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(ABSTRACT) 

In the work described in this thesis, the Feynman-Dyson perturbation theory, developed from 

quantum field theory, was employed in semiempirical calculations on trans - polyacetylene. A 

variety of soliton-like excited states of the molecule were studied by the PPP-UHF-RPA method. 

The results of this study provide useful information on the nature of these states, which are thought 

to account for the unique electrical conduction properties of trans - polyacetylene and similar 

conducting polymers. 

Feynman-Dyson perturbation theory was also used to extend Hartree-Fock theory by the 

inclusion of time-independent second-order self-energy insertions. The results of calculations on 

polyenes show that consideration of this approach is warranted, as the contribution of the second-

order terms is significant. 

The computer program, written during the course of the research reported here, is discussed as 

well. 
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1.0 Introduction 

The pioneering work of Feynman (1) and Dyson (2) led to the development of the quantum field 

theory used in solid state physics. Although the general theory can be applied to the quantum de-

scription of any many particle system, it has seen only limited use in molecular orbital studies. 

The Feynman-Dyson perturbation treatment, which can be developed by application of quantum 

field theory to the many-particle Schrodinger equation, has been used extensively for the calculation 

of excitation energies in relatively small conjugated systems (3). However, this approach is also 

useful in the calculation of the topological and electronic properties of ground and excited states 

of all molecular systems. 

In the work reported here, the Feynman-Dyson field-theoretical perturbation treatment has been 

applied, at various levels, to the ground state and several exotic excited states of the linear polyene, 

trans - polyacetylene (TPA). The results of this study show that the field-theoretical approach 

can be successfully applied to such systems when more simple-minded approaches fail. 

The first phase of this research involved the application of the random phase approximation 

(RPA) (4-7), to the semi-empirical Pariser-Pople-Parr (8,9)-unrestricted Hartree-Fock (10,11) 

(PPP-UHF) treatment of TPA states. The RPA involves the inclusion of some important terms 
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in the Feynman-Dyson perturbation expansion to screen the electron-electron interactions m 

many-electron systems. 

The Hartree-Fock theory (the first-order approximation in Feynman-Dyson perturbation theory), 

was extended in the second phase of the research by the addition of time independent second-order 

self-energy terms (TISOSE approach). The TISOSE extended UHF method was used to examine 

the kink soliton-like excitation in TPA. This phase of the study included the development of matrix 

forms of the second-order perturbation terms which were suitable for use in PPP-UHF calculations. 

In addition to a discussion of the theory and results of the two main research topics, this report 

also includes a general discussion of the development of the Feynman-Dyson.perturbation expan-

sion from quantum-field theory and a desciption of the computer code used in the calculations 

performed in this work. 
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2.0 The Feynman-Dyson Perturbation Expansion 

Molecules and atoms can be viewed as a collection of many interacting particles. In principle, 

the Schrodinger equation provides a means of obtaining a wave function which contains all possible 

information about a system of interacting particles. However, the solution of this equation is im-

possible directly. Applicaton of quantum-field theory, using Green fun~tions, provides a way to 

obtain a great deal of information (total ground state energy and excitation energies, for example), 

and to obtain approximations for other types of information (such as electronic structures), from 

approximate wave functions. 

Beginning with the exact Green function for the non-interacting Schrodinger equation, it is pos-

sible to obtain an approximation to the exact Green function for an interacting system by applica-

tion of Feynman-Dyson perturbation theory. 

The Schrodinger equation for a system of non-interacting particles has the field-theoretical form 

( 12) 

" 
Ho\f!o(x) = Eo\f!o(x) (1) 

The Feynman-Dyson Perturbation Expansion 3 



where \JI 0(x), is the wave function of the non-interacting system, Ea is the energy of the system and . 
H0 is the Hamiltonian operator. For a system of non-interacting electrons in an atom or molecule, 

within the Born-Oppenheimer approximation (12) 

(2) 

In equation 2, U(x), is a static external potential which destroys spatial uniformity and m is the 

particle (electron), mass. The field-operators, o/+(x)a and o/(x)a, in equation 2 are defined as (12) 

(3a) 

(3b)' 

where '!f(X)a is the single particle two component wave function (a = 1,2), and the sum is over the 

complete set of single particle quantum numbers. In equation 3, ck+ (ck) is the particle creation 

(destruction) operator, that is ck+(c*) creates (destroys) a particle with the set of quantum numbers 

k. 

