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Abstract

Although previous studies on structural equation modeling (SEM) have indicated that the

second-order latent growth model (SOLGM) is a more appropriate approach to

longitudinal intervention effects, its application still requires researchers to collect at least

three-wave data (e.g. randomized pretest, posttest, and follow-up design). However, in

some circumstances, researchers can only collect two-wave data for resource limitations.

With only two-wave data, the SOLGM can not be identified and researchers often choose

alternative SEM models to fit two-wave data. Recent studies show that the two-wave

longitudinal common factor model (2W-LCFM) and latent change score model

(2W-LCSM) can perform well for comparing latent change between groups. However, there

still lacks empirical evidence about how accurately these two-wave models can estimate the

group effects of latent change obtained by three-wave SOLGM (3W-SOLGM). The main

purpose of this dissertation, therefore, is trying to examine to what extent the fixed effects

of the tree-wave SOLGM can be recovered from the parameter estimates of the two-wave

LCFM and LCSM given different simulation conditions.

Fundamentally, the supplementary study (study 2) using three-wave LCFM was

established to help justify the logistics of different model comparisons in our main study

(study 1). The data generating model in both studies is 3W-SOLGM and there are in total

5 simulation factors (sample size, group differences in intercept and slope, the covariance

between the slope and intercept, size of time-specific residual, change the pattern of



time-specific residual). Three main types of evaluation indices were used to assess the

quality of estimation (bias/relative bias, standard error, and power/type I error rate). The

results in the supplementary study show that the performance of 3W-LCFM and

3W-LCSM are equivalent, which further justifies the different models’ comparison in the

main study. The point estimates for the fixed effect parameters obtained from the two-wave

models are unbiased or identical to the ones from the three-wave model. However, using

two-wave models could reduce the estimation precision and statistical power when the

time-specific residual variance is large and changing pattern is heteroscedastic

(non-constant). Finally, two real datasets were used to illustrate the simulation results.
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General Audience Abstract

To collect and analyze the longitudinal data is a very important approach to understand

the phenomenon of development in the real world. Ideally, researchers who are interested

in using a longitudinal framework would prefer collecting data at more than two points in

time because it can provide a deeper understanding of the developmental processes.

However, in real scenarios, data may only be collected at two-time points. With only

two-wave data, the second-order latent growth model (SOLGM) could not be used. The

current dissertation compared the performance of two-wave models (longitudinal common

factor model and latent change score model) with the three-wave SOLGM in order to

better understand how the estimation quality of two-wave models could be comparable to

the tree-wave model. The results show that on average, the estimation from two-wave

models is identical to the ones from the three-wave model. So in real data analysis with

only one sample, the point estimate by two-wave models should be very closed to that of

the three-wave model. But this estimation may not be as accurate as it is obtained by the

three-wave model when the latent variable has large variability in the first or last time

point. This latent variable is more likely to exist as a statelike construct in the real world.

Therefore, the current study could provide a reference framework for substantial

researchers who could only have access to two-wave data but are still interested in

estimating the growth effect that supposed to obtain by three-wave SOLGM.
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Chapter 1

Introduction

The study of change has been a pervasive topic in the social sciences for generations. For

example, developmental psychologists have proposed many theories to account for the

development of cognitive ability such as vocabulary in young children (Brooks & Meltzoff,

2008; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991). Similarly, in criminology,

researchers found that antisocial behaviors for adolescents generally have a quadratic shape

as a function of their age (Hirschi & Gottfredson, 1983; Tonry, Ohlin, & Farrington, 1991).

Unfortunately, to study change is not as easy as many researchers previously thought.

Researchers who are interested in studying the change of certain phenomena would like to

employ a longitudinal research design for collecting data. Such longitudinal data could

often pose challenges to researchers of how to conduct a proper analysis. The main issue is

that there is no single statistical procedure for analyzing longitudinal data since different

research questions dictate different data collection designs, which further leads to different

statistical models or methods (Duncan & Duncan, 2004).

Traditionally, the methods for analyzing longitudinal data could vary from univariate and

multivariate analysis of covariance to auto-regressive and cross-lagged multiple regression

techniques (Hancock, Kuo, & Lawrence, 2001). Those techniques, if their assumptions are

met, can provide useful growth information across time, but each of them has their own

limitations. For example, the causal structure in autoregressive models may not be fully

1
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reflected in the estimated parameters from the panel data (Hertzog & Nesselroade, 2003),

and repeated measures ANOVA can not deal with the unbalanced data frequently seen in

longitudinal studies because of the attrition (Raykov & Marcoulides, 2000).

In order to overcome these limitations of traditional analytic approaches, a class of methods

emerged from the framework of structural equation modeling (SEM) and that of multilevel

modeling (MLM). Under these frameworks, latent curve model from SEM perspective

(LCM, Bollen & Curran, 2006), also known as growth curve modeling (GCM) from the

MLM perspective (Raudenbush & Bryk, 2002), has gained popularity for evaluating the

developmental change of latent construct. Combining the individual and group level of

information, the LCM/GCM is not only able to provide hypothesis test on the average

initial status and rate of change, but also can detect the variation among individual growth

trajectories. The LCM, which inherited the strength of SEM, can test the adequacy of the

hypothesized growth from the overall fit indices, and incorporate the assessment of the

measurement’s property. Because of the flexibility and convenience in testing the different

hypotheses for developmental trajectories, many social scientists have argued in favor of

LCM’s superiority over other analytical approaches (Bollen & Curran, 2006; Curran &

Hussong, 2003) for time balanced design that is often employed in psychological research.

One frequent application of LCM in longitudinal studies is to detect the group differences

in developmental trajectories (e.g. control vs. treatment group, male vs. female). In the

earlier years, many researchers used to run the LCM to compare group trajectories using

composite scores as the outcome variable of repeated measure (Curran & Muthén, 1999;

Simons-Morton, Chen, Abroms, & Haynie, 2004; Willoughby, Vandergrift, Blair, &

Granger, 2007). However, recent studies started to call attention to the drawbacks of using

the composite scores, such as the mean of several items, to represent the construct of

interest at each measurement occasion. Actually, analyzing the change in this composite
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score assumes strict invariance for the measurement, which implies that every item assesses

the latent construct equally well (Hertzog & Nesselroade, 2003; Isiordia & Ferrer, 2018). In

the real world, however, this restrictive assumption is rarely met. When this measurement

invariance assumption is violated, LCM could yield bias in the estimates of the model

parameters (Leite, 2007; Wirth, 2008), especially for the focal parameter estimates of the

group or treatment effects in intervention research (Fraine, Damme, & Onghena, 2007; Kim

& Willson, 2014a). With the increasing concerns over the bias obtained from using the

composite scores, many researchers proposed an alternative model, the second-order latent

growth model (SOLGM, Meredith & Tisak, 1990) or curve-of-factors model (CUFFS,

McArdle, 1988), to overcome this limitation.

SOLGM is actually an extension of the LCM described above, which could also be called

the first-order latent curve model (FOLCM). The SOLGM incorporates a measurement

model to allow an explicit test of measurement property. The first-order factors in the

SOLGM are therefore the latent variables measured by multiple-scale items at each

measurement occasion. This common factor characterizes how well the latent construct is

measured by multiple items. The second-order factors in the SOLGM are level and shape

factors, which capture the growth trajectory of the latent construct. One often-cited major

advantage of the SOLGM is the opportunity for researchers to test the factorial invariance

across occasions of measurement. This invariance guarantees an equivalent definition of a

latent construct across measurement occasions. In the early years of the development of

LCM, this property has not received much attention among researchers who intended to

use LCM for group comparison. However, as evidence was accumulated that violating the

measurement invariance could lead to biased estimates of the group effect, many

researchers advocated the use of the SOLGM against the FOLCM, especially when their

intention was to compare the group difference in the growth trajectories (Ferrer, Balluerka,
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& Widaman, 2008; Kim & Willson, 2014a).

Although previous studies have shown that the SOLGM is a more appropriate approach to

evaluate interventions or group effects in developmental studies, its application still

requires researchers to collect at least three waves of data because it is the necessary

condition for the model identification (Bollen & Curran, 2006, p. 23). With only

three-wave data, one must fit a simple model with linear growth assumptions (Singer &

Willett, 2003, p. 10). While if one could collect data that has more than three waves, one

could posit more complex models (Singer & Willett, 2003, p. 10). But in a real-world

scenario, it often happens that data is collected only at two-time points because of limited

resources. When this happens, pretest-posttest design is still a widely used methodological

choice, especially in educational or psychological intervention studies (Alessandri, Zuffianò,

& Perinelli, 2017). For example, one may be interested in evaluating the effectiveness of an

intervention on a learning task, where participants were randomly assigned to a treatment

or control condition and the performance was assessed before and after the experimental

manipulation. When examining this kind of two-wave data, the traditional approach

researchers would rely on is to use the repeated measures t-test based on the gain/change

score. However, this analytical method gradually lost its favor among researchers because

the theoretical contributions in the 1980s and 1990s suggested that the observed change

score confounds the true change with measurement error (Rogosa, Brandt, & Zimowski,

1982; Willett, 1988). An alternative option of t-test was to use the analysis of covariance

(ANCOVA). However, ANCOVA also suffers from the biased treatment effect because of

the measurement error in pretest (Cohen, Cohen, West, & Aiken, 2013, p. 351). Because of

these shortcomings in the traditional methods, various extensions of SEM have been

advocated for the repeated measures data. Many researchers have argued in favor of

LCM/LGM’s flexibility of testing different research hypotheses related to the
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developmental trend, such as heteroscedastic residuals, nonlinear growth patterns, and

availability of overall model fit (Chan, 1998; Duncan & Duncan, 2004). In the past decade,

two models under SEM framework were frequently suggested in the literature for dealing

with two-wave data. They are longitudinal common factor model and latent change score

model. Both models are particularly useful when modeling interested variables at the

latent level because establishing a measurement model can separate true score from error

score, leading to a perfectly reliable latent score.

Longitudinal common factor model (LCFM, Grimm, Ram, & Estabrook, 2016) directly

conceptualizes the change over time in a latent variable (Finch & Shim, 2018). If two

latent variables could be represented with ηt and ηs (t < s) in two different time points

respectively in LCFM, their change could be ∆η (∆η = ηs − ηt). We therefore could

estimate the mean and variance of ∆η. When we have only two waves of measurement, a

two-wave latent change score model (2W − LCSM) can also be used to directly specify a

latent change factor across two-time points (McArdle & Grimm, 2010). One advantage of

the 2W-LCSM is that by taking just two measurement occasions, it could directly yield

parameters that are isomorphic with change-to-change theories (Henk & Castro-Schilo,

2016). The mean of the change score factor informs whether people are really changing,

and the variance of latent change score indicates whether individuals differ in their

intraindividual changes.

Some recent studies indicated that both LCFM and LCSM can perform very well for

comparing average change between groups, especially in the pretest-posttest intervention

research (Mun, von Eye, & White, 2009; Coman et al., 2013). However, there still lacks

systematic research about how accurately these models can estimate the group difference in

the amount of true change obtained from the real longitudinal data. A recent study

demonstrated that when the item-level data is available, the two-wave SOLGM with group
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covariates can still be identified with certain constraints on the common factor loading

(Alessandri et al., 2017). Moreover, their results indicated that the group difference of the

growth parameters could be estimated by the latent change model given the use of

item-level data. The latent change score model (LCSM) with a group membership

covariate is mathematically equivalent to the LCFM with a group membership covariate

under SEM framework. With the availability of the multiple indicators at each time point,

both LCFM and LCSM can include the measurement-error-free construct, which adds

validity and reliability to each assessment compared to the FOLGM, which uses a single

measurement as composite scores at each occasion (Newsom, 2015, p. 259). Most

importantly, by removing the measurement error, the inflated variance of the composite

score could be corrected. With these advantages of using multiple indicators, fitting the

two-wave LCFM or LCSM to estimate the fixed effects of the linear growth parameters

should be reasonably accurate.

Miyazaki (2017) examined the quality of the estimate of the change in the two-wave LCFM

model when item-level information is available. In his Monte Carlo Simulation study, he

demonstrated that the two-wave LCFM produced accurate estimates of the fixed effects

(average initial status and growth rate) of the three-wave SOLGM. However, the simulation

conditions in his study were very limited. For instance, the size of the time-specific error

was fixed to be equal across time, which may be not realistic to capture real-world

scenarios. In addition, there was no group covariate in the model so the hypothesis that

the growth process might systematically differ across groups could not be evaluated. Other

simulation parameters such as sample size were also fixed at certain values.

The main purpose of the current study is to examine to what extent the fixed effects

parameters of the three-wave model (SOLGM) can be recovered from these two-wave

models (LCFM and LCSM) in various realistic settings through Monte Carlo Simulation.



7

The special focus is given to the estimates of group differences in the growth parameters

because examining the group difference in the growth trajectories is a very important topic

in longitudinal evaluation studies (Alessandri et al., 2017; Fraine et al., 2007). Therefore, it

is important to know how accurately we can estimate this group difference when only

two-wave data with item-level information is accessible.



Chapter 2

Literature Review

2.1 Latent Curve Model (LCM)

The LCM can be treated as a special case of Structural Equation Modeling (SEM), where

the latent variables are unobserved or unmeasured variables, and are often used as a proxy

for hypothetical constructs in social science. A typical SEM consists of the latent variable

model, which summarizes the structural relationships between the latent variables, and the

measurement model that represents the links between indicators/observed variables and

the latent variables (Preacher, Wichman, MacCallum, & Briggs, 2008).

A special case under the SEM system yields the so-called latent curve model (LCM). It has

all the advantage of SEM, including the capacity to assess the adequacy of the model fit,

the ability to accommodate the measurement errors and ability to handle missing data

efficiently (Preacher et al., 2008). Compared with the traditional analytic techniques for

the longitudinal data such as repeated measures analysis of variance (ANOVA) and

multivariate analysis of covariance (MANCOVA) which focus on the average growth or

change, the LCM is able to allow researchers to directly examine both the intraindividual

(with-person) changes across time and interindividual (between-person) differences in the

changing patterns. Another advantage of LCM is its ability to investigate the antecedents

and consequences of the change.

8
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2.1.1 Unconditional Univariate LCM

In the unconditional LCM, the same observed variables are measured repeatedly across

time, and the longitudinal change is described by three latent variables: level, shape and

error (McArdle & Hamagami, 1992). The level factor represents the initial status of

individuals in the process of their development. This reference point is determined by how

the loadings of the shape factor are coded. For example, the level can be treated as the

intercept if the first measurement time is used as a reference point (Muthen & Khoo,

1998). In this case, we could explain the intercept as the initial status on the trait obtained

from the previous experiences. If the reference point is assigned to a measurement time

point other than the first (e.g. the second time point), the level represents the individuals’

status at that specific measurement time.

The shape factor actually reflects a shape of individual’s growth trajectory. If this growth

trajectory’s shape is linear, the shape factor can also be interpreted as the slope, which

indicates the linear rate of change associated with the outcome variable (McArdle &

Hamagami, 1992). The score in this slope factor indicates the expected amount of change

in the observed variable when the measurement time increases one unit.

The error variable represents the unique portion of an observed variable that can not be

explained by the the latent construct being measured. It consists of random measurement

errors and specific factors. The measurement errors are assumed to be independent with

other variables over time and have a mean of zero (McArdle & Hamagami, 1992). However,

the specific factors are allowed to be correlated over time. A general latent growth model

with T measurement occasions is represented as:



10 Chapter 2. Literature Review

yi = Λyηi + ϵi (2.1)

where yi is a T × 1 vector of the observed measurement for individual i, and ηi is the m×1

vector containing the scores of the common growth factor (αi, βi) for individual i, where αi

is referred to as the initial level factor for person i, and βi is referred to as the shape factor

for the same person i . Λy is a T ×m factor loading matrix containing initial level and

shape factors coefficients1. ϵi is the T × 1 vector of unique factor score for person i. More

explicitly, the above equation can be expressed as:



y1i

y2i

y3i
...

yti

yTi


=



1 λ1

1 λ2

1 λ3

1 λ4
... ...

1 λT



αi

βi

+



ϵ1i

ϵ2i

ϵ3i
...

ϵti

ϵTi


In the above expression (m=2), the first column of matrix Λ is a vector of ⊮s. It

corresponds to the loading of level factor (αi), while the second column consists of the

factor loadings of the shape factor (βi). In order to set up the reference point of the above

model, one of the factor loading of shape factor should be fixed to zero.

The means of the observed vector yi could be expressed in terms of the mean of the latent

variables such as E(αi) = µα and E(βi) = µβ:

E(yi) = ΛyE(ηi) = Λyµη (2.2)
1Note that in general it can have m factors, but in this dissertation, m is fixed to 2 because we only study

linear growth model.
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where µη = (µα, µβ)
t is a 2× 1 vector consisting of the mean values of level and shape

factors, i.e. E(ηi) = µη. Thus, in the above expression, we formulated a model:

ηi = µη + ζ, where E(ζ) = 0. Though often the values of λ are fitted to the actual spacing

time for the measurement occasions by assuming that the shape of growth trajectory is

linear. If there is no hypothesis on the growth trajectory, the factor loadings of the slope

(shape) factor could also be freely estimated. The difference between the slope factor

loadings can be interpreted as the amount of change occurring between two adjacent

measurement occasions (Meredith & Tisak, 1990).

If we confine the shape of growth trajectory to be a simple linear form, where the values

attached to the factor loading matrix reflect the spacing of time by setting the first time

point as the clocking of the time, the model expressed by equation 2.1 could be depicted as

in Fig 2.1.

Figure 2.1. Linear Latent Growth Model with Five Waves
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It should be Note that the diagram in Figure 2.1 follows the symbols from

McArdle-McDonald (RAM) symbolism (Kline, 2015). The triangle represents the mean

structure of the model. The following model diagrams all follow RAM symbolism.

An element-wised scalar equation which corresponds to the level 1 model in multilevel

modeling (MLM) can be written as:

yit = π0i + λtπ1i + ϵit (2.3)

where yit is an observed dependent variable for individual i measured at time point t; π0i

and π1i are initial status and slope scores for individual i, respectively; ϵit is a residual

term, where ϵit ∼ N(0, σ2). Since π0i and π1i are also random variables, so they have a

joint distribution such as πi = (π0i, π1i)
t ∼ N2(β,Ψ), where β = (β00, β10)

t and Ψ is a

2× 2 variance-covariance matrix.

The structure part of LGM, which corresponds to the level 2 in MLM, can be expressed as

a function of latent means (β00 and β10) and individual deviation from the those means

(unconditional model):

π0i = β00 + u0i (2.4)

π1i = β10 + u1i (2.5)

where β00 is the average initial status of the outcome variable y, while the β10 represents an

average growth rate (slope) of variable y. ui = (u0i, u1i)
t are the deviation of the individual

scores of growth parameters from their their population means β00 and β10, respectively.

The covariance between these two disturbances is: Cov[u0i, u1i] = ψ01. The corresponding
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matrix format of the above structural model is:π0i
π1i

 =

β00
β01

+

u0i
u1i


The variance and covariance matrix of the disturbance (ui) is Ψ, which is a 2× 2 matrix

written as:

Ψ =

ψ00 ψ01

ψ10 ψ11


The variances of the disturbance ui are equivalent to the variances of the latent factors

(π0, π1) because this is an unconditional LGM. If there are any predictors added into this

model, the variances of these disturbances become the residual variances of each factor,

which indicates the remaining variance after the effects of the initial status and slope factor

are removed.

2.1.2 Conditional Univariate LCM

The above section described the model specification and parameter estimates for the

unconditional univariate LCM that does not include any covariates in the structure part of

the model. However, if there exists individual variability in the initial levels and growth

slopes, the covariates could be incorporated to predict this variability. In general, there are

two type of variables that can be included as covariates in the model: time-invariant and

time-varying variables2(Willett & Keiley, 2000). Time-invariant variables are measured

only at one-time point and thus do not change in the model. However the time-varying

variables vary over time and are measured at multiple times. In this subsection, we will
2In current dissertation, we only consider the time invariant covariates.
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only introduce the models with the time-invariant covariate because it is the main focus in

this research. For illustration purpose, all the models introduced here just contain one

covariate.

Time-Invariant Covariate

The level 1 equation for the conditional latent growth model is the same as in the

unconditional model: yit = αi + λiβi + ϵit (general LCM) or yit = π0i + λiπ1i + ϵti (linear

LGM). The difference exists in the structure part of the model, which is the level 2 model

in multilevel modeling (MLM). In previous section, it was shown that the unconditional

LCM does not include any covariates. In contrast, the predictor is included in the

conditional LCM because we wish to assess how covariate is related to the initial level and

shape factors (See Fig.2.2)

Figure 2.2. Conditional Latent Growth Model with Five Waves

The model specification with the covariates in LCM is very flexible. For example, the

covariates may impact the outcome variable through a mediator, or they may have their
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own measurement model. The structural part of the conditional univariate LCM with a

single time-invariant covariate is described below:

π0i = β00 + β01xi + u0i (2.6)

π1i = β10 + β11xi + u1i (2.7)

xi in equation 2.6 and 2.7 is a covariate that can be either discrete or continuous. In social

science researches, a discrete covariate is frequently used. For instance, xi can be a dummy

variable representing participants’ demographic information such as gender and race

ethnicity. xi can also indicate the treatment/control assignment to the participants.

Therefore, xi is assumed to be a binary variable(i.e.,xi ∈ 0, 1). For any binary xi, the

corresponding β00 and β10 represents the average initial status (intercept) and growth rate

(slope) in the reference group (xi=0). Meanwhile, β01 and β11 represents the effects of

being a member of the other group (xi=1) on the average initial status and growth rate,

respectively. Equation 2.6 and 2.7 can be combined together in a matrix form:

π0i
π1i

 =

β00
β10

+

β01
β10

 [xi] +

u0i
u1i


In the conditional LCM, the interpretation for the disturbance ui which consists of u0i and

u1i is also different from those in the unconditional model. The disturbance ui is actually

the residual variability after the effect of the covariate xi is removed. The intercept β00 and

β10 becomes the adjusted mean when the value of xi becomes zero.
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2.1.3 Applications and Limitations of First-Order Latent Growth
Model

The above literature review mainly covered LCM/GCM when the single indicator variable

was measured across time. This model is also known as first-order latent growth model

(FOLGM) in contrast to SOLGM which will be described in the next section. A majority

of educational research involving longitudinal studies have used the first-order LGM

(FOLGM, Geiser, Keller, & Lockhart, 2013). This could be seen, for example, in research

assessing changes in students’ self efficacy (Phan, 2012), ability and skill acquisition

(Zyphur, Bradley, Landis, & Thoresen, 2007), problem-based-learning (Wimmers & Lee,

2015), and students’ attitude toward science (George, 2000).

One important application of the FOLGM can be found in longitudinal studies trying to

detect group differences in the growth patterns (e.g. control vs. treatment groups, male vs.

female). Compared to the traditional approaches such as autoregressive model or

repeated-measures ANOVA, FOLGM does offer some key advantages. For example, using

FOLGM helps examine not only the mean difference between groups, but also the group

differences in terms of variance and covariance, which were often under-addressed in more

traditional types of fixed effects models (Curran & Muthén, 1999). The latter information

may be more important for intervention programs targeting the behavior problems such as

alcohol use, reading comprehension or juvenile delinquency because interventions do not

work for all people equally well. Therefore, it is important to identify the people who

benefit most from the intervention. Another advantage of using FOLGM is that it gives

more power to detect treatment or group effects compared to more traditional fixed effect

models (Curran & Muthén, 1999). For example, Fan’s (2003) simulation study indicated

that FOLGM consistently showed a higher statistical power for detecting group differences

in the linear growth parameters (initial status and slope) than the repeated-measure
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ANOVA. Last but not least, Conceptual match between the model and the substantial

theory could be another advantage of FOLGM.

Discrete time-specific measurement, in general, is not consistent with the developmental

change of psychological theories; developmental theory typically does not assume the

change in terms of time-specific comparisons (Chan, 1998). In contrast, developmental

theory tends to posit that change happens in a continuous process over time, and this

whole process is depicted in terms of individual difference in initial level, acceleration,

plateau and deceleration (Curran & Muthén, 1999). Normally, modeling time-specific

comparisons using approaches such as repeated-measures ANOVA could not capture these

complicated types of relations across time. Thus, LCM/LGM not only provides

aforementioned statistical advantages, but also is more suited to the developmental theory.

Though LCM/LGM was quite an improvement as a model for change/growth, recent

studies started to identify the drawbacks of using FOLGM in longitudinal studies,

especially for assessing the measurement quality. For example, a simulation study (Leite,

2007) found that the FOLGM is able to produce unbiased estimates of the average growth,

variance of the initial level and growth rate, and covariance between initial level and

growth rate if the indicators are essentially tau-equivalent. However, when such

measurement invariance as tau-equivalent measures is not assumed, the FOLGM could

yield considerable bias in estimating parameters. Furthermore, the first-order LGM fails to

partition the time-specific variance and the measurement residual variance or item-residual

variance. This could reduce the estimate of the slope reliability (Newsom, 2015). More

importantly, when comparing the group difference in the growth trajectories, Kim and

Willson’s (2014a) simulation study showed that, noninvariance in factor loadings and

intercepts was associated with the Type I error inflation and bias in the parameter

estimates of the slope factor (or latent growth) and the intercept factor (or initial status),
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respectively. As the size of noninvariance increases, the magnitude of Type I error and bias

also increases. In general, to analyze change using composite scores implicitly assumes the

measurement of a construct has equivalent measurement properties across time, which

implies that every item assesses the latent construct equally well (Hertzog & Nesselroade,

2003; Isiordia & Ferrer, 2018).This restrictive assumption is rarely met in real world

analysis. When this measurement invariance assumption was violated, LCM could yield

bias in the estimates of the model parameters.

In order to overcome the above limitations inherent in the first-order LGM, researchers

integrated a common factor measurement model with the LGM, which yields the

”Second-Order Latent Growth Model” (SOLGM) or ”Curve-of-Factors Model” (CUFFS).
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2.2 Second-Order Latent Growth Model (SOLGM)

2.2.1 Model Specification and Parameter Interpretation

The second-order latent growth model (SOLGM) or multiple-indicator latent growth

model, which was proposed by McArdle (1988) and Meredith and Tisak (1990), can be

treated as an extension of the first-order latent growth model (FOLGM). It is actually a

second order model where a common factor is specified for each measurement occasion ,

and a common initial status and growth factor are specified as the second-order factors.

(Hancock et al., 2001).

The common factor part of the SOLGM captures how well the indicators measure the

latent variables under each time point. While the latent growth part determines the

characteristics of the initial status and growth shape of the latent variable across time. The

level 1 sub-model of the SOLGM is a measurement model written as :

yijt = τjt + λjtηit + ϵijt (2.8)

where yijt is the observed value of jth indicator for individual i measured at time point t.

τjt is the intercept of indicator j at time point t. Λjt is a factor loading of jth indicator at

time point t. ϵijt is a measurement error for individual i of the jth indicator at time point

t. The variance of ϵijt is represented as: Var[ϵijt] = σ2
jt.

In the measurement part of the SOLGM, the variance of the indicators can be divided into

unique variance and common variance. The unique variance consists of error variance and

specific variance. The SOLGM can assume either no specific factors influencing the

indicators, or allow the measurement errors to be correlated across time to imply the

existence of specific factors.



20 Chapter 2. Literature Review

Once the level 1 sub-model/measurement model is established, the latent growth factors

(second-order factors) can be incorporated to form the level 2 sub-model of SOLGM. This

part can be represented as:

ηit = π0i + π1iTimeit + rit (2.9)

where the ηit is a true score of person i at time t; π0i and π1i are still initial status and

growth rate scores for individual i, respectively; The rit is a time-specific latent residual of

person i at wave t, with its variance Var[rit]=θ2t .

In fact, this part of the SOLGM is similar to a univariate LGM. The only difference is that

the outcome variables in SOLGM are the latent constructs, while the outcome variables in

univariate LGM are observed variables. The loadings of the latent growth parameters in

the SOLGM can be either fixed to certain values that reflect hypothetical shape of growth,

or free to be estimated for the unspecified growth trajectory. Similar to the univariate

LGM, fixing one loading in the growth parameter to zero can help define a reference point

(initial time point) for the latent growth parameters.

Similar to conditional univariate LCM, we can add a covariate above the level 2 of SOLGM

to form a structural part, which is also called the level 3 of SOLGM. The equation for this

level is written as:

π0i = β00 + β01xi + u0i (2.10)

π1i = β10 + β11xi + u1i (2.11)

The interpretations for the parameters in equation 2.10 and 2.11 are the same as they are

in the conditional LCM. The corresponding SEM model is depicted as Fig. 2.3
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Figure 2.3. Second-Order Linear Latent Growth Model with a Covariate at Leve-3

2.2.2 Longitudinal Measurement Invariance

One of the problems that deserves greater attention for researchers who want to use

SOLGM is the longitudinal measurement invariance. In longitudinal studies, the same

measurement instruments are repeatedly used because researchers want to ensure that the

same construct should be measured over time. However, applying the same instrument

does not guarantee that the same construct is being measured across time (Widaman,

Ferrer, & Conger, 2010). For example, as time passes, the participants’ interpretation for

the items of the instrument may change. Therefore, the construct being measured would

also be different from the one measured before. As a consequence, the measured change

may be partially due to the changes in its factorial structure rather than the pure change

in the construct itself. Therefore establishing the longitudinal measurement invariance

should be demonstrated prior to employing any SOLGM.

The widely applied taxonomy to evaluate the measurement invariance in longitudinal
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context is Meredith’s (1993) approach. His approach yields four different types of

measurement invariance. These types of invariance progress from the least model

restriction to the most restriction. The least restrictive invarance, which is also called

configural invariance, requires that the pattern of the fixed and free factor loadings are the

same across different time points. The second least restrictive invariance is weak factorial

invariance. This type of invariance requires that the factor loading of each indicator is

identical across time. Next is the strong factorial invariance, which ensures that both the

factor loading and intercept of each indicator are the same across time. Finally, the most

restrictive type is the strict factorial invariance, which assumes that the intercepts, the

factor loadings and error variances are equal over time.

The process of evaluating factorial invariance should start from fitting a model with

configural invariance, which means to set the configuration of factor structure, measured

by the same set of indicators, the same across time. Then the researchers should fit the

model of weak invariance by adding across-time invariance contraints on the parameter of

loadings (λ21 = λ22 = λ23...; λ31 = λ32 = λ33...). Third, the strong factorial invariance

should be examined, where the across-time contraints on the intercepts are added based on

the previous contraints (τ21 = τ22 = τ23....; τ31 = τ32 = τ33....). Finally, the model with

strict factorial invariance can be fitted to data by placing the further contraints on the

error or unique variances (θ11 = θ12 = θ13...; θ21 = θ22 = θ23...).

The previous sequence of constraining models progressively shows the optimal order of

testing the measurement invariance. To compare the fit across models, the likelihood ratio

chi-square difference test can be conducted because of the nested structure underlying each

successive model (Widaman et al., 2010). However, since the statistic power of the

likelihood ratio test will go up with the increase of the sample size, difference in practical

fit indices such as the comparative fit index, the Turcker-Lewis index, and the root mean
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square of error should also be considered when comparing different models (Bentler &

Bonett, 1980; Rigdon, 1996).

Horn and Mcardle (1992) and Meredith (1964) argued that in order to meaningfully

interpret the factor score, at least the strong invariance should be held across time. In

other words, the configural or weak invariance are insufficient to argue that the same latent

variable is measured at different time points. As demonstrated by Ferrer et al. (2008), if

factorial invariance fails to be held, choice of indicator used to identify the latent variable

can have substantial influence on the characterization of patterns of growth. Furthermore,

the comparison between groups is also meaningless if the strong invariance can not be

reached.

2.2.3 Advantages of SOLGM

There are several advantages of using latent variable to reflect the measured construct.

First, the SOLGM should have higher reliability than the first-order LGM, which further

lead to greater statistical power. This is because the observed variance at each time is

partitioned into measurement residual variance and factor variance:

V ar(yi) = λ2ijΨjj + V ar(ϵi) (von Oertzen, Hertzog, Lindenberger, & Ghisletta, 2010). So

the time-specific variance should be reduced. This reduced time-specific variance could

improve the reliability estimates. Second, researchers can also model different error

structure across time, which can not be done by the first-order LGM. For example, people

could include the autocorrelated measurement residuals to account for the stable specific

variances (Newsom, 2015). The recent empirical study further emphasized that SOLGM is

more preferred when trying to model the different growth trajectories between groups

because noninvarince measure could lead to substantial bias in estimating the group
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difference in the growth parameters (Kim & Willson, 2014a).

One thing that should be noted here is that using the multiple indicators for each occasion

does not provide special advantage over the first-order LGM in estimating factor means.

The measurement errors actually do not impact the expected measurement mean

(Newsom, 2015, p. 7). Meanwhile because the factor (intercept and slope) means are a

function of observed means (Newsom, 2015, p. 175), the mean estimate of intercept and

slope would also remain unchanged. Although previous studies have shown SOLGM is a

more appropriate approach to model intervention or group effects in developmental studies,

a standard SOLGM with no special constraints requires at least three time points

(Newsom, 2015; Bollen & Curran, 2006, p. 207 and p. 23). In fact, the minimum

requirement of three-wave measurement is always a “golden standard” for conducting a

longitudinal study, because it provides enough information to fit at least a simple linear

model to each individual (Singer & Willett, 2003, p. 11).

However in reality, there are many times that the cost of data collection is high, or staying

contact with participants is very challenging, data collection may only be limited with only

two waves. The standard SOLGM with group covariate in two-wave data can not be

empirically identified without any constrains. Recently, two related SEM models are

frequently suggested to deal with two-wave data. They are longitudinal common factor

model and latent change score model. For the remaining chapters, we will review these two

models.
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2.3 Longitudinal Common Factor Model (LCFM)

2.3.1 Model Specification and Application

Longitudinal common factor model (LCFM, Grimm et al., 2016), is a special application of

confirmatory factory analysis in the longitudinal study, where the common factor is

extracted in each wave. The level 1 sub-model/measurement model for each time can be

written as:

yijt = τjt + λjtηit + ϵijt (2.12)

where yijt represents the observed score of individual i (i = 1, . . . , N) on indicator

j (j = 1 . . . k) at measurement time t (t = 1 . . . T ). τjt is the intercept for the indicator j at

time t. λjt is the factor loading for person i at time t. ηit represents the latent construct

score for person i at measurement time t, ϵijt is the unique factor score for person i at time

t. The intercepts and factor loadings can be estimated directly, but a person’s score on a

unique factor can not be fully estimated. Furthermore, the mean and variance of the latent

construct can also be estimated. The level 2 of LCFM can be represented as:

ηit = κt + γtxi + ζit (2.13)

where κt is an intercept for ηjt,γjt is the regression coefficient of xi, and ζit is a residual

term.

To date, the LCFM is mainly used to address questions such as ”are the constructs

measured equivalently across time?” in longitudinal study (Little, Preacher, Selig, & Card,

2007). In developmental research, the key assumption that the construct is measured in the

same metric across time should be first examined before any analysis. If the construct

being measured changes over time, the observed growth may be mainly due to the change
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in the factorial structure of this construct. Therefore rather than assuming it to be true,

researchers can formally test this hypothesis using the LCFM.

In addition, LCFM can also be used to address some validity-issues. Because of the

repeated measure of the same construct, these validity issues could be assessed more

rigorously compared to the cases using cross-sectional data. For example, the content

validity of research construct could be assessed by testing the patterns and magnitude of

factor loadings and intercepts as well as configural invariance (Little et al., 2007). The

criterion of construct validity can be addressed in a number of ways. One way is to

examine whether the concurrent pattern of relations among constructs could be replicated

across occasions (Little et al., 2007). Another way is to examine the cross-time associations

among constructs to confirm if they follow the expected patterns (Little et al., 2007).

2.3.2 Two-Wave LCFM

Beyond the test of measurement invariance, a recent study demonstrated that LCFM could

also be applied to model the change across time (Finch & Shim, 2018). For example, if we

are modeling a latent variable η, which is measured at two time points (Figure 2.4), the

change of this latent variable across time for individual i can be represented as:

△ ηi = ηi2 − ηi1 (2.14)

Similarly, we can model the change over time for the indicator yi, using the difference score:

△ yi = yi2 − yi1 (2.15)

Finally, by combining equations 2.14 and 2.15 with equation 2.13, we can construct and

estimate the measurement model for the difference factors:
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△ yi = τ△ηi + λ△ηi △ ηi + ϵ△i
(2.16)

The LCFM can incorporate other structural model forms such as the multiple indicators

multiple causes (MIMIC) model. Furthermore, it is also very convenient to add covariates

above the common latent factors to describe what variables can influence this latent change

over time. One normal case is to add a dichotomous variable to predict the latent change

score. In this way, one can assess whether two groups experience the similar change in the

latent construct. Finally, by testing the measurement invariance, it would be likely to

determine whether the relationships between the change of indicators (△y) and their latent

change factor (△η) are same across groups.

Figure 2.4. 2W-Longitudinal Common Factor Model with a Covariate
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2.4 Latent Change Score Model (LCSM)

The latent change score model (LCSM) is a framework of studying longitudinal change

which combines the autoregressive cross-lag and latent curve models for the panel data

(Grimm, An, McArdle, Zonderman, & Resnick, 2012). Under this framework, the simplest

latent difference score model is to explicitly specify a latent difference factor over

consecutive waves of data (Newsom, 2015). Recently, LCSM has become a powerful and

flexible SEM modeling approach that investigates a wide range of developmental process

with relative ease. This section will introduce the basic concepts and specification of LCM .

2.4.1 Univariate Latent Change Score Model

In this section, we started from the simplest cases, the univariate LCSM. The key idea is

that we could represent the difference between two adjacent measurement within the

autoregressive structure (Newsom, 2015). The residual is equal to the difference score if yt

is regressed on yt−1 with the autoregressive slope weight fixed to 1. For a simple example

written as a structure model, the equation:

yit = βt,t−1yt−1 + ςit (2.17)

When βt,t−1, the autoregression coefficient, is fixed to 1, the above equation can be

rearranged to show that the residual can be expressed as the difference between two

observed scores:

yit = βt,t−1yi,t−1 + ςit (2.18)

yit = (1)yi,t−1 + ςit (2.19)
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ςit = yit − yi,t−1 (2.20)

With the above equations, the average residual is taken by averaging the difference scores

across all cases, E(ςit) = E(yit − yi,t−1). Based on the linear property of expectation

operation, the expectation operation could be taken before the summation or subtract. So

E(ςit) = E(yit − yi,t−1) = E(yit)− E(yi,t−1). Therefore, the direct test of the significant

mean change is equal to a paired t-test or repeated measures ANOVA (Coman et al., 2013)

If we relabel the residual ςit with ∆yt,t−1 in equation (2.20) and fix the βt,t−1 to 1, the score

from the following time point can be defined as the score at the previous time point plus

the difference score:

∆yt,t−1 = yit − yi,t−1 (2.21)

yit = yi,t−1 +∆yt,t−1 (2.22)

Equation 2.22 set up the foundation of latent change score model (LCSM) because this

formulation can be expanded to the model with a series of change. In the SEM context,

the simple difference score ∆yt,t−1 can be specified as a latent change score factor ∆ηt.

This simple change score factor is estimated by second measures, yti with its loading fixed

to 1. yti is then predicted by measure at the previous time yt−1 with the path coefficient

set equal to 1. These operations create a latent factor that represents the change between

the previous time point and following time point. Finally, a regression coefficient β is

added to the path between the previous measure yt−1 and the latent change factor ∆ηt,

which allows us to test how much degree of change is associated with the measures at

previous time. With the model formed in the above manner, the latent change factor is

now explicitly defined as the part of yit that is not identical to yi,t−1 (McArdle, 2009). We
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therefore can directly estimate and test questions about the change happened in between

two time points. The traditional statistical features of the change score are all included as

model parameters such as the average of the change (µ∆η), the variance of the change

factor (σ2
∆η) and the covariance between the change scores and the initial scores (σ∆ηη1).

For example, we can now test the hypothesis of whether there is a reliable mean change

from the two time points by forcing the mean difference to be zero (µ∆η=0). Under this

simple assumptions it fully replicates the paired t-test. Another parameter of considerable

interest is the variance of in the latent change factor, σ2
∆η. We can use the same model to

test whether there is an individual difference in the change score (σ2
∆η=0). Finally, we can

test the covariance or autoregressive relationship between the score in the initial point and

the change score. This captures the extent to which the change is related to or

proportional to the scores at the initial time (Kievit et al., 2018).

2.4.2 Multiple Indicator Univariate Latent Change Score Model

The previous section introduced the LCSM based on the observed variables, which assumed

there is no measurement error and the observed variables can perfectly reflect the true

latent variables. We now expand the previous models by adding the explicit measurement

model, where the true latent variable is measured by several indicators. In this section, we

will describe the multiple indicator, univariate latent change score model for the purpose of

modeling change in terms of the latent variables rather than the observed variables.

To establish this model, we first need to illustrate the association between the latent

variable and the indicators under the tradition of confirmatory factor analysis. The level 1

of LCSM/measurement model is expressed as:

yijt = τjt + Λjtηit + ϵijt (2.23)
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Since the above measurement model is the same as the LCFM, the interpretations for the

parameters will be the same as before.

The Level 2 sub-model/structural part of the mulitple indicator LCSM takes the following

form:

ηi2 = ηi1 +∆ηi (2.24)

where ηi1 and ηi2 are factor scores for the same person i at time 1 and time 2. ∆ηi is the

latent change score for person i. As with other models, it is important to establish

measurement invariance over time or across groups to improve inference, as was

demonstrated in previous section. There are several advantages to use multiple indicators

LCSM, but these advantages do not influence the estimate of the average of the difference

score factor, because the expected value of any observed variable is not biased by random

measurement error (Newsom, 2015).

Although including the multiple indicators does not benefit for estimating the average of

the difference scores, there are still some advantages to use multiple indicators at each

occasion. First, one can specify the correlated measurement residuals to account for the

method variance among repeated measurements of each indicator (McArdle, 2009). This

will improve the estimates of the correlations between intercept and slope factors, or

between intercept and difference factor (McArdle, 2009). Second, compared to the single

measurement at each time point, multiple measures of the same construct at each occasion

can add reliability to each assessment. Last but not least, the estimate of variance of latent

score is inflated by the existence of measurement error, and this inflation is compounded

when the composite is derived from individual measurement, such as difference score. As a

consequence, multiple indicators should improve the precision of the difference score,

increasing the power of significance tests for the factor means and the effect of covariates
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(Newsom, 2015).

2.4.3 Two-Wave Latent Change Score Model

The two-wave LCSM (2W-LCSM) is a type of the multiple indicator univariate latent

change score model (Figure 2.5). Its design is well suited to investigate change-to-change

hypothesis for the two-wave data. The 2W-LCSM purges latent construct from

measurement error by using multiple items (Henk & Castro-Schilo, 2016). At each time of

measurement, the model shares the same measurement part:

yit = τjt + λjtηit + ϵijt t = 1, 3 and i = 1...N (2.25)

The Level 2 sub-model is:

ηi3 = ηi1 +△ηi (2.26)

where the subscripts 1 and 3 specify time point, △ηi is vector containing latent change

score for each person i from time 1 to time 3. One implicit assumption for the above

equation is that factor loadings and intercepts are same across time (i.e strong factor in

variance) (Henk & Castro-Schilo, 2016). Although the strict factor invariance can be tested

by adding equality constraint across time to the unique factors, it is not required for the

model.

Recently, the 2W-LCSM has been proposed to estimate the relationships in change over

time for latent variable with only two time points (Henk & Castro-Schilo, 2016). The later

empirical study indicated that 2W-LCSM is a powerful tool for modeling change with

two-wave data (Henk & Castro-Schilo, 2016).
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Figure 2.5. 2W-Latent Change Score Model with a Covariate
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2.5 Problem Statement and Research Questions

2.5.1 Problem Statement

The previous literature review showed that the second-order latent growth model

(SOLGM) is the more appropriate approach to compare the group differences in the linear

growth trajectories when multiple items are available at each time of measurement.

However, the application of it still requires at minimum three waves of data, which may be

difficult to realize in some situations. Actually, we can not neglect the fact that there will

inevitably be certain times when only two-wave data has been collected for longitudinal

study. At that moment, the SOLGM can not be used because of the identification issue.

The choices for researchers are either to wait until the remaining wave of data are collected

or to choose alternative models to do analysis.

As demonstrated from the above literature review, two models (LCFM and LCSM )

recently have been suggested for dealing with two-wave data. To date, the main

application of LCFM was used to address the issue of whether constructs measured are

equivalent across time in longitudinal study. This is a starting point for any further model

testing in longitudinal study. However, Miyazaki’s (2017) recent study showed that

two-wave LCFM could also provide accurate estimate of initial status and linear growth

rate parameters by taking the mean difference of true scores (i.e., expectation of true

difference score). This is a pioneering work shedding light on possible applications of

LCFM in estimating linear growth trajectory. Two-wave latent change score model is

another model, proposed by Henk and Castro-Schilo (2016), to detect the change-to-change

relationships. The characteristic of this model is that multiple items are used to specify a

latent variable at each of two occasions. To add this measurement model can separate true

score variance from unique variance, leading to a perfectly reliable latent change score. A
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later simulation study (Finch & Shim, 2018) revealed this model could yield accurate

estimates of the correlation between changes in latent constructs. However, no study has

been done to examine how well the 2W-LCSM could be used to estimate the group

differences in linear growth trajectories.

To sumarize, including the measurement model at each occasion can extract the error-free

constructs, which helps attenuate the inflated variance of composite difference score.

(Newsom, 2015, . p259). As a consequence, the precision of the estimate and the statistical

power of detecting the group effect should be increased (Newsom, 2015, . p260). With

these advantages, using the two-wave LCFM and LCSM to estimate the fixed effects of

linear growth parameters should be better than the using the composite score at each

occasion. However, there is little empirical evidence to show how much this estimation

could be improved, especially the precision of estimates.

The current research refers to Miyazaki’s (2017) study design, but puts more focus on the

the group differences in the linear growth parameters. The reason is that investigating the

systemic differences in the growth trajectories between groups is still a very popular topic,

especially in the longitudinal intervention studies. A commonly used intervention design

for a short time series is randomized pretest, posttest, follow-up or pre–post–post designs,

where the long-term intervention effects could be recorded. Based on previous studies, the

SOLGM will be the ideal approach to evaluate this long term intervention effect. However

in practice, researchers often face different challenges to collect three waves of data.

