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Abstract: Piezoelectric ceramics have good electromechanical coupling characteristics and a high
sensitivity to load. One typical engineering application of piezoelectric ceramic is its use as a signal
source for Weigh-In-Motion (WIM) systems in road traffic monitoring. However, piezoelectric
ceramics are also sensitive to temperature, which affects their measurement accuracy. In this study, a
new piezoelectric ceramic WIM sensor was developed. The output signals of sensors under different
loads and temperatures were obtained. The results were corrected using polynomial regression
and a Genetic Algorithm Back Propagation (GA-BP) neural network algorithm, respectively. The
results show that the GA-BP neural network algorithm had a better effect on sensor temperature
compensation. Before and after GA-BP compensation, the maximum relative error decreased from
about 30% to less than 4%. The sensitivity coefficient of the sensor reduced from 1.0192 × 10−2/◦C
to 1.896 × 10−4/◦C. The results show that the GA-BP algorithm greatly reduced the influence of
temperature on the piezoelectric ceramic sensor and improved its temperature stability and accuracy,
which helped improve the efficiency of clean-energy harvesting and conversion.

Keywords: piezoelectric sensor; temperature compensation; GA-BP neural network; Weigh-In-
Motion; error analysis

1. Introduction

In order to control vehicle overload, monitor and evaluate traffic volume, and ensure
the safety and efficiency of vehicle transportation, the highway Weigh-In-Motion (WIM)
system was produced [1,2]. The WIM system automatically obtains and detects the vehicle
load information by embedding load cells on the driving road without affecting the normal
driving of the vehicle, so as to fulfill its purpose of overload control [3,4]. The core
component of the vehicle WIM system is the weighing sensor. At present, the products
on the market have low measurement speed and low detection accuracy, with an average
error of ±5–±30% [5–7]. While the American Society for testing and materials’ (ASTM)
specification standard (ASTME1318) stipulates that the total weight error of the high-speed
weighing system (Class III) is 6%, and the total weight error of the European WIM system is
uniformly specified as 5%, China’s current road dynamic weighing standards are generally
consistent with ASTM and European standards, and the total weight error of vehicles in the
high- and low-speed-control weighing system is 5% [8]. It can be seen that the accuracy of
WIM sensors needs to be improved in a large range. In addition, vehicle monitoring of some
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key expressways, bridges and culverts in China generally introduces foreign products [6],
which cannot be widely used in China’s highway network because of their high price. There
is a variety of WIM equipment on the market. Piezoelectric ceramic sensors have gradually
shown their potential in WIM systems [9] because of their good dynamic characteristics,
simpler installation process, small volume, low cost, high reliability and good structural
compatibility [10–12]. When a piezoelectric ceramic sensor is used as WIM equipment to
monitor vehicle overload, ensuring the measurement accuracy of the vehicle WIM system,
improving the dynamic measurement range and reducing costs are the main problems it
faces [13]. However, piezoelectric ceramic itself has temperature-sensitive characteristics,
and the sensor, made of piezoelectric ceramic material, has temperature drift [14–16]. This
drift will make the performance of the sensor unstable in the environment’s changing
temperature, and then affect the detection accuracy [17]. Therefore, research on an effective
temperature compensation method is of great significance to improve the detection accuracy
of piezoelectric ceramic sensors. Haider et al. [18] studied the impact of a WIM system
monitoring error changes on rigid and flexible pavement, and concluded that a positive
deviation of 10% will lead to an overestimation of pavement life of about 5%; contrarily,
a negative deviation of 10% will lead to an overestimation of pavement life of about 30%
to 40%. Prozi and Hong [19] reached similar conclusions in their work, which further
confirmed the importance of WIM data accuracy. Burnos and Gajda [20] analyzed, in
detail, the thermal characteristics of sensors installed on the road, and also confirmed that
temperature is an important factor affecting the accuracy of weighing results.

In order to compensate for the influence of temperature on piezoelectric sensors and
improve their detection accuracy and sensitivity, we carried out temperature-compensation
experimental research on a self-designed piezoelectric ceramic sensor. The data were
processed by establishing a mathematical model of the temperature characteristics of the
piezoelectric ceramic sensor, and using a Genetic Algorithm Back Propagation (GA-BP)
neural network model. The experimental results show that the GA-BP neural network
temperature compensation model can better improve the measurement accuracy and
sensitivity of the piezoelectric ceramic sensor.