The exact Green function for equation 1 is ( 12) 

. 0( ') 0 0 -+ 0 -+ + - lf,j t - t 0 0 0 0 
iG (x,x') = 7<pj(x)<pj(x') exp{ h/21t }[0(t - t')0(r.j - r.F) - 0(t' - t)0(r.F - r.j)) (4) 

where 0(x - y) is the step function and x = (x, t). In equation 4, <pJ(x) and r.J are the . 
eigenfunctions and eigenvalues of H0 

(5) 

The single particle eigenfunctions, <pJ(x), form a basis for the field operators defined in equation 3. 

The Feynman-Dyson Perturbation Expansion 4 



The Schrodinger equation for a system of interacting electrons in an atom or molecule has the 

form 

" 
lf\P(x) = E>P(x) (6) 

where 'P(x) is the wave function for the interacting particle system and Eis the corresponding total 

energy. The Hamiltonian operator for this system can be separated into interacting and non-

interacting parts 

" " " 
(7) 

. 
where H0 is given by equation 2 and 

(8) 

The interparticle interaction potential, V(x - x'), may be assumed to be spin independent. 

. . 
If H1 is treated as a perturbation to H0, then a perturbation expansion of the exact Green function 

for equation 6 can be developed (l,2,12). The terms in the expansion have been shown (13,14) to 

correspond exactly to the infinite set of connected Feynman diagrams. The general rules for ere-

ating and analyzing all n'" order diagrams are ( 12) : 

1. Draw all topologically distinct connected diagrams with n particle interaction lines and 2n + 1 

directed Green function (particle) lines. 

2. Label each vertex with a space-time point, xi. 

3. A solid line represents the non-interacting (bare) Green function, G~p(XJ'), running from y to 

x. 

4. A wavy line represents the interparticle interaction, 
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U(x,y)u', µµ' = V(x,y)u·. µµ•O(tx - ty)· 

5. All internal variables are integrated over space and time. 

6. There is a spin matrix product for each continuous fermion line. 

7. A factor of ( - 1 )F is assigned to each diagram, where F is the number of closed fermion loops. 

8. A factor of (2ni/h)n is assigned to each n'" order term. 

9. A Green function with equal time variables is interpreted as Gg~(x, t ,y, t+) 

The Greek subscripts are fermion spin indices and a connected diagram is one in which all inter-

action and particle lines are somehow connected to the rest of the diagram. Figure la shows a 

typical connected diagram and figure lb shows a typical disconnected diagram. The diagramatic 

representation of the Feynman-Dyson perturbation expansion is shown through second order in 

figure 2. 

The Feynman-Dyson Perturbation Expansion 6 



Figure I. a) Typical connected diagram b) typical disconnected diagram 
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+ + + 
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Figure 2. Feyn~an-Dyson expansion of the exact interacting particle Green function 
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3.0 Self-Energy and Polarization Insertion 

Representing the terms in the perturbation expansion by Feynman diagrams enables one to notice 

certain distinct contributions to each term. Two such contributions are the self-energy insertion 

and the polarization part. Analysis of the perturbation terms with respect to these contributions 

leads to Dyson' s equation. 

3.1 Tlze Self-E11e1·gy 

Examination of figure 2 shows that the exact interacting Green function is the sum of the bare 

Green function and connected diagrams with a bare Green function coming in and another going 

out. This observation leads to the definition of the self-energy insertion, which is defined as a part 

on a diagram connected to the rest of the diagram by one particle line coming in and one particle 

line going out. For example, the boxed-off portion of figure 3 is a typical self-energy insertion. 

Defining the self-energy as the sum of the infinite set of self-energy insertions, the compact ana-

lytical expression for the interacting system Green function is obtained 
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(9) 

where !:~µ(xi! x'1) is the self-energy. Equation 9 is represented by the Feynman diagram in figure 

4, where the double cross-hatched bubble represents the self-energy. 

A self-energy insertion may be further classified as proper or improper. A proper self-energy in-

sertion is one which cannot be separated into two pieces by cutting a single particle line. A proper 

self-energy insertion is illustrated in figure 5a, while the self-energy insertion in figure 5b is improper. 

The proper self-energy is the sum of the infinite set of proper self-energy insertions and is denoted 

by r~p(x,y). The sum of all possible repetitions of the proper self-energy is equivalent to the self-

energy. This is represented analytically by 

(10) 

and is represented diagramatically as shown in figure 6, where the cross-hatched bubble represents 

the proper self-energy. In equation 10, the spin indices have been repressed. 

