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I. INTRODUCTION AND SCOPE 

Rectangular tanks have generally been designed as an assemblage of 

plates with appropriate boundary conditicnb along the edges. The Portland 
1 

Cement Association (PCA) published a bulletin in 1969 which contained 

moment coefficients for plates with triangular and uniform pressure distri-

butions, given boundary conditions and various ratios of length-to-height. 

The bounday conditions for these plates were either clamped, simply 

supported or free. 

A clamped edge is defined as one that is moment resistant and no 

rotation or displacement of the joint or edge is possible. A simply sup-

ported condition is one that does not permit displacement; however, the 

edge is non-moment resistant. A free condition permits displacement and is 

non-moment resistant. A fixed edge is one that is moment resistant but 

rotation of the joint is possible. 

These three conditions do not accurately represent the joints in a 

rectangular tank as most often built. Most concrete tanks are built with 

monolithic wall-to-wall and wall-to-footing joints. Assuming monolithic 

construction, the angle between the tangents to the original surfaces of a 

wall-to-wall or wall-to-floor joint remain fixed, but the joint is free to 

rotate. Consequently, the clamped condition is only an accurate boundary 

condition for the wall-to-wall joints in a square tank under symmetric 

loading. It is also very difficult to construct a truely unrestrained and 

non-moment resistant joint that is resistant to leakage. Therefore, the 

fixed boundary condition as herein defined best represents the true field 

condition in tanks. 

1 
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In practice, a moment distribution type of balancing is sometimes 

used to provide for the continuity and joint rotations possible at an edge. 

The unbalanced moments at a joint, which develop from unequal lengths of 

walls and footings or different ~odding conditions on adjoining plates, are 

redistributed based on the relat:ve stiffnesses of the adjoining plates. 

Although this procedure is easy to carry out, a problem arises in 

determining the stiffness of a given section of the walls or floor when 

balancing moments in a strip through the footing and walls. A free 

condition at the top edge of the wall in a strip would imply that there is 

no resistance to rotation and this section would have zero stiffness. The 

strip, however, is removed from the continuity of the plate which provides 

resistance to rotation. Some designers use the "fixed-end" stiffness of 

the floor and two-thirds the "fixed-end" stiffness (4EI/L) of the wall to 

determine the relative stiffnesses at such a joint. A similar situation 

occurs when balancing moments in a horizontal strip through the four walls. 

The fact that the joint at the far end of the wall rotates in rectangular 

tanks and that the cross-section is removed from the continuum of the plate 

does not permit an accurate assessment of the stiffness of the walls or 

floor at a joint. 

The purpose and scope of this paper is to develop a program that de-

termines the bending moments at a number of locations in the walls and 

floor, treats these as plates, and takes into account the rotations of the 

joints. The finite element method of analysis is chosen because of the 

flexibility and ease with which it can handle arbitrary loadings and 

boundary conditions. The materials used are assumed to be elastic, homo-

geneous and isotropic. To enable the practitioner to determine some 
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extreme moment values for d~sign of rectangular concrete tanks, a moment 

distribution type of process is also developed from the finite element 

results. 

This paper is limiteu to a study of bending moments in tanks with 

four walls and a footing, built integrally. 



II. LITERATURE REVIEW 

The analysis of rectangular concrete tanks with the floor built 

integrally with the walls has not been fully addressed in any publications. 

There are no tables complete with moment values for variable sizes of tanks 

that consider the partial restraint and continuity of the plate inter-

sections, nor has there been an appropriate approximate method developed to 

determine moment values along the entire edge of interconnected plates. 

PCA Bulletin ST-63 1 contains moment values for plates with edges that 

are either clamped, simply supported or free (hereafter referred to as 

conventional boundary conditions). It also contains two tables that 

account for wall-to-wall interaction in rectangular tanks, but no wall-to-

footing moment transfer. The bottom edges of the walls of these tanks are 

assumed to be simply supported. The author was unable to determine from 

PCA the basis of or method used to prepare these tables. 

The finite element method, which is used in this paper to solve the 

interaction problem, has been used successfully to solve single plate 

problems with conventional boundary conditions. Jofriet2 developed several 

tables of moment coefficients when he determined the influence of nonuni-

form wall thickness on vertical bending moments and on horizontal edge 

moments in walls of length-to-height ratios greater than three. His 

solutions, however, only included conventional boundary conditions. 

3 Davies and Cheung used the finite element method to determine 

coefficients for moment values in tanks but assumed that the wall-to-wall 

joints were clamped, the top edges were either free or simple supported and 

the bottom edges were simply supported or clamped. In an earlier article,4 

4 
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Cheung and Davies analyzed a rectangular tank.with a specific ratio of 

dimensions and assumed (a) the bottom edges of the walls were fully 

clamped, and (b) the tank was supported on dwarf walls around the peri-

meter. Th~ wall-to-wall and wall-to-floor joints were monolithic. 

Davies did provide for the rotation of the wall-to-wall joint but 

only for a few very specific cases and generally only at one location, the 

center of the bottom edge of the wall. In one of his first articles5 Davies 

described a moment distribution process for long rectangular tanks. The 

stiffnesses of the floor and walls in a cross section were equal to the 

flexural rigidity divided by the length of the element. The joints at the 

far end of an element were assumed to be clamped, therefore his distri-

bution coefficients did not reflect the ability of the joint to rotate. 

The majority of his paper was devoted to developing easy methods for 

determining the fixed-end moments in the floor for a foundation of elastic 

. 1 6 materi.a , granular soil and cohesive soil. He used simplified limiting 

reaction pressures for the soils. This procedure was only used at one 

location in the wall and no collection of moment values for the whole 

system was given. If the tank was open at the top, Davies determined his 

bending moments directly from statics, that is, the wall acted like a 

cantilever, which does not reflect the continuity of the wall. 

In another paper,7 Davies used a classical approach to take into 

account the rotation of the plate intersections. He assumed the tank was 

square so that the vertical edges could be clamped and the bottom edge of 

the walls were elastically restained. He assumed a parabolic distribution 

of displacement in the plate along the bottom edge and used that to solve 

the fourth-order ordinary partial differential equation governing plate 
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deflection for the coefficients of displacement in the vertical direction. 

The coefficients were only determined at the center of the lower edge of 

the wall. The solutions at the bottom edge of the wall for a clamped 

condition and simply supported condition were superimposed to obtain an 

estimation of the rotational stiffness at that point. 

The same procedure was carried out for the floor so that the relative 

stiffnesses between the two members was found for the purpose of 

distributing the unbalanced moments. This provided a possible solution at 

the one location but no comprehensive list of moment values was determined 

for the entire edge along the bottom. A general case of a rectangular tank 

was not considered. 

In a third paper, 8 Davies considered different support conditions. 

He assumed that part of the floor could lift off the support and he 

developed a stiffness coefficient at that point based on the approximation 

that the section acts like a cantilever beam. However, this procedure was 

carried out at only one location, the center of the wall, and was subjected 

to a number of limitations. 

In a later article,9 Davies improved upon his previous solution of a 

tank resting on a flat rigid support when he assumed a polynomial type 

function to approximate the displacement of the floor. His results 

correlated well with experimental results but he only determined and 

compared an analytical moment at one location. 

Davies and Long worked together on a paper 10 to determine the be-

havior of a square tank on an elastic foundation. They solved the Levy and 

Naviers problems for the stiffness of the floor slab resting on a Winkler 

foundation and combined this solution with the solution of a previous 
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paper7 to determine moment values. The limiting case, though, was a square 

tank and moment values were only compared at the center of the lower edge 

of the wall. 

Brenneman, in his masters thesis11 at Virginia Polytechnic Institute 

and State University, developed a finite element program to determine 

moments in folded plates. It was, however, limited to fold lines being 

11 1 h 12 d d , para e to eac other. Beck expan e and developed Brenneman s program, 

and compared moment values with those in the PCA bulletin. Beck assumed 

the bottom edge of the walls was simply supported. Due to the limiting 

requirement that the axes of the folds be required to be parallel, the 

program was unable to provide for wall-to-floor interaction and moment 

transfer. 

Articles by Wilby,13 Lightfoot and Ghali, 14 and Moody1 5 contained 

information that was not directly related to this problem. 

In summary, a few very specific problems have been solved to 

determine moment values at a few locations in a rectangular concrete tank. 

Most of these solutions were long and very theoretical, and would not 

provide the practicing engineer a quick and easy, yet good~approximate 

method for determining the moment values throughout a tank. 



III. DEVELOPMENT OF ANALYSIS 

Finite Element Approach 

The finite element method is used in this analysis because of the 

versatility and ease with which arbitrary loadings and boundary conditions 

can be handled. The plate continuum is approximated by a finite number of 

elements, connected at their nodes, that very closely approximate the 

behavior of the continuum. The finite element procedure that was developed 

by Brenneman11 is extended in this paper to permit the analysis of a tank 

with monolithic walls and floor and also to allow rotations at joints 

between the plates. The detailed development of the formulation for the 

finite element was covered in Brenneman's paper and is only summarized 

here. Although a triangular element is more suitable to matching irregular 

boundaries, a rectangular element is used to model the structure because 

16 Clough and Tocher have found this element to converge faster and provide 

more accurate answers than the triangular element. 

The equation governing the solution of the finite element problem is 

given as: 

[K] {q} {Q} (1) 

where 

[K] represents the stiffness matrix of the entire system de-

veloped from an approximate displacement function, 

{q} is a column vector containing the unknown nodal displacements and 

{Q} is a column vector containing the loads acting on the system. 

8 
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The three matrices used in equation (1) must be in the same coordinate 

system. 

The load vector is generally an easy value to obtain but the stiffness 

matrix of the system is a critical value. A poor approximation of the 

stiffness of the system could permit the system to behave in a fashion that 

does not accurately represent its true behavior. Because the elements are 

connected at their nodes, there are constraints that must be applied to the 

approximate displacement functions which enable the discretized system to 

behave more like a continuum. These constraints require that the dis-

placement pattern provide for: 

(1) rigid body displacements - so statics is not 

grossly violated, 

(2) constant strain - limiting case for a very fine 

mesh, 

(3) internal element continuity and 

(4) continuity at element interfaces - to avoid in-

finite strains at element boundaries. (This 

condition can be relaxed and still maintain 

convergence, although not monotonic ~onvergence.) 

Finite Element Theory in General Terms 

The boundaries of a finite element are defined by its nodes (see 

Figure 1). The displacement pattern or shape function, which satisfies the 

aforementioned criteria, is used to uniquely define the internal displace-

ments in an element given the displacement at the nodes. The displacement 

function can be written in matrix notation as: 
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{u} = [M] {a.} 

where 

{u} internal displacements at any point in the element, 

[M] coordinates of any point in the element and 

{a.} generalized coordinates. 

The nodal displacements {u } can be found by: n 

{u } [A] {a.} 
n 

where 

[A] is obtained by evaluating [M] at the proper node. 

( 2) 

(3) 

Now the undetermined coefficients in the displacement function can be 

found by: 

(4) 

Comb~ning equations (2) and (4) 

{u} = [M] [Ar1 {u } 
n 

{u} = [N] {u } ( 5) 
n 

we obtain the internal displacements of an element as a function of the 

nodal displacements. Strains, which are obtained by differentiation 

of the displacement, can be written in matrix form as: 
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{E;} [ B] {u } (6) 
n 

Stresses are related to strains by the constitutive matrix [CJ as: 

fo} = [C] fr} ( 7) 

Combining equations (6) and (7) 

fo} = [CJ [B] {u } (8) 
n 

we obtain the stresses as a function of the nodal displacements. The 

potential energy of a system can be defined as: 

where 

IT =U+W 
p p 

U is the strain energy of the system and 
17 W is the potential energy of any external loads. 

p 

( 9) 

The potential energy of the system can be written in matrix form as: 

where 

IT 
p 

J ff {s }T {a} dV - LP u 
v. i i 

P represents any applied loads. 

(10) 
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Substituting equations (6) and (8) respectively, the following equation is 

obtained: 

The system is required to be in equilibrium; thus the minimum potential 

energy must be found. In order to obtain the minimum potential energy, 

calculus of variations should be used because of the large numbers of 

nodal displacements. 

Taking the first variation of equation (11) and setting it equal 

to zero yields: 

fffv.[B]T [C] [B] {q}dV- p 
i 

This is in the same form as equation (1) where 

[k] = f ff [ B]T [ C] [ B] dV v. 
{Q} = p 

i 

0 (12) 

(13) 

(14) 

Once the strain-displacement matrix [B] is found, the local element 

stiffness matrix [k] can be determined. The system of local element 

stiffness matrices are then assembled into a global coordinate stiffness 

matrix by making appropriate transformations from the local to global 

coordinate system. 

A method of assembling the global stiffness matrix is used so that 

only the stiffness terms from a degree of freedom at a node are entered 
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into the global stiffness matrix. In other words, if a degree of freedom 

is zeroed out at a node, its stiffness contribution is not added into the 

global stiffness matrix. This procedure saves execution time for solving 

the system of simultaneous equations and does not require any elimination 

of rows and columns in the stiffness matrix. This cioes not permit an easy 

method of applying prescribed boundary conditions. However, the scope of 

this paper does not require prescribed boundary conditions, so this 

omission is overlooked. 

Once the stiffness matrix is assembled and the load vector deter-

mined, equation (1) is solved for the unknown nodal displacements. This 

process requires that a large number of simultaneous equations be solved. 

In his master's thesis presented at Virginia Polytechnic Institute, 18 Basham 

compared the efficiency of several different types of equation solvers. 

The Linpack equation solver is chosen for this program because it is easy 

to implement into the program yet still has a shorter execution time than 

some other schemes. 

After the displacements {u } at the nodes are known, the forces are n 

determined by equation (1). 

{f } {k} {u } 
e e 

where {fe} and {ue} are vectors containing the element nodal forces and 

element nodal displacements, respectively. This completes the development 

of the finite element in general terms. 

Once an appropriate displacement function is chosen, the stiffness 

matrix of the element can be determined and the element forces calculated. 



15 

Development of Rectangular Element in Combined Extension and Flexure 

As mentioned earlier, the details of the development of the element 

stiffness matrix will not be covered in detail in this paper. The finite 

element developed is rectangular with four corner nodes and 24 degrees of 

freedom, six at each node. Associated with each degree of freedom is a 

force, in matrix form 

qi f. 
l. 

qj f. 
{q } and {f } J (15) e qk e fk 

ql fl 

where the subscript e denotes the entire element and the subscripts i, j, k 

and 1 denote node numbers as shown on Figure 1 (repeated). A typical node 

has the following displacements and forces associated with it: 

u. U. 
l. l. 

v. v. (16) l. l. 

0 xi M xi {qi} and { f.} 
0 yi l. M yi 
W. w. 

l. l. 

0 zi T zi 

These displacements and forces at a node are broken up into three com-

ponents. The first is the in-plane displacements and forces given by: 

{~~} and (17) 
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The second group of terms consists of the displacements and forces 

associated with plate bending. That is, 

and (18) 

The final term is the rotation and corresponding force associated with 

twisting in the normal (perpendicular) direction of the plate. This single 

degree of freedom is considered separately in a later section. 

The local element coordinate system is also shown in Figure 1 and is 

important when transformations from local to global coordinates are 

considered. 

The stiffness matrix for an element is a 24 x 24 matrix which can be 

subdivided into 16 submatrices, each a 6 x 6 matrix containing in-plane, 

bending and twisting characteristics such that 

where 

[k .. ] p 
l.J 

[k .. ] b 
l.J 

l.S 

[
k .. P 
lJ 
0 

0 

0 
b k .. 

l.J 
0 

a 2 x 2 matrix 

plate element, 

is a 3 x 3 matrix 

~ ,,] 
k .. 

l.J 

that contains 

that contains 

of the plate element and 

i,j 1,4 

the in-plane 

the bending 

(19) 

stiffness of the 

stiffness terms 
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[k ]'" is a 1 x. 1 matrix that contains the twisting stiffness term 
ij 

normal to the plane of the plate. 

Consider first the determination of the in-plane stiffness matrix 

terms. This sub-element consists of four nodes with two degrees of freedom 

at each node, a displacement in the local !-direction and a displacement in 

the local 2-direction. Therefore, the displacement function that is chosen 

must, by necessity, have eight unknown coefficients. Paralleling 

Brenneman's work, the following displacement function will be adopted as 

suggested by Zienkiewicz and Cheung19 and used by Rockey and Evans.20 

u(x,y) a +a x +a y +a xy + (v/(1-v)a 
1 2 3 4 4 

a +a x +a y +a xy + (v/(1-v)a 
5 6 7 8 8 

v(x,y) 

12a ) y 2 
8 

!2a )x2 
4 

( 20) 

By performing the formulation as given by the previous section, the 

stiffness matrix is determined and shown in Table 1 on the following page. 

The sub-element required for the development of the plate bending 

element also has four nodes but has three degrees of freedom at each node, 

a displacement in the local 3-direction and rotations in the local 4-and 5-

directions. Therefore, a displacement function with 12 unknowns must be 

chosen. The plate bending displacement function adopted for this paper was 

also suggested by Zienkiewicz and Cheung. 19 

w(x,y) a + a x + a y + a x2 + a xy + a y2 + a x3 
1 2 3 4 5 6 7 ( 21) 

+ a x2y + a xy 2 + a y 3 + a x3y + a xy3 
8 9 10 11 12 

Although this element does not provide compatibility for the normal slopes 
16 

between elements, Clough and Tocher have shown that this displacement 



TABLE 1: In-plane element stiffness matrix 

A/p+Bp D C/p-Bp F -A/p+Bp -F -C/p-Bp -D 

Ap+B/p -F -Ap+B/p F Cp-B/p -D -Cp-B/p 

A/p+Bp -D -C/p-Bp D -A/p+Bp F 

Et Ap+B/p D -Cp-B/p -F Cp-B/p 

A/p+Bp -D C/p-Bp -F ,._. 
'° 

Ap+B/p F -Ap+B/p 

A/p+Bp D 

sym. Ap+B/p 

where: 

p = a/b 
A = 60 + 30v2 / (1-v) 

B 22.5(1-v) 

c 30 - 30v2 I (1-v) 

D 22. 5 (l+v) 

F 22.5(1-3v) 
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function will provide satisfactory results. The stiffuess matrix for the 

plate bending element is shown in Table 2. 

These two independent groups of stiffness terms can now be combined 

into one stiffness matrix as shown by equation (19). This permits the 

simultaneous solution of both problems. 

Coordinate Transformations 

The rectangular element developed in the previous section has only 

five degrees of freedom at each node. In order to assemble these elements 

in three dimensions, a sixth degree of freedom must be available so that 

proper mapping of displacements, forces and stiffness coefficients is 

possible. 11 Brenneman resolved this problem by incorporating three 

different coordinate systems. 

The five degrees of freedom already developed included three dis-

placements and two in-plane bending rotations. The sixth degree of freedom 

that needs to be examined is the twisting stiffness normal (perpendicular) 

to the plane of the plate. If the magnitude of this twisting stiffness is 

considered, it is intuitive that the resistance to rotation in this 

direction is considerably larger than the in-plane bending stiffnesses. 

Therefore, it is assumed for the purposes of this analysis that the 

twisting stiffness normal to the plate is infinite and can be approximated 

as a fixed condition. 

