, a reduced-order model is a simplified mathematical model that encapsulates most, if not all,

of the fundamental dynamics of a more complex system. In the discretization methods, one essentially

postulates the system response in the form

v(s, t) =
N

n=1

qn(t)φn(s)

where N is a finite positive integer. Then, one assumes the spatial functions φn(s), space discretization,

or the temporal functions qn(t), time discretization. With time discretization, the qn(t) are usually

taken to be harmonic and the method of harmonic balance is used to obtain a set of nonlinear boundary-

value problems for the φn(s). With space discretization, the φn(s) are assumed a priori. The φn(s) are

usually taken to be the linear mode shapes. The method of weighted residuals or variational principles

(like the Rayleigh-Ritz method) can then be used to obtain a reduced-order model comprising a set

of ordinary-differential equations governing the modal coordinates qn(t), n = 1, 2, . . . , N . The most

popular implementation of weighted residuals is the Galerkin method, in which the trial functions φn(s)

are also used as the weighing functions.

Perturbation techniques like the method of multiple scales are used to study the local dynamics

of weakly nonlinear systems about an equilibrium state. But, unlike the discretization methods, they

cannot be used to study the global dynamics of nonlinear systems. To obtain an approximate analytical

solution of a weakly nonlinear continuous system, one can either directly apply a perturbation method

to the governing partial-differential equations of motion and boundary conditions, or first discretize



Pramod Malatkar Chapter 1. Introduction 20

the partial-differential system to obtain a reduced-order model and then apply a perturbation method

to the nonlinear ordinary-differential equations of the reduced-order model. The former procedure is

usually referred to as the direct approach.

Application of the method of multiple scales, or any other perturbation method, to the reduced-

order model, obtained by the Galerkin or other discretization procedures, of a weakly nonlinear con-

tinuous system with quadratic nonlinearities can lead to both quantitative and qualitative erroneous

results (Pakdemirli, S. Nayfeh, and Nayfeh, 1995; Nayfeh and Lacarbonara, 1997; Alhazza and Nayfeh,

2001; Emam and Nayfeh, 2002; Nayfeh and Arafat, 2002). The direct approach is completely devoid

of this problem. Also, such a problem does not exist for systems with just cubic nonlinearities. Lacar-

bonara (1999) showed that the quadratic nonlinearities produce a second-order contribution from all

of the modes towards the system response in the case of a primary resonance. Hence, reduced-order

discretization models may be inadequate to describe the dynamics of the original continuous system in

the presence of quadratic nonlinearities. Nayfeh (1998) proposed a method for constructing reduced-

order models of continuous systems with weak quadratic and cubic nonlinearities that overcomes this

shortcoming of the discretization procedures.

Application of the method of multiple scales to dynamical systems expressed in second-order form

can lead to modulation equations that cannot be derived from a Lagrangian in the absence of dis-

sipation and external excitation, which is contrary to the conservative character of these dynamical

systems. More specifically, this problem is encountered while determining approximate solutions of

nonlinear systems possessing internal resonances to orders higher than the order at which the influence

of the internal resonance first appears (Rega et al., 1999). Interestingly, transforming the second-order

governing equations into a system of first-order equations and then treating them with the method of

multiple scales yields modulation equations derivable from a Lagrangian (Nayfeh, 2000; Nayfeh and

Chin, 1999).

1.4 Overview

In this dissertation, we study the nonlinear vibrations of metallic cantilever beams and plates subjected

to transverse (or external or additive) harmonic excitation. The emphasis, however, is on the energy

transfer between widely spaced modes via modulation and on parameter estimation. Both experimental
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and theoretical results are presented.

The equations of motion and boundary conditions governing the nonplanar, nonlinear vibrations of

isotropic metallic beams are derived, using the extended Hamilton principle, in Chapter 2. Assumptions

used in the derivation are also elaborated. The derived equations are used in the theoretical analysis

done in subsequent chapters.

An experimental parametric identification technique to estimate the linear and nonlinear damping

coefficients and effective nonlinearity of a metallic cantilever beam is presented in Chapter 3. This

method is applicable to any single-degree-of-freedom nonlinear system with weak cubic geometric and

inertia nonlinearities (Malatkar and Nayfeh, 2003a).

In Chapter 4, we propose two methods, based on the elimination theory of polynomials, which

can be used to determine both the critical forcing amplitude as well as the jump frequencies in the

case of single-degree-of-freedom nonlinear systems. The proposed methods have the potential of being

applicable to multiple-degrees-of-freedom nonlinear systems (Malatkar and Nayfeh, 2002).

In Chapter 5, we investigate the transfer of energy between widely spaced modes via modulation

in a flexible steel cantilever beam, of rectangular cross-section, under transverse excitation. This study

is restricted to motion in a plane. We find experimentally that the energy transfer is very much

dependent upon the closeness of the modulation frequency to the natural frequency of the first mode.

A reduced-order analytical model is also developed to study the transfer of energy between widely

spaced modes (Malatkar and Nayfeh, 2003b). In addition, we extend the planar reduced-order model

to include out-of-plane modes and study the nonplanar energy transfer between widely spaced modes,

in the presence of one-to-one internal resonance, in a circular steel rod under transverse excitation.

An experimental study of the response of a rectangular, aluminum cantilever plate to transverse

harmonic excitations is presented in Chapter 6. It is shown that a simple cantilever plate can display

a multitude of nonlinear dynamic phenomena (Malatkar and Nayfeh, 2003c). Also, we find again that

the energy transfer between widely spaced modes via modulation is dependent upon the closeness of

the modulation frequency to the first-mode natural frequency.



Chapter 2

Problem Formulation

In this chapter, we derive the equations of motion and boundary conditions governing the nonplanar,

nonlinear vibrations of isotropic, inextensible, Euler-Bernoulli beams. Pai (1990) used a Newtonian

approach to derive the nonlinear equations of motion describing the flexural-flexural-torsional vibrations

of metallic and composite beams. Here we follow a variational approach, based on the extended

Hamilton principle. In particular, we adopt the approach used by Crespo da Silva and Glynn (1978a,b)

and Crespo da Silva (1988a). The simplifying assumptions and their validity are described as and when

they are made during the derivation of the equations.

2.1 Beam Kinematics

A large deformation of a structure does not necessarily mean the presence of large strains. Under large

rigid-body rotations, structures like cantilever beams undergo large deformations but small strains.

Even when the rigid-body rotations are small, deformations will still be large for long structures.

With respect to a coordinate system co-rotated with the rigid-body movement, the relative displace-

ments are small and the problem becomes linearly elastic. But the large deformations give rise to

geometric nonlinearities due to nonlinear curvature and/or midplane stretching, leading to nonlinear

strain-displacement relations. Structures that undergo large deformations but small strains are labeled

as nonlinear elastic structures (Nayfeh and Pai, 2003). We assume our beam to be a nonlinear elastic

structure.

22
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We use the Euler-Bernoulli beam theory to model the beam, and accordingly neglect the effects of

warping and shear deformation. To simplify the expressions, we also neglect the usually small Poisson

effect. For slender beams, these simplifications are valid. In the absence of warpings, a differential

beam element can be considered as a rigid body, whose motion is then completely described by three

translational and three rotational displacements. Also, knowing the deformation of the neutral axis

(reference line) in space, one can determine the deformation of any other point on the beam.
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Figure 2.1: A schematic of a vertically mounted metallic cantilever beam undergoing flexural-flexural-

torsional motions.

We consider a uniform and straight metallic cantilever beam of length l and mass per unit length

m. A schematic of the beam is shown in Fig. 2.1, where (x, y, z) denote the inertial coordinate system

with orthogonal unit vectors (ex, ey, ez), while (ξ, η, ζ) denote a local curvilinear coordinate system at

arclength s, in the deformed position, with orthogonal unit vectors (eξ, eη, eζ). As the beam has uniform
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cross sections and material properties, its mass and area centroids are identical and the principal axes

of the beam’s cross section at any s coincide with the (ξ, η, ζ) system. Moreover, the x and ξ axes

represent the neutral axis of the beam before and after the deformation, respectively.

2.1.1 Euler-Angle Rotations
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Figure 2.2: 3-2-1 Euler-angle rotations.

In general, each cross section of the beam experiences an elastic displacement of its centroid C and

a rotation. The displacement components of the centroid C, with respect to the x, y, and z axes at the

arclength s and time t are denoted by u(s, t), v(s, t), and w(s, t), respectively, as shown in Fig. 2.1. To

describe the rotation of the beam’s cross section at C, from the undeformed to the deformed position,

we use three successive Euler-angle (counterclockwise) rotations. Specifically, we use a 3-2-1 body

rotation with the angles of rotation denoted, in the order of rotation, by ψ(s, t), θ(s, t), and φ(s, t), as

shown in Fig. 2.2. The first rotation ψ about ez takes (ex, ey, ez) to (ex , ey , ez = ez). The second

rotation θ about ey takes (ex , ey , ez ) to (ex , ey = ey , ez ), and the final rotation φ about ex takes
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(ex , ey , ez ) to the final orientation (eξ = ex , eη, eζ). The four unit-vector triads are related to each

other in the following manner:
eξ

eη

eζ

 = Tφ


ex

ey

ez

 = Tφ Tθ


ex

ey

ez

 = Tφ Tθ Tψ

= T


ex

ey

ez

 (2.1)

where

Tψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

, Tθ =


cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

, Tφ =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

,

T =


cos θ cosψ cos θ sinψ − sin θ

− cosφ sinψ + sinφ sin θ cosψ cosφ cosψ + sinφ sin θ sinψ sinφ cos θ

sinφ sinψ + cosφ sin θ cosψ − sinφ cosψ + cosφ sin θ sinψ cosφ cos θ

 (2.2)

The transformation matrices Tψ , Tθ , Tφ , and T are (proper) orthogonal or unitary matrices,

and hence possess the property [Q]−1 = [Q]T .

From Fig. 2.2, the absolute angular velocity ω(s, t) of the principal axis system (ξ, η, ζ) can be

obtained using Eqs. (2.1) and (2.2) as follows:

ω(s, t) = ψ̇ ez + θ̇ ey + φ̇ eξ

= (φ̇− ψ̇ sin θ) eξ + (ψ̇ cos θ sinφ+ θ̇ cosφ) eη + (ψ̇ cos θ cosφ− θ̇ sinφ) eζ
≡ ωξ eξ + ωη eη + ωζ eζ (2.3)

where the overdot stands for ∂/∂t. According to the Kirchhoff’s kinetic analogue (Love, 1944), the

equations of a thin rod subjected only to end forces has the same form as those of a rigid body oscillating

about a fixed point. Using the Kirchhoff’s kinetic analogue, one can easily obtain expressions for the

components of the curvature vector ρ(s, t) by simply replacing the time derivatives with the spatial

derivatives in the angular velocity expression. Thus, from Eq. (2.3), we have

ρ(s, t) = (φ − ψ sin θ) eξ + (ψ cos θ sinφ+ θ cosφ) eη + (ψ cos θ cosφ− θ sinφ) eζ
≡ ρξ eξ + ρη eη + ρζ eζ (2.4)
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where the prime stands for ∂/∂s. The curvature components can also be obtained using the definition

of curvatures (Wempner, 1981; Nayfeh and Pai, 2003)

ρξ ≡ ∂eη
∂s

· eζ , ρη ≡ −∂eξ
∂s

· eζ , ρζ ≡ ∂eξ
∂s

· eη (2.5)

where a dot denotes the inner product of two vectors. Using Eq. (2.1) in (2.5), we obtain Eq. (2.4).

2.1.2 Inextensional Beam
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Figure 2.3: Deformation of a beam element along the neutral axis.

We now consider the deformation of an element CD of the beam’s neutral axis, which is of length

ds and located at a distance s from the origin O of the (x, y, z) system as shown in Fig. 2.3. Upon

deformation, let CD move to C∗D∗. We denote the displacement components of C and D by (u, v, w)

and (u+ du, v + dv, w + dw), respectively. From Fig. 2.3, the strain e at point C can be calculated as

e =
ds∗ − ds
ds

= (1 + u )2 + v 2 +w 2 − 1 (2.6)

We assume the beam’s neutral axis to be inextensional; that is, e = 0. The inextensionality constraint

equation thus is

(1 + u )2 + v
2
+w

2
= 1 (2.7)

It is a well-known fact that, in the absence of large axial forces, fixed-free and fixed-sliding elements

are approximated as inextensional members. The conditions under which this assumption is valid were

discussed in the previous chapter.
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Owing to the no-transverse-shear assumption, the rotation of the cross sections is due to bending

alone. Therefore, from Fig. 2.3, we have

tanψ =
v

1 + u
, tan θ =

−w
(1 + u )2 + v 2

(2.8)

There is a minus sign in front of w in the above equation because, for a counterclockwise rotation θ,

w < 0 as the w-displacement in such a case is along the negative z-axis.

2.1.3 Strain-Curvature Relations

It is known that rigid-body translations and rotations do not produce any strains; strains are only due

to relative displacements. Next, we derive the expressions of the strain components by determining the

deformation undergone by an infinitesimally small line segment.
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Figure 2.4: Initial and deformed positions of an arbitrary point P .

Consider the cross section of the beam at point C on the neutral axis, which is located at a distance

s from the origin O of the inertial coordinate system (x, y, z), as shown in Fig. 2.4. Let P be a point

on the cross section located at (η, ζ) relative to C. Upon deformation, let P move to P ∗, with the

displacement components of C being (u, v, w) in the (x, y, z) system. The coordinates of P ∗ relative

to C∗ are still (η, ζ) because of the assumption that the shape of the cross section remains intact after

deformation. From Fig. 2.4, the position vectors of P and P ∗ can be written as

r
P = OC +CP = s ex + η ey + ζ ez (2.9)

r
P∗ = OC∗ +C∗P ∗ = (s+ u) ex + v ey + w ez + η eη + ζ eζ (2.10)
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Therefore,

drP = ds ex + dη ey + dζ ez (2.11)

dr
P∗ = (1 + u )ds ex + v ds ey + w ds ez + dη eη + η deη + dζ eζ + ζ deζ (2.12)

From Fig. 2.3, using the inextensionality assumption, we have

C∗D∗ = (1 + u )ds ex + v ds ey + w ds ez = ds∗ eξ = ds eξ (2.13)

We know, for fixed s,

deα
dt

= ω × eα (α = ξ, η, ζ)

where × denotes the cross product of two vectors. Using Kirchhoff’s kinetic analogue, for a given

deformation (or fixed time t), we thus have

deα
ds

= ρ× eα (α = ξ, η, ζ)

or deα = (ρ× eα)ds. Using this equation along with Eq. (2.13) in Eq. (2.12), we obtain

dr
P∗ = (1 + ζρη − ηρζ)ds eξ + (dη − ζρξds) eη + (dζ + ηρξds) eζ (2.14)

Using the definition of the Green’s strain tensor ε (Fung, 1965; Annigeri, Cassenti, and Dennis, 1985;

Shames and Dym, 1985), we have

dr
P∗· drP∗ − drP· drP = 2{ds dη dζ} εij {ds dη dζ}T (i, j = 1, 2, 3) (2.15)

where the εij are components of the Green’s strain tensor expressed in the Lagrangian (or undeformed)

coordinates. From Eqs. (2.11) and (2.14), we now have

dr
P∗· drP∗ − drP· drP = 2(ζρη − ηρζ) ds2 − 2ζρξ ds dη + 2ηρξ ds dζ +H.O.T. (2.16)

where H.O.T. stands for higher-order terms, which can be neglected as they are relatively small.

Comparing Eqs. (2.15) and (2.16), we obtain

ε11 = ζρη − ηρζ , γ12 = 2ε12 = −ζρξ, γ13 = 2ε13 = ηρξ, ε22 = ε23 = ε33 = 0 (2.17)

where γ12 and γ13 denote engineering shear strains. We note that only shear strains due to torsion

are accounted for. The Euler-Bernoulli beam assumptions of no-transverse-shear and no strains in the

plane of the cross section result in the corresponding strain components being equal to zero. For a

slender beam undergoing moderate rotations, η, ζ, ρη, ρζ , ρξ are small, and thus the strain components,

given by Eq. (2.17), are also small compared to unity (Wempner, 1981).
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2.2 Equations of Motion

The variables ψ and θ are dependent variables, as seen in Eq. (2.8). Therefore, the number of indepen-

dent variables now is reduced to four; namely, u, v, w, and φ. For an inextensional beam, the number

of independent variables can be reduced, using the inextensionality constraint, to three; namely, v, w,

and φ. Assuming the rotatory inertia to be negligible compared to the translational inertia, we can

also get rid of φ, leaving only v and w. In this section, we develop the two nonlinear partial-differential

equations of motion describing the flexural-flexural motion of an inextensional beam. The extended

Hamilton principle is used to derive these equations, and in the process the inextensionality constraint

will be clubbed to the Lagrangian of the motion through a Lagrange multiplier.

2.2.1 Lagrangian of Motion

The Lagrangian of motion L is defined as

L ≡ T − V =
l

0
ds (2.18)

where T is the kinetic energy, V is the potential energy, l denotes the length of the beam, and is the

specific (i.e., per unit length) Lagrangian.