Insertion of equation l 0 in equation 9 yields the expression for the interacting system Green 

function in terms of the proper self-energy 

G(x,y) = G0(x,y) + Ja'4x1a4x'1G0(x,x1)!:*(x1,x'1)G0(x' 1,y) + 

J a4x1a4x'1 a4x2a4x'2G0(x, x 1)r* (x1,x'1)G0(x' 1, x2)r* (x2,x'2)G0(x'2,y) + ··· 
( 11) 

where the spin indices have been suppressed. Equation 11 can be formally summed (2), yielding 

Dyson' s equation 

(12) 

The Feynman diagrams of equations 11 and 12 are given in figure 7. 
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Dyson' s equation allows the practical iterative summation of an infinite class of perturbation 

terms. This feature will be discussed later in terms of self consistent Hartree-Fock theory and its 

extension by the inclusion of the time independent second-order self-energy insertions. 

3.2 Tlze Polarization Insertion 

Another class of contribution to each diagram is observed upon the examination of the inter-

particle interaction part of the diagrams in figure 2. Each interaction is the sum of the bare inter-

action and all connected diagram parts with particle interaction lines coming in and out. This leads 

to the definition of a polarization part. A typical polarization part is illustrated by the boxed-off 

part of figure 8. The polarization insertion, IT(x - y)µv. TtA• is defined as the sum of the infinite set 

of polarization parts. This definition allows for the calculation of an effective interaction, 

U(x - y)ap, pt• in terms of the bare interaction, U0(x - y)ap, pt• and the polarization insertion 

(13) 

Figure 9 shows the diagram corresponding to equation 13. The heavy wavy line represents the ef-

fective interaction and the bubble with the double cross-hatched box represents the polarization 

insertion. 

Defining a proper polarization part as one which cannot be separated into two pieces by cutting 

a bare interaction line allows the introduction of the proper polarization insertion, ff(x - y)µv,"A' 

suitably defined as the sum of the infinite set of proper polarization parts. Figure lOa shows a 

proper polarization part and lOb shows an improper polarization part. An analysis similar to that 

for the self-energy insertion yields Dyson's equation for the effective interaction 

* U(x - y) = U0(x - y) + U0(u - y)Il (x - y)U(x - y) (14) 
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Figure 3. Typical self~nergy insertion 
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Figure 4. Self-energy expansion of the exact Green function for the interacting particle system. 
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. Figure 5. a) Typical proper self-energy insertion. b) Typical improper self-energy insertion. 
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Figure 6. Proper self-energy expansion of the self-energy. 
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Figure 7. Proper self-energy expansion of the exact Green function of the interacting particle sys-
tem. 
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where the spin indices have been repressed. The Feyman representation of equation 14 is given in 

figure 11. 

Dyson's equation for the effective interparticle interaction again allows for the iterative summa-

tion of an infmite set of terms of a given class. In particular, if the only proper polarization part 

retained is the zero-order term, the polarization insertion becomes a sum of ring diagrams. This is 

the well-known random phase approximation (RPA) (4-7) and is shown in figure 12. The RPA 

will be discussed in more detail in the section on electron screening. 

Self-Energy and Polarization Insertion 17 



Figure 8. Typical polarization part 
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Figure 9. Effective interaction 
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Q b 
Figure IO. a) Typical proper polarization part. b) Typical improper polarization part. 
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Figure 11. Dyson equation for the effective interaction 
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Figure 12. RP A polarization insertion 
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4.0 Previous Experimental and Theoretical Results 

on TPA 

The simplest example of a class of organic semiconductors is trans - polyactylene (TPA). A 

great deal of theoretical ( 15-21) bterest in TP A has been generated because of its relative molecular 

simplicity and because of the large increase in conductivity exhibited upon chemical doping with 

electron donor or acceptor species (22). It has been suggested ( 15, 16,23,24) that electrical con-

duction occurs in doped TPA through the formation of a highly mobile domain wall. This domain 

wall can be well described as a topological kink soliton-like excitation ( 15, 16,25). Existence of the 

soliton-like state has been strongly supported both experimentally (26-28) and theoretically (15-20). 

