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each part of the program. Finally, the use of a language which is
available on most computers is desirable, By avoiding special features
of a language provided by one vendor and by restricting oneself to a
common subset of a language, for example, Standard [12] or Basic [1]
FORTRAN, the software becomes portable, and a potential user is not
condemned to rewrite the program to be able to use it on a machine with
a different compiler. These practices were followed in creating this
program and the details are in [2]. The above comments apply to writing
any software, not just numerical applications. The subject of this
paper lies in the area between numerical analysis, i.e., the mathematical
formulation of algorithms, and the computer programming techniques
mentioned above.

There are several considerations that are not included in the above
areas. One is the selection of the mathematical formulas which will
minimize the possible generation of roundoff error. Another is the
determination of when a number is zero, except for propagated roundoff
error. Three others are the subject of this paper. That is, we
consider several problems which are more closely related to the problem
whose solution is sought and the numerical method used in the solution.
The solution of polynomial equations by a Newton~type method needs a
very accurate approximation to the desired root to assure convergence.
If the approximation does not meet the strict criterion, then the
iterations may actually diverge from the root. Moreover, it has been
shown by Gabler [8] that if a polynomial has a single real root, the

remaining being complex, then the iterations of Bairstow's method may
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remain away from a solution indefinitely. Further, 1f a solution is a
multiple root of the polynomial, then it is also a root of the derivative
of the polynomial and so the denominator in Newton's method approaches
zero as the root is found., This magnifies the effect of the roundoff
error in the numerator and limits the number of significant digits in
the answer. These are the problems we will consider in the following

paragraphs.

ITI. Obtaining Initial Starting Values

A. APPROXIMATION OF ONE ROOT

We would like to narrow the region over which to search for the
existence of a real or complex root of the polynomial. There exist
involved methods which will locate polynomial roots [11,pp. 355-359]},
but a relatively simple method that involved as few polynomial
evaluations as possible and gave a reasonable guess as to the existence
and locatlon of a root was preferred. We were led to our choice of an
algorithm by a discussion in Hamming [10, p. 105] of transformations on
a polynomial under which the solutions are invariant. Assume P(z) is
a polynomial of degree n of the form

lzn-l+,..+az+a

n
P(z2) oz + un“ 1 0?

where z = X + yi, x and y are real and 1 = v¥~1, The transformations are,

for ¢ # 0,

1. P(z) into cP(2),

2. P(2) into P{cz),



3. P(z) into znP(l/z).

The third transformation is used to divide the complex plane into two
regions. The transformation is made by reversing the order of the
coefficients of the polynomial. The roots of 2"P(1/z) are the
reciprocals of the roots of P(z). Thus, given r > 0, a root of P(z)

lies in the region
{z: |z| < r} (1)
or its reciprocal lies in the region
{z: 1/|z] < 1/x}. (2)

The number r is chosen to be the absolute value of the geometric mean
of the polynomial roots, that is, r = |u0/an|1/n. The author has shown
in [2] that the geometric mean can be considered as the average distance
of the roots from zero, whether the roots be real or complex. It is
expected that, on the average, half of the roots will 1lie in the region'(l)
and half will lie in the region {2). Since complex roots occur in complex
conjugate pairs, we need only consider that portion of each of the above
regions for which the imaginary part of the complex number z is nonnegative
Each of these two regions may be divided in half by considering the half
where the real part of z is nonnegative and the half where it is negative
as separate regions.

We now have four regions, each of which may contain one or more
roots. To achieve an approximation to one of the roots, we select one
of the four regions and approximate the absolute value of P(z) over the

region by a bivariate interpolating polynomial of the form



f(x,y) = ag + ax + a,y + a,xy + a4x2 + asyz.
To record in the program that we have chosen the region where the
real part of z is negative, the geometric mean T ig made negative.
Thus, if s = ]r], then f(x,y) is chosen to be the bivariate polynomial
which interpolates to ]P(z)] at the points in the complex plane 0, si/2,

si, r/2, r and r + si. This leads to the system of equations: P(0) = ag>

and

. 2

b1 P(si/2) -~ a, 323/2 + ags /4 (3)
2

b2 P(si) - ag = a,8 + acs (4)

2
b3 = P(r/f2) -~ a, alr/2 + a,r /4 (5)
b, = P(r) - a, = a,r + a r2 (6)
4 0o~ %1 4

b = P(r+si) - = 4+ a + a.rs + a r2 + 32
5 s aq a,r )8 578 4 ;s .