In practical engineering, temperature drift has become the biggest problem in the
practical application of pressure sensors [9]. Research on temperature compensation has
always been a hot topic for civil engineers [21–24]. Software compensation is often used
in temperature compensation algorithms [25], and has the advantages of high precision,
low cost and good universality. Software compensation methods can be divided into
two categories: one is a numerical analysis method, and the other is a machine learning
method [26]. For the former, the commonly used temperature compensation algorithms
include the least square method, multi terminal broken line approximation method and
multiple regression analysis method. For the latter, neural network is the most commonly
used temperature method based on artificial intelligence [27]. Neural network has been
widely considered and studied in the field of temperature compensation because of its
strong generalization ability, good fault tolerance and strong nonlinear mapping ability. In
this paper, a polynomial regression algorithm and BP neural network are proposed to realize
the temperature compensation of the pressure sensor; however, the BP neural network
has some shortcomings, such as a slow learning rate and susceptibility to falling into the
local minimum [28,29]. Therefore, a genetic algorithm (GA) can be used to optimize the
shortcomings of the BP neural network before the BP network training parameters [30–33].
Zhang et al. [22] used the improved BP neural network model to correct the temperature
of an EME sensor. The results showed that the maximum relative error of internal force
measurement was within 0.9% in the range of 10 ◦C to 60 ◦C. Wang et al. [23] corrected the
temperature of a MEMS sensor in the temperature range of −10 to 80 ◦C using a neural
network optimized by a genetic algorithm. The results showed that the maximum error of
this method was 0.017%.
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2. Design and Fabrication of Piezoelectric Ceramic Sensor

Based on previous research [34–37], this paper developed and designed a new piezo-
electric ceramic sensor with the advantages of excellent environmental adaptability, high
sensitivity and low cost. It can be used as Weigh-In-Motion sensor for road traffic monitor-
ing. The piezoelectric material used in the sensor was lead zirconate titanate (PZT). The
model of piezoelectric ceramics was PZT-4 (Hongsheng Acoustic Electronic Equipment
Co., Ltd., Baoding, China). The packaging material was glass fiber nylon (PA66+30% GF)
(Xingdeli Technology Co., Ltd., Shenzhen, China). The two-component epoxy resin was
Kafuter K-9741(Xiaoka e-commerce Co., Ltd., Changzhou, China). The parameters of the
material were provided by the supplier and are shown in Tables 1–3.

Table 1. Properties of PZT-4.

Parameters Symbols Values Units

Piezoelectric constant d33 220 pC/N
Relative dielectric

constant εT
33 1050 -

Curie temperature Tc 310 ◦C
Density ρ 7.45 103 kg/m3

Elastic modulus E 83.3 GPa
Electromechanical

coupling coefficient Qm >0.63 -

Table 2. Properties of glass-fiber-reinforced nylon (PA66+30%GF).

Parameters Test Standard Mechanical Property

Density ISO1183 1.48 g/cm−3

Tensile strength ISO527 145 MPa
Elongation at break ISO527 2%

Bending strength ISO178 200 MPa
Elastic modulus ISO604 5900 MPa
Poisson’s ratio ISO527 0.34

Table 3. Epoxy resin material parameters.

Parameters * Component A Component B

Density 1.45–1.80 g/cm3 1.08–1.15 g/cm3

Dynamic viscosity 3000–4000 cps 100–250 cps
Hardness (Shore-D) ≥80
Insulation strength ≥1015 Ω·cm
Volume resistivity ≥15 V/mm

Shear strength ≥10 MPa
Dielectric constant 3.0 ± 0.1

Operating temperature −30–120 ◦C
Curing shrinkage ≤0.5%

* These parameters were measured at 25 ◦C.

As shown in Figure 1, the piezoelectric sensor packaging slot adopted a band-type
encapsulation structure. The overall size of the sensor was 150 mm × 45 mm × 28 mm
(L × W × H). There was a reserved groove with a diameter ϕ of 25 mm for the PZT
patch position in the middle of the protective structure. The size of the PZT patch was
ϕ 20 mm × 2 mm. A stainless-steel gasket was added between the piezoelectric ceramic
and the groove bottom in order to make the piezoelectric ceramic stress evenly. The size of
the stainless-steel gasket was ϕ 25 mm × 2 mm.
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Figure 1. Sensor structure diagram: (a) internal structure; (b) internal layout plan; (c) internal
real layout.