Although this approximation does not benefit the general folded plate 

problem, it does, however, lend itself quite well to the case where the 

plates are joined at 90° angles to each other provided the global coordi-

nate system coincides with the orientation of the plates. The normal 
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TABLE 2: Plate bending element stiffness matrix 

SA -SB -SD SG 0 -SH SN 0 
SC SE 0 SI SJ 0 SR 

SF SH SJ SM 80 SS 
SA SB SD SP 0 

SC SE 0 ST 

[k ] b 
SF SQ SU 

e SA SB 
SC 

sym. 

where: A, B are half of the element dimensions 

p = a/b 
Dx =Dy= Et 3 /(12(1-v 2 )) 
Dl = vDx 
Dxy = O.SDx(l-v) 
PDx = Dx/p 2 
PDy = Dyp 2 
SA = (20PDy + 8Dxy)B/15A 
SB = Dl 
SC (20PDx + 8Dxy)A/15B 
SD (30PDy + 15Dl + 6Dxy)/30A 
SE (30PDx + 15Dl + 6Dxy)/30B 
SF (60PDx + 60PDy + 30Dl + 84Dxy)/60AB 
SG = (lOPDy - 2Dxy)B/15A 
SH = (-30PDy - 6Dxy)/30A 
SI = (lOPDx - 8Dxy)A/15B 
SJ = (lSPDx - 15Dl - 6Dxy) /30B 
SM= (30PDx - 60PDy - 30Dl - 84Dxy)/60AB 
SN (lOPDy - 8Dxy)B/15A 
SO (-lSPDy + 15Dl + 6Dxy)/30A 
SP (SPDy + 2Dxy)B/15A 
SQ (lSPDy - 6Dxy)/30A 
SR = (lOPDx - 2Dxy)A/15B 
SS = (30PDx + 6Dxy)/30B 
ST = (SPDx + 2Dxy)A/15B 
SU = (lSPDx - 6Dxy)/30B 
SX = (-60PDx + 30PDy - 30Dl - 84Dxy)/60AB 
SY = (-30PDx - 30PDy + 30Dl + 84Dxy)/60AB 

so SP 
-SS 0 
sx -SQ 

-SQ SN 

-SU 0 
SY -so 

-SD SG 

-SE 0 
SF SH 

SA 

0 SQ 
ST -SU 
SU SY 

0 -so 
SR -SS 
SS sx 
0 -SH 
SI -SJ 

-SJ SM 

-SB SD 
SC -SE 

SF 
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twisting resistance of the plates can then always be identified and clamped 

as a boundary condition to eliminate that stiffness term in the system 

stiffness matrix. This makes it possible for the solution to be indepen-

dent of the normal stiffness of an el~ment. 

The completed local element stiffness matrix at a node would be a 

6 x 6 matrix containing three submatrices. The first submatrix, a 2 x 2, 

would contain the in-plane stiffnesses; the second submatrix, a 3 x 3, 

would include the bending stiffnesses of the plate; and the third, a 1 x 1, 

would be a zero provided as a dummy value only to aid in the transformation 

of coordinate systems. 

Rectangular tanks are obviously a good example of plates that meet at 

90°. At wall-to-wall joints, a plate in one direction provides an in-plane 

fixed support to the adjoining plate, preventing vertical rotation in the 

second plate yet allowing a moment to be developed there. The same support · 

would be provided to the first plate from the second. 

In the corners of the tank, the floor plate provides a fixed condi-

tion at the bottom node of the wall-to-wall joint, but still allows the 

joint to rotate throughout its full height. The same fixed condition holds 

true for the walls and the accompanying wall-to-floor joint. 

In summary, throughout the interior of the plate, all the normal 

rotations to the plate are fixed. At the edges, two rotations are con-

strained (one normal restraint from each plate) yet allowing the entire 

joint to rotate. At the corners, three rotations are constrained (one from 

the normal restraint of each of the three plates). 



IV. PROGRAM DEVELOPMENT 

Coordinate Systems 

At this time it 1s important to mention the coordinate systems and 

some terminology that is us~d throughout the remainder of the paper. 

One quarter of the rectangular tank is analyzed to take advantage of 

symmetry. This minimizes the number of degrees of freedom and the core 

space required and greatly reduces the execution time of the solve routine. 

The boundary conditions are automatically applied at the lines of symmetry 

to decrease user input. 

Figure 2 shows a sketch of some of the more pertinent information. 

It is important to note the orientation of the global axes. The origin of 

the system is located at the corner of the tank and the axes are coincident 

with the joints where the plates meet. Plate 1 lies in the global 1-2 

plane; plate 2 lies in the global 2-3 plane; and plate 3 lies 1n the global 

1-3 plane. Element dimensions are represented by c, a, and b in the X-, Y-

and Z-directions, respectively. The local coordinate system has already 

been illustrated in Figure 1. 

The node numbering scheme proceeds across plates 1 and 2 down to the 

floor, and then across the floor (with constant X). Assuming eight 

elements in each of the three directions, a few of the node numbers have 

been shown on Figure 2. 

Three general categories of problems that are analyzed; namely, a 

single plate problem, a two plate problem and a three plate problem. All 

three problems have the normal twisting degree of freedom automatically 

eliminated. The one plate problem corresponds to any single plate analysis 
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and will be characterized by a description of the boundary conditions and 

loading parameters. 

The two plate problem refers to the analysis of two plates meeting at 
0 

90 . The two plates represent the walls in this paper and represent plates 

1 and 2 of Figure 2. The top edge is always considered free and further 

described by the boundary condition along the bottom edge. Symmetry is 

utilized and the appropriate boundary conditions are automatically 

generated along the two cut edges. The joint between the two plates is 

free to displace and rotate as governed by the loading conditions. This 

analysis allows wall-to-wall interaction. 

The third category, the three plate problem, has appropriate boundary 

conditions automatically generated to simulate the symmetry of one quarter 

of a tank (walls and floor). In addition, the floor of the tank is edge-

supported. This is discussed in a later section. The top edge of the 

walls are always considered free. The analysis of this problem is 

generally characterized by the type of loading acting on the floor slab. 

By analyzing the three plates together as a unit, it is possible to obtain 

the interaction of the three plates and permit rotations of the joints that 

develop from the unbalance in moments. 

Loading Considerations 

Before a solution to equation (1) can be found, consideration is 

given to the loads acting on the tank. The loading condition for the walls 

and floor is handled separately. For the walls, there are generally only 

two types of loading conditions that normally occur on the walls; namely, a 

triangular load or a uniform load. The triangular load represents 
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hydrostatic pressure from a fluid or earth pressure from a soil. The 

uniform load is used to model a surcharge on the tank. The program is 

designed to handle these loading conditions for a variable height and they 

can be internal or external loads. 

There is an approximation inherent in the development of the load 

vector for these problems. The loads are idealized as concentrated loads 

acting at the nodes. The magnitude of the node load is determined by 

multiplying the tributary area around the node, generally half the ele-

ment's dimension in each direction, by the average pressure acting over 

that area. This does not, however, create a significant error provided the 

mesh chosen is small enough (say 8 x 8). 

Two types of loadings are considered for the floor slab. The first 

type of loading is the inclusion of the stiffness of the soil into the 

system stiffness matrix, and the second is the consideration of a strip 

load around the perimeter of the floor slab. 

The inclusion of the soil stiffness into the system stiffness matrix 

is accomplished by approximating the stiffness of the soil in units of 

force per length and adding this value along the diagonal of the system 

stiffness matrix at the degrees of freedom in the vertical direction for 

the nodes of the floor slab.17 

It is anticipated tha~ a triangular load will normally be applied to 

the tank's walls, a strip load to the floor slab, and the soil stiffness 

included as mentioned above. To do this, it is necessary to provide a 

restraint in the vertical direction so that the system would remain in 

equilibrium. One solution is to support the floor slab on the edges in the 

vertical direction. However, this does not accurately represent the action 
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of the system as a whole. It is intuitive that the tank will undergo a 

settlement if it is filled with a material so such an edge restraint is not 

appropriate. Another possible solution is to consider the floor slab to be 

resting on a bed of springs sandwiched between two planes of nodes. It was 

decided to eliminate the soil stiffness from this study and leave that 

development to others as it is beyond the initial scope of this paper. 

A simpler solution is developed assuming the floor slab to be resting 

on a homogeneous soil that reacts with a uniform pressure. The settlement 

of the tank is included in this approximation by assuming that the weight 

of material inside the tank and the weight of the floor slab cause a 

uniform settlement of the entire tank. From this settled position, 

displacement in the vertical direction is constrained. The only remaining 

unbalanced force then is the weight of the walls. 

Paralleling the current AISC steel code, it is assumed that the shear 

from the walls is transferred through the footing at a slope of 2.5:1. The 

weight of the walls is then distributed uniformly over a strip around the 

perimeter of the floor with a width of the thickness of the wall plus 2.5 

times the thickness of the footing. This appears to be a better 

approximation to the distribution of shear rather than distributing the 

weight of the walls uniformly over the entire floor slab because in a large 

tank it is difficult to imagine part of the weight of the wall carried by 

the center portion of the tank. 

Now that the stiffness matrix of the finite element has been deter-

mined and the loading conditions approximated, equation (1) can be solved 

for the unknown nodal displacements. With this information, the forces are 

determined at all the nodal points. 



V. DISCUSSION OF RESULTS 

Comparison with Known Solutions 

Since a program was developed for this paper, it was important to 

verify its accuracy with well accepted solutions. The analysis of a single 

plate was considered first because there are many sources of solutions 

available for this problem with various loadings. 

The value of Poisson's ratio used for all of the analyses was 0.2. 

The modulus of elasticity of the concrete was chosen to be 3000 ksi. The 

tanks or plates analyzed were generally 10' in height, but cases where the 

wall height was not 10' are mentioned in later sections. 

At this time, it is appropriate to introduce some terminology that is 

used in the remainder of this paper to describe various cross-sections 

through the tank. A redefining of coordinates is introduced because most 

practioners who design tanks are familiar with the coordinate system that 

was adopted by the PCA when it published bulletin ST-63. 1 That coordinate 

system is shown in Figure 3. The origin of the coordinate system is moved 

to the center of the tank and the letters a, b and c now represent the full 

dimensions of the tank in the X-, Y- and Z-directions, respectively. A 

cross-section cut through the center of plate 1 by an X-Z plane is referred 

to as a strip at y = 0. A strip cut by an X-Z plane through the quarter-

point of the wall and floor is located at y = b/4, etc. M is a vertical x 

moment in the X-direction (or around the Y or the Z axes). M and M are y z 
horizontal moments in the Y- and Z-directions, respectively (or around the 

X axis). 
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One of the first problems compared with a known solution was a single 

plate problem having three edges fully clamped, one edge free, and a 

triangular load as obtained from normal water pressure applied to it. 

Moment values calculated by the finite element program were compared with 

those from the PCA bulletin1 and Jofriet. 2 Shown in Table 3 is a com-

parison of the horizontal and vertical moments in a cross-section at y = 0. 

The ratio of width-to-height (b/a) is 2.0. Eight elements are used in each 

direction and the plate is of uniform thickness. 

The maximum vertical and horizontal moments calculated appear to 

compare fairly well with the PCA values and Jofriet. There are a few 

places though, where the percentage difference between the answers is 

fairly significant, caused by the order of magnitude of the numbers. The 

order of magnitude of the numbers changes by a factor of more than 10. 

Therefore the relative percent of change appears large for the smaller 

moment values. 

A single plate problem with the two sides clamped, top free, bottom 

simply supported and a triangular load applied to it was considered. The 

moment values were compared at y = 0, y = b/4 and y = b/2, and the results 

are more favorable than the first case. There is greater error at y = b/2, 

but the comparison with the PCA bulletin at y = 0 is shown in Table 4 for 

simplicity. 

The program developed for this paper is capable of handling tapered 

wall thicknesses, so it was desirable to compare that solution with a known 

solution. Jofriet 2 has a few limited tables of moment coefficients for 

walls with tapered thickness. A wall with three edges clamped and one edge 

free was compared for b/a = 2.0. The thickness at the bottom of the wall 
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TABLE 3: Comparison with known solutions 

lb/2------i 

triangular loading 

b/a = 2.0 
constant thickness 

y = 0 

F.E. PCA 

M 13.22 12.64 y 
M o.o o.o x 
M 11.11 10.76 y 
M 5.63 6.08 x 
M 7.71 7.49 y 
M 7.48 7.02 x 
M 3.45 1.40 y 
M 1. 33 3.74 x 
M 6.42 7. 96 y 
M 39.63 40.25 x 

FIXED 

x 

%cliff 

4.59 

3.25 

-7.40 
2.94 
6.55 

146.00 
-64.40 
-19.30 
-1.54 

FREE 

Jofriet 

12.64 
o.o 

11.23 

5.62 
7. 96 
7.49 
1.40 
3.28 

39.31 

·-Y 

%cliff 

4.59 

-1.07 
0.18 

-3.14 
-0.13 

146.00 
-59.40 

0.81 



32 

TABLE 4: Comparison with known solutions 

0 w 
x 
~ 

1-- b/ 2 ----1 
I ! FREE 

a 

SIMPLY SUPPORTED 

x 

triangular loading 

b/a = 2.0 
constant thickness 

y = 0 

F.E. PCA 
x/a 0 M 21.83 21. 06 y 

M o.o 0.0 x 
1/4 M 19.90 19.66 y 

M 7.83 7.49 x 
1/2 M 17.20 16.85 y 

M 15.65 15.44 x 
3/4 M y 11.03 11. 23 

M 16.36 16.38 x 

%diff 

3.70 

1. 20 

4.50 
2.10 
1.40 

-1.80 
-0.10 
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was 1.5 times the thickness at the top. Correlation with Jofriet's 

solution is quite good at y = O, y = b/4 and y = b/2. The comparison at 

y = 0 is shown in Table S. 

The PCA table that is contained in bulletin ST-63, and which accounts 

for wall-to-wall interaction for the case when the bottom edges of the wall 

are simply supported by the floor was also used to check results from the 

program. Adequate coorelation exists for this case also. 

The strip loading (vertical load on the footing slab) was also 

checked against a known solution. For this a single plate was clamped on 

all four sides and a strip load was applied to it. The need for this 

loading condition is explained in more detail in a later section. 
21 Bauverlag developed an extensive collection of moment coefficients for 

plates with various loadings and boundary conditions. From this book, a 

solution for a strip load is obtained by superimposing the solutions of a 

uniform load with that of an appropriate rectangular load of opposite sign. 

The maximum moment at the edges for the finite element solution is compared 

with Bauverlag's values and very good correlation is found. 

A plate problem with a triangular load and walls of equal length was 

examined to check for round-off errors in the solution process that might 

have occured due to the increased number of degrees of freedom. The 

answers were symmetric, as expected, because the vertical joint between the 

walls does not rotate in a square tank. There is, however, a slight 

difference with the moments that are listed in Table 3. These two problems 

should have produced similar answers. Although the difference is very 

small, it did warrant justification. Apparently the vertical joint in the 

corner of the tank experiences an outward displacement due to the internal 
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TABLE 5: Comparison with known solutions 

t 

tt r-b/2---1 FREE 

1.51 

0 w 
x ... 

FIXED 

triangular loading 

b/a = 2.0 
tapered thickness 

y = 0 

F.E. 
0 M 7.78 

y 
M o.o x 

1/4 M 7.86 y 
M 3.67 x 

1/2 M y 6.20 
M 3.36 x 

3/4 M 0.75 y 
M 9.58 x 

1 M 8.02 y 
M 48.05 x 

x 

PCA 
7.02 
o.o 
7. 96 
3.74 
6.08 
3.28 
0.47 

9.83 

48.20 

%cliff 

10.80 

-1. 26 
-1.87 

1. 97 
2.44 

60.00 
-2.54 

-0.31 

0 w x ... 
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hydrostatic loading. This movement is eliminated by the fully clamped 

condition assumed in the single plate problem. The two problems are there-

fore not exactly the same, which explains the small discrepency in the 

moment values. The analyses performed on any two or three plate problems 

in this paper do not have the vertical or horizontal edges between plates 

constrained from this type of movement and therefore more accurately 

represent the true behavior of the tank. 
15 Referring to Moody, Poisson's ratio does appear to effect the value 

of moments at the interior of a plate and this could be another explanation 

for some of the discrepencies experienced with the known solutions. It is 

believed that the PCA tables use 0.15 as the value for Poisson's ratio. 

Moody pointed out,however, that Poisson's ratio has little effect on the 

extreme moments of a plate which are most important to design. 

Moment Coefficients 

The program written for this paper determines the moment values at 

the nodes in kip-inches. In an attempt to develop a set of tables similar 

to the PCA tables, the moment values given by the .program are divided by 

half the element length to obtain units of kip-in/in, and then by the 

specific weight of the fluid and the height cubed. For a constant b/a and 

c/a ratio, the moment coefficients fluctuate slightly when the thickness of 

the walls and floor are varied. However, referring to Table 6, for a 

constant b/a and c/a ratio and the same floor and wall thickness, the 

moment coefficients are not constant with varying height as they are in the 

PCA tables for single plates. In other words, the moment coefficients in a 

tank are a function of the height of the wall. In order to develop moment 



TABLE 6: Three plate moment coefficients 

b/a 2.0 c/a 2.0 

height = 10' height = 8' 

walls = 8" walls = 1211 walls = 8" walls = 12" 
floor = 1011 floor = 1611 floor = 10" floor = 1611 

Node M M M M M M M M 
x y x y x y x y 

9 -0.082 -0.015 -0.086 -0.017 -0.085 -0.016 -0.091 -0.0lS 

17 0.041 0 0.042 0 0.042 0 0.046 0 

73 0.015 0.017 0.016 0.018 0.016 0.018 0.017 0.020 

77 -0.077 -0.012 -0.081 -0.012 -0.080 -0.012 -0.087 -0.013 

137 -0.004 -0.034 -0.002 -0.025 -0.005 -0.027 -0.001 -0.012 

213 -0.002 -0.013 -0.004 -0.005 -0.004 -0.007 -0.005 -0.005 
141 -0.031 -0.024 -0.050 -0.038 -0.037 -0.028 -0.070 -0.052 
145 -0.027 -0.027 -0.043 -0.043 -0.032 -0.032 -0.060 -0.060 
177 -0.025 -0.025 -0.041 -0.041 -0.030 -0.030 -0.054 -0.054 
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coefficient tables for the three plate. problem (i.e., the tank), a group of 

tables must then be calculated including several values of height for a 

given set of b/a and c/a ratios, and varying floor and wall thicknesses. 

To assemble such a collection ~f tables would be an expensive and lengthy 

undertaking, and the designer might still lack the table needed to solve 

his problem. With this in mind, the moment distribution process is looked 

to as a possible solution. 



VI. THE MOMENT DISTRIBUTION PROCESS 

General Formulation 

The moment distribution method is quite often used to analyze 

symmetric beam struct•1res that exhibit joint rotations when they are 

loaded. The rotations develop from unbalanced moments at a joint, whose 

values are subsequently balanced to provide equilibrium at that joint. The 

unbalanced moment is redistributed to the adjoining members in proportion 

to the relative stiffness of each. The main steps in the moment 

distribution process are to determine the fixed-end moments, calculate the 

distribution factors, and balance the moments. 

In beam structures, the fixed-end moments are determined by locking 

all joints and calculating the moments at the ends of the beams. A counter-

clockwise resisting moment at the end of a beam is considered positive in 

this paper. It is then necessary to find the stiffness of each member 

coincident at a joint so that the relative stiffnesses can be found. The 

stiffness of a member is determined by imposing a unit rotation at one end 

of the beam and calculating the moment required to cause this unit rotation 

(as a function of EI/L). This stiffness value reflects the support condi-

tion at the far end of the beam. After the member stiffnesses are calcu-

lated, the unbalanced moments are redistributed proportional to the rela-

tive stiffnesses at a joint. Any external joints are unlocked, balanced 

and left unlocked. Internal joints are sequentially unlocked and balanced, 

one at a time. Before the joint is locked, the distributed moment is 

carried-over to the far end of the beam. For beams of constant cross-

sect ion, a carry-over factor of 1/2 is used. The carry-over is performed 
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only if the far end of the beam is clamped at the time the joint is 

balanced. The balancing of internal joints is carried-out, one at a time, 

until.the carry-over factors are negligible. 

In order to apply this process to the tank (an assemblage of three 

plates), the fixed end moments of the system must be determined. Then the 

relative stiffness between adjacent members must be calculated so that 

unbalanced moments can be redistributed. This general process is extended 

to accomodate a moment distribution method applied to tanks. 