Pristine TPA is obtained by thermal treatment of a cis - polyacetylene/ trans - polyacetylene 

mixture, causing the cis - oriented molecules to isomerize to the energetically more favorable 

trans-configuration (22). Theoretical (29-31) and experimental (32-34) results show that TPA 

undergoes a Peierls distortion (35), in which pairs of atoms move toward each other. This yields 

a dimerized ground state and a gap between the valence and conduction bands. This distortion can 

occur in two directions, so that there are two isoenergetic configurations (or phases), possible for 

the ground state of TP A. The Peierls distortions leading to each configuration are illustrated in 

figure 13. 
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The Peierls dimerized ground state for TP A has recieved strong experimental support in studies 

by Fincher, et al. (32), Yannoni and Clarke (33) and Duijvestijn, et al. (34). Fincher and co-

workers performed an X-ray scattering study of stretch oriented TPA films and found a 

symmetry-breaking dimerization distortion of ~ ~ 0.03A. The parameter ~ is the distance each 

carbon atom moves in one direction toward its neighbor in the Peierls distortion. Y annoni and 

Clarke and Duijvestijn and co-workers undertook NMR studies of TP A. In both studies it was 

determined that TPA was indeed dimerized. Yannoni and Clarke's nutation-NMR experiment 

yielded single and double bond lengths of l.44A and l.36A, while the double nuclear polarization-

cross polarization experiment performed by Duijvestijn and co-workers yielded bond lengths of 

1.45 ± O.OlA and 1.38 ± O.OlA. 

The existence of the dimerized ground state in infinite chain polyenes had been theoretically 

predicted (29,30) before a model system such as polyacetylene existed. More recently, Kirtman and 

co-workers (31) performed a minimal basis set ab initio study of polyacetylene. Their theoretical 

experiment confirmed that TPA existed in a dimerized ground state. 

A domain wall defect will be present on a TP A chain if a structural transition from a region of 

one phase to a region of the opposite phase occurs. This defect can arise during the cis/ trans 

isomerization process. This occurrence phenomenon is supported experimentally by the 

observance of random cis - linkages remnant in TPA samples (36). the domain wall defect can 

also arise after electron transfer to or from dopant species (22). This effect has been observed ex-

perimentally by Ikehata and co-workers (27), who measured the magnetic susceptibility of 

doped-TPA samples as a function of dopant concentration and found the charge carriers to be 

spinless, a feature consistent with the predicted electronic structure of the charged domain wall de-

fects. 

The domain wall defect is characterized by a geometric defect centered at the domain wall, since 

symmetry requires equivalent bonds adjacent to the boundary, and by an unpaired electron centered 

at the domain wall due to an interruption in the normal bonding pattern. In a charge-neutral chain, 
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the unpaired electron will occupy an orbital approximately mid-way (energetically), between the 

valence and conduction bands. In charged chains, this defect orbital will be empty (cation) or 

doubly-occupied (anion), so that the net spin in the charged systems will be zero. The neutral and 

charged defects are shown in a stylized manner in figure 14, where the arrows represent electrons. 

In real chains the defects extend over several carbon atoms. 

The presence of paramagnetic sites in undoped TP A has been confirmed by electron and nuclear 

magnetic resonance experiments (37-41). Motionally narrowed EPR lines (37,38,40) and the ob-

servation of the Overhauser effect in NMR experiments (39,41) demonstrate the existence of delo-

calized paramagnetic sites, ex.plained as rapidly diffusing domain wall defects (39,42). Localized 

paramagnetic sites have been observed in NMR experiments, as evidenced by the observation of 

the solid-state effect. The presence of localized sites, explained as domain wall defects trapped by 

oxygen impurities, is also required in order to reconcile EPR and NMR results for the defect dif-

fusion rate (39). 

Further experimental evidence for the existence of soliton-like domain wall defects in TPA has 

been produced in the work of Mele and Rice (26) and Suzuki and co-workers (28). Mele and Rice 

used group theory to predict the vibrational modes for a TPA chain containing a soliton-like defect 

and found the IR spectra of lightly doped-TP A samples fit their predictions quite well. Suzuki and 

co-workers perfomied an optical absorption study on lightly doped-TPA samples and observed 

peaks corresponding to the mid-gap to conduction band transition as well as the valence band to 

conduction band transition. 

TP A films are generally doped by exposure of the films to vapor containing the dopant molecules 

or electrochemically in solutions containing the dopant molecules using TP A films as electrodes. 

