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CHAPTER 2. APPROACH AND COMPUTATIONAL ASPECTS

2.1. Overview of the Recursive Least-Squares Algorithm

The least-squares method is based on the available data to obtain a solution to the linear

filtering problem. It does not assume that any statistical characterization of the data is available.

The Recursive Least Squares (RLS) algorithm carries out the least-squares approach by way of

minimizing the weighted cost function, which is expressed as [32]:

∑
=

−=
n

i
i

in
n eF

1

2λ ;    10 ≤<< λ (2.1.1)

where λ is the weighting factor, also called the forgetting factor.

The optimum linear inverse filter uses the input signal ny  to find the optimum value of

the tap-weight vector â  of size N +1 by solving the following normal equation:

pa =~̂R (2.1.2a)

where â~  is the coefficient vector representing the inverse filter, expressed as:

[ ] [ ]Naaa ˆˆˆ1~̂1ˆ 21 −−−=−= Laa (2.1.2b)

R  is the NxN input signal auto-correlation matrix defined as:

∑
=

−=
n

i

T
ii

in

1

yyλR (2.1.2c)

[ ]T
Nnnn yyy −−−= K21ny (2.1.2d)

p  is the cross-correlation between the input signal and the desired signal nd  defined as:
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Using the matrix inversion lemma, the inverse matrix computation to solve (2.1.2a) for â~  can be

avoided [32], and the solution to (2.1.2a) can be computed recursively. The complete RLS

algorithm can be found in the literature [32]. The computational complexity of the RLS

algorithm is O(N2), with N being the order of the filter.

2.2. Linear  Prediction in Cascade Structure

Linear prediction (LP) is used to identify the unknown system by way of “inverting” the

processing that happens in that unknown system. Suppose an unknown system with the system

function 1/ ( )[ ]zA−1  is excited with an input signal xn and it then responds with the output yn.

The linear prediction process will find an estimate of A(z), let’s say ( )zÂ , by way of filtering yn

with the filter ( )[ ]zÂ1−  and minimizing the error according to some criterion. Linear

prediction of an autoregressive (AR) process is widely used in low rate speech coding.

The linear prediction, here the forward linear prediction, of an AR process is shown in

Figure 2.2.1. The estimate of the AR polynomial, ( )zÂ , is obtained by minimizing nF , the

weighted sum of mean-squared forward prediction errors ne :

∑
=

−=
n

i
i

in
n eF

1

2λ . (2.2.1)

Minimizing nF  results in a Yule-Walker equation or normal equation [43]:

nn pa =ˆnR (2.2.2)
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where Rn is the NxN auto-correlation matrix of the input signal ny , as defined in (2.1.2d), and

expressed as
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∑
=

−=
n

i
kiik yyr

0

         k=0,…, N-1 (2.2.4)

The right hand side of (2.2.2), pn, is the cross-correlation between the input and the desired

signal, ny  and

[ ]
T

T
Naaa

]ˆ[

ˆˆˆˆ
T
DFa

a

−=

−−−=

1

1 21 L
(2.2.5a)

[ ]TNaaa ˆˆˆˆ 21 L=DFa (2.2.5b)

are the coefficients defining ( )zÂ :

( ) ∑
=

−=
N

k

k
k zazA

1

ˆˆ (2.2.5c)

Figure 2.2.1 AR Process and Linear Prediction.
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Equation (2.2.2) can be solved efficiently using the Levinson algorithm [43], or using adaptive

filtering algorithms [32].

The forward linear prediction process in cascade structure is shown in Figure 2.2.2. The

idea of using the cascade form in linear prediction was first proposed by Jackson and Wood [40].

By using a cascade structure, it is easier to find the root locations than when using the direct

form. Also, using a cascade structure, it is easy to put constraints on the pole locations, for

example to guarantee that a stable inverse exists. In the constrained case, the cascade structure

provides easier and simpler ways to constrain the poles than for the direct form structure.

Figure 2.2.2 Linear Prediction in Cascade Structure.

Based on Figure 2.2.2, we can write the output from each section, kny ,ˆ , as
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(2.2.6a)

where kny ,  is the input to the k-th section, and also the desired response for the k-th section, and

[ ]T
kk aa 21 ,, ˆˆˆ =ka (2.2.6b)

are the coefficients defining ( )zAk
ˆ :
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l
lkk zazA ,ˆˆ (2.2.6c)
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The prediction error of the k-th section is

knknkn yye ,,, ˆ−= (2.2.7)

The prediction error of the k-th section is the desired signal and input for the k+1-st section, etc.