Accordingly, the use of pretest-postest design is widely accepted choice in educational or

psychological intervention fields (Finch & Shim, 2018).

The most recent advances in methodological research already shed light on the potential of

LCFM and LCSM to estimate the growth trajectory. However, there is still a lack of
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empirical evidence about the accuracy of these two models when they are being used to

estimate the linear growth parameters. Therefore, the main purpose of the current research

is trying to explore to what extent the fixed effects of the three-wave model (SOLGM) can

be recovered from the parameter estimates of the two-wave models (LCFM and LCSM).

2.5.2 Research Questions

The results in Miyazaki’s (2017) study showed that the estimation of the fixed effects via

LCFM was sufficiently precise. However, the assumption of homoscedasticity for time-

specific variances in his study is often violated in real development study. In addition,

researchers are often interested in comparing the group differences (e.g. males vs female or

treatment vs control groups) in their growth trajectories,but Miyazaki’s findings do not

address these issues.

Thus, the present dissertation will develop Miyazaki’s research through a number of

methods: (1) A binary corariate indicating group membership will be added to the

data-generation (SOLGM) and analytical models (LCFM and LCSM); (2)According to the

literature review, LCSM wiil be added to pair with LCFM as analytical models. (3)

Data-generating conditions will be extended by manipulating (a) sample size, (b) mean

group difference in intercept and slope, (c) covariance between intercept and slope, and (d)

size and pattern of time-specific residuals. Given the research background above, the main

research questions in the current study are:

1. Can the two-wave conditional LCFM and LCSM recover the parameter of the fixed

effects of the conditional SOLGM?

2. What factors could influence the accuracy and statistical power in detecting the fixed
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effects of the three-wave conditional SOLGM by the two-wave models?



Chapter 3

Methods

In this section, we first used mathematical operations to demonstrate how the fixed effects

parameters in the three-wave model (i.e. SOLGM) could be derived from the parameters of

the two-wave models (LCFM, LCSM). Then, two simulation studies will be conducted to

explore our research questions. For the simulation studies, the item-level data will be first

generated from the three-wave SOLGM with a binary covariate that represents group. Six

experimental factors will be manipulated for the data-generating conditions: (a) sample

size; (b) average group differences in intercept and slope; (c) covariance between the slope

and intercept; (d) size and patterns of time-specific residuals. Next, the LCFM, LCSM and

SOLGM with the group covariates will be used as the analytic models. They are expected

to produce equivalent estimates in terms of the fixed effects. Finally, this study will

examine the effects of these experimental factors on the accuracy and statistical power in

detecting the fixed effects of the three-wave model by the two-wave models.

3.1 Mathematics Form of Different Models

3.1.1 Second-Order Latent Growth Model (SOLGM)

Level 1 (measurement model):

yijt = τju + λjtηit + ϵijt (3.1)

38



3.1. Mathematics Form of Different Models 39

yijt is the observed score for person i of the indicator j at time t, λjt is the factor loading of

the indicator j at time t. ηit is the latent factor score for individual i and time

measurement t and ϵijt is the error score for person i of indicator j at time t.

level 2 (growth model):

ηit = π0i + π1iTimeit + rit (3.2)

π0i and π1i are intercept and slope factor for individual i, respectively. They have a joint

distribution such as πi=(π0i π1i)
t ∼ N2, (β,Ψ) where,

β = (β00, β10)
t,Ψ = ψkl (k, l = 0, 1). Timeit represents the time variable created by

researchers. rit is the time specific latent residual for person i at time t, with variance:

Var[rit]=θ2t

Level 3 (structural model)

π0i = β00 + β01xi + u0i

π1i = β10 + β11xi + u1i

(3.3)

β00 and β01 are the average initial status for control group and average group difference in

the initial status, respectively. β01 and β11 are the average growth rate for control group,

and average group difference in the growth rate. xi is the binary covariate value for

individual i. u0i and u1i are the conditional disturbances for person i, where

(u0i, u1i)
t ∼ MVN(O,Ψ)

3.1.2 Two-Wave Longitudinal Common Factor Model
(2W-LCFM)

Level 1 ( Measurement Model )

yijt = τju + λjtηit + ϵijt ϵijt ∼ N(0, σ2) (3.4)
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the interpretation of this equation is the same as equation 1.

Level 2 ( Structure Model )

ηit = κt + γtxi + ςit (3.5)

κt and γt are the regression intercept and regression coefficient for the measurement t. ςit is

the residual term for person i at time t, where COV[ς] = Φ = ϕkl (k, l = 0, 1).

3.1.3 Two-Wave Latent Change Score Model (2W-LCSM)

ηi3 = ηi1 +△ηi

△ηi = κ△ + γ△xi + ς△i

(3.6)

△ηi is the latent change score for individual i. △ηi and γ△ are the regression intercept and

coefficient for person i. ς△i is the regression residual.

3.2 Correspondence between Parameters in Different
Models

If we substituted 3.3 into 3.2, we could obtain:

ηit = π0i + π1iTimeit + rit

= β00 + β01xi + u0i + (β10 + β11xi + u1i)Timeit + rit

= (β00 + β10Timeit) + (β01 + β11Timeit)xi + u0i + u1iTimeit + rit (7)

= κt + γtxi + ςit
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where β00 + β10Timeit = κt and γt = β01 + β11Timeit. When we analyze a two-wave data

(i.e., t ∈ {1, 3}), the time variable could be rearranged and coded as Timei1 = 0 and

Timei3 = 1, which indicate that the duration between t1 and t3 becomes unit level.

Therefore, by substituting the value 0 or 1 into the time variable from equation 7, we could

obtain the following relationships between parameters

κ1 = β00

κ3 = β00 + β10

γ1 = β01

γ3 = β01 + β11

ςi1 = u0i + r0i

ςi3 = u0i + u1i + ri3

Furthermore, with the assumption that: E[u0i] = E[u1i] = E[rit] = 0, we can derive:

E[ηi1|xi = 0] = κ1 = β00

E[ηi3 − ηi1|xi = 0] = κ3 − κ1 = β10

E[ηi1|xi = 1]− E[ηi1|xi = 0] = γ1 = β01

E[ηi3 − ηi1|xi = 1]− E[ηi3 − ηi1|xi = 0] = γ3 − γ1 = β11

Based on the above relationships between different parameters, we could estimate the fixed

effects parameters of the SOLGM (β00, β10, β01, β11) from the parameters of LCFM

(κ1, κ3, γ1, γ3) and vice verse. However, In contrast to the fixed effects, variance

components of SOLGM cannot be estimated from the parameters of LCFM. This can be

demonstrated from the following relationships:
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V ar[ηi1] = ψ00 + θ21 > ψ00 = V ar[π0i]

V ar[ηi3 − ηi1] = ψ11 + θ21 + θ23 > ψ11 = V ar[π1i]

Cov[ηi1, ηi3 − ηi1] = ψ01 − θ21 < ψ01 = COV [π0i, π1i]

Similar to the above reasoning process, we could also derive the correspondence between

fixed parameters of SOLGM and LCSM. From the equation3.6 , we could obtain:

E[△ηi|xi = 0] = κ△ = β10

E[△ηi|xi = 1]− E[△ηi|xi = 0] = γ△ = β11

Thus, we can also obtain the estimates of the fixed effects of SOLGM from those of LCSM

(κ△, γ△).

3.3 Study 1

3.3.1 Data Generation Conditions

The software R (version 3.6.1) with the package lavaan (version 0.6-5) was used to conduct

the whole simulation study. All the datasets in study 1 were generated from the SOLGM

under different conditions. These conditions were summarized in the following table 3.1
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Table 3.1

Summary of the Data Generation Condition
Factors Levels

Sample Size (n) 50, 200, 600,1000
Average group differences in intercept and slope (β01, β11) (0,0), (3,0), (0,2), (3,2)

Covariance between the slope and intercept (ψ01) 0, 1, 1.5
Size of time-specific residual (θ22) 0.25, 1, 4
Patterns of time-specific residuals Low Edge Pattern(0.25θ22, θ22, 0.25θ22)

High Edge Pattern(4θ22, θ22, 4θ22)
Moderate Shrinking Pattern(2θ22, θ22, 0.5θ22)
Heavy Shrinking Pattern(4θ22, θ22, 0.25θ22)

Constant Pattern (θ22, θ22, θ22)
Moderate Spreading Pattern(0.5θ22, θ22, 2θ22)
Heavy Spreading Pattern (0.25θ22, θ22, 4θ22)

First, the binary covariate xi was generated, which simulated participant’s group number

(xi ∈ {0, 1}). Since the balanced design was chosen for the current study, xi were set at

xi=0 for i = 1, 2, ...N
2
, and xi = 1 for i = N

2
+ 1, N

2
+ 2..., N , where N is the sample size.

The simulated sample sizes were 50, 200, 600, and 1000. With regards to the random effect

for each person, the variances of initial status and linear growth rate were set at ψ00=4 and

ψ11 = 1. In terms of the covariance between the initial status and growth rate ψ01, three

levels were assumed, namely ψ01 ∼ 0, 1, 1.5. This made the correlation between initial

status and growth rate Cor[π0i, π1i] to at three levels (0, 0.5, 0.75). Then a random effect

vector u was generated from a bivariate normal distribution N2(O,Ψ), where

Ψ =

ψ00 ψ01

ψ01 ψ11


For the fixed effects, the average initial status and growth rate for the control group were

fixed at (β00, β10)=(10,1). Moreover two cases that whether there exists the group

difference in the initial status and growth rate were considered; four sets of (β01, β11) were

assumed: (0,0),(3,0),(0,2),(3,2). Given these parameter values, individual intercepts and

slopes π0i and π1i were calculated by using the equation 3.3.
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Second, true score of the latent construct ηit was generated according to equation 3.2,

where Timeit variable was coded as Timeit=0, 0.5, 1 for t=1, 2, 3. For the time specific

residual variance θ2t , the three different sizes were simulated: small size (θ22=0.25), medium

(θ22=1), and large size (θ22=4). θ21 and θ23 are determined by relating θ22 in different ways,

which resulted into seven different changing patterns. They are: Low Edge Pattern (0.25θ22,

θ22, 0.25θ22), High Edge Pattern(4θ22, θ22, 4θ22), Moderate Shrinking Pattern (2θ22, θ22, 0.5θ22),

Heavy Shrinking Pattern (4θ22, θ22, 0.25θ22); Constant Pattern (θ22, θ22, θ22), Moderate

Spreading Pattern (0.5θ22, θ22, 2θ22), Heavy Spreading Pattern (0.25θ22 ,θ22, 4θ22). Based on

these settings, the the time specific residual rit were generated form a normal distribution

N(0, θ2t ). Note that Cov[rit,rit‘]=0

The settings were determined so that the relative proportion of θ2t varied within a

reasonable range. Since the variance of ηit is structured by the variance components such

that: V ar[ηit] = ψ00 + ψ11Time
2
it + 2ψ01Timeit + θ2t . The quantity θ2t /V ar[ηit] varies as

shown from tables 3.2 to 3.4.

Table 3.2

Relative Size of Time-Specific Variance in the Simulation when ψ01 = 0
Growth-Related Variance/ Covariance Time-Specific Variance Relative Size of θ2t
ψ00 ψ11 ψ01 Cor[π0i, π1i] θ21 θ22 θ32 θ21/ Var[ηi1] θ22/ Var[ηi2] θ23/ Var[ηi3]

4 1 0 0 0.0625 0.25 0.0625 1.54% 5.56% 1.23%
4 1 0 0 1 0.25 1 20.00% 5.56% 16.67%
4 1 0 0 0.5 0.25 0.125 11.11% 5.56% 2.44%
4 1 0 0 1 0.25 0.0625 20.00% 5.56% 1.23%
4 1 0 0 0.25 0.25 0.25 5.88% 5.56% 4.76%
4 1 0 0 0.125 0.25 0.5 3.03% 5.56% 9.09%
4 1 0 0 0.0625 0.25 1 1.54% 5.56% 16.67%
4 1 0 0 0.25 1 0.25 5.88% 19.05% 4.76%
4 1 0 0 4 1 4 50% 19.05% 44.44%
4 1 0 0 2 1 0.5 33.33% 19.05% 9.09%
4 1 0 0 4 1 0.25 50% 19.05% 4.76%
4 1 0 0 1 1 1 20% 19.05% 16.67%
4 1 0 0 0.5 1 2 11.11% 19.05% 28.57%
4 1 0 0 0.25 1 4 5.88% 19.05% 44.44%
4 1 0 0 1 4 1 20% 48.48% 16.67%
4 1 0 0 16 4 16 80% 48.48% 76.19%
4 1 0 0 8 4 2 66.67% 48.48% 28.57%
4 1 0 0 16 4 1 80% 48.48% 16.67%
4 1 0 0 4 4 4 50% 48.48% 44.44%
4 1 0 0 2 4 8 33.33% 48.48% 61.54%
4 1 0 0 1 4 16 20% 48.48% 76.19%
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Table 3.3

Relative Size of Time-Specific Variance in the Simulation when ψ01=1
Growth-Related Variance/ Covariance Time-Specific Variance Relative Size of θ2t
ψ00 ψ11 ψ01 Cor[π0i, π1i] θ21 θ22 θ32 θ21/ Var[ηi1] θ22/ Var[ηi2] θ23/ Var[ηi3]

4 1 1 0.5 0.0625 0.25 0.0625 1.54% 4.55% 0.90%
4 1 1 0.5 1 0.25 1 20.00% 4.55% 12.5%
4 1 1 0.5 0.5 0.25 0.125 11.11% 4.55% 1.75%
4 1 1 0.5 1 0.25 0.0625 20.00% 4.55% 0.90%
4 1 1 0.5 0.25 0.25 0.25 5.88% 4.55% 3.45%
4 1 1 0.5 0.125 0.25 0.5 3.03% 4.55% 6.67%
4 1 1 0.5 0.0625 0.25 1 1.54% 4.54% 12.5%
4 1 1 0.5 0.25 1 0.25 5.88% 16.00% 3.45%
4 1 1 0.5 4 1 4 50% 16.00% 36.36%
4 1 1 0.5 2 1 0.5 33.33% 16.00% 6.67%
4 1 1 0.5 4 1 0.25 50.00% 16.00% 3.45%
4 1 1 0.5 1 1 1 20.00% 16.00% 12.50%
4 1 1 0.5 0.5 1 2 11.11% 16.00% 22.22%
4 1 1 0.5 0.25 1 4 5.88% 16.00% 36.36%
4 1 1 0.5 1 4 1 20% 43.24% 12.50%
4 1 1 0.5 16 4 16 80% 43.24% 69.56%
4 1 1 0.5 8 4 2 66.67% 43.24% 22.2%
4 1 1 0.5 16 4 1 80% 43.24% 12.50%
4 1 1 0.5 4 4 4 50% 43.24% 36.36%
4 1 1 0.5 2 4 8 33.33% 43.24% 53.33%
4 1 1 0.5 1 4 16 20% 43.24% 69.56%

Table 3.4

Relative Size of Time-Specific Variance in the Simulation when ψ01 = 1.5
Growth-Related Variance/ Covariance Time-Specific Variance Relative Size of θ2t
ψ00 ψ11 ψ01 Cor[π0i, π1i] θ21 θ22 θ32 θ21/ Var[ηi1] θ22/ Var[ηi2] θ23/ Var[ηi3]

4 1 1.5 0.75 0.0625 0.25 0.0625 1.54% 4.17% 0.78%
4 1 1.5 0.75 1 0.25 1 20.00% 4.16% 11.11%
4 1 1.5 0.75 0.5 0.25 0.125 11.11% 4.17% 1.54%
4 1 1.5 0.75 1 0.25 0.0625 20.00% 4.17% 0.78%
4 1 1.5 0.75 0.25 0.25 0.25 5.88% 4.17% 3.03%
4 1 1.5 0.75 0.125 0.25 0.5 3.03% 4.16% 5.88%
4 1 1.5 0.75 0.0625 0.25 1 1.54% 4.17% 11.11%
4 1 1.5 0.75 0.25 1 0.25 5.88% 14.81% 3.03%
4 1 1.5 0.75 4 1 4 50% 14.81% 33.33%
4 1 1.5 0.75 2 1 0.5 33.33% 14.81% 5.88%
4 1 1.5 0.75 4 1 0.25 50% 14.81% 3.03%
4 1 1.5 0.75 1 1 1 20% 14.81% 11.11%
4 1 1.5 0.75 0.5 1 2 11.11% 14.81% 20.00%
4 1 1.5 0.75 0.25 1 4 5.88% 14.81% 33.33%
4 1 1.5 0.75 1 4 1 20% 41.03% 11.11%
4 1 1.5 0.75 16 4 16 80.00% 41.03% 66.67%
4 1 1.5 0.75 8 4 2 66.67% 41.03% 20.00%
4 1 1.5 0.75 16 4 1 80% 41.03% 11.11%
4 1 1.5 0.75 4 4 4 50% 41.03% 33.33%
4 1 1.5 0.75 2 4 8 33.33% 41.03% 50.00%
4 1 1.5 0.75 1 4 16 20% 41.03% 66.67%

Finally, five observed variables or indicators were generated for each wave using equation

3.1. This range was used to reflect the scenario where researchers may use several items to

measure a single construct from a large survey. In this case, the number of selected items is
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typically small. For simplicity and to focus on the effects of time-specific variance,

measurement invariance over time and parallel measurement were assumed. More

specifically, in all waves, ujt = 0, λit = 1 and σ2
jt = 4 were assumed. Note that

σ2
jt = ψ00 < V ar[η1i], so that communality of each item is greater than 0.50. In sum, six

factors: N, (β00, β11), ψ01, θ22, (θ21, θ22,θ23) were fully crossed, resulting into 4*2*2*3*3*7=

1008 total conditions. The replications of each condition were 1000, so there were 1,088,000

data sets in total. Given such a heavy computation load, the parallel computation package

“foreach” were used to boost up the computation speed.

3.3.2 Evaluation Procedure

The parallel computation was only applied to the replications part (most inner loop) of the

nested loop structure, and the summarized statistics such as “mean” “estimate”, “bias”,

“se” and so on over 1000 replications across models were finally stored into external

datasets. When the data were analyzed by the two-wave models, the variables in the

second wave were skipped and the third wave was used as the post-test. The analytical

models were specified as the same as Figure 2.3, 2.4 and 2.5, where measurement

invariance and local independence within a wave was assumed. Meanwhile, no correlation

between time-specific residuals was assumed. Furthermore, some parameters of models

were fixed at some constants. For example, item intercepts and factor loading of the first

item within each wave were set at 0 and 1, respectively (µ1t = 1, λit = 1). For the SOLGM,

the coefficients on the paths from π0i and π1i were set at specific values to draw the

individual growth trajectories. For the LCSM, the coefficients of the paths from ηi1 to ηi3

and from △ηi to ηi3 were fixed to 1.
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3.3.3 Evaluation Indices

Three indices were used to evaluate the quality of estimation. The first one was biased.

When the aim of a simulation study is to compare methods for estimating population

quantities (also termed as ”estimand”), bias will always be used as the performance

measure because it is able to quantify how much an estimator exceeds the true value.

(Burton, Altman, Royston, & Holder, 2006).

The bias is defined as the difference between a mean of estimate and its true value:

Bias = ΣM
m=1

(β̂(m) − β)
M

where β̄(m) is the estimate of a fixed effect based on the m-th dataset and M is the number

of the replications. In our study, M is 1000. Bias can take both positive and negative

values, and ideally, it will be zero if the estimate is unbiased. In order to gauge the size of

bias, the relative bias (RB) is also calculated along with bias:

1

M
ΣM

m=1

(β̂(m) − β)
β

The most helpful part of relative bias (RB) is that researchers could interpret and quantify

the magnitude of the bias under the percentage scale.

The second index is the standard error of an estimate. Its’ definition is:

SE =

√
1

M − 1
ΣM

m=1

(
β̂(m) − 1

M
ΣM

m=1β̂
(m)

)2

According to the above definition, the derivation of SE only depends on the estimate β̂,

and does not need to know the true value β. This SE is also called empirical standard error

since it estimates the standard deviation of estimate β̂ over the M replications. In

simulation studies, this empirical standard error is often considered as the true standard
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error for β̂ because it is obtained from an approximate sampling distribution of β̂,

generated by M replication. In general, a small standard error indicates that most

estimates are centered around their mean values and there is little uncertainty in the

estimate. The standard error of estimate shares the same property as the standard

deviation of statistics. It is supposed to decrease when the sample size increases.

The third index is type I error rate/statistical power, which are essentially the same in the

Monte Carlo Simulation. Both indices are calculated as the proportion of cases in which

the null hypothesis was rejected (H0 : β = 0). If the true value β is equal to 0, this

proportion is called Type I error rate, which is also corresponding to the significant level of

the test hypothesis (nominal α). However, when the true value of β is not zero (

alternative hypothesis is actually true or H1 : β ̸= 0), this proportion of rate becomes the

statistic power which signifies the chance of choosing the alternative hypothesis when the

alternative hypothesis is correct.

A desired value for the calculated α is actually the nominal α. In other words, that the

difference between the actual α and nominal α is zero should be desired in the simulation

study. In contrast, there is no reference level for statistical power. The determinants of

power include: sample size, effect size, and significant level (nominal α). Basically, given

the same significant level, higher power will be expected with a large sample size and effect

size. In simulation studies, power is of particular interest when their purposes are to

compare the competing designs (Burton et al., 2006).

In addition to the above main evaluation indices for the fixed effects, goodness-of-fit indices

such as CFI, TLI, and RMSEA are also calculated to confirm the appropriateness of the

analysis. The Comparative Fit Index (CFI) is an incremental fit index defined as (Chen,
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2007):

CFI = 1−
{
χ2
t − dft

χ2
n − dfn

}
where χ2

t represents the chi-square of the proposed model, whereas χ2
n is the chi-square of

the null model. dft and dfn represent the degree of freedom for the proposed and null

models, respectively. A typical null model is to allow all the variables in the model to have

variation but no correlation. CFI ranges from 0 to 1 and is relatively independent of

sample size.

The Tucker-Lewis Index (TLI) is another incremental fit index calculated as:

TLI =

χ2
i

vi
− χ2

t

vt

χ2
i

vi
− 1

where χ2
i is the independent model whereas χ2

t is the tested model. vi and vt are the degree

of freedom for each model, respectively. Similar to the CFI, the range of TLI is from 0 to 1,

and it is not significantly impacted by the sample size. In sum, the incremental fit index is

analogous to R2, so the value close to 1 indicates a better fit for the model. Normally, a

value of CFI or TLI larger than 0.95 is interpreted as an acceptable fit, and 0.97 is treated

as an accepted cut-off value in a great deal of research (Cangur & Ercan, 2015).

Root Mean Square Error of Approximation (RMSEA) is an index of the difference between

the observed covariance matrix per degree of freedom and the model implied covariance.

This absolute fit index is estimated as:

RMSEA =

√√√√max
⟨{

F(S,Σθ̂)

v
− 1

n− 1

}
, 0

⟩

where F(S,Σθ̂) indicates the fit function is minimized whereas max points to the
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maximum value of the values given in brackets (Cangur & Ercan, 2015). v represents the

value for the degree of freedom, and n is the sample size. According to its formula,

RMSEA could produce a better estimation when the sample size is large since the term
1

n−1
closes to zero asymptotically. The RMSEA values falling between 0.05 and 0.08 are

recognized as a good fit.

Finally, the convergence rates and the number of Heywood cases (negative estimates of

variances) were also recorded to assess the performance of a method. The maximum

likelihood (ML) was used as the estimation method.

3.4 Study 2

In study 1, the direct comparison between the 2-wave LCFM and 3-wave SOLGM has a

logic gap as the 2-wave LCFM and 3-wave SOLGM differ in both waves and models. In

order to fill this logic gap, study 2 compared the 3-wave LCFM and 2-wave LCFM with

the 3-wave SOLGM using the data generated in study 1. Either the performances of

3-wave LCFM or 2-wave LCFM are comparable with 3-wave SOLGM could fill the logic

gap in study 1.

3.4.1 Evaluation Procedure

The evaluation procedures in study 2 are similar to study 1. The only difference was that

the analytic model used here include the three-wave LCFM. The middle wave was inserted

in the 2W-LCFM to form the 3W-LCFM.
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3.4.2 Evaluation Indices

All the indices used were same to study 1.



Chapter 4

Results of Study 1

This chapter summarized the results of the previous studies and addressed the research

questions in section 2.5.2. The first research question in section 2.5.2 was “Can the

two-wave conditional LCFM and LCSM recover the parameters of the fixed effects of the

conditional SOLGM?” The fixed effect parameters for 3W-SOLGM include:

β00, β01, β10, β11.

4.1 Heywood Cases

Table 4.1 summarizes the result of Heywood cases (variance estimates). According to this

table, n represents the number of conditions that contain at least one Heywood cases, which

is a relatively strict criterion. For example, in terms of the ψ00 (in the first row), there are

249 conditions over 1008 total conditions, which have at least one Heywood cases. So the

corresponding proportion of Heywood cases, which is indicated by p, is 249/1008=0.247. M

(5th column) indicates the average Heywood cases per factor. The calculation here includes

two steps: the first step is obtaining the number of Heywood cases out of the 1000

replications for each simulation condition. The second step is to obtain the mean of the

Heywood cases based on the number of Heywood cases for each simulation condition. That

is, we added up the number of Heywood cases across simulation conditions and divided the

total number of conditions (1008). “Min” and “Max” in the 6th or 7th column represents

the minimum or the maximum number of Heywood cases compared across 1008 simulation

52
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conditions. The “Convergence-rate” shows the average converging rate.

First, the variance parameter ψ11 from SOLGM has at least one negative estimates under

all the simulation conditions. So its corresponding p-value is 1. As for the time-specific

residual variance at the first wave (θ21), the likelihood of Heywood cases seems to be highest

when its true value equals 1. While the lowest likelihood of Heywood cases occurs when its

true value is 16. Second, the average number of Heywood cases per condition ( indicated

by M) tends to be higher for the parameters with lower true values than those with higher

true values. For example, when θ3=0.063, the average number of Heywood cases per

condition is about 454. In contrast, when θ3=8, the average number of Heywood cases is

around 3. Third, the true value of the parameter seems to relate to the minimum and the

maximum number of Heywood cases. The smaller the true value, the larger the value of

the minimum and the maximum number of Heywood cases. As we can see, the average

convergence rate is always 100%, this trend indicates that Heywood cases are more likely

to happen when the true parameter is closed to the lower bound of the parameter space

(e.g.0) (Kolenikov & Bollen, 2012)

Table 4.1

Summary of Heywood Cases and Convergence Rate
label True Value n p M Min Max Convergence-rate
ψ00 4 249 0.247 8.441 0 222 1
ψ11 1 1008 1 253.661 10 529 1
θ1 0.063 96 0.095 443.115 364 520 1
θ1 0.125 48 0.048 390.896 283 490 1
θ1 0.25 144 0.143 315.062 133 466 1
θ1 0.5 96 0.095 187.906 13 409 1
θ1 1 218 0.216 107.412 0 362 1
θ1 2 56 0.056 46.99 0 231 1
θ1 4 43 0.043 9.688 0 74 1
θ1 8 12 0.012 1.646 0 10 1
θ1 16 7 0.007 0.115 0 2 1
θ2 0.25 336 0.333 200.348 14 417 1
θ2 1 180 0.179 40.182 0 208 1
θ2 4 76 0.075 1.414 0 22 1
θ3 0.063 96 0.095 453.875 391 520 1
θ3 0.125 48 0.048 411.438 312 523 1
θ3 0.25 144 0.143 345.854 148 474 1
θ3 0.5 96 0.095 229.979 21 439 1
θ3 1 232 0.23 137.863 0 400 1
θ3 2 70 0.069 63.146 0 301 1
θ3 4 56 0.056 15.472 0 111 1
θ3 8 12 0.012 2.521 0 21 1
θ3 16 9 0.009 0.146 0 3 1
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4.2 Goodness-of-Fit Indices

Table 4.2-4.4 illustrate the average Goodness-of-Fit indices (CFI, TLI, RMSEA) given

different sample sizes. The descriptive statistic in each column represents the corresponding

mean value of that Goodness-of-Fit indices. For example, in table 4.2, the columns entitled

“M”, “SD” or “Min” demonstrate the marginal average of the mean CFI (a summarized

statistics defined by average across 1000 replications), the standard deviation of mean CFI

and minimum value of mean CFI across different conditions. As mentioned in the previous

section, an acceptable fit requires that the value of CIF or TLI be larger than 0.95, and

RMSEA be less than from 0.05 to 0.08. From these results, we could conclude that on

average all the models fit the data sufficiently well given different sample sizes because the

average CFI and TLI are all above 0.95 and their RMSEA values are less than 0.06.

Table 4.2

Summary of Goodness-of-Fit Indices for CFI
Index model N M SD Min Med Max
CFI SOLGM 50 0.966 0.026 0.861 0.969 1.000
CFI SOLGM 200 0.997 0.004 0.975 0.999 1.000
CFI SOLGM 600 0.999 0.001 0.992 1.000 1.000
CFI SOLGM 1000 0.999 0.001 0.995 1.000 1.000
CFI LCFM 50 0.980 0.022 0.874 0.986 1.000
CFI LCFM 200 0.997 0.004 0.974 1.000 1.000
CFI LCFM 600 0.999 0.001 0.992 1.000 1.000
CFI LCFM 1000 0.999 0.001 0.995 1.000 1.000
CFI LCSM 50 0.980 0.022 0.874 0.986 1.000
CFI LCSM 200 0.997 0.004 0.974 1.000 1.000
CFI LCSM 600 0.999 0.001 0.992 1.000 1.000
CFI LCSM 1000 0.999 0.001 0.995 1.000 1.000
* Note: N is the sample size; M : Marginal means of CFI;SD:
standard deviation of CFI; Min: minimum value of CFI;
Med: median value of CFI;Max: maximum value of CFI.
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Table 4.3

Summary of Goodness-of-Fit Indices for TLI
Index model N M SD Min Med Max
TLI SOLGM 50 0.962 0.033 0.835 0.963 1.065
TLI SOLGM 200 0.998 0.008 0.970 0.998 1.020
TLI SOLGM 600 1.000 0.002 0.991 1.000 1.007
TLI SOLGM 1000 1.000 0.001 0.995 1.000 1.004
TLI LCFM 50 0.980 0.037 0.835 0.982 1.090
TLI LCFM 200 0.999 0.008 0.966 0.999 1.021
TLI LCFM 600 1.000 0.003 0.989 1.000 1.007
TLI LCFM 1000 1.000 0.002 0.994 1.000 1.004
TLI LCSM 50 0.980 0.037 0.835 0.982 1.090
TLI LCSM 200 0.999 0.008 0.966 0.999 1.021
TLI LCSM 600 1.000 0.003 0.989 1.000 1.007
TLI LCSM 1000 1.000 0.002 0.994 1.000 1.004
* Note: N is the sample size; M : Marginal means of TLI;SD:
standard deviation of TLI; Min: minimum value of TLI;
Med: median value of TLI;Max: maximum value of TLI.

Table 4.4

Summary of Goodness-of-Fit Indices for RMSEA
Index model N M SD Min Med Max

RMSEA SOLGM 50 0.056 0.030 0.000 0.061 0.128
RMSEA SOLGM 200 0.014 0.014 0.000 0.013 0.054
RMSEA SOLGM 600 0.007 0.008 0.000 0.003 0.030
RMSEA SOLGM 1000 0.005 0.006 0.000 0.001 0.023
RMSEA LCFM 50 0.047 0.038 0.000 0.050 0.150
RMSEA LCFM 200 0.015 0.017 0.000 0.008 0.068
RMSEA LCFM 600 0.008 0.010 0.000 0.001 0.038
RMSEA LCFM 1000 0.006 0.007 0.000 0.000 0.030
RMSEA LCSM 50 0.047 0.038 0.000 0.050 0.150
RMSEA LCSM 200 0.015 0.017 0.000 0.008 0.068
RMSEA LCSM 600 0.008 0.010 0.000 0.001 0.038
RMSEA LCSM 1000 0.006 0.007 0.000 0.000 0.030
* Note: N is the sample size; M : Marginal means of RMSEA;SD:
standard deviation of RMSEA; Min: minimum value of RM-
SEA; Med: median value of RMSEA;Max: maximum value of
RMSEA.
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4.3 Overall Summary of Estimates

Figure 4.1. Scatter plot of true parameter values and mean estimates per analytic model.

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model. Each dot represents a model parameter. A solid

diagonal line is y = x.

Fig 4.1 depicts a scatter plot of the true parameters and their mean estimates. This plot

includes all model parameters across 1008 conditions. A point on the solid diagonal line

indicates that a mean estimate and its relative true value are identical or the estimate on

average is unbiased. Obviously, all the estimates are centered along the diagonal solid line

under different analytical models. This indicates that all three analytical models can
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provide unbiased estimates for their relative true values.

Table 4.5

Mean Initial Status of Reference Group
Model Label True Value N Bias Relative Bias SE Type I Error/Power

Mean SD Mean SD Mean SD Mean SD
LCFM κ1 10 1008 0.001 0.0120 0.000 0.001 0.307 0.201 1 0.000
LCSM κ1 10 1008 0.001 0.0120 0.000 0.001 0.307 0.201 1 0.000
SOLGM β00 10 1008 0.001 0.011 0.000 0.001 0.290 0.185 1 0.000

Table 4.6

Mean Change Rate of Reference Group
Model Label True Value N Bias Relative Bias SE Type I Error/Power

Mean SD Mean SD Mean SD Mean SD
LCFM ∆κ 1 1008 -0.001 0.015 -0.001 0.015 0.343 0.235 0.790 0.283
LCSM κ∆ 1 1008 -0.001 0.015 -0.001 0.015 0.343 0.235 0.790 0.283
SOLGM β10 1 1008 -0.001 0.014 -0.001 0.014 0.337 0.230 0.795 0.280

Table 4.7

Group Difference in Initial Status
Model Label True Value N Bias Relative Bias SE Type I Error/Power

Mean SD Mean SD Mean SD Mean SD
LCFM γ1 3 504 -0.001 0.017 0.000 0.006 0.415 0.274 0.983 0.062
LCSM γ1 3 504 -0.001 0.017 0.000 0.006 0.415 0.274 0.983 0.062
SOLGM β01 3 504 -0.002 0.016 0.000 0.005 0.392 0.253 0.989 0.041
LCFM γ1 0 504 -0.001 0.014 0.000 0.005 0.387 0.262 0.050 0.005
LCSM γ1 0 504 -0.001 0.014 0.000 0.005 0.387 0.263 0.050 0.005
SOLGM β01 0 504 -0.001 0.0145 0.000 0.005 0.368 0.241 0.050 0.004

Table 4.8

Group Difference in Rate of Change
Model Label True Value N Bias Relative Bias SE Type I Error/Power

Mean SD Mean SD Mean SD Mean SD
LCFM ∆γ 2 504 0.001 0.017 0.000 0.008 0.430 0.311 0.913 0.175
LCSM γ∆ 2 504 0.001 0.017 0.000 0.008 0.430 0.311 0.913 0.175
SOLGM β11 2 504 0.000 0.015 0.000 0.008 0.419 0.302 0.913 0.168
LCFM ∆γ 0 504 0.001 0.017 0.000 0.009 0.416 0.306 0.050 0.005
LCSM γ∆ 0 504 0.000 0.017 0.000 0.009 0.416 0.306 0.050 0.005
SOLGM β11 0 504 0.001 0.017 0.000 0.009 0.404 0.294 0.050 0.004
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Table 4.5-4.8 show the overall summary statistics for the fixed effect parameters. From the

above results, we could see that the average bias or relative bias for β00, β01, β10 and β11 are

all equal to zero (the absolute value is ≤ 0.002), indicating that the fixed effects are, on

average, estimated correctly. As for the standard errors, the mean and standard deviation

obtained by the second-order latent growth model (SOLGM) are slightly smaller than those

obtained by the latent change score model (LCSM) and longitudinal common factor model

(LCFM). For example, the average standard error of β00 obtained by SOLGM is around

0.290, however, the corresponding standard error (κ1) in LCFM and LCSM is 0.307. To

better interpret this difference, we transform them in the ratio scale. That is, the standard

error of β00 obtained by SOLGM is about 94.5% of the corresponding κ1 in LCFM and

LCSM. A similar pattern could also be observed in the average change rate of the reference

group (β10), where the mean standard error obtained by SOLGM is a little lower than these

obtained by the other two models (0.337 vs 0.343) or, is about 98% of the standard error

estimated by LCFM and LCSM. Therefore, the estimates of the fixed effect parameters in

SOLGM seem to be a little more stable than those estimated by the two-wave models.

In simulation studies, both type I error rate and statistical power are targeted at the null

hypothesis, especially for comparing the competing designs or models. In the current

study, there seems to be no difference on average type I error rate and statistical power

between two-wave models. To be more specific, when the true parameters are 0, the actual

α on average is 0.05 for two-wave models , which is equal to the nominal α. These can be

observed among β01, γ, β11 and ∆γ. When the true parameters are not equal to 0, the

average power are ranged from 0.790 to 0.983, which are under acceptable levels for all the

parameters.
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4.4 Results on Main Evaluation Indices

In order to better answer research question one “Can the two-wave conditional LCFM and

LCSM recover the parameter of the fixed effects of the conditional SOLGM?”, we will dive

into the details of the simulation results in this section. The illustration is organized

according to the main evaluation indices in which we are interested.

4.4.1 Bias

Bias is one of the main research interests in the current study. Its value quantifies whether

the estimate obtained by the prescribed method targets the true parameter on average. Fig

A.1-A.39 show the comparison between the average estimate by each model and their

parameter values (indicated by the dash line) under different simulation conditions. The

results of the mean initial status for the reference group (β00) are illustrated in Fig

A.1-A.9; The results of the mean growth rate for the reference group (β10) are shown in Fig

A.10-A.18. The results of the group difference in the initial status (β01) are represented in

Fig A.19-A.27, and Fig A.28-A.39 show the results of the average group difference in the

growth rate (β11). These figures were separately drawn based on the combination of true

values of β01 and β11.

According to these figures, the major conclusion to be inferred is that the magnitude of the

bias may be impacted by the sample size N in all the fixed effect parameters. To be more

specific, the average estimates are closed to their true values, or the magnitude of their bias

approach to zero with the sample size becoming larger, regardless of the other factors such

as ψ01, θ
2
2 and pattern of time-specific residuals. In addition, no discernible patterns

regarding the bias could be observed, which implies that the positive and negative bias
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randomly appears under the combination of different conditions. Therefore, due to the

possible cancellation effect, the negative values could underestimate the magnitude of the

marginal bias (e.g. table 4.5-4.8) across different conditions. The maximum magnitude of

this bias could reach to 0.08, which is not negligible (e.g when the simulation condition is:

β10, N = 50, ψ01 = 1, θ22 = 4 and high_edge)

Relative bias (RB) is another statistic that quantifies the relative deviation of the mean

estimate as to its true parameter. In the simulation studies, transforming the statistics of

bias into the relative bias will be helpful for interpreting the size of bias. (Harwell, 2019).

According to Hoogland and Boomsa (1998), the relative bias (RB)>0.05 indicates that

there is a significant bias for the estimate. In other words, if an estimate has more than 5%

of bias as to its true parameter, we would flag it as having a significant bias.

Figures 4.2-4.5 depict the box plot of relative bias across different models for each fixed

effect parameter. Fig.4.2 shows the distribution of relative bias for the initial status of the

reference group (β00). The overall distributions of the two-wave models are the same as the

three-wave model in terms of the location of the first quantile, the median, and the third

quantile. This indicates 50% of the relative biases are less or equal to 0.001. The red dots

represent the potential outliers, which are the largest or smallest values among all the

estimates. Compared across different models, the maximum and minimum outliers are far

less than 5%. In sum, we could conclude that there is no difference between the two-wave

models and the three-level model when estimating the initial status of the reference group

(β00). Fig.4.3 is similar to Fig.4.2, except that the inner quantile in Fig. 4.3 is narrower

than it is in Fig.4.2. Given their maximum and minimum outliers are still less than 0.05,

we could have a similar conclusion that there is no bias for estimating the average group

difference in the initial status (β01) by using either the two-wave models or the three-wave

model.



4.4. Results on Main Evaluation Indices 61

Fig.4.4-4.5 show the distribution of the relative bias for estimates of the growth

parameters. In both figures, the distribution of the two-wave models are the same as the

three-wave model. However, some outliers in both figures are larger or smaller than the

absolute value of 0.05. What is worse, a small portion of outliers in Fig.4.4 are even smaller

than 0.10. This suggests that there exists some bias under certain conditions even when we

use the true model (SOLGM) to estimate the growth parameters β10 or β11. In order to

further investigate in which conditions the analytical models will generate some biased

estimates, we extracted the conditions whose relative bias is either smaller than -0.05 or

larger than 0.05, and the results are given in the table 4.9 and 4.10.

Comparing across tables, we could see that there are much more conditions that could

generate biased estimates in β10 (34 conditions) than they are in the β11 (3 conditions).

This implies that compared to β11, it is more likely to have biased estimates for β10 when

we use the three analytical models to estimate the true parameters. In the table 4.9, we

could observe that all these biased estimates come from the smallest sample size, N = 50.

Additionally, the majority of the biased estimates tend to show up when the time-specific

residual variance is 4 (θ22 = 4). The patterns under which there exist some biased estimates

include high edge, heavy spreading, heavy shrinking, and moderate spreading. Finally, as

shown in the column “Relative Bias”, there are much more outliers under −0.05 than they

are above 0.05. This implies that under those biased conditions, the analytical models are

more likely to underestimate the true parameters (β10) than overestimating them.

In the table 4.10, all the biased estimates happened when the sample size is 50 and under

the high edge pattern. In contrast with β10, two of three bias estimates exist when the θ22 is

1. Under these biased conditions, we could observe that the two-wave models are more

likely to underestimate the true parameters, while the three-wave model tends to

overestimate the true parameter.
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Figure 4.2. Boxplot of Distribution of Relative Bias for β00

Figure 4.3. Boxplot of Distribution of Relative Bias for β01
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Figure 4.4. Boxplot of Distribution of Relative Bias for β10

Figure 4.5. Boxplot of Distribution of Relative Bias for β11



64 Chapter 4. Results of Study 1

Table 4.9

Conditions with significant relative bias in β10
Model Relative Bias N θ22 Pattern
SOLGM -0.112 50 4 High Edge
LCFM -0.106 50 4 High Edge
LCSM -0.106 50 4 High Edge
LCSM -0.096 50 4 High Edge
LCFM -0.096 50 4 High Edge
SOLGM -0.093 50 4 High Edge
LCFM -0.088 50 4 Heavy Shrinking
LCSM -0.088 50 4 Heavy Shrinking
SOLGM -0.082 50 4 Heavy Shrinking
SOLGM -0.081 50 4 High Edge
LCSM -0.077 50 4 High Edge
LCFM -0.077 50 4 High Edge
LCFM -0.074 50 4 Heavy Spreading
LCSM -0.074 50 4 Heavy Spreading
LCFM -0.07 50 4 Heavy Spreading
LCSM -0.07 50 4 Heavy Spreading
SOLGM -0.063 50 4 Heavy Spreading
LCSM -0.058 50 4 Heavy Shrinking
LCFM -0.058 50 4 Heavy Shrinking
LCFM -0.056 50 4 Moderate Spreading
LCSM -0.056 50 4 Moderate Spreading
LCFM -0.056 50 4 Heavy Spreading
LCSM -0.056 50 4 Heavy Spreading
SOLGM -0.054 50 1 High Edge
LCSM -0.054 50 1 High Edge
LCFM -0.054 50 1 High Edge
SOLGM -0.053 50 4 High Edge
LCSM -0.051 50 4 Heavy Shrinking
LCFM -0.051 50 4 Heavy Shrinking
LCFM 0.053 50 4 Heavy Spreading
LCSM 0.053 50 4 Heavy Spreading
SOLGM 0.057 50 4 High Edge
LCFM 0.062 50 4 High Edge
LCSM 0.062 50 4 High Edge
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Table 4.10

Conditions with significant relative bias in β11
Model Relative Bias N theta_sq Pattern
SOLGM 0.054 50 4 High Edge
LCSM -0.053 50 1 High Edge
LCFM -0.053 50 1 High Edge

In order to further explore what factors could impact the magnitude of the relative bias,

four full factorial Analysis of Variance (ANOVA) were conducted for each fixed parameter,

with relative bias as the dependent variable and simulation factors as the independent

variables. As illustrated above, the reason for using relative bias is that it helps quantify

the size of bias relative to its true parameter. The eta-square (η2), which is measured by

the sum of squares for the effect of interests divided by the total sum of squares

(η2 = SSbetween
SStotal

), was used as the effect size statistic to determine whether a factor has

substantial importance for the dependent variable (Levine & Hullett, 2002). One major

advantage of using η2 as the effect size index is that η2 could be used on an additive scale,

whose sum can never exceed 1. Therefore, it is more intuitive for people to interpret the

value as the proportion or percentage of the total variability in the dependent variable that

could be explained by the specific term.

Table A.1 shows the results of ANOVA test for the relative bias of β00. The ANOVA model

includes all the main effect factors (model, N, θ22, β01, β11, ψ01 and pattern) and their

corresponding interaction terms. The column titled η2 shows the estimate of effect size for

each term. The larger value indicates that more total variance could be explained by the

relative term. According to Cohen’s rules of thumb (Fritz, Morris, & Richler, 2012),

η2 >= 0.14 is considered as large effect, 0.06 ≥ η2 ≤ 0.14 indicates medium effect and

0.01 ≥ η2 ≤ 0.06 shows the small effect. According to the results in the table A.1, the

sample size (N) and pattern demonstrate a relatively larger effect compared to other main
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effects such as the model and β01. However, their η2 values are still so small (0.014 and

0.012, respectively) that they are not considered as any substantial importance to the

relative bias.

