CHAPTER 2. APPROACH AND COMPUTATIONAL ASPECTS

2.1. Overview of the Recursive Least-Squares Algorithm

The least-squares method is based on the available data to obtain a solution to the linear
filtering problem. It does not assume that any statistical characterization of the data is available.
The Recursive Least Squares (RLS) algorithm carries out the |east-squares approach by way of

minimizing the weighted cost function, which is expressed as [32]:

F.=al"el’; 0<<I £1 (2.1.1)
i=1

wherel isthe weighting factor, also called the forgetting factor.

The optimum linear inverse filter uses the input signal y,, to find the optimum value of

the tap-weight vector a of size N +1 by solving the following normal equation:

QP

Ra=p (2.1.29)

where & isthe coefficient vector representing the inverse filter, expressed as:
é:[l - 3] =L -4 -4 - -4&] (2.1.2b)

R isthe NxN input signal auto-correlation matrix defined as:

R = é | "y y' (2.1.2¢)
i=1
Yo = Vo1 Yooz oo Yoonl” (2.1.2d)

p isthe cross-correlation between the input signal and the desired signal d, defined as:



p = é | ”'iyidi* (2.1.2¢)

i=1

Using the matrix inversion lemma, the inverse matrix computation to solve (2.1.2a) for a canbe
avoided [32], and the solution to (2.1.28) can be computed recursively. The complete RLS
algorithm can be found in the literature [32]. The computationa complexity of the RLS

agorithm is O(N?), with N being the order of the filter.

2.2. Linear Prediction in Cascade Structure

Linear prediction (LP) is used to identify the unknown system by way of “inverting” the

processing that happens in that unknown system. Suppose an unknown system with the system

function 1/[1- A(z)] is excited with an input signal x, and it then responds with the output yp.
The linear prediction process will find an estimate of A(2), let’s say A(z), by way of filtering y,
with the filter [1- A(z)] and minimizing the error according to some criterion. Linear
prediction of an autoregressive (AR) processiswidely used in low rate speech coding.

The linear prediction, here the forward linear prediction, of an AR process is shown in
Figure 2.2.1. The estimate of the AR polynomial, A(z), is obtained by minimizing F,, the

weighted sum of mean-squared forward prediction errors e, :

F=81"f. 2.2.1)

i=1

Minimizing F, resultsin aYule-Walker equation or normal equation [43]:

R.4, =p, (2.2.2)



where Ry, is the NxN auto-correlation matrix of the input signal v, , as defined in (2.1.2d), and

expressed as

éro r rN—lg
é a

R =€ o 7 Tnag (2.2.3)
e : : : o u
é a
dnt ez o G

L=avyy.. k=0,..., N-1 (2.2.4)

i=0
The right hand side of (2.2.2), pn, is the cross-correlation between the input and the desired

signal, y, and

3 = -3 -3 ...-- 7 T

or =[8 8,4, (2.2.5b)

are the coefficients defining A(z):

. N
Az)=g az" (2.2.5¢)
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Figure2.2.1 AR Processand Linear Prediction.



Equation (2.2.2) can be solved efficiently using the Levinson algorithm [43], or using adaptive

filtering algorithms [32].

The forward linear prediction process in cascade structure is shown in Figure 2.2.2. The
idea of using the cascade form in linear prediction was first proposed by Jackson and Wood [40].
By using a cascade structure, it is easier to find the root locations than when using the direct
form. Also, using a cascade structure, it is easy to put constraints on the pole locations, for
example to guarantee that a stable inverse exists. In the constrained case, the cascade structure

provides easier and simpler ways to constrain the poles than for the direct form structure.
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Figure2.2.2 Linear Prediction in Cascade Structure.

Based on Figure 2.2.2, we can write the output from each section, Y, , , as

& AT
yn,k ak yn—l,k

(2.2.63)

3 A

A & Yn-1k

=1

where vy, istheinput to the k-th section, and aso the desired response for the k-th section, and
5, =[a, a,l (22.60)

A)=84a,z (2.2.60)
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The prediction error of the k-th section is

Bk = Yok~ Ynk (2.2.7)
The prediction error of the k-th section isthe desired signal and input for the k+1-st section, etc.

The prediction error €, , of thefirst sectioniis:

Qw,l = yn,l - 9n,1

R (2.2.89)
=Y Y
The prediction error €, , of the second section is then
en,z = yn,2 - 9n,2
=e,- 9n’2 (2.2.8b)

=VYn- 9n,1 - 9n,2
Continuing this process we find that the prediction error €,,, of the final section, the M-th

section, satisfies

M
& = Yo~ A Yo, (2.2.8¢)

i=1

Using (2.2.6a), we can express the final prediction error as a function of the input signal and the

coefficients of each section.