The kinetic energy of the beam consists of two parts — translational and rotational. The transla-

tional kinetic energy is given by

T1 =
1

2
m

l

0
(u̇2 + v̇2 + ẇ2) ds (2.19)

and the rotational kinetic energy is given by

T2 =
1

2

l

0
{ωξ ωη ωζ} J {ωξ ωη ωζ}T ds (2.20)

where J is the distributed inertia matrix. Because the local coordinate axes coincide with the principal

axes of the beam, we have

J =


Jξ 0 0

0 Jη 0

0 0 Jζ
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where Jξ, Jη, and Jζ are the principal mass moments of inertia per unit length of the beam, they are

defined as

Jξ =
A
ρ(η2 + ζ2) dη dζ, Jη =

A
ρζ2 dη dζ, Jζ =

A
ρη2 dη dζ

Here, ρ denotes the mass density of the beam and A denotes the area of the cross section of the beam

located at a distance s from the origin of the (x, y, z) system. As the beam is uniform, Jξ, Jη, and Jζ

are constants. The total kinetic energy can now be written as

T =
1

2

l

0
m(u̇2 + v̇2 + ẇ2) + Jξω

2
ξ + Jηω

2
η + Jζω

2
ζ ds (2.21)

The potential energy V can be determined from the corresponding strain energy U , which for our

beam is given by

U =
1

2

l

0 A
σ11ε11 + σ12γ12 + σ13γ13 dη dζ ds (2.22)

where the σij denote components of the stress tensor. To arrive at Eq. (2.22), we used the fact that the

beam is an elastic structure with a linear stress-strain relationship and that ε22 = ε33 = γ23 = 0. Using

Hooke’s law and neglecting Poisson’s effect (to simplify the expressions of the stress components), we

can write σ11 ≈ Eε11, σ12 ≈ Gγ12, σ13 ≈ Gγ13, where E and G are the Young’s and shear moduli,

respectively, of the beam. Using these relations and Eq. (2.17) in Eq. (2.22), we obtain

V = U =
1

2

l

0 A
E(ζρη − ηρζ)2 +Gζ2ρ2ξ +Gη2ρ2ξ dη dζ ds (2.23)

Using the fact that the curvature components are not functions of η or ζ and that the cross section is

symmetric about the η and ζ axes, we reduce Eq. (2.23) to

V =
1

2

l

0
Dξρ

2
ξ +Dηρ

2
η +Dζρ

2
ζ ds (2.24)

where

Dξ = G
A
(η2 + ζ2) dη dζ, Dη = E

A
ζ2 dη dζ, Dζ = E

A
η2 dη dζ

are the torsional and bending stiffnesses, respectively, of the beam.

To enforce the inextensionality constraint, we use the Lagrange multiplier λ(s, t). Using Eqs. (2.21)

and (2.24) and the inextensionality constraint given by Eq. (2.7), we write the overall specific La-

grangian as follows:

=
1

2
m(u̇2 + v̇2 + ẇ2) +

1

2
(Jξω

2
ξ + Jηω

2
η + Jζω

2
ζ )−

1

2
(Dξρ

2
ξ +Dηρ

2
η +Dζρ

2
ζ)

+
1

2
λ 1− (1 + u )2 − v 2 − w 2

(2.25)
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The expressions for the components of ω and ρ, appearing in the above equation, are given in Eqs. (2.3)

and (2.4).

2.2.2 Extended Hamilton Principle

Hamilton’s principle (Meirovitch, 1967) states that, of all the varied paths satisfying the prescribed

initial and final configurations, the actual (or true) path extremizes the functional I =
t2
t1
L dt, where

t1 and t2 denote the initial and final time instants. By also including the work done by non-conservative

forces within the integrand, we get the extended Hamilton principle. Using the variation of the func-

tional I and the fact that the variation and integral operators commute, we can write for the actual

path

δI =
t2

t1

(δL+ δWnc) dt = 0 (2.26)

where Wnc denotes the work done by non-conservative forces, such as damping, external forces and

moments. This condition of stationarity leads to all of the equations of motion and boundary conditions.

Using the generalized forces along the x, y, z, and φ axes denoted by Qu, Qv, Qw, and Qφ, respectively,

and the corresponding damping coefficients denoted by cu, cv, cw, and cφ, respectively, we write the

expression for δWnc as

δWnc =
l

0
(Qu − cuu̇)δu+ (Qv − cvv̇)δv + (Qw − cwẇ)δw + (Qφ − cφφ̇)δφ ds (2.27)

≡
l

0
Q∗uδu+Q

∗
vδv +Q

∗
wδw +Q

∗
φδφ ds (2.28)

Substituting Eqs. (2.25) and (2.28) into Eq. (2.26), we obtain

δI =
t2

t1

l

0
δ +Q∗uδu+Q

∗
vδv +Q

∗
wδw +Q

∗
φδφ ds dt = 0 (2.29)

The specific Lagrangian is a function of xi (i = 1, 2, . . . , 13) where x = {u̇, v̇, ẇ,ψ, θ,φ, ψ̇, θ̇, φ̇,
ψ , θ ,φ ,λ}T . Therefore,

δ =
13

i=1

∂

∂xi
δxi (2.30)



Pramod Malatkar Chapter 2. Problem Formulation 32

But there are only four independent variables, namely, u, v, w, and φ. Variations of the dependent

variables ψ and θ can be obtained using Eq. (2.8), and are given by

δψ =
∂ψ

∂u
δu +

∂ψ

∂v
δv =

−v δu + (1 + u )δv
(1 + u )2 + v 2

(2.31)

δθ =
∂θ

∂u
δu +

∂θ

∂v
δv +

∂θ

∂w
δw =

w [(1 + u )δu + v δv ]

(1 + u )2 + v 2
− (1 + u )2 + v 2 δw (2.32)

The variation and derivative operators commute. Thus, the variations δα̇, δα (α = ψ, θ) can be

written as ∂
∂t(δα),

∂
∂s(δα) (α = ψ, θ), respectively.

Substituting Eqs. (2.31) and (2.32) into Eq. (2.30), substituting the result in turn into Eq. (2.29),

and after performing a few integrations by parts in Eq. (2.29), we obtain

t2

t1

l

0
−mü+Q∗u +Gu δu ds+

l

0
−mv̈ +Q∗v +Gv δv ds+

l

0
−mẅ +Q∗w +Gw δw ds+

l

0
Q∗φ −Aφ δφ ds+

−Guδu−Gvδv −Gwδw +Huδu +Hvδv +Hwδw +
∂

∂φ
δφ

l

s=0

dt = 0 (2.33)

where

Gu = Aψ
∂ψ

∂u
+Aθ

∂θ

∂u
+ λ(1 + u )

Gv = Aψ
∂ψ

∂v
+Aθ

∂θ

∂v
+ λv

Gw = Aθ
∂θ

∂w
+ λw

and

Aα =
∂2

∂t ∂α̇
+

∂2

∂s ∂α
− ∂

∂α
(α = ψ, θ,φ)

Hα =
∂

∂ψ

∂ψ

∂α
+

∂

∂θ

∂θ

∂α
(α = u, v, w)

Equation (2.33) is valid for any arbitraty δu, δv, δw, and δφ, implying that the individual integrands

be equal to zero. Therefore,

mü−Q∗u = Gu (2.34)

mv̈ −Q∗v = Gv (2.35)

mẅ −Q∗w = Gw (2.36)

Q∗φ = Aφ (2.37)
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and

−Guδu−Gvδv −Gwδw +Huδu +Hvδv +Hwδw +
∂

∂φ
δφ

l

s=0

= 0 (2.38)

Alternatively, the above equations of motion and boundary conditions could have been derived using

Lagrange’s equation for distributed systems (Meirovitch, 1997). Arafat (1999) used such an approach to

obtain the equations of motion and boundary conditions describing the nonlinear vibrations of metallic

and symmetrically laminated composite beams.

2.2.3 Order-Three Equations of Motion

Equations (2.34)-(2.38) are valid for arbitrarily large deformations as long as strains are small. But the

two-point nonlinear boundary-value problem is not amenable for a closed-form solution because the

equations are transcendental. One approach would be to resort to direct numerical procedures, but they

suffer from instability and convergence problems. Another approach would be to expand the nonlinear

transcendental terms into polynomials. Here, we expand those nonlinear terms into polynomials of

order three. The third-order nonlinear equations of motion thus obtained would be appropriate for

analyzing small but finite oscillations about the equilibrium (or undeformed) position.

We assume that v, w, and their derivatives are O( ), where ( 1) is a bookkeeping parameter

that is introduced to keep track of the different orders of approximation. We now expand all terms in

Eqs. (2.34)-(2.38) in Taylor series and keep nonlinear terms up to O( 3).

We know the Taylor series expansion of tan−1 x (or arctanx), up to order three, is given by

tan−1 x = x− 1
3
x3 + · · · (2.39)

Using Eqs. (2.7), (2.8), and (2.39), we obtain

u = (1− v 2 − w 2
)1/2 − 1 = −1

2
(v

2
+ w

2
) + · · · (2.40)

ψ = tan−1
v

1 + u
= tan−1 v (1− v 2 − w 2

)−1/2 = v 1 +
1

6
v
2
+
1

2
w
2
+ · · · (2.41)

θ = tan−1
−w

[(1 + u )2 + v 2]1/2
= tan−1 −w (1− w 2

)−1/2 = −w 1 +
1

6
w
2
+ · · · (2.42)

In the nonlinear formulation, φ does not physically represent the real angle of twist with respect

to the beam’s axis. The third-order expansion of the twisting curvature ρξ can be obtained using
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Eqs. (2.41) and (2.42) in (2.4), and is given by ρξ = φ + v w . Thus, a non-zero φ does not necessarily

indicate the presence of torsion along the beam (Pai, 1990). For the 3-2-1 body rotation sequence, we

define the twist angle γ as

γ ≡ φ+
s

0
v w ds (2.43)

Thus, ρξ = γ .

Next, we consider beams whose torsional rigidity is relatively high compared to the flexural rigidity.

This is true for long beams with near-circular or near-square cross sections. In such a case, the torsional

inertia cannot be excited by low-frequency excitations because the fundamental torsional frequency is

much higher than the frequencies of the directly excited flexural modes. In addition, we assume that

the distributed mass moments of inertia of the beam exert a negligible influence on its motion. In other

words, the rotatory inertia is considered to be small compared to the translational inertia. This is a

valid assumption for slender beams. Using Eqs. (2.40)-(2.42) and (2.43) in Eqs. (2.34)-(2.38), dropping

terms containing Jξ, Jη, and Jζ , setting Q
∗
φ = 0, and retaining nonlinearities up to order three, we

obtain

mü+ cuu̇−Qu = Dξγ (w v − v w )− (Dη −Dζ)[w (v γ) + v (w γ) ]

+Dζv v +Dηw w + λ(1 + u ) (2.44)

mv̈ + cvv̇ −Qv = −Dξγ w + (Dη −Dζ) (w γ) − (v γ2) + w
s

0
v w ds

−Dζ v + v (v
2
+ w

2
) + λv (2.45)

mẅ + cwẇ −Qw = Dξγ v + (Dη −Dζ) (v γ) + (w γ2) − v
s

0
w v ds

−Dη w +w (v
2
+ w

2
) + λw (2.46)

Dξγ = (Dη −Dζ) γ(v
2 − w 2

)− v w (2.47)

and the associated boundary conditions now become

α(0, t) = 0 (α = u, v,w, γ, v , w ) (2.48)

α(l, t) = 0 α = Hv −Hu v

1 + u
,Hw −Hu w

1 + u
, γ (2.49)

Gα(l, t) = 0 (α = u, v,w) (2.50)

From Eqs. (2.44) and (2.47), it is clear that u, λ, and γ are O( 2). Thus, for a weakly damped system

like our beam, the damping terms cuu̇ and cφφ̇ turn out to be very small, and hence they can be
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dropped from the equations of motion. Also, we see that if Dη = Dζ , then there will be no coupling

between the flexural and torsional motions. In fact, in such a case, γ = 0.

Using the boundary conditions u(0, t) = 0, Gu(L, t) = 0, γ(0, t) = 0, and γ (L, t) = 0 in Eqs. (2.40),

(2.44), and (2.47), we obtain

u = −1
2

s

0
(v

2
+ w

2
) ds (2.51)

λ = −Dζv v −Dηw w − 1
2
m

s

l

s

0
(v

2
+ w

2
) ds

..
ds−

s

l
Qu ds (2.52)

γ = −Dη −Dζ

Dξ

s

0

s

l
v w ds ds (2.53)

Equation (2.53) shows that the bending-induced twisting is a nonlinear phenomenon. The Lagrange

multiplier λ(s, t) is interpreted as an axial force, necessary to maintain the inextensionality constraint.

Substituting Eqs. (2.51)-(2.53) into Eqs. (2.45), (2.46), and (2.48)-(2.50) and keeping terms up to

order three, we obtain

mv̈ + cvv̇ +Dζv
iv = Qv + (Dη −Dζ) w

s

l
v w ds− w

s

0
v w ds

−(Dη −Dζ)
2

Dξ
w

s

0

s

l
v w ds ds −Dζ v (v v + w w )

−1
2
m v

s

l

s

0
(v

2
+ w

2
) ds

..
ds − v

s

l
Qu ds (2.54)

mẅ + cwẇ +Dηw
iv = Qw − (Dη −Dζ) v

s

l
v w ds− v

s

0
w v ds

+
(Dη −Dζ)

2

Dξ
v

s

0

s

l
v w ds ds −Dη w (v v + w w )

−1
2
m w

s

l

s

0
(v

2
+ w

2
) ds

..
ds − w

s

l
Qu ds (2.55)

with the boundary conditions now being

v(0, t) = 0, w(0, t) = 0, v (0, t) = 0, w (0, t) = 0 (2.56)

v (l, t) = 0, w (l, t) = 0, v (l, t) = 0, w (l, t) = 0 (2.57)

In the above equations of motion, only cubic nonlinearities are present. The nonlinear term on the right-

hand side of Eqs. (2.54) and (2.55), with the time derivatives, is the inertia nonlinearity arising from
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the kinetic energy of axial motion. The rest of the nonlinear terms are of the geometric nonlinearity

type and originate from the potential energy stored in bending.

When the beam is subjected only to a transverse base excitation in the y-direction, with all other

external forces except gravity being absent, we have Qv = Qw = 0, Qu = −mg, and v = v̄+ v0 cos(Ωt),
where g (= 9.8 m/s2) denotes the acceleration due to gravity, v̄ is the displacement in the y-direction,

with respect to the base, and v0 and Ω are the amplitude and frequency of the base motion. Also, δv

should be replaced by δv̄ wherever it appears in the above equations, and in Eq. (2.27), cvv̇ should be

replaced by cv ˙̄v. In Eq. (2.54), mv̈ = m¨̄v −mv0Ω2 cos(Ωt) = m¨̄v −mab cos(Ωt), where ab denotes the
amplitude of the base acceleration. The equations of motion and boundary conditions now become

mv̈ + cvv̇ +Dζv
iv = mg[v (s− l) + v ] + (Dη −Dζ) w

s

l
v w ds− w

s

0
v w ds

−(Dη −Dζ)
2

Dξ
w

s

0

s

l
v w ds ds −Dζ v (v v + w w )

−1
2
m v

s

l

s

0
(v

2
+ w

2
) ds

..
ds +mab cos(Ωt) (2.58)

mẅ + cwẇ +Dηw
iv = mg[w (s− l) + w ]− (Dη −Dζ) v

s

l
v w ds− v

s

0
w v ds

+
(Dη −Dζ)

2

Dξ
v

s

0

s

l
v w ds ds −Dη w (v v + w w )

−1
2
m w

s

l

s

0
(v

2
+ w

2
) ds

..
ds (2.59)

v(0, t) = 0, w(0, t) = 0, v (0, t) = 0, w (0, t) = 0 (2.60)

v (l, t) = 0, w (l, t) = 0, v (l, t) = 0, w (l, t) = 0 (2.61)

where the bar over v has been dropped for ease of notation.



Chapter 3

Parametric System Identification

In this chapter, we propose a simple parametric identification technique for single-degree-of-freedom

(SDOF) nonlinear systems with weak cubic nonlinearities. The proposed technique is related to the

backbone curve method in the sense that it also uses the peak of the frequency-response curve of the

nonlinear system to estimate the model parameters. But the proposed technique is much more simple

and straightforward compared to the backbone curve method. The proposed identification procedure

is outlined in the context of a single-mode response of an externally excited cantilever beam possessing

cubic geometric and inertia nonlinearities and linear and quadratic damping.

3.1 Theoretical Modeling

3.1.1 Equation of Motion

Equations (2.58) and (2.59) governing the nonplanar dynamics of an isotropic, inextensional beam are

simplified to the case of planar motion of a uniform metallic cantilever beam under external excitation.

Following the approach of Anderson, Nayfeh, and Balachandran (1996b) and Tabaddor (2000), we

also include quadratic damping (air drag) in the model, in addition to linear damping, to study its

influence on the beam response. For the natural frequencies, we use the experimental values instead of

the theoretical ones, and thus drop the gravity term from the equation of motion. The model equation

37
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used in this study is as follows:

mv̈ + cvv̇ + c v̇|v̇|+EIviv = mab cos(Ωt)−EI v (v v ) − 1
2
m v

s

l

∂2

∂t2

s

0
v
2
ds ds (3.1)

and the boundary conditions are

v(0, t) = 0, v (0, t) = 0 (3.2)

v (l, t) = 0, v (l, t) = 0 (3.3)

where m is the beam mass per unit length, l is the beam length, E is Young’s modulus, I is the

area moment of inertia, s is the arclength, t is time, v(s, t) is the transverse displacement, ab is the

acceleration of the supported end of the beam, cv is the coefficient of linear viscous damping per unit

length, c is the coefficient of quadratic damping per unit length, and Ω is the excitation frequency.