The largest effect among all the terms (including interaction terms) in the table A.1 comes

from the high-order interaction term N ∗ θ22 ∗ pattern ∗ ψ01, whose η2 is 0.073. The second

largest effect comes from the interaction terms: N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 and

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 with their η2 value 0.071. This could be interpreted as

about 7% of the total variance in the relative bias could be explained by the above

interaction terms. However, according to Cohen’s rule, the effect size of these interaction

terms could only be treated as medium level. Finally, the substantial contribution by the

factor of model and its related interaction terms are negligible since the maximum η2

among these relative terms are even less than 0.005. In sum, we could conclude that there

are no substantially important factors for the variability of the relative bias of β00. In

addition, using the two-wave models did not differ from the three-wave model in terms of

the magnitude of the bias even when the sample size is as small as 50.

Table A.2 shows the ANOVA test results for the relative bias of the average group

difference in the initial status (β01). The ANOVA model include all the main effect factors

(model, N, θ22, β01, β11, ψ01 and pattern) and their corresponding interaction terms. Among

the main effect, the largest one for the relative bias is the factor of changing pattern

(η2 = 0.018). The second largest effect is from the sample size N, and its relative η2 is

0.014. However, these effect sizes are so small that only 1.8% or 1.4% of the total variance

in the relative bias could be accounted for by the factors of changing patterns or sample

size. The largest effect among all the terms (including interaction terms) is from the

high-order interaction: N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01, with its η2 0.094. This indicates

that around 9.4% of the total variance in the relative bias could be explained by this
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interaction term. However, its effect could only be categorized as the median level. Finally,

all the model related terms account very small effect (η2max ≤ 0.02), indicating that

compared with other terms, the model does not have a substantial impact on the size of

bias. In sum, we could have similar conclusions as for the β00. That is, no factor has any

significant or substantial impact on the total variability of the relative bias. All three

analytical models could estimate the true parameter equally well.

Table A.3 illustrates the results of the ANOVA test for the total variability of the relative

bias β10. The independent variables included in this model are the same as those in the

table A.2. Similarly, according to the size of the η2, the factor that has the largest effect on

the relative bias is the interaction term: N ∗ θ22 ∗ pattern ∗ β01 (η2 = 0.072). This indicates

that nearly 7.2% of the total variance in the relative bias could be explained by this

interaction term. Based on Cohen’s standard, this effect is just above the threshold of the

median size effect (0.06). The second largest effect is from the interaction term:

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01. However, its effect is still small because the η2 is 0.056.

Table A.4 demonstrates the ANOVA test results for the relative bias of the average group

difference in the growth rate (β11). Similar to the previous results, the interaction term:

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 has the largest effect among all the others factors

(η2 = 0.07). That is to say, about 7% of the total variance in the relative bias was

explained by this high-order interaction term. But this term is still considered as the

median size of the effect. The second largest effect term, which is also median effect size

(η2 = 0.067), is the interaction term: N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01. Finally, the effects from

other terms are all very small. Therefore, similar to the findings in the initial status, we

could conclude that there is no significant and substantial factor for the variability of the

relative bias in terms of the estimates of the growth parameters.
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In order to answer research question one, we need to summarize our findings about the

estimates for the fixed effect parameters. Given the findings from a series of ANOVA tests

that there are no substantially significant main or interaction effects in each parameter, we

could conclude that there was no model related difference (three-wave models vs. two-wave

models) in the relative bias of the point estimates for each fixed effect parameters across

different conditions. In the other words, the two-wave conditional LCFM and LCSM are

able to fully recover the parameter estimates of the fixed effects obtained by the three-wave

conditional SOLGM. However, it does not guarantee that these models could totally yield

unbiased point estimates in every simulation condition. As shown in the table 4.9 and 4.10,

the performance of the estimates from the analytical models could be heavily impacted by

certain extreme conditions such as the combination of N = 50, θ22 = 4 and High Edge

Pattern. Under these circumstances, even the true analytical model (3W-SOLGM) could

yield a biased point estimate for the growth parameters, especially for the reference group.

This implied that the small sample size and large time-specific residual variance could be

the main factors to undermine the estimated quality of the 3W-SOLGM.

4.4.2 Standard Error

Empirical Standard Error

In the previous section, we found that using the two-wave model (LCFM and LCSM) to

analyze the data generated through the three-wave model (SOLGM) could produce an

unbiased estimate for the true parameter of the initial status regardless of the conditions.

In contrast, we did observe some biased estimates for the growth parameters β10 and β11

under certain extreme conditions. This section will further explore how precise or efficient

it is to estimate the parameters by using two-wave models compared with the corrected
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analytical model.

Fig.A.40-A.63 depict the results of empirical standard error under different simulation

conditions. In general, as we expected, the standard errors tend to decrease as the sample

size increases regardless of the simulation conditions. In terms of the initial status β00, the

standard errors of the three-wave model (SOLGM) are smaller than the two-wave models

(LCFM and LCSM) when the patterns are shrinking and high-edge. Furthermore, this

discrepancy tends to become larger when the time-specific residual variance (θ22) increases.

The same pattern could also be observed for the average group difference in the initial

status β01. However, the pattern of the standard errors for the growth parameters (β10 and

β11) seems to be a little different from the parameters of initial status. The cases that the

standard errors of the SOLGM are smaller than the LCFM and LCSM mainly occur when

the patterns are shrinking and spreading. This discrepancy could be enlarged when the

time-specific variance becomes larger.

As we did for the relative bias, in order to systematically explore what are substantially

important factors for the variability of the standard error, we conducted four full factorial

ANOVA with the standard error being the dependent variable. Table A.5-A.8 show the

ANOVA test results for each fixed effect parameter. As for β00, the largest and most

dominating effect comes from the sample size, N. It’s η2 is 0.878, meaning 87.8% of the

total variance in the standard error could be explained by the main effect of sample size.

The effect of other terms is all less than 4%. A similar finding is also true for the average

group difference in the initial status, β01. Basically, the sample size N accounts for 84.8% of

the total variance in the standard error. The rest of the terms just contribute a very small

effect to the total variability of standard error.

Growth rate parameters are often the focal interest for researchers who utilize the growth
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models in the applied research. Table A.7-A.8 demonstrate the ANOVA test results for β10

and β11 respectively. The only substantial important factor is the sample size N. To be

more detailed, N accounts for 79.6% of the total variance of standard error for β10, and

70.8% of the total variance of standard error for β11. The effect size of all the other factors

is less than 0.14. The size of time-specific residual variance θ22 accounted for more

variability of standard error than they are in the initial status, however, their

corresponding effect is still within the range of median level.

Theoretical standard error

Fig.A.64-Fig.A.87 show the results of the theoretical standard error compared across

different models under different conditions. Without any surprise, the theoretical standard

errors tend to decrease as the sample size increases regardless of conditions, which is the

same as the empirical standard error. The performance of the theoretical standard error for

β00 and β01 are similar to their corresponding empirical standard error. The theoretical

standard errors of the three-wave model (SOLGM) are smaller than the two-wave models

(LCFM and LCSM) when the patterns are shrinking and high-edge. This discrepancy

tends to increase with the time-specific residual variance enlarged. Furthermore, when the

sample size is as small as 50, the theoretical standard error obtained from the two-wave

models is always larger than the standard error yielded by the three-wave model in almost

all the conditions. The performance for the theoretical standard error of growth

parameters (β10 and β11) is also similar to their corresponding empirical standard error.

The two-wave models could give theoretical standard errors comparable to the three-wave

model in majority of the cases except when the time-specific variance is large and

heteroscedastic. More specifically, the 2W-LCFM and 2W-LCSM yield worse theoretical

standard error when θ22 is large and the patterns are “spreading” or “shrinking”
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As we did for the empirical standard error, in order to systematically investigate the

substantively important factors for the variability of theoretical standard error, we

conducted four full factorial ANOVA for each fixed effect parameter. The corresponding

results are shown from the A.9-A.12. In general, the conclusion is the same as what has

been found for the empirical standard error. That is, the only substantially important

factor among all the variability of the tested estimates is the sample size N. The total

variability explained by the sample size N could be arranged from 69.5% to 87.2%.

Ratio of Standard Error

The accuracy of the estimated standard error was evaluated by comparing the empirical

standard error (SEE) with the information-based standard error (SET ), which is

theoretically derived from the Fisher information matrix, for each fixed parameter. As

mentioned in the method section, SEE obtained from the simulation study is considered to

be a true or approximately true standard error. In contrast, the SET is an estimate of the

true standard error (SEE). For each replication, R software generated the SET for each

parameter, and we averaged these values over 1000 replications to get the average SET . If

the model is correctly specified with the error term assumption being met, the SET should

be asymptotically unbiased (Miyazaki, Chungbaek, Shropshire, & Hedeker, 2019).

Therefore, the comparison between average SET and SEE is also very informative because

it could provide evidence about how well the theoretical standard error (SET ) could

approximate the empirical standard error (SEE) under different conditions. Therefore, we

will first calculate the ratio of SET and SEE (SET
SEE

) for each fixed parameter. This ratio

was then compared to the 1 because for correct analysis, the standard error in the

numerator (SEE) should be very closed or equal to denominator (SET ). Fig.4.6-4.9 show

the histograms of the ratio of SE (SET
SEE

). Both the distributions of two-wave models and
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three-wave model for each parameter approximate to the normal distribution, with their

mean values closed to 1. Meanwhile, the distributions for the two-wave models seem to be

a little narrower than the three-wave model.

Figure 4.6. Histogram of Ratio of Standard Error for β00
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Figure 4.7. Histogram of Ratio of Standard Error for β01

Figure 4.8. Histogram of Ratio of Standard Error for β10
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Figure 4.9. Histogram of Ratio of Standard Error for β11

Table 4.11 shows the minimum, maximum, mean, and standard deviation for the ratio of

SE in each parameter. As we can see, their mean values are all very closed to 1. The

largest value ( based on the column “Max” ) across all the parameters is 1.08. In contrast,

the smallest value ( based on the column of “Min” ) is 0.863. These indicate that the

theoretical SET could underestimate the true SEE up to 13.7%, and overestimate the SEE

to 8%. Last but not least, we could see that except for the β00, the standard deviation of

the ratio SEs given by two-wave models are a little smaller than that of the three-wave

model. This is why the distributions of the SE ratio in the two-wave models are a little bit

narrower than that of the three-wave model.
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Table 4.11

Descriptive Statistics for Ratio of Standard Error
Model Parameter N Min Mean Max SD
LCFM κ1 1008 0.912 0.991 1.08 0.025
LCSM κ1 1008 0.912 0.991 1.08 0.025
SOLGM β00 1008 0.889 0.984 1.08 0.023
LCFM γ1 1008 0.918 0.989 1.08 0.025
LCSM γ1 1008 0.918 0.989 1.08 0.025
SOLGM β01 1008 0.863 0.979 1.07 0.033
LCFM ∆κ 1008 0.911 0.993 1.08 0.025
LCSM κ∆ 1008 0.911 0.993 1.08 0.025
SOLGM β10 1008 0.900 0.989 1.07 0.027
LCFM ∆γ 1008 0.917 0.989 1.08 0.024
LCSM γ∆ 1008 0.917 0.989 1.08 0.024
SOLGM β11 1008 0.900 0.983 1.08 0.029

In order to systematically explore what are the substantially important factors for the

variability of the ratio of the standard error (SET
SEE

), we conducted four full factorial

ANOVA tests for each fixed effect parameter. Table A.13-A.14 illustrate the ANOVA test

results for the parameters of the initial status (β00 and β01). The only significant factor

that has a large effect is the sample size N. To be more detailed, the value of η2 is 0.244 for

the β00 and 0.304 for β01. Therefore, the sample size N could explain 24.4% and 30.4% of

total variance of the ratio SET
SEE

in β00 and β01, respectively. Beyond the sample size, there is

no other substantial important factors. Without any surprise, the sample size N is also the

only factor that plays a substantially important role in the variance of the ratio SET
SEE

among

the growth rate parameters. As a matter of fact, it explains 19.9% (η2=0.199) and 26.9%

(η2 = 0.269) of total variance among the ratio SET
SEE

for β10 and β11, respectively.

The above results revealed that the theoretical standard error at maximum could have an

8% deviation from their true standard error in some situations, and the sample size N may

be the denominating factor for the variability of this statistics. Therefore, we extracted the
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conditions that yield the relative large SET
SEE

values and summarized their information across

tables A.17-A.20. The relative large SET
SEE

values here mean the value SET
SEE

is either larger

than 1.05 or smaller than 0.95. These are actually the cases where their theoretical

standard errors are more than 5% off than their empirical/true standard errors. Across

different parameters, we could first observe that the majority of the cases with large SET
SEE

values occurred when the sample size is 50. Meanwhile, with N=50, the theoretical

standard errors under different situations tend to underestimate the empirical standard

error because the maximum values given N=50 are all less than 1. At length, it is

interesting to observe that, with the sample size increased, the frequency of overestimated

cases also increases, resulting in that the average value of SET
SEE

approaches to 1. One major

concern that we need to clarify is that the relatively large value here is not equivalent to

the substantially large value which is treated as being not negligible in SEM. According to

Nevitt and Hancock (2001), the cut-off criterion for the substantial large size of SET
SEE

should

be 10%. That is to say, the absolute value of SET
SEE

which is smaller than 0.1 could be

considered as negligible in SEM. This result will be further discussed in the discussion

section.

In order to directly answer the research question two that how precise it is to use the

two-wave models to recover the fixed effect parameters generated by the three-wave model,

we would like to directly compare the standard error of estimating the same parameter

across different models. Similar to the former operation, this comparison was made on a

ratio metric. The theoretical or empirical standard error by the three-wave model

(SOLGM) could work as a criterion index with which the standard error of the two-wave

models (LCFM and LCSM) could be compared. The most informative point for this

comparison is to show how much deviation the standard error of two-wave models can have

away from the standard error of a three-wave model when estimating the same parameter.
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Therefore, we would like to first describe both the ratio of empirical standard error

obtained by the two-wave models to the empirical standard error obtained by the

three-wave model (Ratio− SE2E/3E), and then the ratio of theoretical standard error

obtained by two-wave models to the theoretical standard error obtained by the three-wave

model (Ratio− SE2T/3T ) for each parameter. In real data analysis, we are unable to know

any true values for either the empirical standard error of the ratio of the empirical

standard error (Ratio− SE2E/3E). However, the knowledge about the performance of true

standard error can help evaluate how much loss the estimation precision could be when the

two-wave models are used to recover the parameters of the three-wave model under the

theoretical setting. Last but not the least, we would like to explore what factors could have

substantially important effects on the variability of Ratio− SE2E/3E and Ratio− SE2T/3T .

Table 4.12 and 4.13 show the descriptive statistics for the Ratio− SE2E/3E and

Ratio− SE2T/3T , respectively. On average, both the empirical and theoretical SE by the

two-wave models are slightly larger than those obtained by the three-wave model in every

fixed effect parameter. The minimum values for the ratio Ratio− SE2E/3E across different

parameters are all smaller than 1. However, the minimum value for the ratio

Ratio− SE2T/3T across different parameters is all larger than 1. This implies that

compared to the empirical standard error, the theoretical standard error obtained by the

two-wave model tends to be more likely to overestimate the theoretical standard error

obtained by the three-wave model in every fixed parameter. The largest maximum values

across parameters are 1.301 and 1.269 for Ratio− SE2E/3E and Ratio− SE2T/3T

respectively. The standard deviation for the growth parameters seem to be a little smaller

than they are in the initial status for both Ratio− SE2E/3E and Ratio− SE2T/3T
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Table 4.12

Descriptive Statistics for the Ratio of Empirical SE of 2W-Models vs 3W-Model
Parameter Minimum Mean Maximum Standard Deviation
beta_00 0.995 1.056 1.243 0.047
beta_01 0.968 1.049 1.301 0.057
beta_10 0.979 1.016 1.169 0.034
beta_11 0.977 1.025 1.244 0.049

Table 4.13

Descriptive Statistics for the Ratio of Theoretical SE of 2W-Models vs 3W-Model
Parameter Minimum Mean Maximum Standard Deviation
beta_00 1.013 1.064 1.227 0.046
beta_01 1.010 1.060 1.269 0.055
beta_10 1.000 1.020 1.139 0.034
beta_11 1.000 1.032 1.212 0.049

Given there is still some variability among these ratio statistics, we conducted eight full

factorial ANOVAs to further examine what factors are significantly impacting the

variability of the Ratio− SE2E/3E and Ratio− SE2T/3T . Table A.21-A.24 show the results

of ANOVA tests for each parameter. In terms of the initial status for the reference group

(β00), we can see that the changing pattern, θ22 and pattern ∗ θ22 have large effect on the

variance of both Ratio− SE2E/3E and Ratio− SE2T/3T . The η2 value are 0.487, 0.275 and

0.165 for the pattern, pattern ∗ θ22 and θ22, respectively in Ratio− SE2E/3E. While the η2

value are 0.523, 0.297 and 0.162 for the pattern, pattern ∗ θ22 and θ22, respectively in

Ratio− SE2T/3T . Since the interaction term between pattern and θ22 is significant, we

create the interaction effect plot to further examine how the two terms jointly work

together to impact the ratio of standard error.

Fig.4.10 depicts the interaction effect between pattern and θ22 on the Ratio− SE2E/3E for

β00. As the θ22 increases from 0.25 to 4, the average Ratio− SE2E/3E also increases.

However, this increasing trend is not applicable to every pattern. To be more specific,
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when the η22 increases, the Ratio− SE2E/3E increases only at shrinking, constant, and high

edge patterns. Meanwhile, the Ratio− SE2E/3E at the low edge and spreading patterns

tend to slightly decrease. Finally, this increasing rate tends to become larger as the θ22
becomes larger and the shrinking pattern gets worse. This could be directly observed from

the heavy shrinking pattern, where the top red line suddenly rises up after the median size

of θ22 ( where θ22=1 ). Ideally, we expect the Ratio− SE2E/3E to be 1 if there is no real loss

of precision to use two-wave models to estimate the true parameters in comparison with

the three-wave model. However, in the current study, the loss of precision could up to 20%

when the changing pattern is Heavy Shrinking and the θ22 is 4. On the other side, the

smallest loss is around 5% which happens when the θ22 is 0.25. A similar pattern could also

be observed for the Ratio− SE2T/3T , which we could actually obtain by real data analysis.

(See Fig 4.11) However, the maximum loss in precision is a little bigger than the

Ratio− SE2E/3E. It could up to 23% when the θ22 is 4 and the changing pattern is heavy

shrinking.

As for the average group difference in the initial status (β01), we could find the same set of

terms (pattern, θ2 ∗ pattern and θ2) that have large effects on the variability of both the

Ratio− SE2E/3E and Ratio− SE2T/3T . The η2 values are 0.483, 0.253 and 0.189 for the

pattern, pattern ∗ θ22 and θ22, respectively in Ratio− SE2E/3E. In contrast, the η2 values are

0.517, 0.253 and 0.163 for the pattern, pattern ∗ θ22 and θ22, respectively in Ratio− SE2T/3T .

Given the interaction term between pattern and θ22 is significant, we created the interaction

effect plots for Ratio− SE2E/3E and Ratio− SE2T/3T , respectively. Figure 4.12 and 4.13

show that as the size of θ22 increases , both Ratio− SE2E/3E and Ratio− SE2T/3T increases

only at shrinking, constant and high edge pattern. Meanwhile, both the Ratio− SE2E/3E

and Ratio− SE2T/3T at the low edge and spreading patterns tend to be slightly decreased.

This increasing rate tends to become larger as the θ22 becomes larger and the shrinking
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pattern becomes worse. As for the average loss of precision, the minimum level is still

around 5%. However, the maximum loss level could reach 24% when the θ22 is 4 and the

changing pattern is shrinking or having an edge.

Since the above results for β00 and β01 are highly similar, we, therefore, could summarize

them together in this subsection. That is, these results implied that in the real data

analysis, using the two-wave models may fall into the risk of losing a maximum 24%

precision on average for estimating the initial status parameters (β00 and β01 ). In fact, this

big loss could occur even when we have a large sample size such as 600 or 1000, as long as

the time-specific residual variance θ22 is large enough (e.g. θ22 = 4) under the shrinking or

edge pattern.

Figure 4.10. Interaction between the pattern and θ22θ22θ22 on the ratio of empirical standard error

(Ratio− SE2E/3E) for β00β00β00
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Figure 4.11. Interaction between the pattern and θ22θ22θ22 on the ratio of theoretical standard

error (Ratio− SE2T/3T ) for β00β00β00

Figure 4.12. Interaction between the pattern and θ22θ22θ22 on the ratio of empirical standard error

(Ratio− SE2E/3E) for β01β01β01
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Figure 4.13. Interaction between the pattern and θ22θ22θ22 on the ratio of theoretical standard

error (Ratio− SE2T/3T ) for β01β01β01

Table A.23 and A.24 demonstrate the ANOVA test results for the growth parameters (β10

and β11). For both parameters, the pattern, pattern ∗ θ22 and θ22 are still playing a

significant impact on the Ratio− SE2E/3E or Ratio− SE2T/3T . For example,

corresponding to β01, the values of η2 are 0.384, 0.339 and 0.219 for terms of pattern,

pattern ∗ θ22 and θ22, respectively in testing Ratio− SE2E/3E. While the values of η2 are

0.382,0.345 and 0.249 for terms of pattern, pattern ∗ θ22 and θ22, respectively in

Ratio− SE2T/3T . Similar to the previous section, we further created the plots of

interaction effect between pattern and θ22 to further check this joint influence.

Fig.4.14-4.17 depict the interaction effect between pattern and θ22 on the Ratio− SE2E/3E

or Ratio− SE2T/3T for β10 and β11, respectively. A little different from the trend found in

the initial status, as the size of θ22 increases, both Ratio− SE2E/3E and Ratio− SE2T/3T

increases only at the spreading and shrinking patterns. Under the other patterns, the



4.4. Results on Main Evaluation Indices 83

average value for both ratios tends to remain stable regardless of how large the θ22 is. In

addition, this increase tends to be larger when the spreading and shrinking becomes

heavier, which can be easily observed among the top two lines and two lines in the middle

position. The range of precision loss is also different from the initial status. In terms of

β10, the average loss of precision could up to 12% for both Ratio− SE2E/3E and

Ratio− SE2T/3T when the θ22 is 4 and the changing patterns are either spreading or

shrinking. The minimum average loss of precision is around 2% when the θ22 is 0.25. The

maximum loss in the β11 is a little bit larger. They could reach 18% when the changing

patterns are either heavy spreading or shrinking. Thus in the real data analysis, using the

two-wave models may fall into the risk of losing a maximum 18% precision on average for

estimating the growth-related parameters (β00 and β01). Regardless of the sample size, this

big loss could occur as long as the time-specific residual variance θ22 is large enough (e.g.

θ22 = 4) under the shrinking or spreading pattern.

Figure 4.14. Interaction between the pattern and θ22θ22θ22 on the ratio of theoretical standard

error (Ratio− SE2E/3E) for β10β10β10
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Figure 4.15. Interaction between the pattern and θ22θ22θ22 on the ratio of theoretical standard

error (Ratio− SE2T/3T ) for β10β10β10

Figure 4.16. Interaction between the pattern and θ22θ22θ22 on the ratio of empirical standard error

(Ratio− SE2E/3E) for β11β11β11
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Figure 4.17. Interaction between the pattern and θ22θ22θ22 on the ratio of theoretical standard

error (Ratio− SE2T/3T ) for β11β11β11

In all, the summary of the above results could help answer part of the research question

two “What factors could influence the accuracy of estimating the fixed effect parameters

by using the two-wave models?” As the results shown in tables A.21-A.24, both the

changing pattern and θ22 are jointly influencing the variability of the Ratio− SE2E/3E and

Ratio− SE2T/3T . When θ22 = 0.25, regardless of any changing pattern, both the empirical

standard error and the theoretical standard error of the point estimate obtained by

two-wave models are almost equivalent to that of the three-wave model since the average

ratio is so closed to 1. Therefore, we could conclude that on average there is no loss of

efficiency or precision when using the two-wave models to estimate the true parameters

compared with the three-wave model when the θ22 is very small with the constant pattern.

However, the average difference between the SE of the two-wave models and SE of the

three-wave model could be increased as the θ22 becomes larger under patterns where the
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the-time specific variance differ between the first and the last time point. That is why we

could observe the largest discrepancy between the two-wave and three-wave models when

the θ22 is 4 at certain patterns. Finally, we could conclude that the maximum average loss

of precision or efficiency by using two-wave models could reach 24% in estimating the

initial status and 18% in estimating the growth parameters.

4.4.3 Type I Error Rate and Statistical Power

Fig.A.88-Fig.A.108 demonstrate the statistical power and type I error rate for the fixed

effect parameters under different conditions. More specifically, Fig.A.88-Fig.A.99 show the

results for statistical power. For the average initial status of the reference group (β00), the

two-wave models (LCFM and LCSM) have the same level of statistical power as the

three-wave model (SOLGM) in terms of detecting the true parameter value across all the

conditions. This power maintains around 1 across different conditions, which indicates that

regardless of conditions, both the two-wave and three-wave models could be almost 100%

correct at choosing the alternative hypothesis when it is true. However, the power pattern

of β01, the average group difference in the initial status, seems a little different from the

pattern in β00. To be more detailed, when the sample size N decreases from 200, the power

of analysis could go down slightly no matter what model is used. This is why the lowest

level of statistical power could always be observed when the sample size N is 50 in every

condition. Other factors that seem to influence the power of each model are time-specific

residual variance and pattern. Under shrinking and high edge patterns, the three-wave

model (SOLGM) tends to have higher power than the two-wave models when the sample

size is less than 200. This discrepancy could become larger when the time-specific variance

increases. At length, it should be noted that when the sample size is greater than 200 and

approaching 1000, the level of power gets converged so that no obvious difference could be
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observed among different models.

The slope parameters (β01 and β11) are the main focal points for researchers who are

interested in the growth phenomenon. Fig.A.91 - A.93 show the power level of β10 across

conditions. Compared to the parameters of initial status in the reference group, a larger

sample size could yield a higher level of statistical power such as 0.9. For example in the

β00 and β01, with sample size just being 200, the power by different models could

approximate to 1 in almost every simulation condition. However, with the same sample

size, the maximum statistical power in β10 is around 0.9. What is worse, the power of

testing β10 under the sample size N=50 is much smaller than that of testing the initial

status in the reference group. Other factors that could influence the power level are the

size of time-specific residual variance and the changing pattern. From these figures, we

could see that the three-wave model has a higher statistical power than the two-wave

models when the pattern are shrinking and spreading. This difference could be boosted

when the size of time-specific residual variance gets larger. A similar pattern could also be

observed for the average group difference of the growth rate parameter β11. The power

level reaches the lowest when the sample size is 50 compared to other sample sizes. In

addition, The factors (time-specific residual variance and changing pattern) play a similar

effect on the power of β11 as they did for the β10.

The final result to check is the type I error rate for β01 and β11 in our study. From Fig.

A.100-A.108, we could see that in majority of the cases, the actual α approaches the

nominal α=0.05 as the sample size increases from 50. In addition, the changing pattern

and θ22 seem to have no effect on the type I error. Table 4.14 and 4.15 describe the type I

error rate across different models for β01 and β11, respectively. On average, we could see

that given the same sample size, different analytical models yield the same level of the type

I error. In other words, given the same sample size, all the analytical models have the same
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Table 4.14

Descriptive statistics of Type I error rate across sample size for β01
N Model Count Min Mean Max SD

50.000 LCFM 126.000 0.042 0.051 0.064 0.004
50.000 LCSM 126.000 0.042 0.051 0.064 0.004
50.000 SOLGM 126.000 0.039 0.051 0.064 0.004
200.000 LCFM 126.000 0.040 0.050 0.063 0.005
200.000 LCSM 126.000 0.040 0.050 0.063 0.005
200.000 SOLGM 126.000 0.036 0.049 0.060 0.004
600.000 LCFM 126.000 0.037 0.050 0.062 0.005
600.000 LCSM 126.000 0.037 0.050 0.062 0.005
600.000 SOLGM 126.000 0.040 0.050 0.066 0.005
1000.000 LCFM 126.000 0.037 0.050 0.063 0.005
1000.000 LCSM 126.000 0.037 0.050 0.063 0.005
1000.000 SOLGM 126.000 0.036 0.050 0.061 0.004

level of chance to reject our null hypothesis when the alternative hypothesis is true. This

level of chance is all-around 5%, which is actually our nominal α level, regardless of the

sample sizes. This pattern could be observed through Fig.A.109 and Fig. A.110, where the

marginal type I error rate was given under different sample sizes and time-specific residual

variances.

In order to systematically investigate the substantially important factors for the statistical

power, several full factorial Analysis of Variance (ANOVA) were conducted for each fixed

parameter, with statistical power as the dependent variable and all the simulation factors

as independent variables. In addition, the η2 was used to quantify the magnitude of effect

size. Tables A.25-A.27 show the results of ANOVA tests for the statistical power of each

fixed effect parameter. Since the power of correctly detecting the alternative hypothesis is

always 1 in β00 regardless of the different conditions, there is no need to conduct the

ANOVA test. As for β01, the substantially significant terms given by the table A.25 are:

N,N ∗ θ22, N ∗ Pattern and N ∗ Pattern ∗ θ22, with their corresponding η2 values

0.211,0.194,0.164 and 0.201. Since the interaction term “N ∗ Pattern ∗ θ22” is significant, we
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Table 4.15

Descriptive statistics of Type I error rate across sample size for β11
N Model Count Min Mean Max SD

50.000 LCFM 126.000 0.038 0.050 0.063 0.005
50.000 LCSM 126.000 0.038 0.050 0.063 0.005
50.000 SOLGM 126.000 0.040 0.050 0.062 0.004
200.000 LCFM 126.000 0.040 0.051 0.063 0.004
200.000 LCSM 126.000 0.040 0.051 0.063 0.004
200.000 SOLGM 126.000 0.041 0.051 0.061 0.004
600.000 LCFM 126.000 0.037 0.050 0.063 0.005
600.000 LCSM 126.000 0.037 0.050 0.063 0.005
600.000 SOLGM 126.000 0.039 0.050 0.062 0.004
1000.000 LCFM 126.000 0.034 0.050 0.061 0.004
1000.000 LCSM 126.000 0.034 0.050 0.061 0.004
1000.000 SOLGM 126.000 0.034 0.050 0.061 0.005

further created the plot 4.18 to check how they jointly influence the power. That is, when

the sample size is as small as 50, the pattern that the statistical power goes down with the

increase of the θ22 could be easily observed among spreading and high edge pattern.

However, this pattern is not that clear under other changing patterns such as constant and

shrinking. The most dominating factor that impacts the total variability of the statistical

power for β10 is the sample size N (η2 = 0.87). In another word, 87% of the total variance

in statistical power could be explained by the sample size N. Fig 4.19 shows that as the

sample size increase from 50 to 1000, the statistical power is also increased with different

rate. Apparently, the statistical power increases much faster as the N moves from 50 to

200. According to the table A.27, we could see that N and interaction term N ∗ θ22 have a

substantially important influence on the variability of statistical power in terms of β11.

They actually explain 57.7% and 15.6% total variance of the statistical power, respectively.

Fig.4.20 illustrates how the effect of θ22 on statistical power relies on the sample size N.

When the sample size is as small as 50, we could observe that the smaller the θ22 is, the

larger the power is. However, this pattern no longer exists when the sample size approach
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1000. Basically, the discrepancy of the power levels obtained by different sizes of θ22 is

gradually shrunken to 0 as the N becomes larger and larger. Therefore, we could conclude

none of the model-related factors have a substantially large effect on the total variance of

the statistical power.

Figure 4.18. Power Plot of Three-Way Interaction among θ22θ22θ22, pattern and NNN for β01β01β01
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Figure 4.19. Power Plot of main effect for β10β10β10

Figure 4.20. Power Plot of Interaction between N and θ22θ22θ22 for β11β11β11



Chapter 5

Results of Study 2

5.1 Overall Summary of Estimates

The results in the table 5.1 are very similar to the table 4.1 in study 1. First, the variance

parameter ψ11 from SOLGM has at least one negative estimate under all the simulation

conditions. So its corresponding p-value is 1. As for the time-specific residual variance at

the first wave (θ21) , the likelihood of Heywood cases seems to be highest when its true

value equals 1. While the lowest likelihood of Heywood cases occurs when its true value is

16. Second, the average number of Heywood cases per condition (indicated by M) tends to

be higher for the parameters with lower values than those with higher values. For example,

when θ3=0.063, the average number of Heywood cases per condition is about 454. In

contrast, when the θ3=8, the average number of Heywood cases is around 3. Third, the

values of the parameters seem to relate to the minimum and the maximum number of

Heywood cases. The smaller the parameters are, the larger the value of the minimum and

the maximum number of Heywood cases are. Finally, as we can see, the average

convergence rate is always 100%. This trend indicates that Heywood cases are more likely

to happen when the values of the parameters are closed to the lower bound of the

parameter space (e.g.0)

Table 5.2-5.4 summarized the average Goodness-of-Fit indices (CFI, TLI, RMSEA) given

different sample sizes. The descriptive statistic in each column represents the corresponding

92
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Table 5.1

Summary of Heywood Cases and Convergence Rate
Label True Value N P Mean Minimum Maximum Mean

Convergence
ψ00 4.000 249 0.247 8.441 0 222 1
ψ11 1.000 1008 1.000 253.661 10 529 1
θ1 0.063 96 0.095 443.115 364 520 1
θ1 0.125 48 0.048 390.896 283 490 1
θ1 0.250 144 0.143 315.063 133 466 1
θ1 0.500 96 0.095 187.906 13 409 1
θ1 1.000 218 0.216 107.413 0 362 1
θ1 2.000 56 0.056 46.990 0 231 1
θ1 4.000 43 0.043 9.688 0 74 1
θ1 8.000 12 0.012 1.646 0 10 1
θ1 16.000 7 0.007 0.115 0 2 1
θ2 0.250 336 0.333 200.348 14 417 1
θ2 1.000 180 0.179 40.182 0 208 1
θ2 4.000 76 0.075 1.414 0 22 1
θ3 0.063 96 0.095 453.875 391 520 1
θ3 0.125 48 0.048 411.438 312 523 1
θ3 0.250 144 0.143 345.854 148 474 1
θ3 0.500 96 0.095 229.979 21 439 1
θ3 1.000 232 0.230 137.863 0 400 1
θ3 2.000 70 0.069 63.146 0 301 1
θ3 4.000 56 0.056 15.472 0 111 1
θ3 8.000 12 0.012 2.521 0 21 1
θ3 16.000 9 0.009 0.146 0 3 1

statistics based on the mean of Goodness-of-Fit indices. For example, in the table 5.2, the

columns titled “M” and “SD” in each table demonstrate the marginal average of the

mean-CFI (a summarized statistics that is averaged across 1000 replications) and standard

deviation of mean-CFI across the different conditions. As mentioned in the previous

section, an acceptable fit requires that the value of CIF or TLI be larger than 0.95, and

RMSEA be less than from 0.05 to 0.08. From these results, we could conclude that on

average all the models fit the data sufficiently well given different sample sizes because their

average CFI and TLI values are all above 0.95 and their RMSEA values are less than 0.06.
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Table 5.2

Summary of Goodness-of-Fit Indices for CFI
Model N Mean SD Min Median Max
LCFM 50 0.980 0.005 0.980 0.981 0.989
LCFM 200 0.997 0.001 0.997 0.997 0.998
LCFM 600 0.999 0.000 0.999 0.999 1.000
LCFM 1000 0.999 0.000 0.999 1.000 1.000

LCFM-3W 50 0.966 0.007 0.966 0.968 0.979
LCFM-3W 200 0.997 0.001 0.997 0.997 0.998
LCFM-3W 600 0.999 0.000 0.999 0.999 0.999
LCFM-3W 1000 0.999 0.000 0.999 1.000 1.000
SOLGM 50 0.966 0.007 0.966 0.968 0.979
SOLGM 200 0.997 0.001 0.997 0.997 0.998
SOLGM 600 0.999 0.000 0.999 0.999 0.999
SOLGM 1000 0.999 0.000 0.999 1.000 1.000
* Note: N is the sample size; M : Marginal means of CFI;SD:
standard deviation of CFI; Min: minimum value of CFI;
Med: median value of CFI; Max: maximum value of CFI.

Table 5.3

Summary of Goodness-of-Fit Indices for RMSEA
Model N Mean SD Min Median Max
LCFM 50 0.047 0.001 0.044 0.047 0.051
LCFM 200 0.015 0.001 0.014 0.015 0.017
LCFM 600 0.008 0.000 0.007 0.008 0.009
LCFM 1000 0.006 0.000 0.006 0.006 0.007

LCFM-3W 50 0.056 0.001 0.053 0.056 0.059
LCFM-3W 200 0.014 0.000 0.013 0.014 0.015
LCFM-3W 600 0.007 0.000 0.006 0.007 0.007
LCFM-3W 1000 0.005 0.000 0.005 0.005 0.006
SOLGM 50 0.056 0.001 0.053 0.056 0.059
SOLGM 200 0.014 0.000 0.013 0.014 0.015
SOLGM 600 0.007 0.000 0.006 0.007 0.007
SOLGM 1000 0.005 0.000 0.005 0.005 0.006
* Note: N is the sample size; M : Marginal means of RM-
SEA;SD: standard deviation of RMSEA; Min: minimum
value of RMSEA; Med: median value of RMSEA;Max:
maximum value of RMSEA.



5.1. Overall Summary of Estimates 95

Table 5.4

Summary of Goodness-of-Fit Indices for TLI
Model N Mean SD Min Median Max
LCFM 50 0.980 0.005 0.965 0.980 0.988
LCFM 200 0.999 0.000 0.998 0.999 1.000
LCFM 600 1.000 0.000 1.000 1.000 1.000
LCFM 1000 1.000 0.000 1.000 1.000 1.000

LCFM-3W 50 0.962 0.008 0.941 0.963 0.976
LCFM-3W 200 0.998 0.000 0.997 0.998 0.999
LCFM-3W 600 1.000 0.000 1.000 1.000 1.000
LCFM-3W 1000 1.000 0.000 1.000 1.000 1.000
SOLGM 50 0.962 0.008 0.941 0.963 0.976
SOLGM 200 0.998 0.000 0.997 0.998 0.999
SOLGM 600 1.000 0.000 1.000 1.000 1.000
SOLGM 1000 1.000 0.000 1.000 1.000 1.000
* Note: N is the sample size; M : Marginal means of CFI;SD:
standard deviation of CFI; Min: minimum value of CFI;
Med: median value of CFI;Max: maximum value of CFI.

As shown in study 1, Fig. 5.1 depicts the relationship between the true parameter values

and their mean estimates. This plot includes all model parameters across 1008 conditions.

A point on the solid diagonal line indicates that a mean estimate and its true value are

identical or the estimate on average is unbiased. Obviously, all the estimates are centered

along the diagonal solid line under different analytical models. This indicates that all three

analytical models can provide unbiased estimates for their relative true values.
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Figure 5.1. Scatter plot of true parameter values and mean estimates per analytic model.

SOLGM = 3-wave second-order latent growth model second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal

common factor model. Each dot represent a model parameter. A solid diagonal line is y =

x.
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Table 5.5-5.8 are overall summary statistics for the fixed effect parameters. Looking across

these tables, we could find that both the bias and the relative bias (Relative_Bias_m) for

β00, β01, β10 and β11 are almost all equal to zero (the absolute value is no larger than

≤ 0.002) no matter what model is used for analysis. This indicates the fixed effects are, on

average, estimated correctly. As for the standard deviation of the relative bias

(Relative_Bias_sd), three models are equal in most cases except for β10

SE_m and SE_sd are the averages of the empirical standard errors of the estimates and

the standard deviation of the empirical standard errors of the estimates. For all the fixed

effect parameters, the SE_m obtained from the second-order latent growth model

(SOLGM) and 3W-LCFM are slightly smaller than those obtained by the two waves latent

change score model (LCSM). For example, the average standard error of β00 obtained by

SOLGM and 3W-LCFM is around 0.290, however, the corresponding average standard

error of κ1 in the 2-wave LCFM is 0.307. To better interpret this difference, we transform

them into a ratio scale. That is, the standard error of β00 obtained by SOLGM or

3W-LCFM is about 94.5% of the corresponding κ1 in the 2W-LCFM. A similar pattern

could also be observed in the average growth rate of the reference group (β10), where the

mean standard errors obtained by SOLGM and 3W-LCFM are a little lower than the one

obtained from the two models (0.337 vs 0.343). In other words, the average standard errors

obtained by SOLGM or 3W-LCFM is about 98% of the standard error estimated by the

2-wave LCFM. Therefore, the estimates of the fixed effect parameters using

SOLGM/3W-LFCM seem to be relatively more stable than that of the two-wave models.

In simulation studies, type I error rate and statistical power are targeted at the null

hypothesis, especially for comparing the competing designs or models. In the current

study, there seems to be no difference in the average type I error rate and statistical power

(Type I Error Rate/Power M) across three-wave models. This indicates that on average
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the three-wave models are equivalent in terms of power or type I error rate.

Table 5.5

Mean Change Rate of Reference Group
Model Label True Value N Bias Relative Bias SE Type I Error/Power

Mean SD Mean SD Mean SD Mean SD
LCFM_2W κ1 10 1008 0.001 0.011 0.000 0.001 0.307 0.201 1 0
LCFM_3W κ1_3W 10 1008 0.001 0.011 0.000 0.001 0.290 0.185 1 0
SOLGM β00 10 1008 0.001 0.011 0.000 0.001 0.290 0.185 1 0

Table 5.6

Average Growth Rate in Reference Group
Model Label True Value N Bias Relative Bias SE Type I Error/Power

Mean SD Mean SD Mean SD Mean SD
LCFM_2W ∆κ 1 1008 -0.001 0.015 -0.001 0.015 0.343 0.235 0.790 0.004
LCFM_3W ∆κ_3W 1 1008 -0.001 0.014 -0.001 0.014 0.337 0.230 0.795 0.004
SOLGM β10 1 1008 -0.001 0.014 -0.001 0.014 0.337 0.230 0.794 0.005

Table 5.7

Group Difference in Initial Status
Model Label True Value N Bias Relative Bias SE Type I Error/Power

Mean SD Mean SD Mean SD Mean SD
LCFM_2W γ1 3 504 -0.001 0.017 0.000 0.006 0.415 0.274 0.983 0.061
LCFM_3W γ1_3W 3 504 -0.002 0.016 0.001 0.005 0.392 0.253 0.989 0.004
SOLGM β01 3 504 -0.002 0.016 -0.001 0.005 0.392 0.253 0.989 0.004

LCFM_2W γ1 0 504 -0.001 0.014 0.000 0.005 0.387 0.262 0.050 0.005
LCFM_3W γ1_3W 0 504 -0.001 0.014 0.000 0.005 0.368 0.241 0.050 0.004
SOLGM β01 0 504 -0.001 0.014 0.000 0.005 0.368 0.241 0.050 0.004

Table 5.8

Group Difference in Rate of Change
Model Label True Value N Bias Relative Bias SE Type I Error/Power

Mean SD Mean SD Mean SD Mean SD
LCFM_2W ∆γ 2 504 0.001 0.017 0.000 0.008 0.430 0.311 0.913 0.175
LCFM_3W ∆γ_3W 2 504 0.000 0.015 0.000 0.008 0.419 0.302 0.917 0.168
SOLGM β11 2 504 0.000 0.015 0.000 0.008 0.419 0.302 0.917 0.168

LCFM_2W ∆γ 0 504 0.001 0.017 0.000 0.009 0.416 0.306 0.050 0.005
LCFM_3W ∆γ_3W 0 504 0.001 0.017 0.000 0.009 0.404 0.294 0.050 0.004
SOLGM β11 0 504 0.001 0.017 0.000 0.009 0.403 0.294 0.050 0.004
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5.1.1 Bias

Fig.B.1-Fig. B.12 exemplify the bias of fixed effect parameters under some conditions. The

average estimates of fixed parameters are the same for both SOLGM and three-wave

LCFM regardless of different simulation conditions. That is why the green line (for

three-wave LCFM) is completely overlaid by the blue line (for SOLGM) in every panel.

Therefore, we could conclude that three-wave LCFM and the three-wave SOLGM would,

on average, produce the equivalent estimates for the fixed effect parameters. In other

words, given the same number of waves, the two models, on average, (3W-LCFM vs.

3W-SOLGM) do not differ in terms of the estimation ability.

In contrast, the average estimates of the fixed parameters obtained by 2W-LCFM (for red

line) have a slight deviation from the 3W-LCFM/SOLGM, especially when the sample size

is 50. Furthermore, the comparison between the results of 3W-LCFM and 2W-LCFM

seems to imply that given the same model (LCFM), the number of waves may have a little

impact on the magnitude of the bias, especially when the sample size is very small.

However, we still do not know whether this visualized difference could really reach a

statistically significant level. One more thing to be noted here is that no discernible

patterns of the direction in the bias could be observed. This provides evidence that positive

and negative biases could randomly appear under the combinations of different conditions.
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Figure 5.2. Boxplot of Distribution of Relative Bias for β00
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Figure 5.3. Boxplot of Distribution of Relative Bias for β01

Figure 5.4. Boxplot of Distribution of Relative Bias for β10
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Figure 5.5. Boxplot of Distribution of Relative Bias for β11

Figure 5.2-5.5 are the box plots of relative bias across different models for each fixed effect

parameter. Fig 5.2 depicts the distribution of relative bias for the initial status of the

reference group (β00). The distributions of the 3W-LCFM are almost the same as the

three-wave SOLGM. This could be easily observed for the location of different quantiles

and the span of outliers (red dots). It seems that given the same wave of data, the

performance of bias is not impacted by different models in the current study. In other

words, the point estimate abilities are equivalent for both models given the same number of

waves. However, the distributions of relative bias between the 2W-LCFM and 3W-LCFM

seem a little different in the span of the outliers. This difference only comes from the

outliers attached to the bottom whisker. That is, the span of outliers in 2W-LCFM is

slightly wider than they are in the 3W-LCFM. Therefore, we could infer that given the

same longitudinal common factor model (LCFM), the performance of the point estimate by
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the two-wave model almost fully recovers its performance in the three-wave model except

for a few extreme conditions. In summary, the minimum and maximum outliers in the

three models are still far less than 5%, and we, therefore, could conclude that there is no

bias when using either different models (SOLGM vs LCFM) or different waves (2W vs.