Based on the above design, the manufacturing process of the sensor was as follows:
Firstly, we placed the stainless-steel gasket in the reserved groove and bonded the piezo-
electric ceramic sheet to the stainless-steel gasket with quick-drying glue. Secondly, the
signal wires were connected with the positive and negative pole of the piezo sheet and
fixed into the groove wall. The remaining wires were drawn from the groove. Thirdly,
the flexible electronic silica gel was poured into the gap between the groove wall and
the piezoelectric ceramic, which could effectively prevent the piezoelectric material and
electrode from being affected by water or steam. Finally, after the flexible electronic gel
solidified, the two-component epoxy resin was filled and the air tightness and flatness were
met. Using the same production process, two sets of sensors were packaged as SP-1 and
SP-2, as shown in Figure 2.
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3. Temperature Characteristics Study of Piezoelectric Ceramics
3.1. Temperature Characteristics of Piezoelectric Ceramics

PZT-4 has the advantage of a high piezoelectric coefficient, and is an ideal force-
sensing material. The performance parameters of piezoelectric ceramics are also different
at different temperatures, which will result in changes in the piezoelectric sensor output
and affect the accuracy of the sensor. This section tested the performance parameters of
piezoelectric ceramics at different temperatures. Through the mechanical test, the sensor
output signals under different temperature loads were obtained as the data basis for
subsequent temperature correction.

First of all, the variation in electrical parameters with temperature were measured.
Five PZT-4 piezoelectric ceramic sheets of the same size (ϕ 20 mm × 1.5 mm) were ran-
domly selected. Temperature-adjustable refrigerators provided sub-zero temperatures
with a temperature range of −40–0 ◦C, and the vacuum drying oven provided above
zero temperatures in the range of 0–250 ◦C. In this test, the temperature was controlled
at −25–80 ◦C, at an interval of 15 ◦C. The temperature was kept for 1h after the equip-
ment reached the set temperature. Then, the specimens were taken out and measured in
1 min. The average values of the measured data of five samples were taken. Then, the data
were used to analyze the changes in the piezoelectric coefficient and the capacitance of
the piezoelectric ceramics with the change in temperature. The piezoelectric constant d33
was measured using a quasi-static piezoelectric coefficient measuring instrument ZJ-6A,
and the capacitance was measured using a UT603 capacitance inductance meter. The test
equipment is shown in Figure 3, and the measurement results are shown Figure 4.
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From Figure 4, it can be seen that the environmental temperature has a great influence
on the electrical properties of PZT. In the temperature range of −25 ◦C to 80 ◦C, the
piezoelectric coefficient and the capacity of the PZT-4 increased with the temperature, but
the relationship between them is obviously not linear.

3.2. Test Design of Temperature Compensation

There is a linear relationship between the ideal pressure sensor output charge and the
measured pressure when the temperature is constant. However, in practical application,
there is a nonlinear relationship between the pressure sensor output u and the input
force F. Therefore, within the working temperature range of the pressure sensor, different
temperatures can be selected to calibrate the compensated pressure sensor. In order to
better test the influence of experimental temperature on the PZT sensor, the experimental
control temperature was −25 ◦C to 80 ◦C, which covers most road conditions. The test
temperature was successively set to −25 ◦C, −10 ◦C, 5 ◦C, 20 ◦C, 35 ◦C, 50 ◦C, 65 ◦C and
80 ◦C. According to the standard axle load and the load range of the machine specified in
the code for the design of the highway asphalt pavement (JTG D50-2017), the loading force
range was 5–25 kN. The load increment interval was 2 kN. At each temperature level, the
temperature lasted for one hour to ensure a uniform temperature inside the sensor, and
then the data were recorded. The test loading equipment adopted the electro-hydraulic
servo fatigue testing machine from the Walter+Bai test equipment company in Switzerland,
with a load range of ±100 kN and a temperature-control-box range of −150 ◦C to 350 ◦C.
The loading test scheme is shown in Figure 5a. The loading device and the data acquisition
equipment are shown in Figure 5 b and c. The load was sinusoidal, with amplitudes
ranging from 5 to 25 kN, corresponding to an vehicle axle load range of 20–125 kN. The
loading frequency was 5 Hz, which corresponded to a vehicle speed of 20–30 km/h. The
output signal of the sensors was charge, which was converted into a voltage signal through
a charge amplifier and amplified to an appropriate multiple. Finally, the data were collected
by oscilloscope.
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The digital oscilloscope type was a DPO2024 from Tektronix and the charge amplifier
adopted an LZ1105-16. The main parameters are shown in Table 4.
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Table 4. Main parameters of charge amplifier.