Extension to Tank Problem 

In an effort to provide the practising designer with a reasonably 

simple procedure for calculating some of the maximum moments in a 

rectangular tank, the moment distribution method is modified to 

redistribute and balance moments at the joints where the walls and floor 

slab meet. The two main modifications to the moment distribution process 

as it is applied to beams requires that modified fixed-moments be 

determined and that the relative stiffnesses between the two plates be 

calculated. With these two factors developed, the moment distribution 

process is carried out exactly like the elementary procedure applied to 

beam structures except that there is no carry-over to the top (or free) 

edge of the tank. 

For this paper, the balancing of the moments is only considered at 

the joint where the walls and floor slab meet, later referred to as the 

vertical direction. Since the beam structures can be discretized into 

individual elements, a similar approximation consisting of two parts is 

applied to the tank which is a continuum. First, the -tank system is broken 
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down into two main sections. The two walls act together as one section and 

the floor slab acts as the second section. Due to symmetry, each wall, as 

it is referred to here, is actually only half the length of the wall of the 

entire tank. The terminology used throughout this section only refers to 

one quarter of the tank but can obviously be extended to the entire tank. 

And second, each section of the tank is divided into strips which 

provide the beam discretization. These strips permit moment distribution 

to be carried out at any location along the joint where the plates meet, 

however, for simplicity, the balancing is only performed at the center 

(y = 0, z = 0) and quarter points (y = b/4, z = c/4) of the entire wall 

(refer to Figure 3). With this discretization in mind, it is necessary to 

determine the fixed-end moments on the individual strip elements and 

calculate the relative stiffnesses of the strips at the joint where 

balancing is considered. 

Determination of Fixed-end Moments 

As mentioned earlier, the determination of the fixed-end moments 

plays an important role in the moment distribution process. It is 

important to calculate the fixed-end moments in such a way so as to reflect 

the behavior of the system. Considering the floor slab first, as a very 

crude approximation, a strip in the floor slab could be idealized as a 

"beam" removed from the continuum with appropriate loads acting on it. 

These loadings are a uniform load over the entire length of the "beam" or 

two sections of uniform load (of greater magnitude) at each end of the 

"beam" that would represent the strip load. For any location along the 

floor slab though, the fixed-end moments for this "beam" section would be 

constant, yet, from plate theory, moments tend to decrease in magnitude 
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::oward the corner. Therefore, the "beam" idealization does not satis-

factorally represent the behavior of the floor slab. 

A second and more suitable arrangement for calculating the fixed-end 

moments at a location is to analyze the floor slab as a plate and use the 

moment values of the plate solution at the proper location. This method is 

adopted because it accurately represents the behavior of the plate. The 

plate is analyzed with all four edges clamped and is loaded with a uniform 

load or a strip load around the perimeter of the plate. From this point 

on, the strip load is used to represent the reaction of the soil pressure 

on the tank. The nature of this load is explained in a later section. 

Some solutions for the moment values at the center and the quarter 

points of a plate loaded with the strip load are included in Appendix 1. 

The moment values are in kip-ft/ft/foot of wall height. The magnitude of 

the loading is determined by dividing the weight of the walls by the area 

of the strip around the edge of the plate. A fairly comprehensive table of 

values computed by the finite element method is included in Appendix 1 for 

several combinations of b/a and c/a. A slightly more exten~ive listing of 

moment coefficients for this loading condition can be found in Bauverlag21 

by superimposing uniform and partial load values. 

With the fixed-end moments of the floor slab taken care of, it is 

necessary to determine the fixed-end moments for the wall section. It is 

anticipated that known solutions would produce satisfactory results for 

this case, i.e., simply assume the wall-to-wall joint to be clamped and 

calculate the fixed-end moments at the bottom by assuming that edge to be 

clamped and the top edge free. However, this does not represent the wall-

to-wall interaction that occurs in long tanks. It is necessary to provide 

a two plate solution that accounts for the horizontal interaction of the 
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walls. The two plates (one quarter of the tank) have a clamped bottom edge 

and free top edge. The vertical joint between the two plates is unre-

strained so that rotation can occur. The fixed-end moments shown in 

Appendix 2 are calculated by the finite element method at the quarter points 

and center and are used in conjunction with the corresponding moments from 

the floor slab in the moment distribution process. 

Determination of Stiffness Characteristics 

To distribute the unbalanced fixed-end moments, it 1s necessary to 

calculate the relative stiffness of the two strips that meet at the joint 

between the two plates. Consideration is given to a process parallel to 

that used by Davies, 7 in which the stiffness of the wall was taken to be a 

function of the clamped moment value and the hinged rotation at a given 

location. However, to represent the interaction of the plates in the tank, 

it 1s necessary to analyze a plate with elastically restrained edges. 

Although the inclusion of the elastic restraint is a simple matter, the 

accurate assessment of its value is very difficult to determine for rectan-

gular tanks. But without the relative stiffness of the strips, it is not 

possible to carry out the moment distribution process. 

The moment distribution method can be considered to have three parts, 

the fixed-end moment values, the relative stiffnesses of the members 

involved,and the computed answer(balanced moments). Usually the first two 

parts, as well as the distribution percentages, are known and the answer is 

found. However, in this case, the fixed-end moments and the answer are 

known. It is possible then to back-calculate for the relative stiffnesses 

of the members. If the distribution factors are collected in a compact set 

of tables, it is possible for the practicing designer to calculate the 
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known solution using a simple moment distribution method. If the stiffness 

coefficients are only a function of the b/a and c/a ratios, an easy-to-use 

solution process can be developed to determine the balanced moments 

provided by joint rotations in a rectangular tank without requiring 

extensive tables to be developed to cover the moment coefficients for 

various sizes of tanks. 

This approach is adopted for this paper. By trial and error, the 

relative stiffnesses of the two strips coincident at a joint are calculated 

such that the subsequent moment distribution with the appropriate fixed-end 

moments produces the moment at that location as determined by the finite 

element analysis of the quarter of the tank. The fact that only the 

relative stiffnesses of the adjoining members need to be found means that 

the absolute stiffness of each member need not be determined. For 

simplicity, the stiffness of the wall strip is taken as 4EI/L and the 

stiffness of the floor strip is (f)4EI/L. I and L are the appropriate 

properties of a given strip and f is the factor which is found by iteration 

such that the calculated relative distribution factors produce the desired 

solution. Since moment values are given in units of kip-ft/ft, a strip is 

considered to be one foot (12 inches) in width. 

The distribution factors are determined by dividing the stiffness of 

a member by the sum of the stiffnesses at a joint. In this case there are 

only two strips at a joint. It was hoped that a pattern in the plot of the 

f factor would develop for various combinations of b/a, c/a, wall thickness 

and floor thickness, yet remain independent of the height of the tank. 

At this point, it is appropriate to provide an example to more 

clearly show the moment distribution process and the effect of the f 
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factor. Consider a tank with b/a = 2.0 and c/a = 2.0. The walls are 10" 

thick and the footing is 12" thick. If the height of the walls is assumed 

to be 10' (120") high, from Table Al the fixed-end moment of the floor slab 

is found to be 0.219 (10) = 2.19 k-ft/ft at z = 0. From Table A2, the 

fixed-end moment for the wall system is -0.086 (0.0624)(10) 3=-S.37 k-ft/ft, 

assuming the tank is filled with water under atmospheric pressure. The 

stiffness of the wall is given by 

s w 
4EI = -- = 1 

4(3000)(12)(103) 
120(12) 100,000 k-in 

and the stiffness of the floor by 

S = (f)4EI 
f 1 

f(4)(3000)(12)(123) 
240(12) 86,400£ k-in 

The relative stiffnesses are then calculated as follows 

r w 
100,000 

100,000 + 86,400lfl 

86,400£ 
100,000 + 86,400lfl 

The moment value that is obtained by the finite element program is 

1.52 k-ft/ft. If we assume f = 0.744, we obtain 

r 
w 0.609 and rf = 0.391 

and noting that clockwise rotations on member ends are positive, the moment 

distribution process is carried out as follows, using a carry-over factor 

of 1/2: 
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°' °' 0 0 

'° '° -5.37 0 0 5.37 
3. 70 0.391 0.391 -4.60 ---0.14 -2.19 2.19 0.73 

-1. 53 1.48 -2.96 0.03 ---2.38 -1.19 ---
-0.23 0.46 1. 52 

0.09 -0.05 ---
1. 53 0.02 

1. 53 

This result compares quite favorably with the value from the program; 

therefore, the assumed value of f is good. 

It is intuitive that the wall and floor stiffnesses will increase as 

they approach the edges of the tank. However, it appears as though the 

wall increases its stiffness at a faster rate than the floor due to the 

decrease in the f factor. This is probably attributed to the free edge at 

the top of the walls. It provides little aid to the resistance at a 

central strip but the support from the edges of the plate is more 

pronounced at the outer strips. 

Now that it is possible to determine the relative stiffness of the 

strips coincident at a joint, several combinations of wall thickness are 

considered for b/a = c/a = 2.0. A programmable hand calculator (HP-41CV) 

was utilized to aid in the calculation of the f factor for the large number 

of problems solved. Wall thicknesses used include 8", 9", 10" and 12" and 

floor thicknesses include 10", 11", 12", 13", 14", 15" and 16" for the 

initial b/a = c/a = 2.0. 

The first group of f factors that were calculated at z = 0 for b/a = 

c/a 2.0 and wall height equal to 10' are plotted on a graph having the 
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floor thickness as the independent variable and the f factor as the 

dependent variable (see Figure 4 on the following page). What developed is 

a family of curves that form an enciosed area in the vicinity of f = 0.75. 

A similar graph developed at z = c/4 also forms an enclosed area close to 

0.50 and is shown on Figure 5. For a tank 10' tall then, it is possible to 

go to these graphs and determine the required f factor given the 

thicknesses of the walls and floor, so that the moment distribution process 

can be carried out. 

This provides a simple solution for b/a = c/a = 2.0 and a 10' high 

wall but the question still persists as to whether or not the f factor is 

simply a function of the b/a and c/a ratios or whether or not it is also a 

function of the height. In an effort to resolve this problem, several 

different sizes of tanks are analyzed, but all have b/a = c/a = 2.0. The 

heights of the different tanks include 7' ,8', 9' and 15'; the walls are 8" 

and 12"; and the floors are 10" and 16" thick. This provides a framework 

for interpolation of values for other combinations of wall and floor 

thicknesses. The f factors for these problems were calculated and plotted 

on the same graph as the 10' wall height to see if a pattern developed. 

Figures 6 and 7 show all of these points plotted at z = 0 and 

z = c/4, respectively. It is apparent then that the f factors are 

independent of the wall height and are only a function of the b/a and c/a 

ratios. A separate graph for each tank of different dimensions is 

therefore not necessary as was required for the moment coefficients of the 

three plate problem. 

Since the f factor appears to lie in a certain area, it is not 

necessary to plot as many points as was done for b/a and c/a equal to 2.0. 
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Therefore, the wall thicknesses for further calculations only include 8 11 , 

10" and 12" and the floor thicknesses include 10", 12", 14" and 16 ". This 

provides a sufficient number of points so that interpolation can be used 

for other combinations of wall and floor thicknesses. 

Appendix 2 contains tables of the f factor for b/a = 1.0 and c/a 

equal to 1.0, 2.0 and 3.0. Figures 4 and S with b/a and c/a equal to 2.0 

are reproduced in Appendix 2 so that all the f factor graphs are located in 

one place. It should be noted that some of the f factors are negative, 

especially in the short walls of rectangular tanks. Although this is 

unconventional, this value will provide the solution given by the finite 

element program. The floor distribution factor is found by dividing the 

stiffness of the floor (negative) by the sum of the absolute values of the 

stiffnesses. The wall distribution factor is the absolute value of the 

floor added to one (1), so. that the total of the two factors is unity. It 

is believed that the rotation of the vertical corner in a rectangular tank 

provides an unnatural stiffness to the short wall of a tank with a long 

side. 

It is now possible for a designer, without the finite element pro-

gram, to perform the moment distribution process and calculate the critical 

vertical moments at a joint between the walls and floor at the center and 

the quarter points of the tank while providing for the interaction of the 

plates as a system. The tables in Appendix 1 provide the required fixed-

end moment and the graphs in Appendix 2 provide the means for determining 

the appropriate f factors. 
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Example Problem 

In order to demonstrate the use of the tables listed in the Appen-

dices and the procedure to calculate the vertical moments in a rectangular 

tank, consider the following problem: 

b/a 1.0 wall thickness = 9" 

c/a 3.0 floor thickness = 13" 

hydrostatic loading from the interior with w = 80.0 pcf 

height 12' 

Determine the balanced moments at z = 0, z = c/4, y 

Looking first at z = 0: 

s w 
4(3000) (12) (93) 

12 (l 2)(l2) = 60,750 k-in 

From Appendix 2, Figure A9, f = 0.997 so that 

and 

r 
w 

0.997(4)(3000)(12)(133) 
144(12) 

60,750 
243,284 

182,534 
243,284 

0.250 

0.750 

182,534 k-in 

0 and y = b/4. 

The floor fixed-moment from Table Al is, at the midspan of the long wall, 

FEM f 12(0.180) 2.16 k-ft/ft 
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and from Table A2, the wall fixed-end motr.ent is 

FEM _-0.132(80)(123) =-LS.25 k-ft/ft 
w - 1000 

The balanced moment is then found by tne moment distribution process as 

follows 

0 0 
I.I"\ I.I"\ 
N N . 

-18.25 0 0 18.25 (at z O) 
3.19 0. 750 0.750 -5 .10 
0.45 -2.16 2.16 1.20 --0.06 7.65 -15.31 0 .17 -- -- --

-14.55 9.57 -4.79 14.52 -1. 79 3.59 
1. 34 -0.67 --

-0.25 0.50 --0. 19 -14.52 ----
14.55 

Following the same procedure at z = c/4, from Figure AlO in Appendix 2 

f = 0.789 so that 

and 

r w 

0.789(4)(3000)(12)(133) 
144(12) 

60,750 
205,203 

144,453 
205,203 

0. 296 

0. 704 

144 ,453 k-in 

From Table Al, the floor fixed-end moment is 

12(0.183) 2.20 k-ft/ft 
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and the wall fixed-end moment frum Table A2 is 

FEM =-0.102(80)(123) I 
w 1000 =-14.10 k-ft ft 

The moment distribution yields 

'° '° 0\ 0\ 
N N . 

-14.10 0 0 14.10 (at z c/4) 
3.13 0.704 0.704 -4.82 
0.39 -2.20 2.20 1.10 --0.05 5.74 -11. 48 0.14 -- -- --7.43 -3. 72 --

-10.53 -- 10.52 -1. 31 2.62 
o. 92 -0.46 --

-0.16 0.32 --o.n -10.52 
10.53 

Continuing on to the short wall at y = O, from Table A7 in Appendix 2, 

f = -0.060 so that 

and 

r w 

-0~06(4)(3000)(12)(133) 
36(12) (12) 

-3,662 
64,412 

1 + 0.057 

-0.057 

1. 057 

-3,662 k-in 

From Table Al, the floor fixed-end moment at y = 0 is 

12(0.146) 1. 75 k-ft/ft 
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and ·from Table A2, the wt.11 fixed-end moment is 

FEH _-0.020( 30) 0 23 ) =-2. 76 k-ft/ft 
w - 1000 

Subsequent moment distribution yields 

" " l/'\ l/'\ 
0 0 

-2.76 ...... ...... 2.76 (at y O) 
4.90 -0.057 -0.057 -4. 77 
2.14 -1.75 1. 75 -0 .14 

-0.13 0.26 -2.15 -0.26 0.13 
-2.14 0.01 ----

2.15 

Finally, calculating the balanced moment at y = b/4 and using Figure A8, 

f = -0.37, so that 

and 

r = w 

-0.37(4)(3000)(12i(l3 3) 
432 (12) =-22,580 k-in 

-22,580 
83,330 

1 + 0.271 

-0.271 

1. 271 

From Tables Al and A2 then 

FEMf = 12(0.094) = 1.13 k-ft/ft 

FEM =-O.Ol 2 (80)(l 23 ) =-1.66 k-ft/ft 
w 1000 
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So that moment df stribution yields 

....... ....... 

....... ....... 
N N . . 

-1.66 ....... ....... 1.66 (at y b/4) 
4.03 -0.271 -0.271 -3.55 ---0.08 -1.13 1.13 -0.55 
2.45 -0.38 0.76 -2.44 ----0.86 0.43 

-0.06 0.12 
-0.02 = 

2.44 
-2.45 

As a comparison, this problem was checked against the finite element 

program. The moment values obtained along the long wall at z = 0 and 

z = c/4 were found to be 14.48 and 10.54 kip-ft/ft, respectively. These 

values are very close to the values obtained by the moment distribution 

procedure. The values at y = 0 and y = b/4 were 2.63 and 2.92 kip-ft/ft, 

respectively. The moment distribution method does not correlate quite as 

well in the short wall, although the values are reasonably close. It 

should be noted that the values on the short wall graphs are significantly 

more varied in magnitude than the long wall graphs. Consequently, it is 

more difficult to accurately determine the f factor from the graphs for the 

short walls. Unfortunately, the final moment value is sensitive to the f 

factor so an allowance should be considered to accomodate this fact. 

A second example was performed following the same procedure 

except that the tank was loaded from the exterior. The only change was 

that the wall fixed-end moments had the opposite signs; the same f factors 

were used. Correlation with finite element program was excellent in the 

long wall. At z = 0, moment distribution obtained 15.33 k-ft/ft and the 
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program obtained 15.21 k-ft/ft and.at z = c/4, 11.49 k-ft/ft compared to 

11.58 k-ft/ft. 

The values in the short wall did not match up at all. At y = 0, 

moment distribution obtained 1.66 k-ft/ft and the program obtained 

-0.051 k-ft/ft and at y = b/4, 0.88 k-ft/ft compared to -1.15 k-ft/ft. A 

conclusion that should be drawn out of these examples is that the moment 

values in the long walls can be determined quite accurately but the deter-

mination of balanced moments in the short walls should be carried out with 

some discretion. A possible explanation for the discrepency in the short 

wall might be that the rotation of the long wall makes the short wall 

appear overly stiff. 



VII. CONCLUSIONS 

This paper has developed a finite element program that is capable of 

analyzing one quarter of a rectangular tank and determining the horizontal 

and vertical bending moments at a number of locations. The triangular and 

uniform loadings incorporated into this program can be external or internal 

and can be the full or partial height of the tank. It is also possible to 

handle tapered wall sections. By being able to analyze a quarter of the 

tank as a whole, it is possible to permit joint rotations and allow the 

natural balancing of moments so that the interaction of the plates can be 

properly represented. 

In addition to the capability of handling three orthogonal plates, 

any one or two plate system can be analyzed provided the two plates are 

perpendicular to each other. This aided in the development of the fixed-

end moment tables. 

The secondary objective of the paper was to calculate moment values 

at the joints between the plates in a rectangular tank. It was not prac-

tical, however, to develop a set of moment coefficients for this problem 

because the moments were not a constant times the specific weight and the 

height cubed as was possible with the one and two plate problems. An alter-

nate solution was sought by paralleling the moment distribution method that 

is used for beam structures. Fortunately, this method eliminated the depen-

dence of the moment values on the height of a tank with given proportions. 

This allowed a small group of tables to handle a wide variety of tank sizes. 

The key assumption that was made in developing this program was that 

the twisting resistance perpendicular to the plane of the plate is infinite 

58 
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and can be eliminated as a boundary condition. This permitted the 

development and use of a five degree of freedom element carrying along the 

sixth degree of freedom as a dummy to properly provide for coordinate trans-

formations. 

A shortcoming of this program might be that it does not provide for 

the slope continuity between element edges. However, the merits of this 

element have been proven. 

No consideration has been given to the horizontal moments in the 

walls of the tank, which can become large at the top edge of the wall-to-

wall joints in rectangular tanks, or to the shear forces. These moments 

and shears were calculated by the finite element program but were not 

covered in this paper because they are also dependent upon the height 

of the tank. 

The moment distribution procedure developed in this paper as a 

design aid provides very satisfactory results for the long walls in a 

rectangular tank but less accurate answers in the short walls. This might 

be attributed to an overstiffening effect of the short wall from the 

long wall. 