The prediction error 1,ne  of the first section is:

1

111

,

,,,

ˆ

ˆ

nn

nnn

yy

yye

−=

−=
(2.2.8a)

The prediction error 2,ne  of the second section is then

2,1,

2,1,

2,2,2,

ˆˆ
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yyy

ye

yye

−−=

−=

−=

(2.2.8b)

Continuing this process we find that the prediction error Mne ,  of the final section, the M-th

section, satisfies

∑
=

−=
M

i
innMn yye

1
,, ˆ (2.2.8c)

Using (2.2.6a), we can express the final prediction error as a function of the input signal and the

coefficients of each section.
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where

[ ]TT
M

T
2

T
1c aaaa ˆˆˆˆ K= (2.2.8e)
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with kâ  as given in (2.2.6b)

[ ] TT
M1,-n

T
1,2-n

T
1,1-ncn, yyyy K=ˆ (2.2.8f)

and

[ ] T
knkn yy ,, 21 −−=k1,-ny (2.2.8g)

The cost function to be minimized, rewritten from (2.2.1), is :
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Substituting (2.2.8d) into (2.2.9), we obtain
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Minimizing (2.2.10) with respect to the coefficients of each section, we obtain:
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From (2.2.10) and (2.2.6a)
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and so on. Hence we get:
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where cl ,ŷ  is as defined in (2.2.8f).

Define the gradient of each section as the negative of the derivative of the final output

error, as given in (2.2.8d), with respect to the coefficients for that section. The individual

coefficient gradients for the k-th section, refer also to (2.2.6a), are:

kln

lk

Mn
lkn

y

a

e

,

,

,
,, ˆ

−=

∂

∂
−=ψ

    ;     l=1,2 (2.2.12a)

where lkn ,,ψ constitute the gradient of the k-th section:

[ ]
[ ]T

knkn

T
knknkn

yy ,,

,,,,,

21
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−−=

= ψψψψ
(2.2.12b)

The gradients of all sections form a column vector:
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,,,,,,

,,,,,,,,,,,,

=

=

=

−−−−−−
T

MnMnnnnn

T
MnMnnnnnn

yyyyyy 2122211211

2122122111

K

K ψψψψψψψψ

(2.2.12c)

where cn,ŷ  is as defined in (2.2.8f).

Rewriting (2.2.11e) and replacing cn,ŷ  with nψψ  we obtain:
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Equating (2.2.13a) to zero and rearranging the expression, we get:

l
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l

ln
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l
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ln y ψψψψψψ ∑∑
=
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− =
11

ˆ λλ c
T a (2.2.13b)

The coefficients of each section of the cascade structure can be obtained from the normal

equation (2.2.13b):

ψψ pac ˆˆˆ 1−=R (2.2.13c)

where

∑
=

−=
n

l
ll

ln

1

TψψψψλψR̂ (2.2.13d)

and

l

n

l
l

ln y ψψ∑
=

−=
1

λψp̂ (2.2.13e)

Now we take a look at an alternate expression for the final prediction error filter. The

output error of each section, as shown in Figure 2.2.2, is:
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( )[ ] 1,,
ˆ1 −−= knkkn ezAe (2.2.14a)

The output error of the final section can be written as:
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where 0,ne  is equal to ny , the input to the cascade structure. Using (2.2.14b), the gradient of each

section is then derived by taking the negative derivative of the output error of the final section, as

stated in (2.2.12a), so that:
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(2.2.15)

where l=1,2. From (2.2.15), we see that the gradient of the k-th section can be computed

efficiently by passing the final output error Mne ,  to ( )[ ] 1ˆ1
−

− zAk
 as shown in Figure 2.2.3. Hence

the computation of the gradient does not increase the computational complexity of the cascade

structure algorithm significantly relative to its total computational complexity.
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Figure 2.2.3 Cascade Linear Prediction and Gradient Computation.

2.3. CRLS-SA

From (2.2.15) we see that computing the gradient is the same as performing a whitening

process except that the poles in the k-th section are not whitened, as only the poles of the k-th

section are retained while the other poles have been removed. Note that this happens at or near

convergence. In other words, the gradient of the k-th section depends mainly on the poles of the

k-th section. As a result, the gradients for the different sections correspond to different poles, or,

in the frequency domain, they (generally) occupy mostly different frequency bands. Because the

poles dominate in different regions of the frequency domain at convergence, the correlation
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between the gradients for different sections will be relatively small. Hence, ψR̂ , the auto-

correlation matrix of the gradient of all sections, as seen in (2.2.13d), tends to the form of a

block-diagonal matrix. The latter is called the direct sum matrix [25], where each diagonal

component is a 2x2 matrix that corresponds to the auto-correlation matrix of the gradient for one

section of the cascade structure.

To verify the tendency towards a block-diagonal gradient auto-correlation matrix, a

signal with poles at .99±0.1j and -0.891±0.09j, as shown in Figure 2.3.1, is generated. The

spectra of the gradients of the first and second sections are shown in Figures 2.3.2 and 2.3.3,

respectively. We see from Figures 2.3.2 and 2.3.3 that the gradients of the first and second

sections occupy mostly different frequency bands.