The most commonly used acceptor dopants include halogens (Cl,Br and I) and arsenic 

pentaflouride (Asf's) (43). Donor dopants which have been investigated include the sodium ion 

(Na+) and ammonia (NH3) (43). 
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The conductivity of pristine TPA is 4.4 x 10-sn- 1cm- 1 (43). The conductivity of TPA doped 

with the optimum ammount of AsFs has been measured at 4.0 x 102n- 1cm- 1. ( 43), so that an in-

crease in conductivity of seven orders of magnitude can be obtained by doping pure TPA. A 

conductivity range of eleven orders of magnitude has been achieved for TPA by doping with am-

monia and subsequent compensation doping with arsenic pentaflouride ( 43). 

Experiments ( 44) have shown that polaron defects develop upon light doping. As the dopant 

concentration increases, pairs of polarons decay into kink-antikink pairs. 

A number of theoretical investigations (15-21) of soliton-like excitations in TPA have been con-

ducted. The first such investigation was conducted by Su, Schrieffer and Heeger (SSH) (15,16), 

who employed a semi-empirical approach using a tight-binding (Huckel type), Hamiltonian. The 

SSH Hamiltonian included electron-phonon interactions for the pi-valence electrons and a quad-

ratic bonding function for the sigma valence electrons. In the SSH study a wave function corre-

sponding to the solitary wave solution from q>4 theory ( 45,46) was assumed. A Green function 

technique was employed to find the wave function parameters which minimized the defect state 

formation energy. Kivelson and Heim (17) examined the effect of adding a constant on-site 

Coulomb term (U) to the SSH Hamiltonian in a UHF study where the linear polyene was modeled 

as a ring with periodic boundaries. Subbaswamy and Grabowski (18) added both on-site and 

nearest-neighbor off-site Coulomb terms (U and V, respectively) to the SSH Hamiltonian in a SCF 

UHF study of chains ranging from 61 to 101 carbon atoms. These investigators examined the 

magnitude of the on-site term and the nearest-neghbor to on-site term ratio to achieve the best 

agreement with d.perimentally measured dimerization distortion, band gap and negative to positive 

spin density ratio. Hirsch and Grabowski (19) performed a similar experiment using a Monte Carlo 

simulation technique on chains of 25 carbon atoms with periodic boundaries. Boudreaux, Chance, 

Bredas and Silbey (BCBS) (20) used the all valence electron MNDO method (45) to examine the 

ground state and various soliton-like defects on linear polyenes ranging in size from C17H19 to 

C41H43 and performed complete geometry optimizations on these systems. 
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Figure 14. Neutral and charged domain wall defects. The arrows reprsent electrons. 
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5.0 Electron Screening and the RP A 

It has long been known ( 48) that two-electron interactions in atoms and molecules are influenced 

by the presence of other electrons in the system. In pi-molecular orbital calculations, such as those 

performed within the PPP approximation, the two- electron interactions are modeled by suitable 

potential functions ( 49). Electron screening effects are implicitly included in these functions, as they 

are parametrized to give results which are consistent with experiment. However, most commonly 

used potential functions were parametrized in calculations on relatively small conjugated systems, 

and do not adequately account for the screening present in larger systems. 

This shortcoming of common potential functions was exhibited quite clearly by Fukutome and 

Sa.sai (2!), who exa.111;ned the Mataga-Nishimoto (50) and Ohno (51) potentials in a semi-empirical 

UHF study of the ground state of TP A. Those authors found that the ratio between the on-site 

and off-site repulsion integrals was a major factor in determining if a dimerized ground state would 

arise. Particularly, the ratio of the nearest-neighbor and on-site repulsion integrals should be near 

0.68 in order to realize the dimerized ground state. In order to obtain a potential with the required 

nearest-neighbor to on-site repulsion integral ratio, they screened the Ohno potential with a con-

stant dielectric factor of 0.5 and screened the off-site terms with an exponential factor, 

exp{ -rm11/2.683A}. Using this screened potential they found a difference between adjacent bond 

lengths of 0.140 ± 0.02A in tlie ground state of TPA. 
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Subbaswamy and Grabowski and Hirsch and Grabowski found that a nearest-neighbor to on-site 

repulsion integral ratio of 0.5 gave the best agreement with experimentally measured values for 

dimerization, band gap and ratio of negative to positive spins. 

