ANALYSIS OF RECTANGULAR CONCRETE TANKS
CONSIDERING

INTERACTION OF PLATE ELEMENTS

by

Douglas G. Fitzpatrick

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

Civil Engineering

APPROVED:

(Jf. J. H. Moore, Chairman

Dr. R. M. Barker Pr¥of. D. A. Garst

December 1982

Blacksburg, Virginia



ACKNOWLEDGEMENT

The author would like to thank his major advisor, Dr. J. Herbert
Moore, Professor, Civil Engineering for his guidance and assistance during
the course of his studies.

Thanks is also extended to Dr. Richard M. Barker and Prof. Don A.
Garst for their support and teaching during the author”s studies at
Virginia Tech.

The author wishes to thank the Department of Civil Engineering for
their funding of this study and for their financial support during his
first year of study.

Finally, the author is grateful to his mother and father for their
support and encouragement during his collegiate education and special

thanks is given to his mother for helping with the typing of this thesis.

ii



TABLE OF CONTENTS

I. INTRODUCTION AND SCOPE . . . . . . . . . .
IT. LITERATURE REVIEW . . . . . . ¢« . .« « « &
ITII. DEVELOPMENT OF ANALYSIS . . . . . . . . .
Finite Element Approach . . . . . . .

Finite Element Theory in General Terms

Development of Rectangular Element in Combined

Extension and Flexure . . . . . .

Coordinate Transformations . . . . . .

IV. PROGRAM DEVELOPMENT . . . . . . « « « . .

Coordinate Systems . « « o « ¢ o o« o &

Loading Considerations . . . . ... . .

V. DISCUSSION OF RESULTS . . .« « ¢ & o « o« &

Comparison with Known Solutions . . .

Moment Coefficients . . . . . . . . .

VI. THE MOMENT DISTRIBUTION PROCESS . . . . .
General Formulation . . . . . . . .

Extension to Tank Problem . . . . . .

Determination of Fixed-end Moments

Determination of Stiffness Characteristics

Example Problem . . . . . . . . . . .
VII. CONCLUSIONS. . . « v ¢ ¢ ¢ ¢ ¢ o o o o o &

VIII. BIBLIOGRAPHY . . . . . ¢« ¢ ¢ ¢« ¢ ¢ ¢ ¢« o &

iii

Page

15
20

23

23

25

28

28

35

38

38

39

40

42

52

58

60



IX. APPENDICES . ¢ ¢ ¢ & ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o 62
Appendix 1. One and Two Plate Fixed-end Moment Tables 63
Appendix 2. Floor Stiffness Factors . . . . . . . . . 67
Appendix 3. Program Subroutine Descriptions . . . . . 79
Appendix 4. Program Listing . . « « ¢« ¢« ¢« ¢ o« ¢« « « « 83

Xe VITA © « o 4 o o o v 4 o o v o 4 o o v & s o o v o« o o . 145

iv



Figure

Al.
A2,
A3.
A4,
A5,
Ab.
A7.
A8.
A9.
AlO.
All.

Al2.

Typical Element

LIST OF FIGURES

. « o

One quarter of tank

PCA coordinate system

.

Floor stiffness factor, 10” height .

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Floor

stiffness
stiffness
stiffness
stiffness
stiffness
stiffness
stiffness
stiffness
stiffness
stiffness
stiffness

stiffness

stiffness

stiffness

stiffness

factor,
factor,
factor,
factor;
factor;
factor;
factor;
factor;
factor;
factor;
factor;
factor;
factor;
factor;

factor;

10° height . .

various heights

various heights

b/a
b/a
b/a
b/a
b/a
b/a

b/a

b/a

b/a
b/a
b/a

b/a

1.0, c/a
1.0, c/a
1.0, c/a
1.0, c/a
1.0, c/a
1.0, c/a
1.0, c/a
1.0, c/a
1.0, c/a
1.0, c/a
2.0, c/a

2.0, c/a

]

1.0, y
1.0, y
2.0, y
2.0, y
2.0, z
2.0, z
3.0, y
3.0, y
3.0, z
3.0, z
2.0, y

2.0, y

Page
10 & 16
24
29
47
48
49
50
67
68
69
70
71
72
73
74
75
76
77

78



LIST OF TABLES

Tables Page
1. In-plane element stiffness matrix . . . « « « ¢« « « « 19

2. Plate bending element stiffness matrix . . . . . . . . 2]

3. Comparison with known solutions; 3 sides fixed,
1l side free . . . ¢ ¢« ¢ ¢ v o 0 v v v e e e e e e 3]

4, Comparison with known solutions; 2 sides fixed,
1 side free, 1 side simply supported . . . . . . . 32

5. Comparison with known solutions; tapered wall
thickness . . .« ¢« ¢ ¢ ¢ v ¢« v o o v e e e e 0. 34

6. Three plate moment coefficients . . . . « « ¢« « « « & 36
Al. Single plate fixed-end moment coefficients . . . . . . 63

A2. Two plate fixed-end moment coefficients . . . . . . . 65

vi



I. INTRODUCTION ANL SCOPE

Rectangular tanks have generally been designed as an assemblage of
plates with appropriate boundary conditicns along the edges. The Portland
Cement Association (PCA) published a bulletinl in 1969 which contained
moment coefficients for plates with triangular and uniform pressure distri-
butions, given boundary conditions and various ratios of length-to-height.
The bounday conditions for these plates were either clamped, simply
supported or free.

A clamped edge is defined as one that is moment resistant and no
rotation or displacement of the joint or edge is possible. A simply sup-
ported condition is one that does not permit displacement; however, the
edge is non-moment resistant. A free condition permits displacement aﬁd is
non-moment resistant. A fixed edge is one that is moment resistant but
rotation of the joint is possible.

These three conditions do not accurately represent the joints in a
rectangular tank as most often built. Most concrete tanks are built with
monolithic wall-to-wall and wall-to-footing joints. Assuming monolithic
construction, the angle between the tangents to the original surfaces of a
wall-to-wall or wall-to-floor joint remain fixed, but the joint is free to
rotate. Consequently, the clamped condition is only an accurate boundary
condition for the wall-to-wall joints in a square tank under symmetric
loading. It is also very difficult to construct a truely unrestrained and
non-moment resistant joint that is resistant to leakage. Therefore, the
fixed boundary condition as herein defined best represents the true field

condition in tanks.



In practice, a moment distribution type of balancing is sometimes
used to provide for the continuity and joint rotations possible at an edge.
The unbalanced moments at a joint, which develop from unequal lengths of
walls and footings or different loading conditions on adjoining plates, are
redistributed based on the relat.ve stiffnesses of the adjoining plates.

Although this procedure is easy to carry out, a problem arises in
determining the stiffness of a given section of the walls or floor when
balancing moments in a strip through the footing and walls. A free
condition at'the top edge of the wall in a strip would imply that there is
no resistance to rotation and this section would have zero stiffness. The
strip, however, is removed from the continuity of the plate which provides
resistance to rotation. Some designers use the "fixed-end" stiffness of
the floor and two-thirds the "fixed-end" stiffness (4EI/L) of the wall to
determine the relative stiffnesses at such a joint. A similar situation
occurs when balancing moments in a horizontal strip through the four walls.
The fact that the joint at the far end of the wall rotates in rectangular
tanks and that the cross—section is removed from the continuum of the plate
does not permit an accurate assessment of the stiffness of the walls or
floor at a joint.

The purpose and scope of this paper is to develop a program that de-
termines the bending moments at a number of locations in the walls and
floor, treats these as plates, and takes into account the rotations of the
joints. The finite element method of analysis is chosen because of the
flexibility and ease with which it can handle arbitrary loadings and
boundary conditions. The materials used are assumed to be elastic, homo-

geneous and isotropic. To enable the practitioner to determine some



extreme moment values for design of rectangular concrete tanks, a moment
distribution type of process is also developed from the finite element
results.

This paper is limited to a study of bending moments in tanks with

four walls and a footing, built integrally.



II. LITERATURE REVIEW

The analysis of rectangular concrete tanks with the floor built
integrally with the walls has not been fully addressed in any publicationms.
There are no tables complete with moment values for variable sizes of tanks
that consider the partial restraint and continuity of the plate inter-
sections, nor has there been an appropriate approximate method developed to
determine moment values along the entire edge of interconnected plates.

PCA Bulletin ST-631 contains moment values for plates with edges that
are either clamped, simply supported or free (hereafter referred to as
conventional boundary conditions). It also contains two tables that
account for wall-to-wall interaction in rectangular tanks, but no wall-to-
footing moment transfer. The bottom edges of the walls of these tanks are
assumed to be simply supported. The author was unable to determine from
PCA the basis of or method used to prepare these tables.

The finite element method, which is used in this paper to solve the
interaction problem, has been used successfully to solve single plate
problems with conventional boundary conditions. Jofriet2 developed several
tables of moment coefficients when he determined the influence of nonuni-
form wall thickness on vertical bending moments and on horizontal edge
moments in walls of leﬁgth-to-height ratios greater than three. His
solutions, however, only included conventional boundary conditions.

Davies and Cheung3 used the finite element method to determine
coefficients for moment values in tanks but assumed that the wall-to-wall
joints were clamped, the top edges were either free or simple supported and

the bottom edges were simply supported or clamped. In an earlier article,4



Cheung and Davies analyzed a rectangular tank with a specific ratio of
dimensions and assumed (a) the bottom edges of the walls were fully
clamped, and (b) the tank was supported on dwarf walls around the peri-
meter. The wall-to-wall and wall-to-floor joints were monolithic.

Davies did provide for the rotation of the wall-to-wall joint but
only for a few very specific cases and generally only at one location, the
center of the bottom edge of the wall. In one of his first articles5 Davies
described a moment distribution process for long rectangular tanks. The
stiffnesses of the floor and walls in a cross section were equal to the
flexural rigidity divided by the length of the element. The joints at the
far end of an element were assumed to be clamped, therefore his distri-
bution coefficients did not reflect the ability of the joint to rotate.
The majority of his paper was devoted to developing easy methods for
determining the fixed-end moments in the floor for a foundation of elastic
material,é' granular soil and cohesive soil. He used simplified limiting
reaction pressures for the soils. This procedure was only used at one
location in the wall and no collection of moment values for the whole
system was given. If the tank was open at the top, Davies determined his
bending moments directly from statics, that is, the wall acted like a
cantilever, which does not reflect the continuity of the wall.

In another paper,7 Davies used a classical approach to take into
account the rotation of the plate intersections. He assumed the tank was
square so that the vertical edges could be clamped and the bottom edge of
the walls were elastically restained. He assumed a parabolic distribution
of displacement in the plate along the bottom edge and used that to solve

the fourth-order ordinary partial differential equation governing plate



deflection for the coefficients of displacement in the vertical direction.
The coefficients were only determined at the center of the lower edge of
the wall. The solutions at the bottom edge of the wall for a clamped
condition and simply supported condition were superimposed to obtain an
estimation of the rotational stiffness at that point.

The same procedure was carried out for the floor so that the relative
stiffnesses between the two members was found for the purpose of
distributing the unbalanced moments. This provided a possible solution at
the one location but no comprehensive list of moment values was determined
for the entire edge along the bottom. A general case of a rectangular tank
was not considered.

In a third paper,8 Davies considered different support conditioms.

He assumed that part of the floor could lift off the support and he
developed a stiffness coefficient at that point based on the approximation
that the section acts like a cantilever beam. However, this procedure was
carried out at only one location, the center of the wall, and was subjected
to a number of limitations.

In a later article,9 Davies improved upon his previous solution of a
tank resting on a flat rigid support when he assumed a polynomial type
function to approximate the displacement of the floor. His results
correlated well with experimental results but he only determined and
compared an analytical moment at one location.

10 to determine the be-

Davies and Long worked together on a paper
havior of a square tank on an elastic foundation. They solved the Levy and
Naviers problems for the stiffness of the floor slab resting on a Winkler

foundation and combined this solution with the solution of a previous



paper7 to determine moment values. The limiting case, though, was a square
tank and moment values were only compared at the center of the lower edge
of the wall.

Brenneman, in his masters thesisll at Virginia Polytechnic Institute
and State University, developed a finite element program to determine
moments in folded plates. It was, however, limited to fold lines being
parallel to each other. Beck12 expanded and developed Brenneman’s program,
and compared moment values with those in the PCA bulletin. Beck assumed
the bottom edge of the walls was simply supported. Due to the limiting
requirement that the axes of the folds be required to be parallel, the
program was unable to provide for wall-to-floor interaction and moment
transfer.

Articles by Wilby,13 Lightfoot and Ghali,14 and Moody15 contained
information that was not directly related to this problem.

In summary, a few very specific problems have been solved to
determine moment values at a few locations in a rectangular concrete tank.
Most of these solutions were long and very theoretical, and would not
provide the practicing engineer a quick and easy, yet good, approximate

method for determining the moment values throughout a tank.



III. DEVELOPMENT OF ANALYSIS

Finite Element Approach

The finite element method is used in this analysis because of the
versatility and ease with which arbitrary loadings and boundary conditions
can be handled. The plate continuum is approximated by a finite number of
elements, connected at their nodes, that very closely approximate the
behavior of the continuum. The finite element procedure that was developed
by Brennemanll is extended in this paper to permit the analysis of a tank
with monolithic walls and floor and also to allow rotations at joints
between the plates. The detailed development of the formulation for the
finite element was covered in Brenneman”s paper and is only summarized
here. Although a triangular element is more suitable to matching irregular
boundaries, a rectangular element is used to model the structure because
Clough and Tocher16 have found this element to converge faster and provide
more accurate answers than the triangular element.

The equation governing the solution of the finite element problem is

given as:

(K] {q} = {Q} (1)
where
[K] represents the stiffness matrix of the entire system de-
veloped from an approximate displacement function,
{q} is a column vector containing the unknown nodal displacements and

{Q} is a column vector containing the loads acting on the system.



The three matrices used in equation (1) must be in the same coordinate
system.

The load vector is generally an easy value to obtain but the stiffness
matrix of the system is a critical value. A poor approximation of the
stiffness of the system could permit the system to behave in a fashion that
does not accurately represent its true behavior. Because the elements are
connected at their nodes, there are constraints that must be applied to the
approximate displacement functions which enable the discretized system to
behave more like a continuum. These constraints require that the dis-
placement pattern provide for:

(1) rigid body displacements - so statics is not

grossly violated,

(2) constant strain - limiting case for a very fine

mesh,

(3) internal element continuity and

(4) continuity at element interfaces - to avoid in-

finite strains at element boundaries. (This
condition can be relaxed and still maintain

convergence, although not monotonic &onvergence.)

Finite Element Theory in General Terms

The boundaries of a finite element are defined by its nodes (see
Figure 1). The displacement pattern or shape function, which satisfies the
aforementioned criteria, is used to uniquely define the internal displace-
ments in an element given the displacement at the nodes. The displacement

function can be written in matrix notation as:
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{u} = [M] {o} (2)
where
{u} = internal displacements at any point in the element,
[M] = coordinates of any point in the element and
{e} = generalized coordinates.

The nodal displacements {un} can be found by:

{un} = [A] (o} (3)
where

[A] is obtained by evaluating [M] at the proper node.

Now the undetermined coefficients in the displacement function can be

found by:

{o} = [A]7 {u_} (4)

Combining equations (2) and (4)

{u} = [M] (A" {u_}
{w} = [N] fu_) (5)

we obtain the internal displacements of an element as a function of the
nodal displacements. Strains, which are obtained by differentiation

of the displacement, can be written in matrix form as:
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{e} = [B] {un} (6)
Stresses are related to strains by the constitutive matrix [C] as:
{0} = [c] {e} (7)
Combining equations (6) and (7)
{o} = [c] [B] {u } (8)

we obtain the stresses as a function of the nodal displacements. The

potential energy of a system can be defined as:
I =U+W (9)

where

U is the strain energy of the system and

Wp is the potential energy of any external loads.17

The potential energy of the system can be written in matrix form as:

n = JI, €y eyav-Jrpu (10)

ii
where

P represents any applied loads.
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Substituting equations (6) and (8) respectively, the following equation is

obtained:

.

mo=[], @ T (817 [c] [B] {u} av-]Pu (11)
° n n 11

The system is required to be in equilibrium; thus the minimum potential
energy must be found. In order to obtain the minimum potential energy,
calculus of variations should be used because of the large numbers of
nodal displacements.

Taking the first variation of equation (11) and setting it equal

to zero yields:

[I], 18T [c] [B] {q} &V - P =0 (12)
V.

1

This is in the same form as equation (1) where

(k] = [ff (8" [c] [B] av (13)
{Q} = P, (14)
1

Once the strain-displacement matrix [B] is found, the local element
stiffness matrix [k] can be determined. The system of local element
stiffness matrices are then assembled into a global coordinate stiffness
matrix by making appropriate transformations from the local to global
coordinate system.

A method of assembling the global stiffness matrix is used so that

only the stiffness terms from a degree of freedom at a node are entered
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into the global stiffness matrix. In other words, if a degree of freedom
is zeroed out at a node, its stiffness contribution is not added into the
global stiffness matrix. This procedure saves execution time for solving
the system of simultaneous equations and does not require any elimination
of rows and columns in the stiffness matrix. This does not permit an easy
method of applying prescribed boundary conditions. However, the scope of
this paper does not require prescribed boundary conditions, so this
omission is overlooked.

Once the stiffness matrix is assembled and the load vector deter-
mined, equation (1) is solved for the unknown nodal displacements. This
process requires that a large number of simultaneous equations be solved.
In his master”s thesis presented at Virginia Polytechnic Institute,18 Basham
compared the efficiency of several different types of equation solvers.
The Linpack equation solver is chosen for this program because it is easy
to implement into the program yet still has a shorter execution time than
some other schemes. |

After the displacements {un} at the nodes are known, the forces are

determined by equation (1).
{£ }={k} {u}
e e

where {f_ } and {u } are vectors containing the element nodal forces and
element nodal displacements, respectively. This completes the development
of the finite element in general terms.

Once an appropriate displacement function is chosen, the stiffness

matrix of the element can be determined and the element forces calculated.
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Development of Rectangular Element in Combined Extension and Flexure

As mentioned earlier, the details of the development of the element
stiffness matrix will not be covered in detail in this paper. The finite
element developed is rectangular with four corner nodes and 24 degrees of
freedom, six at each node. Associated with each degree of freedom is a

force, in matrix form

93 £
9 5

{q } = and {f } = (15)
€ qk e fk
9q £

where the subscript e denotes the entire element and the subscripts i, j, k
and 1 denote node numbers as shown on Figure 1 (repeated). A typical node

has the following displacements and forces associated with it:

u &L
i i
vy Vi (16)
Oxi Mxi
- = {
(q;} = {5 and () = 4,
y1 yi
W, W,
i i
0 . T .
zi z1i

These displacements and forces at a node are broken up into three com-

ponents. The first is the in-plane displacements and forces given by:

u

U
p_J] 1 p_J] 1 (17)
{qi} = v, and {fi} = Vi
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The second group of terms consists of the displacements and forces

associated with plate bending. That is,

M .
xi xi
A
{qi}b = Oyi and {fi}b = hyi (18)
W, w
i i

The final term is the rotation and corresponding force associated with
twisting in the normal (perpendicular) direction of the plate. This single
degree of freedom is considered separately in a later section.

The local element coordinate system is also shown in Figure 1 and is
important when tranéformations from local to global coordinates are
considered.

The stiffness matrix for an element is a 24 x 24 matrix which can be
subdivided into 16 submatrices, each a 6 x 6 matrix containing in-plane,

bending and twisting characteristics such that

k.2 oo 0
1] b
[kij] =] 0 Ky 0 i,j = 1,4 (19)
0 0 ‘.7€
ij

where

[k..]° is a 2 x 2 matrix that contains the in-plane stiffness of the
plate element,
is a 3 x 3 matrix that contains the bending stiffness terms

of the plate element and
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[k, ] is a 1 x 1 matrix that contains the twisting stiffness term

normal to the plane of the plate.