And, the prime indicates differentiation with respect to the arclength s, whereas the overdot indicates

differentiation with respect to time t.

3.1.2 Single-Mode Response

The steel beam used in the experiments constitutes a lightly damped, weakly nonlinear system, and

none of its modes is involved in an internal resonance with other modes. We, therefore, assume that

the response of the beam consists essentially of the undamped linear mode whose natural frequency is

closest to the excitation frequency. We refer to this mode as the nth mode whose frequency ωn is then

very close to the excitation frequency Ω. Other modes, not being directly or indirectly excited, will

decay to zero with time due to the presence of damping (Nayfeh and Mook, 1979).

Equations (3.1)-(3.3) are not readily amenable to a closed-form solution. We, therefore, resort to

perturbation methods to obtain an approximate analytical solution. The method of multiple scales

(Nayfeh, 1973b,1981) is used to derive a first-order uniform expansion for the beam response under

primary resonance. Using a method of multiple scales’ model for system identification would lead to

biased parameter estimates at high levels of excitation (Doughty, Davies, and Bajaj, 2002). In the

experiments, the excitation levels are kept low and so we need not be unduly concerned about any bias

creeping into the estimates.

We scale the damping coefficients cv and c and the forcing coefficient ab appearing in Eq. (3.1) in
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terms of a small dimensionless parameter ( 1) as follows:

cv
2m

= ζ ωn = 2µ (3.4)

c

m
= c̄ = c (3.5)

ab = 3f̂ (3.6)

where ζ is the dimensionless linear viscous damping factor corresponding to the nth mode. Also, we

let

v(s, t; ) = v1(s, T0, T2) +
3v3(s, T0, T2) + · · · (3.7)

where the Tn (=
nt) represent different time scales — T0 being the fast-time scale and T2 the slow-time

scale. The derivatives with respect to t now take the form

d

dt
= D0 + D1 +

2D2 + · · · (3.8)

d2

dt2
= D20 + 2 D0D1 +

2(D21 + 2D0D2) + · · · (3.9)

where Dn = ∂/∂Tn. Substituting Eqs. (3.4)-(3.9) into Eqs. (3.1)-(3.3) and equating coefficients of like

powers of , we obtain

Order :

D20v1 +
EI

m
viv1 = 0 (3.10)

v1 = 0 and v1 = 0 at s = 0 (3.11)

v1 = 0 and v1 = 0 at s = l (3.12)

Order 3:

D20v3 +
EI

m
viv3 = −2D0D2v1 − 2µD0v1 − cD0v1 | D0v1 | −

EI

m
v1 v1v1

−1
2
v1

s

l
D20

s

0
v 21 ds ds + f̂ cos(ΩT0) (3.13)

v3 = 0 and v3 = 0 at s = 0 (3.14)

v3 = 0 and v3 = 0 at s = l (3.15)
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Since we are seeking a single-mode response solution, the solution of the first-order problem associated

with Eqs. (3.10)-(3.12) is taken as

v1(s, T0, T2) = A(T2)e
iωnT0 + Ā(T2)e

−iωnT0 Φn(s) (3.16)

where Ā(T2) is the complex conjugate of A(T2); ωn = r
2
n EI/ml4, rn is the nth root of the charac-

teristic equation 1+ cos(r) cosh(r) = 0; and Φn(s) denotes the normalized shape of the nth undamped

linear vibration mode, which is given by the following expression:

Φn(s) =
1√
l
cosh

rns

l
− cos rns

l
+
cos rn + cosh rn
sin rn + sinh rn

sin
rns

l
− sinh rns

l

For large n, the numerical evaluation of the rn and Φn(s) requires retention of an increasingly large

number of significant digits because of the presence of hyperbolic (exponential) functions. To avoid this

problem, Dowell (1984) and Dugundji (1988) derived simple expressions for higher vibration modes of

uniform Euler-Bernoulli beams. McDaniel et al. (2002) proposed a method for estimating the natural

frequencies and mode shapes of a multiple-degree-of-freedom system from its forced response vectors.

Substituting Eq. (3.16) into Eq. (3.13) yields

D20v3 +
EI

m
viv3 = −2iωnΦnD2AeiωnT0 − 2iµωnΦnAeiωnT0 +

1

2
f̂ eiΩT0

− EI
m

Φn ΦnΦn A3e3iωnT0 + 3A2ĀeiωnT0

+ 2ω2n Φn

s

l

s

0
Φ 2
n dsds A3e3iωnT0 +A2ĀeiωnT0 + cc

− cω2nΦn iAeiωnT0 − iĀe−iωnT0 | Φn iAeiωnT0 − iĀe−iωnT0 | (3.17)

Here we restrict our discussion to the case of primary resonance of the nth mode (i.e., Ω ≈ ωn). To

express the nearness of this resonance, we introduce the detuning parameter σ defined by Ω = ωn+
2σ.

Since the homogeneous problem associated with Eqs. (3.17), (3.14), and (3.15) has a nontrivial solution,

the nonhomogeneous problem has a solution only if the right-hand side of Eq. (3.17) is orthogonal to

every solution of the adjoint homogeneous problem (Nayfeh, 1981). Therefore, demanding that the

right-hand side of Eq. (3.17) be orthogonal to Φn(s) exp(−iωnT0), we obtain

−2iωn (D2A+ µA+ αdcA | A |)− 2αA2Ā+ 1
2
feiσT2 = 0 (3.18)
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where

f = f̂
l

0
Φn(s)ds

αd =
8ωn
3π

l

0
Φn(s)

2|Φn(s)| ds

αg =
3EI

m

l

0
Φn(s)

2Φn(s)
2ds

αi = −ω2n
l

0

s

0
Φn(s)

2ds
2

ds

α = αg + αi (3.19)

We note that α is the sum of the geometric (hardening) nonlinearity αg and inertia (softening) non-

linearity αi and thus denotes the effective nonlinearity corresponding to the nth mode. Also, α is not

dimensionless, but rather has dimensions 1/ms2.

Substituting the polar form

A =
1

2
aei(σT2−γ) (3.20)

into Eq. (3.18), multiplying the result by exp [i (γ − σT2)], and separating real and imaginary parts,
we obtain the following autonomous modulation equations:

a = −µa− 1
2
αdc a

2 +
f

2ωn
sin γ (3.21)

aγ = σa− α

4ωn
a3 +

f

2ωn
cos γ (3.22)

where the prime indicates differentiation with respect to T2. Substituting Eq. (3.20) into Eq. (3.16)

and then substituting Eq. (3.16) into Eq. (3.7), we find that the beam response is given by

v(s, t; ) = a(t) cos(Ωt− γ)Φn(s) + · · · (3.23)

3.1.3 Frequency-Response and Force-Response Equations

Periodic solutions of the beam correspond to the fixed points of Eqs. (3.21) and (3.22). To determine

these fixed points, we set the right-hand sides of Eqs. (3.21) and (3.22) equal to zero. Now, these two

equations can be used to obtain the frequency- and force-response diagrams. The frequency-response

diagram is obtained by keeping the forcing amplitude constant while varying the excitation frequency.
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In contrast, the force-response diagram is obtained by varying the forcing amplitude while keeping the

excitation frequency constant. In both cases, the displacement amplitude of v(s, t) is plotted versus

the control parameter (either Ω or ab).

We use the following two equations, which were derived by setting the right-hand sides of Eqs. (3.21)

and (3.22) equal to zero, to obtain the frequency-response and force-response diagrams, respectively:

σ1,2 =
α

4ωn
a2 ∓ f2

4ω2na
2
− µ+

1

2
αdc a

2
(3.24)

f = 2ωna µ+
1

2
αdc a

2
+ σ − α

4ωn
a2

2
(3.25)

where the subscript 1 and the minus sign refer to the left branch of the frequency-response curve, while

the subscript 2 and the plus sign refer to the right branch.

3.2 Experimental Procedure

We excited a steel beam with the dimensions 19.085”× 1
2”× 1

32” by a base excitation. The density and

Young’s modulus of the beam were taken as 7810 kg/m3 and 207 GPa, respectively. The beam was

mounted vertically on a steel clamping fixture attached to a MB Dynamics 445 N (100-lb) electrody-

namic shaker. The output of the shaker was measured using a PCB 308B02 accelerometer placed on

the clamping fixture, and the response of the cantilever beam was measured with a 350 Ohm strain

gage mounted approximately 33 mm from the fixed end of the beam. The strain gage formed one

arm of a quarter bridge circuit, and its signal was conditioned using a Measurements Group 2310 sig-

nal conditioning amplifier. The accelerometer signal was conditioned with a PCB 482A10 amplifier.

The accelerometer amplifier and strain gage conditioner were attached in parallel to a Hewlett-Packard

35670A dynamic signal analyzer, which was also used to drive the MB Dynamics SS250 shaker amplifier.

The experiment included four testing sequences related to the third mode and three sequences

related to the fourth mode. Each of these testing sequences was run on a separate day. In five of these

testing sequences, the frequency was swept while the excitation amplitude was held constant, though

the excitation amplitude itself was different for each sequence. In the other two testing sequences, the

excitation amplitude was varied while the excitation frequency was held constant. We waited for a

long time to ensure steady state before taking any measurement.



Pramod Malatkar Chapter 3. Parametric System Identification 43

3.2.1 Linear Natural Frequencies

The natural frequencies of the beam were determined using the frequency-response function of the

signal analyzer. The beam was excited by a 50% burst-chirp low-amplitude excitation, and a uniform

window was used to analyze the power spectra of the accelerometer and strain-gage signals. Peaks

in the amplitude portion of the frequency-response function give the linear natural frequencies of the

beam. To increase confidence in the experimentally obtained linear natural frequencies, we measured

the frequency-response functions at several low excitation levels. No noticeable shifts in the peaks were

observed. In addition, we made sure that the coherence was close to unity at the corresponding peaks.

Also, a periodic checking of the natural frequencies of the beam was done to detect any fatigue damage.

Table 3.1: Experimentally determined third-mode natural frequency.

ab (m/s
2) ω3 (Hz)

0.10g 49.078

0.15g 49.094

0.20g 49.094

Before the beginning of each testing sequence, we measured the natural frequency of the corre-

sponding mode (either third or fourth). In Table 3.1, the measured values of the third-mode natural

frequency are listed alongside the value of the base acceleration of the corresponding testing sequence.

In the ab column, g refers to the acceleration due to gravity and has a value equal to 9.8 m/s
2. We

note that the value of the estimated third-mode natural frequency is not constant. The minor vari-

ation could be explained by the fact that these measurements were done on separate days, and the

difference is equal to the frequency resolution of the signal analyzer used to make the measurements.

The experimentally measured value of the fourth-mode natural frequency is 96.117 Hz.

3.2.2 Determination of the Beam Displacement

The strain gage essentially measures the strain at the location where it is mounted on the beam. To

measure the beam displacement at that point, we need to convert the strain into displacement. In this

section, we describe the procedure to convert the strain-gage reading into displacement.
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From beam theory, we know that the strain experienced by the strain gage is given by

e = yρ (3.26)

where e denotes the strain, ρ denotes the curvature at the location of the strain gage, and y denotes the

distance of the strain gage from the beam’s neutral axis; that is, y = 1
2b where b is the beam thickness.

Let w(s) denote the steady-state transverse-displacement amplitude of a point a distance s from the

fixed end of the beam. Then, from Eq. (3.23), we can write

w(s) = aΦn(s) (3.27)

The curvature at a distance s from the fixed end is given by

ρ =
∂2w

∂s2
1 +

∂w

∂s

2 − 32
(3.28)

For the displacement amplitudes observed in the testing sequences, it was found that the nonlinear

expression for the curvature was not necessary. The linear part by itself determines the displacement

amplitude to a sufficient degree of accuracy. Hence, we use the following linear expression for the

curvature:

ρ ≈ ∂2w

∂s2
(3.29)

which is the commonly used expression for curvature in any strength of materials textbook (Timoshenko

and Young, 1968).

Let lsg denote the distance of the strain gage center from the fixed end. Using Eq. (3.27) in

Eq. (3.29), we obtain

ρ |s=lsg = aΦn(lsg) (3.30)

Alternatively, we can determine the strain from the strain-gage reading as follows:

e =
4Vout

VexciteGKg
(3.31)

where Vout denotes the strain-gage amplifier output in volts, Vexcite denotes the bridge excitation voltage

in volts, G denotes the gain of the strain-gage signal conditioner, and Kg denotes the gage factor of

the strain gage. Subsitituting Eqs. (3.30) and (3.31) into Eq. (3.26), we obtain

a =
8

VexciteGKgbΦn(lsg)
Vout
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which when substituted into Eq. (3.27) gives

w(s) =
8Φn(s)

VexciteGKgbΦn(lsg)
Vout (3.32)

Therefore, we only need to multiply the strain-gage reading Vout by a constant to obtain the displace-

ment amplitude w at a given s.

Table 3.2: Some constants and their values.

Constant Vexcite G Kg b lsg

Value 10 V 1000 2.095 0.794 mm 32.56 mm

The values of the constants appearing in Eq. (3.32) are listed in Table 3.2. We use wl to denote the

displacement amplitude of the beam tip where s = l.

3.3 Parameter Estimation Procedure

We estimate the parameters (ζ, c̄, α) describing the weakly damped, weakly nonlinear beam system

from the experimental frequency-response results. We know that, for a given excitation level, the

amplitude at the peak of the corresponding frequency-response curve depends on the damping value

(Nayfeh and Mook, 1979). And the effect of the nonlinearity is essentially to shift the peak away from

the natural frequency ωn. For a system with hardening nonlinearity, the peak is shifted to the right;

and in the case of a softening nonlinearity it is shifted to the left. The magnitude of the shift depends

on the strength of the nonlinearity. Thus, knowing the amplitude at the peak and the frequency shift,

it is possible to estimate the damping coefficient(s) and the effective nonlinearity of a system. The

detailed estimation procedure is described in the following subsections.

Table 3.3 lists the coordinates of the peaks of the experimentally obtained third-mode frequency-

response curves for different base acceleration levels. The peak displacement amplitude of the beam tip

is denoted by w∗l , and Ω
∗ is used to denote the value of the excitation frequency at the peak. We note

that ω3, given in Table 3.1, denotes the linear resonance frequency, whereas Ω
∗ (in Table 3.3) denotes

the nonlinear resonance frequency.
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Table 3.3: Coordinates of the peak of the frequency-response curve.

ab (m/s
2) Ω∗ (Hz) w∗l (mm)

0.10g 48.963 2.415

0.15g 48.917 3.220

0.20g 48.885 3.876

3.3.1 Estimation of the Damping Coefficients

Linear Damping Model

We can easily estimate the linear viscous damping coefficient µ from the experimental frequency-

response curve. For the linear damping model (c = 0), it follows from Eq. (3.24) that the peak of the

frequency-response curve corresponds to

µ =
f

2ωna∗
(3.33)

where a∗ denotes the value of a at the peak. So, by measuring a∗ and knowing the values of f and

ωn, we can estimate the linear damping coefficient. Using the definitions of µ, f , and w(s), we rewrite

Eq. (3.33) in terms of physical quantities as

ζ =
abξnΦn(l)

2ω2nw
∗
l

× 103 (3.34)

where ξn =
l
0 Φn(s)ds, ωn is the nth natural frequency in rad/sec, and w

∗
l denotes the peak displace-

ment amplitude of the beam tip in mm.

Nonlinear Damping Model

With the addition of quadratic damping (air drag), we complicate our model. But the advantage, as

we would see later, is that the experimental and theoretical frequency- and force-response curves are

in much better agreement when compared to the linearly damped case.

At the peak of the frequency-response curve, it follows from Eq. (3.24) that

µ+
1

2
αdc a

∗ =
f

2ωna∗
(3.35)
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where a∗ denotes the value of a at the peak. But now we have two unknowns (µ and c) and just one

equation. We, therefore, use results of two testing sequences to determine the damping coefficients c

and µ. Using Eq. (3.35) for two testing sequences, denoted by subscripts 1 and 2, we have

c =
1

αd(a
∗
2 − a∗1)

f2
ωna∗2

− f1
ωna∗1

µ =
f2

2ωna∗2
− 1
2
αdc a

∗
2

In terms of physical quantities, we have

c̄ =
ξnΦn(l)

2

αd(w
∗
l2 − w∗l1)

ab2
ωnw∗l2

− ab1
ωnw∗l1

× 106 (3.36)

ζ =
ab2ξnΦn(l)

2ω2nw
∗
l2

× 103 − αdw
∗
l2 c̄

2ωnΦn(l)
× 10−3 (3.37)

where w∗l1 and w
∗
l2 denote the peak displacement amplitudes of the beam tip (in mm) corresponding

to the testing sequences 1 and 2, respectively.

3.3.2 Nonlinearity Estimation

At the peak of the frequency-response curve, it follows from Eqs. (3.24), (3.33), and (3.35) that

α =
4ωnσ

∗

a∗2

where a∗ and σ∗ denote the values of a and σ, respectively, at the peak. In terms of physical quantities,

we have

α =
4ωnΦn(l)

2(Ω∗ − ωn)
w∗2l

× 106 (3.38)

where w∗l and Ω
∗ denote the tip displacement amplitude (in mm) and excitation frequency (in rad/sec)

at the peak, respectively. We note that Eq. (3.38) is applicable to both the linear as well as the nonlinear

damping models.