Equations (3) and (4) can be used to solve for a, and ac:
a, = (4by - by)/s = (4by - b2)/|r|,
= (b, - 4b.)/s% = (2, - b/
5 2 1 2 1
gimilarly, equations (5) and (6) can be used to find'al and a,r
2
a, = (4b3 - ba)/r and a, = (ZbA - 4b3)/r .
Using these values for ays 3,5 a, and g, we can solve for a3:
a, = (bg = b, - by)/(xes) = (bg - (b, + bz))/(r-|r|).

The choice of the points of interpolation was made with two
objectives in mind. First, choosing three of the six points along the

real axis should aid in the better approximation of real roots. This



6.
is an important special case because a small imaginary part in the
initial approximation of a single real root can lead to a poor approximation
to a quadratic factor of P(z). Second, the choice of the points along
the real axis and along the imaginary axis results in a system of linear
equations which can be solved algebraically and the coefficients of
the interpolating polynomial can be calculated in a few arithmetic
operations. This avoids the need for another routine to solve a system
of linear equations.

Once the coefficients of f(x,y) have been determined, the wminimum
is sought by first solving for the point at which both its partial
derivatives are zero. This point is easily determined by setting the
partial derivatives of f(x,y) equal to zero and solving the resulting
system of two linear equations in two unknowns. If this solution does
not lie in the chosen region, then the minimum of f(x,y) over the region
is its minimum value along the boundary of the region. The minimum
along each edge of the boundary may be found by restricting f(x,y) to
that edge and locating the point at which the derivative of this
restricted function is zero.

Since the bivariate polynomial f(x,y) approximates the absolute
value of P(z) over a region, it should follow the general shape of
|P(2)| and a minimum of f(x,y) over that region should occur at a
point near a zero of P(z). This does not say that f(x,y) will be zero
at this point; it may be positive or negative and not even close to
zero. This is not important to us. We only use the point at which

f(x,y) achieves a minimum to approximate a zero of P(z). The value
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of P(z) at this approximation is tested and it is this value that
should be close to zero. The reader may havé noticed that the size of
this region will depend upon the geometric mean r of the roots, which
in turn depends upon the magnitude of the roots. One might expect that
the smaller the region, the better the interpolating polynomial would
approximate the behavior of |P(z)] and hence the better the approximation
to a root. This indeed has been our experience and so the test for the
closeness to zero of |P(z)] at the approximate root is in proportion
to the width of the region. 1If |P(z)! at the approximate root is not

close to zero, another reglon is chosen.

B, CALCULATICN OF A SECOND ROOT

We assume that one approximate root has been found., If this root
has either a real or an imaginary part which is close to zero, then we
would prefer that the approximate root be real or pure imaginary,; so
the "near zero" part is set to zero. If the resulting number is complex,
then its complex conjugate 1s selected as the second root.

If the resulting number is real and nonzero, then we need another
real root to be used to calculate an initial approximation to 2 quadratic
factor of P(z). It is possible that there is only one real root. If
this is the case, it will be detected in the Bailrstow iteration and the
real root determined by the method described in section III B. Assume
that another real root does exist. Then the magnitude of each real
root contributes to the magnitude of the geometric mean. Thus, the size
of the second reoot may be approximated by dividing the square of the

geometric mean by the magnitude of the known approximation. Note that
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r is the geometric mean of these two roots. The problem is to determine
the sign of the approximation to the gsecond root. Since the magnitude
of the first approximate root is not greater than r, the second root
will be at least as big as r, i.e., it is a larger root. The value of
un“l/un is the negative of the sum of the real parts of all of the roots
of P(z); If it is negative, the larger roots have a positive real part;
if it 1s positive, the larger roots have a negative real part. So we
choose the sign of the second approximation to be the opposite of the
sign of an_l/an. If an_l is equal to zero, then the roots are either
paired with real parts about the same size, only opposite in sign, or
there are several roots with small real parts of one sign and another
root with a large real part of the opposite sign., In either of the
last two cases we want to choose an approximation of ocpposite sign and
on the other side of the geometric mean from the first root. The
two complex or two real roots are used to find the coefficients p and q
of an approximate quadratic factor, 22 - pz - q, of P(z). If the roots
are x + yi and x - yi, then p = 2x and q = —(xz + yz). If the roots
are x, and Xys then p = Xy + X, and q = ~Ry X,

If the first approximate root is zero, then it is assumed that

there are one or more roots near zero (all of the zero roots were

eliminated early in the algorithm) and the coefficients p and q of

2
z° - pz - q are chosen to be zero.