Consider first the determination of the in-plane stiffness matrix
terms. This sub-element consists of four nodes with two degrees of freedom
at each node, a displacement in the local l-direction and a displacement in
the local 2-direction. Therefore, the displacement function that is chosen
must, by necessity, have eight unknown coefficients. Paralleling
Brenneman”s work, the following displacement function will be adopted as

19 20

suggested by Zienkiewicz and Cheung ° and used by Rockey and Evans.

u(x,y) =a +ax+ay+axy+ (vV/(1-v)a - Lo )y?
1 2 3 b 0 8

v(%,y) =a +ax+ay+axy+ (vV/(I-vIia - ko )x?
5 6 7 8 8 L

(20)

By performing the formulation as given by the previous section, the
stiffness matrix is determined and shown in Table 1 on the following page.
The sub-element required for the development of the plate bending
element also has four nodes but has three degrees of freedom at each node,
a displacement in the local 3-direction and rotations in the local 4-and 5-
directions. Therefore, a displacement function with 12 unknowns must be
chosen. The plate bending displacement function adopted for this paper was

also suggested by Zienkiewicz and Cheung.19

2 3

w(x,y) =a +ax+ay+ax
2 3 L

+ a xy + o y2 + 0 x
1 5 6 7

(21)

+ a xzy + a xy2 + o y3 + a x3y + a xy3
8 9 10 11 12

Although this element does not provide compatibility for the normal slopes

16
between elements, Clough and Tocher have shown that this displacement



k 1P =
e

Et
180(1-v?)

TABLE 1:

In-plane element stiffness matrix

EA/p+Bp D C/p-Bp F -A/p+Bp -F
Ap+B/p -F -Ap+B/p F Cp-B/p
A/p+Bp -D ~C/p-Bp D
Ap+B/p D -Cp-B/p
A/p+Bp -D
Ap+B/p
sym.
where:
p = a/b
A = 60 + 30v2/(1-v)
B = 22.5(1-v)
C = 30 - 30v2/(1-v)
D = 22,5(1+v)
F = 22.5(1-3v)

61
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function will provide satisfactory results. The stiffaess matrix for the
plate bending element is shown in Table 2.

These two independent groups of stiffness terms can now be combined
into one stiffness matrix as shown by equation (19). This permits the

simultaneous solution of both problems.

Coordinate Transformations

The rectangular element developed in the previous section has only
five degrees of freedom at each node. In order to assemble these elements
in three dimensions, a sixth degree of freedom must be available so that
proper mapping of displacements, forces and stiffness coefficients is
possible. Brenneman11 resolved this problem by incorporating three
different coordinate systems.

The five degrees of freedom already developed included three dis-
placements and two in-plane bending rotations. The sixth degree of freedom
that needs to be examined is the twisting stiffness normal (perpendicular)
to the plane of the plate. If the magnitude of this twisting stiffness is
considered, it is intuitive that the resistance to rotation in this
direction is considerably larger than the in-plane bending stiffnesses.
Therefore, it is assumed for the purposes of this analysis that the
twisting stiffness normal to the plate is infinite and can be approximated
as a fixed condition.

Although this approximation does not benefit the general folded plate
problem, it does, however, lend itself quite well to the case where the
plates are joined at 90° angles to each other provided the global coordi-

nate system coincides with the orientation of the plates. The normal



TABLE 2:
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[SA -SB -SD SG O -SH SN

SC SE 0 SI SJ 0
SF SH SJ SM SO
SA SB SD Sp

SR
SS

ST
SU
SB
SC

SC SE 0
SF S
[ke]b _ Q
SA
Sym,
where: A, B are half of the element dimensions
p = a/b
Dx = Dy = Et3/(12(1-v2))
D1 = vDx
Dxy = 0.5Dx(1-v)
PDx = Dx/p?
PDy = Dyp?
SA = (20PDy + 8Dxy)B/15A
SB = DI
SC = (20PDx + 8Dxy)A/15B
SD = (30PDy + 15D1 + 6Dxy)/30A
SE = (30PDx + 15D1 + 6Dxy)/30B
SF = (60PDx + 60PDy + 30Dl + 84Dxy)/60AB
SG = (10PDy - 2Dxy)B/15A
SH = (-30PDy - 6Dxy)/30A
SI = (10PDx - 8Dxy)A/15B
8J = (15PDx - 15D1 - 6Dxy)/30B
SM = (30PDx - 60PDy - 30Dl - 84Dxy)/60AB
SN = (10PDy - 8Dxy)B/15A
SO = (-15PDy + 15D1 + 6Dxy)/30A
SP = (5PDy + 2Dxy)B/15A
SQ = (15PDy - 6Dxy)/30A
SR = (10PDx - 2Dxy)A/15B
SS = (30PDx + 6Dxy)/30B
ST = (5PDx + 2Dxy)A/15B
SU = (15PDx - 6Dxy)/30B
SX = (-60PDx + 30PDy - 30Dl - 84Dxy)/60AB
SY = (-30PDx - 30PDy + 30Dl + 84Dxy)/60AB

Plate bending element stiffness matrix

SP
0
-sQ

SN

0
ST
SU
0
SR
SS
0
SI
-SJ
-SB
sC

5q |
-SU
SY
-S0
-SS
SX
-SH
-SJ
SM
SD
-SE
SF
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twisting resistance of the plates can then always be identified and clamped
as a boundary condition to eliminate that stiffness term in the system
stiffness matrix. This makes it possible for the solution to be indepen-
dent of the normal stiffness of an eleoment.

The completed local element stiffness matrix at a node would be a
6 x 6 matrix containing three submatrices. The first submatrix, a 2 x 2,
would contain the in-plane stiffnesses; the second submatrix, a 3 x 3,
would include the bending stiffnesses of the plate; and the third, a 1 x 1,
would be a zero provided as a dummy value only to aid in the transformation
of coordinate systems.

Rectangular tanks are obviously a good example of plates that meet at
90°. At wall-to-wall joints, a plate in one direction provides an in-plane
fixed support to the adjoining plate, preventing vertical rotation in the
second plate yet allowing a moment to be developed there. The same support
would be provided to the first plate from the second.

In the corners of the tank, the floor plate provides a fixed condi-
tion at the bottom node of the wall-to-wall joint, but still allows the
joint to rotate throughout its full height. The same fixed condition holds
true for the walls and the accompanying wall-to-floor joint.

In summary, throughout the interior of the plate, all the normal
rotations to the plate are fixed. At the edges, two rotations are con-
strained (one normal restraint from each plate) yet allowing the entire
joint to rotate. At the cornmers, three rotations are constrained (one from

the normal restraint of each of the three plates).



IV. PROGRAM DEVELOPMENT

Coordinate Systems

At this time it is important to mention the coordinate systems and
some terminology that is used throughout the remainder of the paper.

One quarter of the rectangular tank is analyzed to take advantage of
symmetry. This minimizes the number of degrees of freedom and the core
space required and greatly reduces the execution time of the solve routine.
The boundary conditions are automatically applied at the lines of symmetry
to decrease user input.

Figure 2 shows a sketch of some of the more pertinent information.

It is important to note the orientation of the global axes. The origin of
the system is located at the corner of the tank and the axes are coincident
with the joints where the plates meet. Plate 1 lies in the global 1-2
plane; plate 2 lies in the global 2-3 plane; and plate 3 lies in the global
1-3 plane. Element dimensions are represented by c, a, and b in the X-, Y-
and Z-directions, respectively. The local coordinate system has already
been illustrated in Figure 1.

The node numbering scheme proceeds across plates 1 and 2 down to the
floor, and then across the floor (with constant X). Assuming eight
elements in each of the three directions, a few of the node numbers have
been shown on Figure 2.

Three general categories of problems that are analyzed; namely, a
single plate problem, a two plate problem and a three plate problem. All
three problems have the normal twisting degree of freedom automatically

eliminated. The one plate problem corresponds to any single plate analysis
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and will be characterized by a description of the boundary conditions and
loading parameters.

The two plate problem refers to the analysis of two plates meeting at
900. The two plates represent the walls in this paper and represent plates
1 and 2 of TFigure 2. The top edge is always considered free and further
described by the boundary condition along the bottom edge. Symmetry is
utilized and the appropriate boundary conditions are automatically
generated along the two cut edges. The joint between the two plates is
free to displace and rotate as governed by the loading conditioms. This
analysis allows wall-to-wall interaction.

The third category, the three plate problem, has appropriate boundary
conditions automatically generated to simulate the symmetry of one quarter
of a tank (walls and floor). In addition, the floor of the tank is edge-
supported. This is discussed in a later section. The top edge of the
walls are always considered free. The analysis of this problem is
generally characterized by the type of loading acting on the floor slab.

By analyzing the three plates together as a unit, it is possible to obtain
the interaction of the three plates and permit rotations of the joints that

develop from the unbalance in moments.

Loading Considerations

Before a solution to equation (1) can be found, consideration is
given to the loads acting on the tank. The loading condition for the walls
and floor is handled separately. For the walls, there are generally only
two types of loading conditions that normally occur on the walls; namely, a

triangular load or a uniform load. The triangular load represents
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hydrostatic pressure from a fluid or earth pressure from a soil. The
uniform load is used to model a surcharge on the tank. The program is
designed to handle these loading conditions for a variable height and they
can be internal or external loads.

There is an approximation inherent in the development of the load
vector for these problems. The loads are idealized as concentrated loads
acting at the nodes. The magnitude of the node load is determined by
multiplying the tributary area around the node, generally half the ele-
ment“s dimension in each direction, by the average pressure acting over
that area. This does not, however, create a significant error provided the
mesh chosen is small enough (say 8 x 8).

Two types of loadings are considered for the floor slab. The first
type of loading is the inclusion of the stiffness of the soil into the
system stiffness matrix, and the second is the consideration of a strip
load around the perimeter of the floor slab.

The inclusion of the soil stiffness into the system stiffness matrix
is accomplished by approximating the stiffness of the soil in units of
force per length and adding this value along the diagonal of the system
stiffness matrix at the degrees of freedom in the vertical direction for
the nodes of the floor slab.17

It is anticipated that a triangular load will normally be applied to
the tank”s walls, a strip load to the floor slab, and the soil stiffness
included as mentioned above. To do this, it is necessary to provide a
restraint in the vertical direction so that the system would remain in
equilibrium. One solution is to support the floor slab on the edges in the

vertical direction. However, this does not accurately represent the action
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of the system as a whole. It is intuitive that the tank will undergo a
settlement if it is filled with a material so such an edge restraint is not
appropriate. Another possible solution is to consider the floor slab to be
resting on a bed of springs sandwiched between two planes of nodes. It was
decided to eliminate the soil stiffness from this study and leave that
development to others as it is beyond the initial scope of this paper.

A simpler solution is developed assuming the floor slab to be resting
on a homogeneous soil that reacts with a uniform pressure. The settlement
of the tank is included in this approximation by assuming that the weight
of material inside the tank and the weight of the floor slab cause a
uniform settlement of the entire tank. From this settled position,
displacement in the vertical direction is constrained. The only remaining
unbalanced force then is the weight of the walls.

Paralleling the current AISC steel code, it is assumed that the shear
from the walls is transferred through the footing at a slope of 2.5:1. The
weight of the walls is then distributed uniformly over a strip around the
perimeter of the floor with a width of the thickness of the wall plus 2.5
times the thickness of the footing. This appears to be a better
approximation to the distribution of shear rather than distributing the
weight of the walls uniformly over the entire floor slab because in a large
tank it is difficult to imagine part of the weight of the wall carried by
the center portion of the tank.

Now that the stiffness matrix of the finite element has been deter-
mined and the loading conditions approximated, equation (1) can be solved
for the unknown nodal displacements. With this information, the forces are

determined at all the nodal points.



V. DISCUSSION OF RESULTS

Comparison with Known Solutions

Since a program was developed for this paper, it was important to
verify its accuracy with well accepted solutions. The analysis of a single
plate was considered first because there are many sources of solutions
available for this problem with various loadings.

The value of Poisson”s ratio used for all of the analyses was 0.2.
The modulus of elasticity of the concrete was chosen to be 3000 ksi. The
tanks or plates analyzed were genmerally 10° in height, but cases where the
wall height was not 10 are mentioned in later sections.

At this time, it is appropriate to introduce some terminology that is
used in the remainder of this paper to describe various cross-sections
through the tank. A redefining of coordinates is introduced because most
practioners who design tanks are familiar with the coordinate system that
was adopted by the PCA when it published bulletin ST—63.1 That coordinate
system is shown in Figure 3. The origin of the coordinate system is moved
to the center of the tank and the letters a, b and c now represent the full
dimensions of the tank in the X-, Y- and Z-directions, respectively. A
cross—-section cut through the center of plate 1 by an X-Z plane is referred
to as a strip at y = 0. A strip cut by an X-Z plane through the quarter-
point of the wall and floor is located at y = b/4, etc. Mx is a vertical
moment in the X-direction (or around the Y or the Z axes). My and Mz are
horizontal moments in the Y- and Z-directions, respectively (or around the

X axis).
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One of the first problems compared with a known solution was a single
plate problem having three edges fully clamped, one edge free, and a
triangular load as obtained from normal water pressure applied to it.
Moment values calculated by the finite element program were compared with
those from the PCA bulletinl and Jofriet.? Shown in Table 3 is a com-
parison of the horizontal and vertical moments in a cross-section at y = 0.
The ratio of width-to-height (b/a) is 2.0. Eight elements are used in each
direction and the plate is of uniform thickness.

The maximum vertical and horizontal moments calculated appear to
compare fairly well with the PCA values and Jofriet. There are a few
places though, where the percentage difference between the answers is
fairly significant, caused by the order of magnitude of the numbers. The
order of magnitude of the numbers changes by a factor of more than 10.
Therefore the relative percent of change appears large for the smaller
momernit values.

A single plate problem with the two sides clamped, top free, bottom
simply supported and a triangular load applied to it was considered. The
moment values were compared at y = 0, y = b/4 and y = b/2, and the results
are more favorable than the first case. There is gfeater error at y = b/2,
but the comparison with the PCA bulletin at y = 0 is shown in Table &4 for
simplicity.

The program developed for this paper is capable of handling tapered
wall thicknesses, so it was desirable to compare that solution with a known
solution. Jofriet’ has a few limited tables of moment coefficients for
walls with tapered thickness. A wall with three edges clamped and one edge

free was compared for b/a = 2.0. The thickness at the bottom of the wall
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TABLE 3: Comparison with known solutions
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was 1.5 times the thickness at the top. Correlation with Jofriet”s
solution is quite good at y = 0, y = b/4 and y = b/2. The comparison at
y =0 is shown in Table 5.

The PCA table that is contained in bulletin ST-63, and which accounts
for wall-to-wall interaction for the case when the bottom edges of the wall
are simply supported by the floor was also used to check results from the
program. Adequate coorelation exists for this case also.

The strip loading (vertical load on the footing slab) was also
checked against a known solution. For this a single plate was clamped on
all four sides and a strip load was applied to it. The need for this
loading condition is explained in more detail in a later section.
Bauverlag21 developed an extensive collection of moment coefficients for
plates with various loadings and boundary conditions. From this book, a
solution for a strip load is obtained by superimposing the solutions of a
uniform load with that of an appropriate rectangular load of opposite sign.
The maximum moment at the edges for the finite element solution is compared
with Bauverlag”s values and very good correlation is found.

A plate problem with a triangular load and walls of equal length was
examined to check for round—-off errors in the solution process that might
have occured due to the increased number of degrees of freedom. The
answers were symmetric, as expected, because the vertical joint between the
walls does not rotate in a square tank. There is, however, a slight
difference with the moments that are listed in Table 3. These two problems
should have produced similar answers. Although the difference is very
small, it did warrant justification. Apparently the vertical joint in the

corner of the tank experiences an outward displacement due to the intermnal
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hydrostatic loading. This movement is eliminated by the fully clamped
condition assumed in the single plate problem. The two problems are there-
fore not exactly the same, which explains the small discrepency in the
moment values. The analyses performed on any two or three plate problems
in this paper do not have the vertical or horizontal edges between plates
constrained from this type of movement and therefore more accurately
represent the true behavior of the tank.

Referring to M.oody,15 Poisson”s ratio does appear to effect the value
of moments at the interior of a plate and this could be another explanation
for some of the discrepencies experienced with the known solutions. It is
believed that the PCA tables use 0.15 as the value for Poisson’s ratio.
Moody pointed out, however, that Poisson”s ratio has little effect on the

extreme moments of a plate which are most important to design.

Moment Coefficients

The program written for this paper determines the moment values at
the nodes in kip-inches. 1In an attempt to develop a set of tables similar
to the PCA tables, the moment values given by the program are divided by
half the element length to obtain units of kip-in/in, and then by the
specific weight of the fluid and the height cubed. For a constant b/a and
c/a ratio, the moment coefficients fluctuate slightly when the thickness of
the walls and floor are varied. However, referring to Table 6, for a
constant b/a and c/a ratio and the same floor and wall thickness, the
moment coefficients are not constant with varying height as they are in the
PCA tables for single plates. In other words, the moment coefficients in a

tank are a function of the height of the wall. In order to develop moment



TABLE 6: Three plate moment coefficients
= 2.0 c/a = 2.0
height = 10' height = 8'

walls = 8" walls = 12" walls = 8" walls = 12"

floor = 10" floor = 16" floor = 10" floor = 16"

Node M M M M M M M M
9 -0.082 -0.015 -0.086 -0.017 -0.085 -0.016 -0.091 -0.019

17 0.041 0 0.042 0 0.042 0 0.046 0
73 0.015 0.017 0.016 0.018 0.016 0.018 0.017 0.020
77 -0.077 -0.012 -0.081 -0.012 -0.080 -0.012 -0.087 -0.013
137 -0.004 -0.034 -0.002 -0.025 -0.005 -0.027 -0.001 -0.012
213 -0.002 -0.013 -0.004 -0.005 -0.004 -0.007 -0.005 -0.005
141 -0.031 -0.024 -0.050 -0.038 -0.037 -0.028 -0.070 -0.052
145 -0.027 -0.027 -0.043 -0.043 -0.032 -0.032 -0.060 -0.060
177 -0.025 -0.025 | -0.041 -0.041 | -0.030 -0.030 | -0.054 -0.054

9¢
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coefficient tables for the three plate problem (i.e., the tank), a group of
tables must then be calculated including several values of height for a
given set of b/a and c/a ratios, and varying floor and wall thicknesses.

To assemble such a collection of tables would be an expensive and lengthy
undertaking, and the designer might still lack the table needed to solve
his problem. With this in mind, the moment distribution process is looked

to as a possible solution.



VI. THE MOMENT DISTRIBUTION PROCESS

General Formulation

The moment distribution method is quite often used to analyze
symmetric beam structures that exhibit joint rotations when they are
loaded. The rotations develop from unbalanced moments at a joint, whose
values are subsequently balanced to provide equilibrium at that joint. The
unbalanced moment is redistributed to the adjoining members in proportion
to the relative stiffness of each. The main steps in the moment
distribution process are to determine the fixed-end moments, calculate the
distribution factors, and balance the moments.