Future work would include developing a similar procedure for hori-

zontal moments and examining the shearing forces in a rectangular tank. 
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Appendix 1 
TABLE Al: Fixed-end Moments - Floor Plate 

thickness of the wall 
plus 2.5 times the 

thickness of the floor y 

Moment values are in units of ft-kips/ft per foot of wall height. 

lines 
of 

Fixed-end moment = (coefficient from table)(height of the wall,ft) ft-kips/ft 

b/a = 1.0 Short Wall 

y = 0 y = b/4 
floor thickness ,in 

c/a walls 10 12 14 16 10 12 14 16 
8 0.146 0.165 0.180 0 .191 0.106 0.114 0.119 0.123 

1.0 9 0.169 0.189 0.205 0.217 0 .121 0.129 0.135 0.139 
10 0 .192 0.214 0.231 0.244 0.138 0.145 0.151 0.156 
12 0.242 0.265 0.284 0.297 0.169 0.177 0.184 0.188 

8 0 .124 0.139 0.149 0.157 0.089 0.094 0.097 0.099 

2.0 9 0.143 0 .159 0.170 0.178 0.101 0 .106 0.109 0.111 
10 0.163 0.179 0 .191 0.200 0.114 0.119 0.122 0.124 
12 0.205 0.221 0.234 0.243 0 .140 0.144 0.147 0.149 

8 0.112 0.124 0.132 0.138 0.078 0.082 0.084 0.085 

3.0 
9 0.128 0.141 0.150 0.157 0.089 0.093 0.095 0.096 

10 0 .146 0.159 0.169 0.175 0.100 0.104 0.106 0.107 
12 0.182 0.196 0.206 0.212 0.123 0 .126 0.128 0.128 
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TABLE Al (cont.) 

b/a = 1.0 Long Wall 

z = 0 z = c/4 

floor thickness, in 
c/a walls 10 12 14 16 10 12 14 16 

8 0.146 0.165 0.180 0.191 0.106 0.114 0.119 0.123 
9 0.169 0.189 0.205 0.217 0.121 0.129 0.135 0.139 

1.0 
10 0.192 0.214 0.231 0.244 0.138 0.145 0.151 0.156 
12 0.242 0.265 0.284 0.297 0.169 0.177 0.184 0.188 
8 0.139 0.160 0.182 0.202 0.133 0.150 0.165 0.178 
9 0.161 0.185 0.209 0.232 0 .154 0.172 0.189 0.202 

2.0 10 0.184 0.211 0.237 0.263 0.175 0.195 0.213 0.227 
12 0.234 0.263 0.297 0.327 0.219 0.243 0.263 0.279 
8 0.129 0.148 0.165 0 .183 0.130 0.150 0.166 0.181 
9 0.149 0.170 0.190 0.209 0.150 0.173 0.191 0.207 

3.0 
10 0.170 0.193 0.215 0.237 0.172 0.196 0.215 0.234 
12 0.219 0.243 0.269 0.294 0.216 0.245 0.268 0.288 

b/a = 2.0 

z = 0 z = c/4 

floor thickness,in 
c/a walls 10 12 14 16 10 12 14 16 

8 0.144 0.164 0.191 0.214 0.130 0.144 0 .162 0.175 

2.0 9 0.167 0.191 0.221 0.246 0.150 0.167 0.186 0.200 
10 0.190 0.219 0.251 0.278 0.170 0.190 0.210 0.225 

12 0.239 0.279 0.315 0.345 0.212 0.238 0.260 0.276 
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TABLE AZ: Vertical Moments for Two Plate Problem 
Clamped Bottom Edge 

Refer to Figure 3 for the appropriate coordinate system 

Moment = (coefficient from table) * (specific weight of fluid) * 
(height of tank) 3 

Negative sign indicates tension on the loaded side. 

b/a = 1.0 

c/a x/a y = 0 y = b/4 z = 0 z = c/4 
0 0 0 0 0 

1/4 +0.001 -0.002 +o.009 +0.008 
3.0 1/2 +0.009 +0.004 +0.003 +o.006 

3/4 +o.012 +0.009 -0.038 -0.023 
1 -0.020 -0.012 -0 .132 -0 .102 

0 0 0 0 0 
1/4 +o.001 -0.002 +O.Oll +0.008 

2.5 1/2 +o.009 +0.005 +o.009 +o.009 
3/4 +o .Oll +o.009 -0.026 -0.015 

1 -0.022 -0.015 -O. l16 -0.087 

0 0 0 0 0 
1/4 +o.001 -0.002 +o.012 +o.007 

2.0 1/2 +0.009 +o.004 +0.014 +o.Oll 
3/4 +o.Oll +o.008 -0.012 -0.006 

1 -0.024 -0.015 -0.094 -0.068 

0 0 0 0 0 
1/4 +o.002 -0.001 +o.010 +0.005 

1. 5 1 /2 +o.010 +0.005 +0.016 +o.010 
3/4 +o.009 +o.007 +0.001 +0.002 

1 -0.029 -0.019 -0.066 -0.047 

0 0 0 0 0 
1/4 +o.005 +0.002 +0.005 +0.002 

1.0 1/2 +o.Oll +0.006 +o.Oll +0.006 
3/4 +o.009 +0.006 +o.009 +o.006 

1 -0.035 -0.024 -0.035 -0.024 
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TABLE A2 (cont.) 

b/a = 1.5 

c/a x/a y = 0 y = b/4 z = 0 z = c/4 
0 0 0 0 0 

1/4 +0.009 +0.003 +o.010 +0.008 
3.0 1/2 +o.017 +o. 011 +o.004 +o.006 

3/4 +0.007 +0.007 -0.036 -0.021 
1 -0.052 -0.035 -0.129 -0.098 

0 0 0 0 0 
1/4 +o.009 +0.003 +o.012 +o.008 

2.5 1/2 +0.017 +0.011 +o.010 +o.009 
3/4 +0.006 +o.006 -0.024 -0.013 

1 -0.053 -0.036 -0.112 -0.082 

0 0 0 0 0 
1/4 +0.009 +0.004 +0.012 +o.007 

2.0 1/2 +o.016 +0.010 +0.015 +0.011 
3/4 +0.005 +0.005 -0 .010 -0.004 

1 -0.055 -0.038 -0.089 -0.063 

0 0 0 0 0 
1/4 +o.009 +o.004 +o.009 +0.004 

1. 5 1/2 +o.016 +0.010 +o.016 +0.010 
3/4 +o.003 +0.004 +0.003 +0.004 

1 -0.060 -0.041 -0.060 -0.041 

b/a = 2.0 

c /a x/a y = 0 y = b/4 z = 0 z = c/4 
0 0 0 0 0 

1/4 +0.002 +0.006 +o.010 +o.007 
3.0 1/2 +o.017 +0.012 +o.004 +0.007 

3/4 -0.006 -0.001 -0.035 -0.019 
1 -0.082 -0.056 -0.127 -0.095 

0 0 0 0 0 
1/4 +o.012 +o.006 +o.012 +o.007 

2.5 1/2 +0.016 +0.012 +0.011 +o.010 
3/4 -0.007 -0.001 -0.022 -0.011 

1 -0.083 -0.057 -0 .109 -0.079 

0 0 0 0 0 
1/4 +o.012 +0.006 +o.012 +0.006 

2.0 1/2 +o.016 +o .011 +o.016 +0.011 
3/4 -0.008 -0.002 -0.008 -0.002 

1 -0.086 -0.059 -0.086 -0.059 
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APPENDIX 3 

USER'S GUIDE 

This appendix is intended to provide a brief description of the sub-

routines that are included in this program. The required input data is 

listed at the front of the program in Appendix 4. Output for this program 

is in kips, inches and radians. Data must be inputted as described by the 

leading part of the program. 

Subroutine DATA: 

This subroutine reads in plate dimensions, element meshes, plate 

thicknesses and material properties. It also calls a subroutine to cal-

culate average thicknesses of the plate elements. 

Subroutine THICK: 

Subroutine THICK determines the average thicknesses of the plate 

elements. 

Subroutine GEN: 

This subroutine generates node and element numbers for the plates. 

Subroutine PROCES: 

Subroutine PROCES automatically eliminates certain boundary condi-

tions on the plates, the twisting degree of freedom on each plate and all 

the symmetric boundary conditions on the quarter of a two or three plate 
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problem. It also generates the member codes which contain the degrees of 

freedom located on each element. 

Subroutine LOAD: 

This subroutine reads in plate loads and any additional node loads. 

Subroutine TRIANG: 

This subroutine calculates the node loads for an external or internal 

hydrostatic load on the walls. The load can be at any height in the tank 

and must be inputted in units of pounds per cubic feet. 

Subroutine UNIF: 

This subroutine calculates the node loads for an external or internal 

uniform load on the walls or floor. The load can be at any height on the 

walls but must be the full width of the floor. 

Subroutine STRIP: 

STRIP calculates the node loads on the floor plate for a uniform load 

around the perimeter of the floor slab with the width equal to the thick-

ness of the wall plus 2.5 times the thickness of the floor slab. The 

pressure is calculated automatically from the dead weight of the walls. 

Subroutine STRIPl: 

A modified version of STRIP, this subroutine permits a strip load on 

a single plate problem. It was designed only for a quarter of a single 

plate and, therefore, only a symmetric loading can be added to it. The 



81 

wall and floor thickness must be included and the appropriate weight of the 

walls for a quarter of the tank must be inputted. 

Subroutine DEADWT: 

This subroutine calculates the node loads for the walls that include 

the dead weight of the concrete in the walls. This calculates the total 

weight of the walls needed in STRIP. This subroutine is not called when 

one plate is being analyzed. 

Subroutine ASSEM: 

ASSEM assembles the global system stiffness matrix in a form suitable 

for solution by the Linpack equation solver. 

Subroutine MODIFY: 

This subroutine modifies the global stiffness matrix by including the 

soil stiffness coefficients into it. 

Subroutine XLAMDT: 

XLAMDT contains the coordinate transformations necessary to transform 

the local stiffness matrix into the global stiffness matrix. 

Subroutine GLOBK: 

This subroutine contains the coefficients of the local element stiff-

ness matrix. Only the common terms have been collected in this subroutine. 

The index matrix is used to identify the remaining terms in the stiffness 

matrix. This index matrix must be inputted as data in the program. 
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Subroutine SOLVE: 

SOLVE uses the Linpack equation solver to solve the large system of 

simultaneous equations. 

Subroutine FORCE: 

This subroutine calculates the nodal displacements for each element 

in global coordinates and calls a subroutine to calculate the element 

forces. 

Subroutine XKLD: 

XKLD transposes global element displacements into local element dis-

placements and claculates the local element forces. 

Subroutines SPBFA, SPBSL, SDOT, SAXPY: 

These subroutines calculate the nodal displacements given the stiff-

ness matrix stored in a modified banded form and· the load vector, all in 

global coordinates. 



C**************************************•******************************** 
C FINITE ELEMENT PROGRAM DUCUMENTATluN * 
C************~********************************************************** 
C THIS PROGRAM WAS DESIGNED 10 ANALYZE ONE QUARTER Of A 
C RECTANGULAR CONCRETE TANK UTILIZING SYMMETRY TO REDUCE THE NUMBtR 
C Of DEGREES OF FREEDOM Of THE SYSTEM. HOWEVER, ONE OR TWO PLATE 
C PROBLEMS CAN HE ANALYZED. THE INPUT DATA HAS BEEN MINIMIZED TO 
C PERMIT SOMEONE UNFAMILIAR WITH THE FINITE ELEMENT METHOD TO USE 
C THE PROGRAM. SOME OF THE PROGRAM FEATURES INCLUDE: 
c 
C ==>AUTOMATIC GENERATION OF THE NODE NUMBERS FOR 1,2, OR 3 
C PLATES GIVEN THE NUMBER OF ELEMENTS IN EACH OIRtCTION 
C ==> ALLOWANCE FOR TAPEREu WALLS 
C ==> AUTOMATIC GENERATION OF ELEMENT NUMBERS 
C ==> AUTOMATIC ELIMINATION OF SOME SYMMETRY BOUNDARY CONDITIONS 
C FOR 1,2, OR 3 PLATES 
C ==> ALLOWANCE FOR ADDITIONAL BOUNDARY CONDITIONS TG BE 
C PRESCRIBED TO ZERO 
C ==> INCLUSION Of BOTH TRIANGULAR ANO UNIFORM LOADINGS 
C ==> INCLUSION OF A MODIFIED STRIP LOAUING ON THE fLOOK 
C SLAB TO ACCOUNT FOR DISTRIBUTION OF SHEAR FROM 
C THE WALLS THROUGH THE FLOOR 
C ==> LOADINGS TO BE INTERNAL OR EXTERNAL 
C ==> LOADINGS TO BE AT ARBITRARY HEIGHT 
C ==> ALLOwANCE FOR ADDITIONAL NOOE LOADS 
C ==> INCLUSION OF SOME TRIGGER CARDS TO PKEVENT EXECUTION 
C WITH IMPROPER DATA 
C ==> ALLOWANCE FOR A WINKLER FOUNDATION 
C ==> INCLUSION Of DEAD LOAD FOK WALLS AND FLOOR SLAB 
c 
C*********************************************************************** c 

:i> 
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:'O ro ::s 
0. 
I-'· 
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00 w 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THE SIMPLIFICATIONS AND ASSUMPTIONS INHERENT IN THIS PROGRAM 

==> KESISTANC~ TO ROTATION IN THE NDRMAL DIRECTION UF THE 
PLATE IS ASSUMED TO BE INFINITE ANO IS SUBSEQUENTLY 
ELIMINATED AS A BOUNDARY CONDITION 

==> PLATES MUST BE ORTHONORMAL 
==> GLOBAL AXES MUST COINCIDE WITH THE PLATES 
==> TRIANGULAR LOADS ARE ONLY PERMITTED ON THE WALLS 
==> LOADING CONDITIONS ARE APPROXIMATED AS POINT LOADS AT 

THE NODES 
==> UNIFORM LOAD MUST COVER THE FULL WIDTH Of PLATE 3 
==> LOADS MUST BE THE FULL LENGTH Of THE ~ALL 
==> THE THICKNESS OF A TAPERED ELEMENT IS APPROXIMATEU BY 

IT'S AVERAGE THICKNESS 
==> THE MOUULUS Of ELASTICITY AND POISSON'S RATIO ARE THE 

SAME FOR ALL THREE PLATES 

C*********************************************************************** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

DESCRIPTION UN SOME OF THE VARIABLE NAMES USED IN THE PROGRAM 

A,B,C ELEMENT DIMENSIONS IN THE GLOBAL 2,3, AND 1-
DIRECTIONS, RESPECTIVELY 

E ----------MODULUS OF ELASTICITY CKSI) 

IOP ---~--- A MATRIX Of RANK THREE CONTAINING THE ELEMENT 
NUMBERS FOR EACH PLATE 

JCODE ------ CONTAINS THE NUMB~RS OF THE DEGREES OF FREEDOM AT 
EACH NOCE IN GLOBAL COORDINATES 

co 
~ 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

MCODE ------ CONTAINS THE UEGREES Of FREEDOM FOR EACH ELEMENT 

NDOF ------ NUMBER OF DEGREES OF fREEUUM 

NELEM ------ NUMBER Of ELEMENTS 

NDP ------- A MATRIX OF RANK THK.EE CONTAINING THE NUDE 
NUMBERING SCHEME FOR EACH PLATE 

NNOOES ---- NUMBER OF NODES 

NPLTS -----FLAG INDICATING THE NUMBER Of PLATES BEING 
ANALYZED 

NX,NY,NZ NUMHER Of ELEMENTS JN THE GLOBAL 1121 AND 3-
0 IREC T IONS, RESPECTIVELY 

Q ---------- REPRESENTS THE LOAD VECTOR BEFORE SUBROUTINE SOLVt 
AND THE DISPLACEMENTS AFTER SUBROUTINE SULVE 

Sull ------- EQUIVALENT SPRING STIFFNESS OF THE FOUNDATION 
AT AN INTERNAL NODE (KIPS/IN) 

SST ------- CONTAINS THE GLOBAL STiffNESS MATKJX STORED IN 
HALF-BANDED FORM THAT CAN BE USED BY THE llNPACK 
EQUATION SOLVER 

THK -------- CONTAINS THE STEPPED THICKNESSES FOR EACH PLATE 

THKF ------- THICKNESS Of THE FLOOR 

THKSB,THKST- THICKNESS OF PLATE l, BOTTUM AND TOP, RESPECTIVELY 

o:i 
Vl 



c 
C THKLB,THKLT- THICKNESS OF PLATE 2, HOTTUM ANO TOP, RESPECTIVELY 
c 
C VNU ------- POIS St.JN' S RATIO 
c 
c we --------- SPECIFIC ~EIGHT OF CONCRETE 
c 
C X,Y,Z ------ DIMENSIONS OF THE SINGLE PLATE PROBLEM BEING 
C ANALYLEO DETERMINED BY THE BOUNDARY CONDITIONS 
C BEING USED OR THE DIMENSIONS OF THE SYMMETRIC 
C PORTION OF THE T~O OR THREE PLATE SYSTEM 
c 
(*********************************************************************** 
C INPUT OF DATA - UNFORMATTED * 
C*********************************************************************** c 
(. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CAi<O 1 

CARO 2 

--------- NPL TS (11) 

ENTEK 1,2,3 FOK THE NUMHER OF PLATES TO BE ANALYZED 

------- X,Y,Z,NX,NY,NZ (JR, 31) 

X - DIMENSION IN THE GLUSAL !-DIRECTION (INCHESJ 
Y - DIMENSION IN THE GLOBAL 2-0IRECTION (INCHES) 
l - OlM~NSION IN THE GLOBAL 3-0IRECTION (INCHES) 

*** NOTE: ENTER THE DIMENSIONS THAT CURRESPOND TO THE 
BOUNOARY CONDITIONS THAT AR~ APPLIED TO THE 
PLATE OR PLATES 

MUST ENTER Z=O. IF ONLY DOING A SINGLE PLATE PROBLEM 
NX - NUMBER OF ELEMENTS IN THE GLOBAL 1-DIRECTJUN 
NY - NUMdER Of ELEMENTS IN THE GLOUAL 2-DIKECTION 
NZ - NUMBER Of ELEMENTS IN THE GLOBAL 3-DIRECTION 

00 
O'> 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

(MAXIMUM NUMBER OF ELEMENTS IN ANY OIRECTIUN 
IS EIGHT) 

CARO 3 ~------- E,VNU,wC,SOIL 

E - MODULUS OF ELASTICITY OF CONCRETE lKSI) 
VNU - POISSON'S RATIO OF CONCRETE 
we - SPECIFIC WEIGHT Of CONCRETE (PCf) 

l4R) 

SOIL - ESTIMATED SPRING STIFFNESS OF THE SOIL (K/IN) 

CARO 4 ------- THKST,THKSB,THKLT,lHKLB,THKF (5R) 

THKST - THICKNESS AT THE TOP Of PLATE 1 IN THE GLOBAL 
1-2 PLANE {INCHES) 

THKSB - THICKNESS AT THE BOTTOM Of PLATE l IN THE 
GLOBAL 1-2 PLANE (INCHES) 

THKLT - THICKNESS AT THE TUP Of PLATE 2 IN THE GLOBAL 
2-3 PLANE (INCHES) 

ENTER O.O FOR A SINGLE PLATE PROBLEM 
THKLB - THICKNESS AT THE BOTTOM UF PLATE 2 IN THE 

GLOBAL 2-3 PLANE (INCHES) 
ENTER O.O FOR A SINGLE PLATE PROBLEM 

THKF - THICKNESS Of THE FLOOR SLAB CINCHES) 

5TH GROUP OF -- NOO,NOIR 
CARDS 

ENTER O.O FOR 1 OR 2 PLATE PROBLEM 

( 21) 

NOU - NOOE NUMBER AT WHICH A CONSTRAINT EXISTS 
NDIR - GLOBAL DIRECTION OF THE CONSTRAINT, BilTH 

DISPLACEMENT AND kOTATION CUNSTRAINTS 
ARE POSSIBLE 

00 

"' 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
~ 
c 
c 

*** MUST ENTER 0 0 AS A TRIP CARD TO SIGNIFY THE END 
OF THE JOINT CONSTRAINTS *** 

6TH GROUP OF -- LTYPE,NPL,LDIR,w,H 
CARDS 

LTYPE - INDICATES THE TYPE OF LOAUING 
ENTER l FOR TRIANGULAR LOAD 
ENTER 2 FOR UNIFORM LOAD 
ENTER 3 FOR APPROXIMATED STRIP LOAD 

(3I,2R) 

NPL - NUMBER OF THE PLATE TO WHICH THE LOAD IS APPLIED 
ENTER 0 FOR LTYPE=3 
ENTER l FOR PLATE IN THE 1-2 PLANE(PLATE l) 
ENTER 2 FOR PLATE IN THE 2-3 PLANE(PLATE 2) 
ENTER J FOR THE FLOOR SLAB(PLATE 3) 

LUIR - INDICATES THE GLOBAL DIRECTION THAT THE LOAD IS 
APPLIED. A NEGATIVE SIGN SHOULD BE ENTE~ED 

WITH THIS VALUE ONLY TO INDICATE THAT THE 
LOAD IS APPLl~D OPPOSITE TU THE POSITIVE SENSE 
OF THE GLOBAL DIRECTIONS. 
ENTER 0 FOR LTYPE=J 

~ - MAGNITUDE CF THE LOADING, ALWAYS POSITIVE 
IF LTYPE=l, W REPRESENTS THE SPECIFIC WtlGHT Of 

THE LOADING (PCf) 
IF LTYPE=2, W REPRESENTS THE PR~SSURE DN THE 

PLATE (PSF) 
IF LTYPE=3, ENTER O. 