M
O AT
e = - a. )
v = Ya <’:11 IRLEE (2.2.8d)

AT ~

=Y.- A yn,c
where

AT 2

a =|ar al..an|" (2.2.8¢)
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with &, asgivenin (2.2.6b)

yn,c = I,y:—l,l y:—l,Z y:—l,M JT
and

yn—l,k = [yn—l,k yn— 2,k] T

The cost function to be minimized, rewritten from (2.2.1), is:

2
&l

n
—_ L2 | n-I
I:n,M - a I
1=1

Substituting (2.2.8d) into (2.2.9), we obtain

=al "'y -2 "y A ral Al v A,

1=1 1=1 1=1

Minimizing (2.2.10) with respect to the coefficients of each section, we obtain:

T

ﬂFn,M :gﬂFn,M ﬂFn,M ﬂFn,M ﬂFn,M“.ﬂFn,M ﬂFn,Mg
ﬂéc @ﬂém ﬂéi,z ﬂéZ,l ﬂéz,z ﬂéM,l ﬂéM,zﬂ

From (2.2.10) and (2.2.6a)

TF, 2 1y GTA
= 25 ™Y Y +2é ™Y Yied,
aq 1=1 1=

1 Fn > n- 2 n- v' a

—t = 25 7Y Yo+ Zé LY Y,

Ta,, =1 =1

and so on. Hence we get:

(2.2.8f)

(2.2.80)

(2.2.9)

(2.2.10)

(2.2.119)

(2.2.11b)

(2.2.11¢)
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€ u € u
gYi-2m [ gYi-2m [

=- Zé. I n_Iyl S\/I,c +2é. l n_lyl,cyl-l,-céc

=1 1=1

where Y, . isasdefined in (2.2.8f).

Define the gradient of each section as the negative of the derivative of the final output
error, as given in (2.2.8d), with respect to the coefficients for that section. The individual

coefficient gradients for the k-th section, refer al'so to (2.2.64), are:

TEn u

y nkl —° ﬂékJ : |=1,2 (2212&)

=Yn-ix

wherey ., constitute the gradient of the k-th section:

Yok =Y oer Vo)

(2.2.12b)
= [yn—l,k yn—2,k]T

The gradients of all sections form a column vector:
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y n = [y nll y n,12 y n,2,1 y n2,2 *** y nM,1 y n,M,Z]
:[yn-l,l Y21 Yoz Yn22 oo Yoeam Ve z,M]T (2.2.12c)
= 9n,C

where y, . isasdefined in (2.2.8f).

Rewriting (2.2.11€) and replacing y, . withy , we obtain:

F n ” ~
|l Moo 8 Myy, 4231 MYy y TA (2.2.139)
Ta, 1=1 =1

Equating (2.2.134) to zero and rearranging the expression, we get:

al"yy'a=al"'vy, (2.2.13b)

The coefficients of each section of the cascade structure can be obtained from the normal

eguation (2.2.13b):
a, =R;'f, (2.2.13c)
where
R, :énu “y oy T (2.2.13d)
=
and
R, :§| “lyy, (2.2.13e)

=1

Now we take a look at an alternate expression for the final prediction error filter. The

output error of each section, as shown in Figure 2.2.2, is:
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=i- A(2) e (2.2.149)

The output error of the final section can be written as:

go [1 ]ueh 0
= (2.2.14b)
= éo [1 Alz ]uyn

where g, , isequal to y,, theinput to the cascade structure. Using (2.2.14b), the gradient of each

section is then derived by taking the negative derivative of the output error of the final section, as

stated in (2.2.12a), so that:

u

)CD\

- '”G%M — A A
Vo =g golk[ Alz )]g
Ol

- .

()€

z

Alz ]uyn (2.215)

=
x)>>
%CD

D

Z-I

T1-A()

Gm

where 1=1,2. From (2.2.15), we see that the gradient of the k-th section can be computed

efficiently by passing the final output error e, ,, to [1- ﬁk(z)]l as shown in Figure 2.2.3. Hence

the computation of the gradient does not increase the computational complexity of the cascade

structure algorithm significantly relative to itstotal computational complexity.
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Figure 2.2.3 Cascade Linear Prediction and Gradient Computation.

2.3. CRLS-SA

From (2.2.15) we see that computing the gradient is the same as performing a whitening
process except that the poles in the k-th section are not whitened, as only the poles of the k-th
section are retained while the other poles have been removed. Note that this happens at or near
convergence. In other words, the gradient of the k-th section depends mainly on the poles of the
k-th section. As a result, the gradients for the different sections correspond to different poles, or,
in the frequency domain, they (generally) occupy mostly different frequency bands. Because the

poles dominate in different regions of the frequency domain at convergence, the correlation
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between the gradients for different sections will be relatively small. Hence, FAQy , the auto-

correlation matrix of the gradient of all sections, as seen in (2.2.13d), tends to the form of a
block-diagonal matrix. The latter is called the direct sum matrix [25], where each diagonal
component is a 2x2 matrix that corresponds to the auto-correlation matrix of the gradient for one

section of the cascade structure.