In beam structures, the fixed-end moments are determined by locking
all joints and calculating the moments at the ends of the beams. A counter-
clockwise resisting moment at the end of a beam is considered positive in
this paper. It is then necessary to find the stiffness of each member
coincident at a joint so that the relative stiffnesses can be found. The
stiffness of a member is determined by imposing a unit rotation at one end
of the beam and calculating the moment required to cause this unit rotation
(as a function of EI/L). This stiffness value reflects the support condi-
tion at the far end of the beam. After the member stiffnesses are calcu-
lated, the unbalanced moments are redistributed proportional to the rela-
tive stiffnesses at a joint. Any external joints are unlocked, balanced
and left unlocked. Internal joints are sequentially unlocked and balanced,
one at a time. Before the joint is locked, the distributed moment is
carried-over to the far end of the beam. For beams of constant cross-

section, a carry-over factor of 1/2 is used. The carry-over is performed
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only if the far end of the beam is clamped at the time the joint is
balanced. The balancing of internal joints is carried-out, one at a time,
until the carry-over factors are negligible.

In order to apply this process to the tank (an assemblage of three
plates), the fixed end moments of the system must be determined. Then the
relative stiffness between adjacent members must be calculated so that
unbalanced moments can be redistributed. This general process is extended

to accomodate a moment distribution method applied to tanks.

Extension to Tank Problem

In an effort to provide the practising designer with a reasonably
simple procedure for calculating some of the maximum moments in a
rectangular tank, the moment distribution method is modified to
redistribute and balance moments at the joints where the walls and floor
slab meet. The two main modifications to the moment distribution process
as it is applied to beams requires that modified fixed-moments be
determined and that the relative stiffnesses between the two plates be
calculated. With these two factors developed, the moment distribution
process is carried out exactly like the elementary procedure applied to
beam structures except that there is no carry-over to the top (or free)
edge of the tank.

For this paper, the balancing of the moments is only considered at
the joint where the walls and floor slab meet, later referred to as the
vertical direction. Since the beam structures can be discretized into
individual elements, a similar approximation consisting of two parts is

applied to the tank which is a continuum. First, the -tank system is broken
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down into two main sections. The two walls act together as one section and
the floor slab acts as the second section. Due to symmetry, each wall, as
it is referred to here, is actually only half the length of the wall of the
entire tank. The terminology used throughout this section only refers to
one quarter of the tank but can obviously be extended to the entire tank.

And second, each section of the tank is divided into strips which
provide the beam discretization. These strips permit moment distribution
to be carried out at any location along the joint where the plates meet,
however, for simplicity, the balancing is only performed at the center
(y =0, z =0) and quarter points (y = b/4, z = c/4) of the entire wall
(refer to Figure 3). With this discretization in mind, it is necessary to
determine the fixed-end moments on the individual strip elements and
calculate the relative stiffnesses of the strips at the joint where
balancing is considered.

Determination of Fixed-end Moments

As mentioned earlier, the determination of the fixed-end moments
plays an important role in the moment distribution process. It is
important to calculate the fixed-end moments in such a way so as to reflect
the behavior of the system. Considering the floor slab first, as a very
crude approximation, a strip in the floor slab could be idealized as a
"beam" removed from the continuum with appropriate loads acting om it.
These loadings are a uniform load over the entire length of the "beam" or
two sections of uniform load (of greater magnitude) at each end of the
"beam" that would represent the strip load. For any location along the
floor slab though, the fixed-end moments for this "beam" section would be

constant, yet, from plate theory, moments tend to decrease in magnitude
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toward the corner. Therefore, the "beam" idealization does not satis-
factorally represent the behavior of the floor slab.

A second and more suitable arrangement for calculating the fixed-end
moments at a location is to analyze the floor slab as a plate and use the
moment values of the plate solution at the proper location. This method is
adopted because it accurately represents the behavior of the plate. The
plate is analyzed with all four edges clamped and is loaded with a uniform
load or a strip load around the perimeter of the plate. From this point
on, the strip load is used to represent the reaction of the soil pressure
on the tank. The nature of this load is explained in a later section.

Some solutions for the moment values at the center and the quarter
points of a plate loaded with the strip load are included in Appendix 1.
The moment values are in kip-ft/ft/foot of wall height. The magnitude of
the loading is determined by dividing the weight of the walls by the area
of the strip around the edge of the plate. A fairly comprehensive table of
values computed by the finite element method is included in Appendix 1 for
several combinations of b/a and c/a. A slightly more extensive listing of
moment coefficients for this loading condition can be found in Bauverlag2
by superimposing uniform and partial load values.

With the fixed-end moments of the floor slab taken care of, it is
necessary to determine the fixed-end moments for the wall section. It is
anticipated that known solutions would produce satisfactory results for
this case, i.e., simply assume the wall-to-wall joint to be clamped and
calculate the fixed-end moments at the bottom by assuming that edge to be
clamped and the top edge free. However, this does not represent the wall-
to-wall interaction that occurs in long tanks. It is necessary to provide

a two plate solution that accounts for the horizontal interaction of the
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walls. The two plates (one quarter of the tank) have a clamped bottom edge
and free top edge. The vertical joint between the two plates is unre-
strained so that rotation can occur. The fixed-end moments shown in
Appendix 2 are calculated by the finite element method at the quarter points
and center and are used in conjunction with the corresponding moments from
the floor slab in the moment distribution process.

Determination of Stiffness Characteristics

To distribute the unbalanced fixed-end moments, it is necessary to
calculate the relative stiffness of the two strips that meet at the joint
between the two plates. Consideration is given to a process parallel to
that used by Davies,7 in which the stiffness of the wall was taken to be a
function of the clamped moment value and the hinged rotation at a given
location. However, to represent the interaction of the plates in the tank,
it is necessary to analyze a plate with elastically restrained edges.
Although the inclusion of the elastic restraint is a simple matter, the
accurate assessment Of its value is very difficult to determine for rectan-
gular tanks. But without the relative stiffness of the strips, it is not
possible to carry out the moment distribution process.

The moment distribution method can be considered to have three parts,
the fixed-end moment values, the relative stiffnesses of the members
involved, and the computed answer(balanced moments). Usually the first two
parts, as well as the distribution percentages, are known and the answer is
found. However, in this case, the fixed-end moments and the answer are
known. It is possible then to back-calculate for the relative stiffnesses
of the members. If the distribution factors are collected in a compact set

of tables, it is possible for the practicing designer to calculate the
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known solution using a simple moment distribution method. If the stiffness
coefficients are only a function of the b/a and c/a ratios, an easy-to-use
solution process can be developed to determine the balanced moments
provided by joint rotations in a rectangular tank without requiring
extensive tables to be developed to cover the moment coefficients for
various sizes of tanks.

This approach is adopted for this paper. By trial and error, the
relative stiffnesses of the two strips coincident at a joint are calculated
such that the subsequent moment distribution with the appropriate fixed-end
moments produces the moment at that location as determined by the finite
element analysis of the quarter of the tank. The fact that only the
relative stiffnesses of the adjoining members need to be found means that
the absolute stiffness of each member need not be determined. For
simplicity, the stiffness of the wall strip is taken as 4EI/L and the
stiffness of the floor strip is (f)4EI/L. I and L are the appropriate
properties of a given strip and f is the factor which is found by iteration
such that the calculated relative distribution factors produce the desired
solution; Since moment values are given in units of kip-ft/ft, a strip is
considered to be one foot (12 inches) in width.

The distribution factors are determined by dividing the stiffness of
a member by the sum of the stiffnesses at a joint. In this case there are
only two strips at a joint. It was hoped that a pattern in the plot of the
f factor would develop for various combinations of b/a, c/a, wall thickness
and floor thickness, yet remain independent of the height of the tank.

At this point, it is appropriate to provide an example to more

clearly show the moment distribution process and the effect of the £
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factor. Consider a tank with b/a = 2.0 and c¢/a = 2.0. The walls are 10"
thick and the footing is 12" thick. If the height of the walls is assumed
to be 10”7 (120") high, from Table Al the fixed-end moment of the floor slab
is found to be 0.219 (10) = 2.19 k-ft/ft at z = 0. From Table A2, the
fixed-end moment for the wall system is -0.086 (0.0624)(10)3=—5.37 k-ft/ft,
assuming the tank is filled with water under atmospheric pressure. The

stiffness of the wall is given by

_ 4EI _ 4(3000)(12)(10%)
w L 120(12)

S = 100,000 k-in
and the stiffness of the floor by

S¢

_ (£)4EI _ £(4)(3000) (12)(123) _ ,
= RS . 22003 = 86,400f k-in

The relative stiffnesses are then calculated as follows

_ 100, 000
w 100,000 + 86,400]f]

_ 86,400f
£~ 100,000 + 86,400([f]

The moment value that is obtained by the finite element program is

1.52 k-ft/ft. If we assume f = 0.744, we obtain

r = 0.609 and r. = 0.391
w f

and noting that clockwise rotations on member ends are positive, the moment

distribution process is carried out as follows, using a carry-over factor

of 1/2:
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This result compares quite favorably with the value from the program;
therefore, the assumed value of f is good.

It is intuitive that the wall and floor stiffnesses will increase as
they approach the edges of the tank. However, it appears as though the
wall increases its stiffness at a faster rate than the floor due to the
decrease in the f factor. This is probably attributed to the free edge at
the top of the walls. It provides little aid to the resistance at a
central strip but the support from the edges of the plate is more
pronounced at the outer strips.

Now that it is possible to determine the relative stiffness of the
strips coincident at a joint, several combinations of wall thickness are
considered for b/a = c/a = 2.0. A programmable hand calculator (HP-41CV)
was utilized to aid in the calculation of the f factor for the large number
of problems solved. Wall thicknesses used include 8", 9", 10" and 12" and

floor thicknesses include 10", 11", 12", 13", 14", 15" and 16" for the

initial b/a = c¢/a = 2.0.
The first group of f factors that were calculated at z = 0 for b/a =

c/a = 2.0 and wall height equal to 10° are plotted on a graph having the
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floor thickness as the independent variable and the f factor as the
dependent variable (see Figure 4 on the following page). What developed is
a family of curves that form an enclosed area in the vicinity of f = 0.75.
A similar graph developed at z = c/4 also forms an enclosed area close to
0.50 and is shown on Figure 5. For a tank 10° tall then, it is possible to
go to these graphs and determine the required f factor given the
thicknesses of the walls and floor, so that the moment distribution process
can be carried out.

This provides a simple solution for b/a = c¢/a = 2.0 and a 10” high
wall but the question still persists as to whether or not the f factor is
simply a function of the b/a and c/a ratios or whether or not it is also a

function of the height. In an effort to resolve this problem, several

different sizes of tanks are analyzed, but all have b/a = c/a = 2.0. The
heights of the different tanks include 77,8", 97 and 15”; the walls are 8"
and 12"; and the floors are 10" and 16" thick. This provides a framework
for interpolation of values for other combinations of wall and floor
thicknesses. The f factors for these problems were calculated and plotted
on the same graph as the 10” wall height to see if a pattern developed.
Figures 6 and 7 show all of these points plotted at z = 0 and
z = c/4, respectively. It is apparent then that the f factors are
independent of the wall height and are only a function of the b/a and c/a
ratios. A separate graph for each tank of different dimensions is
therefore not necessary as was required for the moment coefficients of the
three plate problem.

Since the f factor appears to lie in a certain area, it is not

necessary to plot as many points as was done for b/a and c/a equal to 2.0.
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Therefore, the wall thicknesses for further calculations only include 8",
10" and 12" and the floor thicknesses inclﬁde 10", 12", 14" and 16". This
provides a sufficient number of points so that interpolation can be used
for other combinations of wall and floor thicknesses.

Appendix 2 contains tables of the f factor for b/a = 1.0 and c/a
equal to 1.0, 2.0 and 3.0. Figures 4 and 5 with b/a and c/a equal to 2.0
are reproduced in Appendix 2 so that all the f factor graphs are located in
one place. It should be noted that some of the f factors are negative,
especially in the short walls of rectangular tanks. Although this is
unconventional, this value will provide the solution given by the finite
element program. The floor distribution factor is found by dividing the
stiffness of the floor (negative) by the sum of the absolute values of the
stiffnesses. The wall distribution factor is the absolute value of the
floor added to one (1), so that the total of the two factors is unity. It
is believed that the rotation of the vertical corner in a rectangular tank
provides an unnatural stiffness to the short wall of a tank with a long
side.

It is now possible for a designer, without the finite element pro-
gram, to perform the moment distribution process and calculate the critical
vertical moments at a joint between the walls and floor at the center and
the quarter points of the tank while providing for the interaction of the
plates as a system. The tables in Appendix 1 provide the required fixed-
end moment and the graphs in Appendix 2 provide the means for determining

the appropriate f factors.
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Example Problem

In order to demonstrate the use of the tables listed in the Appen-
dices and the procedure to calculate the vertical moments in a rectangular

tank, consider the following problem:

b/a = 1.0 wall thickness = 9"
c/a = 3.0 floor thickness = 13"

hydrostatic loading from the interior with w = 80.0 pcf

height = 127

Determine the balanced moments at z = 0, z = ¢/4, y = 0 and y = b/4.

Looking first at z = O:

_ 4(3000) (12) (93)

Se T T 12(12) (12)

= 60,750 k-in

From Appendix 2, Figure A9, f = 0.997 so that

_ 0.997(4) (3000) (12) (13%)

S¢ e = 182,534 k-in
and
_ 60,750 _
Ty T 743,284 - 0220
182,534 _
Te = 943,285 - 0-7°0

The floor fixed-moment from Table Al is, at the midspan of the long wall,

FEMf = 12(0.180) = 2.16 k-ft/ft



and from Table A2, the wall fixed-end moment is

_-0.132(80) (12%) _ _
FEM = 1000 =-18.25 k-ft/ft

The balanced moment is then found by the moment -distribution process as

follows

A R
N o
-18.25 | o o| 18.25 (at z = 0)
3.19 | 0.750 0.750 | -5.10
0.45 -=2.16 2.16 1.20
0.06 7.65 -15.31 0.17
9.57 -4.79
-14.55 =g 3 59 14.52
1.34 -0.67
-0.25 0.50
0.19 -14.52
14.55

Following the same procedure at z = c¢/4, from Figure Al0 in Appendix 2

f = 0.789 so that

s - 0.789(4)(3000) (12) (13%)

= 144,453 k-in

£ 144(12)
and
60,750 _
rw = m— = 0.296
144,453
rf = 2_05—,_26-3 = 0.704

From Table Al, the floor fixed-end moment is

FEMf = 12(0.183) = 2.20 k-ft/ft
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and the wall fixed-end moment from Table A2 is

_-0.102(80) (123) _

FEM 1000

-14.10 k-ft/ft

The moment distribution yields

O O
(o)) [e))
> N
-14.10 |© o| 14.10 (at z = c/4)
3.13 |_0.704 0.704 | =4.82
0.39 -2.20 2.20 _1.10
0.05 5.74  -11.48 0.14
7.43 -3.72
-10.53 53 S gy 10.52
0.92 Z0.46
-0.16 0.32
0-1L  _ig.52
10.53

Continuing on to the short wall at y = 0, from Table A7 in Appendix 2,

f = -0.060 so that

-0.06(4) (3000) (12) (133)

5, = EOD D) = -3,662 k-in
and
23,662
Tt = 84,412 - "0-057
r =1+ 0.057 = 1.057
W

From Table Al, the floor fixed-end moment at y = 0 is

FEM, = 12(0.146) = 1.75 k-ft/ft

Hh
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and from Table A2, the wull fixed-end moment is

-0.020(80) (123) _ _
FEMw = 1000 =-2.76 k-ft/ft

Subsequent moment distribution yields

™~ N~
Vg wy
< <
-2.76 | — — 2.76 (at y = 0)
4.90 | -0.057 -0.057 | -4.77
-1.75 1.75 -0.14
2.14 0.13 0.26 T
-0.26 0.13 :
~2.14 0.0
2.15

Finally, calculating the balanced moment at y = b/4 and using Figure A8,

f = -0.37, so that

_=0.37(4) (3000) (12) (133) _ .
Sf = 432(12) =-22,580 k-in

and

_-22,580 _
Te = 783,330 - ~0-271

r =1+ 0.271 = 1.271

From Tables Al and A2 then

FEM, = 12(0.094) = 1.13 k-ft/ft
_-0.012(80) (123) _
FEM_ = 500 =-1.66 k-ft/ft
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So that moment distribution yields

~ ~
N S
-1.66 | ~ =1 1.66 (at y = b/4)
4.03 |_-0.271  -0.271 | -3.55
0.08 -1.13 .13 —0.55
-0.38 0.76
2% _o.86 0.43 a4
20.06 0.12
=0.02 2.44
~2.45

As a comparison, this problem was checked against the finite element
program. The moment values obtained along the long wall at z = 0 and
z = c/4 were found to be 14.48 and 10.54 kip-ft/ft, respectively. These
values are very close to the values obtained by the moment distribution
procedure. The values at y = 0 and y = b/4 were 2.63 and 2.92 kip-ft/ft,
respectively. The moment distribution method does not correlate quite as
well in the short wall, although the values are reasonably close. It
should be noted that the values on the short wall graphs are significantly
more varied in magnitude than the long wall graphs. Consequently, it is
more difficult to accurately determine the f factor from the graphs for the
short walls. Unfortunately, the final moment value is sensitive to the f
factor so an allowance should be considered to accomodate this fact.

A second example was performed following the same procedure
except that the tank was loaded from the exterior. The only change was
that the wall fixed-end moments had the opposite signs; the same f factors
were used. Correlation with finite element program was excellent in the

long wall. At z = 0, moment distribution obtained 15.33 k-ft/ft and the
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program obtained 15.21 k-ft/ft and at z = c/4, 11.49 k-ft/ft compared to
11.58 k-ft/ft.

The values in the short wall did not match up at all. At y =0,
moment distribution obtained 1.66 k-ft/ft and the program obtained .
-0.05% k-ft/ft and at y = b/4, 0.88 k-ft/ft compared to -1.15 k-ft/ft. A
conclusion that should be drawn out of these examples is that the moment
values in the long walls can be determined quite accurately but the deter-
mination of balanced moments in the short walls should be carried out with
some discretion. A possible explanation for the discrepency in the short
wall might be that the rotation of the long wall makes the short wall

appear overly stiff.



VII. CONCLUSIONS

This paper has developed a finite element program that is capable of
analyzing one quarter of a rectangular tank and determining the horizontal
and vertical bending moments at a number of locations. The triangular and
uniform loadings incorporated into this program can be external or internal
and can be the full or partial height of the tank. It is also possible to
handle tapered wall sections. By being able to analyze a quarter of the
tank as a whole, it is possible to permit joint rotations and allow the
natural balancing of moments so that the interaction of the plates can be
properly represented.

In addition to the capability of handling three orthogonal plates,
any one or two plate system can be analyzed provided the two plates are
perpendicular to each other. This aided in the development of the fixed-
end moment tables.

The secondary objective of the paper was to calculate moment values
at the joints between the plates in a rectangular tank. It was not prac-
tical, however, to develop a set of moment coefficients for this problem
because the moments were not a constant times the specific weight and the
height cubed as was possible with the one and two plate problems. An alter-
nate solution was sought by paralleling the moment distribution method that
is used for beam structures. Fortunately, this method eliminated the depen-
dence of the moment values on the height of a tank with given proportions.
This allowed a small group of tables to handle a wide variety of tank sizes.

The key assumption that was made in developing this program was that

the twisting resistance perpendicular to the plane of the plate is infinite

58
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and can be eliminated as a boundary condition. This permitted the
development and use of a five degree of freedom element carrying along the
sixth degree of freedom as a dummy to properly provide for coordinate trans-
formations.

A shortcoming of this program might be that it does not provide for
the slope continuity between element edges. However, the merits of this
element have been proven.

No consideration has been given to the horizontal moments in the
walls of the tank, which can become large at the top edge of the wall-to-
wall joints in rectangular tanks,or to the shear forces. These moments
and shears were calculated by the finite element program but were not
covered in this paper because they are also dependent upon the height
of the tank.