*** NOTE: IF A SINGLE PLATE PKObLEM IS UEING 
ANALYZED TO DETERMINE THE FIXED END 
MOMENTS ON THE FLOOR SLAB, W REPRESENTS 
THE WEIGHT OF THE WALLS. 

H - THE HEIGHT Of THE LOADING ON THE WALL. THIS VALUE 

00 
00 



(, 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

WILL GENERALLY BE THE FULL HEIGHT OF THE WALL 
BUT CAN INCLUDE ANY AR&ITRARY HEIGHT. FOR THE 
FLOOR, THE FULL DIMENSION (IN THE X-DIRECTION) 
MUST BE ENTERED. (INCHES) 
ENTER o. If LTYPE;3 

*** MUST ENTER 0 0 0 O. O. AS A TRIP CARD TO lNOlCATE 
THE END Of THE PLATE LOADINGS *** 

7TH GROUP OF - tWDE,JDIR,XLOAD 
CAR OS 

(21,R) 

NOOE - NODE NUMBER AT WHICH A CUNCENTRATEO LOA~ IS 
APPLIED 

JDIR - GLOBAL DIRECTION Of THE APPLIED LOAD lPOSITIVt) 
XLOAO - MAGNITUDE Of THE APPLIED LOAD (+ OR -, KIPS 

AND INCHES) 
*** MUST ENTER 0 0 O. AS A TRIP CARD TO INDICATE THE END 

OF ADDITIONAL POINT LOADS 

00 

"' 



(*********************************************************************** 
C MAIN PROGRAM * 
C*********************************************************************** 
C IMPLICIT kEAl*8 (A-H,O-Zl 

COMMON Q{993),THK(8,3),XL(3,6),A,B,C,E,VNU,wC,x,v,z,Mco 
10E(l92,24),NOP(9 1 9,3),IOP(8,8,3),NELEM,NNOOES,NOOF,IHBW,NX,NY,NZ 

CGMHON/TC/THKST,THKSB,JHKLT,THKLB,THKF,WEIGHT 
COMHUN/CGUE/JCOOEC217,6) 
COMMON/SSM/SST(594,993) 
COMMON/FORC/D(24),P21,P32,Pll,P22,P31,P33,Pl2,Pl3,SA,SB,SC,SO,SE, 

lSf,SG,SH,Sl,SJ,SM,SN,SO,SP,SQ,SR,SS,ST,SU,SX,SV,Flrf2,f3,f4,F5, 
2F7,F8,F9,Fl0,Fll,fl3,F14,Fl5,Fl6,F17,Fl9,F20,F2l,F22,F23,P23,P4l 

COMMON/SOLV/MAXlO,LOA 
COMMON/COEFF/SOIL 
LDA~594 

KEA0(5 1 *) NPLTS 
CALL OATA(NPLTS) 
CALL GEN(NPLTS) 
CAf.L PROCES(NPLTSI 
CALL LOAO(NPLTS) 
CALL ASSEMlNPlTSl 
CALL SOLVE 
CALL FORCE(NPLTS) 
STOP 
END 

\D 
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C***********************•*********************************************** C SUBROUTINE DATA * 
(*********************************************************************** 

SUilROUTINE OATA(NPLTS) 
C IMPLICIT REAL*B (A-H,0-Z) 

COMMON Q(993),JHK(8,3),Xl(3,6),A,B,C,E,vNu,wc,x,v,z,MCO 
10E(l92,24),NOP(9,9,3),10P(8,8,3),NELEM,NNODES,NDOF,IHBW,NX1NY,NZ 

CUMHON/TC/THKSJ,THKSB,THKLT,THKLB1THKF1WEIGHT 
COMMON/COEFF/SOIL 
REA0(5,•) x,v,Z,NX,NY,NZ 
lf(NX.LE.8.0R.NY.LE.8.0R.NZ.LE.BJ GO TO 50 
WRITE(6, HlO) 
STOP 

50 A=Y/FLOAHNY) 
lf(NPLTS.NE.l) B=Z/FLOAT(NZ> 
C=X/FLOA TC NX) 
REAO(S,*) f,VNU,wC,SOIL 
REA0(5 1 *) THKST,THKSB,JHKLT,THKLB,THKF 
DO 10 1=1,NPLTS 
GO TO ( 11, 12, 13) , I 

11 CALL THICK(THKST,THKSB,THK,NY 1 1) 
GO TO 10 

12 CALL THICK(THKLT,THKLS,THK,NY,I) 
GO TO 10 

13 CALL THICK(THKF,THKF,THK,NX,11 
10 CUNTINUE 

WRITE(6,101) x,c,Y,A,z,H 
WRITE(6 1 201) E,VNU,WC,SOIL 
DO 20 l=l,NPLTS 
HRITE(6,105) 
GOT0(21,2lr22),I 

21 J=NY 

\0 
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GO TO 25 
22 J=NX 
25 IFINPLTS.EQ.1) WRITE(6 1 103) THKSB,THKF 
20 IF(NPLTS.NE.l) WRITE(6.102J l 1 (THK&K,l),K=ltJI 

100 FORMAT(' YOU HAVE EXCEEDED THE MAXIMUM NUMBER OF tLEMENTS IN THE X 
1-,Y-,OR Z-OIRECTION. THE MAXIMUM NUMBER OF ELEMENTS AVAILABLE IN 
2THIS PROGRAM IS 8. 1 ) 

101 FORMAT(' X=•,F10.2,1ox,•c=•,F10.21• Y= 1 ,F10.2,1ox,•A= 1 ,F10.21 
*' Z=•,F10.2,1ox,•B= 1 ,F10.2/) 

102 FORMAT(' STEPPED THICKNESS FOR PLATE 1 ,12,2x,•(INCHES) 1 /8F8.l) 
103 FORMAT(' THE THICKNESS OF THE WALLS =1 ,F8.l1' INCHES'// 

*' THE THICKNESS OF THE FLOOR PLATE =1 ,Fa.1,• JNCHES') 
105 FORMAT(/) 
201 FORMAT(' MODULUS OF ELASTICITY= 1 1Fl0.21lX1 1 CKSl) 1 / 

*' POISSONS RATI0= 1 rf6.2/ 
*' SPECIFIC WEIGHT OF CUNCRETE= 1 ,fl0.21lX1' (PCf)'/ 
*' SOIL STIFFNESS= 1 ,Fa.2,1x,•(KIPS/INCH) 1 /) 

RETURN 
END 

"° N 



C*********************************************************************** 
C SUBROUTINE THICK * 
C*********************************************************************** 

SUBROUTINE THICK(T,B,TH,NR,J) 
C IMPLICIT REAL*8 (A-H,0-Z) 

REAL TH( 8, 3) 
IFf T.EQ.d) GO TO 20 
SLOPE= ( B-T) /NR/2 
DO 10 I=l,NR 

M=2•1-l 
10 TH(l,J)=T+M*SLOPE 

RETURN 
20 DO 30 l=l,NR 
3 0 HH I , J ) : T 

RETURN 
END l.D 

\,,.) 



(*********************************************************************** 
C SUBROUTINE GEN * 
(*********************************************************************** 

SUbROUTINE GEN(NPLTSt 
C IMPLICIT REAL*8 (A-H,0-Z) 

COMMON Q(993),JHK(8,3),Xl(3,6J,A,8,C,E,vNu,~c.x,y,z,Mco 
10E(l92r24),NOP(9,9,3),10P(8,8,3) 1 NELEM 1 NNOOES,NUOF 1 1HBW,NX,NY,NZ 

N=O 
NXl=NX+l 
NYl=NY+l 
NZl=NZ+l 
00 10 l=l,NYl 

DD 20 J=l,NXl 
N=N+l 

20 NOP(I,J,l);N 
lf(NPLTS.EQ.l) GO TO 10 

N=N-1 
DO 30 K=l,Nll 

i~=i\I+ l 
30 NOP(I,K,2)=N 
10 CONTINUE 

IF(NPLTS.NE.3J GU TO 90 
N=NOPlNY,Nll,2) 
OU 60 l=l,NXl 
DO 6 0 J= 1, N Zl 

N=N+l 
60 NOP(J,J,3)=N 

DO 40 1==1,NXl 
4~ NOP(NYl,J,l)=NOPCI,1,3) 

DO 50 l=l,Nll 
50 NOP(~Yl,I,2)=NOP(NX1,I,3) 

90 NNDOES=N 

l.O 
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M=O 
00 210 I=l,NY 
DO 220 J=l,NX 
M=M+l 

220 IOP(I,J,ll=H 
IFlNPLTS.EQ.l) GO TO 210 
DO 2 30 K= 1, NZ 
M=M+l 

230 IOP(l 1 K,2)=M 
210 CONTINUE 

IF(NPLTS.NE.3) GO TO 150 
DO 240 I=l,NX 
DD 240 J=l,l~Z 
M=M+l 

240 IOP(l,J,3)=M 
150 ~'RITE(6,llU 

WRITE(6,300) 
NNN=l 
wRITE(6,400) NNN 

UO 100 I= l , NY 
WRITE(6,ll0) (NOP(I,J,ll,J=l,NXl) 

100 WRITE(6,3l0l (IOP(J,J,l),J=l,NX) 
WRITE(6,ll0) (NOP(NYl,J,U ,J=l,NXl) 
IF(NPLTS.EQ.l} RETURN 
~~RITE ( 6tl11 ) 

NNN=2 
WRITE(6,400) NNN 

DO 101 l=l,NY 
WRITE(6,ll0} (NuP(l,J,2),J=l,Nll) 

101 WRITEl6,310) (JOP(J,J,2),J=l,NZJ 
WRITE(6,110) (NOP(NYl,J,2),J=l,Nll) 
IF(NPLTS.EQ.2) RETURN 

\0 
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WRITE(6,lll) 
NNN=3 
WRITE ( 6, 400) NNi~ 

DO 102 I=l,NX 
WKITE(6,ll0) (NOPlI,J,311J=l1NZl) 

102 WRITE(6,310) (l0Pll 1 J 1 3) 1 J=l 1 NZ) 
WRITE(6,ll0) INOP(NXl,J,3J,J=l,NZll 

111 FORMAT(/ I/) 
110 FORMAT(916) 
310 FORMAT(T70 1816) 
300 FORMAT(T5, 1 NOOE NUMBERS 11T75 1'ELEMENT NUMBERS 1 //) 

400 FORMAT(T61,'PLATE 1 ,I2l 
RETURN 
END 

l.O 
O'\ 



(*********************************************************************** 
C SUBROUTINE PROCES * 
C*********************************************************************** 

SUBROUTINE PROCES(NPLTS) 
C IMPLICIT REAL*B (A-H,O-Z) 

c 

COMMON Q(993},JHK(8,3),Xl(3,6J,A,B,C,E,VNU,wc,x,v,z,MCD 
10E(l92,24),NOP(9,9,3),IOP{81 8,3),NELEM,NNOOES 1 NDOF 1 1HBW 1 NX,NY,NZ 

COMMON/CODE/JCODE(217 1 6) 
CUMMON/SOLV/MAXID,LDA 

C JOINT COuE CONSTRUCTION 
c 

c 
c 
c 

DO 10 I= l r NNCDES 
DO 10 J=l,6 

10 JCODE(l,J)=l 

JOINT CONSTRAINTS 

NXl=NX ... l 
NYi 0=NY+l 
NZl=NZ+l 
GUT0(2Dl,202,203),NPLTS 

203 DO 22 I=l,NXl 
DO 22 J=l, NZl 

M=NiJP ( I 1J,3) 
22 JCOOE(M,5)=0 

DO 25 l=l,NXl 
M=NOP(l,NZl,3) 
JCODE(M,3)=0 

25 JCODE(M,4)=0 
DO 26 J=l,NZl 

N=NOP ( 11 J, 3) 

l.O 
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JC ODE 01, l )=0 
26 JCOOE(M,6)=0 

2 02 DO 21 I= 1, NY l 
DO 21 J= l, N Zl 

M=NOP ( I 1 J ,21 
21 JCUDE(M,4)=0 

DO 2 3 I= 1, NY 1 
M=NOP(l,1,1) 
JCODElM,1)=0 

23 JCODE(M,5)=0 
DO 24 I=l,NYl 

M=NOP(J,NZl,21 
JCOOE(M,3)=0 

24 JCOOE(M,5)=0 
201 DO 20 I=L,NYl 

DO 20 J=l,NXl 
M=NOP(l,J,U 

20 JCODE(M,6)=0 
30 READ(5,*) NOD,NDIR 

lf(NOO.EQ.0) GO TO 35 
JCODE(NOD,NDIR)=O 
GO TU 30 

35 NOOF=O 
DO 36 I=l,NNGOES 
DU Jo J=l,6 

lf(JCODE(l,J).EQ.0) GO TO 36 
NDOF=NDOF+l 
JCODE(J,J)=NDDF 

36 CONTINUE 
DO 40 M=l,NY 
DO 40 N= l, hlX 

I =NOP P1, N, 1 ) 

"' 00 



J=NOP(M,N+l,l) 
K=NOP(M+l,Nrl) 
L=NOP(M+l,N+l,l) 
NN=IOP(M,N,l) 
DO 41 NM=l ,6 

MCOOE(NN,NM)=JCODECI,NM) 
HCODEtNN 1 NM+6)=JCOOE(J,NM) 
MCODEINN 1 NM+l2l=JCODE(K,NMl 

41 MCOOE(NN,NM+l8)=JCODEtL,NM) 
40 CONTINUE 

IF(NPLTS.EQ.l) GO TO 65 
DO 50 M=l,NY 
00 50 N= 1, NZ 

l=NOP(M,N,2) 
J=NOP(M,N+l,2) 
K=NOP(M+l,N,2) 
L=NOP(M+l,N+l,2) 
NN=IOP(M,N 1 2) 
DO 51 NM=l,6 

MCODE(NN,NM)=JCODE(l,NM) 
HCOOE{NN,NM•6)=JCODE(J,NM) 
MCOOEINN,NM+l2)=JCOOE(K,NM) 

51 HCODE(NN,NM+l8)=JCODE(L,NM) 
50 CONT I NUE 

lf(NPLTS~NE.3) GO TO 65 
DO 60 M= 1, NX 
DO 60 N=l,NZ 

I=NOf>(M,N,3) 
J=NOP(H,N+l,3) 
K=NUP(M+l,N,3) 
L=NOP(M+l,N+l,JJ 
NN= IOP ( M, N, :H 

\.0 
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DO 61 NM=l,6 
HCUDE(NN,NM)=JCGOE(I,NH) 
MCODE(NN,NM+6)=JCOOECJ 1 NM) 
MCOOE(NN,NM+l2)=JCOOE(K 1 NH) 

61 MCODE(NN,NM+l8)=JCOOE(L,NM) 
60 CONTINUE 
65 NELEM=NN 

MAXIO=O 
NE=NX*NY+NY*NZ 
00 70 l=l,NE 

J=O 
75 J=J+l 

I S=iKODE( I, J) 
lf(IS.EQ.0) GO TO 75 
J=25 ..... 

76 J=J-1 
0 
0 

IL=MCODE{l 1 J) 
IF(IL.EQ.O) GO TO 76 
ID=IL-IS 
I Fl IO.GT .MAXIO) MAX ID= ID 

70 CONTINUE 
IF(NPLTS.NE.3) GO TO 81 
NNE=NX*IU 
IJO tiO l=NE,NNE 

MAX=O 
M IN·=400 
DO 90 J=l 1 24 

M= r"1C UDE l I , J ) 
IF(M.EQ.0) GO TO 90 
lf(M.LT.MINJ MIN=M 
lf(M.GT.MAX) MAX=M 

90 CONTINUE 



IO=MAX-MIN 
IF(lD.GT.MAXlO) MAXID=IO 

80 CGNTJNUE 
81 IHBW=MAXID+l 

C ~RITE(6,105) 

C WRITE(6 1 99) 
C WRITE(6,100)(1,CJCODEII,J),J=l,6),1=11NNODES) 
C WRITE(6 1 105) 
C WRITE(o,109) 
C WRITE(6,110)(1 1 (MCODE(l 1 J),J=l 1 24) 1 1=1 1 NELEM) 

WRITE(6,105) 
WRITE(6,200) NNOOES,NELEMrNDOF,IHBW 
WRITE(6,105) 

C 99 FORMAT(' JOINT 1 ,4X,T23, 1 JOINT CODE'/) 
C 100 FORMAT(l4,6X,615) 

105 FORMAT(///) 
c 109 FORMAT(• ELEMENT•,2x,roo, 1 MEMBER CODE'/) 
C 110 FORMAT(l5,5X,2415) 

200 FORMAT(' NUMBER OF NODES= 1 ,I4/ 1 NUMBER Of ELEMENTS= 1 1 14/ 
*' NUMBER Of DEGREES OF FREEOOM=',14/ 
*' THE HALF BAND WIDTH= 1 ,14/) 

RETURN 
END 

...... 
0 ...... 