To verify the tendency towards a block-diagonal gradient auto-correlation matrix, a
signa with poles at .99+0.1j and -0.891+0.09j, as shown in Figure 2.3.1, is generated. The
spectra of the gradients of the first and second sections are shown in Figures 2.3.2 and 2.3.3,
respectively. We see from Figures 2.3.2 and 2.3.3 that the gradients of the first and second

sections occupy mostly different frequency bands.
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Figure 2.3.1 Example 1 Pole L ocations.
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Figure 2.3.3 Spectrum of the 2" Section Gradient.
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The normalized cross-correlation between the first and second gradients is shown in
Figure 2.3.4, where we see that they are not very correlated, since the value of this cross-

correlation is much smaller than the auto-correlation shown in Figure 2.3.5.
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Figure 2.3.4 Normalized Cross-correlation of the First and Second Section Gradients.
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Figure 2.3.5 Normalized Auto-correlation of the First Section Gradient.

The cross-correlation of the i-th and j-th section gradients is computed as follows:
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L-1

Mk = éy nkiY nj (2.3.1)

n=0
wherey ; isthe gradient of the i-th section, y ; is the gradient of the j-th section, and L is the
length of the data record used.

The estimated gradient auto-correlation matrix that is used in the RLS algorithm, for

order 2, is:

¢1.5327 15249 00000 0.0001y
. 15249 15327 -0.0001 0.0000Y
R, =107€ y
Y €0.0000 -0.0001 0.0491 -0.0486U
€.0001 0.0000 -0.0486 0.0491f

where f,,, f,,, f,,, and F,, comprise the 2x2 matrix which corresponds to the auto-correlation
of the first gradient, while ,,, f,,, f, 5, and F,, comprise the 2x2 matrix which corresponds to

the auto-correlation of the components of the second section gradient. The auto-correlation

N N

4000
matrix R, is estimated from R, = § L/ Ly I’Z]TL/ Ly Iz] . Note that the gradient auto-

y y
n=400
correlation is estimated from iterations 400 through 4000, so that the transient, which persists for
about 50 iterations, is not included. We see that the cross-correlation estimates are much smaller

than the auto-correlation estimates, indicating that the gradients of the different sections are

nearly uncorrelated. The top-left 2x2 matrix of f{y represents the gradient associated with the
first set of poles, which are at 0.99+0.1j.

The true auto-correlation for a second order filter can be computed easily from the filter

coefficients as follows. Given a2™ order AR process:

Yo = en - aiyn-l - azyn-l (232)
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where e, is a zero mean white Gaussian noise (WGN) with a variance of s 2. Then the auto-

correlation of y, can be derived as follows [32]:

+a,0 2
s2=Fr®0  S. (2.3.33)
1- &, ﬂ(l'l'az) -

r,=s? (2.3.3b)
0 y

_ & 2
r, = S 2.3.3c
'ol+a, (2:3.30)

where s ? is the variance of y,, r, is the auto-correlation of y, at lag 0, and r, is auto-
correlation of y, at lag 1. Using equations (2.3.3a), (2.3.3b), and (2.3.3c), the true auto-

correlation, i.e. the analytical values, for the first set of poles located at .99+0.1j, at lags 0 and 1
are 5013 and 4987 respectively. The estimated auto-correlation a lag 0 is
1.5327x10°/3601=4255.3 and at lag 1 it is 1.5249x10/3601=4233; these estimates are close to
the true values. The bottom-right 2x2 matrix represents the gradient auto-correlation for the
second set of poles, located at —0.891+0.09j. The true auto-correlations at lag 0 and 1 are
127.0751 and -125.6660 respectively. The estimated auto-correlations at lag O and 1 are
4908.9/3601=136.2838 and -4858.8/3601= -134.8918 respectively, which are also close to their
true values. The auto-correlation components are also close to the true values, so that even when

more datais used these estimates remain amost the same.
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We aso ran a simulation for an AR process of order 10 with the signal spectrum as

shown in Figure 2.3.6. This spectrum resembl es the spectrum of voiced speech.
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Figure 2.3.6 Spectrum for 10" Order Case.