The moment distribution procedure developed in this paper as a
design aid provides very satisfactory results for the long walls in a
rectangular tank but less accurate answers in the short walls. This might
be attributed to an overstiffening effect of the short wall from the
long wall.

Future work would include developing a similar procedure for hori-

zontal moments and examining the shearing forces in a rectangular tank.
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Appendix 1
E— TABLE Al: Fixed-end Moments - Floor Plate

M //‘ C/2 7‘ of

thickness of the wall

plus 2.5 times the }//
thickness of the floor

Moment values are in units of ft-kips/ft per foot of wall height.

Fixed-end moment = (coefficient from table)(height of the wall,ft) ft-kips/ft

b/a = 1.0 Short Wall
y=20 y = b/4
floor thickness _in
c/a walls 10 12 14 16 10 12 14 16
8 0.146 0.165 0.180 0.191 |(0.106 O0.114 0.119 0.123
1.0 9 0.169 0.189 0.205 0.217 {0.121 0.129 0.135 0.139
10 0.192 0.214 0.231 0.244]0.138 0.145 0.151 0.156
12 0.242 0.265 0.284 0.297 | 0.169 0.177 0.184 0.188
8 0.124 0.139 0.149 0.157 | 0.089 0.094 0.097 0.099
2.0 9 0.143 0.159 0.170 0.178 | 0.101 0.106 0.109 0.111
10 0.163 0.179 0.191 0.200 {0.114 0.119 0.122 0.124
12 0.205 0.221 0.234 0.243 |0.140 0.144 0.147 0.149
8 0.112 0.124 0.132 0.138 |0.078 0.082 0.084 0.085
3.0 9 0.128 0.141 0.150 0.157 |0.089 0.093 0.095 0.096
10 0.146 0.159 0.169 0.175 |0.100 0.104 0.106 0.107
12 0.182 0.196 0.206 0.212 |0.123 0.126 0.128 0.128
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b/a = 1.0 Long Wall
z=0 z =cl4
floor thickness, in
c/a walls 10 12 14 16 10 12 14 16
8 0.146 0.165 0.180 0.191]0.106 O0.114 0.119 0.123
9 0.169 0.189 0.205 0.217]0.121 0.129 0.135 0.139
L0 10 0.192 0.214 0.231 0.244(0.138 0.145 0.151 0.156
12 0.242 0.265 0.284 0.297|0.169 0.177 0.184 0.188
8 0.139 0.160 0.182 0.202]0.133 0.150 0.165 0.178
9 0.161 0.185 0.209 0.232)0.154 0.172 0.189 0.202
2.0 10 0.184 0.211 0.237 0.263|0.175 0.195 0.213 0.227
12 0.234 0.263 0.297 0.327]0.219 0.243 0.263 0.279
8 0.129 0.148 0.165 0.183|0.130 0.150 0.166 0.181
9 0.149 0.170 0.190 0.209|0.150 0.173 0.191 0.207
3.0 10 0.170 0.193 0.215 0.237]0.172 0.196 0.215 0.234
12 0.219 0.243 0.269 0.294 | 0.216 0.245 0.268 0.288
b/a = 2.0
z 0 z = ¢c/4
\\\ floor thickness,in
c/a walls 10 12 14 16 10 12 14 16
8 0.144 0.164 0.191 0.214{0.130 0.144 0.162 0.175
2.0 9 0.167 0.191 0.221 0.246|0.150 0.167 0.186 0.200
10 0.190 0.219 0.251 0.278|0.170 0.190 0.210 0.225
12 0.239 0.279 0.315 0.345(0.212 0.238 0.260 0.276
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TABLE A2: Vertical Moments for Two Plate Problem
Clamped Bottom Edge

Refer to Figure 3 for the appropriate coordinate system
Moment = (coefficient from table) * (specific weight of fluid) *

(height of tank)3

Negative sign indicates tension on the loaded side.

b/a = 1.0
c/a x/a y=0 y = b/4 z=0 z =cl/b
0 0 0 0 0
1/4 +0.001 -0.002 +0.009 +0.008
3.0 1/2 +0.009 +0.004 +0.003 +0.006
3/4 +0.012 +0.009 -0.038 -0.023
1 -0.020 -0.012 -0.132 -0.102
0 0 0 0 0
1/4 +0.001 -0.002 +0.011 +0.008
2.5 1/2 +0.009 +0.005 +0.009 +0.009
3/4 +0.011 +0.009 -0.026 -0.015
1 -0.022 -0.015 -0.116 -0.087
0 0 0 0 0
1/4 +0.001 -0.002 +0.012 +0.007
2.0 1/2 +0.009 +0.004 +0.014 +0.011
3/4 +0.011 +0.008 -0.012 -0.006
1 -0.024 -0.015 -0.094 -0.068
0 0 0 0 0
1/4 +0.002 -0.001 +0.010 +0.005
1.5 1/2 +0.010 +0.005 +0.016 +0.010
3/4 +0.009 +0.007 +0.001 +0.002
1 -0.029 -0.019 -0.066 -0.047
0 0 0 0 0
1/4 +0.005 +0.002 +0.005 +0.002
1.0 1/2 +0.011 +0.006 +0.011 +0.006
3/4 +0.009 +0.006 +0.009 +0.006
1 -0.035 -0.024 -0.035 -0.024
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b/a = 1.5
c/a x/a y=0 y = b/4 z =0 z = c/b4
0 0 0 0 0
1/4 +0.009 +0.003 +0.010 +0.008
3.0 1/2 +0.017 +0.011 +0.004 +0.006
3/4 +0.007 +0.007 -0.036 -0.021
1 -0.052 -0.035 -0.129 -0.098
0 0 0 0 0
1/4 +0.009 +0.003 +0.012 +0.008
2.5 1/2 +0.017 +0.011 +0.010 +0.009
3/4 +0.006 +0.006 -0.024 -0.013
1 -0.053 -0.036 -0.112 -0.082
0 0 0 0 0
1/4 +0.009 +0.004 +0.012 +0.007
2.0 1/2 +0.016 +0.010 +0.015 +0.011
3/4 +0.005 +0.005 -0.010 -0.004
1 -0.055 -0.038 -0.089 -0.063
0 0 0 0 0
1/4 +0.009 +0.004 +0.009 +0.004
1.5 1/2 +0.016 +0.010 +0.016 +0.010
3/4 +0.003 +0.004 +0.003 +0.004
1 -0.060 -0.041 -0.060 -0.041
b/a = 2.0
c/a x/a y=0 y = b/4 z =0 z = c/b
0 0 0 0 0
1/4 +0.002 +0.006 +0.010 +0.007
3.0 1/2 +0.017 +0.012 +0.004 +0.007
3/4 -0.006 -0.001 -0.035 -0.019
1 -0.082 -0.056 -0.127 -0.095
0 0 0 0 0
1/4 +0.012 +0.006 +0.012 +0.007
2.5 1/2 +0.016 +0.012 +0.011 +0.010
3/4 -0.007 -0.001 -0.022 -0.011
1 -0.083 -0.057 -0.109 -0.079
0 0 0 0 0
1/4 +0.012 +0.006 +0.012 +0.006
2.0 1/2 +0.016 +0.011 +0.016 +0.011
3/4 -0.008 -0.002 -0.008 -0.002
1 -0.086 -0.059 -0.086 -0.059
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f factor

0.37 1

0.36 4

0.35 1

6.34 {

0.33

0.32 1
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0.27 4

0.26 1

0.251

0.244
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APPENDIX 3

USER”S GUIDE

This apperdix is intended‘to provide a brief description of the sub-
routines that are included in this program. The required input data is
listed at the front of the program in Appendix 4. Output for this program
is in kips, inches and radians. Data must be inputted as described by the

leading part of the program.

Subroutine DATA:

This subroutine reads in plate dimensions, element meshes, plate
thicknesses and material properties. It also calls a subroutine to cal-

culate average thicknesses of the plate elements.

Subroutine THICK:
Subroutine THICK determines the average thicknesses of the plate

elements.

Subroutine GEN:

This subroutine generates node and element numbers for the plates.

Subroutine PROCES:

Subroutine PROCES automatically eliminates certain boundary condi-
tions on the plates, the twisting degree of freedom on each plate and all

the symmetric boundary conditions on the quarter of a two or three plate
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problem. It also generates the member codes which contain the degrees of

freedom located on each element.

Subroutine LOAD:

This subroutine reads in plate loads and any additional node loads.

Subroutine TRIANG:
This subroutine calculates the node loads for an external or internal
hydrostatic load on the walls. The load can be at any height in the tank

and must be inputted in units of pounds per cubic feet.

Subroutine UNIF:
This subroutine calculates the node loads for an external or internal
uniform load on the walls or floor. The load can be at any height on the

walls but must be the full width of the floor.

Subroutine STRIP:

STRIP calculates the node loads on the floor plate for a uniform load
around the perimeter of the floor slab with the width equal to the thick-
ness of the wall plus 2.5 times the thickness of the floor slab. The

pressure is calculated automatically from the dead weight of the walls.

Subroutine STRIP1:

A modified version of STRIP, this subroutine permits a strip load on
a single plate problem. It was designed only for a quarter of a single

plate and, therefore, only a symmetric loading can be added to it. The
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wall and floor thickness must be included and the appropriate weight of the

walls for a quarter of the tank must be inputted.

Subroutine DEADWT:

This subroutine calculates the node loads for the walls that include
the dead weight of the concrete in the walls. This calculates the total
weight of the walls needed in STRIP. This subroutine is not called when

one plate is being analyzed.

Subroutine ASSEM:
ASSEM assembles the global system stiffness matrix in a form suitable

for solution by the Linpack equation solver.

Subroutine MODIFY:
This subroutine modifies the global stiffness matrix by including the

soil stiffness coefficients into it.

Subroutine XLAMDT:
XLAMDT contains the coordinate transformations necessary to transform

the local stiffness matrix into the global stiffness matrix.

Subroutine GLOBK:

This subroutine contains the coefficients of the local element stiff-
ness matrix. Only the common terms have been collected in this subroutine.
The index matrix is used to identify the remaining terms in the stiffness

matrix. This index matrix must be inputted as data in the program.
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Subroutine SOLVE:
SOLVE uses the Linpack equation solver to solve the large system of

simultaneous equatioms.

Subroutine FORCE:

This subroutine calculates the nodal displacements for each element
in global coordinates and calls a subroutine to calculate the element

forces.

Subroutine XKLD:
XKLD transposes global element displacements into local element dis-

placements and claculates the local element forces.

Subroutines SPBFA, SPBSL, SDOT, SAXPY:

These subroutines calculate the nodal displacements given the stiff-
ness matrix stored in a modified banded form and:the load vector, all in

global coordinates.
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FINITE ELEMENT PROGRAM DUCUMENTATIUN

*
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OO0 OO0 OO0

THIS PROGRAM WAS DESIGNED 10 ANALYZE UNE QUARTER OF A
RECTANGULAR CONCRETE TANK UTILIZING SYMMETRY TO REDUCE THE NUMBER
OF DEGREES OF FREEDOM Of THE SYSTEM. HOWEVER, ONE OR TwWO PLATE
PROBLEMS CAN BE ANALYZED. THE INPUT DATA HAS BEEN MINIMIZED TO
PERMIT SOMEGNE UNFAMILIAR WITH THE FINITE ELEMENT METHOD TU USE
THE PROGRAM. SUME UF THE PROGRAM FEATURES INCLUDE:

v

AUTOMATIC GENERATION OF THE NODE NUMBERS FOR 1,2, GR 3
PLATES GIVEN THE NUMBER OF ELEMENTS IN EACH DIRECTIUN
ALLOWANCE FOR TAPERED WALLS
AUTGMATIC GENERATIGON OF ELEMENT NUMBERS
AUTGMATIC ELIMINATION DOF SOME SYMMETRY BUGUNDARY CUNDITIONS
FOR 1429y OR 3 PLATES
ALLOWANCE FOR ADDITIONAL BOUNDARY CONDITIONS TG BE
PRESCRIBED TG ZERO
INCLUSION OF BOTH TRIANGULAR AND UNIFORM LGADINGS
INCLUSION OF A MODIFIED STRIP LUOADING ON THE £LOOK
SLAB TO ACCOUNT FOR DISTRIBUTIUN UF SHEAR FRUM
THE WALLS THROUGH THE FLOOR
LOADINGS TO BE INTERNAL OR EXTERNAL
LOADINGS TO BE AT ARBITRARY HEIGHT
ALLUWANCE FGR ADOITIONAL NODE LOADS
INCLUSION UOF SOME TRIGGER CARDS TO PREVENT EXECUTION
WITH IMPROPER DATA
ALLDWANCE FOR A WINKLER FOUNDATION
INCLUSION OF DEAD LGAD FOR WALLS AND FLOGR SLAB
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THE STMPLIFICATIGONS AND ASSUMPTIONS INHERENT IN THIS PRUGRAM

==> RESISTANCE TO ROTATION IN THE NORMAL DIRECTION GF THE
PLATE IS ASSUMED TO BE INFINITE AND IS SUBSEQUENTLY
ELIMINATED AS A BOUNDARY CONDITION

PLATES MUST BE ORTHONDRMAL

GLOBAL AXES MUST COINCIDE WITH THE PLATES

TRIANGULAR LOUOADS ARE OUNLY PERMITTED ON THE WALLS

LOADING CONDITIONS ARE APPROXIMATED AS POINT LOADS AT
THE NODES

UNIFORM LOAD MUST COVER THE FULL WIDTH OF PLATE 3

LOADS MUST BE THE FULL LENGTH OF THE WwALL

THE THICKNESS OF A TAPERED ELEMENT IS APPROXIMATED BY
IT*S AVERAGE THICKNESS

THE MODULUS OF ELASTICITY AND POISSON'S RATIO ARE THE
SAME FOR ALL THREE PLATES

Wowion

woiodion
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W hou
i
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DESCRIPTION GN SOME OF THE VARIABLE NAMES USED IN THE PRUGRAM

AyByCL —————~- ELEMENT DIMENSIONS IN THE GLOBAL 2,3, AND 1-
DIRECTIONSy RESPECTIVELY

E ==—=—=——=-— MUDULUS OF ELASTICITY (KSI)

I0P ——=——==—= A MATRIX OF RANK THREE CONTAINING THE ELEMENT

NUMBERS FOR EACH PLATE

JCODE ————— CONTAINS THE NUMBERS UF THE DEGREES OF FREEDUOM AT
EACH NOCE IN GLOBAL COORDINATES

QOO0 OO0
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MCODE —-———-— CONTAINS THE DEGREES OF FREEDOM FOR EACH ELEMENT

NDOF —-—=—=—- NUMBER OF DEGREES OF FREEDUM

NELEM —-=——-— NUMBER OF ELEMENTS

NOP ——————— A MATRIX OF RANK THREE CONTAINING THE NODE
NUMBERING SCHEME FOR EACH PLATE

NNGDES ———-- NUMBER OF NODES

NPLTS —-—-—— FLAG INDICATING THE NUMBER OF PLATES BEING
ANALYZED :

NXyNYyNZ ——— NUMBER OF ELEMENTS IN THE GLOBAL 142, AND 3-

DIRECTIONS, RESPECTIVELY

§ ——-——=————— REPRESENTS THE LDAD VECTOR BEFORE SUBROUTINE SOLVE
AND THE DISPLACEMENTS AFTER SUBROUTINE SULVE

Sult -==—=—- EQUIVALENT SPRING STIFFNESS OF THE FOUNDATIUN
AT AN INTERNAL NODE (KIPS/IN)

SST ———————= CONTAINS THE GLOBAL STIFFNESS MATRIX STORED IN
HALF-BANDED FURM THAT CAN BE USED BY THE LINPACK
EQUATION SOLVER

THK —————-—-= CONTAINS THE STEPPED THICKNESSES FOR EACH PLATE

THKF ——————- THICKNESS OF THE FLOOR

THKSB, THKST- THICKNESS GF PLATE 1, BOTTUM AND TGP, RESPECTIVELY

68



THKLB e THKLT- THICKNESS OF PLATE 2, BOTTUM AND TGP, RESPECTIVELY

VNU =————=—-— POISSUN'S RATIO
WC ———————-=— SPECIFIC WEIGHT OF CONCRETE
XeYyl ————=— DIMENSIONS OF THE SINGLE PLATE PRUBLEM BEING

ANALYZED DETERMINED BY THE BOUNDARY CONDITIONS
BEING USED OR THE DIMENSIONS OF THE SYMMETRIC
PORTION OF THE TWO OR THREE PLATE SYSTEM

RRERERREREERRE AR RRUF KR IR EEAE KRR ER AR AR E R KRRk koo ok Rk ok krkkkkixk

INPUT OF OATA - UNFORMATTED ®
e R R L e s e S I IS T

CARD 1 ————————= NPLTS (11)
ENTER 1,293 FOR THE NUMBER OF PLATES TUO BE ANALYZED
CARL) 2 == XyY’ Z'NX.NY'NZ (3R)3I)

X — DIMENSION IN THE GLUBAL 1-DIRECTION (INCHES)

Y — DIMENSION IN THE GLUBAL 2-DIRECTION (INCHES)

Z — DIMENSION IN THE GLOBAL 3—-DIRECTIGN (INCHES)

%% NOTE: ENTER THE DIMENSIONS THAT COURRESPUND TU THE
BOUNDARY CONDITIUNS THAT ARE APPLIED TU THE
PLATE OR PLATES
MUST ENTER Z=0. IF ONLY DOING A SINGLE PLATE PRUBLEM

NX — NUMBER OF ELEMENTS IN THE GLOBAL 1-DIRECTION

NY — NUMBER OF ELEMENTS IN THE GLOBAL 2-DIRECTIUN

NZ — NUMBER OFf ELEMENTS IN THE GLOBAL 3-DIRECTIUN

OGO OO0 OHOOOOOO0O0OO0OOO0
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(MAXIMUM NUMBER OF ELEMENTS IN ANY DIRECTIUN
IS EIGHT)

CARD 3 ———=m——— Es VNUs WC,SOIL (4R)

E — MODULUS OF ELASTICITY OF CONCRETE (KSI)

VNU — POISSON'S RATIO OF CONCRETE

WC — SPECIFIC WEIGHT OF CONCRETE (PCF)

SOGIL — ESTIMATED SPRING STIFFNESS OF THE SOIL (K/IN)
CARD 4 —————- THKST s THKSB s THKL T THKL B4 THKF {5R)

THKST — THICKNESS AT THE TOP GF PLATE 1 IN THE GLOBAL
1-2 PLANE (INCHES)

THKSB — THICKNESS AT THE BOTTOM OF PLATE 1 IN THE
GLOBAL 1-2 PLANE (INCHES) v
THKLT — THICKNESS AT THE TOP OF PLATE 2 IN THE GLOBAL
2-3 PLANE (INCHES)
ENTER 0.0 FOR A SINGLE PLATE PROBLEM
THKLB — THICKNESS AT THE BOTTUOM OF PLATE 2 IN THE

GLGBAL 2-3 PLANE (INCHES)
ENTER 0.0 FOR A SINGLE PLATE PRUBLEM
THKF — THICKNESS OF THE FLOOR SLAB (INCHES)
ENTER 0.0 FUR 1 UR 2 PLATE PROBLEM

5TH GROUP OF —— NOD,NDIR (21)
CARDS

NOD — NODE NUMBER AT WHICH A CONSTRAINT EXISTS

NDIR — GLOBAL DIRECTION CF THE CONSTRAINT, BJTH
DISPLACEMENT AND KOTATION COUNSTRAINTS
ARE POSSIBLE

L8
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%% MUST ENTER 0 O AS A TRIP CARD TO SIGNIFY THE END
OF THE JOINT CONSTRAINTS *&x