3.3.3 Curve-Fitting the Frequency-Response Data

The parameter values can also be estimated by curve-fitting the experimental frequency-response data

points. This is the approach used by Krauss and Nayfeh (1999a,b) to estimate nonlinear parameters
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of a system. We used the MATLAB function nlinfit, which performs a nonlinear least-squares data

fitting using a Gauss-Newton method, to fit a theoretical model to the experimental data points. More

specifically, we estimated the parameters in Eq. (3.24) by fitting it to the experimental frequency-

response data set. A drawback of the curve-fitting method is its sensitivity to and dependence on the

initial guesses. In the next section, we compare the results obtained, for the fourth mode, using the

proposed estimation technique with those obtained by the curve-fitting method.

3.3.4 Fixing f and ωn

48.6 48.8 49 49.2 49.4 49.6 49.8

0.5

1

1.5

2

2.5

3

3.5

4

Excitation Frequency, Ω (in Hz)

T
ip

 D
is

pl
ac

em
en

t A
m

pl
itu

de
,  w

l  (
in

 m
m

) Theoretical
Backward Sweep (Expt.)
Forward Sweep (Expt.)

Figure 3.1: Experimentally and theoretically obtained third-mode frequency-response curves for

ab = 0.2g and ω3 = 49.094 Hz using the linear damping model.

There were some differences between the experimentally and theoretically obtained frequency-response

curves. In Fig. 3.1, we have plotted an experimentally observed frequency-response curve along with

the theoretical one for the third mode. We used the theoretical value of α, the estimated value of µ

(and c), and the experimentally determined values of f and ω3 in Eq. (3.24) to obtain the theoretical

frequency-response curve. The value of f was determined from the accelerometer reading, and ω3

was determined using the frequency-response function of the signal analyzer. We observe in Fig. 3.1

that the theoretically obtained frequency-response curve is to the right of the experimental one. This
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Figure 3.2: Experimentally and theoretically obtained third-mode frequency-response curves for

ab = 0.23g and ω3 = 49.06 Hz using the linear damping model.

indicates that the value of ω3 used in Eq. (3.24) needs to be lowered. Also, we observe that the spike

in the experimental frequency-response curve is wider than the theoretical one. This indicates that the

value of f used in Eq. (3.24) needs to be increased.

For better agreement between the third-mode experimental and theoretical frequency-response

results, we had to lower the value of ω3 by nearly 0.05 Hz, which is around 0.1% of the measured

third natural frequency, and we had to increase the value of f by nearly 15% for the linear damping

model and by 8% for the nonlinear damping model. The probable reason for the shift in the frequency-

response curve could be the non-inclusion of gravity in the equation of motion and/or of higher-order

terms in the modulation equations. But on investigation later, we found that inclusion of higher-order

terms did not affect the results much. Also, with the addition of gravity, which tends to lower the

natural frequencies, the problem still persisted. We believe the assumption of ideal-clamp boundary

condition could be contributing to the shift in the results. Tabaddor (2000) studied the influence of

nonideal-clamp boundary conditions and found significant changes in the model behavior. This needs

to be studied further in the present context. On the other hand, we believe the difference in the

value of f is probably due to improper calibration of the accelerometer and/or due to an error in the
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measurement of the strain-gage location from the fixed end of the beam. On investigation, it was later

found that the accelerometer was reading a value lower than the actual base acceleration value.

Figure 3.2 compares again the experimental and theoretical frequency-response curves with the

theoretical curve obtained using the modified values of f and ω3. The two are in much better agreement

now. We also note that, without the modifications to the values of f and ω3, the estimations of the

parameters (ζ, c̄, α) were also not correct.

Table 3.4: Modified values of ω3. The superscripts l and n refer to the linear and nonlinear damping

models, respectively.

ab (m/s
2) ωl3 (Hz) ωn3 (Hz)

0.10g 49.035 49.035

0.15g 49.040 49.034

0.20g 49.060 49.055

The modified values of ω3 for each of the base excitation levels are listed in Table 3.4. They were

determined by lowering the value of ω3 used in Eq. (3.24) till the theoretical frequency-response curve

got closer to the experimental one. The values of ab, for all of the third-mode testing sequences, were

increased by 15% in the case of the linear damping model and by 8% in the case of the nonlinear

damping model.

3.3.5 Critical Forcing Amplitude

The proposed estimation technique relies solely on the coordinates of the peak of the frequency-response

curve and hence, for better results, the peak location has to be determined accurately. The coordinates

of the peaks of the frequency-response curves are obtained through a cubic spline interpolation of the

experimental data points. But if there is a jump in the frequency-response diagram, then it would be

difficult to obtain a good cubic spline interpolant and hence, in such a case, the peak location cannot

be measured accurately. We, therefore, suggest that forcing levels which do not lead to jumps in the

frequency-response diagram be used.

Let fcr denote the critical value of the forcing amplitude f marking the boundary between the
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values of f leading to jumps and those not leading to jumps. For the case of linear damping (c = 0),

fcr is given by

fcr = 8µωn
2µωn

3
√
3|α|

which can be rewritten in terms of physical quantities as follows:

abcr =
8ζω3n
3ξn

2
√
3ζ

|α|
where abcr denotes the critical base acceleration. A detailed derivation procedure of the critical forcing

amplitude is presented in Chapter 4. To determine abcr , we use the theoretical value of α (Eq. (3.19))

and the experimental values of ζ and ωn in the above equation. Here, we reiterate that, to obtain good

results, a base excitation amplitude ab < abcr be used.

3.4 Results

In this section, we first present the estimates of the parameters (ζ, c̄, α) obtained using the proposed

estimation technique. To validate the proposed estimation technique, we compare the experimentally

and theoretically obtained third-mode frequency- and force-response curves. The theoretical frequency-

and force-response curves are obtained using the estimated parameter values in Eqs. (3.24) and (3.25),

respectively. Theoretical results for both the linear as well as the nonlinear damping models are

presented. To further boost the confidence in the proposed estimation technique, we compare its

fourth-mode frequency- and force-response curves with those obtained using the curve-fitting method.

3.4.1 Third-Mode Estimation Results

For the linear damping model, the value of the linear viscous damping factor ζ is estimated using

Eq. (3.34). The estimated values of the damping factor ζ obtained using the experimental results of

the third-mode frequency-response testing sequences are listed in Table 3.5. We note that the value of ζ

is not constant but shows a variation of approximately 12%. This is expected as damping is essentially

a complex phenomenon, which depends upon the frequency and amplitude of vibration.

For the nonlinear damping model, the values of the damping coefficients ζ and c̄ are estimated

using Eqs. (3.36) and (3.37). The values of the linear viscous damping factor ζ and the quadratic
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Table 3.5: Estimated values of the third-mode viscous damping factor ζ of the linear damping model.

ab (m/s
2) ζ

0.10g 1.251× 10−3
0.15g 1.407× 10−3
0.20g 1.557× 10−3

Table 3.6: Estimated values of the third-mode damping coefficients ζ and c̄ of the nonlinear damping

model.

ab (m/s
2) ζ c̄ (1/m)

0.10g 7.341× 10−4 0.677

0.15g 6.975× 10−4 0.732

0.20g 6.262× 10−4 0.801

damping coefficient c̄ obtained using the experimental results of the third-mode frequency-response

testing sequences are listed in Table 3.6. We note that the values of ζ and c̄ are not constant but show

a variation of around 7%.

Table 3.7: Estimated values of the third-mode effective nonlinearity α. The superscripts l and n refer

to the linear and nonlinear damping models, respectively.

ab (m/s
2) αl (1/ms2) αn (1/ms2)

0.10g −7.888× 108 −7.888× 108
0.15g −7.581× 108 −7.210× 108
0.20g −7.447× 108 −7.233× 108

For both of the linear as well as the nonlinear damping models, the value of the effective nonlinear-

ity α is estimated using Eq. (3.38). Table 3.7 lists the estimated values of α for each of the third-mode

frequency-response testing sequences. There is a slight variation in the estimated values of α, but all of

them are close to the theoretical value of α = −7.543× 108 obtained using Eq. (3.19). The difference
in the values of αl and αn is due to the difference in the values of ωl3 and ω

n
3 (refer to Table 3.4).
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Figure 3.3: Experimentally and theoretically obtained third-mode frequency-response curves for

ab = 0.1g, 0.15g, and 0.2g using the linear damping model.
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Figure 3.4: Experimentally and theoretically obtained third-mode frequency-response curves for

ab = 0.1g, 0.15g, and 0.2g using the nonlinear damping model.
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Figure 3.5: Experimentally and theoretically obtained third-mode force-response curves using the linear

and nonlinear damping models for Ω = 48.891 Hz.

Next, we compare the experimentally and theoretically obtained third-mode frequency- and force-

response curves. The theoretical curves are obtained using Eqs. (3.24) and (3.25). For parameters ap-

pearing in these equations, corresponding values estimated from the experimental results are used. Fig-

ure 3.3 compares the experimentally and theoretically obtained third-mode frequency-response curves

using the linear damping model. The parameter values shown in Tables 3.5 and 3.7 were used to

obtain the theoretical curves. Figure 3.4 compares the experimentally and theoretically obtained third-

mode frequency-response curves using the nonlinear damping model. The parameter values shown in

Tables 3.6 and 3.7 were used to obtain the theoretical curves. Figure 3.5 compares the experimen-

tal third-mode force-response curve with those obtained theoretically using the linear and nonlinear

damping models. The agreement between the experimental results and the results obtained using

the theoretical models is very good. Especially, the nonlinear damping model does a very good job

predicting values very close to all of the experimental data points. Also, in the case of the linear

damping model, if a value of ζ estimated for one particular excitation amplitude is used in plotting the

theoretical frequency-response curve of another excitation amplitude, then it leads to an overshoot or

undershoot of the peak of the curve. This is not the case with the nonlinear damping model. Any pair
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Figure 3.6: Overshoot in the peak of the third-mode frequency-response curve obtained using the linear

damping model.

of (ζ, c̄) values from Table 3.6 can be used to correctly predict the response curves of other testing

sequences. This behavior is shown in Fig. 3.6, where the estimated values of ζ (and c̄) from the second

testing sequence (ab = 0.15g) were used to plot the theoretical frequency-response curve of the third

testing sequence (ab = 0.2g). We observe an overshoot using the linear damping model, whereas the

results obtained using the nonlinear damping model match very well the corresponding experimental

results.

3.4.2 Comparison with Curve-Fitting Method

To further validate the proposed estimation technique, we compare the fourth-mode frequency- and

force-response curves obtained using the proposed technique with those obtained using the curve-fitting

method.

Tables 3.8 and 3.9 list the estimated values of the parameters of the linear and nonlinear damping

models obtained using the proposed estimation technique and the curve-fitting method. Using these

estimated values, we plotted the frequency- and force-response curves for the linear and nonlinear
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Table 3.8: Comparison of the estimates of the damping factor ζ and the effective nonlinearity α for

the fourth mode using the linear damping model. The superscripts p and cf refer to the proposed

estimation technique and the curve-fitting method, respectively.

ab (m/s
2) ζp αp (1/ms2) ζcf αcf (1/ms2)

0.075g 6.951× 10−4 −1.621× 1010 6.955× 10−4 −1.766× 1010
0.100g 7.220× 10−4 −1.374× 1010 7.220× 10−4 −1.430× 1010

Table 3.9: Comparison of the estimates of the fourth-mode damping coefficients ζ and c̄ and the

effective nonlinearity α using the nonlinear damping model. The superscripts p and cf refer to the

proposed estimation technique and the curve-fitting method, respectively.

ab (m/s
2) ζp c̄ p (1/m) αp (1/ms2) ζcf c̄ cf (1/m) αcf (1/ms2)

0.075g 5.810e-4 0.624 -1.621e10 6.157e-4 0.471 -1.751e10

0.100g 5.810e-4 0.624 -1.300e10 6.083e-4 0.501 -1.325e10
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Figure 3.7: Comparison of the fourth-mode frequency-response curves obtained using the proposed

technique and the curve-fitting method for ab = 0.075g and 0.1g using the linear damping model.
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Figure 3.8: Comparison of the fourth-mode frequency-response curves obtained using the proposed

technique and the curve-fitting method for ab = 0.075g and 0.1g using the nonlinear damping model.

Note: In the legend, NL stands for Nonlinear.

0 200 400 600 800 1000
0

0.5

1

1.5

2

Base Acceleration, a
b
 (in milli−g)

T
ip

 D
is

pl
ac

em
en

t A
m

pl
itu

de
,

 w
l  (

in
 m

m
)

Theoretical (Linear Damping)
Curve Fitting (Linear Damping)
Theoretical (Nonlinear Damping)
Curve Fitting (Nonlinear Damping)
Backward Sweep (Expt.)
Forward Sweep (Expt.)

Figure 3.9: Comparison of the fourth-mode force-response curves obtained using the proposed technique

and the curve-fitting method for Ω = 95.844 Hz using the linear and nonlinear damping models.

damping models, which are displayed in Figs. 3.7-3.9. The agreement between the results obtained

with the two different techniques is very good.
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The linear damping model was found to have a serious drawback. The value of the linear viscous

damping factor ζ was also determined experimentally using the half-power method and was found to

be ζ = 6.569×10−4. But the values of ζ estimated using the linear damping model are higher than the
measured experimental value. On the other hand, the values of ζ estimated by the nonlinear damping

model are less than the measured experimental value, as expected.

3.5 Closure

A simple and straightforward parametric identification procedure for estimating the nonlinear para-

meters describing a single-mode response of a weakly nonlinear cantilever beam is presented. Using

information of the peak locations of one or two (depending on the damping model) frequency-response

curves, one can estimate to a sufficient degree of accuracy the parameters of the nonlinear model de-

scribing the cantilever beam system. This method is applicable to any SDOF weakly nonlinear system

with cubic geometric and inertia nonlinearities. However, we note that the proposed method cannot

be used to estimate the individual geometric and inertia nonlinearity contributions.

The results obtained using the linear and nonlinear damping models are qualitatively similar but

quantitatively different. For the linear viscous damping factor, the linear damping model estimated

a value much higher than the one determined experimentally using the half-power method. Also, the

theoretical frequency-response curve obtained using the linear damping model does not pass through

all of the experimental data points. This shows that a linear damping model does not model the beam

system well. It is reasonable to assume that large deflections of a blunt body like the beam would give

rise to significant air damping, which is proportional to the square of the velocity. So, inclusion of the

quadratic damping term seems physically justified. This justification was strengthened by the fact that

the nonlinear damping model with a quadratic damping term was able to predict results close to the

experimental data points; it also estimated for the linear viscous damping factor a value less than the

measured experimental value, as expected.

The estimated value of the effective nonlinearity using the proposed estimation technique is close

to the theoretical value; it also leads to a good agreement between the experimentally and theoretically

obtained force-response curves. Results obtained using the proposed technique are similar to those

obtained by the curve-fitting method.
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The classic backbone curve method requires determination of peak locations of multiple frequency-

response curves corresponding to different forcing levels and hence is time consuming. On the other

hand, the proposed method is simple and also demonstrates that the effective nonlinearity can be

determined accurately from the peak location of a single frequency-response curve. In addition, the

proposed method is more direct and straightforward and does not involve any least-squares curve

fitting. Finally, the new estimation technique is also very robust, which is demonstrated by the fact

that it led to a very good agreement between the experimentally and theoretically obtained frequency-

and force-response curves for both the third mode as well as the fourth mode.



Chapter 4

Determination of Jump Frequencies

It is a well-known fact that the nonlinearity present in a system leads to jumps in the frequency- and

force-response curves (Nayfeh and Mook, 1979). As shown in Fig. 4.1, the frequency-response curve

of a Duffing oscillator is bent either to the left or to the right, depending on whether the type of the

nonlinearity is softening or hardening. The bending of the frequency-response curve leads to a jump

in the response amplitude when the excitation frequency is swept from left-to-right or right-to-left.

The response amplitude increases at a jump-up point and decreases at a jump-down point. Between

the jump points, multiple solutions exist for a given value of the excitation frequency, and the initial

conditions determine which of these solutions represents the actual response of the system. The jump

points of a frequency-response curve coincide with the turning points of the curve where saddle-node

bifurcations occur. The goal of this chapter is to determine the minimum forcing amplitude that would

lead to jumps in the frequency-response curves of single-degree-of-freedom (SDOF) nonlinear systems

and to also locate the jump-up and jump-down points in the frequency-response curve when the forcing

amplitude is above the minimum value.

Friswell and Penny (1994) and Worden (1996) computed the bifurcation points of the frequency-

response curve of a Duffing oscillator with linear damping. They used the method of harmonic balance

to obtain the frequency-response function. To compute the jump frequencies, Worden (1996) set

the discriminant of the frequency-response function, which is a cubic polynomial in the square of

the amplitude, equal to zero, while Friswell and Penny (1994) used a numerical approach based on

Newton’s method. Their first-order approximation results agree well with the “exact” results. But

60
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Figure 4.1: Typical frequency-response curves of a Duffing oscillator with (a) softening nonlinearity and

(b) hardening nonlinearity. Dashed lines (- -) indicate unstable solutions and SN refers to a saddle-node

bifurcation.

for systems with higher-order geometric, inertia, and/or damping nonlinearities, a more general and

simple method of determining the jump frequencies is required. In this chapter, we present two methods

based on the elimination theory of polynomials (Griffiths, 1947; Wee and Goldman, 1995a), which can

be used to determine both the critical forcing amplitude as well as the jump frequencies in the case

of SDOF nonlinear systems. Also, the methods are devoid of convergence problems associated with

bad initial guesses and have the potential of being applicable to multiple-degree-of-freedom (MDOF)

nonlinear systems (Wee and Goldman, 1995b; Cox, Little, and O’Shea, 1997). The proposed methods

are outlined in the context of a single-mode response of an externally excited cantilever beam possessing

cubic geometric and inertia nonlinearities and linear and quadratic damping.