The gradient auto-correlation matrix for the 10-th order case aso shows that it tendsto a
2x2 block-diagonal matrix. The auto-correlation is again computed from iterations 400 through
4000, so that the transient, which occurs for approximately 350 iterations, is not included. The
section with the highest gradient auto-correlation corresponds to pole pair responsible for the
highest peak of the spectrum, as seen in Figure 2.3.6. This can be explained using equations

(2.3.3a-b). We see in equations (2.3.3a-b) that the closer a, isto one, a, is the square of the
radius of the pole, the larger the auto-correlation of y, atlag O, r,. We also know that the closer
the radius of a pole is to 1, the higher the PSD of that pole. The rest of the auto-correlation

estimates are smaller. Some of its values, in the top-left 6x6 partition R, ¢ ° {7, } -
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26.0865 6.0519 : 0.0002 0.0041 0.0001 0.0024

26.0519 6.0821 : -0.0035 0.0004 -0.0021 0.0001

0.0002 -0.0035: 0.0330 0.0154 :0.0017 0.0055

y1l-6 —

0.0041 0.0004: 0.0154 0.0330 -0.0042 0.0017

0.0001 -0.0021 0.0017 -0.0042 :0.0109 0.0008

0.0024 0.0001 0.0055 0.0017 :0.0008 0.0109

while those in the bottom-right 6x6 auto-correlation matrix, FA{yys_ 10° {F. are

i }i,j=5,~~,10'

0.0109 0.0008 : 0.0021 0.0034 0.0011 0.0022

0.0008 0.0109 :-0.0039 0.0021 -0.0028 0.0011

0.0021 -0.0039: 0.0087 -0.0036: 0.0041 0.0015

Ry,5—lO =

0.0034 0.0021 :-0.0036 0.0087 :-0.0063 0.0041

0.0011 -0.0028 0.0041 -0.0063: 0.0160 -0.0126

0.0022 0.0011 0.0015 0.0041 :-0.0126 0.0160

We see that the bottom-right 6x6 sub-matrix values of the gradient auto-correlation
matrix are quite small relative to the values of the top-left 6x6 sub-matrix. The cross-correlations
between the gradients with respect to the coefficients of sections 1 and 2 and between the
gradients with respect to the coefficients of sections 1 and 5 are shown in Figures 2.3.7 and 2.3.8

respectively. Here we see that the normalized cross-correlation between gradientsis al'so small.
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Figure 2.3.7 Normalized Cross-correlation of the 1% and 2™ Section Gradients.
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The nearly block-diagonal structure of R suggests that updating each section of the

y
cascade structure independently, while still being based on the same global minimization, is
perhaps not very different from solving the original LS problem. The assumption that the
gradient auto-correlation matrix is perfectly block-diagonal leads to the Cascade RLS with
Subsection Adaptation (CRLS-SA) agorithm. In CRLS-SA, we ignore the off-diagonal
components of the gradient auto-correlation matrix, assuming they are vanishingly small, so that

the auto-correlation matrix of the gradient has the following form

A

R, =diag|R, R, R, | (2.3.4)

y Yn1' ¥Yn2' ' YnM

where f{y . isthe estimate of the auto-correlation matrix of the gradient of the k-th section,

kK

computed as

Ry n,k = Ry n-1k +y n,ky r-:,k (235)

andy ,, isasdefinedin (2.2.12b), with M=N/2 and N being the order of the filter.

The block diagram for the CRLS-SA agorithm is shown in Figure 2.3.9 and the CRLS
SA algorithm is summarized in Table 2.3.1. As mentioned above, the gradient of the k-th section
is obtained by passing the final output e, ,, to [1- A((Z)]l with the appropriate delay, as shown

in Figure 2.3.9. The computational requirements of the CRLS-SA algorithm are about 20*L*N/2,

with N being the order of the filter and L the length of the data record.
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Recall that the gradient of the final section is actually obtained as the input to that

section. Thus there is no need for computation associated with the gradient for the final section,

and the computational effort is reduced by 2*L. The resulting computational complexity for

CRLS-SA isthen 20*L*N/2-2*L.

Yn

Figure 2.3.9 CRLS-SA and Its Gradient Computation.
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Table2.3.1 CRLS-SA Algorithm

For k=1,2, ..., M, with M being the final section, compute the following
y nk,1 = Z_l[l_ Ak(z)]l{ en,M }
y n,k,2 :y n-1k,1

y n,k = [y nk,1 y n,k,z]T

D — -1
I:)n— 1k — l I:)n—l,k
I:)n-l,k = I:)n-l,ky n,k
_ I:)n-l,k
n,k

T Tiufb
1+y n,k I:)n-l,k

Pok =Pa1x - Kok P 1k

n-1,

— AH
en,k - dn,k - an-1,k yn,k

~

an,k =a 1k +kn,k en,M

n-1,

(2.3.63)

(2.3.6b)

(2.3.60)

(2.3.6d)

(2.3.66)

(2.3.6f)

(2.3.69)

(2.3.6h)

(2.3.61)
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