6TH GROUP OF —— LTYPENPLsLDIRsWsH (31,2R)
CARDS

LTYPE — INDICATES THE TYPE OF LOADING
ENTER 1 FOR TRIANGULAR LOGAD
ENTER 2 FOR UNIFORM LOAD
ENTER 3 FOR APPROXIMATED STRIP LOAD
NPL - NUMBER OF THE PLATE TO WHICH THE LOAD IS APPLIED
ENTER O FOR LTYPE=3
ENTER 1 FOR PLATE IN THE 1-2 PLANE(PLATE 1)
ENTER 2 FOR PLATE IN THE 2-3 PLANE(PLATE 2)
ENTER 3 FOR THE FLOOR SLAB(PLATE 3)
LOIR - INDICATES THE GLOBAL DIRECTIUN THAT THE LGAD IS
APPLIED. A NEGATIVE SIGHW SHOULD BE ENTERED
WITH THIS VALUE ONLY TO INDICATE THAT THE
LOAD IS APPLIED OPPOSITE TU THE PUOSITIVE SENSE
UF THE GLOBAL OIRECTIONS.
ENTER O FOR LTYPE=3
# — MAGNITUDE CF THE LOADING, ALWAYS POSITIVE
IF LTYPE=1, W REPRESENTS THE SPECIFIC wtEIGHT UF
THE LOADING (PCF)
IF LTYPE=2, W REPRESENTS THE PRESSURE ON THE
PLATE (PSF)
IF LTYPE=3, ENTER 0.
*¥*x%x NOTE: IF A SINGLE PLATE PRGBLEM IS BEING
ANALYZED TO DETERMINE THE FIXED END
MOMENTS ON THE FLUOOR SLAB, W REPRESENTS
THE WEIGHT OF THE WALLS.
H — THE HEIGHT OF THE LOADING ON THE WALL. THIS VALUE
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WILL GENERALLY BE THE FULL HEIGHT OF THE WALL
BUT CAN INCLUDE ANY ARBITRARY HEIGHT. FOR THE
FLOOR, THE FULL DIMENSION (IN THE X-DIRECTIOUN)
MUST BE ENTERED. (INCHES)
ENTER 0. IF LTYPE=3
*%% MUST ENTER O O O 0. O. AS A TRIP CARD TG INDICATE
THE END OF THE PLATE LOADINGS #*x

7TH GROUP OF — NODEs»JDIR,XLOAD (2I,4R)
CARDS

NUDE — NODE NUMBER AT WHICH A CUNCENTRATED LUOAD IS
APPLIED
JDIR — GLOBAL DIRECTION OF THE APPLIED LOAD (POSITIVE)
XLOAD — MAGNITUDE OF THE APPLIED LOAD (+ GR -, KIPS
AND INCHES)
%% MUST ENTER O O O. AS A TRIP CARD TO INDICATE THE END
OF ADDITIONAL POINT LUADS
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C MAIN PROGRAM ¥
Coaoddatopk okdok ok fxop ok ok sop ok dopdokokkok b ok kR dok koo Rk ook Rk Rk R kxR kR kR kR E &
C IMPLICIT REAL*8 (A-H,0-1)

COMMON QU993 ) s THK(B893) o XL{356)sAsBsCeEsVNUsWC e XY 9ZMCU
10E(192424) yNOP(949993) s IUUP(898B9y3) yNELEMyNNODESaNDOF g IHBWyNXgNYoNZ

COMMON/TC/ THKST g THKSB 9 THKLT s THKLB y THKF  WEIGHT

COMMUN/CODE/JCODE(217,6)

COMMON/SSM/SST (5944993)

COMMON/FORC/D(24) 9P213P32,3PLl13P22,P31sP33,P12,P1353SA45B5SCSD,SE
LSFeSGaSH ST 9SJeSMegSNeSOsSPySQeSReSSeSTeSUeSXeSYsFLlyF29F3,F44F5,
CFTsF89FI9F104FL1L gF133F1l44F1S53F16sF1T43F199F20,F21,F223F23,P23,P41

COMMON/SGLV/MAXID,LDA

COMMON/CCEFF/SOIL

LDA=594%

READ(5,%) NPLTS

CALL DATA(INPLTS)

CALL GENINPLTS)

CAI.L PROCESINPLTS)

CALL LOADINPLTS)

CALL ASSEMINPLTS)

CALL SOLVE

CALL FOKCE(NPLTS)

STOP

END
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c

SUBROUTINE DATA

*

C ook dofok dokok ok ok ok ok kS kR ok kR ok ok ko Rk Rk kbR Rk R Rk kR R R R R

c

50

11

12

13
10

21

SUBKOUTINE DATA(NPLTS)
IMPLICIT REAL*8 (A-H,0-2)

COMMON Q(993) 9y THK(B8533) 4XL(396)9AyByCoEaVNUsWCX,yY,2Z,MCO
1DE(192+24)yNOP(9,993),I0P{8,893)yNELEMy NNODESyNDOF» IHBUWsNXgNY4NZ
COMMON/TC/THKST 9 THKSB g THKLT 9 THKLB g THKF o WEIGHT

CGMMON/COEFF/S0IL
READ(59%) XoYZyNX,NY4NZ

IFINXeLEsB.OReNY.LE.8+s0RaNZoLEL8B8) GO

WRITE(6,100)

STOP

A=Y/FLOAT(NY)

IFINPLTS.NEe1) B=Z/FLOAT(NZ)
C=X/FLDAT(NX)

READ(54%) E,VNU,nC,SOIL

READ(5¢%*) THKST, THKSB s THKLT,THKLB , THKF

DO 10 I=1,NPLTS

GOTO(11,12413),1

CALL THICK(THKST g THKSB s THK,NY,1I)
GG TO 10

CALL THICK{THKLT yTHKLBsTHKsNY, 1)
GO TOU 10

CALL THICK{THKFyTHKF g THK sNXy 12
CUNTINUE

WRITE(64101) XyCeYyAyZ,8
WRITE(6,201) E,VNU,WC,sSOIL

DO 20 I=14NPLTS

UHRITE(65105)

GOTOL21421422),1

J=NY

16



GO TO 25
22 J=NX
25 IF(NPLTS.EQ.1l) WRITE(6,103) THKSB,THKF
20 IF(NPLTS.NEal) WRITE(65102) I,{THKIK,I) yK=1,J)

100 FORMAT(' YOU HAVE EXCEEDED THE MAXIMUM NUMBER OF ELEMENTS IN THE X
1-3sY-,06R Z-DIRECTION. THE MAXIMUM NUMBER OF ELEMENTS AVAILABLE IN
2THIS PROGRAM IS 8.°')

101 FORMAT(" X='3F10.2,410X9'C="3F1042/" Y='3F10.2410X,'A=",F10.2/

% 7=',F10.2,10X,'B=*,F10.2/)

102 FOURMAT(* STEPPED THICKNESS FOR PLATE® y1292X,*{INCHES)"/8F8.1)
103 FORMAT (' THE THICKNESS OF THE WALLS =",F8.1," INCHES'//
*' YHE THICKNESS OF THE FLOOR PLATE ='yF8.1,' INCHES?')

105 FORMATI(/)

201 FORMATI(®' MODULUS OF ELASTICITY=',F10.241Xy*(KSI)*/

** PDISSGONS RATIG='4,F6.2/

*% SPECIFIC WEIGHT OF CUNCRETE="'43F10s241Xy* (PCF)'/
¥ SOIL STIFFNESS='3FB8.2¢1X,*(KIPS/INCH) /)

RETURN

END
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C % dediododk A oo Ak ok ok Kook ko ok dokokok ok ko ok kg ook bk ok Rk ok ok Rk Rk R kR Rk R ok Rk kR ko ok &
C SUBRGUTINE THICK *
C R e ok 4o g e o ook o ok Aok gk oo e il b kool ok kR e ok Rk Rk Rk R Rk ko ek ok ko
SUBROUTINE THICK(T 48y THyNRyJ)
C IMPLICIT REAL%8 (A-H,0-1)
REAL TH(8,3)
IFIT.EQe.B) GO TO 20
SLOPE=(B-T)/NR/2
DO 10 I=1,4NR
M=2%]-1
10 TH(I4J)=T+M%SLOPE
RETURN
20 DO 30 I=1,NR
30 TH(I,J)=T
RETURN
END
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c

SUBROUTINE GEN *

R D e e T s T,

c

20

30
10

60

40

59
90

SUBROUTINE GEN(NPLTS)
IMPLICIT REAL*8 (A-H,0-2)
COMMON Q(993 ) s THK(893) 9 XL(396)9A3BsCyEsVNUsWCeXsYZ4MCU
IDE(192924) yNOP(99993)oI0P(89893) s NELEMyNNODES ¢yNUOF g IHBWyNXyNYoNZ
N=0
NX1=NX+1
NY1=NY+1
NZ1=NZ+1
DG 10 I=1,4NY1
DG 20 J=1,hX1
N=N+1
NOP({I,Jdsl)=N
IFINPLTS.EQ.1) GO TO 10

%6

N=N-1
DG 30 K=1,NZ1
N=N+1
NOP‘I!K)Z)=N
CONTINUE
IF(NPLTS.NE«3) GU TO 90
N=NOP (NY yNZ1,2)
DU 60 I=14NX1
DG 60 J=1,N11
N=N+1
NOP(I)J'3)=N
D0 40 I=1,NX1
NDP(NYI,I.‘.)':NUP(IQI)3)
DO 50 I=1,NZ1
NOPINYLyI,2)=NEGPINXL,1,3)
NNGDES=N



220

230

210

240
150

100

101

M=0
DO 210 I=1,4NY
DO 220 J=1,NX
M=M+1
IOP(I'J'I)r-H
IF{NPLTS.EQ.1l) GO TU 210
DO 230 K=1,NZ
M=M+1
ICP{IKe2)=M
CONTINUE
IF{NPLTS.NE.3) GO TN 150
DO 240 I=1,NX
DU 240 J=1,4N1Z
M=M+1
IOP{I,4,43)=M
WRITE{6,4111)
WRITE(6,300)
NNN=1
WRITE(6,400) NNN
DO 100 I=1,4NY
WRITE(6,110) (NOP(I4Jysl)yJ=1,NX1)
WRITE(69310) (ICP(I9Jsl)eJd=1,NX)
WRITE(65110) (NOPINYlyeJdel)yd=1,NX1)
IF(NPLTS.EQs1) RETURN
WRITE(H,111)
NNN=2
WRITE(64460) NNN
DO 101 [I=1,4NY
WRITE(6,110) (NUP({IeJy2)yJ=14NZ1)
WRITEL169310) (I0P(I4J42)9d=1,NZ)
WRITE(6,110) (NGPINYLyJp2)eJ=1yNZ1)
IF(NPLTS.EQ.2) RETURN
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102

111
110
310
300
400

ARITE(6,111)
NNN=3
WRITE(6,400) NWNN
DO 102 I=1,4NX
WRITE(6,110) (NOP(I,Js3)eJd=1,NZ1)
WRITE(64310) (IOP({14J93)9J=1,4N2)
WRITE(64110) INOP(NX1yJe3)9d=1,NZ1)
FORMAT(///)
FORMAT(916)
FORMAT(TT70,815)
FORMAT(T5, *NODE NUMBERS® ,T75,*ELEMENT NUMBERS'//)
FORMAT(T61,*PLATE® ,12)
RETURN
END
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(C % 33k ool i g kol ok ook X0k Ao o g oo ke Bk ok ok ol o b ok ok ok Kok Aok ok ol ok d ook ok ok ok ok ok
C SUBROUTINE PROCES *
CHak kb kR kdhr ok kk ke d e xehhr bbbk ek ke kh b bk ek e ek TR R kT & dod ok kdok fokk &
SUBROUTINE PROCES(NPLTS)
C IMPLICIT REAL*8 (A—H,0-2)
COMMON Q(993) s THK{B893) 9 XL(356)9AyByloE VNUsWCeXyYeZ,yMCU
1DE(192924)4NOP(99993)310P(8y893) s NELEMgNNUDES ¢NDOF g IHBWoaNXgNYoNZ
COMMON/CODE/ JCODE(217,4,6)
CUMMON/SOLV/MAXIDsLDA

JUINT COOE CONSTRUCTION

OO0

DO 10 I=1,NNCDES
DO 10 J=1,6
10 JCODE(I,J)=1

JOINT CONSTRAINTS

OO0

NX1=NX+1
NY 1=NY+1
NZ1=NZ+1
GUTOU(20142024203) s NPLTS
203 DO 22 I=1,NX1
DO 22 J=1,NZ1
M=NGP(I,J43)
22 JCODE(M,5)=0
DG 25 I=1,NX1
M=NGP (I 4NZ1,3)
JCODE(My3)=0
25 JCODE(My4)=0
DG 26 J=1,NZ1
M=NOP(1,J,43)
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26
202

21

23

24

201

20
39

35

JCGDE (My1)=0
JCODE (My6)=0

DO 21 I=1,NY1l

DG 21 J=1,NZ1
M=NOP(1,J+21)
JCUDE(M,4)=0

DO 23 I=1,NYl
M=NOP(Igl’1)
JCODE(M,1)=0
JCODE (M, 5)=0

DO 24 I=1,NY1
M=NOP (I ,NZ1,2)
JCODE(M,3)=0
JCODE(M,5)=0

DO 20 I=1,.NY1

DO 206 J=1,NX1
M=NOP (I +Jy1)
JCODE(M,6)=0

READ(5,%) NOD,NDIR

IF(NOD.EQ.O) GO TO 35

JCODEINOD,NDIR)=0

GG TU 30

NDOF=0

DO 36 1=1,NNGDES

DG 36 J=1,6
IF(JCUDE(I,J)EQ.0Q0) GO TO 36
NDGF=NDOF +1
JCODEA(I »J)=NDOF
CONTINUE

DO 40 M=1,NY

DO 40 N=1,NX
[=NDOP(MeN,1)

86



J=NOP (MgN+1,1)

K=NOP (M+19N,1)

L=NOP (M+1 4N+1,1)

NN=IOP({M4Ny1)

DO 41 NM=1,6
MCODE(NNNM)=JCUDE{ I ,NM)
MCGDE (NN yNM+6)=JCODE(JyNM)
MCODE({NN,NM#12)=JCODE(K,NM)

41 MCODE(NNyNM+18)=JCODELLsNM)
40 CONTINUE

IFINPLTS.EG.]1) GO TO 65

DO 50 M=1,NY

DC 50 N=14N2Z

I=NOP(M9N12)

J=NOP(MyN+1,2)

K=NOP (M+1,N,2)

L=NOP(M+]1,N+1,2)

NN=I0OP(MyN,2)

DO 51 NM=1,6
MCUDE(NN,JNM)=JCUODE (I ¢NM)
MCODE(NNyNM#6)=JCODEILJ,NM)
MCODE({NNyNM+12)=JCODE(K,NM)

51 MCODE(NNNM+18)=JCUDE(L yNM)
50 CONT INUE

IFI{NPLTS.NE.3) GO TD 65

DO 60 M=1,NX

DO 60 N=1,NZ

I=NOP (MyN,3)

J=NOP{MsN+1,3)

K=NUP(M+14N,3)

L=NOP (M+1L 4N+1,3)

NN=I10P (Mg N,y 3)

66



61
60
65

15

16

70

20

DU 61 NM=1,6
MCUDE (NN NM)=JCGDE (I,NM)
MCCODE(WNNsNM+6)=JCODE(JNM)
MCODE (NNyNM+12)=JCODE{K,NH)
MCODE (NN,yNM+18)=JCODE{(L yNM)
CONTINUE
NELEM=NN
MAXID=0
NE=NX%NY+NY%NZ
DC 70 I=1,4NE
J=0
J=Jd+1
15=MCODE(1,J)
IF(IS.EQ.0) GO TO 75
J=25
J=J-1
IL=MCODEILI,4J)
IF(IL.EQ.O0) GO TO 76
ID=IL-IS
IF{ID.GT.MAXID) MAXID=ID
CONTINUE
IF(NPLTS.NE.3) GO TGO 81
NNE=NX*NZ
VD0 80 I=NEsNNE
MAX=0
MIN=400
DO 90 J=1,24
M=H4CUDEL1,J)
IF(M.EQ.Q0) GG TO 90
IF (Mol ToMINY MIN=M
IF(MeGTLHAX) MAX=M
CONTINUE
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o0 (R

80
81

99
100
105
109
110
200

ID=MAX-MIN

IF(ID.GT.MAXID) MAXID=ID
CONTINUE
THBW=MAXID+1
WRITE(6,105)
WRITE(6,99)
WRITE(645100)(1,(JCODELIyJ)9J=1,6),1=1,NNODES)
WRITE(6,105)
WRITE(6,109)
WRITE(69110)UI,(MCODE(T¢Jd) 9J=1,24)41=1,NELEM)
WRITE(64105)
WRITE(64200) NNODESsNELEMyNDOFyIHBW
WRITE(6,105)
FORMAT [* JOINT',4X,T23,*JOINT CODE"*/)
FORMAT(1456Xy615)
FORMAT(///)
FORMAT (* ELEMENT',2X,T60,'MEMBER CODE'/)
FORMAT(15,55X+2415)

FORMAT (' NUMBER OF NODES=*,I4/' NUMBER OF ELEMENTS=*,I14/

*' NUMBER Of DEGREES OF FREEDOM=t',14/
** THE HALF BAND WIDTH=%,14/)

RETURN

END

101
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C

SUBROUTINE LUAD

%
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c

40

99
10
20

30

50

32

11

SUBROUTINE LOAD(NPLTS)
IMPLICIT REAL*8 (A-H,0-2)

COMMON Q(993) ¢ THK(8,53) oXL13,6)9AsByCeEaVNUsHCsXyYsZsMCU
1DE(192+424)yNOP{999,43),10P(8,8493),NELEM,NNODES ¢NDGOF» IHBWsNXyNY4NZ

COMMON/CODE/JCODE(217,6)
DO 2 I=1,NDOF
QtI)=0.

IFINPLTS.NE«.1) CALL DEADWTINPLTS)

READ(59%) LTYPEJNPLyLDIRsW,H
IF(LTYPE.EQ.O) GO TG 50
GOTO(11421431),LTYPE
GOTG(10,20+30),4,LTYPE

CALL TRIANG(NPLsLDIRsHsH)
Gu TO 40

CALL UNIF(INPL,LDIRyWyH)
GG TO 40

IFINPLTS.NE.1) CALL STRIP
IF(NPLTS.EQ.1) CALL STRIP1{(W)
GO TO 40

READ(54%) NODE,JDIR,XLOAD
IF(NODE.EQ.0) RETURN
rM=JCODE(NODE yJDIR)
IFIM.EQ.O0) GG TO 32
Q{M)=w(M)+XLOAD

GG TO0 30

WRITE(6,100)

STOP

WRITE(6,105)

WRITE(6,111) NPLoLDIRyWsH

0T



GO 10 99
21 WRITE(6,105)
WRITE(65121) NPLLDIRyHW,H
GO TO 99
31 wRITE(6,105)
HRITE{6,131)
GO TO 99

100 FGRMAT(* THE APPLIED LGOGAD AT NODE',15,*CORRESPGNDS TO THE LOCATIUN
* OF A CONSTRAINT. CHECK THE LOCATION OF THE APPLIED LOAD.®)

105 FORMAT(//)

111 FORMAT(®' A TRIANGULAR LOAD WAS APPLIED TO PLATE®,I2,' IN THE GLOBA
¥LYyI4," DIRECTION.*/T3,4' THE INTENSITY OF THE LOAD WAS®,FB8e2s1X,'P
*CF AND WAS APPLIED TO A HEIGHT OF*,FB8.251Xy*INCHES®/)

121 FCRMAT(* A UNIFORM LOAD WAS APPLIED TO PLATE",12,* IN THE GLGBAL®,
¥14+' DIRECTION.*/T3,'THE INTENSITY OF THE LOAD WAS',Fi0.2,? PSF AN
*D WAS APPLIED TO A HEIGHT OF',F8.2,' INCHES'/)

131 FORMAT(®* A STRIP LOAD APPROXIMATION WAS USED ON THE FLGOR SLAB®'/)

END
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C

SUBROUTINE TRIANG

*

Cakk ok kkkokk bk bk Rk ek ok ok Rk R Rk Rk Rk kR kR Rk kR kR kR R R ek kR k k&
SUBROUTINE TRIANGINPLyLDIRsWsH)
IMPLICIT REAL*8 (A-H,0-2)

C

21

22

23

31

COMMON Q(993) s THK(893) 9 XL (3560 3AyByCeE9VNUsWCy XyY,Z,MCO
1DE(192,24) 3NOP{95943),10P(89853)yNELEMsNNODES y NOUF 9 IHBWaNXsNY,4NZ

CGMMON/CGDE/JCODE(21746)
NN=0

p2=

O.