4.1 Theory

4.1.1 Frequency-Response Function

As the cantilever beam constitutes a weakly damped, weakly nonlinear system, we use the method of

multiple scales (Nayfeh, 1981) to derive the modulation equations governing the amplitude and phase

of the excited mode of the cantilever beam. In the process of deriving the modulation equations, we
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define the following quantities:

µ ≡ ζωn , σ ≡ Ω− ωn , f ≡ ab
l

0
Φn ds , c ≡ 4ωn

3π
c̄

l

0
Φ2n|Φn| ds

where ζ is the linear viscous damping factor, ωn is the nth natural frequency of the beam, Ω is the

excitation frequency, ab is the base acceleration, l is the length of the beam, s is the arclength, Φn(s) is

the normalized nth mode shape, and c̄ is the quadratic damping coefficient per unit mass and length.

Seeking a first-order uniform expansion of the transverse displacement v(s, t) of the beam, we obtain

v(s, t) ≈ a(t) cos(Ωt− γ)Φn(s) + · · ·

and the modulation equations governing the amplitude a and phase γ of the response are given by

ȧ = −µa− c a2 + f

2ωn
sin γ (4.1)

aγ̇ = σa− α

4ωn
a3 +

f

2ωn
cos γ (4.2)

where α is the effective nonlinearity comprising the contributions of the geometric and inertia nonlin-

earities, and the overdot indicates differentiation with respect to time t. A detailed description of the

derivation of the modulation equations is given in Chapter 3.

Periodic solutions of the beam correspond to the fixed points of Eqs. (4.1) and (4.2). To determine

these fixed points, we set the right-hand sides of Eqs. (4.1) and (4.2) equal to zero. We, thus, obtain the

following frequency-response function relating the response amplitude a and the excitation frequency

Ω (or σ):

σ1,2 =
α

4ωn
a2 ∓ f2

4ω2na
2
− (µ+ c a)2 (4.3)

where the subscript 1 and the ‘—’ sign refer to the left branch of the frequency-response curve, while the

subscript 2 and the ‘+’ sign refer to the right branch. Equation (4.3) can be rewritten in polynomial

form as

F(a,σ) = a6 + pa4 + qa3 + ra2 + s = 0 (4.4)

where

p =
16ω2n
α2

(c2 − α

2ωn
σ) , q =

32ω2n
α2

µc , r =
16ω2n
α2

(µ2 + σ2) , s = −4f
2

α2
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The frequency-response function can also be written as a polynomial function in σ as follows:

F(a,σ) = pσ2 + qσ + r = 0 (4.5)

where

p =
16ω2n
α2

a2 , q = −8ωn
α
a4 , r = a6 − 4f

2

α2
+
16ω2n
α2

(c2a4 + 2cµa3 + µ2a2)

4.1.2 Sylvester Resultant

The resultant of two polynomials is defined as the product of all of the differences between the roots

of the polynomials and is a polynomial in the coefficients of the two polynomials (Griffiths, 1947).

Consider two polynomials f(x) and g(x) defined as

f(x) ≡
n

i=0

aix
i, an = 0, g(x) ≡

m

i=0

bix
i, bm = 0

Then, the Sylvester resultant of f(x) and g(x), denoted by R(f, g), is given by (Wee and Goldman,
1995a)

R(f, g) =

an an−1 . . . . . . a1 a0 0 . . . . . . 0

0 an an−1 . . . . . . a1 a0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 an an−1 . . . . . . . . . . . . a0

bm bm−1 . . . b1 b0 0 . . . . . . . . . 0

0 bm bm−1 . . . b1 b0 0 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . 0 bm bm−1 . . . . . . . . . b0

A necessary and sufficient condition for f(x) and g(x) to have a common root is that the resultant

R(f, g) be equal to zero (Griffiths, 1947). The discriminant ∆ of a polynomial f(x), of order m, is

related to the resultant R(f, f ) in the following manner:

R(f, f ) = (−1) 12m(m−1)am∆

where am is the coefficient of the xm term in the polynomial f(x). We know that f(x) = 0 has two

equal roots iff f(x) = 0 and f (x) = 0 have a common root, and hence iff R(f, f ) = 0. We use this
idea to determine the critical forcing amplitude and jump frequencies.
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4.1.3 Critical Forcing Amplitude

For a low excitation amplitude, we do not observe the jump phenomenon and the frequency-response

curve is single-valued; that is, for every value of Ω there is a unique value of a. But in the case of a

large excitation amplitude, we observe jumps, and for a range of Ω values there exist multiple values of

a for a given value of Ω, as seen in Fig. 4.1. Let fcr denote the critical value of f marking the boundary

between the values of f leading to jumps and those not leading to jumps. The frequency-response curve

for f = fcr has an inflection point, which we denote by (σcr, acr), where the frequency-response function

F(a,σcr) = 0 has three positive real roots equal to acr. Therefore, the derivative of the frequency-

response function with respect to the response amplitude a, denoted by F (a,σcr) = 0, has two real

roots equal to acr, which requires that the resultant R(F ,F ) be equal to zero at the inflection point

(σcr, acr). Thus, using Eq. (4.5), we obtain

S(acr) ≡ R(F ,F )
a=acr

=
6

i=0

bia
i
cr = 0 (4.6)

where

b0 = 144 c
2µ2ω4n , b1 = 384 c

3µω4n , b2 = 64ω
2
n(α

2µ2 + 4 c4ω2n) ,

b3 = 168 cα
2µω2n , b4 = 96 c

2α2ω2n , b5 = 0 , b6 = −3α4

We now have a sextic polynomial equation in the response amplitude at the inflection point acr. Using

the resultant, we basically eliminate σcr and obtain a polynomial equation in acr only. By using

Eq. (4.4), we can eliminate acr and obtain a polynomial equation in σcr, but that would involve a more

number of computations. Also, in that case spurious solutions appear while solving for σcr.

Knowing the bi, one can easily compute the value of acr numerically. Of the six roots of S(acr) = 0,
only one turns out to be real and positive. Once we know the value of acr, substituting it into

F (a,σcr) = 0 gives us the critical excitation frequency σcr. Using the values of σcr and acr in

Eqs. (4.4) or (4.5), we obtain the critical forcing amplitude fcr.

For the case of linear damping (c = 0), a closed-form solution for the critical forcing amplitude is

possible. The corresponding expressions of fcr, acr, and σcr are as follows:

fcr = 8µωn
2µωn

3
√
3|α| , acr =

8µωn√
3|α| , σcr = ±

√
3µ

where the ‘+’ sign is for systems with effective hardening nonlinearity (i.e., α > 0), and the ‘—’ sign is

for systems with effective softening nonlinearity (i.e., α < 0).
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4.1.4 Jump Frequencies

For f > fcr, we observe jumps in the frequency-response curve, as seen in Fig. 4.1. At the jump

points, which we denote by (σ∗, a∗), the frequency-response function F(a,σ∗) = 0 has two positive real
roots equal to a∗, which requires that the resultant R(F ,F ) be equal to zero at those points. Using

Eq. (4.5), we thus obtain a twelfth-order polynomial equation in a∗ as follows:

S(a∗) ≡ R(F ,F )
a=a∗ =

12

i=0

cia
i
a=a∗ = 0 (4.7)

where the ci are functions of known physical quantities. The values of a
∗ can be easily computed

numerically. Of the twelve roots of S(a∗) = 0, only two turn out to be real and positive. Once we

know the value of a∗, substituting it into F (a,σ∗) = 0 gives us the the jump frequency σ∗. But for

each value of a∗, we obtain two values of σ∗, one of which is spurious. To pin-point the spurious σ∗

solution, we check if F(a,σ∗) = 0 leads to two positive real roots equal to a∗. If it does not, then that
particular σ∗ solution is spurious and is discarded. Alternatively, we could also determine σ∗ using

Eq. (4.3). The knowledge of the type of nonlinearity can be used to decide whether the jump points

lie on the left or the right branch.

4.1.5 Gröbner Basis

A Gröbner basis for the polynomials {f1, f2, . . . , fn} comprises a set of polynomials {G1,G2, . . . ,Gm}
that have the same collection of roots as the original polynomials (Cox et al., 1997). Like the Sylvester

resultant, the Gröbner bases also can be used to determine the critical forcing amplitude and jump

frequencies. The advantage of using Gröbner bases over resultants is that we do not obtain any spurious

solutions while solving for the jump frequencies σ∗. But in general, resultants are more efficient than

Gröbner bases.

To determine the critical forcing amplitude, we use the fact that F (a,σ) = 0 and F (a,σ) = 0 at

the inflection point (σcr, acr). We begin by computing a Gröbner basis for the polynomials F (a,σ)

and F (a,σ), and thus obtain two polynomials G1 and G2, which also vanish at the inflection point
(σcr, acr) and have a unique structure as we shall see later. Using Eqs. (4.4) or (4.5) and the lex

order σ > a (i.e., forcing polynomials containing σ appear at a later order compared to polynomials
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containing only a), we obtain

G1(acr) =
6

i=0

bia
i
cr = 0 (4.8)

G2(σcr, acr) = 96 cαµω3n σcr +
5

i=0

cia
i
cr = 0 (4.9)

where

b0 = 144 c
2µ2ω4n , b1 = 384 c

3µω4n , b2 = 64ω
2
n(α

2µ2 + 4 c4ω2n) ,

b3 = 168 cα
2µω2n , b4 = 96 c

2α2ω2n , b5 = 0 , b6 = −3α4

and

c0 = 192 c
3µω4n , c1 = 64ω

2
n(α

2µ2 + 4 c4ω2n) , c2 = 132 cα
2µω2n ,

c3 = 96 c
2α2ω2n , c4 = 0 , c5 = −3α4

Equation (4.8) is identical to Eq. (4.6), but now we also have an additional equation G2(σcr, acr) = 0.
Once the value of acr is numerically computed, we substitute it into Eq. (4.9) to obtain the value of

σcr. Like before, substituting the values of acr and σcr into either Eq. (4.4) or Eq. (4.5) gives us the

critical forcing amplitude fcr.

To determine the jump frequencies σ∗, we use the fact that F(a,σ) = 0 and F (a,σ) = 0 at the

jump points (σ∗, a∗). We begin again by computing a Gröbner basis for the polynomials F(a,σ) and
F (a,σ) and, thus, obtain two polynomials G1 and G2, which also vanish at the jump points (σ∗, a∗).
Using either Eq. (4.4) or Eq. (4.5) and the lex order σ > a, we obtain

G1(a∗) =
12

i=0

bia
i
a=a∗ = 0

G2(σ∗, a∗) = σ∗ +
11

i=0

cia
i
a=a∗ = 0

where the bi and ci are functions of known physical quantities. We solve for the values of a
∗ and σ∗

numerically. But this time we do not obtain any spurious solutions of σ∗ because of the unique form

of G2. In this aspect, the Gröbner basis method can be viewed as a nonlinear version of the Gaussian
elimination technique, which is used to solve linear polynomial equations.
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4.2 Results

Following the procedure described in the previous section, we computed the critical forcing amplitude

fcr and the jump frequencies σ
∗ in the response of the cantilever beam for a value of f > fcr. We used

the Resultant and Solve functions of MATHEMATICA (Wolfram, 1999) to calculate the resultant

of two polynomials and to compute roots of polynomials. For computing a Gröbner basis for two

polynomials, we used the GroebnerBasis function. Identical solutions are obtained using the resultant

and the Gröbner basis methods. The parameter values used in the calculations are: ωn = 98π,

α = −7 × 108, ζ = 6 × 10−4, l
0 Φn ds = 0.18, and c = 200. The critical forcing amplitude is found

to be fcr = 0.274 with σcr = −0.795 (Ωcr = 97.747π) and acr = 9.277×10−4. Using Eq. (4.3), we
obtain the frequency-response curve for f = fcr, which is illustrated in Fig. 4.2(a). The asterisk

in Fig. 4.2(a) denotes the inflection point (σcr, acr). For ab = 49 (f = 8.82), the jump frequencies

are found to be σ∗up = −9.199 (Ω∗up = 95.072π) and σ∗down = −36.544 (Ω∗down = 86.368π). The

corresponding frequency-response curve is plotted, along with the computed jump-up and jump-down

points in Fig. 4.2(b).
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Figure 4.2: Frequency-response curves obtained using (a) f = fcr and (b) f = 8.82. The asterisk in

(a) indicates the inflection point and the circles in (b) indicate the jump-up and jump-down points.
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4.3 Closure

Knowing the form of the frequency-response function, one can easily and accurately determine the crit-

ical forcing amplitude and jump frequencies of a SDOF nonlinear system using the proposed methods.

The only requirement being that the frequency-response function be a polynomial function in a and σ.

The proposed simple and straightforward methods can be applied to a variety of systems. Also, the

methods have the potential of being applicable to MDOF nonlinear systems.



Chapter 5

Energy Transfer Between Widely

Spaced Modes Via Modulation

In this chapter, we study the transfer of energy between widely spaced modes (i.e., modes whose natural

frequencies are wide apart) via modulation in flexible metallic cantilever beams. The presentation is

divided into two parts — one dealing with planar motion and the other with nonplanar motion. In the

first part, we present an experimental and theoretical study of the effect of excitation amplitude on

nonresonant modal interactions. In particular, we study the response of a rectangular cross-section,

flexible cantilever beam to a transverse excitation near its third natural frequency at various amplitudes

of excitation. The transfer of energy between modes via modulation was also observed while directly

exciting the fourth and fifth modes. But, in addition to a large first-mode response, a significant

contribution from in-between modes was also observed. For simplicity, we therefore decided to excite

the third mode, in which case we observed the presence of only the first mode in the event of an energy

transfer. Also, the ratio of the first and third natural frequencies is close to 1:30; that is, the requirement

for the transfer of energy between those modes via modulation is satisfied. Experimentally, we found

transfer of energy from the high-frequency third mode to the low-frequency first mode, accompanied

by a slow modulation of the amplitude and phase of the third mode. But with increasing amplitude of

excitation, the transfer of energy to the first mode seemed to subside. A reduced-order analytical model

is also developed to study the transfer of energy between the widely spaced modes. In the second part,

we extend the planar reduced-order model to include out-of-plane modes and study the energy transfer

69
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between widely spaced modes in a circular rod under transverse excitation and in the presence of a

one-to-one internal resonance. A comparison is also made between the experimental results obtained

by S. Nayfeh and Nayfeh (1994) and the nonplanar reduced-order model results.

5.1 Planar Motion

5.1.1 Test Setup

A schematic of the experimental setup is shown in Fig. 5.1. The vertically mounted, slender, uniform

cross-section, steel, cantilever beam has dimensions 662 mm × 12.71 mm × 0.55 mm. The density,
shear modulus, and Young’s modulus of the beam are taken as 7400 kg/m3, 70 GPa, and 165.5 GPa,

respectively. The beam is clamped to a 445 N shaker that provides an external (i.e., transverse to

the axis of the beam) harmonic excitation at the base of the beam. The excitation is monitored by

means of an accelerometer placed on the clamping fixture, and the response of the cantilever beam

is measured using a 350 Ohm strain gage mounted approximately 35 mm from the fixed end of the

beam. The strain gage is mounted near the root of the cantilever beam where the strains are high, and

care has also been taken to keep it away from the strain nodes of the first five linear vibration modes.

The strain gage and accelerometer signals are monitored, in both the frequency and time domains, by

a digital signal analyzer, which is also used to drive the shaker. At points of interest, the time- and

frequency-response data are stored onto a floppy disk for further characterization and processing. The

frequency spectra of the strain gage and accelerometer signals are calculated in real time over a 12.5 Hz

bandwidth (0.015 Hz frequency resolution) with a flat-top window. However, to measure the sideband

spacing and the Hopf bifurcation frequency, we used a Hanning window. We waited for a long time to

ensure steady state before taking any measurement.

In the case of a periodic response, the response amplitude of a mode can be determined from the

frequency spectrum (or FFT), obtained using a flat-top window, by measuring the magnitude of the

peak in the spectrum near the natural frequency of the mode. If the response of a mode is modulated,

the frequency spectrum will contain sidebands and it would be difficult to accurately determine the

amplitude from the spectrum. For simplicity, we continue to read the amplitude directly from the

frequency spectrum even when the response is modulated.
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Figure 5.1: Experimental setup.

The strain gage basically measures the strain at the location where it is mounted on the beam. The

output of the strain-gage conditioner is in volts, which can be easily converted into displacement for the

case of a periodic, single-mode response. Owing to the complications due to modulations, as described

in the above paragraph, all of the plots and FFTs are obtained using strain values only. However,

there is no one-to-one correspondence between the strain values and the displacement amplitudes of

the various modes; that is, one strain value could lead to different tip displacements for different modes.

For instance, for a given strain value, the displacement of the beam tip, when the beam is vibrating

only in the first mode, would be approximately eleven times compared to the case when the beam is

vibrating only in the third mode.