Parameters Units Value

Measuring charge ranges pC ±107

Output voltage ranges mV ±10,000
Gain factor 0.1, 0.2, 0.5, 1, 2, 5, 10
Sensitivity * pC/mV 100

Measurement uncertainty % 0.5
Frequency range Hz 0.1–200,000

* This parameter is measured when gain factor is 1.

The charge amplifier used in this research can select seven gain factors which can
be set by the four bits, as shown in Figure 6. In this paper, the gain factor was 1 as the
sensitivity was 100 Pc/mV.
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3.3. Data Acquisition

This experiment collected the voltage signal of the piezoelectric sensor converted by
the charge amplifier. A total of 88 groups of data were collected. The original output data of
the piezoelectric sensor are shown in Tables 5 and 6. Load F is the original input pressure,
and U is the output voltage of piezoelectric ceramic sensor at different temperatures. The
diagram in Figure 7 is the curve of two piezoelectric sensors before compensation. Based on
the output results of a 20 ◦C room temperature, the relative measurement error δ percentage
of the sensors at different temperatures was calculated, according to Equation (1), as shown
in Figure 8, which shows that the measurement accuracy of the sensor is greatly affected
by temperature. Without any compensation, the maximum error of SP-1 was more than
35% in the temperature range of −25–80 ◦C, and the maximum error of SP-2 was as high as
50%. According to Equation (1):

δ =
∆
L
× 100% (1)

where:

• ∆ is the is the absolute error;
• L is the true value.
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Table 5. SP-1 raw output data.

Load
(kN)

U(V)
T = −25 ◦C

U(V)
T = −10 ◦C

U(V)
T = 5 ◦C

U(V)
T = 20 ◦C

U(V)
T = 35 ◦C

U(V)
T = 50 ◦C

U(V)
T = 65 ◦C

U(V)
T = 80 ◦C

5 1.56 2.08 2.40 2.40 2.08 2.32 1.68 1.72
7 2.40 3.16 3.60 3.76 3.28 3.36 2.36 2.52
9 3.28 4.24 4.64 4.80 4.32 4.24 3.12 3.36

11 4.12 5.28 5.76 5.92 5.20 5.20 3.88 4.24
13 4.96 6.28 6.88 7.04 6.16 6.08 4.68 5.04
15 5.68 7.28 8.00 8.08 7.04 7.04 5.60 5.96
17 6.48 8.08 9.20 9.20 8.00 8.00 6.44 6.92
19 7.52 9.04 10.6 10.20 8.96 9.04 7.44 8.00
21 8.32 10.10 11.8 11.10 9.92 10.10 8.40 9.12
23 9.20 11.10 13.1 12.10 11.00 11.00 9.52 10.60
25 10.00 12.30 14.4 13.10 12.00 11.90 11.00 12.20

Table 6. SP-2 raw output data.

Load
(kN)

U(V)
T = −25 ◦C

U(V)
T = −10 ◦C

U(V)
T = 5 ◦C

U(V)
T = 20 ◦C

U(V)
T = 35 ◦C

U(V)
T = 50 ◦C

U(V)
T = 65 ◦C

U(V)
T = 80 ◦C

5 1.64 2.16 2.24 2.08 1.56 2.44 1.64 1.92
7 2.32 3.48 3.74 3.36 2.64 3.64 2.36 2.80
9 2.64 4.88 4.96 4.56 3.80 4.84 3.16 3.60