D=Y-H
NY2=2%NY
W=W/1723000.

DO

10 I=1,NY2,2

DY=FLOAT(I)*A/2.

IF{DY.LT.D) GO TO 10

P1=P2

P2={DY-D) *u

NN=NN+1

DH=A

IF(NN.EQ.1) DH=DY-D

P=(P1+P2) /2.

IF(LDIR.LT.O) P=-pP

GOTON(21,22) 4NPL

JDIR=3

K=NX+1

GO TO 23

JOIR=1

K=NZ+1

DO 30 L=1,K

GOTU(31432)4NPL
DL=C

%01



32
33

29
30
10

41

42

43

51

52
53

GG TO 33
oL=8

IF(L.EQeleOReLoEQ.K) OL=DL/2.

M=NOP((I+1)/2,LsNPL)

N=JCODE (M, JDIR)

IFIN.EQ.O0) GO TO 29

QEN)=QIN)+P*DH*DL

WRITE(6,101) M,Q(N)

GO TO 30
WRITE(6,100) M

CONTINUE

CONTINUE

Pl=pP2

P2=H%*uw

P=(P1+P2)/2.

IF{LDIR.LT.O0) P=—P

GOTO(41+,42)4NPL

JDIR=3

K=NX+1

GO TO 43

JDIR=1

K=NZ+1

DO 50 L=1,K
GUTU(514952) yNPL
oL=_C
GO T4 53
DL=8
IF(L.EQsloORel«EQ4K)
M=NOP((I+3)/2,L,NPL)
N=JCODE(M,JDIR)
IF(N.EQ.O0) GU TO 49
QIN)=QIN) +P*A/2..%DL

bL=DL/2.

GOoT



c WRITE(64101) M,Q(N)
GO T0 50
49 WRITE(64,100) H
50 CONTINUE
100 FORMAT(* A CONSTRAINT EXISTS IN
1GULAR LOAD AT NODE®,I5,4/T5,°THE
2 VECTOR')
C 101 FORMAT(I5,F12.2)
RETURN
END

THE OIRECTION OF THE APPLIED TRIAN
LOAD WAS NOT ENTERED INTO THE LUAD

901
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c

SUBROUTINE UNIF

*

CxrEFekddphikkhkhrbrkdfbkkkhhhkkh bk bk kb kb ke ku ek ok ko kkkkkkkkk

C

11

12

SUBROUTINE UNIF{NPL,LOIRsP,H)
IMPLICIT REAL*8 (A-H,(0-2)

COMMON Q{993 ), THK(853) yXL(3,6)9A,)ByCaEsVNUs WC9XsY,2Z,MCO
IDE(192924)yNOP(99993) s IGP(84843)sNELEMyNNODES ¢NDGF 9 IHBWs NXyNYyNZ

CCMMON/CCDE/JCODE(21746)
NN=0
IFINPL.EQe3.ANDeHaNE.X) GO TGO 90
GOTO(1,153)4NPL
NR=2%NY
F=A
V=Y
GO T0 5
NR=2%NX
F=C
V=X
P=P/144000.
D=V-H
DG 10 I=1y)NR,2
DY=FLOAT(I)*F/2.
IF(LDY.LT.D) GO TO 10
NN=NN+1
DH=F
IF(NN.EQ.1l) DH=DY-D
GOTO(11,12,13)4NPL
JDIR=3
K=NX+1
GO TO 15
JDIR=1

LOT



K=NZ+1

GU TO 15
13 JDIR=2
K=NZ+1
is5 DO 20 L=1,K
GOTO(214922,22) 4NPL
21 DL=C
GO TO 25
22 DL=B
25 IF(LeEQeleORL.EQeK) DL=DL/2.

M=NOP({I+1)/25LsNPL)
N=JCODE(M,JDIR)
IFIN.EQ.0) GO TO 19
QUEN)=Q(N)+P*DH%DL
WRITE(6,101) M,Q(N)
GO 70 20
19 WRITE(6,100) M
20 CONTINUE
10 CONTINUE
DO 30 L=1,K
G0T0(31,32,32),NPL

31 oL=C
GO T4 35
32 DL=8
35 IF(L.EQeleORelLaEQeK) DL=DL/2

M=NGP((I+3)/2sL,NPL)
N=JCODE(M,JDIR)
IFIN.EQ.O) G TC 29
QIN)=QIN)+P*F /2 « *DL
WRITE(6,101) My Q(N)
GU TC 30

29 WRITE(6,100) M

801



30 CUNTINUE
RETURN

90 WRITE(6,102)
sTQp

100 FORMAT{' A CONSTRAINT EXISTS IN THE DIRECTION GOF THE APPLIED UNIFO
1RM LOAD AT NUDE®,14/T7T5,°THE LOAD WAS NOT ENTERED INTO THE LOAD VEC
2TOR?Y)

C 101 FORMATIIS5,Fl12.2)

102 FORMAT(* THE UNIFORM LOAD ON THE FLOOR OF THE TANK MUST BE THE FUL
LL WIDTH OF THE TANK.®'/T5,'H MUST EQUAL X AND W MUST BE ADJUSTED SO
2 THAT THE MULTIPLICATION OF W AND H'/T5,'PROVIDE THE APPROPRIATE P
3RESSURE ACROSS THE BOTTOM GOF THE TANK!'/)

END

601
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C

SUBROUTINE STRIP

&
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c

SUBROUTINE STRIP :
IMPLICIT REAL*8 (A-H,0-Z2)

COMMON Q(993) 3y THK(893) 9XLU346)9AyByCrEVNUWCX,YZ,MCO
1DE(192+24) yNCP(99993) 9 10P(89893)yNELEMy NNGDES 9 NDGOF » IHBAs NXaNY,NZ
COMMON/TC/THKST 9 THKSB s THKLT g THKLB ¢ THKF g WEIGHT

COMMON/CODE/JCODE(21T7,46)

WZ=THKSB+2.5*THKF

WX=THKLB+2.5%THKF

IFIWZ.GTaZ.CReUWXGToX) GO TO 50

AREA=X¥WI+Z¥WX—WX*WZ

PRESS=WEIGHT/AREA

WRITE(6,200) WEIGHT,PRESSy WX WZ

NXL=NX+1

NZ1=NZ+1

NC=2%NZ1

DX=C/2a

DZ=B/2.

TRIP1=WZ+2.%DL

DO 10 I=1,NX1

XHITE=C
DO 20 J=1,NC,y2

IH=DZ*FLOAT(J)
IF(ZH.GT.TRIPL) GO TGO 10
WIDTH=8
IF(J.EQel) WIDTH=WIDTH/ 2,
IF{ZH.GT oWZ) WIDTH=B—-ZH+WZ
XLOAD=PRESS*WIDTH*XHITE
L=(J+1)/2

011



19
20
10

39
40
30
50

100

M=NUGP(1,L,3)
N=JCODE(M,2)
IFIN.EQ.0) GO T0 19
QUN)=Q(N)+XLOAD
GO0 1O 20
WRITE(6,100) M
CUNTINUE
CONT INUE
I=(INTOIX-WX)/DX)+1)/2+1
J=UINT(WZ/DZ)+1)/2+1
DG 30 K=I,NXl
XHITE=C
IF(KeEQeI) XHITE=(2%[-1)*DX—X+1X
IF(KJ.EQeNX1) XHITE=C/2.
DO 40 L=Jd,yN11
WIDTH=8
IF(L.EQed) WIDTH=(2%J-1)%DL-WZ
IF(L.EQeNZ1l) WIDTH=8/2.
XLOAD=PRESS*WIDTH*XHITE
M=NDP(K'L’3)
N=JCODE{M,2)
IFIN.EQ.O) GO TO 39
QEN)=QUN)+XLOAD
GG TO 40
WRITE(6,100) M
CONTINUE
CONTINUE
RETURN
WRITE(6,101)
RETURN
FORMAT( * A CONSTRAINT EXISTS IN THE DIRECTION OF THE APPLIED STRI
*P LOAD AT NODE'9I14/T53'THE LOAD WAS NOT ENTERED INTO THE LOAD VECT

T11



*0R ")
101 FORMAT(/®* THE STRIP LOAD COVERS THE ENTIRE FLOUR SLAB®/T5,*REENTER
¥ AS A UNIFGRM LOAD. EXECUTION wAS TERMINATED')
200 FORMAT(//* THE TOTAL WEIGHT OF THE WALLS=',F10.2,' KIPS'/
¥% THE UNIFORM STRIP PRESSURE=*,F10.7,' KSI*/
¥ THE wWwIDTH OF THE STRIP IN THE X-DIRECTION=?,F10.3,"* INCHES®'/
¥ THE WIDTH OF THE STRIP IN THE Z-DIRECTION=*,F103,' INCHES'//)
END

48!
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C

SUBROUTINE STRIP1
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c

SUBROUTINE STRIPL{WEIGHL)
IMPLICIT REAL*8 (A-H,0-2)

COMMON Q(993) 9 THK(893) o XL(396)9AyBsCoaEsVNUsWC9XyYZsMCO
1DE(192+24)sNOP(95993) 4, I10P(858,3) yNELEMy NNODES yNDOF o IHBRy NXoNY 4NZ
COMMON/TC/THKYT s THKYB o THKXT o THKXB 9 THKF 3 WEIGHT

COMMON/CGCDE/JCODE(217,46)
WX=THKY5+2.5%THKF
AY=THKXB+2 « 5*¥THKF
IF(WY.GT.Y«UR.HWX.GToX) GG TO 50
AREA=XFWY+YRHX-WXEWY
PRESS=WEIGH1/AREA
WRITE(69200) WEIGHL sPRESSsWX,nY
NX1=NX+1
NY1=NY+1
NC=2#%NX1
Dx=C/2.
DY=A/2.
TRIP1=WX+2.*DX
DO 10 I=1,NY1
XHITE=A
IFII2EQel ORI« EQaNYLl) XHITE=XHITE/2.
DO 20 J=14NCy2
XH=DX*FLOAT(J)
IF(XH.GT.TRIPL) GO TO 10
WIDTH=C
[F{JeEQel) WIDTH=WIDTH/2.
IFIXHeGTeWX) WIDTH=C—XH+WX
XLOAD=PRESS*WIDTH*XHITE
L=(J+1)/2
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20
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39
40
30
50

100

M=NOP(I,L,1)
N=JCUDE (M, 3)
IF{N.EQ.O) GO TO 19
QIN)=Q(N)+XLOAD
60 TO 20
WRITE(6,100) M
CONTINUE
CONTINUE
I={INTHLY-WY)/DY)#1})/2¢]1
J=UINT{nX/DX)+1)/2+1
DO 30 K=I4NY1
XHITE=A
IF(KeEQeI) XHITE=(2%[-1)%DY-Y+WY
IF(K.EQaNYl) XHITE=A/2.
DO 40 L=J,NX1
WIDTH=C
IF(L.EQed) WIDTH=(2%J-1)*DX-WX
IF(L.EQ.NX1) WIDTH=C/2.
XLOAD=PRESS*WIDTH*XHITE
M=NOP(Kyslys1l)
N=JCUDE(M,3)
IFIN.EQ.O0) GO TO 39
QUNI=Q(N) +XLOAD
GO TO 40
WRITE(64100) M
CONTINUE
CONTINUE
RETURN
WRITE(6,101)
RETURN

FGRMAT( " A CONSTRAINT EXISTS IN THE DIRECTION OF THE APPLIED STRI

*P LGAD AT NODE'y14/T5,'THE LOAD WAS NOT ENTERED INTO

THE LOAD VECT
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*0R?)
101 FORMAT(/* THE STRIP LOAD COVERS THE ENTIRE FLOOR SLAB®'/T5,'REENTER
* AS A UNIFORM LOAD. EXECUTION WAS TERMINATED')
200 FURMAT(//* THE TOTAL WEIGHT OF THE WALLS=!',Fl0.2,' KIPS*/
*%' THE UNIFORM STRIP PRESSURE=',F10.7," KSI*'/
*? THE WIDTH OF THE STRIP IN THE X-DIRECTION='4F1043,"' INCHES'/
#¥% THE WIDTH OF THE STRIP IN THE Y-DIRECTION=*,F10.3,"' INCHES'//)
END

ST



C %%k e ok ook ok ok ok ok Rk o ok ok Rk ok ok ok ok ko Rk ok ko ok R Rk Rk

c

SUBROUTINE OEADWT

*

R I I T e I I T T I I T TS ST I T I IS TIIITIITY

~

L

11
13
15

51

52

53

55

SUBROUTINE DEADWT(NPLTS)
IMPLICIT REAL*8 (A-H,0-2)
COMMON QU993 ) +THK(893)aXL(396)9AsBeCrEaVNUsWCXeYZyMCO
1DE(192,24) ¢yNGP(939,3) yI0P{848,3) yNELEMyNNODES9yNDOF, IHBWyNX yNYNZ
COMMGN/TC/THKST gy THKSB s THKLT o THKLB 9 THKFy WEIGHT
COMMON/CODE/JCODE(217,6)
WEIGHT=0.
NP=NPLTS
IFINPLTS.EQ.3) NP=2
W=WC/1728000.
DG 10 I=1,NP
GOTO(11,11,13),1
NR=2%NY
GO TO 15
NR=2%NX
DO 20 J=1,NR,2
IF(J.NE.1l) GO TO 80
GOTO(51452453),1
T=THKST
83B=THKSB
THZ2=T
GO TO 55
T=THKLT
BB=THKLB
TH2=T
GG TO 55
TH=THKF
GU TO 60
IF{T.EQ.BB) GO TO 61

911



80

61
60
21

22

25

31

32
35

29

SLOPE=(BB-T)/FLOAT(NR)
IFIT.EQ.BB.OReIEQs3) GO TO 60
THL=THZ2
TH2=SLGPE*FLOAT(J) +T
TH=(TH1+TH2) /2.

GO TO 60

TH=T

GUTO(21,22),1

K=NX+1

DH=A

GO TU 25

K=NZ+1

DH=A

GO TO 25

K=NZ+1

JH=C

IF(J.EQel) DH=DH/2.

DO 30 L=1,K
GUTO(31,432932),1
DL=C
GO T0 35
DL=8
IF‘L:EQQIOOR.L.EQ.K) DL=DL/2.
M=NOP{(J+1)/2,L,1)
N=JCODE{(M,2)
XLOAD=W*TH*DH*DL
WEIGHT=WE IGHT+XLOAD
IF{N.EQ.O) GO TO 29
QIN)=Q(N)—-XLOAD
WRITE(645,101) M,Q(N)
GO 10 30
WRITE(5,100) M

LT1



30
20

70

41

42
45

39
40

CONT INUE

CONTINUE

IF(T.EQ.B8B.0R.1.EQ.3) GO TO 70

TH1=TH2

TH2=B8B

TH=(THL+TH2)/2.

DO 40 L=1,K
GOTO(41,42942),1
OL=C
GG TO 45
DL=8
IF(L.EQeleURL.EQ.K) DL=DL/2.
M=NOP{(J+3)/2,L,1)
N=JCODE(M,2)
XLOAD=W%TH*DH/ 2« *DL
WEIGHT=WEIGHT+XLOAD
IFIN.EQ.0) GO TO 39
QIN)=QI{N)-XLOAD
WRITE(65101) M,Q(N)
GG TO 40
WRITE{6,100) M

CONTINUE

10 CONTINUE
100 FURMAT(®* A CONSTRAINT EXISTS IN THE DIRECTION OF THE DEAD WEIGHT L

1G6AD
2)

AT NODE' ,14/T5,*THE LOAD WAS NOT ENTERED INTO THE LOAD VECTOR!

C 101 FORMATI(IS,Fl2.2)

RET
END

URN
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R ETZIEEEEILIZ SIS S22 222222222 S22 PSSR X222 22 R 2 R0 2 228 £ X

C

SUBROUTINE ASSEM

*

C # ok oo d koo ook kol ok ok ok ol o ok ok ok ol ok ok dokoKok ok ok ok ok gk oK gk ko ok K ook kR R Rk K

C

81

11

12

13

SUBROUTINE ASSEM{NPLTS)
IMPLICIT REAL*8 (A-H,0-27)
COMMON Q(993) s THK(893) s XL(3,0)9AyByCeEsVNU,WCeXyYsZyMCO
IDE(LG2924) 9y NCP (94993 )2 10P(8,8353) 9y NELEMsNNODES s NDUF» IHBWsNXsNYNZ
COMMON/ZTC/THKST gy THKSB o THKL T 9 THKLB 9 THKF g WEIGHT
COMMON/CODE/JCODE(21T7,6)
COMMON/SSM/SST (594 ,993)
COMMON/GIND/G{163)
COMMON/CDEFF/SOIL
DIMENSION INDEX(244:24)
READ(S54%) ((INDEX{I9d)ed=1924),1=1,24)
DO 81 I=1,IHBW
DO 81 J=1,NDCF
SST(I,J1=0.
1T=0.
DO 1 11=1,NPLTS
CALL XLAMDT(I1l,XL)
GOTO{11,12413),11
Al=A
Bl=C
NR=NY
NC=NX
GO T0 15
Al=A
B81=8
NR=NY
NC=NZ
GO TO 15
Al=C

611



Bl=

B8

NR=NX
NC=NZ

DO

10 I=1,NR

T=THK(I,I1)

IF(T.NE.TT.O0RI.EQal) CALL GLOBK(I1lyAl,81,T)
TT=T

DO 20 J=1,NC

NN=I0P(I,J,11)

DO 30 JM=1,24
J1=MCODE (NN, JM)
IF(J1.EQ.O0) GO TO 30
DO 40 KM=JM,24

K=MCODE {NN,KM)
IF(K.EQ.0) GO TO 40
KB=J1l—K+IHBW
L=INDEX(JMyKM)
IF{L.GT.0) GD TO 41

L=—L
SST{KB,K)=SST(KB,K)=-G(L)
GO TO 40

41 SSTIKBsK)=SSTIKB.K)+G(L)

40 CONTINUE

30 CONTINUE

20 CONT INUE

10 CONTINUE

1 CONTINUE

ITFINPLTS-EQe3.AND«SOIL.GT.0.) CALL MODIFY

RETURN
END
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RII IR IR LS R S S SRS SRS SRR 22222222222 2222222222 2
C SUBROUTINE MODIFY *
R R R R R KRR R SRR R AR A R R KRR R R TR R R R R AT TR AR A EKEFRE R R EEEREK
SUBROUTINE MODIFY
COMMON QI993) s THK(843) 3XL{336)9AyBsCeEyVNU, WC XY 9Z,MCO
1DE(192324) ¢ NCP(99993),10P(898,493) 3 NELEMyNNODES s NDUOF, THBWaNXoNYoNZ
COMMON/CODE/JCODE(217,6)
COMMDON/SSM/S5ST(594,993)
COMMON/ CGEFF/SOIL
NZ1=NZ+1
NX1=NX+1
DG 10 I=1,NX1
DO 10 J=1,NZ1
K=NUP‘ I 'J'3)
L=JCODE(K,2)
IF(L.EQ.0) GO TG 10
CUEF=SOIL
IF(1.EQ+1.0RelEQ.NX1) COEF=COEF/2.
IF(J.EQelOR.JEQ.NZL1) COEF=CGEF/2.
SSTUIHBW,L)=SSTUIHBW, L) +COEF
10 CONTINUE
RETURN
END
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CHRaddpR R EREEEFXEEE KExh xR e pr bk ek RFThhkhh ke e xxkedop ek

c

SUBROUT INE XLAMOT

3

CHREREERFEERKEEREERRE R KRR EREF R AR R SRR AR PR Rk ke ke ko h bk ki &k

SUBROUTINE XLAMDT{NPLTS,L)
IMPLICIT REAL#*8 (A-H,0-2)

C

10

11

12

13

REAL L(3,6)
DO 10 I=1,3
DO 10 J=1,6

L{I,J4)=0.