Figure 2.3.1 Example 1 Pole Locations.
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Figure 2.3.2 Spectrum of the 1st Section Gradient.

Figure 2.3.3 Spectrum of the 2nd Section Gradient.
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The normalized cross-correlation between the first and second gradients is shown in

Figure 2.3.4, where we see that they are not very correlated, since the value of this cross-

correlation is much smaller than the auto-correlation shown in Figure 2.3.5.

Figure 2.3.4 Normalized Cross-correlation of the First and Second Section Gradients.

Figure 2.3.5 Normalized Auto-correlation of the First Section Gradient.

The cross-correlation of the i-th and j-th section gradients is computed as follows:
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∑
−

=

=
1

0
,

L

n
jn,ik,-nkijr ψψ (2.3.1)

where in,ψ  is the gradient of the i-th section, jn,ψ  is the gradient of the j-th section, and L is the

length of the data record used.

The estimated gradient auto-correlation matrix that is used in the RLS algorithm, for

order 2, is:



















=

0.0491     0.0486-   0.0000     0.0001

0.0486-   0.0491     0.0001-   0.0000

0.0000     0.0001-   1.5327     1.5249

0.0001     0.0000     1.5249     1.5327

10ˆ 7
ψR

where 1,1r̂ , 21,r̂ , 12,r̂ , and 22,r̂  comprise the 2x2 matrix which corresponds to the auto-correlation

of the first gradient, while 33,r̂ , 43,r̂ , 34,r̂ , and 44,r̂  comprise the 2x2 matrix which corresponds to

the auto-correlation of the components of the second section gradient. The auto-correlation

matrix ψR̂  is estimated from [ ] [ ]T
n

T
n

n

TT
n

T
n 21

4000

400
21 ,,,,R̂ ψψψψψψψψ∑

=

=ψ . Note that the gradient auto-

correlation is estimated from iterations 400 through 4000, so that the transient, which persists for

about 50 iterations, is not included. We see that the cross-correlation estimates are much smaller

than the auto-correlation estimates, indicating that the gradients of the different sections are

nearly uncorrelated. The top-left 2x2 matrix of ψR̂  represents the gradient associated with the

first set of poles, which are at 0.99±0.1j.

The true auto-correlation for a second order filter can be computed easily from the filter

coefficients as follows. Given a 2nd order AR process:

1211 −− −−= nnnn yayaey (2.3.2)
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where ne  is a zero mean white Gaussian noise (WGN) with a variance of 2
eσ . Then the auto-

correlation of ny  can be derived as follows [32]:
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a
r σ

+
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where 2
yσ  is the variance of ny , 0r  is the auto-correlation of ny  at lag 0, and 1r  is auto-

correlation of ny  at lag 1. Using equations (2.3.3a), (2.3.3b), and (2.3.3c), the true auto-

correlation, i.e. the analytical values, for the first set of poles located at .99±0.1j, at lags 0 and 1

are 5013 and 4987 respectively. The estimated auto-correlation at lag 0 is

1.5327x107/3601=4255.3 and at lag 1 it is 1.5249x107/3601=4233; these estimates are close to

the true values. The bottom-right 2x2 matrix represents the gradient auto-correlation for the

second set of poles, located at –0.891±0.09j. The true auto-correlations at lag 0 and 1 are

127.0751 and -125.6660 respectively. The estimated auto-correlations at lag 0 and 1 are

4908.9/3601=136.2838 and -4858.8/3601= -134.8918 respectively, which are also close to their

true values. The auto-correlation components are also close to the true values, so that even when

more data is used these estimates remain almost the same.



22

We also ran a simulation for an AR process of order 10 with the signal spectrum as

shown in Figure 2.3.6. This spectrum resembles the spectrum of voiced speech.

Figure 2.3.6 Spectrum for 10th Order Case.

The gradient auto-correlation matrix for the 10-th order case also shows that it tends to a

2x2 block-diagonal matrix. The auto-correlation is again computed from iterations 400 through

4000, so that the transient, which occurs for approximately 350 iterations, is not included. The

section with the highest gradient auto-correlation corresponds to pole pair responsible for the

highest peak of the spectrum, as seen in Figure 2.3.6. This can be explained using equations

(2.3.3a-b). We see in equations (2.3.3a-b) that the closer 2a  is to one, 2a  is the square of the

radius of the pole, the larger the auto-correlation of ny at lag 0, 0r . We also know that the closer

the radius of a pole is to 1, the higher the PSD of that pole. The rest of the auto-correlation

estimates are smaller. Some of its values, in the top-left 6x6 partition { }
6161 ,,,,ˆR̂