C. EXAMPLES OF STARTING APPROXIMATIONS

To illustrate how the algorithms work to find initial starting

approximations, we present two examples. Although all of the real
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arithmetic in the program is done in double precision (16 decimal
digits on an IBM 360 or 370 series computer), our illustrations will
be presented in at most three decimal digits.

In the first example, P(z) is the polynomial

P(z) = 24 + 223 + 622 + 8z + 8.

The initial approximation is the pure imaginary complex number z = 1.7i.
Since it is complex, its complex conjugate is chosen as the other
approximate root and the coefficients of the approximate quadratic
factor of P(z) are p = 0 and q = -2.9. The Bairstow iteration scheme
converges to p = 0 and q = -4 (accurate to 15 decimal digits) in five
iterations. This quadratic e;pression factors into the two complex
roots +2i.

In the second example, P(z} is the polynomial
P(z) = z° - 620 - 39z - 16z + 60.

The initial approximation is z = .75. Since the geometric mean for

this polynomial is 2.6, the magnitude of the second approximate root is
(2.6)2/.75 = 9.0, Since -6 is negative, the sign of the second root

is made positive. The coefficients of an approximate quadratic factor

of P(z) are p = 9.8 and q = 6.8. The Bairstow iteration scheme convergeé
top=11. and q = 10. in six iterations. This guadratic expression

factors into the two real roots 1.0 and 10.

I1I. Monitoring Convergence

A. DIRECTING THE ITERATION TOWARD THE ROOT
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Even if a "'good" approximation is made to a quadratic factor of
P(z), the Bairstow iteration scheme may step away from the solution
(and away from any solution). It may even step towards the solution
for a few iterations and then suddenly diverge. To keep the method on
a convergent path, the magnitude of the polynomial is measured at
each new approximation to p and q. If 2, and z, are the two roots
of z° - Pz - q, then the measure is |P(zl)-P(zz)[, see Hamming [10, p. 110}
or Ault [2}. Beginning with the first approximation to p and q, the
magnitude of the polynomial 1s kept for each successful iteration towards
a solution. When the next iteration in calculated, the magnitude of
P(z) is calculated at this new approximation. As long as the sequence
of magnitudes is nonincreasing, the most recent one is saved and the
Bairstow iteration scheme is allowed to continue, If the magnitude of
P{z) suddenly increases, then it is assumed that the sequence is diverging.
Two things are done to help the iteration scheme find'a better path to
a solution. First, the next approximation is taken to be half the
previous step size from the previous approximation to p and q (this is
the last accepted approximation). Second, the allowable maximum
magnitude is doubled, The maximum allowable magnitude is increased
in this manner to prevent the iteration from becoming stuck in one spot
and failing to continue toward the solution.

There are several reasons why an iteration could step a large
distance away from the solution. Loss of significant digits in
subtractive cancellation could produce a meaningless denominator in the

calculation of the step size for p and for q in Bairstow's method. The
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path of the iterations may land upon a point on the surface generated
by P(z) which is near a saddle point. This may cause the denominator
in the calculation of the step size for p and for q to be small and
produce an unusually large step. Third, the iterations may land near
a line in the p,q-plane generated by a real root of P(z). This topic
will be discussed in more detail in part B of this section. This may
cause a large step, usually along a line "parallel" to this line.

As an example of the manner in which this technique works,
consider the polynomial

P(z) = 27 - 326 - 2z5 + 2024 - 56z3 + 6822 - h4z + 12,

The first approximation to a quadratic factor was z2 -z + .6. After
five iterations, the Bairstow iteration scheme converged to 22 -1.22 + .7.
The reduced polynomial would be of degree 5. The first approximation
yields a real root .75. The second real root is 2.75 and so the
approximate quadratic factor is z2 - 3.5z + 2. Even though the
approximate real roots are close to the actual real roots (they are
0.64 and 2.84) the Bairstow iteration immediately begins to diverge.