GUTO(11+12413),NPLTS

L{1,1)=0.

L( ’.92)="10

L{1,5)=0.

L(2y1)=-1.

L(2,2)=0.
L(2,5)=0.
L(3,1)=0.
L(3,2)=0.
L(3l5)‘=lo
RETURN

L(1,1)=0.
L(l1,2)=0.
L( 1'5):10

L(Z’l):‘lo

L(2'2)=00
L{2,5)=0.
L{3,1)=0.
L(3'2)=10
L(3,5)=0.
RETURN

L(l,1)=—1
L{1,2)=0.

44}



L(145)=0.
L(2,1)=0.
L(2,2)=0.
L(2,5)=—1.
L(3,1)=0.
L(3,2)=1.
L{3,45)=0.
RETURN
END

€Tl



R R I T I I T S T T I I ™
C SUBROUTINE GLOBK *
R e R I I I T I T I T e T I T I T
SUBROUTINE GLOBKINPL,Al1,B1,T)
C IMPLICIT REAL#*8 (A—-H,0-Z)
COMMON Q{993 )y THK{B843) o XL1336) 9A9ByCrEsVNU WCeXeYsZeMCO
1DE(192424)3sNOP{99993)1I0P(89843) 9 NELEM,NNODESyNDOF ¢ IHBWsNXyNYNZ
COMMON/GIND/G(163)
COMMON/FORC/D(24)9P21,P324P11yP22yP314P33,PL2,P13sS5AyS58,5C,SD,SE,
1SFsSGeSHeSTI9pSJUeSMySNsSOsSPsSQeySReSS»STySUp SX9SYsFLyF29F3,5F4,F5,
2FT3FB9F94FL09sF11 9yF13¢F14,F159F163F174F19,F20,F21,F22,F23,P23,P41

DETERMINE COMMON TERMS USED IN PLAIN STRAIN MATRIX

[aEnNe]

P=Al1/81

PA=60.,#30.%VNU%¥2/ (1.-VNU)
PB=22.5%(1-VNU)
PC=30.-30.%VNU**2/(1.-VNU)
ETC=E*T/180./{1.—VNU%%2)
PD=22.5%(1.+VNU)
PE=2245%(1e—-3.%VNU)
P11=(PA/P+PBX*P)*ETC
P22=(PA*P+PB/P)*ETC
P21=PD*ETC
P31={(PC/P-PB*P)*ETC
P32={-PC/P-PB*P)*ETC
P33={-PA%P+PB/P)*ETC
P1l3=PE*ETC
P23=(—-PA/P+PB¥P)*ETC
P12=(PC*P-PB/P)*ETC
P41=(-PC*P-PB/P)*ETC

4!



DETERMINE CGMMON TERMS IN THE PLATE BENDING MATRIX

DX=E*T*%3/12./(1.—VNU*%*2)

DY=DX

D1X=VNU%*DX

DXY=0.5%{SQRT(DX*DY)-D1X)

A2=Al1/2.

B2=Bl1/2.

PDX=DX/ (P*%¥2)

PDY=DY*P*x2

SA={20.%PDY+8.*¥DXY)*¥B2/(15.%A2)

$SB=D1X

SC={20.%¥POX+8.*DXY )*A2/(15.%B2)
SD=(30.%PDY+15.%¥D1X+6.*DXY)/(30.%A2)
SE=(30.%PDX+15.*%¥D1X+6.%DXY)/{(30.%B2)
SF={60.%¥PDX+60+%¥PDY+30.%¥D1X+84.%¥DXY)/(60.%¥A2%B2)
SG=(10%PDY-2.*DXY)*¥B2/({15.%A2)
SH=(-30.%PDY-6.*¥DXY) /(30.%A2)
SI=(10.%PDX—8.%DXY1%A2/(15.%B2)
SI=(15.%PDX-15.%D1 X~6.¥DXY)/(30.%82)
SM=(30.%¥PDX—-60*PDY-30.*D1X-84.%DXY)/(60.%A2%B2)
SN=(10.%PDY—8.%DXY )}%¥B2/(15.%A2)
SO=(=15%PDY+15.#D1X+6 . *DXY )/ (30.%A2)
SP={5.%PDY#2.%¥DXY)*82/{15.%A2)
SQ={15.%PDY—6.%DXY)/ (30.%A2)
SR=(10.%PDX-2.%DXY)*A2/(15.%82)
SS=(30.%PDX+6.*DXY)/(30.%B82)
ST=(5.%PDX+2 .%DXY ) *A2/ (15.%B2)
SU={15*%PDX—6.%DXY)/{30.%B2)
SX=(-60.*%PDX+30.%PDY-30.%D1X-84.%DXY)/(60.%A2%82)
SY=(—30.%POX-30%PDY+30.%D1X+84.*%DXY)/{60.%*A2%B2)
IF(NPL.EQeS) RETURN
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(s NeaXe!

DETERMINE COEFFICIENTS OF THE INDEX MATRIX

AA=XL(1,1)

8B=XL(1,2)

CC=XL(1,5)

DD=XL{2,1)

EE=XL(2,2)

FF=XL(2,5)

6G6=XL{3,1)

HH=XL({3,2)

XI=XL{3,5)

Gl1l)=AA*AA%P]1 1+ 2. ¥*AA¥*BB%P2]1 +BB*BB¥P22+CC*LC*SF

G{2)=0DD*AA¥P11+{DD*BB+EE*AA)*¥P21+EC*BB*P22+FF%CC*SF

G(3)=GG*AA%PL1+(GCG*BB+HH*AA) *¥P21+HH*BB¥P22 +X [ *CC*SF

G(4)=—AA*CC*SD+BB*CC*SE

G(5)=—0DD*CC*SD+EE*CLC*SE

Gl 6)=—6G*CC*SD+HH*CC*SE

G(7)=AA*AA%P3]+ B8*BB*P33+CC*CC*SH

G(8)=DD*AA%P31 +{ EE*AA-DD*BB)*P13+EE*BB*P33+FF*CL*SM

G(9)=GG*AA¥P3]1 +( HH*AA-GG*BB) *¥PL3+HH*BB*P33+XI*CC*SM

GI10)=AA*CC*SH+B8B*CC*SJ

G(11)=0D*CC*SH+EE*CC*SJ

G(12)=GG*CC*SH+HH*CC*S Y

G{13)=AA%AA%P23+ B8B*BB*P12+CL*CC*SX
G(1l4)=DD*AA*P23+ (DD*BB—CE*AA)*P13+EE*BB*PL2+FF*CL*SX
G(15)=GG*AA%P23+(GG*BB—HH*AA) *P 13 +HH*BB*P12+XI*CC*SX
G(16)=AAXCC*SO+8B*CC*%SS

GU17)=DD*CC*SO+EE*CC*%SS

G(18)=GL*CC*SO+HH*CC*SS

GI13)=AA*AA%P 32~ 2. *AA%BB*¥P21 +BB8*BB*P41+CC*CC*SY
Gl20)=0D*%AA*P32-(EEXAA+DD*BB )*P21 +EE*BB*P4 1 +FF*CC*SY

9C1



G{21)=GG*AA%P32- (HH*AA+GG*BB ) ¥P21 +HH*BB*P41+XI*CC*SY
Gl22)=—AA¥*CC*SQ+BB*CC*SU

G(23)=—DD*CC*SQ+EE*CL*SU

G{24)=-GG*CC*SQ+HH*CC*SU

G{25)=DD*DD*P11+ 2+ ¥DD*EE*P2]1 +EE¥EEXP22+FF*FF*SF
G{26)1=GG*DD*PL1 1+ (GG*EE+HH*DU) *P21 +HH*EE*P22+ XI*FF*SF
G(27)=—AA*FF*SD+BB*FF*SE

G(28)=—DD¥*FF*SD+EE*FF*SE

6429)=—GG*FF*SD+HH*FF*SE
GI{30)=AA*DD*P31+(BB*DD—AA*EE)*P13+BB*EE*P33+CC*FF*SH
G(31)=DD*DD¥P31+ CE*EE¥P33+FF*FF%*SM
G(32)=66%DD*P31+(HH*DDO-GG*EE)*P L3I +HH¥*EE¥P3 3+ XI*FF%SM
G(33)=AA*FF*SH+3B*FF*SJ

G(34)=DD*FF*SH+EE*FF%SJ

G(35)=6G6*%FF*SH+HH*FF%S5J

G(36)=AA*DD*P23+ (AA*XEE-BB*DD)*P13+BB*EE*PL2+CC*FF#*S5X
G(37)=DD*DD*P23+ EE*EE*P12+FF*FF*SX
G(38)=GG*DO*P23+ (GGX*EE—HH*DD)*P 13 +HH*EE*PL 2+ XI*FF*SX
GU39)=AA*FF*SO+BB*FF*SS

G{ 40 )=DD*FF*SO+EE*FF*SS

Gl{41)=GG*FF*SO+HH¥*FF*SS

Gl 42)=AAXDD¥P32-(AA*EE+BB*DD)*P21 +BB*LE*P41+CC*FF*SY
Gl43)=0D*DD*P32- 2.%DD*EE*P2]1 +EE*EE¥P41+FF*FF*SY
G(44)=GG*DD*P32-(GO*EE+HH*DD ) ¥P 21 +HH*EE*P41+X]1 ¥FF*SY
G(45)=—AA*FF*SQ+BB*FF*SU

Gl46)=—DD*FF*SQ+EE*FF*SU

G{47)=—GG*FF*SQ+HH*FF*SU
G(48)=6GG*CG*P11+42¥HH*GG¥P 21 +HH*HH*P22+XI*XI*SF
G{49)=—AA*X[*SD+BB*XI*SE

G(50)=—DD*XI*SD+EE*XI*SE

G{51)=—GG*XI*SD+HH*XI*SE
G(52)=AA*GG*P31+(BB*6GG—AA*HH)*P 13 +BB¥HH*P33+CC*X[*SM
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G(53)=DD*G6%P31+(EE*GG—DD*HH) P 13 +EE*HH*P33 ¢ FF & X [%SM
G(54)=GG¥GG*P31+ HH¥HH®P3 3+ XI1*X 1% SM
G(55)=AA*X[*SH+BB&*XI*SJ

G(56)=DD*XI*SH+EEXXI*SJ

GUS5T)=GG*XI¥SH+HH&XI#SJ
GU58)=AA¥GG*P23+(AA*HH-BB*GG ) P13 +BB*HH¥PL 2+CCEXI*¥SX
G(59)=DD*GG*P23+ (DD¥HH-EE*GG ) P13 +EE*HH*PL2 ¢ FF*X I%SX
Gl60)=GG*G6*P23+ HH®EHH#P1 2+ X I %X 1% SX
Gl61)=AA*XT#SO+BB&XI*SS

6(62)=DD*XI*SC+EEX XI*SS

Gl 63)=GG*XI*SO+HH€XI*SS

G164 )=AA%GG¥P32~(AA¥HH+BB¥GG ) *P21 +BB*HH*P41 +CC*X [¥SY
G(65)=DD¥GG*P32~ (DD¥HH+EE*GG ) #P 2L +EE¥HH* P41+ FF¥X % SY
Gl66)=GG¥*G6¥P32~  2.%GGEHH¥P21 +HH¥HH*P4L+XI*XI*SY
G(6T)=—AARX1*SQ+BBEXI*SU

G(68)==DD*XI*SQ+EEXI*SU

G(69)=-GG*¥XI*SQ+HH*X I*SU

GITO)=AA*AAXSA—  2.%AA®BB*SB +BB*BB*SC
G(71)=DD*AA*SA—(DD*BB+EE*AA) *SB+EE*BB*SC
GU72)=6G*AA%SA—(GG*BB+HH¥AA) *SB+HH*BB* SC
G(T73)=CC#(-AAXSH+BB%SJ)

G(T4)=FF*(—AA¥SH+BB*SJ)

GU75)=XI%(—AA*SH+BB%SJ)

G(T6)=AA*AA%SG+BB#BB*SI

G(TT7)=DD*AA*SG+EEXBB*S]

GLT78)=GG*AA%SG+HH*BB*S I

G(79)=CC*(AA*SO-BB*SS)

G(80)=FF#*(AA*SO-BB*SS)

GU81)=XI*(AA%SO-BB*SS)

G{82)=AA*AARSN+3B%BB&SR

G(83)=DD¥AA*SN+EE*BB*SR

G(84)=GG*AA%SN+HH*BB*SR
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GI{85)=AA¥AA*SP#38B*3B%ST
GU86)=DD*AA*SP+EE*BB*ST
G(87)=GG*AA*SP+HH*BB*ST
G(88)=DD*DD*SA~ 2.%¥DD*EE*SB +EE*EL*SC
G(89)=GG*DD*SA-(GG*EE+HH*DD) *SB+HH*EE*5C
G(90)=CC*(-DD*SH+EE*SJ)
G(91)=FF*(-0OD*SH+EE*SJ)
G{92)=XI*(—DD*SH+EE*S5J)
GI93)=AA¥DD*SG+BB*EE*SI
G(94)=DD*DD*SG+EE*EE*S]
GU(95)=6L*DD*SG+HH*EE*S1
Gl 96 )=CC*{DD*SO-EE*SS)
G(97)=FF*(DD*SO-EE*SS)
5(98)=XI*(DD*SO-EE*SS)
G{99)= AA¥DO¥*SN+BB*EE*SR
G{10G)=DD*DO*SN+EE*EE*SR
G(101)=GG*DD*SN+HH¥*EE*SR
G(102)=AA*DD*SP+BB*EE*ST
G{103)=DD*DD*SP+EE*EE*ST
G(104)=GG*DD*SP+HH*EE*ST
Gl105)=6G*G6*SA-24*¥GG¥HH*SB+HH¥*HH*5C
G{106)=CC*(—GG*SH+HH*SJ)
G(107)=FF¥{-GG*SH+HH*SJ)
G(108)=XI*{-GG*SH+HH*SJ)
GE109)=AA*GG*SG+BB*HH*ST
G(110)=DD*GG*SG+EE*HH*SI
Gl111)=66*66¥SG+HH*HH*SI
G(112)=CC*{GG*SO—-HH*SS)
G(113)=FF*(GG*S0-HH*SS)
G(114)=XI*(G6*S0—HH%SS)
G{115)=AA*GG*SN+BB*HH* SR
G(116)=DD*¥GG*SN+EE*HH¥SR
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G(117)=GG¥GG*SN+HH*HH*SR
G(118)=AA¥GG*SP+BB¥HH*ST
G(119)=DD*GG*SP+EE®HH*ST
G(120)=GG¥GG*SP+HH*HH*ST
G(121)=AA*%AA*P]1]1— 2. ¥AA*BB¥P21 +BB¥*By*P22+(LC*CC*SF
G(122)=DD*AA*P11—-(DD*BB+EE*AA) *¥P2 L +EE*BB*P22+FF¥*CC*SF
G{123)=GG*AA*P11-(GG*BB+HH*AA)*P2 1 +HH*BB*P22+X [*CC*SF
G(124)=AAXCC*SD+BB*CC*SE
G(125)=DO%CC*SD+EE*CC*SE
G(126)=GG*CC*SD+HH*CC*SE
G(127)=AA%AA%*P32+ 2. ¥*AA¥BB*P21 +BB*BO¥P41+CC*CC*SY
G{128)=DD*AA%P32+ (DD*BB+EE*AA)*P2 1 +EE*BB*P4L1+FF*CC*SY
G(129)=GG*AA*P32+ (GG*BB+HH*AA) *¥P21 +HH*¥BB¥P41+XI*CLC*SY
G(130)=AA%CL*SQ+BB*CC*SU
G(131)=DD¥CC*SQ+EE*CC*SU
Gl132)=66*%CC*SQ+HH*CC*SU
G(133)=DD*AA*P23+(EE*AA-DD*BB)*PL3+EE*BB*P12+FF*CC*5X
G(134)=GG*AA*P23+ (HH*AA-GG*3B)#P13+HH*BB*P 12+ XI*CC*SX
G(135)=DD*DD*P11— 2. ¥DD¥EE*P21 +EE¥EC*P22+FF¥FF*SF
G(136)=6G*DD*PL1-{GG*EE+HH*DD) *P2 1 +HH*EE*P22+X [ *FF*SF
G(137)=AA*FF*SD+BB*FF*SE
G{138)=DD*FF*SD+EE*FF*SE
G(139)=GG*FF&SD+HH*FF*SE
Gl140)=AA%DD*P 32+ (AA®EE+BB¥DD)*P21+BB*EE*P4L1+CC*FF*SY
G(141)=DD*DD*P32+ 2 ¥DD¥EE*P21 +EE¥EE#P41+FF*FF*SY
G(142)=GG*DD*P32+ (GG*EE+HH*DD) #P21 +HH*EE*P 41+ X *FF*SY
G(143)=AA*FF*SQ+BB*FF*SU
G{ 144 )=DD*FF*SQ+EE*FF%SU
Gl 145)=GG¥FF#SQ+HH*FF*SU
G(146)=AA%0D*P23+(BB*DD—AA*EE)*P13+BB*EE*P12+CCxFF%SX
G(L4T)=DD*DD*P23+ EE*EEXP12+FF¥FF*SX
G(148)=GG*¥DD*P23+(HH*DD—GG*EE) ¥P13+HH*EE*P12+XI*FF*S5X
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G(149)=G6¥GG%P11-2 « *GG*HH¥P21 +HH&HH*P 22+ X[ *X [ % SF
Gl150)=AA*XI*SD+BB*XI*SE

G({151)=DD*XI*SD+EE*XI*SE

G(152)=66*XI*SO+HH*X[*SE
G{153)=DD%GG*P32+ (DD¥HH+EE*GG) *P2 1 +EE¥*HH*P4 1 +FF*XI%SY
G{154)=Gu*GG*P32+ 2e¥HH*G5G%¥P21 +HH¥HH*P 41+ XI*XI*SY
G(155)=AA*XI*S5Q+3B*XI*SU

GI156)=D0*XI*SQ+EE*XI*SU

GU157)=0G¥XI*SQ+HH*XI*SU

Gl158)=AA%AA*SA+ 2.¥AA%BB%SB +B8B*BB*SC
GU159)=DD*AA*SA+(DD*BB+EE*AA) *SB+EE*BB*SC
Gl160)=6GG*AA*SA+(GG*BB+HH*AA) *SB+HH*BB*SC
GIl161)=DD*DD*SA+ 2.%DO*EE*SB +EE*EE*S5C
6G{162)=GG*DD*SA+(GG*EE+HH*DD ) *SB+HH*EE*SC
Gl163)=G6*¥GG*¥SA+ 2o ¥GG¥HH*¥SB  +HH¥HH#*SC