The linear in-plane (i.e., in the plane of excitation) flexural natural frequencies of the beam were

obtained using the frequency-response function of the signal analyzer. The beam was excited by a low-
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amplitude, 50% burst-chirp excitation, and a uniform window was used to analyze the power spectra

of the accelerometer and strain-gage signals. Peaks in the amplitude portion of the frequency-response

function give the linear natural frequencies. This process was repeated for several low-excitation levels

until no noticeable shifts in the peaks were observed. The natural frequencies were also determined from

an Euler-Bernoulli beam model incorporating the effect of gravity, which tends to lower the frequencies

especially of the lower modes (Tabaddor and Nayfeh, 1997). The finite-element method (FEM) was

used to solve the resulting model equation along with the corresponding boundary conditions. The ex-

perimentally and analytically obtained values of the first six linear in-plane flexural natural frequencies

of the beam are listed in Table 5.1. It is clearly evident that the two sets of values match very closely. In

addition, the first two out-of-plane (i.e., in the plane perpendicular to the plane of excitation) flexural

natural frequencies of the beam were also determined using the FEM model and are found to be equal

to 22.14 Hz and 138.84 Hz. The first torsional frequency of the slender beam is found to be equal to

100.52 Hz, assuming that the width of the beam is much greater than its thickness (Timoshenko and

Goodier, 1970). The modal damping factors ζn were determined experimentally using the logarithmic

decrement method. The first four damping factors are found to be equal to 9 × 10−3, 1.85 × 10−3,
2.25× 10−3, and 5× 10−3.

Table 5.1: The first six in-plane natural frequencies — experimental and analytical values.

Mode Natural Frequency (Hz)

No. Experimental Analytical

1 0.574 0.573

2 5.727 5.730

3 16.55 16.54

4 32.67 32.67

5 54.18 54.20

6 81.14 81.10

For completeness, we add that the beam is not perfectly straight, but has a small initial curva-

ture, which could be due to the way it was manufactured and sold. Also, the shaker system has an

inherent (low) quadratic nonlinearity, and there exists a shaker-beam interaction as is usually the case

(McConnell, 1995). All of these factors could be affecting the beam response, but we assume that their

influence on the response is negligible.
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5.1.2 Experimental Results

Frequency- and force-response curves illustrate various characteristics of a nonlinear system like the

presence of multiple stable responses, jumps, bifurcations, type of nonlinearity (softening or hardening),

etc. So, as a first step, we obtained the frequency- and force-response curves for the third in-plane

bending mode. For the frequency-response curve, the excitation amplitude ab was held constant at 0.8g,

and the excitation frequency Ω was varied in the neighborhood of the third natural frequency. And

for the force-response curve, the excitation frequency Ω was held constant at 16 Hz, and the excitation

amplitude ab was varied between 0 and 1g. Changes in the control parameters (excitation frequency

or amplitude) were made very gradually, and, at each value of the control parameter, transients were

allowed to die out before the amplitude of the response was recorded. Data obtained from both forward

and backward sweeps of the control parameter are used to plot the curves. In addition, to ensure that

even isolated branches of the curves get located, we performed a third sweep where, at increments in

the control parameter, we applied several disturbances to the beam in an effort to find all possible

long-time responses. For certain frequency ranges, a small out-of-plane motion was also observed,

which seemed to increase with an increase in the amplitude of the beam response. However, since it

was small, we did not take any measurements of that motion.

The frequency-response curve of the third mode is shown in Fig. 5.2. Well away from the third

natural frequency, the only mode present in the beam response is the third mode. This can be easily

confirmed by a visual inspection of the beam motion. Also, the response spectrum shows only a single

peak at the excitation frequency. As the frequency of excitation is swept downward from well above

the third natural frequency, the third-mode response becomes modulated and a growing contribution

of the low-frequency first mode is observed. This is the signature of energy transfer between widely

spaced modes. Visually we can see the amplitude of the third mode being modulated, along with a

large swaying (i.e., the first-mode response). Typical input and response time traces are illustrated in

Fig. 5.3. We note here that strain (and not displacement) values are plotted and hence the first-mode

response is much greater than what is observed in the response time trace in Fig. 5.3.

According to S. Nayfeh and Nayfeh (1993), the slow dynamics associated with the amplitude and

phase of the high-frequency third mode interacts with the slow dynamics of the low-frequency first mode

and eventually loses stability by a Hopf bifurcation, giving rise to amplitude and phase modulations of

the third mode and creation of a new frequency close to the first-mode frequency. The amplitude and



Pramod Malatkar Chapter 5. Energy Transfer 74

15 15.5 16 16.5 17 17.5
0

500

1000

1500

2000

2500

Excitation Frequency, Ω  (Hz)

Th
ird

-M
od

e 
Re

sp
on

se
 (m

V)

15 15.5 16 16.5 17 17.5
0

50

100

150

200

Excitation Frequency, Ω  (Hz)

Fi
rs

t-
M

od
e 

Re
sp

on
se

 (m
V)

Backward Sweep
Forward Sweep

Chaotic Motion

Chaotic Motion

Figure 5.2: Frequency-response curve of the third mode when ab = 0.8g.

phase modulations of the third mode are evident by the presence of asymmetric sidebands around the

high-frequency component in the response spectrum. As the modulation is a result of an instability

involving both the high- and low-frequency modes, the modulation frequency has to be equal to the

newly created frequency due to the Hopf bifurcation. This newly created frequency will be henceforth

referred to as the Hopf bifurcation frequency. By definition, the sideband spacing is equal to the
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Figure 5.3: Input and response time traces at Ω = 16.547 Hz when ab = 0.8g.

modulation frequency.

The FFTs corresponding to the time traces in Fig. 5.3 are shown in Fig. 5.4. The response FFT

shows two main peaks, one at the frequency of the excitation, which is near the third natural frequency,

and the other at the Hopf bifurcation frequency. The Hopf bifurcation frequency is found to be equal

to 0.547 Hz, which is close to the first-mode natural frequency. The asymmetric sideband structure

around the peak corresponding to the third mode indicates that the response of the third mode is

amplitude and phase modulated. Moreover, the sideband spacing (i.e., the modulation frequency) is

equal to the Hopf bifurcation frequency. A close observation of the input spectrum reveals that the

input is also modulated. This indicates a feedback from the structure to the shaker. As mentioned

before, a structure-shaker interaction is more of a rule than an exception.

Decreasing the excitation frequency further, we observe the beam motion jump-up to a chaotically
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Figure 5.4: Input and response FFTs at Ω = 16.547 Hz when ab = 0.8g.

modulated motion. The modulation frequency and swaying amplitude increase with time and the beam

response eventually gets drawn to a chaotic attractor. Figures 5.5(a) and 5.5(b) show the time trace

of a transition to a chaotic motion and of a fully developed chaotic motion, respectively. The FFT of

the fully developed chaotic motion is shown in Fig. 5.5(c). The FFT indicates a chaotic modulation of

the responses of the third and first modes. In addition, we also see a chaotically modulated response

of the second mode. Decreasing the excitation frequency even further, we observe the beam motion

jump-down to a low-amplitude single-mode response consisting only of the third mode. In the forward

sweep, starting from an excitation frequency well below the third natural frequency, we observe the

beam motion jump-up from a low-amplitude third-mode response to a chaotic motion, and jump-down

back to a low-amplitude third-mode response.

The force-response curve of the third mode is shown in Fig. 5.6. As the excitation amplitude

is increased from zero, the beam motion eventually jumps from a periodic third-mode response to a

chaotic motion directly. The FFT of such a chaotic motion indicates, like before, a chaotic modulation
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Figure 5.5: Time traces and FFT of the chaotic motion observed at Ω = 16.531 Hz when ab = 0.8g.

of the responses of the third, second, and first modes. In the backward sweep, the motion jumps from

a chaotic response to a periodic third-mode response.

To study the influence of the excitation amplitude on the transfer of energy between widely spaced
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Figure 5.6: Force-response curve of the third mode when Ω = 16 Hz.

modes, we repeated the above experiments at higher amplitudes of excitation. Figure 5.7 shows the

input and response time traces at the excitation frequency Ω = 17.109 Hz for the excitation amplitude

ab = 2.3g. The corresponding FFTs are shown in Fig. 5.8. We note that the Hopf bifurcation frequency

and thus the sideband spacing has now increased to 1.375 Hz. Also, the amplitude of the peak at the

Hopf bifurcation frequency is around ten times smaller compared to the case when the excitation

amplitude ab was equal to 0.8g. The fact that the newly created Hopf bifurcation frequency is away

from the natural frequency of the first mode seems to inhibit the transfer of energy from the third mode

to the first mode. Consequently, we see very little swaying (i.e., the first-mode response), as is evident

from the response time trace shown in Fig. 5.7. The sidebands around the peak of the excitation

frequency in the input FFT, shown in Fig. 5.8, indicate modulation of the input.

Increasing the excitation amplitude ab to 2.97g, we observe a further increase in the Hopf bifurcation

frequency to 1.578 Hz, resulting in an even lesser transfer of energy to the first mode. The input and

response time traces and their corresponding FFTs at the excitation frequency Ω = 17.547 Hz are
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Figure 5.7: Input and response time traces at Ω = 17.109 Hz when ab = 2.3g.

shown in Figs. 5.9 and 5.10, respectively. For such a large excitation amplitude, the first-mode swaying

is almost nil.

5.1.3 Reduced-Order Model

We develop a reduced-order analytical model to study the transfer of energy between widely spaced

modes. In the analysis of a weakly damped, weakly nonlinear continuous system, which has an infinite

number of degrees of freedom like the beam under study, a modal discretization is often employed to

obtain a reduced-order model of the system (Nayfeh and Mook, 1979). The system response is expanded

in terms of the undamped linear mode shapes multiplied by modal coordinates and substituted into the

equation of motion. Then, the Galerkin’s weighted residual method is employed to obtain a reduced-

order model of the continuous system.

Modal discretization techniques essentially replace a set of partial-differential equations governing
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Figure 5.8: Input and response FFTs at Ω = 17.109 Hz when ab = 2.3g.

a continuous (infinite-dimensional) system with a finite set of nonlinearly coupled, ordinary-differential

equations in terms of the modal coordinates. For simplicity and faster computation, a minimum

number of modes necessary to represent the response are included in the expansion. However, one

should ensure that the neglected modes do not affect the response of the system significantly, else the

discretized system would lead to erroneous results.

Equations (2.58) and (2.59) governing the nonplanar dynamics of an isotropic, inextensional beam

are simplified to the case of planar motion of a uniform metallic cantilever beam under external exci-

tation. Thus, the governing equation reduces to

mv̈ + cvv̇ +EIv
iv = mab cosΩt+mg[(s− l)v + v ]−EI v (v v ) − 1

2
m v

s

l

∂2

∂t2

s

0
v
2
ds ds

(5.1)
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Figure 5.9: Input and response time traces at Ω = 17.547 Hz when ab = 2.97g.

and the associated boundary conditions are

v = 0 and v = 0 at s = 0 (5.2)

v = 0 and v = 0 at s = l (5.3)

The overdot and prime indicate the derivatives with respect to time t and arclength s, respectively,

v(s, t) is the transverse displacement, m is the mass per unit length, l is the beam length, E is Young’s

modulus, I is the area moment of inertia, ab is the acceleration of the supported end (base) of the

beam, g (= 9.8 m/s2) denotes the acceleration due to gravity, cv is the coefficient of linear viscous

damping per unit length, and Ω is the excitation frequency.

In Eq. (5.1), the first of the nonlinear terms on the right-hand side is a hardening nonlinearity

arising from the potential energy stored in bending and is referred to as geometric nonlinearity. The

second nonlinear term is a softening nonlinearity arising from the kinetic energy of axial motion and is

usually referred to as inertia nonlinearity. For the third mode, the inertia nonlinearity is the dominant
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Figure 5.10: Input and response FFTs at Ω = 17.547 Hz when ab = 2.97g.

nonlinear term, whereas for the first mode, the geometric nonlinearity is the dominant nonlinear term.

The natural frequencies of the linear system corresponding to Eq. (5.1) are given by ωn = r
2
n EI/ml4,

where rn is the nth root of the characteristic equation 1+ cos(r) cosh(r) = 0. We introduce nondimen-

sional variables, denoted by an asterisk, by using l as the characteristic length and the inverse of the

third natural frequency ω3 (= 16.824 Hz) as the characteristic time. Then, in nondimensional form,

the governing equation and boundary conditions become

v̈ + µv̇ +
1

r43
viv = F cosΩt+G[(s− 1)v + v ]− 1

r43
v (v v ) − 1

2
v

s

1

∂2

∂t2

s

0
v
2
ds ds (5.4)

v = 0 and v = 0 at s = 0 (5.5)

v = 0 and v = 0 at s = 1 (5.6)

where the asterisks have been dropped for ease of notation, F = mab/γ and G = mg/γ with γ =

EIr43/l
3 and µ = l2cv/r

2
3

√
mEI. With the chosen nondimensionalization, ω3 = 1 and ω1 = r21/r

2
3 =

0.057. These frequency values indicate that the third and first modes are widely spaced.
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As the beam constitutes a weakly nonlinear system, we expand its response v(s, t) in terms of its

undamped linear mode shapes as follows:

v(s, t) =
N

i=1

ui(t)φi(s) (5.7)

where N denotes the number of retained modes, the ui(t) are generalized (modal) coordinates, and the

φi(s) denote the normalized undamped linear mode shapes given by

φi(s) = cosh ris− cos ris+ cos ri + cosh ri
sin ri + sinh ri

(sin ris− sinh ris) (5.8)

Substituting Eq. (5.7) into Eq. (5.4), multiplying by φn, integrating the result over the length of the

beam, and using the orthonormal properties of the linear mode shapes yields the set of equations

ün + µnu̇n + ω2nun = fn cosΩt +
i

gniui +
i,j,k

Λnijkuiujuk

+
i,j,k

Γnijkuk(üiuj + 2u̇iu̇j + uiüj), n = 1, 2, . . . , N (5.9)

where

Λnijk =
1

r43

1

0
φnφi(φjφk + φjφk )ds

and

Γnijk = −1
2

1

0

s

0
φnφkds

s

0
φiφjds ds

are the coefficients of the cubic geometric and inertia nonlinearity terms, respectively, in the discretized

equations, and

µn =
1

0
µφ2nds, fn =

1

0
Fφnds, gni =

1

0
Gφn (s− 1)φi + φi ds,

i,j,k

≡
i j k

Using cv = 2mζnω
ex
n , where ζn is the damping factor of the nth mode and ω

ex
n is the experimentally

determined nth natural frequency, we obtain

µn = 2ζn
r2n
r23

ωexn
ωn

In the experiments, we observed, during the energy transfer, that the response spectrum consists

essentially of peaks near the first and third natural frequencies (refer to Fig. 5.4), with sidebands around
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the latter. It is thus natural to include only the third and first modes in the expansion in Eq. (5.7).

But we found out that not including the second and fourth modes led to results inconsistent with the

experimental observations. We, therefore, retain the first four modes in the expansion of v(s, t); that

is, N = 4. Some nonlinear terms in the discretized equations contain ün in addition to un and u̇n,

as seen in Eq. (5.9). Solving the four discretized equations for ün (n = 1, 2, 3, 4) in terms of un, u̇n,

and t, and using the state-space approach, we obtain the set of eight first-order ordinary-differential

equations

ẋ = F (x, t) (5.10)

where

x = {x1, x2, x3, x4, x5, x6, x7, x8}T = {u1, u̇1, u2, u̇2, u3, u̇3, u4, u̇4}T

and

F (x, t) = {x2, ü1(x, t), x4, ü2(x, t), x6, ü3(x, t), x8, ü4(x, t)}T

The set of first-order ODEs can be easily solved using the following algorithms: Runge-Kutta-Fehlberg

or Adams for non-stiff systems and Gear for stiff systems. But the system of equations is stiff, as the

first mode evolves on a slow scale while the third mode evolves on a fast scale. Thus, the Gear algorithm

would be ideal for solving the system of equations given by Eq. (5.10). Once we know the steady-state

values of the ui, we can substitute them into Eq. (5.7) and determine the transverse displacement v of

the beam.

5.1.4 Numerical Results

We now present results obtained by integrating the set of Eq. (5.10). Figure 5.11 shows the time trace of

the displacement of the beam, at the location where the strain gage is mounted, and the corresponding

FFT at the excitation frequency Ω = 0.977 (= 16.429 Hz) for the excitation amplitude ab = 1.5g. From

the FFT and the time trace, it is obvious that the third-mode response is modulated and that there is

a first-mode component in the response. The modulation frequency (i.e., the sideband spacing) is equal

to the newly created Hopf bifurcation frequency, which is equal to 0.592 Hz. This is, therefore, similar

to the energy transfer observed earlier in the experiments. Also, it is evident from the time trace that

there is a static component present in the displacement v. This is similar to the results obtained by
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S. Nayfeh and Nayfeh (1993) using their representative model. Keeping the excitation amplitude ab

fixed and lowering the excitation frequency Ω to 0.945 leads to a chaotically modulated motion. The

associated time trace of the displacement and its FFT are shown in Fig. 5.12. Akin to the experimental

results, we see, in the FFT, a peak near the second-mode frequency.
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Figure 5.11: Displacement time trace and FFT at Ω = 0.977 when ab = 1.5g.