11 2.92 5.12 5.84 5.84 5.32 6.00 3.92 4.48
13 4.28 6.56 7.04 7.04 6.80 7.12 4.76 5.44
15 5.68 7.68 8.24 7.76 8.16 8.16 5.60 6.40
17 6.60 8.90 9.28 8.88 9.60 9.20 6.40 7.36
19 7.40 9.40 10.30 10.00 11.00 10.20 7.28 8.40
21 8.20 10.20 11.40 11.30 12.60 11.40 8.24 9.44
23 10.80 11.20 12.60 12.60 14.00 12.40 9.20 10.50
25 11.40 12.40 13.80 14.00 15.8 13.40 10.00 11.70
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4. Temperature Compensation Data Processing
4.1. Mathematical Model of Temperature Characteristics of PZT Sensor

Based on the existing experimental research, this paper established the mathematical
model of temperature characteristics of a piezoelectric sensor. When the sensor size and
material parameters were determined and the environment temperature was constant,
the output signal had a linear relationship with the force, which can be simplified by the
following equations:

U = KF (2)

where:
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• K is the sensitivity coefficient of the sensors, in V/N;
• F is the force applied on the sensor, in N.

K was determined by the electrical parameters of the piezoelectric materials and load
ratio of the piezoelectric ceramic sheets, which were affected by temperature and difficult
to calculate using a mechanical formula. If considering the temperature effect, the output
voltage of the PZT sensor was not linear with the force.

It was assumed that the sensor sensitivity changed linearly with temperature from
−25 ◦C to 85 ◦C.

K = kTT + k0 (3)

where:

• kT is the PZT sensor sensitivity temperature coefficient;
• T is the temperature;
• k0 is the sensitivity of PZT sensor at 0 ◦C.

Therefore, the temperature characteristic mathematical model of piezoelectric sensor is:

U = (kTT + k0)F (4)

4.2. BP Neural Network of Temperature Compensation

The temperature compensation principle using a BP neural network is shown as
follows: the voltage collected after temperature control of piezoelectric ceramic sensor
was taken as the output value. At this time, the voltage was affected by temperature, and
the voltage and temperature were taken as the input of the BP neural network. After the
training of the BP neural network, the corrected pressure value was obtained. At this time,
the three-layer BP neural network [29,38] was used as the training model, including the
input layer, hidden layer and output layer, as shown in Figure 9.
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The training of GA-BP neural networks in this study mainly included the follow-
ing steps:

(1) Preparation of the dataset: In this paper, 88 groups of data, obtained from SP-1
in the above experiment, were used for model construction. All of the samples
were randomly divided into two sets, of which 77 groups of data were used as the
training set and 11 groups of data were used as the verification set. All the data were
normalized to unify their values between [–1,1];

(2) Number of implied layers: The number of hidden layer nodes and the number of
iterations in the training process had a great impact on the accuracy and efficiency of
network training. Empirical formulas were used to calculate the hidden layer nodes;

hiddennum = sqrt(m + n) + a (5)
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where:

• m is the input of the layer number;
• n is the number of the output layer;
• a is generally taken as an integer between 1 and 10.

(3) Determination of the training parameters: The essence of the training process is to
iteratively reduce the error between the predicted value and the target (actual) value.
The learning rate may affect the training accuracy and training speed of the network.
With the decrease in learning rate, the training accuracy is improved at the cost of
increasing training time. However, too high a learning rate will lead to network
instability and lead to failure to converge. The learning rate is usually set between
0.001 and 1. This time, the learning rate was set to 0.01. The target training error was
set to 0.00001 and the number of iterations was set to 1000;

(4) Genetic algorithm solution: A population size of 30 was established by a genetic
algorithm; the number of iterations was 50, the mutation probability was 0.2 and the
crossover probability was 0.8.

5. Temperature Compensation Data Processing
5.1. Compensation Results of the Polynomial Regression Algorithm

The simplified equation of the temperature characteristics of the piezoelectric ceramic
sensor established in this paper is shown in Equation (3), and the actual fitting process is
carried out in Equation (6).

Z = (a × x + b)× y (6)

In this paper, the experimental results of the sensor output temperature characteristics
were fitted by MATLAB. The X-axis is the temperature variable, the Y-axis is the pressure
variable, and the Z-axis is the corresponding output of the sensor. The fitting results are
shown in Figure 10. The black spot is the measured value of the sensor test, and the surface
is the fitting result. The fitting results of the two groups of sensors are shown in Table 7.
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Table 7. Polynomial regression algorithm fitting the results.