RETURN

END
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C SUBROUTINE SOLVE *
CARARR R AR IR KX F AR R E AR AR ARG E R E R RS REE R R E RN F KRR R ER KRR AR R TR TR K&
SUBROUTINE SOLVE

C IMPLICIT REAL*8 (A-H,G-1)

COMMON Q(993) s THK(893) sXL(356)9AsBeCsE9VNUsWCsX9Y9Z,MCO

1DE(192424)yNOP(95993),10P(89893)y NELEMyNNODESoNDOF 9 IHBWyNXyNY4NZ

COMMON/SSM/SST(594,993)

COMMON/SOLV/MAXID,sLDA

REDUCE STIFFNESS MATRIX USING THE LINPACK EQUATION SOLVER

e NaNel

CALL SPBFA(SST,LDANDOF,MAXID, INFQ)
IF(INFO.EQ-0) GO TO 90
WRITE(6,100) INFO
100 FORAAT(///' **% STOP *%% THE LEADING MINOR OF ORDER',15,2X,*1IS NO
*T POSITIVE DEFINITE'/)
STOP

REDUCE FDRCE VECTOR AND BACK SOLVE FOR DISPLACEMENTS

90 CALL SPBSLISST,LDA,NDOF,MAXID,Q)
HRITE(6,11)
WRITE(6,10) (I,Q(I)+I=14NDOF)

10 FORMAT(6(" QU*I3,5%)=",F10.743X))

11 FURMAT(//' GENERALIZED DISPLACEMENTS'/)
RETURN
END

OO0 ao0o
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C

SUBROUTINE FORCE *

Caddpferokfkh kb kf b kb bk kbbb ke rd kxR erk ke ke ek

c

11

12

13

15

SUBROUTINE FORCE{NPLTS)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON Q(993 ), THK(B53) sXL{3,6)3AsBeCaEsVNUsWCsXsYoZoMCO
1DE(192424) yNOP(97993),I0P(8,843) yNELEM,NNODES ¢ NDOF y IHBWy NX ¢NY 4 NZ
COMMON/FGQRC/D(24) P21 4P32,P114P22,P314P33,P12,P13,5A,58,SC,SDsSE,
LSF3SGsSHsSTsSJsSMaSNsSOsSPsSQeSRsSSsSTsSUsSXsSYsFLeF2,F34F45F5,
2FToFB8yF99FLO3FLLyF13,FL4yF15,F16,FL7,FL9,F20,F21,F22,F23,P23,P41
WRITE(6,100)
TT=0.
DO 1 I1=1,NPLTS
WRITE(6,101) I1
GO TO (11,12,13),11
Al=A
Bl=C
NR=NY
NC=NX
GO TO 15
Al=A
B1=B
NR=NY
NC=NZ
GO TO 15
Al=C
B1=8
NR=NX
NC=NZ
DO 10 I=1,NR
T=THK(1,11)
IF(TeNE«TT.UR.I+EQel) CALL GLOBK(5,A1,B1l,T)
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TT=1
DO 20 J=1,NC

NN=IOPlI,J,1I1)

DO 30 K=1,24

L=MCODE(NN,K)
IF(L.EQ.0) GO TO 31

DIK)=Q{L)

GG TO 30
31 D{K)=0.
30 CONTINUE

CALL XKLD(I1)

I[=NOP(11Jvll)
JJI=NOP{I,J+1,11)
KK=NOP(I+1,J,11)
LL=NOP{I+1,d+1,11)

WRITE(6,102)
WRITE(6,103)
WRITE(6,103)
WRITE(6,103)
20 CONTINUE
10 CONTINUE
1 CONTINUE
100 FORMAT(///* NX
' ONY
' oMX
' MY
v

LK B I

AXIAL FGRCE IN

NNeIIgoFLlyF2,F39F4,4F5
JJyFT:F8,FG,F10,F11
KKyF134F1l49F154F16,F17
LLoFLl9,F20,F21,F22,F23

102 FORMATI(/15,19,5(2X,F15.4))
103 FORMAT(I14,5(2XyF15.4))

RETURN
END

(KIPS)*/
(KIPS)*/

THE LOCAL—1 DIRECTION

AXIAL FORCE IN THE LGCAL-2 DIRECTION

MOMENT ABOUT THE LUCAL-1 AXIS (KIP-INCHES)'/

MOMENT ABOUT THE LOCAL-2 AXIS (KIP—-INCHES)'/

SHEAR IN THE LUCAL-3 ODIRECTIGN

101 FORMAT(//' INTERNAL ELEMENT FORCES FOR PLATE*,13//7/°
¥ INOUE" 99 X9 "NX? y 15X "NY? 15X,y *MXT 15X, *MY?,15X,°'V?)

(KIPS)*//77)
ELEMENT® 93X,

AN
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C

SUBROUTINE XKLD

*

Corkkdok gk dkkhkrkktok bk ok ok kX kb ke ek kb kFrehdoker kb xikkrkhykkx

C

SUBROUTINE XKLDII1)

IMPLICIT REAL*8 (A-H,0-1)

COMMON Q€993 ) s THK{B893) ¢y XL(376)9ApByCyeEeVNUs WCeXsYyZ,MCO
1DE(192524) yNOP(99993)sI0P{8,4853) yNELEMy NNODES s NDOFy IHBWoNXsNYsNZ
COMMON/FORC/D(24) ¢P215P324P11,P22,P31¢4P33,P124P134SA¢SB,SC,S0,SE,
1SF3SGeSHySI9SJpSMySNySO9SPSQeSRySSyST,SUsSXySYyFleF2yF3,F4,F5,
2FT4F85sF93F104F119F13,3F14,F15:F16,F17sF19,F20,F21,F22,F23,P23,P41
CALL XLAMDT(I1,XL)

AA=XL(1l,1)

BB=XL{1l,2)

CC=XL(1,5)

DD=XL(2,1)

EE=XL(2,2)

FF=XL(2,5)

GG=XL(3,1)

HH=XL({3,2)

XI=XL{3,5)

D1=AA¥D(1)+DO*D(2)+GG*D(3)

D2=8B*D(1)+EE*D(2)+HH*D{(3)

D3=AA¥D{4)+DD*D(5)+GG*D{6)

04=BB*D(4)+EE*D(5)+HH*D(6)

DS5=CC*D(1)+FF*D(2)+XI%D(3)

Do=CC*D{4)+FF*D(5)+XI*D(6)

D7=AAXD(T7)+DD%DIB)+GG*D(9)

D8=BB*D( 7T)+EEx*D(8)+HH*D(9)

GC9=AA*D( 10)+DD*D{11)+GG*D(12)

D10=80%D(10)+EE*D(11)+HH*D(12)

D11=CC#D{T7)+FF*D{8)+XI*D(9)

DL2=CC*D(10)+FF*D(11)+XI%D(12)

GET



D13=AA%D(13)+DD*D(14)+GG*D(15)
D14=88%D(13)+EE*D(14)+HH*D{15)
D15=AA*D(16)+DD*D(17)+66*D(18)
D16=BB*0(16)+EE¥D(17)+HH¥D(18)
D17=CC*D(13)+FF#D{ 14)+XI*D(15)
D18=CC*D{L1&6)+FF*D(1T7)+XI%D(18)
D19=AA%*D(19)+DD*D(20)+66*D(21)
D20=BB*D(19)+EE*D(20)+HH*D(21)
D21=AA%D(22)+DD*D{23)+GG*D(24)
D22=BB*D(22)+EE*D(23) +HH*D(24)
D23=CC*D(19)+FF*D(20)+XI%D(21)
D24=CC*D(22)+FF¥*D(23)+XI1*¥D{24)

F1l = DI#PL1+D2*%P21+D7*P31+D8%P13+D13*%P23-D14%P13+D19%P32-D20%P21
F2 = D1%P21+402%P22-DT%P13+D8*P33+D13%P13+D14%P12-D19%P21+D020%P41
F3 = D3%SA-D4*SB-D5%SD+D9* S0 ~D11*SH+D15%3N +D17%50
* +D21%5P +D23%*35Q

F4 =—D3%SB+D4%SC+D5%SE +D10*SI+D11%SJ +D16%SR-D17*SS
* +D22%5T-D23%SU

F5 =—03%SD+D4%SE+D5%SF+D9*SH+D10%S5J+011*SM+D15%S0+D16*SS+D17%SX
% =D21%S5Q+D22*SU+D23*SY

F7 = D1*P31-D2%P13+D7%P11-D8%P21+013%¥P32+D14%P21+D19%P23+D20%P13
F8 = D1*P13+D2%P33-D7%P21+D8%P22+D13%P21+D14%P41-D19%P13+D20%*P12
F9 = D3%S6 +D5%SH#DI%*SA+D10*S5B+DL1*SD+D15%5SP =-D17%*5Q
* +D21*%SN -D23%S0

Fl0= D4*SI+D5%SJ+D9%SB+D10*SC+VU11%*SE +D16%ST-D17*SU
* +022%SR-D23*SS

Fl1=~D3%SH+D4*SY+D5%SM+DI*SD+D10*SE+DL1*SF#D15*%S5Q+D16*SU+D1T7%SY
* -D21*%S50+D22%S5+D23%*5X

F13= D1%P23+D2%P13+DT7%P32+D8%P21+D13%P11-D14%P21+D19%P31-D20%P13

Fl4=—D1#*P13+D2%P12+D7%#P21+D8%P41-D13%P21+D14%P22+D19%P13+D20%P33

F15= D3%SN +D5%S0+D9* SP +511%SQ+D15%SA+D16%SB-D17*SD
* +D21%*56 -D23%SH

9¢€1



*

%*

*

%

*

Flé6= D4*SR+D5%*SS +D10%ST+011%SU+DL5*SB+D16*SC-D1T7%SE
+022%S1-D23%5J

F17= D3%S0~D4*SS+D5*SX-D9*SQ-D10*SU+D1L1*SY-D15%SD-D16*SE+D17%*SF
+D21*%SH-D22%5J+D23%SM

F19= D1%P32-D2%P21+D7%P23—-D8%P13¢D13%P31+D14%P13+D19%P11+D20%P21

F20=-D1%P21+02%P41+4D7*P13+D8%P12-D13%P13+D14*P33+4D19%P21+D20%P22

F21= D3*SP =D5%SQ+D9* SN =D11*S0+D15%S6 +D17%SH
+D21%SA-D22%SB+D23%SD
F22= D4*ST+D5%*SU +D10%*SR+D11%SS +D16*SI-D17%SJ

~D21*5B8+022%5C-D23*SE

F23= D3%SQ-D4*SU+D5*SY-D9*S0-D10%SS+D11#SX-D15*%SH-D16%SJ+D1T*SM
+D21%SD-D22%SE+D23*SF

RETURN

END

LET
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C

SUBROUTINE SPBFA

P

Rt II LI ERS RS2SRSS 22 SRS 2222222222222 2222222 2222222 L 2 L X

10
20

30

40

SUBROUTINE SPBFA (SSTaLDA,NDOFsMAXID, INFG)
REAL SST(LDA,1)

DO 30 J=1,NDOF

INFO=J

$=0.0

IK=MAXID +1

JK=MAXO (J-MAXID,1)
MU=MAXD (MAXID+2-J,1)
IF(MAXID.LT.MU) GO TO 20
DO 10 K=MU,MAXID
T=SST{KsJ)-SDOTIK—MU,SST(IKeJK) 91 9SSTIMU,J),1)
T=T/SST(MAXID+1,JK3J
SST(KyJI=T

S=54T*T

IK=1K-1

JK=JK+1

CONTINUE

CONTINUE
S=SST{MAXID+1,J)-S
IF{S.LE.O0.0) GO TG 40
SST(MAXID#1,J)=SQRT(S)
CONTINUE

INFO=0

CONTINUE

RETURN

END
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C

SUBRGUTINE SPBSL

¥

I I I IS LTSI IR s 222 2 s SR 2222222222 2222222222222 22

OO0

OO0

10

290

SUBROUTINE SPBSLISST,LDA,NDGF,MAXID,Q)

REAL SST(LDA,1),Q(1)
FORWARD REDUCTION OF CONSTANTS

DJ 10 K=1,NDCF

LM=MINO (K—1,MAXID)
LA=MAXID+1-LM

LB=K—-L#M
T=SDOT(LMySSTILA,K)1,QILB),1)
QIK)=(QIK)-T)/SSTIMAXID#+1,K)
CONTINUE

BACKSU3STITUTION

DO 20 KB=1,NDOF

K=NDOF +1-KB
LM=MINO{K-1,MAXID)
LA=MAXID+1-LM

LB=K-LM
QUK)=Q{K)/SSTIMAXTID#1,K)
T=—Q(K)

CALL SAXPY(LMaTySSTULAWK)»1,Q(LB),1)
CONTINUE

RETURN

END
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c

FUNCTION SDOT &
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10

20

30

40

50
60

FUNCTION SDOTIN,SX,sINCXsSY,INCY)
REAL SX({l),SYI(1)

STEMP=0.0

SDUT=0.0

IF(N.LE.O) GO TQ 70

IF{INCX.EQel .AND.INCY.EQ.1l) GO TO 20
IX=1

[y=1

IF{INCXalTo0) IX=(—N+1)*INCX+1
IFCINCYeLTL0) IV=(—=N+1)*INCY+1
DO 10 I=14N
STEMP=STEMP+SX{IX)*SY{1Y)
IX=IX+INCX

IY=1IY+]INCY

CONTINUE

SDOT=STEMP

GO TO 70

M=MOD(N,5)

IF(M.EQ.D) GG TJ 40C

DO 30 I=1,M
STEMP=STEMP+SX(I)*SY(I)

CONTINUE

IF(N.LT.5) GG TO 60

MPLl=M#+1

DU 50 I=MPlyNs5
STEMP=STEMP#SX(I)*SY{I I +SX{I+1)%SY{I+1)+SXLI+2)%SY([+2)+SX{(1+3)*SY
T(T+3)+SX{I+4)%SY(]+4)

CUNTINUE

SOUT=STEMP

071



70

CONTINUE
RETURN
END

71
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C

SUBROUTINE SAXPY

*

CHRRREE KRR AR RR BT AR IR TR E R IR ER G R IR EE TR AT r ke ke u gk kR T rkF ek xk

10
20

30

40

50

SUBROUTINE SAXPY(NySAySXsINCX,SYsINCY)

REAL SX(1),SY(1),SA
IF(NoLE.O) RETURN
IF(SA.EQ.0.0) RETURN

IF(INCX.EQel cAND.INCY<EQ.1) GO TO 20

IX=1
Iy=1

IFCINCXeLT0)IX=(—=N+1)*INCX+1
IFCINCYeLToO)IY=(—N+1)%INCY+1

DO 10 I=1,sN
SYLIY)=SY(IY)+SA%XSX{IX)
IX=IX+INCX

IY=TY+INCY

CONTINUE

M=MOD(N,y4)

IFIM.EQ.0) GC TO 40

DO 30 I=1.M
SY{I)=SY(I)+SA%SX(I)
CONTINUE

IF(N.LT.4) RETURN

MP1=M+1

DG 50 I=MP1lsNy4
SY(I)=SY(I)+SA*SX(])
SY(I+1)=SY(I+1) + SA*SX([+1)
SY(1+2)=SY(I+2) + SA%SX{1+2)
SY({I+3)=SY(I+3) + SA*SX{I+3)
CONTINUE

RETURN

END
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Chdekfedokkdk kg fdodkmokk ko kg kokkkhkkkhkk ek kiokrhkkokkiok ok krk xkkkkkkik

C SAMPLE INPUT DATA *
Caddckk dok k& ks wk gk ok kS kFdok ko ek kR Ffpkkkkk ek Rk ok kR ke xRk ek sk
3

120. 120. 120. 8 8 8
3000. 0.2 150. 0.
10. 10. 10. 10. 12.
137
146
155
164
173
182
1591
200
209
210
211
212
213
214
215
216
2117

PNNNNNNNNONNNNNNNNDDNDN

—3 62.4 120.

-1 62.4 120.

0 0. 0.

O 0. 0.

00

132939495369 795899910,11912,13414,15916917518,19,20,21

22923924 923425926327928929930931932933934935436337938539,440,41,42

OCOwWrm=oO
OCONmM~O

(A



4394494594604 7 33326348549950951952953954155956957:958959,60,461,62
63964965906,67,68969 3492794997037 1,372373,745759769T77T:378979,80,31
82983)84"22.—45'—67'85'86'87 ,5.28.50)71988'89,90'91192’93'94,95
96,97198999:100,101"23"46.-68'1021103'104 .6.2915[,72'89'105'106

107,1089109,110,5,111,1124113,114,115,11691179-249-479-69,118,119
120 37330552973:9091069121,122412391249125,126,127,4128,129,130
1311132:1311331134)‘79.‘96'-112 '8'31153'74’911107.12211355136
137413851394140,141,142,143,14491459146,51474148,—-80,—97,—-113
9932254975992,108,123,1365314991509151915291299153415451555156
157915938960,-819-98,—-114 9105,33¢55976993,109,124,137,150,158
159'1601‘130.‘143|“155'85'86,87'“16"391‘61982'83'84 011'34'56
TT7394911041259138415141594161,162,-1319-14%49—156,102,103,104
=175-409-62799,1005101 512435457 978995411191269139,1524160,1062
1639'132,‘145,'157'118.119p1209‘18,‘41.'63:115,116'111 .13)36
58979996 ,112,1275140,129,-130,-131,-132,12141224123,-124,—-125
=126 979309524—73,-90,-106 5149379599809979113,128,5141,153,—-143
—1441-1451122.13511361‘1371-138'-13918131153,-74"91)—107 115
38360981 998y1149129,14291544—-155,-156,-157,123,1369149,—-150
‘151v—15239'32954'-753‘92,-108 .16.39.61182’991115)1301143'155
855102,0189y—1249y-137,-1505158915991609—109—33,-55,76,77,78 ,17
40962483,100,116,131,1444156,8641039119,-125,—138,—-151,159,161
1625—113-349-56393994,95 918941,6398451019117,132+1459157,87
10491209=1264=1399—152,16091629163,-129=354,-57,109,110,111 ,19
42'64,‘229‘231‘24.13'146'151_161‘17'°18,7'8191‘10"11"12'1'2
3)‘4"5,‘6 120143'65'-453‘461“471133'1471381‘39.‘40'_41130131
321-33,-34'“35'2125,261‘27)—28’—29 '21044'66.‘67.'68"69.134
148,601-613‘62"63'52,53154'-55'-56'—5713126'481-49"50"51 122
45,67185110211189‘79;‘80g‘al182999'1151'731‘741-75.76,93)109
—43=2T9=499704 71972 923946968,865103,1194-96,-97,-98,8391004116
—901—911-92177194.110"5"281'50'71,88'89 '24.47'69187'1041120
=1129y=1135-1148441015117,-106,—107,-108,78995,1114—6,-29,-51
T72489,105
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ANALYSIS OF RECTANGULAR CONCRETE TANKS
CONSIDERING
INTERACTION OF PLATE ELEMENTS

Douglas G. Fitzpatrick

Abstract

This study developed a finite element program suitable for analyzing
one quarter of a rectangular tank. A rectangular plate element capable of
both extension and flexure was used with appropriate coordinate transform-
ations to enable interaction of the floor and wall plates.

Moment values throughout the tank were determined but not collected
into tables because of their dependence on the width-to-length ratios and
the height of the tank. A moment distribution type of method was developed
so that critical vertical moment values could be rapidly determined with-

out the direct use of a complex computer program.
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