3W) to estimate the initial status of the reference group (β00).

Fig 5.3 depicts the box-plot of relative bias for the average group difference in the initial

status (β01). As expected, the pattern of the distribution is almost the same as the Fig.5.2.

The performance of the relative bias given by 3W-LCFM is the same as the SOLGM, but

slightly differs from the 2W-LCFM. This difference is still from the outliers attached to the

bottom whisker, where the span of 2W-LCFM is slightly wider than the

3W-LCFM/SOLGM. However, the absolute values of the outliers in every model are less

than the 5% criterion. Therefore, given the above evidence, we could conclude that there is

still no bias when using either different models (SOLGM vs LCFM) or different waves (2W

vs. 3W) to estimate the average group difference in the initial status (β01).

Fig 5.4-5.5 are the distributions of relative bias in the growth rate parameters (β10 and

β11). In both plots, the distribution of 3W-LCFM performs the same as the SOGLM,

which could be observed in terms of the location of quantiles and the span of outliers. This

implies that given the same wave of the data, the longitudinal common factor model could

show the same point estimate ability as the SOLGM for the growth parameters. However,

some absolute values of outliers in both plots are larger than 5%, even for the data

generation model (SOLMG). What is worse, there is a small portion of outliers in Fig.5.4

whose absolute values are even larger than 10%. This suggests that under some extreme

conditions, there may exist some degree of bias even when the true model (SOLGM) was

used to estimate the growth parameters β10 and β11. Since there are more extreme outliers

attached to the bottom whisker than they are along with the top whiskers, the likelihood of
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underestimating the true value of (β10) may be slightly higher than the likelihood of

overestimating the true (β10). In contrast, the magnitude of estimating the bias in β11 is

not as large as they are in the β10 since no outliers’ absolute values are larger than 0.1. In

addition, the chances of overestimation and underestimation to the true values seem to be

more balanced in the β11.

In order to further explore in which conditions the three analytical models will generate

biased estimates for the β01 and β11, we extracted the conditions whose relative biases are

either smaller than -0.05 or larger than 0.05, and the results are given in tables 5.9 and

5.10. Similar to the results in study 1, we could observe that there are much more

simulation conditions that generated the bias estimates in β10 (31 conditions) than they are

in the β11 (6 conditions). Therefore, compared to β11, it is more likely to have biased

estimates for β10. For both β10 and β11, all these biased estimates come from N = 50. In

addition, the majority of the biased estimates tend to come from the θ22 = 4 with regards to

β10. The patterns under which there exist some biased estimates include High Edge, Heavy

spreading, Heavy shrinking, and moderate spreading.
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Table 5.9

Conditions with significant relative bias in β10
Model Relative Bias N θ22 Pattern
LCFM 0.062 50 4 High_Edge
SOLGM 0.057 50 4 High_Edge

LCFM_3W 0.057 50 4 High_Edge
LCFM 0.053 50 4 Heavy_Spreading

LCFM_3W -0.050 50 4 High_Edge
SOLGM -0.050 50 4 High_Edge
LCFM -0.051 50 4 Heavy_Shrinking
SOLGM -0.053 50 4 High_Edge

LCFM_3W -0.053 50 4 High_Edge
LCFM -0.054 50 1 High_Edge
SOLGM -0.054 50 1 High_Edge

LCFM_3W -0.054 50 1 High_Edge
LCFM -0.056 50 4 Heavy_Spreading
LCFM -0.056 50 4 Moderate_Spreading
LCFM -0.058 50 4 Heavy_Shrinking

LCFM_3W -0.063 50 4 Heavy_Spreading
SOLGM -0.063 50 4 Heavy_Spreading
LCFM -0.070 50 4 Heavy_Spreading
LCFM -0.074 50 4 Heavy_Spreading
LCFM -0.077 50 4 High_Edge
SOLGM -0.081 50 4 High_Edge

LCFM_3W -0.081 50 4 High_Edge
SOLGM -0.082 50 4 Heavy_Shrinking

LCFM_3W -0.082 50 4 Heavy_Shrinking
LCFM -0.088 50 4 Heavy_Shrinking

LCFM_3W -0.093 50 4 High_Edge
SOLGM -0.093 50 4 High_Edge
LCFM -0.096 50 4 High_Edge
LCFM -0.106 50 4 High_Edge

LCFM_3W -0.112 50 4 High_Edge
SOLGM -0.112 50 4 High_Edge
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Table 5.10

Conditions with significant relative bias in β11
Model Relative Bias N θ22 Pattern
SOLGM 0.054 50 4 High_Edge

LCFM_3W 0.054 50 4 High_Edge
LCFM 0.050 50 4 High_Edge

LCFM_3W -0.050 50 1 High_Edge
SOLGM -0.050 50 1 High_Edge
LCFM -0.053 50 1 High_Edge

In order to further explore the possible factors that could impact the magnitude of the

relative bias, four full factorial Analysis of Variance(ANOVA) were conducted for each

fixed parameter, with relative bias as the dependent variable and simulation factors as

independent variables. Tables B.1-B.4 show the ANOVA test results for the relative bias of

each fixed effect parameters, respectively (β00, β01,β10 and β11). Across all four ANOVA

results, we could conclude that there is no substantially important factor for the variability

of relative bias in each fixed effect parameter because the largest value of η2 is from 0.068

to 0.087, which means that less than 9% of the total variability could be explained by the

most influential terms in each table.

5.1.2 Standard Error

Empirical Standard Error

Fig.B.13-B.24 exemplify the results of empirical standard error across different fixed effect

parameters. In general, the empirical standard error tends to decrease as the sample size

increases regardless of simulation conditions. That is why all the line plots in each panel

show a similar down-slope pattern starting from the top left and reach down to the bottom

right. As for the average initial status β00, the blue and green lines that represent the
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standard errors of the SOLGM and 3W-LCFM respectively, are totally intertwined in every

panel. However, they are all a little lower than the red line that represents the 2W-LCFM,

when the changing patterns are shrinking and high-edge. Meanwhile, we can observe that

this discrepancy tends to become larger when the time-specific residual variance becomes

larger (θ2). A similar pattern also exists for the average group difference in the initial

status β01. This indicates that given the same number of waves, LCFM and SOLGM seem

to have the same level of efficiency when estimating the parameter of the initial status.

However, given the same model (LCFM), increasing the number of waves seems to improve

the efficiency of the estimate when the changing pattern is at the shrinking and high-edge.

This improvement in estimating efficiency seems more salient when the θ2 becomes larger.

In contrast, the pattern of empirical standard errors in growth parameters (β10 and β11)

seems a little different from the parameters of the initial status. Basically, the blue

(SOLGM) and green (3W-LCFM) lines are still intertwined together to show that there is

no difference in terms of estimation efficiency. This is also true when the sample size is 50.

However, the discrepancy happens between 2W-LCFM and 3W-LCFM/SOLGM. Different

from the patterns shown in the initial status, The empirical standard errors of 2W-LCFM

(red line) tend to be a little higher than that of three-wave models when the changing

patterns are at shrinking and spreading. In addition and similar to the pattern in the initial

status, this discrepancy is enlarged when the time-specific residual variance θ22 gets larger.

In order to systematically explore the factors that are substantially important for the

standard error of estimating the fixed effect parameters, we conducted four full factorial

ANOVA with the standard error being the dependent variable. Table B.5-B.8 show the

ANOVA test results for the fixed effects parameters. As expected, the sample size N is the

only substantially important factor for the variability of standard error in each estimate of

the fixed effect parameter. The corresponding values of η2 are 0.895, 0.871, 0.802 and 0.715
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for β00, β01, β10 and β11, respectively. That means the total variance of standard error

explained by the sample size N could be ranged from 71% to 90%. The rest of the terms,

especially those related to the models, do not have any substantial contribution to the

variance of the standard error of the estimate. The major conclusion inferred from this

evidence is that there is actually no loss of efficiency when we use the two-wave LCFM to

estimate the fixed effect parameters compared to the three-wave SOLGM.

Theoretical Standard Error

Fig.B.25-Fig.B.36 depict some examples of theoretical standard error across different

models under different conditions. The theoretical standard errors tend to decrease as the

sample size increases regardless of condition, which is the same as the pattern observed for

the empirical standard error. The performance of the theoretical standard error for β00 and

β01 are also similar to their corresponding empirical standard error. The theoretical

standard errors of the three-wave models (3W-SOLGM and 3W-LCFM) are smaller than

the two-wave models (2W-LCFM) when the patterns are shrinking and high-edge. This

discrepancy tends to increase with the time-specific residual variance enlarged.

Furthermore, when the sample size is as small as 50, the theoretical standard error

obtained from the two-wave models is always larger than the standard error yielded by the

three-wave models in almost all the conditions. In addition, the performance for the

theoretical standard error of growth parameters (β10 and β11) indicated that two-wave

models could give theoretical standard errors comparable to the three-wave models in the

majority of cases except when the time-specific variance are large and heteroscedastic.

More specifically, the 2W-LFCM yields worse theoretical standard error compared to the

three-wave models when θ22 is large and the patterns are spreading or shrinking.

In order to systematically explore the factors that are substantially important for the
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theoretical standard error of estimating the fixed effect parameters, we conducted four full

factorial ANOVA with the standard error being the dependent variable. The corresponding

results are listed across tables B.9-B.12. Again the sample size N is the only substantially

important factor for the variability of theoretical standard error in each estimate of the

fixed effect parameter. The corresponding values of η2 are 0.889, 0.859, 0.796 and 0.701 for

β00, β01, β10 and β11, respectively. That means the total variance of standard error

explained by the sample size N could be ranged from 70% to 89%. The rest of the terms,

especially those related to the models, do not have any substantial contribution to the

variance of the standard error of the estimate. The major conclusion inferred from this

evidence is that there is actually no loss of efficiency when we use the two-wave LCFM to

estimate the fixed effect parameters compared to the three-wave SOLGM.

Ratio of Theoretical standard error

Table 5.11 shows the descriptive statistics for the Ratio− SE2T/3T . On average, the

theoretical SE by the two-wave models is slightly larger than the theoretical SE obtained

from the three-wave model in every fixed effect parameter. The minimum values of the

ratio Ratio− SE2T/3T for all fixed effect parameters are larger or equal to 1. This implies

that on average, the two-wave models tend to be larger than the theoretical SE of the

three-wave model, especially for estimating the initial status parameters. The largest

maximum values across fixed effect parameters are ranged from 1.135 to 1.269. This

indicates in certain situations, the theoretical SE by the two-wave models could be 26%

higher than the corresponding one by the three-wave model.
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Table 5.11

Descriptive Statistics for the Ratio of Theoretical SE of 2W-Models vs 3W-Model
Parameters Minimum Median Maximum Mean Standard Deviation

β00 1.018 1.046 1.228 1.064 0.045
β01 1.008 1.040 1.269 1.060 0.054
β10 1.000 1.006 1.137 1.020 0.034
β11 1.000 1.011 1.212 1.032 0.049

In order to examine what factors have substantial importance on the variability of

Ratio− SE2T/3T , we conducted four full factorial ANOVA for each fixed effect parameter.

The results are shown from tables B.13 to B.16. Similar as the results in study 1, the term

pattern, θ22 and pattern*θ22 have the largest effect on the variability of Ratio− SE2T/3T for

all the fixed effect parameters. Given the interaction term between pattern and θ22 are

significantly important, we first created the interaction plots for both β00 and β01. Fig.5.6

and 5.7 depict the interaction effect between pattern and θ22 on the Ratio− SE2T/3T for β00

and β01. The results are similar to the findings in the study. In general, as the θ22 increases

from 0.25 to 4, the average value of Ratio− SE2T/3T also increases. However, this

increasing trend can only be observed between shrinking and edge patterns. Meanwhile,

the Ratio− SE2T/3T at the low edge and spreading patterns tend to slightly decrease.

Finally, this increasing rate tends to become larger as the θ22 becomes larger with the

shrinking pattern become worse. Similar to study 1, the average maximum loss of using the

two-wave models could reach 24% for both β00 and β01. Fig.5.8-5.9 depict the interaction

effect between pattern and θ22 on the Ratio− SE2T/3T for β10 and β11, respectively. In

general, as the size of θ22 increases, The average Ratio− SE2T/3T increases only at the

spreading and shrinking patterns. Under the other patterns, the average value for both

ratios tends to remain stable regardless of how large the θ22 is.
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Figure 5.6. Interaction between the pattern and θ22θ22θ22 on the ratio of theoretical standard error

(Ratio− SE2T/3T ) for β00β00β00

Figure 5.7. Interaction between the pattern and θ22θ22θ22 on the ratio of theoretical standard error

(Ratio− SE2T/3T ) for β01β01β01
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Figure 5.8. Interaction between the pattern and θ22θ22θ22 on the ratio of theoretical standard error

(Ratio− SE2T/3T ) for β10β10β10

Figure 5.9. Interaction between the pattern and θ22θ22θ22 on the ratio of theoretical standard error

(Ratio− SE2T/3T ) for β11β11β11
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5.1.3 Type I Error Rate and Statistical Power

Fig B.37-B.45 list some examples of plots for the statistical power and type I error rate in

different parameters. On the whole, we could easily observe that the three-wave models

(3W-LCFM vs. SOLGM) are exactly the same in terms of statistical power in every panel.

That explains why the green line and blue line again come together. In addition, the

sample size N has a dominating effect on the statistical power except for the β00. To be

more specific, when the statistical inference is for the average initial status in the reference

group β00, our statistical power always reaches 100% regardless of analytical models. When

the inference is for other fixed effect parameters, we could see that the statistical power

goes up as the sample size increases from 50 to 1000. When the sample size N is 50, the

statistical power in most cases is less than 0.5. Then it goes up gradually with the increase

of sample size. After the sample size is larger than 600 or 700, the statistical power in most

cases starts to approach 1. Other possible factors that may influence the statistical power

are time-specific residual variance θ22 and changing patterns of the time-specific residual

variance. the power of 3-wave SOLGM/LCFM seems to be slightly higher than the 2-wave

LCFM when the patterns are at spreading and shrinking. Furthermore, increasing the

time-specific residual variance θ22 could slightly enlarge this disparity.

In order to systematically investigate the substantially important factors for the statistical

power, we conducted three full factorial Analysis of Variance (ANOVA) for the fixed

parameter β00, β10 and β11, with statistical power as dependent variable and simulation

factors as independent variables. Similar to the reason as in study 1, we neglect the

ANOVA analysis for β00 because all the power value is 1. As shown in Table B.17, the

substantially significant terms for the statistical power of β01 are:

N,N ∗ θ22, N ∗ Pattern and N ∗ Pattern ∗ θ22 with their corresponding η2 value 0.214, 0.194,
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0.157 and 0.198. Further three-way interaction plot 5.10 shows almost the same pattern

observed in study 1. That is, when the sample size is as small as 50, the discrepancy

between the power level given by the different sizes of θ22 could be observed among most

changing patterns except for the heavy spreading and low edge, where to increase θ22 from

0.25 to 1 does not reduce the statistical power.

Table B.18 shows the results of the ANOVA test for β10, whose value is 1. Consistent with

the results in study 1, N is the only substantially important factor for the total variability

of the statistical power. Around 88% of the total variance in statistical power could be

explained by N. The increasing rate is the same as in study 1 (Fig 5.11). Finally, in the

table B.19, we could conclude that N and interaction term N ∗ θ22 are still the substantially

important factors on the variability of statistical power for β11, with their corresponding η2

0.581 and 0.154. The interpretations for Fig 5.12 are the same as they are in study 1.

Therefore we could conclude that the findings in study 1 are all consistent with the

findings in study 2.

Finally, we would like to check the type I error rate. Table 5.12 and 5.13 describe the type

I error rate across different models for β01 and β11, respectively. On average, we could see

that given the same sample size, different analytical models yield the same level of the type

I error. In other words, given the same sample size, all the analytical models have the same

level of chance to reject our null hypothesis when the alternative hypothesis is true. This

level of chance is all-around 5%, which is actually our nominal α level, regardless of the

sample sizes.
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Table 5.12

Descriptive statistics of Type I error rate across sample size for β01
N Model Count Min Mean Max SD

50.000 LCFM 126.000 0.042 0.051 0.064 0.004
50.000 LCFM_3W 126.000 0.039 0.051 0.064 0.004
50.000 SOLGM 126.000 0.039 0.051 0.064 0.004
200.000 LCFM 126.000 0.040 0.050 0.063 0.005
200.000 LCFM_3W 126.000 0.036 0.049 0.060 0.004
200.000 SOLGM 126.000 0.036 0.049 0.060 0.004
600.000 LCFM 126.000 0.037 0.050 0.062 0.005
600.000 LCFM_3W 126.000 0.040 0.050 0.066 0.005
600.000 SOLGM 126.000 0.040 0.050 0.066 0.005
1000.000 LCFM 126.000 0.037 0.050 0.063 0.005
1000.000 LCFM_3W 126.000 0.036 0.050 0.061 0.004
1000.000 SOLGM 126.000 0.036 0.050 0.061 0.004

Table 5.13

Descriptive statistics of Type I error rate across sample size for β11
N Model Count Min Mean Max SD

50.000 LCFM 126.000 0.038 0.050 0.063 0.005
50.000 LCFM_3W 126.000 0.040 0.050 0.062 0.004
50.000 SOLGM 126.000 0.040 0.050 0.062 0.004
200.000 LCFM 126.000 0.040 0.051 0.063 0.004
200.000 LCFM_3W 126.000 0.041 0.051 0.061 0.004
200.000 SOLGM 126.000 0.041 0.051 0.061 0.004
600.000 LCFM 126.000 0.037 0.050 0.063 0.005
600.000 LCFM_3W 126.000 0.039 0.050 0.062 0.004
600.000 SOLGM 126.000 0.039 0.050 0.062 0.004
1000.000 LCFM 126.000 0.034 0.050 0.061 0.004
1000.000 LCFM_3W 126.000 0.034 0.050 0.061 0.005
1000.000 SOLGM 126.000 0.034 0.050 0.061 0.005
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Figure 5.10. Power Plot of Three-Way Interaction among θ22θ22θ22, pattern and NNN for β01β01β01

Figure 5.11. Power Plot of main effect for β10β10β10
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Figure 5.12. Power Plot of Interaction between N and θ22θ22θ22 for β11β11β11



Chapter 6

Discussion

The major purpose of this dissertation was to determine to what extent the fixed effect

parameters of the 3W-SOLGM can be recovered from the 2W-LCFM and 2W-LCSM in

various settings and how precise the two-wave models could approach when they are used

to estimate those fixed effect parameters. In social science research, we sometimes have to

face the dilemma that researchers can only collect two-wave data, but still expect to

estimate the growth effect under the longitudinal framework when the item-level

information is available. Therefore, it is very important to know the estimation quality by

adopting the two-wave models (LCFM and LCSM) given different settings.

In the supplementary study, we did not find any factors that have a substantially

important impact on the variability of bias for β00 and β01. This provided direct evidence

that the fixed effect parameters related to the initial status could be equally estimated by

both the two-wave and three-wave LCFM/SOLGM without any substantial bias. The

corresponding results in our main study (study 1) further confirmed that this equivalent

point estimate could also be observed between the two-wave LCSM and three-wave

SOLGM in terms of the β00 and β01. Therefore, from the above chain reasoning in terms of

the equal bias: 3W-SOLGM←→ 3W-LCFM←→ 2W-LCFM / 2W-LCSM, we could

finally conclude that the average initial status in the reference group (β00) and their

average group difference (β01) in the 3W-SOLGM could be accurately recovered by the

proposed two-wave models ( LCFM and LCSM ) in the current study.

118
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As for the growth-related parameters, the findings seem a little more complicated. In both

studies, the ANOVA tests did not detect any factors that had substantially large effect on

the variability of the relative bias. Following the same reasoning process, as we did for the

initial status, we could derive that there are no significant differences among these models

in terms of the point estimates, and the parameters related to the growth rate estimated by

the 3W-SOLGM could also be accurately recovered by the two-wave lCFM and LCSM.

However, the box-plots for the distribution of relative bias in both studies (e.g. Fig.4.4 and

Fig.4.5) indicated that the true model itself (3W-SOLGM) is able to provide biased

estimates under certain scenarios. As shown from the tables 4.9-5.10, it is more likely to

produce biased estimates for the average growth rate in the reference group (β01) than the

average group difference of the growth rate (β11). Furthermore, the majority of the biased

estimates occurred when the sample size is as small as 50 and the time-specific residual

variance is large (θ22 = 4).

In order to further investigate the distribution of the biased estimates under different

changing patterns, the information from tables 4.9 and 5.9 was reorganized, based on the

changing patterns, into table 6.1 and 6.2. Both tables provide the summary statistics for

the biased cases across their relative changing patterns. For example, in table 6.1, the first

row starting with the “heavy shrinking” summarized (from the left and based on the

absolute relative bias) the “number of biased estimates”, “minimum value of the relative

bias”, “median of the relative bias”, “mean of the relative bias”, “maximum of the relative

bias” and the “standard deviation of the relative bias” under the “heavy shrinking”

pattern. In general, we could conclude that the “High Edge” pattern in both studies is

actually the worst scenario in that the analytical models may fall into a higher risk of

producing a larger bias for estimating the average growth rate for the reference group (β01)

since the total number of biased cases and the average size of the bias are larger compared
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to most other patterns.

In addition, it is worth noting that under each biased pattern, the alternative analytic

models tend to have more biased cases than the true analytical model (3W-SOLGM) in

both studies. An extreme case occurred that no biased cases were detected by analyzing

with the true analytical model compared with the alternative models under the “Moderate

Spreading” pattern. Finally, it is interesting to find that the major difference between table

6.1 and 6.2 is that the models with the same number of waves have exactly the same

performance in terms of bias. To be more specific, the two alternative models in study 1

(2W-LCFM and 2W-LCSM) are exactly the same in all the descriptive statistics for the

biased cases. Similarly, the 3W-LCFM and 3W-SOLGM models are also fully equal in their

descriptive statistics. The reason for this equivalence in study 1 may come from the fact

that 2W-LCMF and 2W-LCSM are equivalent models (Hershberger & Marcoulides, 2013,

p. 11). By definition, when two equivalent models are used to fit the same dataset, they

should finally yield the identical fit functions and goodness-of-fit indices (Hershberger &

Marcoulides, 2013; Lai et al., 2016, p. 15). This explains why all average point estimates

and the descriptive statistics for the goodness-of-fit indices between 2W-LCSM and

2W-LCFM are identical among tables 4.2 and 4.4. This same phenomenon could also be

observed between 3W-LCFM and 3W-SOLGM, which implies that they are also equivalent.

We should note that it is not the focus of the current dissertation to approve whether the

models are mathematically close or equivalent. The main purpose is to see whether the

alternative models could provide the same point estimates as our true model. Based on the

ANOVA tests in study 1 and 2, we, therefore, could conclude that the alternative models

could on average recover the point estimates of true analytical model (3W-SOLGM) under

all conditions even when the growth estimates given by the true analytical model

(3W-SOLGM) was biased when the sample size is small (50) and time-specific residual
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variance (θ22) is large (1 or 4). A previous simulation study by Leite (2007) demonstrated

that the three-wave SOLGM was able to provide unbiased estimates under different

conditions when the sample size was as small as 100. However, so far there is no empirical

evidence to show how the 3W-SOLGM could performance when the sample size is as small

as 50.

So far, what is the practical implication we could get from the current empirical results?

The major implication of the current findings is that this empirical evidence could help

justify the use of two-wave models to evaluate the long-term strength (T=3) of intervention

effects. Although researchers should be certainly preferable to gather data at more than

two-time points, it is not always feasible to do so. For example, some large-scale testing

programs such as those conducted by the Northwest Evaluation Association are carried out

in a biannual fashion. (Finch & Shim, 2018). Given this limitation, the proposed two-wave

models still could successfully estimate the average longitudinal treatment effect designed

for the three-wave of measurement in most of the conditions.

In addition, the finding that 3W-SOLGM itself could yield a biased estimate when the

sample size is limited to around 50 and the time-specific residual variance is large should

also bring enough cautions for the researchers who are interested in the application of the

3W-SOLGM. Although it is well known that obtaining more than three measures of

outcome permit a more detailed understanding of individual differences in the growth

trajectory, real-world constraints may often impose practical limitations on the number of

waves the data could be collected. For example, in the clinical research study related to the

saliva data among young children, applied researchers routinely adopted the pretest,

posttest, follow-up (PPF) design (Rausch, Maxwell, & Kelly, 2003) to collect three (and

only three) samples of cortisol (Willoughby et al., 2007). If researchers are really interested

in applying the 3W-SOLGM to analyze such a dataset, it may be more advisable to make
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the sample size no less than 100 to avoid the risk of getting a biased estimates.

The other important points to be discussed in current study are how accurate or efficient

when these alternative models are used to recover the fixed effect parameters of

3W-SOLGM and what factors are related to the precision of the estimation obtained by

two-wave models. Before starting a formal discussion about research question two, we

would like to first put our lens on the justification of the logic to compare different models

(LCFM vs. SOLGM) in terms of their standard error. As the figures listed across

B.13-B.45 in the supplementary study, the performance of both empirical standard error

and theoretical standard error between the 3W-SOLGM and 3W-LCFM are exactly the

same in every graph. This equality, therefore, justifies that we can directly compare the

standard error of LCFM or LCSM with that of the SOLGM in study 1 since the

3W-LCFM and 3W-SOLGM are equivalent in terms of standard error.

Another important point to check, before targeting research question two, is to examine

how accurate the theoretical standard error could reach for each model parameter. This

information was provided by the results of SET
SEE

in study 1. In general, the SET could

underestimate the true SE (SEE) by 13.87% and overestimate by 8% across parameters.

However, as we mentioned in results 1, the criterion recommended by the Nevitt and

Hancock (2001) would more favor the conclusion that the theoretical standard errors tend

to accurately estimate the true stand error in majority of the conditions because neither

their underestimation or overestimation rates are larger than 10%. With a further look at

the table A.17-A.20, we can find that all the biased estimate for the true standard error

(SEE) occur when sample size is 50, and the parameter estimates are for β00 and β01. More

interestingly, they all occurred when the true model (3W-SOLGM) is applied. These

findings should give gentle cautions again to researchers who try to apply the three-wave

second-order latent growth model. When the sample size is as small as 50 and the
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time-specific is large enough, the model may not only generate biased estimates for the

initial status, but also downplay its estimated standard error compared with two-wave

models.

To answer part of the main research question two “How accurate or efficient when these

alternative models are used to recover the fixed effect parameters of 3W-SOLGM”, we need

to turn back our discussion to the findings of the Ratio− SE2E/3E and Ratio− SE2T/3T in

study 1. First, the comparison between the tables 4.12 and 4.13 may imply that the

performance of the Ratio− SE2T/3T is highly similar to the performance of the

Ratio− SE2E/3E. The average values of both ratios are around 1 across each parameters.

In addition, both the empirical and theoretical SEs in the two-wave models tend to

overestimate their counterparts obtained by the three-wave model. The maximum

overestimation rate could be as large as 30%. Except for this risk of precision loss by using

alternative two-wave models, the findings from the ANOVA tests on both Ratio− SE2T/3T

and Ratio− SE2E/3E also revealed that the substantively important sources of this

precision loss for both standard errors are originated from two factors, i.e., the time-specific

residual variance (θ22) and changing pattern. Clearly shown by figures 4.10-4.17, the

patterns starting with higher variability in the initial measurement have a relatively larger

impact on both ratios of initial status compared to other patterns. Under these patterns,

the average loss of precision for both ratios could be increased up to 23% as the θ22 increase

to 4. In contrast, the heterogeneity patterns, where the residual variance for the true latent

construct shows differ in the first and third-time point, tends to have a larger impact on

both ratios of growth parameters compared to other patterns. Given these patterns, the

average loss of precision for both ratios could be increased up to 12% as the θ22 increase to 4.

The empirical standard error estimates the long-run standard deviation of parameter

estimates over repeated samplings, which is inaccessible in real data analysis since we only
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collect one dataset (Burton et al., 2006). Therefore, a more informative interpretation for

the substantial researchers should be based on the ratio of theoretical standard error. As

for the theoretical standard error, the overestimation rate by using the two-wave models to

estimate the parameters of the three-wave model could range from 3% to 23% for the

initial status (β00 and β01) or from 1% to 13% for the growth rate parameters (β10 and

β11), respectively. Given that the theoretical standard errors of 3W-LCFM are equivalent

to the 3W-SOLGM in the preliminary results, this overestimation is more likely attributed

to the lack of the middle-wave (2nd wave) measurement for the two-wave models. In

addition, it is very interesting to observe that the overestimation rate by two-wave models

for the initial status (β00 and β01) could be as twice as the overestimation rate by two-wave

models for the growth parameters (β10 and β11) when the time-specific variances are as

large as 4. This may imply that compared with estimating the initial status parameters

(β00 and β01), the two-wave models are more robust to the loss of precision when

estimating the growth related parameters (β10 and β11).

As mentioned before, when the time-specific variance is very large (e.g. θ2=4), the average

maximum loss of precision could reach to 13% or 23% under certain patterns. In

consequence, this loss would have a negative impact on the statistical power of detecting

the true growth effects (Miyazaki et al., 2019). For example, as shown from figures

A.88-A.99, the power loss of using the two-wave models compared with the three-wave

model is consistently observed when the time-specific residual variance is large (e.g. 4).

Moreover, this loss could be gradually shrunk as the sample size keep growing. Specifically,

this shrinkage will not totally disappear until the sample size is close to 1000. This

indicates when sample size is small and time-specific variance is large, the two-wave models

may be correct on average, but tend to have smaller power to detect the group difference in

the initial status and growth rate compared with the three-wave model. This result may
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not be surprising because SOLGM utilizes the data from the second wave, which gains

more information than the two-wave models. One last notice should be given to the

statistical power for detecting the initial status for the reference group (β00) since its power

level is always 1 regardless of conditions. This consistent high power should be mainly due

to the setting for the initial status in the reference group (β00). In the current study, the

true value of β00 is set to be 10, which is relatively easier to be detected in any situations

(Diallo, Morin, & Parker, 2014).

As for the substantial important factors influencing the empirical power, the findings in the

current study show that the factors may vary across parameters. The common factor is the

sample size N. That is, the power rate to detect the true parameter is related to sample

size. The power rate increases with the increase in the sample size, controlling for other

conditions. This finding is consistent with the results in other power analysis using the

univariate LCM (Hertzog, Lindenberger, Ghisletta, & von Oertzen, 2006; Hertzog, von

Oertzen, Ghisletta, & Lindenberger, 2008; Diallo et al., 2014), and as expected, also

consistent with the statistical theory stating that statistical power in any context depends

on sample size, effect size, and the chosen Type I error rate (Cohen, 1998). Another

important factor is time-specific residual variance (θ22). Expect for the average initial status

and growth rate for the reference group (β00 and β10), the time-specific variance is found to

be related to the power rate among (β01 and β11). On average, given the smaller sample

size (e.g. 50), the statistical power will be lower than 75% when the θ22 is closed to 4. As

the θ22 drops down to 0.25, the average power rate could be significantly boosted especially

when the sample size is very small.
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6.1 Implications for Practice

The randomized pretest, posttest, follow-up, (Rausch et al., 2003) or pre-post-post design

(Willoughby et al., 2007) is a commonly used design for testing hypotheses about

intervention effects in clinical child and adolescent research (e.g. cortisol data) or long-term

strength of intervention effects. Of course, if applied researchers are able to collect three

waves of data, it is more preferable to use second-order latent growth model (SOLGM) to

evaluate the longitudinal intervention effect. However, the real world constraint often

imposes practical limitation on collecting one of the post-test/follow-up data. For example,

some large-scale testing programs such as these conducted by the Northwest Evaluation

Association are carried out in a biannual fashion (Finch & Shim, 2018) or some clinical

studies collecting the saliva samples among the young or infant children (Willoughby et al.,

2007). With only two waves of data, the use of SOLGM is impossible because there are not

sufficient degrees of freedom with which to fit the model (Finch & Shim, 2018).

The current study extended Miyazaki (Miyazaki, 2017)’s recent study that provided a

promising solution for using the two-wave LFCM to recovery the fixed effects of three-wave

SOLGM. When considering the implication of these results for practice, the researchers

should take several considerations into account. First, with only two-wave data collected,

researcher could still use LCFM or LCSM to estimate the fixed effects of the three-wave

SOLGM. When researchers’ original pre-post-post design was interrupted by the lack of

sustained funding or maintained participants, they could still try to collect two waves of

data to estimate the true growth effect under the pre-post-post design. Another important

implication is for the situation when the data of a certain wave is missing in a nonrandom

way. Although full information maximum likelihood estimation has been consistently

suggested to deal with missing data in SEM (Enders & Bandalos, 2001; Raykov, 2005), this
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is only suitable for the cases when missing are random. However, one can sometimes run

into cases where this assumption is not valid. For example, studies of infant cortisol

response following immunization shots will invariably have some missing data due to

children falling asleep as a regulation strategy (Willoughby et al., 2007). If the missing

response rate is very high in the post-test (2nd-wave), the researcher could drop the middle

wave and use the alternative two-wave models to estimate the average growth effects.

The second one is related to the three-wave SOLGM itself. The recent evidence

accumulated from methodological research has consistently demonstrated the advantage of

using SOLGM over the first-order LGM when multiple-scale items are available at each

measurement time. In the social science field where the latent constructs are primary

research interest, the application of SOLGM is very important because the measurement

quality for the construct could be fully assessed. The findings in our study that the

3W-SOLGM may yield biased estimates for the growth parameters when the sample size is

50 and time-specific residual variance is large actually extends our knowledge about the

property of 3-wave SOLGM. Especially for the substantial researchers who are interested in

using the SOLGM with the pre-post-post/follow-up design, a warning should be flagged

with the collection of a small sample size such as 50. Although the findings in study 1

indicated that sample size 50 does not necessarily give rise to the biased estimates because

time-specific residual and changing patterns should be also considered simultaneously. But

these two factors may not be easily sensible before the data is collected. So we would like

to recommend applied researchers to collect a sample larger than 100 to ward off falling the

risk of biased estimation.

Last but not the least, compared with other empirical studies, the most salient

contribution of the current work is the emphasis on how important it is to consider the size

and pattern of the time specific residual variance when SOLGM is implemented. According
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to the literature review, to date, rarely have any empirical studies of SOLGM discussed the

structure and size of the time-specific residual variance and how they could influence the

estimation bias. Thus, there is little empirical knowledge about to what extent the size and

structure of the residual variance could have an impact on the estimation performance of

the SOLGM. Let alone the knowledge about how the time-specific residual could influence

the recovery of 3W-SOLGM by the two-wave models. In the second-order latent growth

model, the measurement error has been removed from these composites by means of the

first-order part of the model (Sayer & Cumsille, 2001). Thus θ22 here represents random

variance attributable to fluctuations unique to each time of measurement. In the

substantial theory such as Latent State-Trait Theory (LST), the time-specific residual, also

called occasion-specific residual is the portion of a latent state variable that does not rely

on the person’s trait, but on the effect of the situations (e.g. psycho-social and

psycho-biological factors). The person’s trait, within the LST, corresponds to the growth

factors in the SOLGM and represents the person’s characteristic independent of the

situational effect (Steyer, Schmitt, & Eid, 1999; Kenny & Zautra, 2001). Therefore,

people’s trait should not be primary reasons for intraindividual state variability. Rather,

intraindividual state variability will, in general, be a consequence of the fact that the

person is in different situations on different occasions of measurement (Steyer et al., 1999).

In the substantial research, should the use of SOLGM be framed under the LST, the

researcher needs clearly understand what the test really measures. This is because the

traitlike construct and statelike normally differ as for the proportion of latent state

residual. If the measurement is for the traitlike construct (e.g intelligence score), the

proportion of variance of the latent state that is determined by the latent trait should be

higher enough so the whole measurement is less dependent on the measurement occasion

compared to the statelike construct (e.g depression), which constitutes a high level of
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occasion-specific residual variance. In latter case, the second-order latent growth should

(LGM) be preferred than the first-order LGM because the LGM tend to underestimate the

indicator’s reliability (Geiser et al., 2013). From the theoretical perspective, the SOLGM is

often preferred in measuring the psychological construct because it is more appropriate to

conceive the psychological construct contains both trait and state component(Hertzog &

Nesselroade, 1987).

Although the purpose of this study is not to show how well the SOLGM could align with

the LST in real application (see Geiser et al. (2013) for the detailed discussion), the outline

of the time-specific residual under the LST should be very beneficial for substantial

researchers to understand to what extent and in what situations the two-wave longitudinal

common factor model or two-wave latent change score model could recover the fixed effects

of 3W-SOLGM. Based on the current results, the two-wave models could accurately

estimate the fixed effects parameters of SOLGM in various conditions. However, the

precision and statistical power of this estimation (standard error) by two-wave models

could only be as comparable as the 3W-SOLGM when the time-specific residual is small

and stable across time (constant pattern). As discussed in the previous paragraph, this is

more likely to happen when the measurement is about the cognitive construct. For example

the mathematical ability should be more stable across time (the relative ranking order on

the construct being measured is highly similar across time (Kenny & Zautra, 2001) is, even

it could change slowly across time. Even the sample size is as small as 50, the researchers

should feel confident enough to use the alternative two-wave models if they are only

interested in the fixed effects such as the gender difference or treatment group effect.

Things become more complicated when the interested construct is more statelike. Many

studies showed that the psychological construct such as depressed mood or anxiety

(Dumenci & Windle, 1996; Cole & Martin, 2005; Olatunji & Cole, 2009) has a substantial
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amount of occasion-specific variance. In other words, their corresponding score is more

prone to fluctuate dependent on the measurement occasion. If we are interested in anxiety,

for instance, one person may just have been told by the doctor that she/he needed surgery

to remove cancerous skin tissue while another person may just have been offered a job

which means the end of worries about unemployment. These two individuals will, at the

occasion of measurement (time point), differ in their anxiety state (Geiser et al., 2013). In

these cases, the analysis of changes should take more occasion-specific effects into account.

With reference to our results, using two-wave models to estimate the fixed effect of

3W-SOLGM may be still correct on average, but will substantially lose the precision and

statistical power when the size of the time-specific residual variance is ranged from medium

to large and unequal or not constant over time (pattern). Therefore, with psychological

constructs be measured, a forewarning should be given to those who want to take

advantage of the 2W-LCFM or 2W-LCSM to recover the estimate of these fixed effect.

Therefore, the best remedy for researchers who are interested in the change of the

stateliked construct is to collect at least three-wave data. So they could properly estimate

the measurement error, time-specific residual variance, and growth related variance, which

are corresponding to the property of the measurement, property of the construct and

property of the sample or population.
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Table 6.1

Study 1: Summary of the Descriptive Statistics for Biased Cases with Relative Bias for β10
Pattern Model N Min Median Mean Max SD

Heavy Shrinking LCFM 3 0.051 0.058 0.066 0.088 0.020
Heavy Shrinking LCSM 3 0.051 0.058 0.066 0.088 0.020
Heavy Shrinking SOLGM 1 0.082 0.082 0.082 0.082 NA
Heavy Spreading LCFM 4 0.053 0.063 0.063 0.074 0.010
Heavy Spreading LCSM 4 0.053 0.063 0.063 0.074 0.010
Heavy Spreading SOLGM 1 0.063 0.063 0.063 0.063 NA

High Edge LCFM 5 0.054 0.077 0.079 0.106 0.022
High Edge LCSM 5 0.054 0.077 0.079 0.106 0.022
High Edge SOLGM 6 0.053 0.069 0.075 0.112 0.024

Moderate Spreading LCFM 1 0.056 0.056 0.056 0.056 NA
Moderate Spreading LCSM 1 0.056 0.056 0.056 0.056 NA

Table 6.2

Supplementary Study: Summary of the Descriptive Statistics for Biased Cases with Relative
Bias for β10

Pattern Model N Min Median Mean Max SD
Heavy Shrinking LCFM 3 0.051 0.058 0.065 0.088 0.020
Heavy Shrinking LCFM-3W 1 0.082 0.082 0.082 0.082 NA
Heavy Shrinking SOLGM 1 0.082 0.082 0.082 0.082 NA
Heavy Spreading LCFM 4 0.053 0.063 0.063 0.074 0.010
Heavy Spreading LCFM-3W 1 0.063 0.063 0.063 0.063 NA
Heavy Spreading SOLGM 1 0.063 0.063 0.063 0.063 NA

High Edge LCFM 5 0.054 0.077 0.079 0.106 0.022
High Edge LCFM-3W 7 0.050 0.057 0.072 0.112 0.024
High Edge SOLGM 7 0.050 0.057 0.072 0.112 0.024

Moderate Spreading LCFM 1 0.056 0.056 0.056 0.056 NA

6.2 Limitations and Future Orientations

First, it is a sad reality that 2nd-order LGM has been much less frequently used in the

empirical studies compared with the 1st-order LGM. As the recent review by (Yang, Luo,

& Zhang, 2020), among 300 studies using the LGMs as analytical method, only 11 papers
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adopted the 2nd-order LGMs. The major issue that discourages researchers from using this

model may be because the requirement of the longitudinal invariance and lack of well

understanding the identification and scaling for the latent variables in this type of model.

For current study, we intentionally simulated all the test items as parallel measurement,

where all the items intercept and loading parameters and error variance are equal across

waves because they are not our research focus. However, in real application, it is more

common that this strong assumption could not be met. Depending on where the invariance

exist (e.g. intercept vs. factor loading ) and the magnitude of this invariance, the bias may

happen to different fixed parameters (Kim & Willson, 2014a) , and the the resulting

growth parameter estimates may not be meaningful. Another issue that may be faced by

substantial researchers is the identification and scaling for the latent variables in the

2nd-order LGM. In practise, there are mainly three identification methods for SEM

analysis: the marker variable identification method, the effect-coding identification method,

and the latent-standardization identification method. Yang et al. (2020)’s study shows that

only the latent-standardization method could yield unique parameter estimates in the

SOLGM. The other two methods will give varying parameters estimations dependent on

the selection of the marker variables or how to constrain the loading and intercept.

However, in the current study, by strong constraint, we only compared models based on the

simple scenario where the measurement is totally parallel. In future researchers, it may be

interesting to expand the current study by considering how measurement non-invariance

and different identification methods could impact the current results.

Second, the measurement design of the current study is only to mimic the scenario where

researchers may use several items to measure a single construct from a large survey(e.g.

the NELS is a large survey containing a few items measuring different latent constructs,

such as motivation and parental involvement). Therefore, only five observed variables were
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generated for each easement occasions. However, in other longitudinal studies and,

especially for educational and psychological scales, it is more common for one factor to

have 10 or 15 items (Mason, 2001; Li et al., 2001). With a large number of items per

factor, it seems that the SOLGM needs to have a large sample size to compensate for the

decrease of assessment of global fit under Leite (2007)’s study. The increase of the item

number tends to increase the relative bias of covariance between initial status and growth

factors, the chi-square test when sample size is small (e.g.N=100). In more general

scenarios, the number of items per factor could affect the degrees of freedom, the power to

detect model misspecification, and the number of iterations necessary for convergence. in

the SEM studies (Leite, 2007). However, whether the number of items per factor could

impact the parameter recovery by two-wave models may still deserve a further examination

for the substantial researchers.

Finally, the setting of the time-specific residual variance in the current study is based on

the proportion of the time-specific residual variance to the true score variance V ar[θ2t ]

V ar[ηit]
. The

size of large time-specific variance which is equal to 4 can make it account for 20% to 80%

of total variance in the true latent score. According to the LST, the corresponding

construct is more likely to be a statelike construct or even a measurement of a certain

mood (e.g. depression mood). This construct may be also very rare in the real world.

Geiser et al. (2013) demonstrated a similar statistic “occasion-specific (OS) coefficient” to

reflection of the proportion of observed variable that is due to occasion- or time-specific

effect: λ2
itV ar(SRt)

V ar(Yit
. The only difference is just the denominator, where our justification

criterion V ar[θ2t ]

V ar[ηit]
uses true score variance as the denominator. The main point here is the

current settings for the occasion or time-specific residual may not be sufficient to capture

all the real world situations. Different research field and studies may have their own unique

consideration in terms of the size of this occasional effect.
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Illustration Examples

In this section, two different applied research datasets will be used to demonstrate the

results of simulation studies. The first one was used to measure the students’ cognitive

ability while the second one intended to measure students’ psychological construct.

7.1 Illustrative Example 1

This dataset is from the Early Childhood Longitudinal Study-Kindergarten Cohort

(ECLS-K). The Early Childhood Longitudinal Study, Kindergarten Class of 1998-99

(ECLS-K) is a longitudinal study that followed the same children from kindergarten

through the 8th grade. It focuses on children’s early school experiences starting from

kindergarten until middle school. The data provides descriptive information on children’s

status at entry to school, their transition into school, and their progression through 8th

grade. Reading, Mathematics, and Science Tests were administered in 3rd, 5th, and 8th

grades, and are treated as indicators of an academic achievement common factor. The

achievement test in the ECLS-K was adaptive, and the scores used in the analysis are the

estimated number of correct responses if the entire test was administrated (Grimm et al.,

2016). The dataset can be accessed from url:

https://www.guilford.com/companion-site/Growth-Modeling/9781462526062

134
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7.1.1 Descriptive information

Table 7.1 demonstrates the estimated statistics for each indicator variable/test (Science,

Reading, and Math) across grades (3rd, 5th, and 8th) and their correlation matrix. The

first two rows give the mean and standard deviation for each indicator variable/test across

time. The mean performance of three tests (Science, Reading, and Math) actually is

improved across the grade. For example, the mean sample score of the science test is 51.01

in the 3rd grade, 64.81 in the 5th grade, and 83.35 in the 8th grade. This indicates there is

an average increasing trend for each test. The rest of the rows show the correlation

between each indicator variable/test with the same grade and also across different grades.