Number Parameter Values Fitting Equation R2 RMSE

SP-1 a = −3.18 × 10−4

b = 0.4765
U = (−3.18 × 10− 4T +

0.4765) × F
0.9199 0.9376

SP-2 a = −2.93 × 10−3

b = 0.61
U = (−2.93 × 10−3T +

0.61) × F
0.9494 0.9108

5.2. GA-BP Neural Network Compensation Results

The neural network structure after GA-BP training is shown in Figure 11. There were
11 samples in the training set. The data outputs of BP and GA-BP neural network for
training samples are shown in Table 8. The error and predicted results of BP and GA-BP
neural network are shown in Figures 12 and 13. The mean square error (MSE) of BP neural
network is 0.66604 and the root mean square error (RMSE) is 0.81611; the MSE of the
optimized neural network is 0.017518; and the RMSE is 0.13236. It can be seen that the
prediction accuracy of the GA-BP neural network is much higher than BP neural network
on training set.
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Table 8. Output Data of SP-1 before and after neural network optimization.

Number Measured
Value

BP Predicted
Value

GA-BP
Value BP Error GA-BP Error

1 5.0000 5.2144 5.0446 0.2144 0.0446
2 7.0000 6.0610 6.8939 −0.9390 −0.1061
3 9.0000 9.8911 8.9507 0.8911 −0.0493
4 11.0000 11.0654 11.0332 0.0654 0.0332
5 13.0000 13.1809 13.1708 0.1809 0.1708
6 15.0000 14.1470 14.9619 −0.8530 −0.0381
7 17.0000 17.0847 16.9517 0.0847 −0.0483
8 19.0000 18.0599 19.0481 −0.9401 0.0481
9 21.0000 22.5921 21.2169 1.5921 0.2169
10 23.0000 21.8608 22.7545 −1.1392 −0.2455
11 25.0000 24.6584 25.1824 −0.3416 0.1824
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In order to calculate the accuracy and sensitivity measurement of the compensated
piezoelectric ceramic sensor, all the data were taken into the trained model. Figure 14
shows that the genetic algorithm reached the optimal individual fitness at the 10th time
with a value of 0.02811. Figure 15 shows the comparison of between the predicted value
and the real value. Figure 16 shows the relative error of the two neural networks of all the
samples. GA-BP neural network is much better than the BP neural network on the whole.
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5.3. Comparison of Compensation Results and Error Analysis

The SP-2 data were compensated by the same algorithm, and the results of the two
compensation algorithms are shown in Table 9. The evaluation index of the algorithm
adopted the determination coefficient R2 and RMSE. R2 is an important statistic reflecting
the goodness of fit of the model. It is the ratio of the sum of regression squares to the sum
of total squares. Its value reflects the relative degree of regression contribution. R2 is the
most commonly used index to evaluate the goodness of fit of the regression model. The
greater R2 (close to 1), the better the fitted regression equation. RMSE is a measure of the
deviation between the observed value and the real value. It is often used as a standard
to measure the prediction results of machine learning models. To a certain extent, it can
determine whether the predicted value has achieved the expected effect. The higher the
RMSE value, the stronger the model’s ability to interpret information for data samples, and
closer it is to the real situation. It can be seen from the table that the compensation effect of
the GA-BP neural network is much better than that of polynomial linear fitting from the
analysis of R2 and RMSE. It can be seen that the strong nonlinear mapping ability of the
neural network can be widely used in the field of temperature compensation.

Table 9. Comparison of the results of the compensation algorithm.

Number
Polynomial Linear Fitting

Compensation
GA-BP Neural Network

Compensation

R2 RMSE R2 RMSE

SP-1 0.9199 0.9376 0.9993 0.0936
SP-2 0.9494 0.9108 0.9988 0.2251

The calculated load F’ of the two groups of sensors compensated by the GA-BP neural
network is shown in Tables 10 and 11. The compensated data are shown in Figure 17. It
can be seen that the measurement results at different temperatures after compensation are
basically unchanged. The relative error of the compensated data was calculated, as shown
in Figure 18. The maximum measurement relative error of SP-1 decreased from 35.17%
to 5.18%, and the maximum measurement relative error of SP-2 decreased from 50.00%
to 5.71%.