C*********************************************************************** 
C SUBROUTINE LOAD * 
C*********************************************************************** 

SUBROUTINE LOAO(NPLTS) 
C IMPLICIT REAL*8 (A-H,0-Z) 

COMHON Q(993},THK(8,3),XL(3,6),A,B,c,E,vNUt~C,X,Y,l,MCU 
1DE(l92,24),NOP(9,9,31 1 10P(8,8,3),NELEM,NNOOES,NDOFrlHBWtNX,NY,NZ 

COMMON/COOE/JCODE(217,6) 
00 2 1=1,NOOF 

2 Q{l)=O. 
lf(NPLTS.NE.l) CALL OEAOWTINPLTSI 

40 REAU(5,*) LTYPE,NPL,LDIR,WrH 
lf(LTYPE.EQ.0) GO TO 50 
GOTO(ll,21 1 31),LTYPE 

q9 GOTO(l0,20,30),LTYPE 
10 CALL TRIANG(NPL,LOIR,W,H) 

GU TO 40 
20 CALL UNIFlNPL,LDIR,W,H) 

GO TO 40 
30 IF{NPLTS.NE.l) CALL STRIP 

IF(NPLTS.EQ.l) CALL STRIPl(W) 
GO TO 40 

50 READ(5,•l NOOE,JDIR,XLOAD 
lf(NUUE.EQ.0) RETURN 
M=JCOUE(NODE,JDIR) 
lf(M.EQ.O) GO TO 32 
Q(M)=Q(M)+XLOAO 
GO TO 30 

32 WRITE(6,100} M 
STOP 

11 ~RITE(6,lJ5) 
WR1TE(6,lll) NPL,LOIR,W,H 

...... 
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GO TO 99 
21 wRITE(6,l05) 

WRITE(6,12l) NPL,LDIR,W,H 
GO TO 99 

31 wRITE{6,l05) 
WRITE(6,l3l) 
GO TO 99 

100 FORMAT(' THE APPLIED LOAD AT NODE•,15,•coRRESPGNDS Til THt LOCATIUN 
*OF A CONSTRAINT. CHECK THE LOCATION Of THE APPLIED LOA0. 1 ) 

105 FORMAT(//) 
lll FORMAT(' A TRIANGULAR LOAD WAS APPLIED TO PLATE 1 ,I2,• IN THE GLOBA 

*L',14,• OIRECTION. 1 /T3, 1 THE INTENSITY OF THE LOAD WAS'rf8.2rlX, 1 P 
•CF ANO WAS APPLIED TO A HEIGHT OF 1 ,f8.2,1x, 1 1NCHES 1 /} 

121 FORMAT(' A UNIFORM LOAD WAS APPLIED TO PLATE 1 1 12 1 1 IN THE GLOBAL 1 1 

*141 1 DIRECTION. 1 /T3r 1 THE INTENSITY OF THE LOAD wAS 1 ,Fl0.2,• PSf AN 
*O WAS APPLIED TO A HEIGHT Of 1 1 F8.2 1 ' INCHES'/) 

131 FORMAT(' A STRIP LOAD APPROXIMATION WAS USED ON THE FLOOR SLAB'/) 
ENO 

...... 
0 w 



C****************************************************************~****** 
C SUBROUTINE TRIANG * 
C*********************************************************************** 

SUBROUTINE TRIANG(NPL,LDIR 1 W,H) 
C IMPLICIT REAL*8 (A-H,0-Z) 

COMMON Q(993),THK(8,3J,XL(3 1 61,A,B 1 C,E,VNU,WC,X,Y,L,MCO 
1DE(l92 1 24),NOP(9,9,3),10P(8,8,3),NELEM,NNOOES,NDOF,IHBW,NX,NV,Nl 

COMMON/CODE/JCODE(217 1 6) 
NN=O 
P2=0. 
D=Y-H 
NY2=2*NY 
W=W/172dOOO. 
DO l 0 I= l , NY 2 , 2 

DY=FLOA HI) *A/2. 
IF(DY.LT.O) GO TO 10 
Pl=P2 
P2=(0Y-D)*W 
NN=NN+l 
OH=A 
JF(NN.EQ.l) OH=DY-0 
P=(Pl+P2)/2. 
lf(LDIR.LT.Ol P=-P 
GUT0(21,22),NPL 

21 JOI R=3 
K-=NX+l 
GO TO 23 

22 JDIR= l 
K=NZ+l 

23 DO 30 L=l,K 
GOTU(31 1 32) 1 NPL 

31 DL=C 

,...... 
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GO TO 33 
32 DL=B 
33 lf (L.EQ.l.OR.L.EQ.K) OL=OL/2. 

M=NOP{(l+l)/2,L,NPL) 
N= JC ODE ( M, JD I R l 
lf(N.EQ.0) GO TO 29 
Q(N)=Q(N)+P*DH*Dl 

C ~RITE(6,10() M,QCNI 
GO TO 30 

29 ~RITE(6,100) M 
30 CONTINUE 
10 CONTINUE 

Pl::P2 
P2=H*W 
P=(Pl+P2)/2. 
lf(LDIR.LT.0) P=-P 
GOT0(4l,42),NPl 

41 JO IR-=3 
K-=NX + l 
GO TO 43 

42 JOIR=l 
K=NZ+l 

43 DO 50 L=l, K 
GOTO( 51, 52) rNPL 

51 UL 0=C 
GO TO 53 

52 DL=O 
53 lf(L.EQ.l.OR.L.EQ.K) DL=DL/2. 

M=NOP((l+3)/2,L,NPL) 
N=JCOOE(M,JDIR) 
IF{N.EQ.O) GO TO 49 
Q(N)=Q{N)+P*A/2.*DL 

...... 
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C wRITE(6,101) M,Q(N) 
GO TO 50 

49 WRITE(6,100) M 
50 CONTINUE 

100 FORMAT(' A CONSTRAINT EXISTS IN THE DIRECTION OF THE APPLIED TRIAN 
lGULAR LOAD AT NODE 1 ,IS,/T5, 1 THE LOAD WAS NOT ENTERED INTO THE LOAD 
2 VECTOR•) 

C 101 FORMATCI5,fl2.2) 
RETURN 
END 

...... 
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C*********************************************************************** 
C SUBROUTINE UNI F * 
C*********************************************************************** 

SUBROUTINE UNlf{NPL,LOIR,P,H) 
C IMPLICIT J{EAL*8 (A-H,0-Z) 

COMMON Q(993),JHK(8,3),XL(3,6),A,B,C,E,VNU,wc,x,v,z,MCO 
1DE(l92 124),NOP(9,9,3),10P(8,8,3) 1 NELEM,NNODES,NOOf,IHB~,NX,NV,NZ 

COMMON/COOE/JCOOE(217,6) 
NN=O 
lf(NPL.EQ.3.AND.H.NE.XI GO TO 90 
GO TO ( 1, l , 3) , NP l 

1 NR=2*NY 
F-=A 
V=Y 
GU TO 5 

3 NR-=2*NX 
f=C 
V=X 

5 P=P/144000. 
D=V-H 
IF(LOIR.LT.0) P=-P 
DO 10 l=l,NR,2 

OY=FLOATC l)*F/2. 
lf(UY.LT.0) GO TO 10 
NN=NN+l 
Dft=.F 
IF(NN.EQ.l) DH=DY-0 
GOTO(ll,12,13),NPL 

11 JDIR=3 
K=NX+l 
GO TO 15 

12 JDIR= l 

...... 
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K=NZ+ l 
GO TO 15 

13 JDIR=2 
K=NZ+ l 

15 DO 20 L=l,K 
GOT0(21,22r22J,NPL 

21 DL=C 
GO TO 25 

22 DL=B 
25 lfll.EQ.l.OR.L.EQ.K) Ol=DL/2. 

M=NOP((l+l)/2,L,NPl) 
N= JC 0 DE ( M , J 0 IR ) 
IF(N.EiJ.O) GD TO 19 
Q(N)=Q(N)+P*DH*DL 

c WRITE(6,101) M,Q(N) ...... 
GO TO 20 0 

CXl 
19 WRITE(6,1001 M 
20 CONTINUE 
10 CONTINUE 

DO 30 L=l,K 
GOT0(3l,32 1 32),NPL 

31 OL=C 
GO TO 35 

32 DL=B 
35 lF(L.EQ.l.OR.L.EQ.K) DL=Dl/2. 

M=NOP((l+3)/2,L,NPL) 
N=JCODE(M,JOIR) 
IF(N.EQ.0) GO TO 29 
Q{N)=QIN)+P*f/2.*Ul 

c wRITE(6,101) M,Q(N) 
Gu TO 30 

29 WR IT E ( 6, l 00) M 



30 CUNTINUE 
RETURN 

90 WRITE(6 1 102) 
STOP 

100 FORMAT{' A CONSTRAINT EXISTS IN THE DIRECTION OF THE APPLIED UNIFO 
lRM LOAD AT NODE 1 ,14/T5, 1 THE LOAD WAS NOT ENTERED INTO THE LOAD v~c 
2TOR 1 ) 

C 101 FORMAT{l5,fl2.2) 
102 FORMAT(' THE UNIFORM LOAD ON THE FLOOR OF THE TANK MUST BE THE FUL 

LL WlOTH Of THE TANK. 1 /T5, 1 H MUST EQUAL X ANO w MUST BE ADJUSTED SD 
2 THAT THE MULTIPLICATION OF W AND H1 /T5, 1 PROVIDE THE APPROPRIATE P 
3RESSURE ACROSS THE BOTTOM Of THE TANK'/) 

END 

.._. 
0 

'° 



(*********************************************************************** 
C SUBROUTINE STRIP * 
C*********************************************************************¥* 

SUBROtJTINE STRIP 
C IMPLICIT REAL*8 (A-H,O-Zl 

COMMON Q(993),THK(8,3),XLC3,6),A,B,C,E,VNU,wc,x,y,z,MCO 
10E(l92 1 24),NCP(9,9,3) 1 10P(8,8,J),NELEM1NNOOES1NOOF,IHBw1NX,NY,NZ 

COMMON/TC/THKST,THKSB,THKLT 1 THKLB 1 THKF 1 WEIGHT 
COMMON/CODE/JCOOE(217 1 6) 
WZ=THKSB+2.5*THKF 
WX=THKLB+2.5*THKF 
lf(WZ.GT.Z.CR.WX.GT.X) GO TO 50 
AREA=X*WZ+Z*wX-WX*WZ 
PRESS=wEIGHT/AREA 
WRITE(o,200) WEIGHT,PRESs,wx,wz 
NXl=NX+l 
NZl=NZ+l 
NC=2*NZ1 
OX=C/2. 
Dl=B/2. 
TRIPl=WZ+2.*0Z 
DO 10 l=l,NXl 

XHITE=C 
IF(I.EQ.l.OR.I.EQ.NXl) XHITE=XHITE/2. 
00 20 J=l,NC 1 2 

ZH=DZ*FLOAT(J) 
IFlZH.GT.TRIPl) GO TO 10 
WIOTH=l3 
IF(J.EQ.l) WIDTH=WIDTH/2. 
IF(ZH.GT.Wl) WIDTH=B-ZH+WZ 
XLOAD=PRESS*WIOTH*XHITE 
L=(J+l)/2 

,_. ,_. 
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M=NOP(l,L,3) 
N=JCODE (M, 2) 
lf(N.EQ.0) GO TO 19 
CH N ) = Q ( N ) +XL DAD 
GO TO 20 

19 WRITE(6,l00) M 
20 CUN TI NUE 
10 COIH INUE 

I=llNT((X-WX)/OX)+l)/2+1 
J=(INTCWZ/DZ)+l)/2+1 
DO 30 K=I,NXl 

XHITE=C 
IFCK.EQ.I} XHITE=(2*l-1J*DX-X+WX 
IF(K.EQ.NXl) XHITE=C/2. 
DO 40 L=J,NZl 

WIDTH=B 
IFCL.EQ.J) WIOTH=(2•J-l)*Dl-WZ 
If(L.EQ.Nll) WIDTH=B/2. 
XLOAD=PRESS*WIOTH*XHITE 
M= NOP ( K , l ,3 ) 
N=JCOUECM,2J 
IF(N.EQ.0) GO TO 39 
Q(N)=Q(N)+XLOAD 
GO TO 40 

39 WRITE(6,100) M 
40 CONTINUE 
30 CONTINUE 

RETURN 
50 WRITE(6,10U 

RE TURN 
100 FORMAT( ' A CONSTRAINT EXISTS IN THE DIRECTION Of THE APPllED STRI 

*P LOAD AT NODE 1 ,I4/T5, 1 THE LOAD WAS NOT ENTERED INTO THE LOAD VECT 

...... ...... ...... 



*OR') 
101 FORMAT(/' THE STRIP LOAD COVERS THE ENTIRE FLOOR SLAB 1 /T5 1 1 REENTER * AS A UNIFORM LOAD. EXECUTION wAS TERMINATED') 
200 FORMAT(//' THE TOTAL WEIGHT Of THE WALLS= 1 ,fl0.2, 1 KIPS 1 / 

*' THE UNIFORM STRIP PRESSURE= 1 1 fl0.7, 1 KSl 1 / 

* 1 THE WIDTH Of THE STRIP IN THE X-DIRECTION= 1 ,fl0.3 1 1 INCHES'/ 
*' THE WIDTH Of THE STRIP IN THE Z-DIRECTION= 1 ,fl0.3 1 1 INCHES'//) 

END 

....... 

....... 
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(**********************************************************************~ 
C SUBROUTINE STRIP l * 
(*********************************************************************** 

SUBROUTINE STRIPl(WEIGHlt 
C IMPLICIT REAL*8 (A-H,O-Z) 

COMMON Q(993),THK(8,3),Xl(3,6),A,B,c,E,VNU,WC,x,v,z,MCO 
1DE(l92 1 24),NOP(9,9 1 3) 1 IOP(8,8,3) 1 NELEM,NNODES 1 NOOF,IHBW,NX,NY,NZ 

COMMON/TC/THKYT,THKYB 1 THKXT,THKXB 1 THKF,WEIGHT 
COMHON/COOE/JCOOE(217 1 6) 
WX=THKYo+2.5*THKf 
WY=THKXB+2.5*THKF 
IF(W¥.GT.Y.OR.WX.GT.X) GO TO 50 
AREA=X*wY+Y*WX-WX*WY 
PRESS=wEIGHl/ARcA 
~RITE(6,200) ~ElGHl,PRESS,~X,WY 

NXl-=NX+l 
NYl=NY+l 
NC=2*NX1 
DX=C/2. 
OY=A/2. 
TRIPl=WX+2.*0X 
DO l 0 I= 11 NY l 

XHlTE=A 
Ifll.EQ.l.OR.I.EQ.NYl) XHITE=XHITE/2. 
DO 20 J=l,NC 1 2 

XH=DX*FLOAT(J) 
IF(XH.GT.TRIPl) GO TO 10 
WIDTH=C 
ff(J.EQ.l) WIDTH=WIOTH/2. 
IF(XH.GT.WXl WIOTH=C-XH+WX 
XLOAD=PRESS*WIDTH*XHITE 
L=(J+l)/2 

,...... 
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M= NOP ( I , l, l ) 
N=JCIJDE ( M, 3) 
IF(N.EQ.0) GO TO 19 
Q ( N) = Q ( N ) +XL OA D 
GO TO 20 

19 WRITE(6,l00) M 
20 CONTINUE 
10 CONTINUE 

l=!INTitY-WY)/OYl•lJ/2+1 
J=(INT(WX/OX)+ll/2+1 
DO 30 K=l,NYl 

XHITE=A 
IF(K.EQ.I) XHITE=(2*I-1J*OY-Y+WY 
IF(K.EQ.NYl) XHITE=A/2. 
00 40 L=J,NXl 

WIDTH=C 
IF(L.EQ.J) WIOTH=(2*J-l)*OX-WX 
lf(l.EQ.NXl) WIDTH=C/2. 
XLOAD=PRESS*WIDTH*XHITE 
M=NOP(K,L,l) 
N=JCOOUM,3) 
IF(N.EQ.O) GO TO 39 
Q{Nl=Q(N)+XLOAD 
GO TO 40 

39 WRITE(6,100) M 
40 CONTINUE 
30 CONTINUE 

RETURN 
50 WRITE(6,10l) 

RETURN 
100 FORMAT( ' A CON~TRAINT EXISTS IN THE DIRECTION Of THE APPLIED STKI 

*P LOAD AT NODE 1 ,14/T5, 1 THE LOAD WAS NOT ENTEREU INTO THE LOAD VECT 

,_.. ,_.. 
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*OR 1 ) 

101 FORMAT(/ 1 THE STRIP LOAD COVERS T~E ENTIRE FLOOR SLA6 1 /T5, 1 REENTER * AS A UNIFORM LOAD. EXECUTION WAS TERMJNATfD') 
200 FORMATf// 1 THE TOTAL WEIGHT OF THE WALLS= 1 ,fl0.2, 1 KIPS'/ 

*' THE UNIFORM STRIP PRESSURE= 1 1 Fl0.7 1 1 KSI 1 / 

*' THE WIDTH OF THE STRIP IN THE X-DIRECTION= 1 1 fl0.3, 1 INCHES'/ *' THE WIDTH Of THE STRIP IN THE Y-DIRECTION=•,fl0.3 1 1 INCHES'//) 
END 

....... 

....... 
V1 



(*******~*************************************************************** 
C SUBROUT JNE OEAOwT * 
(*********************************************************************** 

SUBROUTINE DEADWTlNPLTS) 
C IMPLICIT REAl*8 (A-H,0-Z) 

COMMON Q(993),THK(8,ll1Xl(3,6),A,B,C,E,v~u.wc,x,v,z,Mco 
1DE(l92,24) 1 NOP(9 1 9 1 3) 1 10P(81 8,3) 1 NELEM 1 NNODES1NOOF,IHBW,NX,NY,NZ 

COMMON/TC/THKST,THKSB,THKLT,THKLB,THKf,WEIGHT 
COMMON/CODE/JCODE(217,6j 
WEIGHT=O. 
NP=NPLTS 
(f(NPLTS.EQ.J) NP=2 
W=WC/ 1728000. 
DO 10 l= 1, NP 

GOTO(ll,11113),1 
11 NR=2*NY 

GO TO 15 
13 NR=2*NX 
15 DO 20 J=l,NR,2 

If (J.NE.l) GO TO 80 
GOT0(51,52,53),J 

51 T=THKST 
BB=THKSB 
TH2=T 
GO TO 55 

52 T=THKL T 
BB=THKLB 
TH2=T 
GO TO 55 

53 TH=THKf 
GU TO 60 

55 IFCT.EQ.BB) GO TO 61 

..... ..... 
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c 

SLOPE=(BB-T)/FLOATlNRt 
80 IF(T.EQ.BB.OR.I.EQ.3) GO JO 60 

THL=TH2 
TH2=SLOPE*FLOAT(J)+T 
TH:::(THl+TH2)/2. 
GO TO 60 

61 TH=T 
60 GUT0(21,22),I 
21 K=NX+l 

22 

23 

25 

31 

32 
35 

29 

DH=A 
GO TU 25 
K=NZ+l 
OH=A 
GO TO 25 
K=NZ + 1 
uH=C 
IF(J.EQ.l) OH=DH/2. 
DO 30 L= 1, K 

GOT0(31,32,32),I 
Dl=C 
GO TO 35 
Dl=B 
lf(L.EQ.l.OR.L.EQ.K) OL=DL/2. 
M=NOPf (J+l)/2,L,I) 
N=JCODE(M,2) 
XLOAD=W*TH*DH*Dl 
WEIGHT=WEIGHT+XLOAO 
lf~N.EQ.0) GO ro 29 
Q(N)=Q(N)-XLOAD 
WRITE(6,101) M,Q(N) 
GO TO 30 
WKITE(o,100) M 

,_. ,_. 
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30 CONTINUE 
20 CONTINUE 

IF(f.EQ.HB.OR.I.EQ.3) GO TO 70 
THl=TH2 
TH2=BB 
TH=(THl+TH2 )/2. 