In general, all the sample correlations are relatively high. However, the correlations within

the same grade tend to be stronger than the correlation across grades, except for the

correlations involving the same test over grade (e.g. math in grade 3 and math in grade 5.

r = 0.69)

Table 7.1

Descriptive Statistics of Interested Variables
1 2 3 4 5 6 7 8 9

Mean 51.00 127.66 99.72 65.25 151.09 124.35 84.89 172.05 142.47
Variance 15.62 29.22 25.54 16.18 27.31 25.17 16.71 27.73 22.50

3th Science Grade 1
3th Reading Grade 0.76 1
3th Math Grade 0.71 0.75 1
5th Science Grade 0.85 0.73 0.70 1
5th Reading Grade 0.73 0.85 0.72 0.77 1
5th Math Grade 0.69 0.70 0.88 0.74 0.75 1
8th Science Grade 0.75 0.70 0.71 0.81 0.74 0.74 1
8th Reading Grade 0.68 0.76 0.66 0.73 0.80 0.68 0.78 1
8th Math Grade 0.66 0.69 0.81 0.70 0.71 0.86 0.79 0.75 1
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7.1.2 Longitudinal Measurement Invariance

As discussed in the literature review section, the first step to use SOLGM is always to

check the measurement invariance across time. By following Meredith’s (1993) approach,

the four consecutive models that differ in terms of the model constraint (configural

invariance, week factorial invariance, strong factorial invariance and strict factorial

invariance) will be fitted into the data. The results are shown in the following table 7.2.

Starting from the 2nd column, which gives the different model fit statistics, we could

conclude that the configural invariance model fit the data very well with TLI of 0.996, CFI

of 0.998, and RMSEA of 0.03. This supports the notion to have a common factor to

represent students’ ability across grades. After the configural invariance, we fitted a week

invariance model by constraining the loading parameters to be equal across grades. There

is a significant jump for the χ2 test from the configural invariance to the week invariacne

(∆χ2(4) = 81.31, p < 0.001), which indicates the existence of non-invariance. However, it is

consistently agreed by researchers Chen (2007) and Cheung and Rensvold (2002) that χ2

difference test depends on the sample size. So having a large sample size will boost our

power to detect even very small non-invariance, and we should not rely on it given the

sample size is as large as 2108. According to Cheung and Rensvold (2002), the main

goodness of fit statistics that shows good property in determining the non-invariance

decision is the change of CFI (∆CFI). As long as the |∆CFI| ≤ 0.01, the invariance

hypothesis should not be rejected. Therefore, the week invariance model should be

maintained. However, from the week invarince model to the strict invariance model, the

|∆CFI| is always larger than 0.01. In addition, the RMSEA is always above 0.08. All

these evidence indicates that even the strong invariance assumption could not be satisfied.

This actually happens a lot in real world, which is one of the main reasons to obstruct the

utility of SOLGM. Here, for the purpose of our final illustration, we will still treat the
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strict invariance assumption is met.

Table 7.2

Longitudinal Measurement Invariance Test

Fit Statistics Configural Week Strong Strict
Invariance Invariance Invariance Invariance

AIC 83,914 83,987 84,403 84,451
BIC 84,120 84,172 84,567 84,584
χ2(df) 35.52(15) 116.83(19) 540.75(23) 600.61(29)
RMSEA 0.030 0.059 0.123 0.115
TLI 0.996 0.984 0.930 0.939
CFI 0.998 0.992 0.955 0.951

As the strict invariance assumption is met in the current dataset, we then moved to

examine the parameter estimates of this model and the overall development of the

academic ability across time. Table 7.3 shows the unstandardized parameter estimates

given by the strict invariance model. Their intercept and residual variance are set equal

across time. So, the corresponding estimates in the table are all equal across time. The

standardized estimates for the factor loadings indicated that the science test is relatively

weighed more for representing the academic ability than the other two tests (indicators)

because its factor loadings are always larger than the other two (e.g. 0.890 in grade 3) at

any time. The mean of the latent variable, academic ability (ηt), was 1.02 in the 5th grade

and 1.95 in the 8th grade. Since η1 was standardized for scaling and identification, we

could interpret the factor in a standardized metrics such as η1 ∼ N(0, 1). Thus, from 3rd to

5th grade, the academic ability (latent variable) actually changed a little more than one

standard deviation of the 3rd-grade distribution of academic ability. In contrast, the

academic ability changed by a little less than one standard deviation from the 5th grade to

8th grade. Another important statistic is the variance and covariance (V ar[ηt] and

Cov[ηi, ηj]) of the latent variable. The variance of the latent variable in 5th and 8th grade

was 1.01 and 0.97, indicating that the magnitude of interindividual difference in academic
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ability did not change much from the third to eighth grades. The correlations between

factors across time were also significant (p < 0.01), meaning that factors are strongly

correlated across time.

Table 7.3

Parameter Estimate by Strict Invariance Model
Estimate S.E. Est./S.E. Two-Tailed P-Value Estimate S.E. Est./S.E. Two-Tailed P-Value

Factor loading Mean
η1 η1 0.000 0.000 999.000 999.000

Science_G3 15.176 (0.890) 0.319 47.527 0.000 η2 1.020 (1.015) 0.025 41.016 0.000
Reading_G3 22.982 (0.847) 0.520 44.171 0.000 η3 1.947 (1.976) 0.045 43.248 0.000
Math_G3 21.236 (0.850) 0.473 44.917 0.000 Intercept

η2 Science_G3 51.433 0.448 114.744 0.000
Science_G5 15.176 (0.891) 0.139 47.527 0.000 Reading_G3 126.363 0.702 179.898 0.000
Reading_G5 22.982 (0.848) 0.520 44.171 0.000 Math_G3 100.193 0.651 153.912 0.000
Math_G5 21.236 (0.851) 0.473 44.917 0.000 Science_G5 51.433 0.448 114.744 0.000

η3 Reading_G5 126.363 0.702 179.898 0.000
Science_G8 15.176 (0.887) 0.139 47.527 0.000 Math_G5 100.193 0.651 153.912 0.000
Reading_G8 22.982 (0.843) 0.520 44.171 0.000 Science_G8 51.433 0.448 114.744 0.000
Math_G8 21.236 (0.846) 0.473 44.917 0.000 Reading_G8 126.363 0.702 179.898 0.000
Covariance Math_G8 100.193 0.651 153.912 0.000
η1 & η2 0.968 0.013 72.280 0.000 Variance
η1 & η3 0.904 0.019 48.240 0.000 η1 1.000 0.000 999.000 999.000
η2 & η3 0.949 0.027 35.095 0.000 η2 1.011 0.026 38.332 0.000

Science_G3 & Science_G5 28.853 3.118 9.254 0.000 η3 0.971 0.036 27.168 0.000
Science_G3 & Science_G8 6.616 3.3031 2.004 0.045 Residual Variance
Science_G5 & Science_G8 5.353 3.311 1.617 0.106 Science_G3 60.274 2.939 20.506 0.000
Reading_G3 & Reading_G5 112.069 8.673 12.921 0.000 Reading_G3 208.700 8.172 25.537 0.000
Reading_G3 & Reading_G8 69.528 9.345 7.440 0.000 Math_G3 173.322 7.236 23.953 0.000
Reading_G5 & Reading_G8 79.187 9.640 8.214 0.000 Science_G5 60.274 2.939 20.506 0.000

Math_G3 & Math_G5 112.591 7.308 15.047 0.000 Reading_G5 208.700 8.172 25.537 0.000
Math_G3 & Math_G8 93.469 7.990 11.698 0.000 Math_G5 173.322 7.236 23.953 0.000
Math_G5 & Math_G8 102.540 8.014 12.795 0.000 Science_G8 60.274 2.939 20.506 0.000

Reading_G8 208.700 8.172 25.537 0.000
Math_G8 173.322 7.236 23.952 0.000

* Note: value in the () is the standardized estimates
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7.1.3 Three-Wave Model vs. Two-wave Models

After the description of the measurement scale, we fitted a three-wave second-order latent

growth model, two-wave longitudinal common factor model, two-wave latent change score

model, and three-wave longitudinal common factor model to the data. The purpose of this

section is to demonstrate how to use the two-wave models to recover the fixed effect of the

three-wave model when substantial data was collected. As for factor loadings, we followed

the Grimm et al.’s (2016) method by fixing the factor loadings to the science variables to

15.176. As shown in the table 7.4, starting from the left, we consecutively fitted

3W-SOLGM, 2W-LCFM, and 2W-LCSM with participants’ gender as the between person’s

covariate. The first four rows indicate the estimates for our fixed effect parameters in each

model. For the identification and interpretation purpose, the (β00) was fixed at 51 in each

model. β00 represents the average academic ability score for the female students in the 3rd

grade and 51 actually is their estimated mean score. β01 represents the average group

difference of the academic ability between male and female students. Its value is -0.228,

which indicates that on average female students are 0.228 points higher than their male

counterparts in the academic ability scale. If we use 2W-LCFM or 2W-LCSM to estimate

β01, the corresponding values are -0.235 or -0.237. So the difference between the estimates

from the two-wave models and the three-wave model is just around 0.009, which is only 3%

off from -0.228. These results are consistent with the conclusions in study 1, which shows

that on average there is no bias for point estimate. Similar results could be observed for

β10, which is the average growth rate of the academic ability among female students. In

3W-SOLGM, this estimate is 1.94, meaning that among female students, moving up one

grade will on average give rise to a 1.94 point increase in their academic ability scale. The

corresponding estimates from two-wave models is 1.933 or 1.986, which has less than a 3%

deviation from the 1.94. The most deviated estimates occur at the β11, which is the
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average group difference between female and male students in terms of the growth rate.

Two-wave models’ estimates (0.093 and 0.098) could have 36% off from the three-wave

model. Finally, the tree-wave LCFM appears to have the lowest fit to the data since all the

GFIs (goodness of fit indices) such as TLI and CFL are much smaller than the two-wave

models (table 7.5). All the other point estimates for fixed effect parameters using

3W-LCFM are also far off the point estimates by 3W-SOGLM compared with the

two-wave models. For example, for the group difference in the initial status, the estimated

β01 is -0.270, which is 15.56% deviated off from the point estimate of 3W-SOLGM. These

results are not surprising because of the fact that the measurement invariance does not

hold. So from the findings in other simulation studies, the relative point estimate will

definitely be impacted by this non-invariance (Kim & Willson, 2014a, 2014b). We expected

that once the measurement invariance truly holds, all the point estimates of the two-wave

models should approach the point estimate of the the-wave models.

Looking across models, we could also find that the theoretical standard error of the fixed

effect estimates in two-wave models is always very closed to their standard error in the

three-wave models. In fact, this difference is only about 1%, where the two-wave models

tend to be a little higher. This result is consistent with our simulation results as well. In

our simulation part, we already demonstrated that when the sample size is as large as

1000, the loss of accuracy will tend to be minimized when using the two-wave models to

recover the estimates of the three-wave model. Given the current sample size is much over

1000, this performance is easily observed. Given the time-specific residual variance (θ2t ),

the current data seems to mimic the middle-level edge pattern because the time-specific

residual variance of the academic ability for students in 3th grade (θ21 )and 8th grade (θ23) is

as 2.5 times as they are in the 5th grade (θ21 = 0.045, θ22 = 0.018,θ23 = 0.043). However, the

largest residual variance here only accounts for 4.5% of the total true score variance. In
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other words, more than 95% variability in academic ability is captured by its growth

trajectory. This is sufficient to state that academic ability is still a stable construct.

Finally, it is not surprising to see that except for CFI, all the other fit indices are below the

accepted level in any model. This is so different from our simulation results. The main

reason is that we constrain that all the items are parallel measurement. This is a very

strict constraint, which rarely happens in the reality. If the current measurement could

reach the strict invariance, we would anticipate seeing much improvement in the goodness

of fit indices.
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Table 7.5

Three-Wave Longitudinal Common Factor Model
Model: 3W-LCFM

Fixed Effect Estimate (std) S.E. (std) Two-Tailed P-Value (std)
Parameters

β00 51
β01 -0.270 (-0.269) 0.044 (0.043) 0.000
β10 0.1869 0.037 0.000
β11 0.148 0.047 0.001

Growth Factor
Variance

Covariance
ψ00

ψ11

ψ01

Time Specific
Residual Invariance

θ21 0.992 (0.082) 0.043 (0.006) 0.000
θ22 1.007 (0.991) 0.048 (0.004) 0.000
θ23 0.750 (0.995) 0.050 (0.004) 0.000

Model Fit Indices
χ2(df) 3791.302 (38)
TLI 0.625
CFI 0.683

RMSEA(95% CI) 0.259 (0.252 0.266)
SRMR 0.396

* Note: (std) indicates the value in the parenthesis is the standardized estimates.

7.2 Illustrative Example 2

The data illustrated by this example comes from the Geiser’s (2012) textbook. This

dataset is based on the self-reported anxiety of children, which is measured on four (equally

spaced) time points T1–T4. There is a time interval of approximately 6 months between

the measurement occasions. For each measurement occasion, there are two items to
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measure the construct of anxiety. So there are in total 8 variables in this dataset. In order

to fit our illustration purpose, we only used the first three waves as our analytic dataset.

Table 7.6 shows the estimated statistics for each indicator across time and their correlation

coefficient. Each indicator was symbolised by aij, where the first subscript i (i = 1, 2)

indicates the test item and the second subscript j (j = 1, 2, 3) indicates the measurement

occasion. The first and the second row of the table show the mean and standard deviation

of each indicator. For example, the mean of the first indicator in the first measurement

occasion a11 is 0.72 and its standard deviation is 0.446. Similarly, the second indicator in

the first measurement occasion a21 has a mean score of 0.736 and a standard deviation of

0.441. In general, we could observe that a declining mean score. This implied that the

children’s anxiety level is going down across the time in the current dataset. In contrast,

the standard deviation is ranged from 0.431 to 0.446 across indicators. So the variability of

indicators is small in this dataset. Finally, the indicator correlations given the same

measurement occasion are all above 0.86, which is much larger than the correlation across

time. This indicates a common underlying construct is measured by the anxiety scale.

Table 7.6

Descriptive Statistics of Interested Variables
1 2 3 4 5 6

Standard Deviation 0.720 0.736 0.614 0.630 0.563 0.587
Variance 0.446 0.441 0.449 0.443 0.431 0.444
a11 1
a21 0.863 1
a12 0.695 0.662 1
a22 0.644 0.657 0.870 1
a13 0.624 0.590 0.756 0.701 1
a23 0.597 0.609 0.734 0.739 0.878 1
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7.2.1 longitudinal Measurement Invariance

Table 7.7 demonstrates the step-by-step measurement invariance test following the

Meredith’s (1993) approach. First, the configural invariance model fits the data very well

since all the GFIs values are under their cut-off values: CFI = 1.003, TLI = 1.000,

RMSEA = 0.00 and χ2 = 4.062 (df = 5, p = 0.841). Next, the factor loadings of the

configural invariance model were fixed across time to obtain the week invariance model.

Compared with configural invariance model, the χ2 was increased to 7.580. The relative χ2

difference test (∆χ2 = 5.518,∆df = 2, p > 0.05) is not statistically significant. RMSEA is

0.013 , which is less 0.08. Both TLI and CFI stay the same as they are in the configural

invariance model. So we could conclude that the week invariance model fits the data as

well as the configural invariance model. Then the measurement intercepts were fixed to be

equal across time to form the strong invariance model. Similarly, the χ2 difference test is

still not significant (∆χ2 = 0.205,∆df = 2, p > 0.05). RMSEA, TLI, and CFI almost stay

unchanged compared to the week invariance model. So the strong invariance model should

be maintained. Finally, following the same logic, we could conclude that the strick

invariance model fits the data as well as the strong invariance model

(∆χ2 = 3.09,∆df = 4, RMESA = 0.00, TLI = 1.001 and CFI = 1.000). In all, the

assumption of longitudinal measurement invariance is met for the current dataset.

Table 7.7

Test of Longitudinal Measurement Invariance
Fit Statistics Configural Invariance Week Invariance Strong Invariance Strick Invariance

AIC 604.647 606.165 602.370 597.460
BIC 696.652 689.806 677.647 656.009
χ2 (df) 2.062(5) 7.580(7) 7.785(9) 10.875(13)
RMSEA 0.000 0.013 0.000 0.000
TLI 1.000 1.000 1.001 1.001
CFI 1.003 1.000 1.001 1.000
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7.2.2 Three-Wave Model vs. Two-wave Models

After the measurement invariance assumption is met, we fitted the same data with 3-wave

SOLGM, 2-Wave LCSM, 2-Wave LCFM, and 3-wave LCFM. The corresponding

comparison based on the estimates of the fixed effect parameters and the goodness of fit

indices is given by the table 7.8 and 7.9. Since the current dataset does not contain

covariate variables, we only can show the initial status (β00) and overall growth rate (β10)

without referring to any single group. The far left panel in the table 7.8 shows the estimate

for the growth effects of the three-wave model (true model). The average initial status is

0.712 with a standard error of 0.02. The values in the parenthesis are their corresponding

standardized coefficients. The average growth rate is -0.151, which is statistically

significant (p < 0.05) from 0. The substantial meaning of this pattern is: The average

anxiety level of these children tends to decrease with time. To be more specific, every 6

months, the average anxiety level of these children decreases by 0.151 points in terms of the

anxiety scale. Furthermore, as shown in the covariance/variance section, both variances of

initial status (ψ00=0.152) and growth rate (ψ11=0.083) are statistically significant. This

indicates that the interindividual difference of people’s growth trajectory does exist.

The covariance between initial status and growth rate (ψ01=-0.031) is also negatively and

significantly related. This means the people with higher anxiety levels at the starting point

tend to have a relatively lower decreasing trend compared with the person whose initial

anxiety level is lower. The time-specific residuals are 0.029, 0.042, and 0.002 across the first

three measurements. In fact, the residual variance approach 0 at the 3rd time point. This

indicates that people with higher anxiety levels or lower anxiety levels will eventually get

more converged at the third measurement occasion. It is interesting to see the

occasion-specific variance at the 2nd measurement occasion suddenly increased compared
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with the first measurement occasion, and then quickly reduced to a zero level. This pattern

is different from any of our simulation patterns. The possible reasons may be some

unexpected event happen just before the 2nd time measurement, and people’s relative

anxiety become more diluted, with some people become more anxious than others.

Without this event, a more expected changing pattern could be a shrinking trend. Finally,

we could see that all the GIFs indicate the model fit the data very well.

Next to the left panel was the 2-wave latent change score model. We could see the

estimated average initial status β10 is 0.669, which is very close to 0.712. The deviation

between the two models is only 0.043, which 0.6% off from the true analytical model. The

average growth rate estimated by 2W-LCSM is almost the same as the 3W-SOLGM

(-0.151 vs. -0.154). Compared to the former illustrative example, this better recovery

should be mostly attributed to the existence of the measurement invariance. These results

are consistent with our simulation findings even the changing pattern is not captured by

our simulation conditions. As for the standard error, we could see that the 2W-LCSM

tends to overestimate it. However, the size of this estimate is so small to be noticed. This

is also demonstrated by our simulation result, where the discrepancy of standard error will

approach zero as the sample size become large. Finally, the majority of the GFIs statistics

show our 2W-LCSM has a least an acceptable fit.

In the far right panel of table 7.8, it is no surprising to see that 2W-LCFM exactly recovers

the estimate of growth rate given by the 3W-SOLGM. The standard error for both

estimates is almost the same as the 3-wave model. The GIF also confirms that this model

could fit the data as well as other models. It may be not advisable to make the conclusion

that 2W-LCFM is a little better than the 2W-LCSM just based on a single sample here.

But at least, by using this measurement invariance data, we could partially confirm our

simulation results. That is, given no measurement issue, we could just use two-wave data
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to estimate the growth rate obtained from the three-wave data. Finally, from the table 7.9,

the average initial status is estimated as 0.720, which is far more deviated from the

estimates by 3W-SOLGM compared with the two-wave models. However, this deviation is

about only 1.11%. Similarly, the average growth rate estimated by 3W-LCFM is -0.155,

which is 2.58% deviated from the estimated by 3W-SOLGM. All the GFIs become a little

worse compared with the two-wave models. But they are still in the acceptable range.

Table 7.8

Model Comparison for the Parameter Estimate
Model:

3W-SOLGM
Model:

2W-LSCM
Model:

2W-LCFM

Fixed Effect Estimates
(std)

S.E.
(std)

Two-Tailed
P-Value (std)

Estimates
(std)

S.E.
(std)

Two-Tailed
P-Value (std) Estimates (std) S.E.(std) Two-Tailed

P-Value (std)
Parameters

β00
0.712
(1.827)

0.020
(0.096) 0 0.699

(1.742)
0.022
(0.087) 0 0.718

(1.758)
0.02

(0.082) 0

β01

β10
-0.151
(-0.523)

0.017
(0.086) 0 -0.154

(-1.175)
0.016
(0.220) 0 -0.151 0.016 0

β11
Growth Variance
/ Covariance

ψ00 0.152 0.014 0
ψ11 0.083 0.02 0

ψ01
-0.031
(-0.274) 0.012 0.009 (0)

Time-Specific
Residual Variance

θ21
0.029
(0.160) 0.01(0.055) 0.005(0.004) 0.161 0.014 0.002 0.167 0

θ22
0.042
(0.227)

0.006
(0.025) 0

θ23
0.002
(0.009)

0.01
(0.057)

0.878
(0.878) 0.084 0.007 0 0.163 0

Model Fit Indices
χ2 (df) 17.822 (14) 7.646 (2) 5.407 (4)
TLI 0.999 0.99 0.999
CFI 0.999 0.997 0.999

RMSEA
(95% CI)

0.024
(0.000, 0.053)

0.076
(0.025, 0.137)

0.027
(0.000, 0.078)

SRMR 0.02 0.055 0.013
* Note: (std) indicates the value in the parenthesis is the standardized estimates.
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Table 7.9

Fixed Effect Estimated by the Three-Wave Longitudinal Common Factor Model
Model: 3W-LCFM

Fixed Effect Estimate (std) S.E. (std) Two-Tailed P-Value (std)
Parameters

β00 0.720 (1.722) 0.02 (0.077) 0.000
β01
β10 -0.155 0.016 0.000
β11

Growth Factor
Variance

Covariance
ψ00

ψ11

ψ01

Time Specific
Residual Invariance

θ21 0.175 0.012 0.000
θ22 0.178 0.013 0.000
θ23 0.170 0.021 0.000

Model Fit Indices
χ2(df) 59.326 (14)
TLI 0.983
CFI 0.985

RMSEA(95% CI) 0.082 (0.061, 0.104)
SRMR 0.015

* Note: (std) indicates the value in the parenthesis is the standardized estimates.
here
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Appendix A

Results of Study 1

A.0.1 List of Tables for Relative Bias

Table A.1

ANOVA Test Results for Relative Bias of β00
Source DF Sum of Squares η2

model 2.000 0.000 0.000

N 3.000 0.000 0.014

θ22 2.000 0.000 0.004

pattern 6.000 0.000 0.012

β01 1.000 0.000 0.000

β11 1.000 0.000 0.000

ψ01 2.000 0.000 0.002

model ∗N 6.000 0.000 0.000

model ∗ θ22 4.000 0.000 0.000

model ∗ pattern 12.000 0.000 0.001

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 0.000 0.002

N ∗ pattern 18.000 0.000 0.030

Continued on next page
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Table A.1 – continued from previous page

Source DF Sum of Squares η2

N ∗ β01 3.000 0.000 0.000

N ∗ β11 3.000 0.000 0.000

N ∗ ψ01 6.000 0.000 0.004

θ22 ∗ pattern 12.000 0.000 0.008

θ22 ∗ β01 2.000 0.000 0.001

θ22 ∗ β11 2.000 0.000 0.001

θ22 ∗ ψ01 4.000 0.000 0.001

pattern ∗ β01 6.000 0.000 0.004

pattern ∗ β11 6.000 0.000 0.006

pattern ∗ ψ01 12.000 0.000 0.004

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.001

β11 ∗ ψ01 2.000 0.000 0.003

model ∗N ∗ θ22 12.000 0.000 0.000

model ∗N ∗ pattern 36.000 0.000 0.001

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.000 0.001

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

Continued on next page
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Table A.1 – continued from previous page

Source DF Sum of Squares η2

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern 36.000 0.000 0.039

N ∗ θ22 ∗ β01 6.000 0.000 0.013

N ∗ θ22 ∗ β11 6.000 0.000 0.004

N ∗ θ22 ∗ ψ01 12.000 0.000 0.004

N ∗ pattern ∗ β01 18.000 0.000 0.014

N ∗ pattern ∗ β11 18.000 0.000 0.012

N ∗ pattern ∗ ψ01 36.000 0.000 0.034

N ∗ β01 ∗ β11 3.000 0.000 0.000

N ∗ β01 ∗ ψ01 6.000 0.000 0.001

N ∗ β11 ∗ ψ01 6.000 0.000 0.002

θ22 ∗ pattern ∗ β01 12.000 0.000 0.009

θ22 ∗ pattern ∗ β11 12.000 0.000 0.009

θ22 ∗ pattern ∗ ψ01 24.000 0.000 0.035

θ22 ∗ β01 ∗ β11 2.000 0.000 0.002

θ22 ∗ β01 ∗ ψ01 4.000 0.000 0.006

θ22 ∗ β11 ∗ ψ01 4.000 0.000 0.006

Continued on next page
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Table A.1 – continued from previous page

Source DF Sum of Squares η2

pattern ∗ β01 ∗ β11 6.000 0.000 0.004

pattern ∗ β01 ∗ ψ01 12.000 0.000 0.016

pattern ∗ β11 ∗ ψ01 12.000 0.000 0.013

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.004

model ∗N ∗ θ22 ∗ pattern 72.000 0.000 0.003

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.001

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.001

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.001

model ∗N ∗ pattern ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.001
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Source DF Sum of Squares η2

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.000 0.044

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.000 0.025

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.000 0.073

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.000 0.017

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.000 0.005

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.000 0.018

N ∗ pattern ∗ β01 ∗ β11 18.000 0.000 0.013

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.000 0.023

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.000 0.037

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.000 0.012

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.011

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.013

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.035

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.002

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.007

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.000 0.001

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.000 0.005

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.001

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.002

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.001

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.042

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.071

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.055

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.005

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.000 0.027

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.020

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.000 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.000 0.003

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.000 0.003

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.002

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.001
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.071

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.000 0.003

Table A.2

ANOVA Test Results for Relative Bias of β01
Source DF Sum of Squares η2

model 2.000 0.000 0.000

N 3.000 0.001 0.007

θ22 2.000 0.000 0.000

pattern 6.000 0.002 0.018

β01 1.000 0.000 0.000

β11 1.000 0.000 0.000

ψ01 2.000 0.000 0.005

model ∗N 6.000 0.000 0.001

model ∗ θ22 4.000 0.000 0.000

model ∗ pattern 12.000 0.000 0.000

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 0.000 0.001

N ∗ pattern 18.000 0.003 0.036

N ∗ β01 3.000 0.000 0.000

N ∗ β11 3.000 0.000 0.000
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Source DF Sum of Squares η2

N ∗ ψ01 6.000 0.001 0.007

θ22 ∗ pattern 12.000 0.001 0.016

θ22 ∗ β01 2.000 0.000 0.004

θ22 ∗ β11 2.000 0.000 0.002

θ22 ∗ ψ01 4.000 0.000 0.002

pattern ∗ β01 6.000 0.000 0.003

pattern ∗ β11 6.000 0.001 0.009

pattern ∗ ψ01 12.000 0.001 0.017

β01 ∗ β11 1.000 0.000 0.002

β01 ∗ ψ01 2.000 0.000 0.002

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.000 0.000

model ∗N ∗ pattern 36.000 0.000 0.001

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.000 0.001

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern 36.000 0.004 0.046

N ∗ θ22 ∗ β01 6.000 0.001 0.014

N ∗ θ22 ∗ β11 6.000 0.001 0.008

N ∗ θ22 ∗ ψ01 12.000 0.000 0.006

N ∗ pattern ∗ β01 18.000 0.000 0.005

N ∗ pattern ∗ β11 18.000 0.001 0.017

N ∗ pattern ∗ ψ01 36.000 0.003 0.037

N ∗ β01 ∗ β11 3.000 0.000 0.005

N ∗ β01 ∗ ψ01 6.000 0.000 0.003

N ∗ β11 ∗ ψ01 6.000 0.000 0.003

θ22 ∗ pattern ∗ β01 12.000 0.000 0.005

θ22 ∗ pattern ∗ β11 12.000 0.001 0.013

θ22 ∗ pattern ∗ ψ01 24.000 0.002 0.026

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.000 0.005

θ22 ∗ β11 ∗ ψ01 4.000 0.001 0.007

pattern ∗ β01 ∗ β11 6.000 0.000 0.004

pattern ∗ β01 ∗ ψ01 12.000 0.001 0.006
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Source DF Sum of Squares η2

pattern ∗ β11 ∗ ψ01 12.000 0.001 0.014

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.005

model ∗N ∗ θ22 ∗ pattern 72.000 0.000 0.001

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.001

model ∗N ∗ pattern ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.002 0.020

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.002 0.025

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.005 0.059

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.001 0.008

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.001 0.007

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.001 0.017

N ∗ pattern ∗ β01 ∗ β11 18.000 0.001 0.015

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.002 0.021

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.003 0.040

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.001 0.018

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.001 0.009

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.001 0.016

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.002 0.026

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.002

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.001 0.008

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.000 0.002

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.000 0.002

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.001

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.001
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Source DF Sum of Squares η2

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.002

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.001

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.003 0.038

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.005 0.058

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.005 0.061

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.001 0.007

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.003 0.031

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.002 0.025

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.000 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.000 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.000 0.002

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.001

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.008 0.094

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.000 0.002
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Table A.3

ANOVA Test Results for Relative Bias of β10
Source DF Sum of Squares η2

model 2.000 0.000 0.000

N 3.000 0.004 0.006

θ22 2.000 0.003 0.004

pattern 6.000 0.003 0.005

β01 1.000 0.003 0.005

β11 1.000 0.000 0.000

ψ01 2.000 0.001 0.002

model ∗N 6.000 0.000 0.000

model ∗ θ22 4.000 0.000 0.000

model ∗ pattern 12.000 0.000 0.000

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 0.005 0.008

N ∗ pattern 18.000 0.011 0.017

N ∗ β01 3.000 0.005 0.008

N ∗ β11 3.000 0.000 0.000

N ∗ ψ01 6.000 0.002 0.003

θ22 ∗ pattern 12.000 0.007 0.011

θ22 ∗ β01 2.000 0.000 0.000

θ22 ∗ β11 2.000 0.001 0.001
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.003 0.005

pattern ∗ β01 6.000 0.004 0.006

pattern ∗ β11 6.000 0.004 0.006

pattern ∗ ψ01 12.000 0.007 0.011

β01 ∗ β11 1.000 0.001 0.002

β01 ∗ ψ01 2.000 0.004 0.006

β11 ∗ ψ01 2.000 0.007 0.012

model ∗N ∗ θ22 12.000 0.000 0.000

model ∗N ∗ pattern 36.000 0.000 0.000

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.000 0.000

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 0.019 0.031

N ∗ θ22 ∗ β01 6.000 0.002 0.004

N ∗ θ22 ∗ β11 6.000 0.008 0.012

N ∗ θ22 ∗ ψ01 12.000 0.007 0.012

N ∗ pattern ∗ β01 18.000 0.018 0.030

N ∗ pattern ∗ β11 18.000 0.015 0.024

N ∗ pattern ∗ ψ01 36.000 0.019 0.030

N ∗ β01 ∗ β11 3.000 0.004 0.006

N ∗ β01 ∗ ψ01 6.000 0.006 0.010

N ∗ β11 ∗ ψ01 6.000 0.008 0.012

θ22 ∗ pattern ∗ β01 12.000 0.009 0.015

θ22 ∗ pattern ∗ β11 12.000 0.006 0.009

θ22 ∗ pattern ∗ ψ01 24.000 0.007 0.011

θ22 ∗ β01 ∗ β11 2.000 0.003 0.004

θ22 ∗ β01 ∗ ψ01 4.000 0.002 0.004

θ22 ∗ β11 ∗ ψ01 4.000 0.005 0.008

pattern ∗ β01 ∗ β11 6.000 0.004 0.006

pattern ∗ β01 ∗ ψ01 12.000 0.010 0.017

pattern ∗ β11 ∗ ψ01 12.000 0.014 0.022

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.045 0.072

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.021 0.034

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.025 0.040

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.012 0.020
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.005 0.007

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.007 0.011

N ∗ pattern ∗ β01 ∗ β11 18.000 0.010 0.016

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.023 0.036

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.023 0.036

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.002 0.003

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.008 0.013

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.011 0.018

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.017 0.027

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.001 0.001

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.003 0.005

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.001 0.001

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.001

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.028 0.045

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.035 0.056

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.028 0.044

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.003 0.005

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.025 0.039

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.009 0.015

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.001 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.000 0.001

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.001 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.032 0.051

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.001 0.001
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Table A.4

ANOVA Test Results for Relative Bias of β11
Source DF Sum of Squares η2

model 2.000 0.000 0.000

N 3.000 0.000 0.002

θ22 2.000 0.001 0.004

pattern 6.000 0.001 0.006

β01 1.000 0.000 0.002

β11 1.000 0.000 0.000

ψ01 2.000 0.002 0.007

model ∗N 6.000 0.000 0.000

model ∗ θ22 4.000 0.000 0.000

model ∗ pattern 12.000 0.000 0.000

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 0.001 0.005

N ∗ pattern 18.000 0.007 0.032

N ∗ β01 3.000 0.001 0.004

N ∗ β11 3.000 0.000 0.000

N ∗ ψ01 6.000 0.002 0.010

θ22 ∗ pattern 12.000 0.005 0.024

θ22 ∗ β01 2.000 0.000 0.000

θ22 ∗ β11 2.000 0.000 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.002 0.008

pattern ∗ β01 6.000 0.002 0.007

pattern ∗ β11 6.000 0.001 0.004

pattern ∗ ψ01 12.000 0.003 0.016

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.001 0.003

β11 ∗ ψ01 2.000 0.001 0.003

model ∗N ∗ θ22 12.000 0.000 0.000

model ∗N ∗ pattern 36.000 0.000 0.000

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.000 0.000

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Table A.4 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 0.011 0.053

N ∗ θ22 ∗ β01 6.000 0.001 0.006

N ∗ θ22 ∗ β11 6.000 0.002 0.008

N ∗ θ22 ∗ ψ01 12.000 0.004 0.017

N ∗ pattern ∗ β01 18.000 0.005 0.023

N ∗ pattern ∗ β11 18.000 0.004 0.018

N ∗ pattern ∗ ψ01 36.000 0.010 0.045

N ∗ β01 ∗ β11 3.000 0.000 0.001

N ∗ β01 ∗ ψ01 6.000 0.002 0.010

N ∗ β11 ∗ ψ01 6.000 0.001 0.006

θ22 ∗ pattern ∗ β01 12.000 0.001 0.002

θ22 ∗ pattern ∗ β11 12.000 0.001 0.003

θ22 ∗ pattern ∗ ψ01 24.000 0.002 0.009

θ22 ∗ β01 ∗ β11 2.000 0.000 0.001

θ22 ∗ β01 ∗ ψ01 4.000 0.001 0.003

θ22 ∗ β11 ∗ ψ01 4.000 0.000 0.002

pattern ∗ β01 ∗ β11 6.000 0.001 0.007

pattern ∗ β01 ∗ ψ01 12.000 0.002 0.009

pattern ∗ β11 ∗ ψ01 12.000 0.003 0.014

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.000 0.001

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.007 0.033

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.004 0.017

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.013 0.062

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.001 0.004
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Table A.4 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.002 0.008

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.004 0.017

N ∗ pattern ∗ β01 ∗ β11 18.000 0.003 0.015

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.006 0.028

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.008 0.039

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.000 0.002

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.002 0.008

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.005 0.022

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.006 0.027

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.001 0.004

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.002 0.009

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.000 0.001

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.000 0.001

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.001

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.008 0.039

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.014 0.067

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.013 0.062

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.002 0.011

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.008 0.040

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.004 0.019

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.000 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.001 0.003

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.015 0.070

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.000 0.001
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A.0.2 List of Tables for Standard Error

Table A.5

ANOVA Test Results for Empirical Standard Error of β00
Source DF Sum of Squares η2

model 2.000 0.203 0.002

N 3.000 101.694 0.878

θ22 2.000 3.910 0.034

pattern 6.000 3.427 0.030

β01 1.000 0.054 0.000

β11 1.000 0.000 0.000

ψ01 2.000 0.000 0.000

model ∗N 6.000 0.058 0.000

model ∗ θ22 4.000 0.054 0.000

model ∗ pattern 12.000 0.104 0.001

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 1.451 0.013

N ∗ pattern 18.000 1.312 0.011

N ∗ β01 3.000 0.018 0.000

N ∗ β11 3.000 0.001 0.000

N ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern 12.000 2.353 0.020

θ22 ∗ β01 2.000 0.004 0.000
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Source DF Sum of Squares η2

θ22 ∗ β11 2.000 0.000 0.000

θ22 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 6.000 0.004 0.000

pattern ∗ β11 6.000 0.000 0.000

pattern ∗ ψ01 12.000 0.001 0.000

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.020 0.000

model ∗N ∗ pattern 36.000 0.035 0.000

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.079 0.001

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000
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Table A.5 – continued from previous page

Source DF Sum of Squares η2

model ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern 36.000 0.895 0.008

N ∗ θ22 ∗ β01 6.000 0.003 0.000

N ∗ θ22 ∗ β11 6.000 0.002 0.000

N ∗ θ22 ∗ ψ01 12.000 0.003 0.000

N ∗ pattern ∗ β01 18.000 0.004 0.000

N ∗ pattern ∗ β11 18.000 0.002 0.000

N ∗ pattern ∗ ψ01 36.000 0.004 0.000

N ∗ β01 ∗ β11 3.000 0.000 0.000

N ∗ β01 ∗ ψ01 6.000 0.001 0.000

N ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 12.000 0.002 0.000

θ22 ∗ pattern ∗ β11 12.000 0.002 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.002 0.000

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.001 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 ∗ β11 6.000 0.002 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.003 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.002 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.027 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.005 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.004 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.013 0.000

Continued on next page



186 Chapter A. Results of Study 1

Table A.5 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.001 0.000

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.002 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.001 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.006 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.007 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.007 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.001 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.002 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.005 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.004 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.002 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.001 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.006 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.013 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.015 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.002 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.008 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.005 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.001 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.012 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.001 0.000
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Table A.6

ANOVA Test Results for Empirical Standard Error of β01
Source DF Sum of Squares η2

model 2.000 0.288 0.001

N 3.000 175.230 0.848

θ22 2.000 8.648 0.042

pattern 6.000 7.408 0.036

β01 1.000 0.523 0.003

β11 1.000 0.000 0.000

ψ01 2.000 0.000 0.000

model ∗N 6.000 0.070 0.000

model ∗ θ22 4.000 0.141 0.001

model ∗ pattern 12.000 0.252 0.001

model ∗ β01 2.000 0.002 0.000

model ∗ β11 2.000 0.001 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 3.275 0.016

N ∗ pattern 18.000 2.705 0.013

N ∗ β01 3.000 0.181 0.001

N ∗ β11 3.000 0.002 0.000

N ∗ ψ01 6.000 0.003 0.000

θ22 ∗ pattern 12.000 5.130 0.025

θ22 ∗ β01 2.000 0.020 0.000

θ22 ∗ β11 2.000 0.000 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 6.000 0.021 0.000

pattern ∗ β11 6.000 0.003 0.000

pattern ∗ ψ01 12.000 0.002 0.000

β01 ∗ β11 1.000 0.001 0.000

β01 ∗ ψ01 2.000 0.001 0.000

β11 ∗ ψ01 2.000 0.001 0.000

model ∗N ∗ θ22 12.000 0.052 0.000

model ∗N ∗ pattern 36.000 0.085 0.000

model ∗N ∗ β01 6.000 0.001 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.185 0.001

model ∗ θ22 ∗ β01 4.000 0.003 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.002 0.000

model ∗ pattern ∗ β11 12.000 0.001 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Table A.6 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 2.013 0.010

N ∗ θ22 ∗ β01 6.000 0.004 0.000

N ∗ θ22 ∗ β11 6.000 0.001 0.000

N ∗ θ22 ∗ ψ01 12.000 0.004 0.000

N ∗ pattern ∗ β01 18.000 0.013 0.000

N ∗ pattern ∗ β11 18.000 0.004 0.000

N ∗ pattern ∗ ψ01 36.000 0.011 0.000

N ∗ β01 ∗ β11 3.000 0.000 0.000

N ∗ β01 ∗ ψ01 6.000 0.002 0.000

N ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 12.000 0.009 0.000

θ22 ∗ pattern ∗ β11 12.000 0.004 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.009 0.000

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.002 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 ∗ β11 6.000 0.002 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.008 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.003 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.062 0.000

model ∗N ∗ θ22 ∗ β01 12.000 0.002 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.001 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.017 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.019 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.030 0.000

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.001 0.000
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Table A.6 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.009 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.004 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.004 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.008 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.009 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.002 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.005 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.011 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.006 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.006 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.002 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.010 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.021 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.021 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.002 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.018 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.010 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.002 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.002 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.021 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.001 0.000
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Table A.7

ANOVA Test Results for Empirical Standard Error of β10
Source DF Sum of Squares η2

model 2.000 0.024 0.000

N 3.000 130.788 0.796

θ22 2.000 14.039 0.085

pattern 6.000 6.247 0.038

β01 1.000 0.189 0.001

β11 1.000 0.016 0.000

ψ01 2.000 0.001 0.000

model ∗N 6.000 0.005 0.000

model ∗ θ22 4.000 0.031 0.000

model ∗ pattern 12.000 0.051 0.000

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 5.082 0.031

N ∗ pattern 18.000 2.261 0.014

N ∗ β01 3.000 0.059 0.000

N ∗ β11 3.000 0.006 0.000

N ∗ ψ01 6.000 0.002 0.000

θ22 ∗ pattern 12.000 3.767 0.023

θ22 ∗ β01 2.000 0.014 0.000

θ22 ∗ β11 2.000 0.001 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 6.000 0.013 0.000

pattern ∗ β11 6.000 0.002 0.000

pattern ∗ ψ01 12.000 0.004 0.000

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.009 0.000

model ∗N ∗ pattern 36.000 0.019 0.000

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.056 0.000

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Table A.7 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 1.354 0.008

N ∗ θ22 ∗ β01 6.000 0.010 0.000

N ∗ θ22 ∗ β11 6.000 0.001 0.000

N ∗ θ22 ∗ ψ01 12.000 0.001 0.000

N ∗ pattern ∗ β01 18.000 0.010 0.000

N ∗ pattern ∗ β11 18.000 0.007 0.000

N ∗ pattern ∗ ψ01 36.000 0.006 0.000

N ∗ β01 ∗ β11 3.000 0.002 0.000

N ∗ β01 ∗ ψ01 6.000 0.000 0.000

N ∗ β11 ∗ ψ01 6.000 0.002 0.000

θ22 ∗ pattern ∗ β01 12.000 0.006 0.000

θ22 ∗ pattern ∗ β11 12.000 0.003 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.007 0.000

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.002 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 ∗ β11 6.000 0.003 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.001 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.005 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.021 0.000

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.017 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.008 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.023 0.000

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.001 0.000
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Table A.7 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.003 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.002 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.005 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.008 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.014 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.002 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.001 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.005 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.006 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.004 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.007 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.016 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.022 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.001 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.011 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.005 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.017 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.001 0.000
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Table A.8

ANOVA Test Results for Empirical Standard Error of β11
Source DF Sum of Squares η2

model 2.000 0.088 0.000

N 3.000 199.121 0.708

θ22 2.000 34.005 0.121

pattern 6.000 15.042 0.054

β01 1.000 2.112 0.008

β11 1.000 0.149 0.001

ψ01 2.000 0.010 0.000

model ∗N 6.000 0.018 0.000

model ∗ θ22 4.000 0.094 0.000

model ∗ pattern 12.000 0.166 0.001

model ∗ β01 2.000 0.002 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 12.062 0.043

N ∗ pattern 18.000 5.350 0.019

N ∗ β01 3.000 0.671 0.002

N ∗ β11 3.000 0.048 0.000

N ∗ ψ01 6.000 0.001 0.000

θ22 ∗ pattern 12.000 8.267 0.029

θ22 ∗ β01 2.000 0.187 0.001

θ22 ∗ β11 2.000 0.007 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.004 0.000

pattern ∗ β01 6.000 0.072 0.000

pattern ∗ β11 6.000 0.017 0.000

pattern ∗ ψ01 12.000 0.007 0.000

β01 ∗ β11 1.000 0.006 0.000

β01 ∗ ψ01 2.000 0.002 0.000

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.027 0.000

model ∗N ∗ pattern 36.000 0.057 0.000

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.160 0.001

model ∗ θ22 ∗ β01 4.000 0.002 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.004 0.000

model ∗ pattern ∗ β11 12.000 0.002 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Table A.8 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 2.861 0.010

N ∗ θ22 ∗ β01 6.000 0.059 0.000

N ∗ θ22 ∗ β11 6.000 0.003 0.000

N ∗ θ22 ∗ ψ01 12.000 0.003 0.000

N ∗ pattern ∗ β01 18.000 0.034 0.000

N ∗ pattern ∗ β11 18.000 0.013 0.000

N ∗ pattern ∗ ψ01 36.000 0.012 0.000

N ∗ β01 ∗ β11 3.000 0.001 0.000

N ∗ β01 ∗ ψ01 6.000 0.002 0.000

N ∗ β11 ∗ ψ01 6.000 0.004 0.000

θ22 ∗ pattern ∗ β01 12.000 0.019 0.000

θ22 ∗ pattern ∗ β11 12.000 0.005 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.009 0.000

θ22 ∗ β01 ∗ β11 2.000 0.001 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.003 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 6.000 0.001 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.006 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.005 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.002 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.055 0.000

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.002 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.001 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.002 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.020 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.014 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.027 0.000

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.003 0.000
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Table A.8 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.005 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.003 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.002 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.008 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.014 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.001 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.005 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.006 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.007 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.004 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.003 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.013 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.018 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.035 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.004 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.013 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.010 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.002 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.025 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.001 0.000
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Table A.9