To study the effect of the excitation amplitude ab on the modulation frequency and thus the energy

transfer from the third mode to the first mode, we integrated Eq. (5.10) for three different values of

ab, namely, 1g, 2g, and 2.5g. The corresponding Hopf bifurcation frequencies are found to be 0.571,

0.609, and 0.627 Hz, respectively. The response FFTs are shown in Fig. 5.13. Thus, with an increase

in the excitation amplitude, the analytical model predicts a nominal increase in the Hopf bifurcation

frequency. Whereas in the experiments, the increase in the Hopf bifurcation frequency with an increase

in the excitation amplitude is substantial. Also, the model predicts that the amplitude of the first-mode

component increases with an increase in the excitation amplitude. This is in contradiction with the

trend observed in the experiments.
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Figure 5.12: Displacement time trace and FFT at Ω = 0.945 when ab = 1.5g.

5.2 Nonplanar Motion

5.2.1 Experiments with a Circular Rod

In experiments with a slender, circular cross-section, steel, cantilever beam, S. Nayfeh and Nayfeh

(1994) observed the transfer of energy between widely spaced modes via modulation when the rod was

transversely excited near the natural frequency of its fifth (in fact third or any higher) mode. Here we

briefly talk about those experiments and the results obtained by S. Nayfeh and Nayfeh. The length

and diameter of the cantilever, used in the experiments, are 34.5 in and 0.0625 in, respectively, and

its first five linear natural frequencies are 1.303, 9.049, 25.564, 50.213, and 83.150 Hz. The ratio of the

natural frequencies of the first and fifth in-plane (or out-of-plane) modes is around 1:64. Because of

axial symmetry, one-to-one internal resonances occur at each natural frequency of the beam, and the

mode in the plane of excitation interacts with the out-of-plane mode of equal frequency, resulting in

nonplanar whirling motions. For a certain range of parameters, a large-amplitude first-mode response

was accompanied by a modulation of the amplitude and phase of the fifth-mode response, with the

modulation frequency being approximately equal to the natural frequency of the first mode.

The frequency-response curves for the fifth in-plane and out-of-plane modes of the circular rod are



Pramod Malatkar Chapter 5. Energy Transfer 87

0 5 10 15 20 25
10

-5

10
 -4

10
 -3

10
 -2

Frequency (Hz)

FF
T

0 5 10 15 20 25
10

 -5

10
 -4

10
 -3

10
 -2

Frequency (Hz)

FF
T

0 5 10 15 20 25
10

 -5

10
-4

10
 -3

10
 -2

Frequency (Hz)

FF
T

(a) 

(b) 

(c) 

Figure 5.13: Displacement FFTs at (a) Ω = 0.984 when ab = 1g, (b) Ω = 0.972 when ab = 2g, and (c)

Ω = 0.9678 when ab = 2.5g.

shown in Fig. 5.14. The excitation level was held constant at 2g rms and the excitation frequency

was varied in the neighborhood of the fifth natural frequency. The data in the plots is a composite of

the responses obtained by performing both backward and forward frequency sweeps. In the following
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paragraphs, we discuss in more detail both the weakly- and strongly-modulated motions observed

during the sweeps.

Figure 5.14: Frequency-response curves of the fifth mode of a circular rod for an excitation amplitude

of 2g rms (S. Nayfeh and Nayfeh, 1994).

The observed weakly-modulated responses contained a large low-frequency component superim-

posed on a nearly constant amplitude fifth-mode whirling motion. Typical short and long time traces
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Figure 5.15: A short portion of the long time history of a typically weakly modulated motion of a

circular rod (S. Nayfeh and Nayfeh, 1994).

Figure 5.16: Time traces of a typically weakly modulated motion of a circular rod (S. Nayfeh and

Nayfeh, 1994).
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Figure 5.17: Power spectrum of a typically weakly modulated motion of a circular rod (S. Nayfeh and

Nayfeh, 1994).

of in-plane and out-of-plane responses of this type are shown in Figs. 5.15 and 5.16. The long time

traces illustrate the extremely slow variation of the amplitude of the first mode, but the short time

traces do not readily reveal any modulation of the high-frequency component of the response. A typical

FFT of this type of response is shown in Fig. 5.17. The FFT shows two main peaks, one at the fre-

quency of excitation (near the fifth natural frequency) and the other close to the natural frequency of

the first mode. Sidebands around the peak corresponding to the fifth mode indicate that the response

of the fifth mode is modulated. Moreover, the sideband spacing is close to the first natural frequency.

As indicated by the dense set of sidebands clustered around the peak near the first natural frequency,

the response of the first mode is also modulated.

The most obvious feature of the strongly-modulated motions is the modulation of the amplitude

of the fifth mode. Typical short and long time traces of this type of motion are shown in Figs. 5.18

and 5.19. In constrast to the case of the weakly-modulated motions of Fig. 5.15, the modulation

of the fifth mode is clearly distinguishable in Fig. 5.18. The erratic behavior of the rod response in

Fig. 5.19 suggests that the fifth mode is chaotically modulated, which can be clearly seen by the narrow

band of response present in the neighborhood of the fifth natural frequency in the corresponding FFT

shown in Fig. 5.20. As in the case of the weakly-modulated motions, there appears a dense set of
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sidebands clustered about the first-natural frequency peak, indicating that the first-mode response is

also modulated.

Figure 5.18: A short portion of the long time history of a typically strongly modulated motion of a

circular rod (S. Nayfeh and Nayfeh, 1994).

Figure 5.19: Time traces of a typically strongly modulated motion of a circular rod (S. Nayfeh and

Nayfeh, 1994).
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Figure 5.20: Power spectrum of a typically strongly modulated motion of a circular rod (S. Nayfeh and

Nayfeh, 1994).

5.2.2 Reduced-Order Model

Now we develop a reduced-order analytical model to study the transfer of energy between widely spaced

modes via modulation in the presence of a one-to-one internal resonance. This time the out-of-plane

beam motion will also be included in the model. Equations (2.58) and (2.59) governing the nonplanar,

nonlinear dynamics of isotropic, inextensible, Euler-Bernoulli beams will be used to study the response

of the uniform, circular cross-section, metallic cantilever rod used by S. Nayfeh and Nayfeh (1994) in

their experiments. We introduce nondimensional variables, denoted by an asterisk, by using l as the

characteristic length and the inverse of the fifth natural frequency ω5 (= 83.086 Hz) as the characteristic

time. Then, in nondimensional form, the governing equations and boundary conditions become

v̈ + µvv̇ +
1

r45
viv = F cosΩt+G[(s− 1)v + v ]− 1

r45
v (v v ) + v (w w )

−1
2

v
s

1

∂2

∂t2

s

0
(v

2
+w

2
)ds ds (5.11)

ẅ + µwẇ +
1

r45
wiv = G[(s− 1)w + w ]− 1

r45
w (w w ) + w (v v )

−1
2

w
s

1

∂2

∂t2

s

0
(v

2
+ w

2
)ds ds (5.12)
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v = 0, v = 0, w = 0, and w = 0 at s = 0 (5.13)

v = 0, v = 0, w = 0, and w = 0 at s = 1 (5.14)

where the asterisks have been dropped for ease of notation, F = mab/γ and G = mg/γ with γ =

EIr45/l
3, µv = l

2cv/r
2
5

√
mEI and µw = l

2cw/r
2
5

√
mEI. With the chosen nondimensionalization, ω5 = 1

and ω1 = r21/r
2
5 = 0.0176. These frequency values indicate that the fifth and first modes are widely

spaced.

As the beam constitutes a weakly nonlinear system, we expand its in-plane and out-plane responses,

v(s, t) and w(s, t), in terms of its undamped linear mode shapes as follows:

v(s, t) =
i

vi(t)φi(s) (5.15)

w(s, t) =
i

wi(t)φi(s) (5.16)

where the vi(t) and wi(t), i = 1, 5, are generalized (modal) coordinates and the φi(s) denote the

normalized undamped linear mode shapes given by Eq. (5.8). We have included only two modes, in

each expansion, to keep the model simple.

Substituting Eqs. (5.15) and (5.16) into Eqs. (5.11) and (5.12), multiplying by φn, integrating the

result over the length of the beam, and using the orthonormal properties of the linear mode shapes

yields the set of equations

v̈n + µvnv̇n + ω2nvn = fn cosΩt +
i

gnivi +
i,j,k

Λnijk(vivjvk + viwjwk)

+
i,j,k

Γnijkvk(v̈ivj + 2v̇iv̇j + viv̈j + ẅiwj + 2ẇiẇj + wiẅj), n = 1, 5 (5.17)

ẅn + µwnẇn + ω2nwn =
i

gniwi +
i,j,k

Λnijk(wivjvk + wiwjwk)

+
i,j,k

Γnijkwk(v̈ivj + 2v̇iv̇j + viv̈j + ẅiwj + 2ẇiẇj + wiẅj), n = 1, 5 (5.18)

where

Λnijk =
1

r45

1

0
φnφi(φjφk + φjφk )ds

and

Γnijk = −1
2

1

0

s

0
φnφkds

s

0
φiφjds ds
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are the coefficients of the cubic geometric and inertia nonlinearity terms, respectively, in the discretized

equations, and

µvn =
1

0
µv φ

2
nds, µwn =

1

0
µw φ

2
nds, fn =

1

0
Fφnds, gni =

1

0
Gφn (s− 1)φi + φi ds

Using cv = 2mζvnω
ex
n and cw = 2mζwnω

ex
n , where ζvn and ζwn are the damping factors of the nth

in-plane and out-of-plane modes, respectively, and ωexn is the experimentally determined nth natural

frequency, we obtain

µvn = 2ζvn
r2n
r25

ωexn
ωn

and µwn = 2ζwn
r2n
r25

ωexn
ωn

Some nonlinear terms in the discretized equations contain v̈n and ẅn in addition to vn, wn, v̇n,

and ẇn. Solving the four discretized equations for v̈n and ẅn (n = 1, 5) in terms of vn, wn, v̇n, ẇn,

and t, and using the state-space approach, we obtain the set of eight first-order ordinary-differential

equations

ẋ = F (x, t) (5.19)

where

x = {x1, x2, x3, x4, x5, x6, x7, x8}T = {v1, v̇1, v5, v̇5, w1, ẇ1, w5, ẇ5}T

and

F (x, t) = {x2, v̈1(x, t), x4, v̈5(x, t), x6, ẅ1(x, t), x8, ẅ5(x, t)}T

We integrate Eq. (5.19) for a long time to determine the steady-state values of the vi and wi (i = 1, 5).

Once we know the values of the vi and wi, we can substitute them into Eqs. (5.15) and (5.16) and

determine the in-plane and out-of-plane transverse displacements of the beam; that is, v and w.

5.2.3 Numerical Results

We now present results obtained by integrating the set of Eq. (5.19). We keep the excitation amplitude

ab constant at 2g rms and vary the excitation frequency Ω around the fifth natural frequency ω5. The

values used for the various parameters appearing in the equations are as follows: damping factors

ζv1 = ζw1 = 7.5 10−5 and ζv5 = ζw5 = 2.5 10−3; elasticity modulus E = 200 GPa; and density
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Figure 5.21: Time traces of in-plane and out-of-plane motion of beam at Ω = 82.75 Hz.

ρ = 7830 kg/m3. Figure 5.21 shows the time traces of the in-plane and out-of-plane displacements

of the beam tip at the excitation frequency Ω = 82.75 Hz and the corresponding FFTs are shown in

Fig. 5.22. From the FFTs shown in Fig. 5.22, it is clear that the fifth-mode response is modulated and

that there is a first-mode component in the response. The modulation frequency (i.e., the sideband

spacing) is equal to 1.3 Hz, which is close to the first natural frequency (= 1.303 Hz). But the amplitude

of the first-mode component is very small in comparison to that of the fifth mode, which is apparent

from the time traces and FFTs. This motion is qualitatively similar to the weakly modulated motion

found experimentally by S. Nayfeh and Nayfeh (1994).

Reducing the excitation frequency resulted in a chaotically modulated motion. The time traces

and FFTs of such a motion at Ω = 82.59 Hz are shown in Figs. 5.23 and 5.24, respectively. From the

FFTs, it is clear that both the first and fifth-mode responses are chaotically modulated. This motion is

qualitatively similar to the strongly modulated motion found experimentally by S. Nayfeh and Nayfeh

(1994).
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Figure 5.22: FFTs of in-plane and out-of-plane motion of beam at Ω = 82.75 Hz.

5.3 Closure

We observed experimentally that the transfer of energy between widely spaced modes is a function of

the closeness of the modulation frequency to the natural frequency of the first mode. The modulation

frequency, which depends on various parameters like the amplitude and frequency of excitation, damp-

ing factors, etc., has to be near the natural frequency of the first mode for significant transfer of energy

from the directly excited high-frequency third mode to the low-frequency first mode. In such a case,

visually we see a large swaying of the beam due to the large amplitude of the first-mode component in

the beam response. This is akin to primary resonance in a structural system where the closeness of an

external excitation frequency to one of its natural frequencies dictates the magnitude of the structure

response. When the excitation frequency is close to a natural frequency of the structure, the structure

vibrates with a large amplitude, otherwise the amplitude is small.

Using the planar reduced-order model for the rectangular beam, we demonstrated the transfer of

energy from the high-frequency third mode to the low-frequency first mode. Also, we found out that the
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Figure 5.23: Time traces of in-plane and out-of-plane motion of beam at Ω = 82.59 Hz.

first four modes need to be included in the Galerkin discretization for accurate modeling of the beam

system. This shows that care should be taken while deciding on the number of modes to be retained

in the approximation. The discrepancy in the experimental and analytical results can be attributed to

a couple of shortcomings in the analytical model. Firstly, the out-of-plane motion is not accounted for

in the model. In the experiments, a small out-of-plane motion is observed. Also, the natural frequency

of the first out-of-plane mode is 22.14 Hz, which is somewhat close to the values used for the excitation

frequency Ω. Therefore, including the out-of-plane motion in the analytical model might lead to better

results. Secondly, the initial curvature in the beam might produce quadratic nonlinearities, which need

to be included in the analytical model.

Using the nonplanar reduced-order model for the circular rod, we demonstrated the transfer of

energy from the high-frequency fifth mode to the low-frequency first-mode in the presence of a one-

to-one internal resonance. The model was able to predict results qualitatively similar to the weakly

and strongly modulated motions observed experimentally by S. Nayfeh and Nayfeh (1994). But the



Pramod Malatkar Chapter 5. Energy Transfer 98

0 10 20 30 40 50 60 70 80 90 100

10
-4

10
 -2

10
0

0 10 20 30 40 50 60 70 80 90 100

10
 -4

10
 -2

10
0

v
 

w
 

Ω (in Hz)

Figure 5.24: FFTs of in-plane and out-of-plane motion of beam at Ω = 82.59 Hz.

reduced-order model predicted, for the amplitude of the first-mode component, values much smaller

than those observed experimentally. To increase the amplitude of the first-mode component, we tried

varying the damping factors, but in vain. This points to some inadequacies in the model. Issues, like

the shaker-structure interaction, nonlinear damping, initial curvature of the beam, extension of the

beam axis, and inclusion of more modes in the modal discretization, were ignored while developing the

model. It is possible that one or more of these factors might be playing a bigger role than expected.

In addition, we also tried to obtain approximate analytical solutions for the beam response using

two perturbation techniques, namely the methods of multiple scales and averaging. Using these two

methods, we could not even demonstrate the transfer of energy from a high-frequency to a low-frequency

mode via modulation. Further investigation needs to be carried out to determine the cause of such a

discrepancy.



Chapter 6

Experiments with a Cantilever Plate

Like beams, rectangular plates are also one of the most commonly used structures in engineering

applications. Many experimental studies have been done so far on rectangular plates, both metallic

and composite, and a variety of nonlinear phenomena observed (Yamaki and Chiba, 1983; Yamaki,

Otomo, and Chiba, 1983; Cole, 1990; Ostiguy and Evan-Iwanowski, 1993; Oh, 1994; Oh and Nayfeh,

1998). For a detailed review of the nonlinear vibration of plates, we refer the reader to Nayfeh and

Mook (1979), Chia (1980), Sathyamoorthy (1997), and Nayfeh (2000).

In this chapter, an experimental study of the response of a thin, rectangular, aluminum cantilever

plate under transverse harmonic excitation is presented. Three test sequences, each involving a fre-

quency sweep around a particular natural frequency of the plate and a different amplitude of base

excitation, are performed. A couple of interesting nonlinear dynamics phenomena present themselves

in every test sequence. These phenomena include two-to-one and three-to-one internal resonances, ex-

ternal combination resonance, energy transfer between widely spaced modes, period-doubled motions,

and chaos. In addition, the influence of the excitation amplitude on the energy transfer between widely

spaced modes via modulation is also investigated.

99
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6.1 Test Setup

A schematic of the experimental setup is shown in Fig. 6.1. The uniform cross-section, cantilever

aluminum plate has dimensions 9 × 7.5 × 0.03 (22.86 cm × 19.05 cm × 0.08 cm). The plate is

clamped in a horizontal position to a 2000-lb shaker that provides an external (i.e., transverse to the

plane of the plate) harmonic excitation at the fixed edge of the plate. The plate is not perfectly straight,

but has some initial curvature. The difference in height of the clamped edge and the opposite free edge

of the plate is around 0.4 (1 cm). The shaker excitation is monitored by means of an accelerometer

placed on the clamping fixture, and the response of the cantilever plate is measured using two strain

gages mounted approximately 0.25 (0.64 cm) from the fixed edge and at distances 2.25 (5.72 cm)

and 3.75 (9.53 cm) from the lower left corner of the plate. If a strain gage is located along a nodal

line of a mode, then it would not detect that mode at all. To avoid such a situation, we used two

strain gages and compared, during every reading, their data to ensure that the contributions of all of

the participating modes were being accounted. The signals of the accelerometer and strain gages are

monitored, in both the frequency and time domains, by a digital signal analyzer, which is also used

to drive the shaker. At points of interest, the time- and frequency-response data are stored onto a

floppy disk for further characterization and processing. We waited for a long time to ensure steady

state before taking any measurement. The strain gages basically measure the strain at the location

Figure 6.1: Experimental setup.
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where they are mounted on the plate. However, it is difficult to accurately determine the displacement

amplitudes of the various modes from the outputs of the strain-gage conditioners, which are in volts,

especially when there is a modal interaction. Therefore, all of the plots and FFTs are obtained using

strain values only. However, we note that there is no one-to-one correspondence between the strain

values and the displacement amplitudes of the various modes; that is, one strain value could lead to

different displacements for different modes.