70 DO 40 L=l,K 
GO TO ( 41, 42, 42) , I 

41 DL=C 
GO TO 45 

42 OL::B 
45 lf(L.EQ.l.OR.L.EQ.K) IJL=OL/2. 

M::N0Pf (J+3)/2 1 L1 l) 
N=JCOOE(M,2) 
XLOAD::W*TH*DH/2.*DL 
WEIGHT=WEIGHT+XLOAD 
lf(N.EQ.O) GO TO 39 
Q(N)=Q(N)-XLOAIJ 

C WRITE(6,l01) M,Q(N) 
GO TO 40 

39 WRITE(6,100) M 
40 CONTINUE 
10 CONTINUE 

100 FD~MAT( 1 A CONSTRAINT EXISTS IN THE DIRECTION Of THE DEAD WEIGHT l 
lOAO AT NODE 1 ,I4/T5, 1 THE LOAD WAS NOT ENTERED INTO THE LOAD VECTOk 1 

2) 
C 101 FORMAT(J5,Fl2.2) 

RETURN 
ENO 

,_. ,_. 
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C*********************************************************************** 
C SUBROUTINE ASSEM * 
(*********************************************************************** 

SUBROUTINE ASSEMlNPLTS) 
C IMPLICIT REAL*8 (A-H,0-Z) 

COMMON Q(9931,THK(8,3),Xl(3,6),A,B,C,E,VNU,WC,x,v,z,MCO 
10Ell92124),NOP(9,9,3) 1 10P(8,8,3),NELEM,NNODES,NOOF,IHBWrNX,NV,NZ 

COMMON/TC/THKST,THKSB,THKLT,THKLB 1 JHKF 1 WEIGHT 
CDMMON/COOE/JCODE(217 1 6) 
COMMON/SSM/SSTl594,993) 
COMMON/GIND/G(l63) 
COMMON/COEFf/SOIL 
DIMENSION INDEX(24,24) 
READ(5,*) ((lNOcX(l,J),J=lt24),l=lr24) 
DO 81 l=l,IHBW 
DO 81 J= l, NOOF 

81 SST(l,Jl=O. 
TT=O. 
DO l 11 = l , NP lT S 

CALL XLAMDT(ll,XL) 
GOTO(ll,l2113J,Il 

11 Al:::A 
Bl=C 
NR-=NY 
NC-=NX 
GO TO 15 

12 Al:::A 
fH=B 
NR=NY 
NC=NZ 
GO TO 15 

13 Al=C 

...... ...... 
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Bl=B 
NR=NX 
NC:::NZ 

15 DO 10 I=l,NR 
T= THK ( I, I 1) 
lf(T.NE.TT.OR.I.EQ.lJ CALL GLOBK(Il,Al,Bl,T) 
TT=T 
DO 20 J=l,NC 

NN= I OP (I, J, I U 
DO 30 JM:::l,24 

Jl=MCODE(NN,JMJ 
lf(Jl.EQ.OJ GO TO 30 
DO 40 KM=JM,24 

K=MCODE(NN 1 KMt 
IF(K.EQ.O) GO TO 40 
KB=Jl-K+IHl:iW 
L=INDEX(JM,KMJ 
lf(L.GT.O) GO TO 41 
L=-L 
SST(KB,KJ=SST(KB,K)-G(L) 
GU TO 40 

41 SST(KB,K)=SST(K8 1 K)+G(l) 
40 CONTINUE 
30 CONTINUE 
20 CONTINUE 
l 0 CONTINUE 

l CONTINUE 
IFCNPLTS.EQ.3.ANO.SOIL.GT.O.) CALL MODIFY 
RETURN 
ENO 

t--' 
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(*********************************************************************** 
C SUBROUTINE MODIFY * 
(*********************************************************************** 

SUBROUTINE MODIFY 
COMMON Ql993),THK(8,3),XL(3,6),A,B,C,f,VNU,wC,X,Y,Z,MCO 

10E(l92,24),NOP(9,9,3),IOP(8,8,J),NELEMrNNOOES,NOOF,IHBw,NX,NY,Nl 
COMMON/CODE/JCODE(217,6) 
COMMON/SSM/SSTC594,993) 
COMMON/COEFF/SOIL 
NZl=NZ+l 
NXl=NX+l 
00 10 l=l,NXl 
DO l 0 J= 1, NZ l 

K=NOPll 1 J,3) 
L=JCOOECK,2) 
lf(L.EQ.u) GO TO 10 
CUEF= SO l L 
IF(J.EQ.l.OR.I.EQ.NXl) COEF=COEF/2. 
lf(J.EQ.l.OR.J.EQ~NZl) COEF=COEF/2. 
SST(IHBW,L)=SST(IHBW,Ll+COEF 

10 CONTINUE 
RETURN 
END 

...... 
N ...... 



(*********************************************************************** 
C SUBROUTINE XLAMDT * 
(************************************~********************************** 

SUBROUTINE XLAMDTf NPLTS,L) 
C IMPLICIT REAL*B (A-H,0-Z) 

REAL L(3,6) 
DO 10 I= 1, 3 
DO 10 J=lr6 

10 l(J,J)=O. 
GUTO(llrl2,13J,NPLTS 

11 L(l,U=O. 
l( 1,2)=-l. 
l(l,5)=0. 
L ( 2, U=-1. 
L(2,2)=0. 
l(2,5)=0. 
L(3,U:::O. 
L(3,2)=0. 
l(3,5)=1. 
RETURN 

12 l( 1, U=O. 
l(l,2)=0. 
l( l,5J=l. 
Lf 2.,l)=-1. 
l(2,2)=0. 
l(2,5)=0. 
L( 3, U=O. 
l(3,2)·=1. 
l( 3. 5) :::Q. 
RETURN 

l 3 l l l ,I ) =-1 • 
ll l 1 2) =O. 

...... 
N 
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C*********************************************************************** 
C SUBROUTINE GLOBK * 
C*********************************************************************#* 

SUBROUTINE GLOBKINPL,Al,Bl 1 TJ 
C IMPLICIT REAL*8 (A-H,0-Z) 

c 

COMMON Q(993),THK(8,3),XL(3,6J,A,s,c,E,VNU,wc,x,v,z,MCO 
10E(192,24),NOP(9,9,3),10P(8,813l,NELEM,NNODES 1 NDOF 1 1HBW 1 NX,NY 1 Nl 

COMMON/GIND/G(l63) 
COMMON/FORC/D(24),P21,P32,Pll1P221P31 1 P33 1 Pl2 1 Pl31SA,S8,SC,SD,SE, 

lSF,SG,SH,SI,SJ,SM,SN,SO,SP,SQ,SR,SS,ST,su,sx,sv,F1,F2,F3,F4,f5, 
2F7,f8,F9,Fl01Fll,fl3,Fl4,fl51Fl61fl71fl9 1 f20,f21,F22,F23 1 P23 1 P41 

C DETERMINE COMMON TERMS USED IN PLAIN STRAIN MATRIX 
c 

c 

P=Al/Bl 
PA=60.+30.•VNU**2/(l.-VNU) 
PB=22.5*'1-VNU) 
PC=30.-30.*VNU**2/(l.-VNU) 
ETC=E*T/180./(l.-VNU**2) 
P0=2 2. 5* (1. +VNU) 
PE=22.5*(1.-3.•VNU) 
Pll=(PA/P+PB*P)*ETC 
P22=(PA*P+PB/PJ*ETC 
P2l=PD*ETC 
P31=,PC/P-PB*P)*ETC 
P32=(-PC/P-PB*P)*ETC 
P33=(-PA*P+PB/P)*ETC 
Pl3=PE*ETC 
P23=(-PA/P•PB*P>•ETC 
Pl2=CPC*P-PB/P)*ETC 
P4l=C-PC•P-PB/P)*ETC 

...... 
N 
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C DETERMINE COMMON TERMS IN THE PLATE BENDING MATRIX 
c 

DX=E*T**3/12./(l.-VNU**2) 
OY=DX 
D lX=VNU~<DX 
OXY=0.5*{SQRTCUX*DY)-01X) 
A2=A1/2. 
B2=Bl/2. 
POX=DX/ ( P**2) 
PDY=OY*P**2 
SA=(20.•POY+8.*DXY)*B2/(15.*A2l 
SB=DlX 
SC=(20.*POX+8.*DXY)*A2/(l5.*B2) 
S0=(30.*PDY+l5.*0lX+6.*0XY)/(30.*A2) 
SE=(30.*POX+15.*UlX+6.•DXY)/(30.*82) 
SF=(60.•PDX+60.*POY+30.•0lX+84.*DXY)/(60.*A2*B2) 
SG=(l0.*PDY-2.•0XY)*B2/(15.*A2) 
SH=(-30.*POY-6.•0XY)/(30.*A2) 
Sl=(l0.*PDX-8.*0XYt*A2/(15.•B2) 
SJ-=(15.*POX-15.*DlX-6.*DXV)/(30.*82) 
SM=(30.*POX-60.•POY-30.*DlX-84.*DXY)/(60.*A2*82) 
SN=(l0.•PDY-8.•DXY)*B2/(15.*A2) 
S0=(-15.*POY+15.*01X+6.*DXY)/(30.*A2) 
SP={5.*POY+2.*DXY)*B2/(15.*A2) 
SQ=(l5.•PDY-6.*DXY)/(30.*A2) 
SR=(l0.*PDX-2.*0XY)*A2/(15.•B2) 
SS=(30.*PDX+6.*0XY)/(30.*B2) 
ST=(5.*PDX+2.•DXYl*A2/(15.•B2) 
SU=(l5.•PDX-6.*0XY)/(30.*B2) 
SX=C-60.•PDX+30.*POY-30.*01X-84.*0XY)/(60.*A2*B2) 
SY=(-30.*PDX-30.•POY+30.*DlX+84.•DXY)/(60.*A2*B2) 
lf(NPL.EQ.5) RETURN 

,_. 
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c 
C DETERMINE COEFFICIENTS OF THE INDEX MATRIX 
c 

AA=Xl(lell 
8B=XL(l,2) 
CC=XU 1, 5) 
OO=Xll21ll 
EE=Xl(2 1 2) 
FF=Xl( 21 5) 
GG=Xl( J, U 
HH=Xl( 3,2) 
XI=Xl(3,5) 
G(l)=AA*AA*Pll+ 2.*AA*BB*P21 +8B*B8*P22+CC*CC*~F 
G(2)=0D*AA*Pll+(DU*OB+EE*AA)*P2l+EE*BB*P22+ff*CC*SF 
G(3)=GG*AA*Pll+(GG*BB+HH*AA)*P2l+HH*BB*P22+Xl*CC•SF 
G(4)=-AA*CC*SD+BB*CC*SE 
G ( 5 l =-OD*CC*SD+EE*CC*S E 
G(6)=-GG*CC*SO+HH*CC*SE 
G(7)=AA*AA*P31+ BB*BB*P33+CC*CC*SA 
G(8)=0D*AA*P3l+IEE*AA-DD*BBl*Pl3+EE*BB*P33+FF*CC•SM 
G(9)=GG*AA*P3l+(HH*AA-GG*BB)*Pl3+HH*BB*P33+Xl*CC*SM 
G(lQ)=AA*CC*SH+BB*CC*SJ 
G(il)=OD*CC*SH+EE*CC*SJ 
G(l2)=GG*CC*SH+HH*CC*SJ 
G(l3)=AA•AA*P23+ BB*BB*Pl2+CC*CC*SX 
G(l4)=DD*AA*P23+(0D*BB-EE*AA)*Pl3+EE*BB*Pl2+ff*CC*SX 
Gll5)=GG*AA*P23+(GG*BB-HH*AA)*Pl3+HH*BB*Pl2+Xl*CC*SX 
G(l6)=AA*CC*SO+BB*CC*SS 
G(l7)=DD*CC*SO+EE*CC*SS 
G(l8)=GG*CC*SO+HH*CC*SS 
G(l9)=AA*AA*P32- 2.*AA~BB*P21 +BB*BB*P4l+CC*CC*SY 
G(20)=00*AA*P32-tEE*AA+OD*BB)*P2l+EE*BB*P4l+fF*CC*SY 

,..... 
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G(2l):GG•AA*P32-(HH*AA+GG*88)*P2l+HH*BB*P4l+XI*CC*SY 
G(22)=-AA*CC*SQ+BB*CC•SU 
G(23)=-DD*CC*SQ+EE*CC*SU 
G(24)=-GG*CC*SQ+HH*CC*SU 
G(25)=00*DD*Pll+ 2.*DD*EE*P21 +EE*EE*P22+ff*fF*Sf 
Gl26)=GG*DD*Pll+(GG*EE+HH*DO)*P2l+HH*EE*P22+XI*ff*Sf 
Gl27)=-AA*ff*SD+BB*Ff*SE 
G(28)=-DD*FF*SD+EE*Ff*SE 
G{29)=-GG*Ff*SD+HH*FF*SE 
G(JO)=AA*DD*P3l+(BB*OD-AA*EE)*Pl3+BB*EE~P33+CC*FF*SM 
G(3l)=DO*DD*P31+ EE*EE*P33+Ff*FF*SM 
G(32)=GG*DD*P3l+(HH*DD-GG*EE>*Pl3+HH*EE*P33+XI*ff*SM 
G(33)=AA*FF*SH+BB*ff*SJ 
Gl34)=DO*FF*SH+EE*ff*SJ 
G(35)=GG*FF*SH+HH*ff*SJ 
G(36)=AA*DD*P23+(AA•EE-BB*DD)*Pl3+BB*EE*Pl2+CC*Ff*SX 
G(37)=DD*DD*P23+ EE*EE*Pl2+ff*FF*SX 
G( 3 8 )=GG*DD*P23+ ( GG*EE-Hli*DO) *P 13+HH*EE*Pl 2+XI *Ff* SX 
Gl39)=AA*FF*SO+SB*ff*SS 
G(40)=00*FF*SO+EE*ff*SS 
G(4l)=GG*Ff*SO+HH*ff*SS 
G(42)=AA*DD*P32-(AA*EE+BB*DD)*P2l+BB*EE*P4l+CC*ff*SY 
G(43)=DD*DD*P32- 2.*DD*EE*P21 +EE*EE*P4l+Ff*Ff*SY 
G(44)=GG*DD*P32-(GG*EE+HH*OOl*P2l+HH*EE*P4l+XI*FF*SY 
G(45)=-AA*Ff*SQ•BB*ff*SU 
Gl46)=-DD*FF*SQ+EE*ff*SU 
G(47)=-GG*FF*SQ+HH*FF*SU 
G(48)=GG*GG*Pll+2.•HH*GG*P2l+HH*HH*P22+XI*XI*Sf 
G(49)=-AA*XI*SD+BB*Xl*SE 
G(50)=-DO*Xl*SD+EE*Xl*SE 
6(51)=-GG*Xl*SDf-HH*Xl*SE 
G(52)=AA*GG*P3l+(BB*GG-AA*HH)*Pl3+BB*HH*PJ3+CC*XI*SM 

,_. 
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G(53)=DO*GG*P3l+(EE*GG-DO*HH)*PlJ+EE*HH*P33+ff*Xl*SM 
G(54)=GG*GG*P31+ HH*HH*P33+XI*XI*SM 
G(55)=AA*Xl*SH+AB*Xl*SJ 
G(56)=DD*XI*SH+EE*Xl*SJ 
G(571=GG*Xl*SH+HH*XI*SJ 
G(58)=AA*GG*P23+(AA*HH-BB*GG)*Pl3+BB*HH*Pl2+CC*XI*SX 
G(59)=0D*GG*P23f-(00*HH-EE*GG)*Pl3+EE*HH*Pl2•ff*Xl*SX 
G(60)=GG*GG•P23+ HH*HH*Pl2+Xl*Xl*SX 
Gl6l)=AA*XI*SO+BB*Xl*SS 
G(62)=DD*XI*SO+EE*XI*SS 
G(63)=GG•XI*SO+Hli*Xl*SS 
G(64)=AA*GG*P32-(AA*HH+BB*GG)*P2l+BB*HH*P4l+CC*XI*SY 
G(65)=DD•GG*P32-(DD*HH+EE*GGl*P2l+EE*HH*P4l+ff*XI•SY 
G(66)=GG*GG*P32- 2.•GG*HH*P21 +HH*HH*P4l+Xl*Xl*SY 
G(67)=-AA*XI*SQ+BB*XI*SU 
G(68)=-0U*Xl*SQ+EE*XI*SU 
G(69)=-GG*Xl*SQ+HH*XI*SU 
G(70l=AA*AA*SA- 2.*AA*BB*SB +BB*BB*SC 
G(7ll=DD*AA*SA-(DD*BB+EE*AA)*SB+EE*BB*SC 
GC72J=GG*AA•SA-(GG*BB+HH*AA)*SB+HH*BB*SC 
G(73)=CC*(-AA*SH+BB*SJ) 
G(74)=ff*(-AA*SH+BB*SJJ 
GC75)=Xl*(-AA*SH+BB*SJ) 
G(76)=AA*AA*SG+BB*BB*SI 
G(771=00*AA*SG+EE*BB*SI 
G(78l=GG*AA*SG•HH*BB*SI 
G(79)=CC•(AA*SO-BB*SS) 
G(80)=FF*(AA*S0-8B*SS) 
G(8l)=XI•(AA•SO-BB*SS) 
G(82)=AA*AA*SN+BB*BR*SR 
G(8J)=DD*AA*SN+EE*BB*SR 
G(84)=GG*AA*SN+HH*BB*SR 
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G(85l=AA*AA*SP•BB*B8*ST 
G(86)=DD•AA*SP+EE*BB*ST 
G(87)=GG*AA*SP+HH*BB*ST 
G(88)=DD*DD*SA- 2.*00*EE*SB +EE*EE*SC 
G(89)=GG*DD*SA-(GG*EE+HH*DD)*SB+HH*EE*SC 
G(90)=CC•(-DD*SH+EE*SJ) 
G(91)=ff*(-OD*SH+EE*SJJ 
GC92)=Xl*(-DD*SH+EE*SJ) 
G(93)=AA*DD*SG+BB*EE*SI 
G(94)=00*DO*SG+EE•EE*SI 
G(95)=G~*DD*SG+HH*EE*SI 
G(96)=CC*(DD*SO-EE*SS) 
Gl97)=ff*(OD*SO-EE*SS) 
G(98t=Xl*CDD*SO-EE*SS) 
Gl99)= AA*DD*SN+BB*EE•SR 
G(lOOl=DD*DD*SN+EE*EE*SR 
G(lOll=GG*DO*SN+HH*EE*SR 
G(102)=AA*DD*SP+BB*EE*ST 
Gf 103)=0D*DD*SP+EE*EE*ST 
G(l04)=GG*DD*SP+HH•EE•ST 
G(l05)=GG*GG*SA-2.*GG•HH*SB+HH*HH*SC 
G(l06)=CC*C-GG*SH+HH*Sj) 
G(l07l=FF*(-GG*SH+HH*SJt 
G(l08l=XI*C-GG*SH+HH*SJ) 
G(l09l=AA*GG*SG+BB*HH*SI 
G(llOl=DO*GG*SG+EE*HH*SI 
GClll)=GG*GG*SG+HH*HH*SI 
GC112)=CC*CGG*SO-HH*SSl 
G(ll3l=FF*CGG*SO-HH*SSJ 
G(l14)=XI*(GG*SO-HH*SS) 
GC115l=AA*GG*SN+BB*HH*SR 
G(ll6)=0D*GG*SN+EE*HH*SR 
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G(ll7)=GG*GG*SN+HH*HH*SR 
G(llB)=AA*GG*SP+BB*HH*ST 
G(ll9)=DO*GG*SP•EE*HH•ST 
G(l20)=GG*GG*SP+HH*HH*ST 
G(l2l)=AA*AA*Pll- 2.*AA*BB*P21 +8B*Brl*P22+CC*CC*Sf 
G(l22)=DO*AA*Pll-(DD*BB•EE*AA)*P2l+EE*BB*P22+ff*CC*SF 
G(l23)=GG*AA*Pll-(GG*BB+HH*AA)*P2l+HH*BB*P22+Xl*CC*SF 
G(l24)=AA*CC*SD•BB*CC*SE 
G(l25)=DO•CC*SD+EE*CC*SE 
G(l26)=GG*CC*SD+HH*CC*SE 
G(l27)=AA*AA*P32+ 2.*AA*BB*P21 +BB*BB*P4l+CC*CC*SY 
G(l28)=DO*AA*P32+(0D*BB+EE*AAJ*P2l•EE*BB*P4l+ff*CC*SV 
G(l29)=GG*AA*P32+(GG*BB+HH*AA)*P2l+HH*BB*P4l+XI*CC*SY 
G(l30)=AA*CC*SQ+BB*CC*SU 
G(l3l)=DD*CC•SQ•EE*CC*SU 
G(l32)=GG*CC*SQ+HH*CC*SU 
G(133)=DO*AA*P23+(EE*AA-DO*t3B)*P13+EE*BB*Pl2+FF•Cc•sx 
G(l34)=GG*AA*P23+(HH•AA-GG*3B)•Pl3+HH*BB*Pl2+Xl*CC*SX 
G(l35)=DD*DD*Pll- 2.*DD•EE*P21 +EE*EE*P22+ff*ff*SF 
G(l36)=GG*DO*Pll-(GG*EE+HH*ODJ*P2l+HH*EE*P22+Xl*FF*SF 
G(l37)=AA*FF•SD+BB•ff*SE 
G(l38)=00*ff*SD+EE*FF*SE 
G(l39)=GG*FF*SD+HH*FF•SE 
G(l40)=AA*DO*P32+(AA*EE+BB*OD)*P21•BB*EE*P4l+CC*ff*SY 
G(l4l):OO*DO*P32+ 2.*DD*EE*P21 +EE*EE*P4l+FF*ff*SY 
G(l42l=GG*DD*P32+(GG*EE+HH*DD)*P2l+HH*EE*P4l+Xl*FF*SY 
G(l43)=AA*ff*SQ+BB*Ff*SU 
G(l44)=DD*FF*SQ+EE*Ff*SU 
G(l45)=GG*FF*SQ•HH*ff*SU 
G(l46)=AA*OO*P23+(BB*DO-AA*EE)*Pl3•BB*EE*Pl2+CC*Ff*SX 
G(l47)=0D*DO*P23+ EE*EE*Pl2+ff*ff*SX 
G(l48)=GG*DU*P23+CHH*OO-GG*EE)*Pl3+HH*EE*Pl2+Xl*fF*SX 
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G(l49)=GG*GG*Pll-2.*GG*HH*P2l+HH*HH*P22+Xl*Xl*SF 
G(l50)=AA*Xl*SD+BB*Xl*SE 
G(l5l)=UD*Xl*SD+EE*Xl*SE 
G(l52}=GG*Xl*SD+HH*Xl*SE 
G(l53)=0D*GG*P32+(00*HH+EE*GG)*P2l+EE*HH*P4l+FF*XI*S¥ 
G(l54)=GG*GG*P32+ 2.*HH*GG*P21 +HH*HH*P4l+Xl*XI*SY 
G(l55}=AA*Xl*SQ+dB*Xl*SU 
G(l56):::0il*XI*SQ+EE*Xl*SU 
G(l57)=GG*XI*SQ+HH*Xl*SU 
G(l58)=AA*AA*SA+ 2.*AA*BB*SB +BB•BB*SC 
G(l59)=DD*AA*SA+(DO*BB+EE*AA)*SB+EE*BB*SC 
G(l60)=GG*AA*SA+(GG*Btl+HH*AA)*SB+HH*BB*SC 
Gll6l)=DD*DO*SA+ 2.*DO•EE*SB +EE*EE*SC 
G(l62)=GG*DD*SA+CGG*EE*HH*DD)*SB+HH*EE*SC 
G(l63)=GG*GG*SA+ 2.*GG*HH*SB +HH*HH*SC 
RETURN 
END 