In figure 1, the initial starting value is labeled 0 and the first
{teration is labeled 1. The step size is halved three times, each time
beginning at the original approximation, until the iteration labeled 4
begins a new sequence 4,5,6,7,8,9, which converges to the solution.

The points labeled 7 and 8 are not shown because of the large scale of

the figure.
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-1.0 1
-1.2
-1.4
2
-1.6
5
-1.8 3 6
4

-2.0 0

1.9 2.2 2.5 2.8 3.1 3.4

Figure 1

B. THE PROBLEM OF A SINGLE REAL ROOT

Even if the iteration steps are not diverging, they may never
converge to a quadratic factor of P(z). Let (pi,qi), i=20,1,2,...,
denote the sequence of approximations to the coefficients of a
quadratic factor 22 - pz - q of P(z). It has been shown by Gabler [8]

that if P(z) has a real root z = k and if for some index n,
2
ki -pk-gq =0,

then for the following index (and hence for all further indices)

2

L L STt

Geometrically, this result states that if some iteration lands on the

line
{(p,a): k2 = pk - q = 0} 7)

in the p,q-plane, then all of the remaining iterations will be confined
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to that line. It has been observed that the iterations will "parallel"
this line if they land close to, but not necessarily on, the line, The
consequences of this theorem to our algorithm depend on the number of
real roots of P(z).

If there is more than one real root, there is a line in the
p,q-plane determined by each distinet root. If the root is a multiple
root, then the line (7) at the point p = 2k and q = —kz vields a quadratic
factor of P(z), This is because (z - k)z = 22 - 2kz + kz. The lines

given by (7) for any two distinct real roots intersect at a unique point.

Suppose k., and k, are distinct real roots of P(z), then the point of

1 2
intersection of the two lines determined by k1 and k2 ig p = kl + k2
and q = —klkz. In each of these cases, we want the sequence of iterations

to follow along one of the lines until it arrives at a solution. This
will produce two real roots.

I1f P(z) has a single real root k, then the iterations along (7)
will continue indefinitely because complex roots are found in complex
conjugate pairs and z - k is always a factor of 22 - pz - q whenever
k2 - pk - q = 0. Suppose the iterations land on the line (7)
corresponding to the single real root k. For any quadratic expressiomn
22 - pz - q, there exists a polynomial Q(z) of degree n - 2 and

real numbers Bl and B0 such that

P(z) = Q(2) (2 - pz - @) + 8,2 + B,
If (p,q) lies on the 1line (7}, then

0

P(k) = Q(k)*0 + Blk + BO‘
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This equation may be solved for k to find k = -80/81. If the same
answer occurs for several successive iterations then this number provides
a good approximation to be used in the Birge~Vieta method {6, p. 34] to
find the real root. The polynomial may then be deflated and the search
continued for the other roots.

The above test for a real root will work even when the iterations
are successfully converging on a quadratic factor corresponding to two
real roots. To prevent this test from stopping convergence, the
magnitude of the polynomial is considered too. If it is growing small,
then the Bairstow iteration is allowed to continue even though a real
root could be isolated.

It is possible that the elimination of a real root is best, even
1f there are other real roots; this occurs in the following example.
It demonstrates how the single real root is detected. Let P(z) be
the polynomial

P(z) = 33 - 322 - 60z - 100.

The roots of P(z) are -5, -2 and 10. The first acceptable approximate
root was z = -2.1. P(z) is a deflated polynomial from a polynomial of
degree five with a geometric mean of 2.9. Thus, the second approximate
root is ](2.9)2/(—2.l)| = 4,0. The sign of both roots is correct

and the approximation -2.1 is close to the real root -2.0, but the
magnitude of the second approximate root is too small. The sequence of
iterations beginning with p = 1.9 and q = 8.4 is given in table 1.
This shows how the Bairstow iterations began to slowly converge, then

jumped far away from the solution along the line in the p,q-plane
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corresponding to the root z = -2, This was detected by using the
sequence of approximations to the real root which can be found in column 4
of table 1. The real root was determined in five iterations of the

Birge-Vieta method and the polynomial was deflated.

iteration number P q approximate real root
0 1.90 8.40 -2.05
1 .88 4,16 -1.89
2 1,32 6.264 -1.97
3 37.66 75,46 -1.90