ANOVA test for the Theoretical Standard Error of β00
Source DF Sum of Squares η2

model 2 0.280 0.003

N 3 93.024 0.872

θ22 2 3.806 0.036

pattern 6 3.350 0.031

β01 1 0.061 0.001

β11 1 0.000 0.000

ψ01 2 0.000 0.000

model ∗N 6 0.122 0.001

model ∗ θ22 4 0.052 0.000

model ∗ pattern 12 0.107 0.001

model ∗ β01 2 0.000 0.000

model ∗ β11 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 1.338 0.013

N ∗ pattern 18 1.177 0.011

N ∗ β01 3 0.024 0.000

N ∗ β11 3 0.000 0.000

N ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern 12 2.303 0.022

θ22 ∗ β01 2 0.003 0.000

θ22 ∗ β11 2 0.000 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 6 0.002 0.000

pattern ∗ β11 6 0.000 0.000

pattern ∗ ψ01 12 0.000 0.000

β01 ∗ β11 1 0.000 0.000

β01 ∗ ψ01 2 0.000 0.000

β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 12 0.018 0.000

model ∗N ∗ pattern 36 0.038 0.000

model ∗N ∗ β01 6 0.000 0.000

model ∗N ∗ β11 6 0.000 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.081 0.001

model ∗ θ22 ∗ β01 4 0.000 0.000

model ∗ θ22 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 12 0.000 0.000

model ∗ pattern ∗ β11 12 0.000 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 2 0.000 0.000

model ∗ β01 ∗ ψ01 4 0.000 0.000

model ∗ β11 ∗ ψ01 4 0.000 0.000
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Table A.9 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 0.813 0.008

N ∗ θ22 ∗ β01 6 0.001 0.000

N ∗ θ22 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 18 0.001 0.000

N ∗ pattern ∗ β11 18 0.000 0.000

N ∗ pattern ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 3 0.000 0.000

N ∗ β01 ∗ ψ01 6 0.000 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 12 0.001 0.000

θ22 ∗ pattern ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 2 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 6 0.000 0.000

pattern ∗ β01 ∗ ψ01 12 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

β01 ∗ β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.030 0.000

model ∗N ∗ θ22 ∗ β01 12 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 36 0.000 0.000

model ∗N ∗ pattern ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 6 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144 0.000 0.000
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Table A.10

ANOVA test for the Theoretical Standard Error of β01
Source DF Sum of Squares η2

model 2.000 0.477 0.003

N 3.000 157.105 0.838

θ22 2.000 8.345 0.045

pattern 6.000 7.304 0.039

β01 1.000 0.592 0.003

β11 1.000 0.000 0.000

ψ01 2.000 0.000 0.000

model ∗N 6.000 0.234 0.001

model ∗ θ22 4.000 0.122 0.001

model ∗ pattern 12.000 0.255 0.001

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.001 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 2.956 0.016

N ∗ pattern 18.000 2.571 0.014

N ∗ β01 3.000 0.237 0.001

N ∗ β11 3.000 0.000 0.000

N ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern 12.000 4.953 0.026

θ22 ∗ β01 2.000 0.032 0.000

θ22 ∗ β11 2.000 0.000 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 6.000 0.026 0.000

pattern ∗ β11 6.000 0.000 0.000

pattern ∗ ψ01 12.000 0.000 0.000

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.040 0.000

model ∗N ∗ pattern 36.000 0.092 0.000

model ∗N ∗ β01 6.000 0.002 0.000

model ∗N ∗ β11 6.000 0.001 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.191 0.001

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.002 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 1.744 0.009

N ∗ θ22 ∗ β01 6.000 0.014 0.000

N ∗ θ22 ∗ β11 6.000 0.000 0.000

N ∗ θ22 ∗ ψ01 12.000 0.000 0.000

N ∗ pattern ∗ β01 18.000 0.009 0.000

N ∗ pattern ∗ β11 18.000 0.000 0.000

N ∗ pattern ∗ ψ01 36.000 0.000 0.000

N ∗ β01 ∗ β11 3.000 0.000 0.000

N ∗ β01 ∗ ψ01 6.000 0.000 0.000

N ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 12.000 0.006 0.000

θ22 ∗ pattern ∗ β11 12.000 0.000 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.000 0.000

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 6.000 0.000 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.000 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.000 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.069 0.000

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.001 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.002 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.001 0.000

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.001 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.000 0.000
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Table A.11

ANOVA test for the Theoretical Standard Error of β10
Source DF Sum of Squares η2

model 2 0.045 0.000

N 3 121.107 0.790

θ22 2 13.678 0.089

pattern 6 6.111 0.040

β01 1 0.177 0.001

β11 1 0.013 0.000

ψ01 2 0.002 0.000

model ∗N 6 0.022 0.000

model ∗ θ22 4 0.041 0.000

model ∗ pattern 12 0.048 0.000

model ∗ β01 2 0.000 0.000

model ∗ β11 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 4.758 0.031

N ∗ pattern 18 2.125 0.014

N ∗ β01 3 0.058 0.000

N ∗ β11 3 0.004 0.000

N ∗ ψ01 6 0.001 0.000

θ22 ∗ pattern 12 3.687 0.024

θ22 ∗ β01 2 0.011 0.000

θ22 ∗ β11 2 0.001 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 6 0.005 0.000

pattern ∗ β11 6 0.000 0.000

pattern ∗ ψ01 12 0.000 0.000

β01 ∗ β11 1 0.001 0.000

β01 ∗ ψ01 2 0.000 0.000

β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 12 0.016 0.000

model ∗N ∗ pattern 36 0.017 0.000

model ∗N ∗ β01 6 0.000 0.000

model ∗N ∗ β11 6 0.000 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.054 0.000

model ∗ θ22 ∗ β01 4 0.000 0.000

model ∗ θ22 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 12 0.000 0.000

model ∗ pattern ∗ β11 12 0.000 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 2 0.000 0.000

model ∗ β01 ∗ ψ01 4 0.000 0.000

model ∗ β11 ∗ ψ01 4 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 1.283 0.008

N ∗ θ22 ∗ β01 6 0.003 0.000

N ∗ θ22 ∗ β11 6 0.001 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 18 0.001 0.000

N ∗ pattern ∗ β11 18 0.000 0.000

N ∗ pattern ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 3 0.000 0.000

N ∗ β01 ∗ ψ01 6 0.000 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 12 0.001 0.000

θ22 ∗ pattern ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 2 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 6 0.000 0.000

pattern ∗ β01 ∗ ψ01 12 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

β01 ∗ β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.019 0.000

model ∗N ∗ θ22 ∗ β01 12 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 36 0.000 0.000

model ∗N ∗ pattern ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 6 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144 0.000 0.000
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Table A.12

ANOVA test for the Theoretical Standard Error of β11
Source DF Sum of Squares η2

model 2 0.166 0.001

N 3 181.440 0.695

θ22 2 33.226 0.127

pattern 6 14.666 0.056

β01 1 2.084 0.008

β11 1 0.157 0.001

ψ01 2 0.016 0.000

model ∗N 6 0.081 0.000

model ∗ θ22 4 0.115 0.000

model ∗ pattern 12 0.164 0.001

model ∗ β01 2 0.005 0.000

model ∗ β11 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 11.512 0.044

N ∗ pattern 18 5.081 0.019

N ∗ β01 3 0.704 0.003

N ∗ β11 3 0.055 0.000

N ∗ ψ01 6 0.007 0.000

θ22 ∗ pattern 12 8.110 0.031

θ22 ∗ β01 2 0.182 0.001

θ22 ∗ β11 2 0.013 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4 0.002 0.000

pattern ∗ β01 6 0.074 0.000

pattern ∗ β11 6 0.007 0.000

pattern ∗ ψ01 12 0.001 0.000

β01 ∗ β11 1 0.006 0.000

β01 ∗ ψ01 2 0.004 0.000

β11 ∗ ψ01 2 0.001 0.000

model ∗N ∗ θ22 12 0.045 0.000

model ∗N ∗ pattern 36 0.056 0.000

model ∗N ∗ β01 6 0.003 0.000

model ∗N ∗ β11 6 0.000 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.160 0.001

model ∗ θ22 ∗ β01 4 0.002 0.000

model ∗ θ22 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 12 0.005 0.000

model ∗ pattern ∗ β11 12 0.002 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 2 0.000 0.000

model ∗ β01 ∗ ψ01 4 0.000 0.000

model ∗ β11 ∗ ψ01 4 0.000 0.000
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N ∗ θ22 ∗ pattern 36 2.826 0.011

N ∗ θ22 ∗ β01 6 0.057 0.000

N ∗ θ22 ∗ β11 6 0.005 0.000

N ∗ θ22 ∗ ψ01 12 0.001 0.000

N ∗ pattern ∗ β01 18 0.022 0.000

N ∗ pattern ∗ β11 18 0.002 0.000

N ∗ pattern ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 3 0.002 0.000

N ∗ β01 ∗ ψ01 6 0.002 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 12 0.011 0.000

θ22 ∗ pattern ∗ β11 12 0.002 0.000

θ22 ∗ pattern ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 2 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 6 0.000 0.000

pattern ∗ β01 ∗ ψ01 12 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

β01 ∗ β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.055 0.000

model ∗N ∗ θ22 ∗ β01 12 0.000 0.000
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model ∗N ∗ θ22 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 36 0.002 0.000

model ∗N ∗ pattern ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 6 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24 0.002 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.003 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.001 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.001 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.000 0.000
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N ∗ θ22 ∗ β01 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144 0.000 0.000
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Table A.13

ANOVA Test Results for the Ratio of SET to SEE in β00

1

Source DF Sum of Squares η2

model 2.000 0.031 0.015

N 3.000 0.507 0.244

θ22 2.000 0.002 0.001

pattern 6.000 0.016 0.008

β01 1.000 0.001 0.001

β11 1.000 0.000 0.000

ψ01 2.000 0.000 0.000

model ∗N 6.000 0.041 0.020

model ∗ θ22 4.000 0.000 0.000

model ∗ pattern 12.000 0.001 0.000

model ∗ β01 2.000 0.003 0.001

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 0.004 0.002

N ∗ pattern 18.000 0.029 0.014

N ∗ β01 3.000 0.003 0.001

N ∗ β11 3.000 0.008 0.004

N ∗ ψ01 6.000 0.004 0.002

θ22 ∗ pattern 12.000 0.017 0.008

θ22 ∗ β01 2.000 0.000 0.000

θ22 ∗ β11 2.000 0.001 0.000
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θ22 ∗ ψ01 4.000 0.008 0.004

pattern ∗ β01 6.000 0.003 0.002

pattern ∗ β11 6.000 0.005 0.002

pattern ∗ ψ01 12.000 0.017 0.008

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.003 0.002

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.002 0.001

model ∗N ∗ pattern 36.000 0.002 0.001

model ∗N ∗ β01 6.000 0.003 0.001

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.001 0.000

model ∗ θ22 ∗ β01 4.000 0.002 0.001

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.001 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.001 0.000
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N ∗ θ22 ∗ pattern 36.000 0.039 0.019

N ∗ θ22 ∗ β01 6.000 0.008 0.004

N ∗ θ22 ∗ β11 6.000 0.010 0.005

N ∗ θ22 ∗ ψ01 12.000 0.021 0.010

N ∗ pattern ∗ β01 18.000 0.019 0.009

N ∗ pattern ∗ β11 18.000 0.020 0.010

N ∗ pattern ∗ ψ01 36.000 0.046 0.022

N ∗ β01 ∗ β11 3.000 0.000 0.000

N ∗ β01 ∗ ψ01 6.000 0.011 0.005

N ∗ β11 ∗ ψ01 6.000 0.002 0.001

θ22 ∗ pattern ∗ β01 12.000 0.012 0.006

θ22 ∗ pattern ∗ β11 12.000 0.022 0.010

θ22 ∗ pattern ∗ ψ01 24.000 0.037 0.018

θ22 ∗ β01 ∗ β11 2.000 0.003 0.001

θ22 ∗ β01 ∗ ψ01 4.000 0.002 0.001

θ22 ∗ β11 ∗ ψ01 4.000 0.006 0.003

pattern ∗ β01 ∗ β11 6.000 0.012 0.006

pattern ∗ β01 ∗ ψ01 12.000 0.027 0.013

pattern ∗ β11 ∗ ψ01 12.000 0.007 0.003

β01 ∗ β11 ∗ ψ01 2.000 0.002 0.001

model ∗N ∗ θ22 ∗ pattern 72.000 0.003 0.001

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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model ∗N ∗ θ22 ∗ β11 12.000 0.001 0.001

model ∗N ∗ θ22 ∗ ψ01 24.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.002 0.001

model ∗N ∗ pattern ∗ β11 36.000 0.001 0.001

model ∗N ∗ pattern ∗ ψ01 72.000 0.004 0.002

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.002 0.001

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.001 0.001

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.001 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.001 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.045 0.022

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.036 0.017

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.122 0.059

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.010 0.005
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.014 0.007

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.010 0.005

N ∗ pattern ∗ β01 ∗ β11 18.000 0.019 0.009

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.064 0.031

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.053 0.026

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.008 0.004

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.020 0.010

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.052 0.025

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.038 0.019

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.004 0.002

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.014 0.007

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.002 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.003 0.002

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.007 0.003

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.001 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.002 0.001

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.006 0.003

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.002 0.001

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.001 0.000
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model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.001 0.001

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.001 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.038 0.018

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.125 0.060

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.116 0.056

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.014 0.007

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.049 0.024

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.033 0.016

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.004 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.006 0.003

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.005 0.003

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.004 0.002

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.001 0.001

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.094 0.045

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.005 0.003

1SEE : empirical standard error; SET : Theoretical standard error.
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Table A.14

ANOVA Test Results for the Ratio of SET to SEE in β01

2

Source DF Sum of Squares η2

model 2.000 0.067 0.028

N 3.000 0.739 0.304

θ22 2.000 0.002 0.001

pattern 6.000 0.007 0.003

β01 1.000 0.014 0.006

β11 1.000 0.002 0.001

ψ01 2.000 0.001 0.000

model ∗N 6.000 0.093 0.038

model ∗ θ22 4.000 0.005 0.002

model ∗ pattern 12.000 0.001 0.001

model ∗ β01 2.000 0.011 0.005

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 0.010 0.004

N ∗ pattern 18.000 0.016 0.007

N ∗ β01 3.000 0.014 0.006

N ∗ β11 3.000 0.003 0.001

N ∗ ψ01 6.000 0.013 0.005

θ22 ∗ pattern 12.000 0.018 0.007

θ22 ∗ β01 2.000 0.005 0.002

θ22 ∗ β11 2.000 0.003 0.001
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θ22 ∗ ψ01 4.000 0.001 0.001

pattern ∗ β01 6.000 0.011 0.005

pattern ∗ β11 6.000 0.015 0.006

pattern ∗ ψ01 12.000 0.011 0.004

β01 ∗ β11 1.000 0.009 0.004

β01 ∗ ψ01 2.000 0.001 0.001

β11 ∗ ψ01 2.000 0.005 0.002

model ∗N ∗ θ22 12.000 0.004 0.002

model ∗N ∗ pattern 36.000 0.002 0.001

model ∗N ∗ β01 6.000 0.013 0.005

model ∗N ∗ β11 6.000 0.001 0.000

model ∗N ∗ ψ01 12.000 0.001 0.000

model ∗ θ22 ∗ pattern 24.000 0.001 0.000

model ∗ θ22 ∗ β01 4.000 0.007 0.003

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.001 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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N ∗ θ22 ∗ pattern 36.000 0.060 0.025

N ∗ θ22 ∗ β01 6.000 0.015 0.006

N ∗ θ22 ∗ β11 6.000 0.010 0.004

N ∗ θ22 ∗ ψ01 12.000 0.018 0.007

N ∗ pattern ∗ β01 18.000 0.017 0.007

N ∗ pattern ∗ β11 18.000 0.018 0.007

N ∗ pattern ∗ ψ01 36.000 0.060 0.025

N ∗ β01 ∗ β11 3.000 0.002 0.001

N ∗ β01 ∗ ψ01 6.000 0.008 0.003

N ∗ β11 ∗ ψ01 6.000 0.003 0.001

θ22 ∗ pattern ∗ β01 12.000 0.009 0.003

θ22 ∗ pattern ∗ β11 12.000 0.008 0.003

θ22 ∗ pattern ∗ ψ01 24.000 0.038 0.015

θ22 ∗ β01 ∗ β11 2.000 0.001 0.001

θ22 ∗ β01 ∗ ψ01 4.000 0.005 0.002

θ22 ∗ β11 ∗ ψ01 4.000 0.004 0.002

pattern ∗ β01 ∗ β11 6.000 0.005 0.002

pattern ∗ β01 ∗ ψ01 12.000 0.039 0.016

pattern ∗ β11 ∗ ψ01 12.000 0.006 0.002

β01 ∗ β11 ∗ ψ01 2.000 0.003 0.001

model ∗N ∗ θ22 ∗ pattern 72.000 0.002 0.001

model ∗N ∗ θ22 ∗ β01 12.000 0.005 0.002
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.001 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.001 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.003 0.001

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.001 0.001

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.001 0.001

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.001 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.071 0.029

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.055 0.023

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.124 0.051

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.005 0.002
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N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.032 0.013

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.018 0.007

N ∗ pattern ∗ β01 ∗ β11 18.000 0.009 0.004

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.032 0.013

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.026 0.011

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.004 0.002

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.021 0.008

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.057 0.023

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.032 0.013

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.019 0.008

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.003 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.004 0.001

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.007 0.003

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.001 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.001 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.002 0.001

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.003 0.001

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.003 0.001

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.001 0.000
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model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.003 0.001

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.001 0.001

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.056 0.023

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.071 0.029

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.105 0.043

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.019 0.008

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.046 0.019

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.034 0.014

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.002 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.006 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.006 0.003

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.003 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.001 0.001

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.086 0.036

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.004 0.002

2SEE : empirical standard error; SET : Theoretical standard error.
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Table A.15

ANOVA Test Results for the Ratio of SET to SEE in β10

3

Source DF Sum of Squares η2

model 2.000 0.011 0.005

N 3.000 0.403 0.199

θ22 2.000 0.007 0.003

pattern 6.000 0.007 0.004

β01 1.000 0.004 0.002

β11 1.000 0.000 0.000

ψ01 2.000 0.008 0.004

model ∗N 6.000 0.013 0.006

model ∗ θ22 4.000 0.001 0.000

model ∗ pattern 12.000 0.000 0.000

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 0.006 0.003

N ∗ pattern 18.000 0.019 0.009

N ∗ β01 3.000 0.006 0.003

N ∗ β11 3.000 0.000 0.000

N ∗ ψ01 6.000 0.009 0.004

θ22 ∗ pattern 12.000 0.027 0.013

θ22 ∗ β01 2.000 0.001 0.000

θ22 ∗ β11 2.000 0.001 0.001

Continued on next page
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.004 0.002

pattern ∗ β01 6.000 0.012 0.006

pattern ∗ β11 6.000 0.006 0.003

pattern ∗ ψ01 12.000 0.016 0.008

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β11 ∗ ψ01 2.000 0.002 0.001

model ∗N ∗ θ22 12.000 0.001 0.000

model ∗N ∗ pattern 36.000 0.001 0.000

model ∗N ∗ β01 6.000 0.001 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.000 0.000

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000

Continued on next page



244 Chapter A. Results of Study 1

Table A.15 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 0.059 0.029

N ∗ θ22 ∗ β01 6.000 0.010 0.005

N ∗ θ22 ∗ β11 6.000 0.003 0.002

N ∗ θ22 ∗ ψ01 12.000 0.018 0.009

N ∗ pattern ∗ β01 18.000 0.041 0.020

N ∗ pattern ∗ β11 18.000 0.035 0.017

N ∗ pattern ∗ ψ01 36.000 0.055 0.027

N ∗ β01 ∗ β11 3.000 0.014 0.007

N ∗ β01 ∗ ψ01 6.000 0.002 0.001

N ∗ β11 ∗ ψ01 6.000 0.011 0.005

θ22 ∗ pattern ∗ β01 12.000 0.022 0.011

θ22 ∗ pattern ∗ β11 12.000 0.019 0.010

θ22 ∗ pattern ∗ ψ01 24.000 0.030 0.015

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.008 0.004

θ22 ∗ β11 ∗ ψ01 4.000 0.003 0.002

pattern ∗ β01 ∗ β11 6.000 0.011 0.005

pattern ∗ β01 ∗ ψ01 12.000 0.008 0.004

pattern ∗ β11 ∗ ψ01 12.000 0.028 0.014

β01 ∗ β11 ∗ ψ01 2.000 0.003 0.001

model ∗N ∗ θ22 ∗ pattern 72.000 0.001 0.001

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.001 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.001 0.001

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.064 0.032

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.053 0.026

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.123 0.061

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.011 0.005
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Table A.15 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.018 0.009

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.020 0.010

N ∗ pattern ∗ β01 ∗ β11 18.000 0.028 0.014

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.077 0.038

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.091 0.045

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.004 0.002

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.009 0.005

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.039 0.019

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.028 0.014

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.006 0.003

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.012 0.006

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.001 0.001

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.001 0.001

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.002 0.001

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.031 0.015

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.096 0.048

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.114 0.056

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.016 0.008

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.065 0.032

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.041 0.020

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.003 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.002 0.001

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.001 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.101 0.050

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.002 0.001

3SEE : empirical standard error; SET : Theoretical standard error.
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Table A.16

ANOVA Test Results for the Ratio of SET to SEE in β11

4

Source DF Sum of Squares η2

model 2.000 0.029 0.013

N 3.000 0.584 0.269

θ22 2.000 0.004 0.002

pattern 6.000 0.017 0.008

β01 1.000 0.000 0.000

β11 1.000 0.004 0.002

ψ01 2.000 0.000 0.000

model ∗N 6.000 0.032 0.015

model ∗ θ22 4.000 0.000 0.000

model ∗ pattern 12.000 0.000 0.000

model ∗ β01 2.000 0.004 0.002

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 0.019 0.009

N ∗ pattern 18.000 0.019 0.009

N ∗ β01 3.000 0.023 0.011

N ∗ β11 3.000 0.008 0.004

N ∗ ψ01 6.000 0.011 0.005

θ22 ∗ pattern 12.000 0.022 0.010

θ22 ∗ β01 2.000 0.000 0.000

θ22 ∗ β11 2.000 0.006 0.003
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.006 0.003

pattern ∗ β01 6.000 0.009 0.004

pattern ∗ β11 6.000 0.020 0.009

pattern ∗ ψ01 12.000 0.013 0.006

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.000 0.000

model ∗N ∗ pattern 36.000 0.001 0.000

model ∗N ∗ β01 6.000 0.003 0.001

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.001 0.000

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000

Continued on next page
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Table A.16 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 0.059 0.027

N ∗ θ22 ∗ β01 6.000 0.017 0.008

N ∗ θ22 ∗ β11 6.000 0.004 0.002

N ∗ θ22 ∗ ψ01 12.000 0.008 0.004

N ∗ pattern ∗ β01 18.000 0.026 0.012

N ∗ pattern ∗ β11 18.000 0.024 0.011

N ∗ pattern ∗ ψ01 36.000 0.064 0.029

N ∗ β01 ∗ β11 3.000 0.001 0.001

N ∗ β01 ∗ ψ01 6.000 0.008 0.004

N ∗ β11 ∗ ψ01 6.000 0.021 0.010

θ22 ∗ pattern ∗ β01 12.000 0.024 0.011

θ22 ∗ pattern ∗ β11 12.000 0.023 0.011

θ22 ∗ pattern ∗ ψ01 24.000 0.021 0.010

θ22 ∗ β01 ∗ β11 2.000 0.003 0.001

θ22 ∗ β01 ∗ ψ01 4.000 0.009 0.004

θ22 ∗ β11 ∗ ψ01 4.000 0.003 0.002

pattern ∗ β01 ∗ β11 6.000 0.007 0.003

pattern ∗ β01 ∗ ψ01 12.000 0.037 0.017

pattern ∗ β11 ∗ ψ01 12.000 0.016 0.007

β01 ∗ β11 ∗ ψ01 2.000 0.009 0.004

model ∗N ∗ θ22 ∗ pattern 72.000 0.001 0.001

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.001 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.002 0.001

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.002 0.001

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.001 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.001 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.037 0.017

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.059 0.027

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.106 0.049

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.017 0.008
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Table A.16 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.021 0.009

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.022 0.010

N ∗ pattern ∗ β01 ∗ β11 18.000 0.011 0.005

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.053 0.024

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.067 0.031

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.008 0.004

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.011 0.005

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.026 0.012

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.033 0.015

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.005 0.002

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.019 0.009

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.001 0.001

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.005 0.002

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.002 0.001

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.002 0.001

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.002 0.001

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.035 0.016

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.072 0.033

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.098 0.045

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.017 0.008

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.057 0.026

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.043 0.020

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.002 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.003 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.004 0.002

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.001 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.090 0.042

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.003 0.001

4SEE : empirical standard error; SET : Theoretical standard error.
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Table A.17

The Ratio of Theoretical SE and Empirical SE for β00 on Extreme Cases

N Model Pattern Count Minimum Mean Maximum

50 LCFM Constant 4 0.923 0.937 0.949

50 LCFM Heavy_Shrinking 3 0.935 0.941 0.949

50 LCFM Heavy_Spreading 5 0.912 0.934 0.948

50 LCFM High_Edge 3 0.936 0.945 0.949

50 LCFM Low_Edge 4 0.919 0.936 0.949

50 LCFM Moderate_Shrinking 5 0.928 0.937 0.948

50 LCFM Moderate_Spreading 4 0.936 0.942 0.950

50 LCSM Constant 4 0.923 0.937 0.949

50 LCSM Heavy_Shrinking 3 0.935 0.941 0.949

50 LCSM Heavy_Spreading 5 0.912 0.934 0.948

50 LCSM High_Edge 3 0.936 0.945 0.949

50 LCSM Low_Edge 4 0.919 0.936 0.949

50 LCSM Moderate_Shrinking 5 0.928 0.937 0.948

50 LCSM Moderate_Spreading 4 0.936 0.942 0.950

50 SOLGM Constant 13 0.903 0.934 0.948

50 SOLGM Heavy_Shrinking 18 0.901 0.932 0.949

50 SOLGM Heavy_Spreading 15 0.901 0.932 0.949

50 SOLGM High_Edge 18 0.911 0.938 0.950

50 SOLGM Low_Edge 17 0.889 0.933 0.947

50 SOLGM Moderate_Shrinking 15 0.916 0.937 0.947

50 SOLGM Moderate_Spreading 17 0.922 0.935 0.944

Continued on next page
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N Model Pattern Count Minimum Mean Maximum

200 LCFM Heavy_Spreading 1 1.061 1.061 1.061

200 LCFM High_Edge 1 0.946 0.946 0.946

200 LCFM Moderate_Spreading 2 0.934 0.940 0.947

200 LCSM Heavy_Spreading 1 1.061 1.061 1.061

200 LCSM High_Edge 1 0.946 0.946 0.946

200 LCSM Moderate_Spreading 2 0.934 0.940 0.947

200 SOLGM Heavy_Spreading 2 0.945 1.000 1.054

200 SOLGM Moderate_Shrinking 1 0.946 0.946 0.946

200 SOLGM Moderate_Spreading 2 0.917 0.931 0.944

600 LCFM Constant 2 0.945 0.998 1.051

600 LCFM Heavy_Shrinking 1 1.071 1.071 1.071

600 LCFM High_Edge 1 0.948 0.948 0.948

600 LCFM Moderate_Shrinking 1 1.052 1.052 1.052

600 LCFM Moderate_Spreading 3 0.950 1.017 1.052

600 LCSM Constant 2 0.945 0.998 1.051

600 LCSM Heavy_Shrinking 1 1.071 1.071 1.071

600 LCSM High_Edge 1 0.948 0.948 0.948

600 LCSM Moderate_Shrinking 1 1.052 1.052 1.052

600 LCSM Moderate_Spreading 3 0.950 1.017 1.052

600 SOLGM Constant 1 0.932 0.932 0.932

600 SOLGM Moderate_Shrinking 1 1.054 1.054 1.054

600 SOLGM Moderate_Spreading 1 1.057 1.057 1.057

Continued on next page
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N Model Pattern Count Minimum Mean Maximum

1000 LCFM Heavy_Shrinking 2 1.058 1.060 1.063

1000 LCFM Heavy_Spreading 1 0.950 0.950 0.950

1000 LCFM High_Edge 1 1.081 1.081 1.081

1000 LCFM Low_Edge 2 0.950 1.005 1.061

1000 LCFM Moderate_Spreading 2 1.051 1.059 1.067

1000 LCSM Heavy_Shrinking 2 1.058 1.060 1.063

1000 LCSM Heavy_Spreading 1 0.950 0.950 0.950

1000 LCSM High_Edge 1 1.081 1.081 1.081

1000 LCSM Low_Edge 2 0.950 1.005 1.061

1000 LCSM Moderate_Spreading 2 1.051 1.059 1.067

1000 SOLGM Heavy_Shrinking 2 1.060 1.063 1.066

1000 SOLGM High_Edge 2 1.053 1.061 1.068

1000 SOLGM Low_Edge 1 0.950 0.950 0.950

1000 SOLGM Moderate_Shrinking 2 0.950 1.000 1.050

1000 SOLGM Moderate_Spreading 2 1.051 1.062 1.073
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Table A.18

The Ratio of Theoretical SE and Empirical SE for β01 on Extreme Cases

N Model Pattern Count Minimum Mean Maximum

50 LCFM Constant 8 0.926 0.939 0.950

50 LCFM Heavy_Shrinking 9 0.931 0.944 0.949

50 LCFM Heavy_Spreading 8 0.919 0.934 0.942

50 LCFM High_Edge 5 0.929 0.943 0.948

50 LCFM Low_Edge 9 0.935 0.943 0.950

50 LCFM Moderate_Shrinking 6 0.917 0.938 0.948

50 LCFM Moderate_Spreading 11 0.924 0.938 0.948

50 LCSM Constant 8 0.926 0.939 0.950

50 LCSM Heavy_Shrinking 9 0.931 0.944 0.949

50 LCSM Heavy_Spreading 8 0.919 0.934 0.942

50 LCSM High_Edge 5 0.929 0.943 0.948

50 LCSM Low_Edge 9 0.935 0.943 0.950

50 LCSM Moderate_Shrinking 6 0.917 0.938 0.948

50 LCSM Moderate_Spreading 11 0.924 0.938 0.948

50 SOLGM Constant 24 0.882 0.925 0.944

50 SOLGM Heavy_Shrinking 25 0.869 0.922 0.948

50 SOLGM Heavy_Spreading 22 0.880 0.920 0.945

50 SOLGM High_Edge 17 0.883 0.923 0.947

50 SOLGM Low_Edge 25 0.874 0.918 0.944

50 SOLGM Moderate_Shrinking 22 0.897 0.926 0.949

50 SOLGM Moderate_Spreading 24 0.862 0.919 0.947

Continued on next page
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Table A.18 – continued from previous page

N Model Pattern Count Minimum Mean Maximum

200 LCFM Heavy_Shrinking 1 1.064 1.064 1.064

200 LCFM Heavy_Spreading 3 0.941 0.984 1.068

200 LCFM Low_Edge 1 1.057 1.057 1.057

200 LCFM Moderate_Shrinking 1 0.931 0.931 0.931

200 LCFM Moderate_Spreading 3 0.939 0.942 0.945

200 LCSM Heavy_Shrinking 1 1.064 1.064 1.064

200 LCSM Heavy_Spreading 3 0.941 0.984 1.068

200 LCSM Low_Edge 1 1.057 1.057 1.057

200 LCSM Moderate_Shrinking 1 0.931 0.931 0.931

200 LCSM Moderate_Spreading 3 0.939 0.942 0.945

200 SOLGM Constant 3 0.938 0.943 0.949

200 SOLGM Heavy_Shrinking 3 0.943 0.945 0.948

200 SOLGM Heavy_Spreading 6 0.936 0.960 1.057

200 SOLGM High_Edge 2 0.936 0.937 0.939

200 SOLGM Low_Edge 3 0.946 0.987 1.064

200 SOLGM Moderate_Spreading 4 0.933 0.942 0.950

600 LCFM Constant 1 0.946 0.946 0.946

600 LCFM Heavy_Spreading 1 1.060 1.060 1.060

600 LCFM Low_Edge 1 1.078 1.078 1.078

600 LCFM Moderate_Shrinking 2 1.054 1.057 1.061

600 LCFM Moderate_Spreading 1 0.948 0.948 0.948

600 LCSM Constant 1 0.946 0.946 0.946

Continued on next page
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Table A.18 – continued from previous page

N Model Pattern Count Minimum Mean Maximum

600 LCSM Heavy_Spreading 1 1.060 1.060 1.060

600 LCSM Low_Edge 1 1.078 1.078 1.078

600 LCSM Moderate_Shrinking 2 1.054 1.057 1.061

600 LCSM Moderate_Spreading 1 0.948 0.948 0.948

600 SOLGM Constant 1 0.944 0.944 0.944

600 SOLGM Heavy_Shrinking 1 1.053 1.053 1.053

600 SOLGM Heavy_Spreading 2 0.949 1.003 1.057

600 SOLGM Low_Edge 1 1.070 1.070 1.070

600 SOLGM Moderate_Shrinking 1 1.067 1.067 1.067

600 SOLGM Moderate_Spreading 1 0.944 0.944 0.944

1000 LCFM Heavy_Shrinking 1 0.944 0.944 0.944

1000 LCFM Heavy_Spreading 1 1.060 1.060 1.060

1000 LCFM High_Edge 1 1.063 1.063 1.063

1000 LCFM Low_Edge 1 0.945 0.945 0.945

1000 LCFM Moderate_Shrinking 1 1.056 1.056 1.056

1000 LCFM Moderate_Spreading 1 1.057 1.057 1.057

1000 LCSM Heavy_Shrinking 1 0.944 0.944 0.944

1000 LCSM Heavy_Spreading 1 1.060 1.060 1.060

1000 LCSM High_Edge 1 1.063 1.063 1.063

1000 LCSM Low_Edge 1 0.945 0.945 0.945

1000 LCSM Moderate_Shrinking 1 1.056 1.056 1.056

1000 LCSM Moderate_Spreading 1 1.057 1.057 1.057

Continued on next page
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Table A.18 – continued from previous page

N Model Pattern Count Minimum Mean Maximum

1000 SOLGM Heavy_Spreading 1 1.061 1.061 1.061

1000 SOLGM High_Edge 1 1.064 1.064 1.064
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Table A.19

The Ratio of Theoretical SE and Empirical SE for β10 on Extreme Cases

N Model Pattern Count Minimum Mean Maximum

50 LCFM Constant 8 0.915 0.939 0.950

50 LCFM Heavy_Shrinking 6 0.934 0.944 0.950

50 LCFM Heavy_Spreading 3 0.932 0.940 0.950

50 LCFM High_Edge 3 0.943 0.944 0.947

50 LCFM Low_Edge 2 0.928 0.939 0.950

50 LCFM Moderate_Shrinking 7 0.912 0.936 0.946

50 LCFM Moderate_Spreading 2 0.944 0.945 0.946

50 LCSM Constant 8 0.915 0.939 0.950

50 LCSM Heavy_Shrinking 6 0.934 0.944 0.950

50 LCSM Heavy_Spreading 3 0.932 0.940 0.950

50 LCSM High_Edge 3 0.943 0.944 0.947

50 LCSM Low_Edge 2 0.928 0.939 0.950

50 LCSM Moderate_Shrinking 7 0.912 0.936 0.946

50 LCSM Moderate_Spreading 2 0.944 0.945 0.946

50 SOLGM Constant 14 0.900 0.935 0.949

50 SOLGM Heavy_Shrinking 13 0.926 0.940 0.946

50 SOLGM Heavy_Spreading 8 0.921 0.938 0.947

50 SOLGM High_Edge 12 0.930 0.941 0.950

50 SOLGM Low_Edge 9 0.920 0.942 0.950

50 SOLGM Moderate_Shrinking 14 0.903 0.935 0.949

50 SOLGM Moderate_Spreading 8 0.925 0.938 0.949

Continued on next page
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Table A.19 – continued from previous page

N Model Pattern Count Minimum Mean Maximum

200 LCFM Constant 1 0.950 0.950 0.950

200 LCFM Heavy_Shrinking 1 1.055 1.055 1.055

200 LCFM Heavy_Spreading 2 0.935 0.938 0.941

200 LCFM High_Edge 2 0.941 0.943 0.944

200 LCFM Low_Edge 1 1.050 1.050 1.050

200 LCFM Moderate_Shrinking 2 0.949 1.000 1.052

200 LCFM Moderate_Spreading 1 0.938 0.938 0.938

200 LCSM Constant 1 0.950 0.950 0.950

200 LCSM Heavy_Shrinking 1 1.055 1.055 1.055

200 LCSM Heavy_Spreading 2 0.935 0.938 0.941

200 LCSM High_Edge 2 0.941 0.943 0.944

200 LCSM Low_Edge 1 1.050 1.050 1.050

200 LCSM Moderate_Shrinking 2 0.949 1.000 1.052

200 LCSM Moderate_Spreading 1 0.938 0.938 0.938

200 SOLGM Heavy_Shrinking 1 1.051 1.051 1.051

200 SOLGM Heavy_Spreading 2 0.936 0.941 0.946

200 SOLGM High_Edge 2 0.937 0.938 0.940

200 SOLGM Moderate_Shrinking 1 0.944 0.944 0.944

200 SOLGM Moderate_Spreading 1 0.935 0.935 0.935

600 LCFM Constant 1 0.941 0.941 0.941

600 LCFM Heavy_Shrinking 2 1.062 1.074 1.086

600 LCFM High_Edge 1 0.945 0.945 0.945

Continued on next page
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Table A.19 – continued from previous page

N Model Pattern Count Minimum Mean Maximum

600 LCFM Moderate_Shrinking 3 1.063 1.067 1.075

600 LCSM Constant 1 0.941 0.941 0.941

600 LCSM Heavy_Shrinking 2 1.062 1.074 1.086

600 LCSM High_Edge 1 0.945 0.945 0.945

600 LCSM Moderate_Shrinking 3 1.063 1.067 1.075

600 SOLGM Constant 1 0.941 0.941 0.941

600 SOLGM Heavy_Shrinking 2 1.062 1.066 1.071

600 SOLGM Heavy_Spreading 1 1.054 1.054 1.054

600 SOLGM High_Edge 1 0.945 0.945 0.945

600 SOLGM Moderate_Shrinking 3 1.065 1.068 1.071

1000 LCFM Constant 2 0.941 0.996 1.050

1000 LCFM Heavy_Shrinking 2 1.066 1.066 1.066

1000 LCFM High_Edge 2 1.053 1.057 1.061

1000 LCFM Moderate_Shrinking 2 0.947 1.007 1.067

1000 LCFM Moderate_Spreading 1 0.934 0.934 0.934

1000 LCSM Constant 2 0.941 0.996 1.050

1000 LCSM Heavy_Shrinking 2 1.066 1.066 1.066

1000 LCSM High_Edge 2 1.053 1.057 1.061

1000 LCSM Moderate_Shrinking 2 0.947 1.007 1.067

1000 LCSM Moderate_Spreading 1 0.934 0.934 0.934

1000 SOLGM Constant 1 0.941 0.941 0.941

1000 SOLGM Heavy_Shrinking 2 0.944 1.002 1.061

Continued on next page
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Table A.19 – continued from previous page

N Model Pattern Count Minimum Mean Maximum

1000 SOLGM High_Edge 2 1.051 1.056 1.061

1000 SOLGM Moderate_Shrinking 2 0.949 1.007 1.066

1000 SOLGM Moderate_Spreading 1 0.934 0.934 0.934

Table A.20

The Ratio of Theoretical SE and Empirical SE for β11 on Extreme Cases

N Model Pattern Count Minimum Mean Maximum

50 LCFM Constant 10 0.917 0.936 0.949

50 LCFM Heavy_Shrinking 4 0.927 0.936 0.947

50 LCFM Heavy_Spreading 10 0.924 0.941 0.950

50 LCFM High_Edge 5 0.929 0.940 0.948

50 LCFM Low_Edge 6 0.927 0.935 0.949

50 LCFM Moderate_Shrinking 6 0.935 0.942 0.949

50 LCFM Moderate_Spreading 5 0.926 0.938 0.946

50 LCSM Constant 10 0.917 0.936 0.949

50 LCSM Heavy_Shrinking 4 0.927 0.936 0.947

50 LCSM Heavy_Spreading 10 0.924 0.941 0.950

50 LCSM High_Edge 5 0.929 0.940 0.948

50 LCSM Low_Edge 6 0.927 0.935 0.949

50 LCSM Moderate_Shrinking 6 0.935 0.942 0.949

50 LCSM Moderate_Spreading 5 0.926 0.938 0.946

50 SOLGM Constant 21 0.904 0.932 0.949

50 SOLGM Heavy_Shrinking 15 0.920 0.937 0.950

Continued on next page
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Table A.20 – continued from previous page

N Model Pattern Count Minimum Mean Maximum

50 SOLGM Heavy_Spreading 22 0.907 0.933 0.949

50 SOLGM High_Edge 15 0.912 0.932 0.947

50 SOLGM Low_Edge 15 0.907 0.931 0.950

50 SOLGM Moderate_Shrinking 18 0.909 0.934 0.950

50 SOLGM Moderate_Spreading 16 0.900 0.934 0.950

200 LCFM Constant 1 0.939 0.939 0.939

200 LCFM Heavy_Spreading 4 0.948 1.008 1.084

200 LCFM Low_Edge 1 0.940 0.940 0.940

200 LCFM Moderate_Shrinking 1 0.939 0.939 0.939

200 LCSM Constant 1 0.939 0.939 0.939

200 LCSM Heavy_Spreading 4 0.948 1.008 1.084

200 LCSM Low_Edge 1 0.940 0.940 0.940

200 LCSM Moderate_Shrinking 1 0.939 0.939 0.939

200 SOLGM Constant 2 0.931 0.939 0.946

200 SOLGM Heavy_Shrinking 1 0.945 0.945 0.945

200 SOLGM Heavy_Spreading 3 0.944 0.945 0.946

200 SOLGM Low_Edge 1 0.931 0.931 0.931

200 SOLGM Moderate_Shrinking 1 0.930 0.930 0.930

200 SOLGM Moderate_Spreading 2 0.947 0.948 0.950

600 LCFM Constant 1 0.938 0.938 0.938

600 LCFM High_Edge 1 1.059 1.059 1.059

600 LCFM Low_Edge 1 0.946 0.946 0.946
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Table A.20 – continued from previous page

N Model Pattern Count Minimum Mean Maximum

600 LCFM Moderate_Shrinking 1 0.945 0.945 0.945

600 LCFM Moderate_Spreading 1 1.073 1.073 1.073

600 LCSM Constant 1 0.938 0.938 0.938

600 LCSM High_Edge 1 1.059 1.059 1.059

600 LCSM Low_Edge 1 0.946 0.946 0.946

600 LCSM Moderate_Shrinking 1 0.945 0.945 0.945

600 LCSM Moderate_Spreading 1 1.073 1.073 1.073

600 SOLGM Constant 1 0.941 0.941 0.941

600 SOLGM High_Edge 1 1.059 1.059 1.059

600 SOLGM Low_Edge 1 0.945 0.945 0.945

600 SOLGM Moderate_Shrinking 1 0.942 0.942 0.942

600 SOLGM Moderate_Spreading 1 1.075 1.075 1.075

1000 LCFM Heavy_Shrinking 3 0.935 0.976 1.055

1000 LCFM High_Edge 4 0.944 1.034 1.065

1000 LCFM Low_Edge 1 1.059 1.059 1.059

1000 LCFM Moderate_Spreading 2 0.940 1.000 1.060

1000 LCSM Heavy_Shrinking 3 0.935 0.976 1.055

1000 LCSM High_Edge 4 0.944 1.034 1.065

1000 LCSM Low_Edge 1 1.059 1.059 1.059

1000 LCSM Moderate_Spreading 2 0.940 1.000 1.060

1000 SOLGM Constant 1 0.950 0.950 0.950

1000 SOLGM Heavy_Spreading 1 0.947 0.947 0.947
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Table A.20 – continued from previous page

N Model Pattern Count Minimum Mean Maximum

1000 SOLGM High_Edge 5 0.944 1.018 1.068

1000 SOLGM Low_Edge 1 1.055 1.055 1.055

1000 SOLGM Moderate_Spreading 2 0.939 1.003 1.067
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Table A.21

ANOVA Test Results for the Ratio of SE2T to SE3T and SE2E to SE3E in β00

5

Source DF η2E η2T

N 3.000 0.008 0.009

θ22 2.000 0.165 0.162

pattern 6.000 0.488 0.523

β01 1.000 0.001 0.000

ψ01 2.000 0.000 0.000

β11 1.000 0.000 0.001

N ∗ θ22 6.000 0.000 0.000

N ∗ pattern 18.000 0.001 0.000

N ∗ β01 3.000 0.000 0.002

N ∗ ψ01 6.000 0.000 0.000

N ∗ β11 3.000 0.000 0.000

θ22 ∗ pattern 12.000 0.275 0.297

θ22 ∗ β01 2.000 0.002 0.000

θ22 ∗ ψ01 4.000 0.000 0.000

θ22 ∗ β11 2.000 0.000 0.000

pattern ∗ β01 6.000 0.002 0.002

pattern ∗ ψ01 12.000 0.000 0.000

pattern ∗ β11 6.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β01 ∗ β11 1.000 0.000 0.000

ψ01 ∗ β11 2.000 0.000 0.000

Continued on next page
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Source DF η2E η2T

N ∗ θ22 ∗ pattern 36.000 0.002 0.000

N ∗ θ22 ∗ β01 6.000 0.000 0.001

N ∗ θ22 ∗ ψ01 12.000 0.001 0.000

N ∗ θ22 ∗ β11 6.000 0.001 0.000

N ∗ pattern ∗ β01 18.000 0.001 0.000

N ∗ pattern ∗ ψ01 36.000 0.003 0.000

N ∗ pattern ∗ β11 18.000 0.001 0.000

N ∗ β01 ∗ ψ01 6.000 0.000 0.000

N ∗ β01 ∗ β11 3.000 0.000 0.000

N ∗ ψ01 ∗ β11 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 12.000 0.002 0.001

θ22 ∗ pattern ∗ ψ01 24.000 0.001 0.000

θ22 ∗ pattern ∗ β11 12.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.000 0.000

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ ψ01 ∗ β11 4.000 0.000 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.001 0.000

pattern ∗ β01 ∗ β11 6.000 0.000 0.000

pattern ∗ ψ01 ∗ β11 12.000 0.001 0.000

β01 ∗ ψ01 ∗ β11 2.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.002 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.005 0.000