In order to measure the performance index of the sensor after compensation, the
relative errors of measurement accuracy, temperature sensitivity coefficient, and full scale
were calculated, respectively. The relative errors of measurement accuracy before and after
compensation are shown in Figures 8 and 18, respectively.
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Table 10. SP-1 GA-BP neural network output after training.

Input Load
(kN)

F’ (kN)
T = −25 ◦C

F’ (kN)
T = −10 ◦C

F’ (kN)
T = 5 ◦C

F’ (kN)
T = 20 ◦C

F’ (kN)
T = 35 ◦C

F’ (kN)
T = 50 ◦C

F’ (kN)
T = 65 ◦C

F’ (kN)
T = 80 ◦C

5 5.06 5.07 5.03 5.09 4.94 5.01 5.02 4.82
7 6.98 6.96 6.98 7.05 7.04 6.94 7.19 6.91
9 8.94 8.96 9.02 8.96 8.97 8.99 9.08 9.03

11 10.96 10.96 11.05 10.95 11.13 11.02 11.05 11.09
13 13.05 12.97 13.06 12.95 13.19 13.06 12.97 13.15
15 14.98 14.99 15.01 15.16 15.26 14.98 14.99 14.92
17 17.05 16.92 17.05 16.97 16.85 16.96 16.92 17.12
19 19.02 19.08 19.01 19.29 19.13 19.14 18.94 18.99
21 21.11 20.96 20.98 21.08 20.91 20.94 20.95 21.09
23 22.93 23.05 23.07 22.96 22.98 23.10 23.01 22.84
25 24.97 24.93 24.88 25.07 25.01 24.92 24.96 25.24

Table 11. SP-2 GA-BP neural network output after training.

Input Load
(kN)

F’ (kN)
T = −25 ◦C

F’ (kN)
T = −10 ◦C

F’ (kN)
T = 5 ◦C

F’ (kN)
T = 20 ◦C

F’ (kN)
T = 35 ◦C

F’ (kN)
T = 50 ◦C

F’ (kN)
T = 65 ◦C

F’ (kN)
T = 80 ◦C

5 4.84 5.36 4.94 5.14 5.28 5.26 5.18 5.03
7 7.30 7.14 6.96 7.07 6.99 7.02 6.85 7.06
9 8.79 9.04 8.95 8.99 8.69 8.99 8.80 8.92

11 11.05 10.86 11.00 11.13 10.80 11.07 10.72 10.93
13 13.35 12.98 12.94 13.27 12.96 13.16 12.86 13.05
15 14.96 14.94 15.01 14.63 15.01 15.09 14.98 15.08
17 16.93 17.50 16.96 16.77 17.10 16.99 16.94 17.02
19 19.06 18.67 18.94 18.86 18.96 18.82 19.00 19.04
21 20.99 20.60 21.00 21.07 20.97 21.05 21.15 20.99
23 23.34 22.98 23.09 23.00 22.74 22.98 23.19 22.93
25 25.12 25.54 25.04 24.76 25.19 25.00 24.85 25.05

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18 
 

 

17 17.05 16.92 17.05 16.97 16.85 16.96 16.92 17.12 
19 19.02 19.08 19.01 19.29 19.13 19.14 18.94 18.99 
21 21.11 20.96 20.98 21.08 20.91 20.94 20.95 21.09 
23 22.93 23.05 23.07 22.96 22.98 23.10 23.01 22.84 
25 24.97 24.93 24.88 25.07 25.01 24.92 24.96 25.24 

Table 11. SP-2 GA-BP neural network output after training. 

Input Load 
(kN) 

F’ (kN) 
T = −25 °C 

F’ (kN) 
T = −10 °C 

F’ (kN) 
T = 5 °C 

F’ (kN) 
T = 20 °C 

F’ (kN) 
T = 35 °C 

F’ (kN) 
T = 50 °C 

F’ (kN) 
T = 65 °C 

F’ (kN) 
T = 80 °C 

5 4.84 5.36 4.94 5.14 5.28 5.26 5.18 5.03 
7 7.30 7.14 6.96 7.07 6.99 7.02 6.85 7.06 
9 8.79 9.04 8.95 8.99 8.69 8.99 8.80 8.92 