...... 
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C*********************************************************************** 
C SUBROUTINE SOLVE * 
C*********************************************************************** 

SUBROUTINE SOLVE 
C IMPLICIT REAL*8 (A-H,0-Z) 

c 

COMMON Q(993),THK(8,3),Xl{3,6),A,6,C,E,VNU,~c.x,v,z,MCO 
lOE(l92,24J,NOP(9,9 1 3) 1 10P(818r3),NELEM,NNODES,NOOf,IHBW,NX 1 N¥,Nl 
CO~MON/SSM/SST(594,993J 

COMMON/SOLV/MAXIO,LDA 

C REDUCE STIFFNESS MATRIX USING THE LINPACK EQUATION SOLVER 
c 

c 

CALL SPBFA(SST,LOA,NOOF,MAXID,INFO) 
IF(INFO.EQ.0) GO TO 90 
WRITE(6,l00) INFO 

100 FOR~AT(/// 1 ***STOP *** THE LEADING MINOR OF ORDER 1 ,1s,2x,•1s NO 
*T POSITIVE DEFINITE'/) 

STOP 

C REDUCE FORCE VECTOR ANO BACK SOLVE FOR DISPLACEMENTS 
c 

90 CALL SPBSL(SST,LOA,NDOF,MAXIO,Q) 
C WRITE(6 1 ll) 
C WRITE(6 1 10) (1 1 Q(I) 1 1=1 1 NOOFJ 
C 10 FORMAT(6( 1 Q( 1 ,I3,•)= 1 1Fl0.7,3X)) 
C 11 FORMAT(// 1 GENERALIZED DISPLACEMENTS'/) 

RETURN 
END 
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(*********************************************************************** 
C SUBROUTINE FORCE * 
(*********************************************************************** 

SUBROUTINE FORCE(NPLTS) 
C IMPLICIT REAL*8 (A-H,O-ZJ 

COMMON Q(993),THK(8,3),XL(3,6),A,B,C,E,VNU,WC,X,Y,Z,MCO 
10E(l92 1 24),NOP(9,9,3) 1 IOP(8,8 1 3),NtLEM,NNODES,NOOf,IHBW,NX,NY,NZ 

COMMON/FORC/D(24),P21,P32 1 Pll,P22 1 P31 1 P33,P12,Pl3,SA,S8,SC,SD,SE, 
1SF,SG 1 SH,SJ,SJ,SM,SN,SO,SP,SQ,SR,SS,ST1SU,SX,SY,Fl1F2,F3,F4,F5, 
2F7 1 F8 1 f9,fl0 1 fll,fl31Fl4,Fl5 1 fl6,fl7 1 fl9,F20 1 F21,F22,F23,P23,P41 

WRITE(6,l00) 
TT=O. 
UO 1 Il=l,NPLTS 

WRITE(6,l0l) ll 
GO TO (11,12,13),ll 

11 Al=A 
Bl=C 
NR=NY 
NC=NX 
GO TO 15 

12 At=A 
Bl=B 
NR=NY 
NC=NZ 
GO TO 15 

13 A l==C 
Bl=B 
NR=NX 
NC=NZ 

15 DO 10 1=1 1 NR 
T=THK( I,11) 
IF(T.NE.TT.OR.I.EQ.l) CALL GLOBK(5,Al,Bl,T) 

...... 
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TT=T 
DO 20 J=l,NC 

NN=IOPII,J.IU 
DO 30 K=l,24 

L=MCODE(NN,KJ 
IF(L.EQ.O) GO TO 31 
O(K)=Q(L) 
GO TO 30 

31 O(K)=O. 
30 CONTINUE 

CALL XKLD (I U 
I I =NOP I I , J, 11 ) 
JJ=NOP(l,J+l,11) 
KK=NOP(l+l,J,11) 
ll=NOP(l+l,J+l,Il) 
WRITE(6,102) NN,JI,Fl,f2,F3,f4 1 F5 
WRITE(6,l03) JJ,F7 1 F8,F9 1 fl0 1 fll 
WRITE(6,103) KK,Fl3,Fl4,F15,fl6,Fl7 
wRITE(6,103) LL,Fl9,F20,f21 1 F22 1 F23 

20 CONTINUE 
10 CONTINUE 

l CONTINUE 
100 FORMAT(///' NX =AXIAL FORCE IN THE LOCAL-1 DIRECTION (KIPS)'/ 

* 1 NY = AXIAL FORCE IN THE LOCAL-2 DIRECTION (KIPS)'/ 
* 1 MX = MOMENT AdOUT THE LUCAL-1 AXIS (KIP-INCHES)'/ * 1 MY= MOMENT ABOUT THE LOCAL-2 AXIS (KIP-INCHES)'/ * 1 V = SHEAR IN THE LOCAL-3 DIRECTION (KIPSJ 1 /I/• 

101 FORMAT(//' INTERNAL ELEMENT FORCES FOR PLATE',13/// 1 ELEHENT'1JX, 
*'NQUE 1 ,9X, 1 NX 1 ,1sx, 1 Nv•,1sx,•Mx 1 ,1sx,•MY 1 ,15X,•v•> 

102 FORMAT(/15,I9,5(2X,fl5.4)) 
103 FORMAT(l14,5(2X,Fl5.4)) 

RETURN 
E:NO 
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C**********************•************************************************ 
C SUBROUTINE XKLO * 
(*********************************************************************** 

SUBROUTINE XKLOlll) 
C IMPLICIT REAL*8 (A-H,0-Z) 

COMMON Q(993),THK(8,3),XL(3,6J,A,B,c,e,vNu,wc,x,v,z,MCO 
1DE(l92124),NOP(9,9,3),IOP(8,8,3J,NELEM,NNOOES,NDOF,IHBW,NX 1 NY1NZ 
COMMON/fORC/Ut24),P211P32,Pll,P22,P31,P33,Pl21Pl3,SA,SB,sc,so,sE, 

lSF,SG,SH,SJ,SJ,SM,SN,SO,SP,SQ,SR,SS,ST,su,sx,sv,Fl,f21F3,F4,f5, 
2F7,F8,F9,Fl0,fll,Fl3,fl4,Fl51Fl61Flltfl9,f20,F21 1 F22 1 f2l,P23,P4l 

CALL XLAMDT(lleXL) 
AA=XL(l,l) 
BB=XL(l,2) 
CC=XL(l,5) 
DD=XL(2,l) 
EE=Xll2,2l 
FF=Xl(2,5) 
GG=XL(3 1 1) 
HH=Xl(3,2) 
Xl=Xl(3 1 5) 
Dl=AA*D(l)+DD*D(2)+GG*0(3) 
D2=BB*O(l)+EE*D(2l+HH*D(3) 
D3=AA*D(4)+DD*D(5)+GG*D(6) 
D4=BB*D(4)+EE*D(5)+HH*0(6) 
05=CC*D(lJ+Ff*0(2)+XI*0(3J 
Do=C(*0(4)+Ff*D(5)+Xl*0(6) 
D7=AA•Dl7)+DO*DCH)•GG*0(9) 
D8=BB*0(7)+EE*0(8)+HH*D(9) 
09=AA*D(10)+DD*O(ll)+GG*0(12) 
DlO=BB*D(l0)+EE*D(llJ+HH*D(l2) 
Dll=CC*D(7)+ff*Oi8)+Xl*0(9} 
Dl2=CC*D(l0)+FF*DCll)+Xl*DC12) 
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013=AA*D(l3)+00*0(14)+GG*D(l5) 
Dl4=BB*D(l3)+EE*D(l4)+HH*D115) 
015=AA*Dll6)+0D*D(l7)+GG*Df 18) 
Dl6=BB*0(16)+EE*D(l7}+HH*D(l8) 
Ol7=CC*D(l3)+ff*D{l4)+Xl*U(l5) 
018=CC*D(l6)+FF*D(l7l+Xl*D(l8) 
Dl9=AA*Dll9)+00*0(20)+GG*D(21) 
020=BB*0(19)+EE*Dl20)+HH*0(21) 
D2l=AA*0(22)+0D*D(23)+GG*0(24) 
D22=BB*D(22J+EE*0(231+HH*0(24j 
D23=CC*Df l9)+ff*0(20J+Xl*Dl21) 
024=CC*0(22)+ff*D(23)+Xl*D(24) 
Fl = Ol*Pll+D2*P21+07*P31+08*Pl3+013*P23-0l4*Pl3+019*P32-D20*P21 
F2 = Ol*P21+02*P22-07*Pl3+D8*P33+013*Pl3+014*Pl2-019*P21+020*P4l 
Fl = 03*SA-D4*SB-D5•S0+09*SG -Dll*SH+Ol5*SN +017*50 * +D2l*SP +023*SQ 
f4 =-D3*SB+D4*SC+05*SE +OlO*Sl+Dll*SJ +016*SR-Ul7*SS 

* +022*ST-023*SU 
FS =-03*SD+D4*SE+D5*SF+D9*SH+DlO*SJ+Dll*SM+D15*SO+Ol6*SS+Dl7*SX 

* -02l*SQ+D22*SU+023*SY 
F7 = Dl*P31-D2*Pl3+07*Pll-08*P21+013*P32+014*P21+019*P23+020*Pl3 
FB = Dl*Pl3+02*P33-07*P21+08*P22+013*P21+014*P4l-Dl9*Pl3+D20*Pl2 
f9 = D3*SG •05*SH•09*SA+OlO*SB+Dll*SO+Dl5*SP -Dl7*SQ 

* +02l*SN -023*50 
flO= 04*Sl+D5*SJ+09*SB+Dl0*5C+Ull*SE +Dl6*ST-Dl7*SU 

* +022*SR-023*SS 
fll=-D3*SH+D4*SJ+05*SM+09*S0+010*SE+Oll*Sf+Ol5*SQ+Ol6*SU+Dl7*SY 

* -D2l*SO+D22*SS+D23*SX 
Fl3= Ul*P23+02*Pl3+07*P32+08*P21+013*Pll-Dl4*P2l+Ul9*P3l-il20*Pl3 
Fl4=-Dl*Pl3+D2*Pl2+07*P2l+DB*P41-013*P21+014*P22+019*Pl3+D20*P3J 
fl5= u3*SN +05*SO+D9*SP +Dll*SQ+Dl5*SA+Dl6*SB-Dl7*SD 

* +D2l*SG -D23*SH 
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fl6= 04*SR+D5*SS +DlO*ST+Dll*SU+Dl5*SB+Ol6*SC-Ol7*SE 
* +022*Sl-D23*SJ 
fl7= 03*S0-04*SS+D5*SX-09*SQ-010*SU+Oll*SY-015*SO-Ol6*SE+Dl7*SF 

* +D2l*SH-D22*SJ+D23*SM 
Fl9= Dl*P32-D2*P2l+D7*P23-D8*Pl3+Dl3*P31+014*Pl3+Dl9*Pll+020*P21 
F20=-0l*P2l+D2*P4l+D7*Pl3+D8*Pl2-Dl3*Pl3+014*P33+019*P2l+D20*P22 
F21= D3*SP -D5*SQ+D9*SN -Dll*SO+Ol5*SG +017*SH 

* +D2l*SA-U22*SB+023*SD 
F22= D4*ST+D5*SU +DlO*SR+Oll*SS +Dl6*Sl-Dl7*SJ 

* -02l*SB+D22*SC-023*SE 
F23= D3*SQ-04*SU+D5*SY-D9*SO-OlO*SS+Oll*SX-Ol5*S~Dl6*SJ+Ol7*SM 

* +D2l*SD-D22*SE+023*SF 
RETURN 
END 
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C*********************************************************************** 
C SUBROUTINE SPBFA * 
C*********************************************************************** 

SUBROUTINE SPBFA CSST,LOA,NDOF,MAXIO,INfO) 
REAL SST(LDA,l) 
DO 30 J=l,NDOF 
INFO=J 
S=O.O 
lK=MAXlO +l 
JK=MAXO (J-MAXID,l) 
MU=MAXO (MAXI0+2-J,l) 
IF(MAXID.LT.MU) GO TO 20 
DO 10 K=MU,MAXIO 
T=SST(K,J)-SOOT(K-MU,SST(IK,JK),1,ssrfMU,J),l) 
T=T/SST(MAXID+l,JKJ 
SST(K,J)=T 
S=S+T*T 
IK=IK-1 
JK=JK+l 

10 CONTINUE 
20 CONTINUE 

S=SST(MAXID+l,J)-S 
lf{S.LE.0.0) GO TO 40 
SST(MAXIO+l,J)=SQRT(S) 

30 CONTINUE 
INFO=O 

40 CONTINUE 
RETURN 
END 

....... 
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C*********************************************************************** 
C SUBRGUT INE· SPBSL * 
(******************************************************************~**** 

c 
c 
c 

10 
c 
c 
c 

SUBROUTINE SPBSLISST,LOA,NOOF,MAXID,Q) 
REAL SSTCLOA,l),Q(l) 

FORWARU REDUCTION OF CONSTANTS 

DJ 10 K=l,NDUF 
LM=MINO (K-1,MAXID) 
LA=MAXID+l-LM 
LB=K-LM 
T=SDOT(LM,SST(LA,K),l,QllB),l) 
Q(K)=(Q(K)-T)/SSTlMAXID+l,K) 
CONTINUE 

13ACKSU3S T ITUT I ON 

OU 20 KB=l,NDOF 
K=hiOOF + 1-KB 
LM=MINO(K-1,MAXIO) 
LA=MAX ID+ 1-LM 
LB=K-LM 
Q(K)=~(K)/SST(MAXID•l,K) 

T=-CJ ( K) 
CALL SAXPY(LM 1 T,SST(LA,K),l 1 Q(l8),l) 

20 CONTINUE 
Rf TURN 
ENO 

...... 
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(*********************************************************************** 
C FUNCTION SOOT * 
(*********************************************************************** 

FUNCTION SOOT(N,SX,INCX,SY,INCY) 
RE Al S X ( L ) , SY ( 1 ) 
STEMP=O.O 
SDOT:::O. 0 
IF(N.LE.0) GO TO 70 
IFf INCX.EQ.l.AND.INCY.EQ.l) GO TO 20 
IX=l 
lY=l 
IF { INCX. l T .o) IX= (-N+U * INCX+ 1 
lf(INCY.LT.0) IY=(-N+l)*INCY+l 
DO 10 l=lrN 
STEMP=STEMP+SXlIXl*SY(IY) 
IX=IX+INCX 
IY=IV+INCY 

10 CONTINUE 
SOOT= STEMP 
GO TO 70 

20 M=MOO( N, 5) 
lf(M.EQ.0) GO TO 40 
DO 30 I= l ,M 
STEMP=STEMP+SX(l)*SY(I) 

30 CONTINUE 
IF(N.LT.5) GO TO 60 

40 MPl=M+l 
DO 50 l=MPl,N,5 
STEMP=STEMP+SXCil•SY(l)+SX(l+l)*SY(l+l)+SX(l+2)*SYCI+2)+SX(l+3)*SY 

l(l+3l+SX(l+4)*SY(I*4) 
50 CONTINUE 
60 SOUT= STEMP 
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C******************************•**************************************** 
C SUBROUTINE SAXPY * 
C*********************************************************************** 

SUBROUTINE SAXPY(N,SA,SX,JNCX,SY,INCY) 
REAL SX(l) 1 SY(l),SA 
IF(N.LE.O) RETURN 
IF(SA.EQ.0.0) RETURN 
IF(INCX.EQ.l.AND.INCY.EQ.l) GO TO 20 
IX=l 
lY=l 
IfCINCX.LT.O)IX=(-N+l)*INCX+l 
IFClNCY.LT.O)IY=(-N+l)*lNCY+l 
00 10 I= 1, N 
SYllY)=SY(lY)+SA*SX(IX) 
IX=IX+INCX 
IY=IY+INCY 

10 CONTINUE 
20 M=MOO(N,4) 

lf(M.EQ.0) GO TO 40 
00 30 I= 1, M 
SY(l)=SY(l)+SA*SX(I) 

30 CONTINUE 
IF(N.LT.4) RETURN 

40 MPl=M+l 
DO 50 I=MPl,N,4 
SY( I )=SY(J )+SA*SX( [) 
SY(l+l)=SY(l+l) + SA•SX(I+l) 
SYll+2)=SYll+2) + SA*SX(l+2) 
SYCl+3)=SY(l+3) + SA*SX(I+3) 

50 CONTINUE 
RETURN 
END 

...... 
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C*********************************************************************** 
C SAMPLE INPUT DATA * 
(***•**********************$******************************************** 
3 
120. 120. 120. 8 8 8 
3000. 0.2 150. o. 
10. 10. 10. 10. 12. 
13 7 2 
146 2 
155 2 
164 2 
173 2 
182 2 
191 2 
200 2 
209 2 
210 2 
211 2 
212 2 
213 2 
214 2 
215 2 
216 2 
217 2 
0 0 
1 l -3 62.4 120. 
l 2 -1 62.4 120. 
3 0 0 o. o. 
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ANALYSIS OF RECTANGULAR CONCRETE TANKS 

CONSIDERING 

INTERACTION OF PLATE.ELEMENTS 

Douglas G. Fitzpatrick 

Abstract 

This study developed a finite element program suitable for analyzing 

one quarter of a rectangular tank. A rectangular plate element capable of 

both extension and flexure was used with appropriate coordinate transform-

ations to enable interaction of the floor and wall plates. 

Moment values throughout the tank were determined but not collected 

into tables because of their dependence on the width-to-length ratios and 

the height of the tank. A moment distribution type of method was developed 

so that critical vertical moment values could be rapidly determined with-

out the direct use of a complex computer program. 
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