A rough estimate of the natural frequencies of the plate was first obtained using the bump test. The

plate was hit by a hammer and an estimate of the natural frequencies was obtained from the peaks in

the subsequent frequency spectra. The peak-hold feature of the signal analyzer was used and an average

from multiple readings was taken for each natural frequency. Later a sweep test around those averaged

values was done to determine the exact natural frequencies. The first seven natural frequencies ωi of

the plate were found to be equal to 17.19 (first bending), 37.75 (first torsional), 110.06, 144.38, 155.56,

291.94, and 302.06 Hz. It is clearly evident that a few natural frequencies are nearly commensurate

with other frequencies or a combination of some of them. So, we can expect some internal resonances

to occur during a sweep of the excitation frequency around those natural frequencies.

6.2 Results

We performed three different frequency sweeps while keeping the value of the base excitation amplitude

ab fixed during each of those sweeps. In the first run, the excitation amplitude was held constant at

2.7g, while the excitation frequency Ω was varied around ω1 + ω7. In the second run, the excitation

frequency was varied around ω7 with ab = 4.5g, and in the final run, a frequency sweep was made

around ω3 keeping the excitation amplitude fixed at 2g. Here, g (= 9.8 m/s
2) denotes the acceleration

due to gravity. For all the runs, we present the response frequency spectrum, and in some cases the

input spectrum, response time trace, a pseudo-phase plane, or a Poincaré section is also presented.

The frequency spectra of the signals obtained from the accelerometer and strain gages are calculated

in real time using a flat-top window for the first two runs and a Hanning window for the third run.
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6.2.1 RUN I: External Combination and Two-to-One Internal Resonances

While doing a backward frequency sweep, starting at Ω = 317 Hz, we observed that the plate response

changed from a periodic response with frequency Ω to one involving three distinct frequencies. The

input and response frequency spectra at Ω = 316.81 Hz are shown in Fig. 6.2. Basically there is a

peak at the excitation frequency Ω and also near the two natural frequencies ω1 (= 17.19 Hz) and ω7

(= 302.06 Hz). Therefore, this is an example of an external combination resonance of the additive type

(Ω ≈ ω1 + ω7), which occurs in the presence of quadratic nonlinearities. But it is well known that the

nonlinearities present in the governing equations of an isotropic cantilever plate are cubic. We suspect

that the initial curvature in the plate could be the cause of the quadratic nonlinearities present in the

system. From Fig. 6.2, it is clear that the peaks at the natural frequencies ω1 and ω7 are much larger

than the one at the excitation frequency Ω, with the peak at ω1 being the largest. The large-amplitude

first-mode response is also visible in the corresponding response time trace shown in Fig. 6.3. Thus,

the external combination resonance has resulted in a transfer of energy from a low-amplitude, high-

frequency mode to a high-amplitude, low-frequency mode. We note that a large static component is

present in the plate responses as seen in the response spectrum (Fig. 6.2) and response time trace

(Fig. 6.3). The cause for this large static component is the improper balancing of the Wheatstone

bridges used in the measurement of the strain values.

In addition, we also obtained a Poincaré section using the two strain-gage signals as independent

“pseudo” states (Nayfeh and Balachandran, 1995; Moon, 1987). Poincaré section is a powerful geo-

metric tool used to analyze the dynamics of a system. Also, since the dynamics in a state space

reconstructed from scalar time signals not representing displacement or velocity, like the strain-gage

signals, is equivalent to the original dynamics, we conveniently use the strain-gage signals to obtain

the Poincaré section. The two strain-gage signals were sampled at the excitation frequency Ω, and

the resulting Poincaré section is shown in Fig. 6.4. Because the Poincaré section is essentially a closed

curve, the plate motion is two-period quasiperiodic. The scatter in the results could be due to noise.

Reducing the excitation frequency further to Ω = 315 Hz resulted in the fourth and fifth modes getting

excited, possibly through two-to-one internal resonances, as shown in Fig. 6.5. In addition to peaks at

Ω, ω1, and ω7, we now also see peaks at ω4 ≈ 1
2ω7 and ω5 ≈ 1

2ω7. The two-to-one internal resonances

are due to the presence of quadratic nonlinearities in the plate. The corresponding response time trace

is shown in Fig. 6.6. Reducing the excitation frequency Ω gradually to 313.75 Hz resulted in a motion

similar to the one shown in Fig. 6.2, and at Ω = 313.39 Hz, the plate reverted back to the periodic
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Figure 6.2: Input and response FFTs for ab = 2.7g and Ω = 316.81 Hz.

motion with frequency Ω. During a forward sweep, we observed a behavior similar to the one seen

during the backward frequency sweep.

6.2.2 RUN II: Two-to-One and Zero-to-One Internal Resonances

In the second run, the excitation amplitude ab was held constant at 4.5g while the excitation frequency Ω

was varied around the seventh natural frequency ω7. During a backward sweep, starting at Ω = 312 Hz,

we observed a two-to-one internal resonance at Ω = 311.22 Hz. The response spectrum at Ω = 311 Hz

is shown in Fig. 6.7. We see a large peak at the excitation frequency Ω and another one at 12Ω, which

is close to the fifth natural frequency ω5. In addition, we also obtained a pseudo-phase plane using the

strain gage-one and accelerometer signals as independent states. The plot displayed in Fig. 6.8 shows a

typical phase-plane trajectory for a system in which the response period is twice that of the excitation,

as in the present case.
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Figure 6.3: Response time trace for ab = 2.7g and Ω = 316.81 Hz.
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Figure 6.4: Poincaré section showing two-period quasiperiodic motion.

As Ω was reduced, the amplitude of the peak near ω5 kept increasing, and at Ω = 305 Hz it

became larger than that of the peak at Ω. At Ω = 304.69 Hz, the response of the fifth and seventh

modes underwent a Hopf bifurcation, with the newly created frequency, also known as the modulation

frequency, being close and slightly higher than the natural frequency of the first mode. Figure 6.9
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Figure 6.5: Input and response FFTs for ab = 2.7g and Ω = 315 Hz.

shows the response spectrum at Ω = 304.5 Hz, where the modulation frequency is equal to 17 Hz,

which is close to ω1 (= 17.19 Hz). It is also clear from the figure that the peak near the first mode

frequency ω1 is the largest. Thus, energy was transferred from two high-frequency modes, namely

the fifth and seventh, to the low-frequency first mode via modulation. This is an example of the

energy transfer between widely spaced modes, also known as zero-to-one internal resonance. As Ω was

gradually reduced from 304.69 Hz, the modulation frequency tended to go towards the first natural

frequency and the amplitude of the first-mode response kept increasing. But once the modulation

frequency had passed the first natural frequency, the first-mode response amplitude started decreasing.

At Ω = 304.41 Hz, the plate response reverted back to the periodic motion with frequency Ω. A similar

behavior was observed during a forward sweep of the excitation frequency in the frequency range of

interest.

To study the influence of the excitation amplitude on the modulation frequency and, in turn, on

the first-mode response, we reduced the excitation amplitude to ab = 3g. At Ω = 300.94 Hz, the
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Figure 6.6: Response time trace for ab = 2.7g and Ω = 315 Hz.
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Figure 6.7: Response FFT for ab = 4.5g and Ω = 311 Hz.

modulation frequency was equal to 11.7 Hz, which is far away from the first natural frequency ω1

(= 17.19 Hz). Hence the amplitude of the first-mode response was very small, as is evident from the

response spectrum shown in Fig. 6.10. A similar trend was observed in Chapter 5 while experimentally

studying the transfer of energy between widely spaced modes in cantilever beams.
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Figure 6.8: Pseudo-phase plane trajectory showing two-to-one internal resonance.
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Figure 6.9: Response FFT for ab = 4.5g and Ω = 304.5 Hz.

6.2.3 RUN III: Quasiperiodic Motion and Three-to-One Internal Resonance

This time we did a frequency sweep around the third-mode frequency ω3 (= 110.06 Hz) keeping the

base excitation fixed at 2g. Starting with Ω = 110 Hz and going backward in small increments, we
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Figure 6.10: Response FFT for ab = 3g and Ω = 300.94 Hz.

observed that the motion changed from a periodic motion to a two-period quasiperiodic motion at

Ω = 109.42 Hz. Basically there was a Hopf bifurcation leading to amplitude and phase modulation

of the third-mode response. This is evident from the asymmetric sidebands observed around the peak

at the excitation frequency in the response frequency spectrum as shown in Fig. 6.11, which is for the

excitation frequency Ω = 109.41 Hz. We observed no other peaks between 0 and Ω. As the excitation

frequency was gradually reduced, we observed period-doubling bifurcations — first at Ω = 109.39 Hz

and then again at Ω = 109.35 Hz. The FFTs of the corresponding zoomed-in responses are shown in

Figs. 6.12 and 6.13. In Fig. 6.14, the complete input and response frequency spectra for Ω = 109.35 Hz

are shown. We see that now there is a small peak at the modulation frequency (= 1.21 Hz), which

probably is the first-mode response. As the modulation frequency is very far away from the first natural

frequency, the first-mode response amplitude is very small. Therefore, this might also possibly be an

example of energy transfer between widely spaced modes. Furthermore, a close observation of the input

spectrum reveals that the input is also modulated. This indicates a feedback from the structure to the

shaker. A shaker-structure interaction is common and not unusual (McConnell, 1995).

Continuing with the frequency reduction, we observed that the plate motion goes back to the

periodic motion with frequency Ω. But on further reduction, we observed a three-to-one internal

resonance (starting at Ω = 108.61 Hz), followed by a chaotically modulated motion (starting at Ω =
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Figure 6.11: Response FFT for ab = 2g and Ω = 109.41 Hz.
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Figure 6.12: Response FFT for ab = 2g and Ω = 109.39 Hz.

108.5 Hz), followed by a three-to-one internal resonance again (starting at Ω = 108.45 Hz), and then

the usual periodic motion (starting at Ω = 108.39 Hz). The occurrence of the three-to-one internal
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Figure 6.13: Response FFT for ab = 2g and Ω = 109.35 Hz.

resonance is due to the fact that the plate system has inherent cubic geometric nonlinearities and

because ω3 ≈ 3ω2. The response spectra corresponding to the three-to-one internal resonance at

Ω = 108.4 Hz and the chaotically-modulated three-to-one internal resonance at Ω = 108.5 Hz are

shown in Figs. 6.15 and 6.16, respectively. The forward sweep also led to identical motions in the

above frequency range of interest.

6.3 Closure

It is very interesting to see so many nonlinear dynamic phenomena in a simple aluminum plate. The

initial curvature of the plate brought quadratic nonlinearities into the system, which provided an

opportunity to observe phenomena which otherwise would not have occurred in a straight plate with just

cubic nonlinearities. Also, many of the linear natural frequencies of the plate are nearly commensurate

with one another, leading to multiple internal resonances.

The energy transfer from a low-amplitude, high-frequency mode to a high-amplitude, low-frequency

mode via modulation was demonstrated. Also, the amount of energy transfer is found to be strongly

dependent on the closeness of the modulation frequency to the natural frequency of the low-frequency
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Figure 6.14: Input and response FFTs for ab = 2g and Ω = 109.35 Hz.

mode. The results of RUN III show that the two-period quasiperiodic motion is due to an instability

involving both the first and third modes. Probably it would not be amiss to generalize that a Hopf

bifurcation in a structure under harmonic excitation would involve at least two modes. Hence, while

trying to explain such a phenomenon analytically, a single-mode approximation should not be used as

it might lead to erroneous results.
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Figure 6.15: Response FFT for ab = 2g and Ω = 108.4 Hz.
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Figure 6.16: Response FFT for ab = 2g and Ω = 108.5 Hz.



Chapter 7

Conclusions and Recommendation for

Future Work

7.1 Summary

In this dissertation, we investigated the nonlinear vibrations of metallic cantilever beams and plates

subjected to transverse harmonic excitations. In particular, we studied both experimentally and the-

oretically the energy transfer between widely spaced modes via modulation. Two cases — planar and

nonplanar motions — were considered. In the planar case, a rectangular cross-section beam whose

motion was restricted to the plane of excitation was studied. Whereas in the nonplanar case, a circu-

lar cross-section rod, where because of axial symmetry, one-to-one internal resonances occur at each

natural frequency of the beam, was studied.

Experimentally it was observed that the transfer of energy between widely spaced modes is a

function of the closeness of the modulation frequency to the natural frequency of the first mode.

The modulation frequency, which depends on various parameters like the amplitude and frequency of

excitation, damping factors, etc., has to be near the natural frequency of the first mode for significant

transfer of energy from the directly excited high-frequency third mode to the low-frequency first mode.

In such a case, visually we see a large swaying of the beam due to the large amplitude of the first-mode

component in the beam response. This is very similar to primary resonance in a structural system
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where the closeness of an external excitation frequency to the natural frequencies of the structure

dictates the magnitude of the structure response.

Based on the present observations, we can conclude that conventional methods used for reduction

of response amplitude, such as decreasing amplitude of excitation or increasing damping, might in

fact lead to an increase in the amplitude of the low-frequency response if they result in bringing the

modulation frequency closer to the first natural frequency. Also, in most of the experiments dealing

with energy transfer via modulation from high- to low-frequency modes, it was observed that the low-

frequency mode is always the first mode. As the modulation frequency (or the newly created frequency)

increases with increasing amplitude of excitation, it might be therefore possible to excite the second

mode, instead of the first, if the forcing amplitude is large enough. However, this needs to be verified

experimentally.

The reduced-order models were able to predict results qualitatively similar to the experimentally

observed motions, but the results differed a lot quantitatively. Issues, like the shaker-structure inter-

action, nonlinear damping, initial curvature of the beam, extension of the beam axis, and inclusion of

more modes in the modal discretization, were ignored while developing the models. It is, therefore,

possible that one or more of these factors might be playing a bigger role than expected, and this needs

to be further investigated.

An experimental parametric identification technique to estimate the linear and nonlinear damping

coefficients and effective nonlinearity of a metallic cantilever beam was also developed. This method

can be applied to any single-degree-of-freedom nonlinear system with weak cubic geometric and inertia

nonlinearities. It was found that noninclusion of quadratic nonlinearity in the beam model might lead

to incorrect parameter estimation. In addition, we proposed two methods, based on the elimination

theory of polynomials, which can be used to determine both the critical forcing amplitude as well as the

jump frequencies in single-degree-of-freedom nonlinear systems. These two methods have the potential

of being applicable to multiple-degree-of-freedom nonlinear systems as well.

Finally, we carried out an experimental study of the response of a rectangular, aluminum cantilever

plate to transverse harmonic excitations. We observed various nonlinear dynamic phenomena, like two-

to-one and three-to-one internal resonances, external combination resonance, energy transfer between

widely spaced modes via modulation, period-doubled motions, and chaos. The fact that a simple

plate under harmonic excitation could display so many different nonlinear dynamic phenomena proves
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that nonlinear phenomena are ubiquitous. Some may however remark that these types of nonlinear

resonances have very high activation thresholds; that is, the excitation level needs to be large to

observe them. But since these unusual phenomena have been observed in real engineering structures

and mechanical systems, there is a need to study such phenomena in more detail. For instance, the

zero-to-one internal resonance was observed in the motion of the solar panels of the Hubble space

telescope and also in the motion of the skin of a submarine. Many physical systems display nonlinear

behavior, but only a watchful eye can recognize that. Most of the time our “linear” perspective (or in

other words, our ignorance about nonlinear phenomena) makes us overlook any such different behavior

in systems. It would be to our advantage if we start to think “nonlinearly”.

7.2 Suggestions for Future Work

There is a lot of scope for improvement in the model used for describing the nonlinear, nonplanar

dynamics of an isotropic, cantilever beam. Better models would lead to better agreement, both quali-

tatively and quantitatively, between the predicted and experimental results. Also, such models can be

used to explain the many interesting motions observed experimentally.

Transfer of energy from high- to low-frequency modes is extremely dangerous as the amplitudes of

the low-frequency modes are usually much larger than the directly-excited high-frequency modes. The

strong dependence of the energy transfer between widely spaced modes on the modulation frequency

can be utilized to control the amplitude of the low-frequency responses. Therefore, a study on such a

control technique is highly recommended.

It would be interesting to see if energy transfer between widely spaced modes via modulation also

occurs in micro-electromechanical systems (MEMS). In MEMS-based devices, the forcing term is highly

nonlinear and varies with the displacement of the microstructure. One could study the influence of

such a forcing term on the occurence of the energy transfer between widely spaced modes. Also, the

applicability of the experimental parametric identification technique to estimate the damping factors

and effective nonlinearity in such systems can be studied.
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