Continued on next page
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Table A.21 – continued from previous page

Source DF η2E η2T

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.002 0.000

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.000 0.000

N ∗ θ22 ∗ ψ01 ∗ β11 12.000 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.005 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.001 0.000

N ∗ pattern ∗ ψ01 ∗ β11 36.000 0.002 0.000

N ∗ β01 ∗ ψ01 ∗ β11 6.000 0.001 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.001 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

θ22 ∗ pattern ∗ ψ01 ∗ β11 24.000 0.001 0.000

θ22 ∗ β01 ∗ ψ01 ∗ β11 4.000 0.000 0.000

pattern ∗ β01 ∗ ψ01 ∗ β11 12.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.004 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.003 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 ∗ β11 72.000 0.004 0.000

N ∗ θ22 ∗ β01 ∗ ψ01 ∗ β11 12.000 0.001 0.000

N ∗ pattern ∗ β01 ∗ ψ01 ∗ β11 36.000 0.002 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 ∗ β11 24.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 ∗ β11 72.000 0.004 0.000

5SE2T :Theoretical Standard Error of two-wave LCFM;SE3T : Theoretical Standard Error of Three-Wave
SOLGM;SE2E :Empirical Standard Error of Two-Wave LCFM; SE3E : Empirical Standard Error of Three-
Wave SOLGM; η2E : Effect size for the ratio of SE2E

SE3E
;η2T :Effect size for the ratio of SE2T

SE3T
.
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Table A.22

ANOVA Test Results for the Ratio of SE2T to SE3T and SE2E to SE3E in β01

6

Source DF η2E η2T

N 3.000 0.010 0.018

θ22 2.000 0.189 0.163

pattern 6.000 0.483 0.517

β01 1.000 0.005 0.000

β11 1.000 0.002 0.003

ψ01 2.000 0.000 0.000

N ∗ θ22 6.000 0.000 0.001

N ∗ pattern 18.000 0.001 0.000

N ∗ β01 3.000 0.000 0.005

N ∗ β11 3.000 0.000 0.000

N ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern 12.000 0.253 0.278

θ22 ∗ β01 2.000 0.007 0.001

θ22 ∗ β11 2.000 0.000 0.000

θ22 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 6.000 0.008 0.008

pattern ∗ β11 6.000 0.001 0.001

pattern ∗ ψ01 12.000 0.000 0.000

β01 ∗ β11 1.000 0.001 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β11 ∗ ψ01 2.000 0.000 0.000

Continued on next page
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Table A.22 – continued from previous page

Source DF η2E η2T

N ∗ θ22 ∗ pattern 36.000 0.001 0.000

N ∗ θ22 ∗ β01 6.000 0.000 0.001

N ∗ θ22 ∗ β11 6.000 0.000 0.000

N ∗ θ22 ∗ ψ01 12.000 0.000 0.000

N ∗ pattern ∗ β01 18.000 0.000 0.000

N ∗ pattern ∗ β11 18.000 0.000 0.000

N ∗ pattern ∗ ψ01 36.000 0.002 0.000

N ∗ β01 ∗ β11 3.000 0.000 0.000

N ∗ β01 ∗ ψ01 6.000 0.000 0.000

N ∗ β11 ∗ ψ01 6.000 0.001 0.000

θ22 ∗ pattern ∗ β01 12.000 0.002 0.001

θ22 ∗ pattern ∗ β11 12.000 0.000 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.001 0.000

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 6.000 0.000 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.000 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.000 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.002 0.000

Continued on next page
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Table A.22 – continued from previous page

Source DF η2E η2T

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.004 0.000

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.000 0.000

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.001 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.002 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.002 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.001 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.001 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.001 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.001 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.003 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.004 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.002 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.002 0.000

6SE2T :Theoretical Standard Error of two-wave LCFM;SE3T : Theoretical Standard Error of Three-Wave
SOLGM;SE2E :Empirical Standard Error of Two-Wave LCFM; SE3E : Empirical Standard Error of Three-
Wave SOLGM; η2E : Effect size for the ratio of SE2E

SE3E
;η2T :Effect size for the ratio of SE2T

SE3T
.
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Table A.23

ANOVA Test Results for the Ratio of SE2T to SE3T and SE2E to SE3E in β10

7

Source DF η2E η2T

N 3.000 0.005 0.003

θ22 2.000 0.219 0.249

pattern 6.000 0.385 0.383

β01 1.000 0.002 0.005

β11 1.000 0.000 0.000

ψ01 2.000 0.000 0.000

N ∗ θ22 6.000 0.001 0.000

N ∗ pattern 18.000 0.000 0.000

N ∗ β01 3.000 0.000 0.000

N ∗ β11 3.000 0.000 0.000

N ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern 12.000 0.339 0.345

θ22 ∗ β01 2.000 0.002 0.001

θ22 ∗ β11 2.000 0.000 0.000

θ22 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 6.000 0.005 0.006

pattern ∗ β11 6.000 0.001 0.002

pattern ∗ ψ01 12.000 0.001 0.000

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β11 ∗ ψ01 2.000 0.000 0.000
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Source DF η2E η2T

N ∗ θ22 ∗ pattern 36.000 0.001 0.000

N ∗ θ22 ∗ β01 6.000 0.000 0.000

N ∗ θ22 ∗ β11 6.000 0.001 0.000

N ∗ θ22 ∗ ψ01 12.000 0.000 0.000

N ∗ pattern ∗ β01 18.000 0.000 0.000

N ∗ pattern ∗ β11 18.000 0.001 0.000

N ∗ pattern ∗ ψ01 36.000 0.002 0.000

N ∗ β01 ∗ β11 3.000 0.000 0.000

N ∗ β01 ∗ ψ01 6.000 0.000 0.000

N ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 12.000 0.002 0.002

θ22 ∗ pattern ∗ β11 12.000 0.001 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.001 0.000

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 6.000 0.001 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.000 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.000 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.002 0.000

Continued on next page
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Table A.23 – continued from previous page

Source DF η2E η2T

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.002 0.000

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.000 0.000

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.001 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.001 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.002 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.002 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.001 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.004 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.003 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.001 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.001 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.003 0.000

7SE2T :Theoretical Standard Error of two-wave LCFM;SE3T : Theoretical Standard Error of Three-Wave
SOLGM;SE2E :Empirical Standard Error of Two-Wave LCFM; SE3E : Empirical Standard Error of Three-
Wave SOLGM; η2E : Effect size for the ratio of SE2E

SE3E
;η2T :Effect size for the ratio of SE2T

SE3T
.
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Table A.24

ANOVA Test Results for the Ratio of SE2T to SE3T and SE2E to SE3E in β11

8

Source DF η2E η2T

N 3.000 0.006 0.005

θ22 2.000 0.187 0.193

pattern 6.000 0.424 0.427

β01 1.000 0.011 0.023

β11 1.000 0.001 0.001

ψ01 2.000 0.000 0.000

N ∗ θ22 6.000 0.000 0.000

N ∗ pattern 18.000 0.001 0.000

N ∗ β01 3.000 0.000 0.001

N ∗ β11 3.000 0.000 0.000

N ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern 12.000 0.290 0.300

θ22 ∗ β01 2.000 0.006 0.005

θ22 ∗ β11 2.000 0.001 0.001

θ22 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 6.000 0.024 0.026

pattern ∗ β11 6.000 0.007 0.008

pattern ∗ ψ01 12.000 0.001 0.001

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β11 ∗ ψ01 2.000 0.000 0.000

Continued on next page
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Table A.24 – continued from previous page

Source DF η2E η2T

N ∗ θ22 ∗ pattern 36.000 0.001 0.000

N ∗ θ22 ∗ β01 6.000 0.000 0.000

N ∗ θ22 ∗ β11 6.000 0.000 0.000

N ∗ θ22 ∗ ψ01 12.000 0.001 0.000

N ∗ pattern ∗ β01 18.000 0.000 0.000

N ∗ pattern ∗ β11 18.000 0.001 0.000

N ∗ pattern ∗ ψ01 36.000 0.001 0.000

N ∗ β01 ∗ β11 3.000 0.000 0.000

N ∗ β01 ∗ ψ01 6.000 0.000 0.000

N ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 12.000 0.006 0.007

θ22 ∗ pattern ∗ β11 12.000 0.002 0.001

θ22 ∗ pattern ∗ ψ01 24.000 0.002 0.000

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 6.000 0.000 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.000 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.000 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.001 0.000

Continued on next page
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Source DF η2E η2T

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.004 0.000

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.000 0.000

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.001 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.002 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.001 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.002 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.002 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.003 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.001 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.002 0.000

8SE2T :Theoretical Standard Error of two-wave LCFM;SE3T : Theoretical Standard Error of Three-Wave
SOLGM;SE2E :Empirical Standard Error of Two-Wave LCFM; SE3E : Empirical Standard Error of Three-
Wave SOLGM; η2E : Effect size for the ratio of SE2E

SE3E
;η2T :Effect size for the ratio of SE2T

SE3T
.
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A.0.3 List of Tables for Statistical Power

Table A.25

ANOVA Test Results for Statistical Power of β01
Source DF Sum of Squares η2

model 2 0.009 0.002

N 3 0.982 0.211

θ22 2 0.306 0.066

pattern 6 0.259 0.056

β11 1 0.000 0.000

ψ01 2 0.000 0.000

model ∗N 6 0.026 0.006

model ∗ θ22 4 0.010 0.002

model ∗ pattern 12 0.011 0.002

model ∗ β11 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 0.903 0.194

N ∗ pattern 18 0.764 0.164

N ∗ β11 3 0.000 0.000

N ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern 12 0.319 0.068

θ22 ∗ β11 2 0.000 0.000

θ22 ∗ ψ01 4 0.000 0.000

pattern ∗ β11 6 0.001 0.000

pattern ∗ ψ01 12 0.000 0.000

Continued on next page
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Table A.25 – continued from previous page

Source DF Sum of Squares η2

β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 12 0.027 0.006

model ∗N ∗ pattern 36 0.031 0.007

model ∗N ∗ β11 6 0.000 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.012 0.002

model ∗ θ22 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β11 12 0.000 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β11 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern 36 0.935 0.201

N ∗ θ22 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β11 18 0.001 0.000

N ∗ pattern ∗ ψ01 36 0.001 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β11 12 0.001 0.000

θ22 ∗ pattern ∗ ψ01 24 0.001 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.032 0.007

Continued on next page
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Table A.25 – continued from previous page

Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β11 36 0.001 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.001 0.000

model ∗N ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.002 0.001

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.002 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.001 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.001 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.002 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.001 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.007 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0.001 0.000
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Table A.26

ANOVA Test Results for Statistical Power of β10
Source DF Sum of Squares η2

model 2 0.016 0.000

N 3 209.451 0.870

θ22 2 10.688 0.044

pattern 6 4.552 0.019

β01 1 0.132 0.001

β11 1 0.012 0.000

ψ01 2 0.001 0.000

model ∗N 6 0.014 0.000

model ∗ θ22 4 0.021 0.000

model ∗ pattern 12 0.034 0.000

model ∗ β01 2 0.000 0.000

model ∗ β11 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 7.821 0.032

N ∗ pattern 18 2.765 0.011

N ∗ β01 3 0.111 0.000

N ∗ β11 3 0.011 0.000

N ∗ ψ01 6 0.011 0.000

θ22 ∗ pattern 12 2.561 0.011

θ22 ∗ β01 2 0.014 0.000

θ22 ∗ β11 2 0.002 0.000

Continued on next page
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Table A.26 – continued from previous page

Source DF Sum of Squares η2

θ22 ∗ ψ01 4 0.005 0.000

pattern ∗ β01 6 0.018 0.000

pattern ∗ β11 6 0.003 0.000

pattern ∗ ψ01 12 0.008 0.000

β01 ∗ β11 1 0.001 0.000

β01 ∗ ψ01 2 0.003 0.000

β11 ∗ ψ01 2 0.002 0.000

model ∗N ∗ θ22 12 0.016 0.000

model ∗N ∗ pattern 36 0.024 0.000

model ∗N ∗ β01 6 0.000 0.000

model ∗N ∗ β11 6 0.000 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.032 0.000

model ∗ θ22 ∗ β01 4 0.000 0.000

model ∗ θ22 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 12 0.000 0.000

model ∗ pattern ∗ β11 12 0.000 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 2 0.000 0.000

model ∗ β01 ∗ ψ01 4 0.000 0.000

model ∗ β11 ∗ ψ01 4 0.000 0.000

Continued on next page
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Table A.26 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 1.799 0.007

N ∗ θ22 ∗ β01 6 0.043 0.000

N ∗ θ22 ∗ β11 6 0.006 0.000

N ∗ θ22 ∗ ψ01 12 0.007 0.000

N ∗ pattern ∗ β01 18 0.048 0.000

N ∗ pattern ∗ β11 18 0.025 0.000

N ∗ pattern ∗ ψ01 36 0.017 0.000

N ∗ β01 ∗ β11 3 0.002 0.000

N ∗ β01 ∗ ψ01 6 0.004 0.000

N ∗ β11 ∗ ψ01 6 0.006 0.000

θ22 ∗ pattern ∗ β01 12 0.013 0.000

θ22 ∗ pattern ∗ β11 12 0.005 0.000

θ22 ∗ pattern ∗ ψ01 24 0.019 0.000

θ22 ∗ β01 ∗ β11 2 0.001 0.000

θ22 ∗ β01 ∗ ψ01 4 0.003 0.000

θ22 ∗ β11 ∗ ψ01 4 0.001 0.000

pattern ∗ β01 ∗ β11 6 0.002 0.000

pattern ∗ β01 ∗ ψ01 12 0.007 0.000

pattern ∗ β11 ∗ ψ01 12 0.008 0.000

β01 ∗ β11 ∗ ψ01 2 0.003 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.026 0.000

model ∗N ∗ θ22 ∗ β01 12 0.000 0.000

Continued on next page
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Table A.26 – continued from previous page

Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 36 0.001 0.000

model ∗N ∗ pattern ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.001 0.000

model ∗N ∗ β01 ∗ β11 6 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.027 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.016 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.054 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.006 0.000

Continued on next page
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.004 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.006 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.008 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.016 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.020 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.002 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.002 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.008 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.014 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.001 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.004 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.002 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0.001 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24 0.000 0.000

Continued on next page



288 Chapter A. Results of Study 1
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0.001 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.012 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.033 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.045 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.007 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.016 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.008 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144 0.002 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0.001 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.033 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144 0.001 0.000
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Table A.27

ANOVA Test Results for Statistical Power of β11
Source DF Sum of Squares η2

model 2.000 0.008 0.000

N 3.000 25.966 0.577

θ22 2.000 4.012 0.089

pattern 6.000 1.737 0.039

β01 1.000 0.281 0.006

ψ01 2.000 0.001 0.000

model ∗N 6.000 0.008 0.000

model ∗ θ22 4.000 0.009 0.000

model ∗ pattern 12.000 0.016 0.000

model ∗ β01 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 7.019 0.156

N ∗ pattern 18.000 2.569 0.057

N ∗ β01 3.000 0.714 0.016

N ∗ ψ01 6.000 0.003 0.000

θ22 ∗ pattern 12.000 0.889 0.020

θ22 ∗ β01 2.000 0.018 0.000

θ22 ∗ ψ01 4.000 0.002 0.000

pattern ∗ β01 6.000 0.006 0.000

pattern ∗ ψ01 12.000 0.007 0.000

β01 ∗ ψ01 2.000 0.001 0.000

Continued on next page
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Table A.27 – continued from previous page

Source DF Sum of Squares η2

model ∗N ∗ θ22 12.000 0.009 0.000

model ∗N ∗ pattern 36.000 0.020 0.000

model ∗N ∗ β01 6.000 0.001 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.014 0.000

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.001 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern 36.000 1.352 0.030

N ∗ θ22 ∗ β01 6.000 0.101 0.002

N ∗ θ22 ∗ ψ01 12.000 0.005 0.000

N ∗ pattern ∗ β01 18.000 0.035 0.001

N ∗ pattern ∗ ψ01 36.000 0.015 0.000

N ∗ β01 ∗ ψ01 6.000 0.001 0.000

θ22 ∗ pattern ∗ β01 12.000 0.007 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.008 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.004 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.016 0.000

model ∗N ∗ θ22 ∗ β01 12.000 0.001 0.000

Continued on next page
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ ψ01 24.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.002 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.033 0.001

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.027 0.001

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.001 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.011 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.009 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.002 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.031 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.002 0.000
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A.0.4 List of Figures in Bias

Figure A.1. Bias of the Mean Initial Status for a Reference Group, β00 = 10β00 = 10β00 = 10, by time-specific

error size (small) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.2. Bias of the Mean Initial Status for a Reference Group, β00 = 10β00 = 10β00 = 10, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.3. Bias of the Mean Initial Status for a Reference Group, β00 = 10β00 = 10β00 = 10, by time-

specific error size (large) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0

and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.4. Bias of the Mean Initial Status for a Reference Group, β00 = 10β00 = 10β00 = 10, by time-specific

error size (small) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.5. Bias of the Mean Initial Status for a Reference Group, β00β00β00 = 10, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β01β01β01 = 3 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.6. Bias of the Mean Initial Status for a Reference Group, β00β00β00 = 10, by time-

specific error size (large) and correlation between intercept and slope (Corpi), when β01β01β01 = 3

and β11β11β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.7. Bias of the Mean Initial Status for a Reference Group, β00 = 10β00 = 10β00 = 10, by time-specific

error size (small) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.8. Bias of the Mean Initial Status for a Reference Group, β00β00β00 = 10, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β01β01β01 = 3 and

β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.9. Bias of the Mean Initial Status for a Reference Group, β00β00β00 = 10, by time-

specific error size (large) and correlation between intercept and slope (Corpi), when β01β01β01 = 3

and β11β11β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.



301

Figure A.10. Bias of the Average Growth Rate for a Reference Group, β10 = 1β10 = 1β10 = 1, by time-

specific error size (small) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0

and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.11. Bias of the Average Growth Rate for a Reference Group, β10 = 1β10 = 1β10 = 1, by time-

specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.12. Bias of the Average Growth Rate for a Reference Group, β10 = 1β10 = 1β10 = 1, by time-

specific error size (large) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0

and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.13. Bias of the Average Growth Rate for a Reference Group, β10 = 1β10 = 1β10 = 1, by time-

specific error size (small) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3

and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.14. Bias of the Average Growth Rate for a Reference Group, β10 = 1β10 = 1β10 = 1, by time-

specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.15. Bias of the Average Growth Rate for a Reference Group, β10 = 1β10 = 1β10 = 1, by time-

specific error size (large) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3

and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.16. Bias of the Average Growth Rate for a Reference Group, β10 = 1β10 = 1β10 = 1, by time-

specific error size (small) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3

and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.17. Bias of the Average Growth Rate for a Reference Group, β10 = 1β10 = 1β10 = 1, by time-

specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.18. Bias of the Average Growth Rate for a Reference Group, β10 = 1β10 = 1β10 = 1, by time-

specific error size (large) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3

and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.19. Bias of the Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific error

size (small) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.20. Bias of the Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.21. Bias of the Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific error

size (large) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.22. Bias of the Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific error

size (small) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.23. Bias of the Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.24. Bias of the Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific error

size (large) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.25. Bias of the Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific error

size (small) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.26. Bias of the Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0 and

β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.27. Bias of the Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific error

size (large) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.28. Bias of the Average Group Difference in the Rate of Change, β11 = 0β11 = 0β11 = 0, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.29. Bias of the Average Group Difference in the Rate of Change, β11 = 0β11 = 0β11 = 0, by

time-specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.30. Bias of the Average Group Difference in the Rate of Change, β11 = 0β11 = 0β11 = 0, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.31. Bias of the Average Group Difference in the Rate of Change, β11 = 0β11 = 0β11 = 0, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.32. Bias of the Average Group Difference in the Rate of Change, β11 = 0β11 = 0β11 = 0, by

time-specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.33. Bias of the Average Group Difference in the Rate of Change, β11 = 0β11 = 0β11 = 0, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.34. Bias of the Average Group Difference in the Rate of Change, β11 = 2β11 = 2β11 = 2, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.35. Bias of the Average Group Difference in the Rate of Change, β11 = 2β11 = 2β11 = 2, by

time-specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.36. Bias of the Average Group Difference in the Rate of Change, β11 = 2β11 = 2β11 = 2, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.37. Bias of the Average Group Difference in the Rate of Change, β11 = 2β11 = 2β11 = 2, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.38. Bias of the Average Group Difference in the Rate of Change, β11 = 2β11 = 2β11 = 2, by

time-specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.39. Bias of the Average Group Difference in the Rate of Change, β11 = 2β11 = 2β11 = 2, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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A.0.5 List of Figures in Empirical Standard Error

Figure A.40. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.41. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10, by

time-specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.42. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.43. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.44. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitu-

dinal common factor model, LCSM = latent change score model.



336 Chapter A. Results of Study 1

Figure A.45. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.46. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.47. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.



339

Figure A.48. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.49. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.



341

Figure A.50. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.



342 Chapter A. Results of Study 1

Figure A.51. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.52. Standard Error of Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-

specific error size (small) and correlation between intercept and slope (Corpi), when β11 = 0β11 = 0β11 = 0,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.53. Standard Error of Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β11 = 0β11 = 0β11 = 0,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.54. Standard Error of Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific

error size (large) and correlation between intercept and slope (Corpi), when β11 = 0β11 = 0β11 = 0, SOLGM

= second-order latent growth model, LCFM = longitudinal common factor model, LCSM =

latent change score model.
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Figure A.55. Standard Error of Group Difference in Initial Status, β01 = 0β01 = 0β01 = 0, by time-

specific error size (small) and correlation between intercept and slope (Corpi), when β11 = 2β11 = 2β11 = 2,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.56. Standard Error of Group Difference in Initial Status, β01 = 0β01 = 0β01 = 0, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β11 = 2β11 = 2β11 = 2,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.57. Standard Error of Group Difference in Initial Status , β01 = 0β01 = 0β01 = 0, by time-specific

error size (large) and correlation between intercept and slope (Corpi), when β11 = 2β11 = 2β11 = 2, SOLGM

= second-order latent growth model, LCFM = longitudinal common factor model, LCSM =

latent change score model.
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Figure A.58. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 0β11 = 0β11 = 0, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.59. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 0β11 = 0β11 = 0,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.60. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 0β11 = 0β11 = 0,

by time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.61. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 2β11 = 2β11 = 2, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.62. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 2β11 = 2β11 = 2,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.63. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 2β11 = 2β11 = 2,

by time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.



355

A.0.6 List of Figures in Theoretical Standard Error
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Figure A.64. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.65. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10, by

time-specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.66. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.67. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.68. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitu-

dinal common factor model, LCSM = latent change score model.
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Figure A.69. Standard Error of the Mean Initial Status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.70. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.71. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.72. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.73. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.74. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.75. Standard Error of Average Change Rate of Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.76. Standard Error of Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-

specific error size (small) and correlation between intercept and slope (Corpi), when β11 = 0β11 = 0β11 = 0,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.77. Standard Error of Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β11 = 0β11 = 0β11 = 0,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.78. Standard Error of Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific

error size (large) and correlation between intercept and slope (Corpi), when β11 = 0β11 = 0β11 = 0, SOLGM

= second-order latent growth model, LCFM = longitudinal common factor model, LCSM =

latent change score model.
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Figure A.79. Standard Error of Group Difference in Initial Status, β01 = 0β01 = 0β01 = 0, by time-

specific error size (small) and correlation between intercept and slope (Corpi), when β11 = 2β11 = 2β11 = 2,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.80. Standard Error of Group Difference in Initial Status, β01 = 0β01 = 0β01 = 0, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β11 = 2β11 = 2β11 = 2,

SOLGM = second-order latent growth model, LCFM = longitudinal common factor model,

LCSM = latent change score model.
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Figure A.81. Standard Error of Group Difference in Initial Status , β01 = 0β01 = 0β01 = 0, by time-specific

error size (large) and correlation between intercept and slope (Corpi), when β11 = 2β11 = 2β11 = 2, SOLGM

= second-order latent growth model, LCFM = longitudinal common factor model, LCSM =

latent change score model.
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Figure A.82. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 0β11 = 0β11 = 0, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.83. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 0β11 = 0β11 = 0,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.84. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 0β11 = 0β11 = 0,

by time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.85. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 2β11 = 2β11 = 2, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.86. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 2β11 = 2β11 = 2,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.87. Standard Error of the Mean Group Difference in the Growth Rate, β11 = 2β11 = 2β11 = 2,

by time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.88. Statistical Power of the mean initial status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (Small) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.89. Statistical Power of the mean initial status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (Median) and correlation between intercept and slope (Corpi),

when β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitu-

dinal common factor model, LCSM = latent change score model.
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Figure A.90. Statistical Power of the mean initial status for the Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (Large) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.91. Statistical Power of Mean Change Rate for the Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (Small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.92. Statistical Power of Mean Change Rate for the Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (Median) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.93. Statistical Power of Mean Change Rate for the Reference Group, β10 = 1β10 = 1β10 = 1, by

time-specific error size (Large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.94. Statistical Power of Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific

error size (Small) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.95. Statistical Power of Group Difference In Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific

error size (Median) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.96. Statistical Power of Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by time-specific

error size (Large) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.97. Statistical Power of Group Difference in Growth Rate, β11 = 2β11 = 2β11 = 2, by time-specific

error size (Small) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.98. Statistical Power of Group Difference In Growth Rate, β11 = 3β11 = 3β11 = 3, by time-specific

error size (Median) and correlation between intercept and slope (Corpi), when β01 = 2β01 = 2β01 = 2 and

β11 = 3β11 = 3β11 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.
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Figure A.99. Statistical Power of Group Difference in Growth Rate, β11 = 3β11 = 3β11 = 3, by time-specific

error size (Large) and correlation between intercept and slope (Corpi), when β01 = 2β01 = 2β01 = 2 and

β11 = 3β11 = 3β11 = 3, SOLGM = second-order latent growth model, LCFM = longitudinal common factor

model, LCSM = latent change score model.



391

Figure A.100. Type I Error Rate of Group Difference in Initial Status, β01 = 0β01 = 0β01 = 0, by time-

specific error size (Small) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0

and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.101. Type I Error Rate of Group Difference in Initial Status, β01 = 0β01 = 0β01 = 0, by time-

specific error size (Median) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.102. Type I Error Rate of Group Difference in Initial Status, β01 = 0β01 = 0β01 = 0, by time-

specific error size (Large) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0

and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.103. Type I Error Rate of Group Difference in Initial Status, β01 = 0β01 = 0β01 = 0, by time-

specific error size (Small) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0

and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.104. Type I Error Rate of Group Difference in Initial Status, β01 = 0β01 = 0β01 = 0, by time-

specific error size (Median) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.
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Figure A.105. Type I Error Rate of Group Difference in Initial Status, β01 = 0β01 = 0β01 = 0, by time-

specific error size (Large) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0

and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.106. Type I Error Rate of Group Difference in Growth Rate, β11 = 0β11 = 0β11 = 0, by time-

specific error size (Small) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0

and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.107. Type I Error Rate of Group Difference in Group Rate, β11 = 0β11 = 0β11 = 0, by time-

specific error size (Median) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal

common factor model, LCSM = latent change score model.



399

Figure A.108. Type I Error Rate of Group Difference in Growth Rate, β11 = 0β11 = 0β11 = 0, by time-

specific error size (Large) and correlation between intercept and slope (Corpi), when β01 = 0β01 = 0β01 = 0

and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM = longitudinal common

factor model, LCSM = latent change score model.
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Figure A.109. Marginal mean of type I error rate for the group differences in initial status

β01 = 0β01 = 0β01 = 0, The horizontal dahsed line displays the nominal α = 0.05α = 0.05α = 0.05, SOLGM = second-order

latent growth model, LCFM = longitudinal common factor model, LCSM = latent change

score model.



401

Figure A.110. Marginal mean of type I error rate for the group differences in Growth Rate

β11 = 0β11 = 0β11 = 0, The horizontal dahsed line displays the nominal α = 0.05α = 0.05α = 0.05, SOLGM = second-order

latent growth model, LCFM = longitudinal common factor model, LCSM = latent change

score model.



Appendix B

Results of Study 2

B.0.1 List of Tables For Relative Bias

Table B.1

ANOVA Test Results for Relative Bias of β00
Source DF Sum of Squares η2

model 2 0 0.000

N 3 0 0.016

θ22 2 0 0.003

pattern 6 0 0.012

β01 1 0 0.000

β11 1 0 0.000

ψ01 2 0 0.003

model ∗N 6 0 0.000

model ∗ θ22 4 0 0.000

model ∗ pattern 12 0 0.000

model ∗ β01 2 0 0.000

model ∗ β11 2 0 0.000

model ∗ ψ01 4 0 0.000

N ∗ θ22 6 0 0.003

N ∗ pattern 18 0 0.031

Continued on next page
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Table B.1 – continued from previous page

Source DF Sum of Squares η2

N ∗ β01 3 0 0.000

N ∗ β11 3 0 0.001

N ∗ ψ01 6 0 0.003

θ22 ∗ pattern 12 0 0.008

θ22 ∗ β01 2 0 0.002

θ22 ∗ β11 2 0 0.002

θ22 ∗ ψ01 4 0 0.001

pattern ∗ β01 6 0 0.003

pattern ∗ β11 6 0 0.006

pattern ∗ ψ01 12 0 0.006

β01 ∗ β11 1 0 0.000

β01 ∗ ψ01 2 0 0.001

β11 ∗ ψ01 2 0 0.005

model ∗N ∗ θ22 12 0 0.000

model ∗N ∗ pattern 36 0 0.001

model ∗N ∗ β01 6 0 0.000

model ∗N ∗ β11 6 0 0.000

model ∗N ∗ ψ01 12 0 0.000

model ∗ θ22 ∗ pattern 24 0 0.001

model ∗ θ22 ∗ β01 4 0 0.000

model ∗ θ22 ∗ β11 4 0 0.000

model ∗ θ22 ∗ ψ01 8 0 0.000

Continued on next page
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Table B.1 – continued from previous page

Source DF Sum of Squares η2

model ∗ pattern ∗ β01 12 0 0.000

model ∗ pattern ∗ β11 12 0 0.000

model ∗ pattern ∗ ψ01 24 0 0.000

model ∗ β01 ∗ β11 2 0 0.000

model ∗ β01 ∗ ψ01 4 0 0.000

model ∗ β11 ∗ ψ01 4 0 0.000

N ∗ θ22 ∗ pattern 36 0 0.039

N ∗ θ22 ∗ β01 6 0 0.011

N ∗ θ22 ∗ β11 6 0 0.005

N ∗ θ22 ∗ ψ01 12 0 0.003

N ∗ pattern ∗ β01 18 0 0.013

N ∗ pattern ∗ β11 18 0 0.012

N ∗ pattern ∗ ψ01 36 0 0.037

N ∗ β01 ∗ β11 3 0 0.000

N ∗ β01 ∗ ψ01 6 0 0.001

N ∗ β11 ∗ ψ01 6 0 0.003

θ22 ∗ pattern ∗ β01 12 0 0.010

θ22 ∗ pattern ∗ β11 12 0 0.008

θ22 ∗ pattern ∗ ψ01 24 0 0.033

θ22 ∗ β01 ∗ β11 2 0 0.002

θ22 ∗ β01 ∗ ψ01 4 0 0.006

θ22 ∗ β11 ∗ ψ01 4 0 0.004

Continued on next page
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Table B.1 – continued from previous page

Source DF Sum of Squares η2

pattern ∗ β01 ∗ β11 6 0 0.003

pattern ∗ β01 ∗ ψ01 12 0 0.014

pattern ∗ β11 ∗ ψ01 12 0 0.015

β01 ∗ β11 ∗ ψ01 2 0 0.004

model ∗N ∗ θ22 ∗ pattern 72 0 0.002

model ∗N ∗ θ22 ∗ β01 12 0 0.000

model ∗N ∗ θ22 ∗ β11 12 0 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0 0.000

model ∗N ∗ pattern ∗ β01 36 0 0.000

model ∗N ∗ pattern ∗ β11 36 0 0.000

model ∗N ∗ pattern ∗ ψ01 72 0 0.001

model ∗N ∗ β01 ∗ β11 6 0 0.000

model ∗N ∗ β01 ∗ ψ01 12 0 0.000

model ∗N ∗ β11 ∗ ψ01 12 0 0.000

model ∗ θ22 ∗ pattern ∗ β01 24 0 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0 0.001

model ∗ θ22 ∗ pattern ∗ ψ01 48 0 0.002

model ∗ θ22 ∗ β01 ∗ β11 4 0 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8 0 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0 0.000

model ∗ pattern ∗ β01 ∗ β11 12 0 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24 0 0.001

Continued on next page
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Table B.1 – continued from previous page

Source DF Sum of Squares η2

model ∗ pattern ∗ β11 ∗ ψ01 24 0 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4 0 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0 0.047

N ∗ θ22 ∗ pattern ∗ β11 36 0 0.023

N ∗ θ22 ∗ pattern ∗ ψ01 72 0 0.076

N ∗ θ22 ∗ β01 ∗ β11 6 0 0.018

N ∗ θ22 ∗ β01 ∗ ψ01 12 0 0.006

N ∗ θ22 ∗ β11 ∗ ψ01 12 0 0.020

N ∗ pattern ∗ β01 ∗ β11 18 0 0.014

N ∗ pattern ∗ β01 ∗ ψ01 36 0 0.022

N ∗ pattern ∗ β11 ∗ ψ01 36 0 0.043

N ∗ β01 ∗ β11 ∗ ψ01 6 0 0.009

θ22 ∗ pattern ∗ β01 ∗ β11 12 0 0.012

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0 0.012

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0 0.037

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0 0.002

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0 0.009

model ∗N ∗ θ22 ∗ pattern ∗ β01 72 0 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0 0.001

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0 0.003

model ∗N ∗ θ22 ∗ β01 ∗ β11 12 0 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24 0 0.000

Continued on next page
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Table B.1 – continued from previous page

Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36 0 0.001

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72 0 0.002

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0 0.001

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12 0 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24 0 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48 0 0.001

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8 0 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0 0.001

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0 0.042

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0 0.067

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0 0.056

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0 0.006

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0 0.029

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0 0.020

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72 0 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144 0 0.003

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0 0.002

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24 0 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48 0 0.001
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Table B.1 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0 0.067

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144 0 0.002

Table B.2

ANOVA Test Results for Relative Bias of β01
Source DF Sum of Squares η2

model 2.000 0.000 0.000

N 3.000 0.001 0.010

θ22 2.000 0.000 0.000

pattern 6.000 0.001 0.018

β01 1.000 0.000 0.000

β11 1.000 0.000 0.000

ψ01 2.000 0.000 0.005

model ∗N 6.000 0.000 0.001

model ∗ θ22 4.000 0.000 0.000

model ∗ pattern 12.000 0.000 0.000

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 0.000 0.001

N ∗ pattern 18.000 0.003 0.036

N ∗ β01 3.000 0.000 0.000

N ∗ β11 3.000 0.000 0.000
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Source DF Sum of Squares η2

N ∗ ψ01 6.000 0.001 0.009

θ22 ∗ pattern 12.000 0.001 0.016

θ22 ∗ β01 2.000 0.000 0.004

θ22 ∗ β11 2.000 0.000 0.002

θ22 ∗ ψ01 4.000 0.000 0.001

pattern ∗ β01 6.000 0.000 0.003

pattern ∗ β11 6.000 0.001 0.010

pattern ∗ ψ01 12.000 0.002 0.018

β01 ∗ β11 1.000 0.000 0.003

β01 ∗ ψ01 2.000 0.000 0.002

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.000 0.000

model ∗N ∗ pattern 36.000 0.000 0.001

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.000 0.000

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern 36.000 0.003 0.042

N ∗ θ22 ∗ β01 6.000 0.001 0.012

N ∗ θ22 ∗ β11 6.000 0.001 0.009

N ∗ θ22 ∗ ψ01 12.000 0.000 0.006

N ∗ pattern ∗ β01 18.000 0.000 0.006

N ∗ pattern ∗ β11 18.000 0.002 0.020

N ∗ pattern ∗ ψ01 36.000 0.003 0.038

N ∗ β01 ∗ β11 3.000 0.001 0.007

N ∗ β01 ∗ ψ01 6.000 0.000 0.002

N ∗ β11 ∗ ψ01 6.000 0.000 0.003

θ22 ∗ pattern ∗ β01 12.000 0.000 0.006

θ22 ∗ pattern ∗ β11 12.000 0.001 0.011

θ22 ∗ pattern ∗ ψ01 24.000 0.002 0.026

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.000 0.004

θ22 ∗ β11 ∗ ψ01 4.000 0.001 0.007

pattern ∗ β01 ∗ β11 6.000 0.000 0.003

pattern ∗ β01 ∗ ψ01 12.000 0.000 0.006
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Source DF Sum of Squares η2

pattern ∗ β11 ∗ ψ01 12.000 0.001 0.014

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.005

model ∗N ∗ θ22 ∗ pattern 72.000 0.000 0.001

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.001

model ∗N ∗ pattern ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.002 0.022

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.002 0.023

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.005 0.060

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.001 0.010

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.000 0.006

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.001 0.016

N ∗ pattern ∗ β01 ∗ β11 18.000 0.001 0.017

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.002 0.022

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.003 0.041

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.001 0.016

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.001 0.008

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.001 0.015

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.002 0.027

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.002

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.001 0.010

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.000 0.002

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.000 0.002

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.001

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.001
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Source DF Sum of Squares η2

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.002

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.001

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.003 0.039

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.005 0.057

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.005 0.061

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.001 0.007

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.003 0.032

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.002 0.025

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.000 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.000 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.000 0.002

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.001

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.007 0.087

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.000 0.002
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Table B.3

ANOVA Test Results for Relative Bias of β10
Source DF Sum of Squares η2

model 2.000 0.000 0.000

N 3.000 0.003 0.005

θ22 2.000 0.003 0.004

pattern 6.000 0.003 0.004

β01 1.000 0.003 0.005

β11 1.000 0.000 0.000

ψ01 2.000 0.001 0.002

model ∗N 6.000 0.000 0.000

model ∗ θ22 4.000 0.000 0.000

model ∗ pattern 12.000 0.000 0.000

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 0.005 0.009

N ∗ pattern 18.000 0.011 0.017

N ∗ β01 3.000 0.004 0.007

N ∗ β11 3.000 0.000 0.000

N ∗ ψ01 6.000 0.002 0.003

θ22 ∗ pattern 12.000 0.007 0.011

θ22 ∗ β01 2.000 0.000 0.000

θ22 ∗ β11 2.000 0.001 0.002
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.003 0.006

pattern ∗ β01 6.000 0.003 0.005

pattern ∗ β11 6.000 0.003 0.006

pattern ∗ ψ01 12.000 0.007 0.012

β01 ∗ β11 1.000 0.001 0.002

β01 ∗ ψ01 2.000 0.003 0.005

β11 ∗ ψ01 2.000 0.008 0.013

model ∗N ∗ θ22 12.000 0.000 0.000

model ∗N ∗ pattern 36.000 0.000 0.000

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.000 0.000

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 0.019 0.032

N ∗ θ22 ∗ β01 6.000 0.002 0.004

N ∗ θ22 ∗ β11 6.000 0.008 0.014

N ∗ θ22 ∗ ψ01 12.000 0.007 0.012

N ∗ pattern ∗ β01 18.000 0.017 0.028

N ∗ pattern ∗ β11 18.000 0.015 0.025

N ∗ pattern ∗ ψ01 36.000 0.018 0.030

N ∗ β01 ∗ β11 3.000 0.004 0.006

N ∗ β01 ∗ ψ01 6.000 0.006 0.010

N ∗ β11 ∗ ψ01 6.000 0.008 0.014

θ22 ∗ pattern ∗ β01 12.000 0.010 0.016

θ22 ∗ pattern ∗ β11 12.000 0.006 0.010

θ22 ∗ pattern ∗ ψ01 24.000 0.007 0.012

θ22 ∗ β01 ∗ β11 2.000 0.002 0.004

θ22 ∗ β01 ∗ ψ01 4.000 0.002 0.003

θ22 ∗ β11 ∗ ψ01 4.000 0.005 0.009

pattern ∗ β01 ∗ β11 6.000 0.004 0.007

pattern ∗ β01 ∗ ψ01 12.000 0.010 0.016

pattern ∗ β11 ∗ ψ01 12.000 0.014 0.023

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.044 0.073

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.021 0.035

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.024 0.040

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.011 0.019
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.004 0.007

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.007 0.012

N ∗ pattern ∗ β01 ∗ β11 18.000 0.009 0.016

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.021 0.034

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.022 0.037

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.002 0.003

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.008 0.013

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.010 0.016

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.017 0.029

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.001 0.001

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.004 0.006

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.001 0.001

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.001

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.028 0.046

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.031 0.051

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.028 0.046

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.003 0.006

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.024 0.039

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.009 0.014

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.001 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.000 0.001

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.001 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.029 0.048

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.001 0.001
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Table B.4

ANOVA Test Results for Relative Bias of β11
Source DF Sum of Squares η2

model 2.000 0.000 0.000

N 3.000 0.000 0.002

θ22 2.000 0.001 0.004

pattern 6.000 0.001 0.007

β01 1.000 0.000 0.001

β11 1.000 0.000 0.000

ψ01 2.000 0.001 0.007

model ∗N 6.000 0.000 0.000

model ∗ θ22 4.000 0.000 0.000

model ∗ pattern 12.000 0.000 0.000

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 0.001 0.005

N ∗ pattern 18.000 0.007 0.032

N ∗ β01 3.000 0.001 0.003

N ∗ β11 3.000 0.000 0.000

N ∗ ψ01 6.000 0.002 0.010

θ22 ∗ pattern 12.000 0.005 0.024

θ22 ∗ β01 2.000 0.000 0.001

θ22 ∗ β11 2.000 0.000 0.001
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.002 0.008

pattern ∗ β01 6.000 0.001 0.006

pattern ∗ β11 6.000 0.001 0.004

pattern ∗ ψ01 12.000 0.004 0.017

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.001 0.003

β11 ∗ ψ01 2.000 0.001 0.004

model ∗N ∗ θ22 12.000 0.000 0.000

model ∗N ∗ pattern 36.000 0.000 0.000

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.000 0.000

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Table B.4 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 0.011 0.051

N ∗ θ22 ∗ β01 6.000 0.001 0.006

N ∗ θ22 ∗ β11 6.000 0.002 0.009

N ∗ θ22 ∗ ψ01 12.000 0.003 0.016

N ∗ pattern ∗ β01 18.000 0.004 0.021

N ∗ pattern ∗ β11 18.000 0.004 0.020

N ∗ pattern ∗ ψ01 36.000 0.010 0.048

N ∗ β01 ∗ β11 3.000 0.000 0.001

N ∗ β01 ∗ ψ01 6.000 0.002 0.010

N ∗ β11 ∗ ψ01 6.000 0.002 0.008

θ22 ∗ pattern ∗ β01 12.000 0.001 0.003

θ22 ∗ pattern ∗ β11 12.000 0.001 0.003

θ22 ∗ pattern ∗ ψ01 24.000 0.002 0.010

θ22 ∗ β01 ∗ β11 2.000 0.000 0.001

θ22 ∗ β01 ∗ ψ01 4.000 0.001 0.004

θ22 ∗ β11 ∗ ψ01 4.000 0.000 0.002

pattern ∗ β01 ∗ β11 6.000 0.001 0.007

pattern ∗ β01 ∗ ψ01 12.000 0.002 0.009

pattern ∗ β11 ∗ ψ01 12.000 0.003 0.014

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.000 0.001

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.006 0.030

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.004 0.019

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.013 0.064

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.001 0.004
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Table B.4 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.002 0.009

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.004 0.019

N ∗ pattern ∗ β01 ∗ β11 18.000 0.003 0.015

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.006 0.028

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.007 0.036

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.000 0.002

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.002 0.009

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.004 0.021

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.005 0.026

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.001 0.003

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.002 0.011

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.000 0.001

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.000 0.001

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.001

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.001

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.001

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.008 0.040

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.013 0.063

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.012 0.059

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.002 0.011

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.008 0.041

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.004 0.018

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.000 0.002

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.001 0.003

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.001

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.014 0.068

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.000 0.001
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B.0.2 List of Tables For Standard Error

Table B.5

ANOVA test for the Empirical Standard Error of β00
Source DF Sum of Squares η2

model 2.000 0.203 0.002

N 3.000 98.318 0.895

θ22 2.000 3.288 0.030

pattern 6.000 2.651 0.024

β01 1.000 0.049 0.000

β11 1.000 0.000 0.000

ψ01 2.000 0.000 0.000

model ∗N 6.000 0.057 0.001

model ∗ θ22 4.000 0.054 0.000

model ∗ pattern 12.000 0.104 0.001

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 1.221 0.011

N ∗ pattern 18.000 1.030 0.009

N ∗ β01 3.000 0.016 0.000

N ∗ β11 3.000 0.000 0.000

N ∗ ψ01 6.000 0.001 0.000

θ22 ∗ pattern 12.000 1.804 0.016

θ22 ∗ β01 2.000 0.003 0.000

Continued on next page



427

Table B.5 – continued from previous page

Source DF Sum of Squares η2

θ22 ∗ β11 2.000 0.000 0.000

θ22 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 6.000 0.002 0.000

pattern ∗ β11 6.000 0.000 0.000

pattern ∗ ψ01 12.000 0.002 0.000

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.020 0.000

model ∗N ∗ pattern 36.000 0.035 0.000

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.079 0.001

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

Continued on next page
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Table B.5 – continued from previous page

Source DF Sum of Squares η2

model ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern 36.000 0.693 0.006

N ∗ θ22 ∗ β01 6.000 0.003 0.000

N ∗ θ22 ∗ β11 6.000 0.001 0.000

N ∗ θ22 ∗ ψ01 12.000 0.002 0.000

N ∗ pattern ∗ β01 18.000 0.003 0.000

N ∗ pattern ∗ β11 18.000 0.001 0.000

N ∗ pattern ∗ ψ01 36.000 0.004 0.000

N ∗ β01 ∗ β11 3.000 0.000 0.000

N ∗ β01 ∗ ψ01 6.000 0.001 0.000

N ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 12.000 0.002 0.000

θ22 ∗ pattern ∗ β11 12.000 0.002 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.002 0.000