11 11.05 10.86 11.00 11.13 10.80 11.07 10.72 10.93 
13 13.35 12.98 12.94 13.27 12.96 13.16 12.86 13.05 
15 14.96 14.94 15.01 14.63 15.01 15.09 14.98 15.08 
17 16.93 17.50 16.96 16.77 17.10 16.99 16.94 17.02 
19 19.06 18.67 18.94 18.86 18.96 18.82 19.00 19.04 
21 20.99 20.60 21.00 21.07 20.97 21.05 21.15 20.99 
23 23.34 22.98 23.09 23.00 22.74 22.98 23.19 22.93 
25 25.12 25.54 25.04 24.76 25.19 25.00 24.85 25.05 

 

  
(a) (b) 

Figure 17. Temperature characteristics after compensation: (a) SP-1 output after compensation; (b) 
SP-2 output after compensation. 

  
(a) (b) 

Figure 18. Error percentage at different temperatures after compensation: (a) SP-1; (b) SP-2. 

Figure 17. Temperature characteristics after compensation: (a) SP-1 output after compensation;
(b) SP-2 output after compensation.
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The relative error percentage before and after compensation was averaged to obtain the
relative error percentage of the sensors at different temperatures. The maximum average
relative error of the two groups of sensors was reduced to within 2% after correction. As
shown in Figure 19, the relative error of the piezoelectric ceramic sensor decreases after GA-
BP compensation, and the average relative error of the sensor basically remains unchanged
with the increase in temperature.
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Then, the temperature sensitivity coefficient and the relative error were calculated.
The sensitivity coefficient αs is shown in Equation (7), and the relative error o at full scale is
shown in Equation (8):

αs =
Umax − Umin

(T2 − T1)Umax
(7)

=
Umax − Umin

Umax
(8)
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where:

• Umax is the maximum values of different temperatures under the same calibration
pressure;

• Umin is the minimum value.

Among them, Umax − Umine the maximum value, T2 represents the upper value, T1
represent the lower value.

Using the above equations, the sensitivity coefficient before and after compensation
and the relative error at full scale were calculated, respectively. The calculation results are
shown in Table 12.

Table 12. The sensitivity coefficient and the relative error calculation results at the full range.

SP-1
Before compensation αs = 1.0192 × 10−2 ◦C−1 o = 30.5%
After compensation αs = 1.896 × 10−4 ◦C−1 o = 1.42%

SP-2
Before compensation αs = 0.635 × 10−2 ◦C−1 o = 28.57%
After compensation αs = 4.078 × 10−4 ◦C−1 o = 3.67%

6. Conclusions

When the PZT sensor is used as a dynamic-weighing monitoring device, the im-
provement in detection accuracy and sensitivity is greatly limited due to the influence of
temperature on the polarization intensity of the piezoelectric materials. In this paper, a PZT
sensor suitable for a road traffic environment was designed, its temperature characteristics
were studied, and the influence of the law of temperature on the performance of the sensor
was analyzed according to the experimental results. After analyzing the results of the two
compensation algorithms, the following conclusions can be drawn:

(1) In this study, a piezoelectric sensor for a road Weigh-In-Motion (WIM) system was de-
signed with piezoelectric ceramic as the core material. The sensor had the advantages
of small volume, high reliability and easy construction;

(2) In this paper, polynomial fitting and a GA-BP neural network were used to compen-
sate for the output results. Compared with R2 and RMSE, the compensation effect
of the GA-BP neural network was far better than that of polynomial linear fitting
compensation, and the temperature compensation effect was obvious; this shows
that the GA-BP temperature compensation model can better weaken the influence of
temperature on sensor output;

(3) In order to measure the performance index of the sensor after compensation, the
temperature sensitivity drift of SP-1 was reduced from 1.0192 × 10−2 ◦C−1 to
1.896 × 10−4 ◦C−1, and the relative error at full scale was reduced from 30.5% to
1.42%, which was greatly improved. SP-2 also achieved the same effect. The measure-
ment accuracy and sensitivity of piezoelectric ceramic sensor were improved.

At present, research on the temperature characteristics of piezoelectric sensors and
temperature compensation methods for piezoelectric sensors are still in their initial stages.
Compared with the commonly used temperature compensation methods, this paper used a
genetic algorithm to optimize a BP neural network, in order to improve the accuracy and
sensitivity of temperature compensation. When the new piezoelectric ceramic sensor with
temperature compensation is used as the dynamic weighing device, its detection accuracy
can be effectively improved.
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