L=− ≡
jijirψ, , are
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6ψ,1 −R̂  = 106

    6.0865    6.0519    0.0002    0.0041    0.0001    0.0024

    6.0519    6.0821   -0.0035    0.0004   -0.0021    0.0001

    0.0002   -0.0035    0.0330    0.0154    0.0017    0.0055

    0.0041    0.0004    0.0154    0.0330   -0.0042    0.0017

    0.0001   -0.0021    0.0017   -0.0042    0.0109    0.0008

    0.0024    0.0001    0.0055    0.0017    0.0008    0.0109

while those in the bottom-right 6x6 auto-correlation matrix, { }
105105 ,,,,ˆR̂

L=− ≡
jijirψ, , are

10ψ,5 −R̂  = 106

    0.0109    0.0008    0.0021    0.0034    0.0011    0.0022

    0.0008    0.0109   -0.0039    0.0021   -0.0028    0.0011

    0.0021   -0.0039    0.0087   -0.0036    0.0041    0.0015

    0.0034    0.0021   -0.0036    0.0087   -0.0063    0.0041

    0.0011   -0.0028    0.0041   -0.0063    0.0160   -0.0126

    0.0022    0.0011    0.0015    0.0041   -0.0126    0.0160

We see that the bottom-right 6x6 sub-matrix values of the gradient auto-correlation

matrix are quite small relative to the values of the top-left 6x6 sub-matrix. The cross-correlations

between the gradients with respect to the coefficients of sections 1 and 2 and between the

gradients with respect to the coefficients of sections 1 and 5 are shown in Figures 2.3.7 and 2.3.8

respectively. Here we see that the normalized cross-correlation between gradients is also small.
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Figure 2.3.7 Normalized Cross-correlation of the 1st and 2th Section Gradients.

Figure 2.3.8 Normalized Cross-correlation of the 1st and 5th Section Gradients.
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The nearly block-diagonal structure of ψR̂  suggests that updating each section of the

cascade structure independently, while still being based on the same global minimization, is

perhaps not very different from solving the original LS problem. The assumption that the

gradient auto-correlation matrix is perfectly block-diagonal leads to the Cascade RLS with

Subsection Adaptation (CRLS-SA) algorithm. In CRLS-SA, we ignore the off-diagonal

components of the gradient auto-correlation matrix, assuming they are vanishingly small, so that

the auto-correlation matrix of the gradient has the following form

{ }
Mnnn

diag
,2,1,

ˆ,,ˆ,ˆˆ
ψψψψν

RRRR L= (2.3.4)

where 
kn,

R̂ψ  is the estimate of the auto-correlation matrix of the gradient of the k-th section,

computed as

T
knknknkn ,,,,

R̂R̂ ψψψψ+=
−1ψψ λ (2.3.5)

and kn,ψψ  is as defined in (2.2.12b), with M=N/2 and N being the order of the filter.

The block diagram for the CRLS-SA algorithm is shown in Figure 2.3.9 and the CRLS-

SA algorithm is summarized in Table 2.3.1. As mentioned above, the gradient of the k-th section

is obtained by passing the final output Mne ,  to ( )[ ] 1
1

−
− zAk

ˆ  with the appropriate delay, as shown

in Figure 2.3.9. The computational requirements of the CRLS-SA algorithm are about 20*L*N/2,

with N being the order of the filter and L the length of the data record.
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Recall that the gradient of the final section is actually obtained as the input to that

section. Thus there is no need for computation associated with the gradient for the final section,

and the computational effort is reduced by 2*L. The resulting computational complexity for

CRLS-SA is then 20*L*N/2-2*L.

Figure 2.3.9 CRLS-SA and Its Gradient Computation.
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11,â
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Table 2.3.1 CRLS-SA Algorithm

For k=1,2, …, M, with M being the final section, compute the following

                        [ ] { }Mnkkn ezAz ,,, )( 11
1 1 −− −=ψ (2.3.6a)

1,,12,, knkn −= ψψ (2.3.6b)

T
knknkn ][ 2,,1,,, ψψ=ψψ (2.3.6c)

knkn ,1
1

,1

~
−

−
− = PP λ (2.3.6d)

knknkn ,,1,1

~ ψ−− = PP
(

(2.3.6e)

kn
H

kn

kn
kn

,1,

,1
,

1 −

−

+
=

P

P
(

(

ψ
κ (2.3.6f)

knknknkn ,1,,1,

~
−− −= PPP

(
κ (2.3.6g)

kn
H

knknkn de ,,1,, ˆ ya −−= (2.3.6h)

Mnknknkn e ,,,, ˆˆ κκ+= −1aa (2.3.6i)


	table of content
	chapter 1
	chapter 3