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.001 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 ∗ β11 6.000 0.002 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.002 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.002 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.027 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.006 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.004 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.010 0.000

Continued on next page
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Table B.5 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.001 0.000

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.003 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.001 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.006 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.007 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.006 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.002 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.006 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.004 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.002 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.001 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.006 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.013 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.015 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.002 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.008 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.004 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.001 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.012 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.001 0.000
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Table B.6

ANOVA test for the Empirical Standard Error of β01
Source DF Sum of Squares η2

model 2.000 0.288 0.001

N 3.000 170.316 0.871

θ22 2.000 7.157 0.037

pattern 6.000 5.646 0.029

β01 1.000 0.478 0.002

β11 1.000 0.000 0.000

ψ01 2.000 0.000 0.000

model ∗N 6.000 0.071 0.000

model ∗ θ22 4.000 0.140 0.001

model ∗ pattern 12.000 0.252 0.001

model ∗ β01 2.000 0.002 0.000

model ∗ β11 2.000 0.001 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 2.716 0.014

N ∗ pattern 18.000 2.075 0.011

N ∗ β01 3.000 0.161 0.001

N ∗ β11 3.000 0.001 0.000

N ∗ ψ01 6.000 0.003 0.000

θ22 ∗ pattern 12.000 3.896 0.020

θ22 ∗ β01 2.000 0.011 0.000

θ22 ∗ β11 2.000 0.000 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 6.000 0.014 0.000

pattern ∗ β11 6.000 0.003 0.000

pattern ∗ ψ01 12.000 0.001 0.000

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.053 0.000

model ∗N ∗ pattern 36.000 0.085 0.000

model ∗N ∗ β01 6.000 0.001 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.185 0.001

model ∗ θ22 ∗ β01 4.000 0.003 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.002 0.000

model ∗ pattern ∗ β11 12.000 0.001 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Table B.6 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 1.559 0.008

N ∗ θ22 ∗ β01 6.000 0.002 0.000

N ∗ θ22 ∗ β11 6.000 0.001 0.000

N ∗ θ22 ∗ ψ01 12.000 0.004 0.000

N ∗ pattern ∗ β01 18.000 0.009 0.000

N ∗ pattern ∗ β11 18.000 0.003 0.000

N ∗ pattern ∗ ψ01 36.000 0.010 0.000

N ∗ β01 ∗ β11 3.000 0.000 0.000

N ∗ β01 ∗ ψ01 6.000 0.002 0.000

N ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 12.000 0.006 0.000

θ22 ∗ pattern ∗ β11 12.000 0.004 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.008 0.000

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.002 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.002 0.000

pattern ∗ β01 ∗ β11 6.000 0.001 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.007 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.003 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.063 0.000

model ∗N ∗ θ22 ∗ β01 12.000 0.002 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.001 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.016 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.020 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.026 0.000

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.001 0.000
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Table B.6 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.009 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.004 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.003 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.007 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.008 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.001 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.005 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.010 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.006 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.006 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.002 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.011 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.021 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.020 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.002 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.018 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.009 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.002 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.002 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.020 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.001 0.000
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Table B.7

ANOVA test for the Empirical Standard Error of β10
Source DF Sum of Squares η2

model 2.000 0.024 0.000

N 3.000 129.720 0.802

θ22 2.000 13.118 0.081

pattern 6.000 6.150 0.038

β01 1.000 0.196 0.001

β11 1.000 0.017 0.000

ψ01 2.000 0.001 0.000

model ∗N 6.000 0.004 0.000

model ∗ θ22 4.000 0.031 0.000

model ∗ pattern 12.000 0.051 0.000

model ∗ β01 2.000 0.000 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 4.789 0.030

N ∗ pattern 18.000 2.242 0.014

N ∗ β01 3.000 0.060 0.000

N ∗ β11 3.000 0.007 0.000

N ∗ ψ01 6.000 0.002 0.000

θ22 ∗ pattern 12.000 3.684 0.023

θ22 ∗ β01 2.000 0.012 0.000

θ22 ∗ β11 2.000 0.001 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 6.000 0.012 0.000

pattern ∗ β11 6.000 0.002 0.000

pattern ∗ ψ01 12.000 0.004 0.000

β01 ∗ β11 1.000 0.000 0.000

β01 ∗ ψ01 2.000 0.000 0.000

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.009 0.000

model ∗N ∗ pattern 36.000 0.019 0.000

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.056 0.000

model ∗ θ22 ∗ β01 4.000 0.000 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.000 0.000

model ∗ pattern ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 1.332 0.008

N ∗ θ22 ∗ β01 6.000 0.008 0.000

N ∗ θ22 ∗ β11 6.000 0.000 0.000

N ∗ θ22 ∗ ψ01 12.000 0.001 0.000

N ∗ pattern ∗ β01 18.000 0.009 0.000

N ∗ pattern ∗ β11 18.000 0.007 0.000

N ∗ pattern ∗ ψ01 36.000 0.007 0.000

N ∗ β01 ∗ β11 3.000 0.002 0.000

N ∗ β01 ∗ ψ01 6.000 0.000 0.000

N ∗ β11 ∗ ψ01 6.000 0.002 0.000

θ22 ∗ pattern ∗ β01 12.000 0.006 0.000

θ22 ∗ pattern ∗ β11 12.000 0.003 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.007 0.000

θ22 ∗ β01 ∗ β11 2.000 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.002 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.001 0.000

pattern ∗ β01 ∗ β11 6.000 0.003 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.001 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.004 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.021 0.000

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.018 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.007 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.023 0.000

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.001 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.003 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.002 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.005 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.008 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.013 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.002 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.001 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.005 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.007 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.004 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000

Continued on next page



443

Table B.7 – continued from previous page
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model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.006 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.017 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.022 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.001 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.011 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.005 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.017 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.000 0.000
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Table B.8

ANOVA test for the Empirical Standard Error of β11
Source DF Sum of Squares η2

model 2.000 0.088 0.000

N 3.000 196.496 0.715

θ22 2.000 31.540 0.115

pattern 6.000 14.753 0.054

β01 1.000 2.200 0.008

β11 1.000 0.159 0.001

ψ01 2.000 0.009 0.000

model ∗N 6.000 0.018 0.000

model ∗ θ22 4.000 0.094 0.000

model ∗ pattern 12.000 0.166 0.001

model ∗ β01 2.000 0.002 0.000

model ∗ β11 2.000 0.000 0.000

model ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 6.000 11.275 0.041

N ∗ pattern 18.000 5.291 0.019

N ∗ β01 3.000 0.694 0.003

N ∗ β11 3.000 0.053 0.000

N ∗ ψ01 6.000 0.001 0.000

θ22 ∗ pattern 12.000 8.036 0.029

θ22 ∗ β01 2.000 0.164 0.001

θ22 ∗ β11 2.000 0.005 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4.000 0.005 0.000

pattern ∗ β01 6.000 0.070 0.000

pattern ∗ β11 6.000 0.021 0.000

pattern ∗ ψ01 12.000 0.008 0.000

β01 ∗ β11 1.000 0.007 0.000

β01 ∗ ψ01 2.000 0.002 0.000

β11 ∗ ψ01 2.000 0.000 0.000

model ∗N ∗ θ22 12.000 0.027 0.000

model ∗N ∗ pattern 36.000 0.057 0.000

model ∗N ∗ β01 6.000 0.000 0.000

model ∗N ∗ β11 6.000 0.000 0.000

model ∗N ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern 24.000 0.160 0.001

model ∗ θ22 ∗ β01 4.000 0.002 0.000

model ∗ θ22 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 12.000 0.005 0.000

model ∗ pattern ∗ β11 12.000 0.002 0.000

model ∗ pattern ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 2.000 0.000 0.000

model ∗ β01 ∗ ψ01 4.000 0.000 0.000

model ∗ β11 ∗ ψ01 4.000 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36.000 2.792 0.010

N ∗ θ22 ∗ β01 6.000 0.052 0.000

N ∗ θ22 ∗ β11 6.000 0.002 0.000

N ∗ θ22 ∗ ψ01 12.000 0.003 0.000

N ∗ pattern ∗ β01 18.000 0.032 0.000

N ∗ pattern ∗ β11 18.000 0.013 0.000

N ∗ pattern ∗ ψ01 36.000 0.014 0.000

N ∗ β01 ∗ β11 3.000 0.001 0.000

N ∗ β01 ∗ ψ01 6.000 0.001 0.000

N ∗ β11 ∗ ψ01 6.000 0.004 0.000

θ22 ∗ pattern ∗ β01 12.000 0.018 0.000

θ22 ∗ pattern ∗ β11 12.000 0.005 0.000

θ22 ∗ pattern ∗ ψ01 24.000 0.009 0.000

θ22 ∗ β01 ∗ β11 2.000 0.001 0.000

θ22 ∗ β01 ∗ ψ01 4.000 0.002 0.000

θ22 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 6.000 0.002 0.000

pattern ∗ β01 ∗ ψ01 12.000 0.006 0.000

pattern ∗ β11 ∗ ψ01 12.000 0.005 0.000

β01 ∗ β11 ∗ ψ01 2.000 0.002 0.000

model ∗N ∗ θ22 ∗ pattern 72.000 0.055 0.000

model ∗N ∗ θ22 ∗ β01 12.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 36.000 0.002 0.000

model ∗N ∗ pattern ∗ β11 36.000 0.001 0.000

model ∗N ∗ pattern ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ β01 ∗ β11 6.000 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12.000 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24.000 0.002 0.000

model ∗ θ22 ∗ pattern ∗ β11 24.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ β01 ∗ β11 4.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8.000 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36.000 0.019 0.000

N ∗ θ22 ∗ pattern ∗ β11 36.000 0.013 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72.000 0.025 0.000

N ∗ θ22 ∗ β01 ∗ β11 6.000 0.002 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12.000 0.005 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12.000 0.003 0.000

N ∗ pattern ∗ β01 ∗ β11 18.000 0.002 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36.000 0.008 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36.000 0.013 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6.000 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12.000 0.005 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24.000 0.007 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24.000 0.006 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4.000 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12.000 0.004 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144.000 0.003 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12.000 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72.000 0.001 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12.000 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24.000 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48.000 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8.000 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36.000 0.012 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72.000 0.019 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72.000 0.033 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12.000 0.004 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36.000 0.013 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24.000 0.010 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144.000 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144.000 0.002 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24.000 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48.000 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72.000 0.024 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144.000 0.001 0.000



450 Chapter B. Results of Study 2

Table B.9

ANOVA test for the Theoretical Standard Error of β00
Source DF Sum of Squares η2

model 2 0.281 0.003

N 3 88.341 0.889

θ22 2 3.204 0.032

pattern 6 2.576 0.026

β01 1 0.063 0.001

β11 1 0.000 0.000

ψ01 2 0.000 0.000

model ∗N 6 0.122 0.001

model ∗ θ22 4 0.052 0.001

model ∗ pattern 12 0.107 0.001

model ∗ β01 2 0.000 0.000

model ∗ β11 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 1.127 0.011

N ∗ pattern 18 0.902 0.009

N ∗ β01 3 0.028 0.000

N ∗ β11 3 0.000 0.000

N ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern 12 1.752 0.018

θ22 ∗ β01 2 0.003 0.000

θ22 ∗ β11 2 0.000 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 6 0.002 0.000

pattern ∗ β11 6 0.000 0.000

pattern ∗ ψ01 12 0.000 0.000

β01 ∗ β11 1 0.000 0.000

β01 ∗ ψ01 2 0.000 0.000

β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 12 0.018 0.000

model ∗N ∗ pattern 36 0.038 0.000

model ∗N ∗ β01 6 0.000 0.000

model ∗N ∗ β11 6 0.000 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.081 0.001

model ∗ θ22 ∗ β01 4 0.000 0.000

model ∗ θ22 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 12 0.000 0.000

model ∗ pattern ∗ β11 12 0.000 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 2 0.000 0.000

model ∗ β01 ∗ ψ01 4 0.000 0.000

model ∗ β11 ∗ ψ01 4 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 0.614 0.006

N ∗ θ22 ∗ β01 6 0.001 0.000

N ∗ θ22 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 18 0.000 0.000

N ∗ pattern ∗ β11 18 0.000 0.000

N ∗ pattern ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 3 0.000 0.000

N ∗ β01 ∗ ψ01 6 0.000 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 12 0.000 0.000

θ22 ∗ pattern ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 2 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 6 0.000 0.000

pattern ∗ β01 ∗ ψ01 12 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

β01 ∗ β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.030 0.000

model ∗N ∗ θ22 ∗ β01 12 0.000 0.000

Continued on next page



453

Table B.9 – continued from previous page

Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 36 0.000 0.000

model ∗N ∗ pattern ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 6 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144 0.000 0.000
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Table B.10

ANOVA test for the Theoretical Standard Error of β01
Source DF Sum of Squares η2

model 2 0.045 0.000

N 3 118.829 0.796

θ22 2 12.649 0.085

pattern 6 5.958 0.040

β01 1 0.189 0.001

β11 1 0.014 0.000

ψ01 2 0.002 0.000

model ∗N 6 0.022 0.000

model ∗ θ22 4 0.040 0.000

model ∗ pattern 12 0.048 0.000

model ∗ β01 2 0.000 0.000

model ∗ β11 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 4.375 0.029

N ∗ pattern 18 2.060 0.014

N ∗ β01 3 0.063 0.000

N ∗ β11 3 0.005 0.000

N ∗ ψ01 6 0.001 0.000

θ22 ∗ pattern 12 3.567 0.024

θ22 ∗ β01 2 0.009 0.000

θ22 ∗ β11 2 0.001 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 6 0.005 0.000

pattern ∗ β11 6 0.001 0.000

pattern ∗ ψ01 12 0.000 0.000

β01 ∗ β11 1 0.001 0.000

β01 ∗ ψ01 2 0.000 0.000

β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 12 0.016 0.000

model ∗N ∗ pattern 36 0.017 0.000

model ∗N ∗ β01 6 0.000 0.000

model ∗N ∗ β11 6 0.000 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.054 0.000

model ∗ θ22 ∗ β01 4 0.000 0.000

model ∗ θ22 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 12 0.000 0.000

model ∗ pattern ∗ β11 12 0.000 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 2 0.000 0.000

model ∗ β01 ∗ ψ01 4 0.000 0.000

model ∗ β11 ∗ ψ01 4 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 1.234 0.008

N ∗ θ22 ∗ β01 6 0.003 0.000

N ∗ θ22 ∗ β11 6 0.001 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 18 0.001 0.000

N ∗ pattern ∗ β11 18 0.000 0.000

N ∗ pattern ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 3 0.000 0.000

N ∗ β01 ∗ ψ01 6 0.000 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 12 0.001 0.000

θ22 ∗ pattern ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 2 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 6 0.000 0.000

pattern ∗ β01 ∗ ψ01 12 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

β01 ∗ β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.019 0.000

model ∗N ∗ θ22 ∗ β01 12 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 36 0.000 0.000

model ∗N ∗ pattern ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 6 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144 0.000 0.000
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Table B.11

ANOVA test for the Theoretical Standard Error of β10
Source DF Sum of Squares η2

model 2 0.045 0.000

N 3 121.107 0.790

θ22 2 13.678 0.089

pattern 6 6.111 0.040

β01 1 0.177 0.001

β11 1 0.013 0.000

ψ01 2 0.002 0.000

model ∗N 6 0.022 0.000

model ∗ θ22 4 0.041 0.000

model ∗ pattern 12 0.048 0.000

model ∗ β01 2 0.000 0.000

model ∗ β11 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 4.758 0.031

N ∗ pattern 18 2.125 0.014

N ∗ β01 3 0.058 0.000

N ∗ β11 3 0.004 0.000

N ∗ ψ01 6 0.001 0.000

θ22 ∗ pattern 12 3.687 0.024

θ22 ∗ β01 2 0.011 0.000

θ22 ∗ β11 2 0.001 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 6 0.005 0.000

pattern ∗ β11 6 0.000 0.000

pattern ∗ ψ01 12 0.000 0.000

β01 ∗ β11 1 0.001 0.000

β01 ∗ ψ01 2 0.000 0.000

β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 12 0.016 0.000

model ∗N ∗ pattern 36 0.017 0.000

model ∗N ∗ β01 6 0.000 0.000

model ∗N ∗ β11 6 0.000 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.054 0.000

model ∗ θ22 ∗ β01 4 0.000 0.000

model ∗ θ22 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 12 0.000 0.000

model ∗ pattern ∗ β11 12 0.000 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 2 0.000 0.000

model ∗ β01 ∗ ψ01 4 0.000 0.000

model ∗ β11 ∗ ψ01 4 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 1.283 0.008

N ∗ θ22 ∗ β01 6 0.003 0.000

N ∗ θ22 ∗ β11 6 0.001 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 18 0.001 0.000

N ∗ pattern ∗ β11 18 0.000 0.000

N ∗ pattern ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 3 0.000 0.000

N ∗ β01 ∗ ψ01 6 0.000 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 12 0.001 0.000

θ22 ∗ pattern ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 2 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 6 0.000 0.000

pattern ∗ β01 ∗ ψ01 12 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

β01 ∗ β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.019 0.000

model ∗N ∗ θ22 ∗ β01 12 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 36 0.000 0.000

model ∗N ∗ pattern ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 6 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24 0.000 0.000
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144 0.000 0.000
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Table B.12

ANOVA test for the Theoretical Standard Error of β11
Source DF Sum of Squares η2

model 2 0.166 0.001

N 3 176.074 0.701

θ22 2 30.528 0.121

pattern 6 14.256 0.057

β01 1 2.229 0.009

β11 1 0.166 0.001

ψ01 2 0.017 0.000

model ∗N 6 0.081 0.000

model ∗ θ22 4 0.115 0.000

model ∗ pattern 12 0.164 0.001

model ∗ β01 2 0.005 0.000

model ∗ β11 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 10.515 0.042

N ∗ pattern 18 4.907 0.020

N ∗ β01 3 0.768 0.003

N ∗ β11 3 0.059 0.000

N ∗ ψ01 6 0.007 0.000

θ22 ∗ pattern 12 7.820 0.031

θ22 ∗ β01 2 0.159 0.001

θ22 ∗ β11 2 0.011 0.000
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4 0.001 0.000

pattern ∗ β01 6 0.072 0.000

pattern ∗ β11 6 0.010 0.000

pattern ∗ ψ01 12 0.001 0.000

β01 ∗ β11 1 0.007 0.000

β01 ∗ ψ01 2 0.004 0.000

β11 ∗ ψ01 2 0.001 0.000

model ∗N ∗ θ22 12 0.045 0.000

model ∗N ∗ pattern 36 0.056 0.000

model ∗N ∗ β01 6 0.003 0.000

model ∗N ∗ β11 6 0.000 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.160 0.001

model ∗ θ22 ∗ β01 4 0.002 0.000

model ∗ θ22 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 12 0.005 0.000

model ∗ pattern ∗ β11 12 0.002 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 2 0.000 0.000

model ∗ β01 ∗ ψ01 4 0.000 0.000

model ∗ β11 ∗ ψ01 4 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 2.706 0.011

N ∗ θ22 ∗ β01 6 0.050 0.000

N ∗ θ22 ∗ β11 6 0.005 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 18 0.022 0.000

N ∗ pattern ∗ β11 18 0.003 0.000

N ∗ pattern ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 3 0.003 0.000

N ∗ β01 ∗ ψ01 6 0.002 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 12 0.011 0.000

θ22 ∗ pattern ∗ β11 12 0.002 0.000

θ22 ∗ pattern ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 2 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 6 0.000 0.000

pattern ∗ β01 ∗ ψ01 12 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

β01 ∗ β11 ∗ ψ01 2 0.001 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.055 0.000

model ∗N ∗ θ22 ∗ β01 12 0.000 0.000
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 36 0.002 0.000

model ∗N ∗ pattern ∗ β11 36 0.001 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 6 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24 0.002 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.003 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.001 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.001 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.000 0.000
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Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144 0.000 0.000
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Table B.13

ANOVA test for the Ratio of Theoretical Standard Error for β00
Source DF Sum of Squares η2

N 3 0.019 0.016

θ22 2 0.337 0.283

pattern 6 1.090 0.915

β01 1 0.001 0.000

β11 1 0.002 0.001

ψ01 2 0.000 0.000

N ∗ θ22 6 0.000 0.000

N ∗ pattern 18 0.000 0.000

N ∗ β01 3 0.003 0.003

N ∗ β11 3 0.000 0.000

N ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern 12 0.622 0.523

θ22 ∗ β01 2 0.000 0.000

θ22 ∗ β11 2 0.000 0.000

θ22 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 6 0.004 0.003

pattern ∗ β11 6 0.000 0.000

pattern ∗ ψ01 12 0.000 0.000

β01 ∗ β11 1 0.000 0.000

β01 ∗ ψ01 2 0.000 0.000

β11 ∗ ψ01 2 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 0.000 0.000

N ∗ θ22 ∗ β01 6 0.001 0.001

N ∗ θ22 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 18 0.000 0.000

N ∗ pattern ∗ β11 18 0.000 0.000

N ∗ pattern ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 3 0.000 0.000

N ∗ β01 ∗ ψ01 6 0.000 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 12 0.001 0.001

θ22 ∗ pattern ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 2 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 6 0.000 0.000

pattern ∗ β01 ∗ ψ01 12 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

β01 ∗ β11 ∗ ψ01 2 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.000 0.000

Continued on next page
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Table B.13 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000
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Table B.14

ANOVA test for the Ratio of Theoretical Standard Error for β01
Source DF Sum of Squares η2

N 3 0.053 0.018

θ22 2 0.490 0.164

pattern 6 1.552 0.519

β01 1 0.000 0.000

β11 1 0.009 0.003

ψ01 2 0.001 0.000

N ∗ θ22 6 0.003 0.001

N ∗ pattern 18 0.000 0.000

N ∗ β01 3 0.015 0.005

N ∗ β11 3 0.001 0.000

N ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern 12 0.825 0.276

θ22 ∗ β01 2 0.002 0.001

θ22 ∗ β11 2 0.000 0.000

θ22 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 6 0.024 0.008

pattern ∗ β11 6 0.002 0.001

pattern ∗ ψ01 12 0.000 0.000

β01 ∗ β11 1 0.000 0.000

β01 ∗ ψ01 2 0.000 0.000

β11 ∗ ψ01 2 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 0.000 0.000

N ∗ θ22 ∗ β01 6 0.005 0.002

N ∗ θ22 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 18 0.000 0.000

N ∗ pattern ∗ β11 18 0.000 0.000

N ∗ pattern ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 3 0.000 0.000

N ∗ β01 ∗ ψ01 6 0.000 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 12 0.004 0.001

θ22 ∗ pattern ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 2 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 6 0.000 0.000

pattern ∗ β01 ∗ ψ01 12 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

β01 ∗ β11 ∗ ψ01 2 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000
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Table B.15

ANOVA test for the Ratio of Theoretical Standard Error for β10
Source DF Sum of Squares η2

N 3 0.004 0.003

θ22 2 0.295 0.247

pattern 6 0.457 0.383

β01 1 0.006 0.005

β11 1 0.000 0.000

ψ01 2 0.000 0.000

N ∗ θ22 6 0.000 0.000

N ∗ pattern 18 0.000 0.000

N ∗ β01 3 0.000 0.000

N ∗ β11 3 0.000 0.000

N ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern 12 0.415 0.348

θ22 ∗ β01 2 0.002 0.002

θ22 ∗ β11 2 0.000 0.000

θ22 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 6 0.007 0.006

pattern ∗ β11 6 0.002 0.002

pattern ∗ ψ01 12 0.000 0.000

β01 ∗ β11 1 0.000 0.000

β01 ∗ ψ01 2 0.000 0.000

β11 ∗ ψ01 2 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 0.000 0.000

N ∗ θ22 ∗ β01 6 0.000 0.000

N ∗ θ22 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 18 0.000 0.000

N ∗ pattern ∗ β11 18 0.000 0.000

N ∗ pattern ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 3 0.000 0.000

N ∗ β01 ∗ ψ01 6 0.000 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 12 0.002 0.002

θ22 ∗ pattern ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 2 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 6 0.000 0.000

pattern ∗ β01 ∗ ψ01 12 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

β01 ∗ β11 ∗ ψ01 2 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000
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Table B.16

ANOVA test for the Ratio of Theoretical Standard Error for β11
Source DF Sum of Squares η2

N 3 0.013 0.005

θ22 2 0.474 0.194

pattern 6 1.050 0.429

β01 1 0.057 0.023

β11 1 0.002 0.001

ψ01 2 0.000 0.000

N ∗ θ22 6 0.000 0.000

N ∗ pattern 18 0.000 0.000

N ∗ β01 3 0.002 0.001

N ∗ β11 3 0.000 0.000

N ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern 12 0.729 0.298

θ22 ∗ β01 2 0.012 0.005

θ22 ∗ β11 2 0.002 0.001

θ22 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 6 0.064 0.026

pattern ∗ β11 6 0.018 0.008

pattern ∗ ψ01 12 0.001 0.000

β01 ∗ β11 1 0.000 0.000

β01 ∗ ψ01 2 0.000 0.000

β11 ∗ ψ01 2 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 0.000 0.000

N ∗ θ22 ∗ β01 6 0.000 0.000

N ∗ θ22 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 18 0.000 0.000

N ∗ pattern ∗ β11 18 0.000 0.000

N ∗ pattern ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 3 0.000 0.000

N ∗ β01 ∗ ψ01 6 0.000 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 12 0.017 0.007

θ22 ∗ pattern ∗ β11 12 0.002 0.001

θ22 ∗ pattern ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 2 0.000 0.000

θ22 ∗ β01 ∗ ψ01 4 0.000 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 6 0.000 0.000

pattern ∗ β01 ∗ ψ01 12 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

β01 ∗ β11 ∗ ψ01 2 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.000 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.000 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.000 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.000 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.000 0.000

Continued on next page
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B.0.3 list of Tables For Statistical Power

Table B.17

ANOVA test for the statistical power of β01
Source DF Sum of Squares η2

model 2 0.009 0.002

N 3 0.982 0.211

θ22 2 0.306 0.066

pattern 6 0.259 0.056

β11 1 0.000 0.000

ψ01 2 0.000 0.000

model ∗N 6 0.026 0.006

model ∗ θ22 4 0.010 0.002

model ∗ pattern 12 0.011 0.002

model ∗ β11 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 0.903 0.194

N ∗ pattern 18 0.764 0.164

N ∗ β11 3 0.000 0.000

N ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern 12 0.319 0.068

θ22 ∗ β11 2 0.000 0.000

θ22 ∗ ψ01 4 0.000 0.000

pattern ∗ β11 6 0.001 0.000

pattern ∗ ψ01 12 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

β11 ∗ ψ01 2 0.000 0.000

model ∗N ∗ θ22 12 0.027 0.006

model ∗N ∗ pattern 36 0.031 0.007

model ∗N ∗ β11 6 0.000 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.012 0.002

model ∗ θ22 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β11 12 0.000 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β11 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern 36 0.935 0.201

N ∗ θ22 ∗ β11 6 0.000 0.000

N ∗ θ22 ∗ ψ01 12 0.000 0.000

N ∗ pattern ∗ β11 18 0.001 0.000

N ∗ pattern ∗ ψ01 36 0.001 0.000

N ∗ β11 ∗ ψ01 6 0.000 0.000

θ22 ∗ pattern ∗ β11 12 0.001 0.000

θ22 ∗ pattern ∗ ψ01 24 0.001 0.000

θ22 ∗ β11 ∗ ψ01 4 0.000 0.000

pattern ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.032 0.007

Continued on next page
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Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β11 36 0.001 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.001 0.000

model ∗N ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.002 0.001

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.002 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.001 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.001 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.002 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.001 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.007 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0.001 0.000
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Table B.18

ANOVA test for the statistical power of β10
Source DF Sum of Squares η2

model 2 0.016 0.000

N 3 209.451 0.870

θ22 2 10.688 0.044

pattern 6 4.552 0.019

β01 1 0.132 0.001

β11 1 0.012 0.000

ψ01 2 0.001 0.000

model ∗N 6 0.014 0.000

model ∗ θ22 4 0.021 0.000

model ∗ pattern 12 0.034 0.000

model ∗ β01 2 0.000 0.000

model ∗ β11 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 7.821 0.032

N ∗ pattern 18 2.765 0.011

N ∗ β01 3 0.111 0.000

N ∗ β11 3 0.011 0.000

N ∗ ψ01 6 0.011 0.000

θ22 ∗ pattern 12 2.561 0.011

θ22 ∗ β01 2 0.014 0.000

θ22 ∗ β11 2 0.002 0.000

Continued on next page
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Source DF Sum of Squares η2

θ22 ∗ ψ01 4 0.005 0.000

pattern ∗ β01 6 0.018 0.000

pattern ∗ β11 6 0.003 0.000

pattern ∗ ψ01 12 0.008 0.000

β01 ∗ β11 1 0.001 0.000

β01 ∗ ψ01 2 0.003 0.000

β11 ∗ ψ01 2 0.002 0.000

model ∗N ∗ θ22 12 0.016 0.000

model ∗N ∗ pattern 36 0.024 0.000

model ∗N ∗ β01 6 0.000 0.000

model ∗N ∗ β11 6 0.000 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.032 0.000

model ∗ θ22 ∗ β01 4 0.000 0.000

model ∗ θ22 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 12 0.000 0.000

model ∗ pattern ∗ β11 12 0.000 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 2 0.000 0.000

model ∗ β01 ∗ ψ01 4 0.000 0.000

model ∗ β11 ∗ ψ01 4 0.000 0.000

Continued on next page
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Source DF Sum of Squares η2

N ∗ θ22 ∗ pattern 36 1.799 0.007

N ∗ θ22 ∗ β01 6 0.043 0.000

N ∗ θ22 ∗ β11 6 0.006 0.000

N ∗ θ22 ∗ ψ01 12 0.007 0.000

N ∗ pattern ∗ β01 18 0.048 0.000

N ∗ pattern ∗ β11 18 0.025 0.000

N ∗ pattern ∗ ψ01 36 0.017 0.000

N ∗ β01 ∗ β11 3 0.002 0.000

N ∗ β01 ∗ ψ01 6 0.004 0.000

N ∗ β11 ∗ ψ01 6 0.006 0.000

θ22 ∗ pattern ∗ β01 12 0.013 0.000

θ22 ∗ pattern ∗ β11 12 0.005 0.000

θ22 ∗ pattern ∗ ψ01 24 0.019 0.000

θ22 ∗ β01 ∗ β11 2 0.001 0.000

θ22 ∗ β01 ∗ ψ01 4 0.003 0.000

θ22 ∗ β11 ∗ ψ01 4 0.001 0.000

pattern ∗ β01 ∗ β11 6 0.002 0.000

pattern ∗ β01 ∗ ψ01 12 0.007 0.000

pattern ∗ β11 ∗ ψ01 12 0.008 0.000

β01 ∗ β11 ∗ ψ01 2 0.003 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.026 0.000

model ∗N ∗ θ22 ∗ β01 12 0.000 0.000

Continued on next page
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Table B.18 – continued from previous page

Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 36 0.001 0.000

model ∗N ∗ pattern ∗ β11 36 0.000 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.001 0.000

model ∗N ∗ β01 ∗ β11 6 0.000 0.000

model ∗N ∗ β01 ∗ ψ01 12 0.000 0.000

model ∗N ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ β01 ∗ β11 4 0.000 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8 0.000 0.000

model ∗ θ22 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 12 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗ pattern ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ β11 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.027 0.000

N ∗ θ22 ∗ pattern ∗ β11 36 0.016 0.000

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.054 0.000

N ∗ θ22 ∗ β01 ∗ β11 6 0.006 0.000

Continued on next page
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Table B.18 – continued from previous page

Source DF Sum of Squares η2

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.004 0.000

N ∗ θ22 ∗ β11 ∗ ψ01 12 0.006 0.000

N ∗ pattern ∗ β01 ∗ β11 18 0.008 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.016 0.000

N ∗ pattern ∗ β11 ∗ ψ01 36 0.020 0.000

N ∗ β01 ∗ β11 ∗ ψ01 6 0.002 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 12 0.002 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.008 0.000

θ22 ∗ pattern ∗ β11 ∗ ψ01 24 0.014 0.000

θ22 ∗ β01 ∗ β11 ∗ ψ01 4 0.001 0.000

pattern ∗ β01 ∗ β11 ∗ ψ01 12 0.004 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 72 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.002 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 12 0.000 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗N ∗ θ22 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 36 0.001 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72 0.000 0.000

model ∗N ∗ pattern ∗ β11 ∗ ψ01 72 0.001 0.000

model ∗N ∗ β01 ∗ β11 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 24 0.000 0.000

Continued on next page
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Table B.18 – continued from previous page

Source DF Sum of Squares η2

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 48 0.001 0.000

model ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 36 0.012 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.033 0.000

N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 72 0.045 0.000

N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 12 0.007 0.000

N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 36 0.016 0.000

θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 24 0.008 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 72 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144 0.002 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β11 ∗ ψ01 144 0.001 0.000

model ∗N ∗ θ22 ∗ β01 ∗ β11 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 48 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 72 0.033 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ β11 ∗ ψ01 144 0.001 0.000
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Table B.19

ANOVA test for the statistical power of β11
Source DF Sum of Squares η2

model 2 0.008 0.000

N 3 25.966 0.577

θ22 2 4.012 0.089

pattern 6 1.737 0.039

β01 1 0.281 0.006

ψ01 2 0.001 0.000

model ∗N 6 0.008 0.000

model ∗ θ22 4 0.009 0.000

model ∗ pattern 12 0.016 0.000

model ∗ β01 2 0.000 0.000

model ∗ ψ01 4 0.000 0.000

N ∗ θ22 6 7.019 0.156

N ∗ pattern 18 2.569 0.057

N ∗ β01 3 0.714 0.016

N ∗ ψ01 6 0.003 0.000

θ22 ∗ pattern 12 0.889 0.020

θ22 ∗ β01 2 0.018 0.000

θ22 ∗ ψ01 4 0.002 0.000

pattern ∗ β01 6 0.006 0.000

pattern ∗ ψ01 12 0.007 0.000

β01 ∗ ψ01 2 0.001 0.000

Continued on next page
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Table B.19 – continued from previous page

Source DF Sum of Squares η2

model ∗N ∗ θ22 12 0.009 0.000

model ∗N ∗ pattern 36 0.020 0.000

model ∗N ∗ β01 6 0.001 0.000

model ∗N ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern 24 0.014 0.000

model ∗ θ22 ∗ β01 4 0.000 0.000

model ∗ θ22 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 12 0.001 0.000

model ∗ pattern ∗ ψ01 24 0.000 0.000

model ∗ β01 ∗ ψ01 4 0.000 0.000

N ∗ θ22 ∗ pattern 36 1.352 0.030

N ∗ θ22 ∗ β01 6 0.101 0.002

N ∗ θ22 ∗ ψ01 12 0.005 0.000

N ∗ pattern ∗ β01 18 0.035 0.001

N ∗ pattern ∗ ψ01 36 0.015 0.000

N ∗ β01 ∗ ψ01 6 0.001 0.000

θ22 ∗ pattern ∗ β01 12 0.007 0.000

θ22 ∗ pattern ∗ ψ01 24 0.008 0.000

θ22 ∗ β01 ∗ ψ01 4 0.001 0.000

pattern ∗ β01 ∗ ψ01 12 0.004 0.000

model ∗N ∗ θ22 ∗ pattern 72 0.016 0.000

model ∗N ∗ θ22 ∗ β01 12 0.001 0.000

Continued on next page
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Table B.19 – continued from previous page

Source DF Sum of Squares η2

model ∗N ∗ θ22 ∗ ψ01 24 0.001 0.000

model ∗N ∗ pattern ∗ β01 36 0.002 0.000

model ∗N ∗ pattern ∗ ψ01 72 0.001 0.000

model ∗N ∗ β01 ∗ ψ01 12 0.000 0.000

model ∗ θ22 ∗ pattern ∗ β01 24 0.000 0.000

model ∗ θ22 ∗ pattern ∗ ψ01 48 0.001 0.000

model ∗ θ22 ∗ β01 ∗ ψ01 8 0.000 0.000

model ∗ pattern ∗ β01 ∗ ψ01 24 0.000 0.000

N ∗ θ22 ∗ pattern ∗ β01 36 0.033 0.001

N ∗ θ22 ∗ pattern ∗ ψ01 72 0.027 0.001

N ∗ θ22 ∗ β01 ∗ ψ01 12 0.001 0.000

N ∗ pattern ∗ β01 ∗ ψ01 36 0.011 0.000

θ22 ∗ pattern ∗ β01 ∗ ψ01 24 0.009 0.000

model ∗N ∗ θ22 ∗ pattern ∗ β01 72 0.001 0.000

model ∗N ∗ θ22 ∗ pattern ∗ ψ01 144 0.002 0.000

model ∗N ∗ θ22 ∗ β01 ∗ ψ01 24 0.000 0.000

model ∗N ∗ pattern ∗ β01 ∗ ψ01 72 0.001 0.000

model ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 48 0.001 0.000

N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 72 0.031 0.001

model ∗N ∗ θ22 ∗ pattern ∗ β01 ∗ ψ01 144 0.002 0.000



498 Chapter B. Results of Study 2

B.0.4 List of Figures in Bias

Figure B.1. Bias of the Mean Initial Status for a Reference Group, β00 = 10β00 = 10β00 = 10, by time-specific

error size (small) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM_2W = 2-wave longitudinal

common factor model, LCFM_3W = 3-wave longitudinal common factor model.
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Figure B.2. Bias of the Mean Initial Status for a Reference Group, β00 = 10β00 = 10β00 = 10, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM_2W = 2-wave longitudinal

common factor model, LCFM_3W = 3-wave longitudinal common factor model.
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Figure B.3. Bias of the Mean Initial Status for a Reference Group, β00 = 10β00 = 10β00 = 10, by time-specific

error size (large) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM_2W = 2-wave longitudinal

common factor model, LCFM_3W = 3-wave longitudinal common factor model.



501

Figure B.4. Bias of the Average Growth Rate in a Reference Group, β10 = 1β10 = 1β10 = 1, by time-specific

error size (small) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave longitudinal

common factor model, LCFM_3W = 3-wave longitudinal common factor model.
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Figure B.5. Bias of the Average Growth Rate in a Reference Group, β10 = 1β10 = 1β10 = 1, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave longitudinal

common factor model, LCFM_3W = 3-wave longitudinal common factor model.
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Figure B.6. Bias of the Average Growth Rate in a Reference Group, β10 = 1β10 = 1β10 = 1, by time-specific

error size (large) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave longitudinal

common factor model, LCFM_3W = 3-wave longitudinal common factor model.
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Figure B.7. Bias of the Average Group Difference in the initial Status, β01 = 3β01 = 3β01 = 3, by time-

specific error size (small) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3

and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave longitudi-

nal common factor model, LCFM_3W = 3-wave longitudinal common factor model.
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Figure B.8. Bias of the Average Group Difference in the initial Status, β01 = 3β01 = 3β01 = 3, by time-

specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.9. Bias of the Average Group Difference in the initial Status, β01 = 3β01 = 3β01 = 3, by time-

specific error size (large) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3

and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave longitudi-

nal common factor model, LCFM_3W = 3-wave longitudinal common factor model.
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Figure B.10. Bias of Mean Group Difference in Growth Rate, β11 = 2β11 = 2β11 = 2, by time-specific error

size (small) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2,

SOLGM = second-order latent growth model, LCFM_2W = 2-wave longitudinal common

factor model, LCFM_3W = 3-wave longitudinal common factor model.
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Figure B.11. Bias of Mean Group Difference in Growth Rate, β11 = 2β11 = 2β11 = 2, by time-specific

error size (median) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and

β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave longitudinal

common factor model, LCFM_3W = 3-wave longitudinal common factor model.
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Figure B.12. Bias of Mean Group Difference in Growth Rate, β11 = 2β11 = 2β11 = 2, by time-specific error

size (large) and correlation between intercept and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2,

SOLGM = second-order latent growth model, LCFM_2W = 2-wave longitudinal common

factor model, LCFM_3W = 3-wave longitudinal common factor model.
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B.0.5 List of Figures in Empirical Standard Error

Figure B.13. Standard Error of the Average Initial Status in Refrence Group, β00 = 10β00 = 10β00 = 10, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.14. Standard Error of the Average Initial Status in Reference Group, β00 = 10β00 = 10β00 = 10,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-

wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal common factor

model.
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Figure B.15. Standard Error of the Average Initial Status in Reference Group, β00 = 10β00 = 10β00 = 10, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.16. Standard Error of the Average Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.17. Standard Error of the Average Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-

wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal common factor

model.
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Figure B.18. Standard Error of the Average Group Difference in Initial Status, β01 = 3β01 = 3β01 = 3, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.19. Standard Error of the Average Growth Rate for the Reference Group, β10 = 1β10 = 1β10 = 1,

by time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.20. Standard Error of the Average Growth Rate for the Reference Group, β10 = 1β10 = 1β10 = 1,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-

wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal common factor

model.
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Figure B.21. Standard Error of the Average Growth Rate for the Reference Group, β10 = 1β10 = 1β10 = 1,

by time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.22. Standard Error of Average Group Difference for the Growth Rate, β11 = 2β11 = 2β11 = 2, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.23. Standard Error of Average Group Difference for the Growth Rate, β11 = 2β11 = 2β11 = 2,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-

wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal common factor

model.
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Figure B.24. Standard Error of Average Group Difference for the Growth Rate, β11 = 2β11 = 2β11 = 2, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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B.0.6 List of figured in Theoretical Standard Error
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Figure B.25. Theoretical Standard Error of the Average Initial Status in Refrence

Group, β00 = 10β00 = 10β00 = 10, by time-specific error size (small) and correlation between intercept and

slope (Corpi), when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudi-

nal common factor model.
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Figure B.26. Theoretical Standard Error of the Average Initial Status in Reference

Group, β00 = 10β00 = 10β00 = 10, by time-specific error size (median) and correlation between intercept

and slope (Corpi), when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal

common factor model.
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Figure B.27. Theoretical Standard Error of the Average Initial Status in Reference

Group, β00 = 10β00 = 10β00 = 10, by time-specific error size (large) and correlation between intercept and

slope (Corpi), when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudi-

nal common factor model.
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Figure B.28. Theoretical Standard Error of the Average Group Difference in Initial Sta-

tus, β01 = 3β01 = 3β01 = 3, by time-specific error size (small) and correlation between intercept and

slope (Corpi), when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudi-

nal common factor model.
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Figure B.29. Theoretical Standard Error of the Average Group Difference in Initial Sta-

tus, β01 = 3β01 = 3β01 = 3, by time-specific error size (median) and correlation between intercept and

slope (Corpi), when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudi-

nal common factor model.
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Figure B.30. Theoretical Standard Error of the Average Group Difference in Initial

Status, β01 = 3β01 = 3β01 = 3, by time-specific error size (large) and correlation between intercept and

slope (Corpi), when β01 = 3β01 = 3β01 = 3 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudi-

nal common factor model.
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Figure B.31. Theoretical Standard Error of the Average Growth Rate for the Reference

Group, β10 = 1β10 = 1β10 = 1, by time-specific error size (small) and correlation between intercept and

slope (Corpi), when β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal

common factor model.
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Figure B.32. Theoretical Standard Error of the Average Growth Rate for the Reference

Group, β10 = 1β10 = 1β10 = 1, by time-specific error size (median) and correlation between intercept and

slope (Corpi), when β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal

common factor model.
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Figure B.33. Theoretical Standard Error of the Average Growth Rate for the Reference

Group, β10 = 1β10 = 1β10 = 1, by time-specific error size (large) and correlation between intercept and

slope (Corpi), when β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal

common factor model.
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Figure B.34. Theoretical Standard Error of Average Group Difference for the Growth

Rate, β11 = 2β11 = 2β11 = 2, by time-specific error size (small) and correlation between intercept and

slope (Corpi), when β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal

common factor model.
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Figure B.35. Theoretical Standard Error of Average Group Difference for the Growth

Rate, β11 = 2β11 = 2β11 = 2, by time-specific error size (median) and correlation between intercept and

slope (Corpi), when β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal

common factor model.
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Figure B.36. Theoretical Standard Error of Average Group Difference for the Growth

Rate, β11 = 2β11 = 2β11 = 2, by time-specific error size (large) and correlation between intercept and

slope (Corpi), when β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model,

LCFM_2W = 2-wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal

common factor model.
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Figure B.37. Statistical Power of Mean Initial Status for the Reference Group β00 = 2β00 = 2β00 = 2, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.38. Statistical Power of Mean Initial Status for the Reference Group β00 = 2β00 = 2β00 = 2, by

time-specific error size (median) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.39. Statistical Power of Mean Initial Status for the Reference Group β00 = 2β00 = 2β00 = 2, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 3β01 = 3β01 = 3 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.40. Statistical Power of the Average Growth Rate in Reference Group β10 = 1β10 = 1β10 = 1, by

time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.41. Statistical Power of the Average Growth Rate in Reference Group β10 = 1β10 = 1β10 = 1,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM_2W = 2-

wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal common factor

model.
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Figure B.42. Statistical Power of the Average Growth Rate in Reference Group β10 = 1β10 = 1β10 = 1, by

time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 0β11 = 0β11 = 0, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.43. Type I Error Rate of the Average Growth Difference in Initial Statusβ01 = 0β01 = 0β01 = 0,

by time-specific error size (small) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.
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Figure B.44. Type I Error Rate of the Average Growth Difference in Initial Statusβ01 = 0β01 = 0β01 = 0,

by time-specific error size (median) and correlation between intercept and slope (Corpi),

when β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-

wave longitudinal common factor model, LCFM_3W = 3-wave longitudinal common factor

model.
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Figure B.45. Type I Error Rate of the Average Growth Difference in Initial Statusβ01 = 0β01 = 0β01 = 0,

by time-specific error size (large) and correlation between intercept and slope (Corpi), when

β01 = 0β01 = 0β01 = 0 and β11 = 2β11 = 2β11 = 2, SOLGM = second-order latent growth model, LCFM_2W = 2-wave

longitudinal common factor model, LCFM_3W= 3-wave longitudinal common factor model.