TABLE 1. The sequence of Bairstow iterations and the approximations to

a real root of the polynomial P(z) = z3 - 322 - 60z ~ 100,

IV. Coping with Multiple Roots

If after a fixed number of steps, the Bairstow iteration fails to
converge to a quadratic factor of P(z) and if a single real root has not
been detected, then the magnitude of the polynomial is tested at the
most recent approximate roots. If it is essentiaily zero, then one or
more of these roots may be a multiple root. The fact that the denominator
in the calculation of the correction factors te p and q approaches zero
as p and q approach the coefficients of a quadratic factor corresponding
to a multiple root introduces roundoff error into the calculation. This
prevents convergence to more than a limited number of significant digits.
If P(z) has a multiple root m, either real or complex, then m will be a

()

root of the derivative of P(z2). If for some integer j > 0, P {m) =0,

i=1,..,.,j-1, and P(j)(m) # 0, then m is a root of multiplicity j and
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P(j-l)(z) may be used to find the root without the problems of
roundoff error due to a near zero denominator in the calculation of
the correction factors to p and q. When the root is found to the
number of significant digits desired, we use the root to deflate the
polynomial P(z) j times. A check is made at each step of the
deflation to guarantee that m 1is a zero of the remaining polynomial.

To implement the scheme to determine multiplicity, the
coefficients of P(z) are transferred to another array and the derivative
operations are performed on the copied coefficients. The coefficients
of P(z) are changed only if a multiple root of P(z) is successfully
determined. This scheme is so straight-forward that one wonders if
there is not some unseen problems with it. The alternative is to use
repeated application of Horner's method to evaluate the polynomial and
as many derivatives as are needed [3]. This would have to be done at
each iteration to find the multiple root. We see two objections to this
method. First, if the multiplicity of the root is large, this method
apﬁears to require many more arithmetic operations. This takes time
and possibly introduces more roundoff error. Second, the type of
arithmetic operation that occurs with more frequency is addition. This
introduces the possibility of a loss of significant digits, due to the
addition of nearly equal numbers which are opposite in sign, and the
propagation of relative error is often more severe under addition than
under multiplication. This can be seen by studying the anal?sis of the
propagation of relative error using process graphs as presented by Dorn

and McCracken [6, pp. 80-94].
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We conclude this section by giving two examples of how this
method worked. First, let P(z) be the polynomial

P(z) = z4 - 523 + 622 + 4z - 8,

The initial approximations to roots of P(z) generated the coefficients
p = 3.6 and q = -3.0 of an approximate quadratic factor of P(z). At
the end of the maximum 20 iterations, p = 3.999960 and q = -3.999920.
The magnitude of the polynomial at the roots of this quadratic factor
is on the order of 10_26, a number which is certainly near zero., It
was determined that the root was real and its multiplicity was three.
Three iterations with the second derivative of P(z) produced the

root z = 2,0, correct to 16 decimal digits, and the polynomial was
deflated for each root. The roots are 2, 2, 2 and ~1.

Second, let P(z) be the polynomial
P(z) = z5 + 3z4 + 423 - b4z - 4,

The initial approximations to the coefficients of a quadratic factor
are p = -2.5 and q = -1.9. After the maximum 20 iterations,

p = -2.0000004 and q = -1.9999994. The magnitude of the polynomial

at the roots of this quadratic factor is on the order of 10_23. It was
determined that the roots were complex and of multiplicity two. Three
iterations of Bairstow's method, using the first derivative of P(z)

and the above values of p and q, produced the coefficients p = -2.0

and q = -2.0, correct to 16 decimal digits. The polynomial was deflated

and the roots are -1 + 1, -1 + i, and 1.
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V. Conclusion

We conclude that Bairstow's method can be Aade to work successfully
to find the roots of many polynomials. A relatively simple starting
method may be used to make initial approximations to a quadratic factor
of a given polynomial and Bairstow's methéd will often converge
successfully. However, we have illustrated examples of and provided
methods to correct cases where the Bairstow iteration scheme did not
converge on its own. If we accept the assumption that we are to use
Bairstow's method to find both real and complex,single and multiple
roots, then each of these correction techniques, or similar alternatiﬁes,
is necessary. Bairstow's method is attractive becauserof its fast rate
of convergence as compared to other methods, but it 1s less popular
because its convergence is unreliable. It is yet to be determined
whether the additions described here will make it competitive with other
methods. The author hopes that the corrective routines will add
minimal execution time to the algorithm and that this method will prove

to be faster than and at least as accurate as present methods.
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