Mazumdar and Campbell (52) studied the effects of long range Coulomb interactions in a one-

dimensional half-filled band, with particular interest in the ground state of TP A. These authors 

found that, for downwardly convex potentials (53), the broken symmetry bond-order wave (BOW) 

state would be the ground state if 

1 
~v2j+t < -u + Lv2j, 
J 2 j 

( 15) 

otherwise, a charge density wave (CDW) ground state would result. The inequality (15) is satisfied 

by the potentials employed in the TPA studies mentioned previously (18-20) 

Several years prior to the w:>rk reported by Fukutome and Sasai, Gutfreund and Little (6,7) 

noted the necessity of accounting for electron screening effects in calculations involving large con-

jugated systems. These authors developed a general scheme for obtaining a screened, or effective, 

potential which was based on the random phase approximation (RPA). Their approach was sim-

ilar to that commonly used to include screening effects in the electron gas model ( 12). 

A simple model of the electrons m a metallic system is the electron gas. This model is further 

simplified by placing the electrons in a uniformly distributed positive field so that charge neutrality 

is ensured. For a spin and time independent bare electron interaction potential, the Dyson equation 

for the effective particle interaction in an electron gas is 

( 16) 

where V"(r;, fj) is the bare interaction between electrons on sites i and j, V(r;, r) is the effective 

interaction between electrons on sites i and j and Il'(r*, r1) is the proper polarization insertion. The 
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proper polarization parts, which are summed to yield the proper polarization insertion, are shown 

through first order in figure 15. 

The RPAi!' made by retaining only the zero-order proper polarization part, so that the RPA 

effective interaction is 

(17) 

where Il 0 (rk, r1) is the zero-order proper polarization at site k due to sit~ 1. The RPA effective 

interaction is shown in figure 16. 

If the electron interactions are assumed to be frequency independent, the zero-order proper 

polarization is given by (6,12) 

(18) 

where G0 (r", r1, ro) is the Fourier transformed bare single particle Green function and has the form 

(12) 

( 19) 

for occupied molecular orbitals, <Pa(rk) ,with orbital energies, &a and unoccupied molecular orbitals, 

<P;(r,) ,with orbital energies &;, where the molecular orbitals and molerular energies are the 

eigenvectors and eigenvalues obtained through diagonalization of a Huckel-type Hamiltonian. In 

19, 

lirn 11 -+ 0 + eiCJl1\ = lirn t' -+ t + eiCJl(t'- c) 

and the limit Tl -+ o+ is implicit and is required to ensure convergence of the time integration. 
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Evaluating the integral in equation 18 by performing a contour integration, expressing the mo-

lecular orbitals as linear combinations of atomic orbitals (LCAO approximation) and assuming no 

explicit geometry dependence for the LCAO expansion coefficients, the following form is obtained 

(20) 

where {eta} and {ct;) are sets of expansion coefficients in the LCAO approximation and the sum 

over A. accounts for different electron spins. For closed shell systems this reduces to the atom-atom 

polarizability expression obtained by Coulson and Longuet-Higgins (54). 

If the electron-electron interaction is assumed to be spin independent, equation 17 can be solved 

to give an expression for the effective interaction in terms of the bare interaction and the zero-order 

proper polarization ( 12). The PPP approximation allows the use of a matrix notation for ex-

pressing the two electron interaction. Using this notation and solving equation 17, the following 

expession for the effective interaction is obtained ( 6, 12) 

V = V0 (I - n V0 )- 1 (21) 

where I is the identity matrix, V" if is the bare interaction between electrons on sites i and j, v;i is 

the effective interaction between electrons on sites i and j, CT;1 is the polarization at site i due to site 

j and all matrices are N xN for N atomic sites. 

In Gutfreund and Little's calculational scheme the polarization matrix is calculated using the 

orbital coefficients and energies obtained from an initial Huckel treatment of the system. Then this 

polarization matrix is used in equation 21 to find an effective interaction matrix which is used in 

the SCP procedure. In our calculations, use of the Huckel orbital coefficients and orbital energies 

in calculating the polarization matrix yielded results for the ground state of TP A which were not 

consistent with experimental results. The major inconsistency of the results was the lack of 

dimerization, with a difference between adjacent bonds in the center of the system of 0.008A. The 
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nearest-neighbor to on-site repulsion integral ratio has an average value of 0.45, so a dimerized 

ground state would not be expected, according to Fukutome and Sasai's criteria. 

This problem can be rectified by using the orbital coefficients and orbital energies obtained from 

the SCF procedure to calculate the polarization matrix. This approach was also employed by 

Terasaka and co-workers (55) in the calculation of excitation energies in cyclic and linear polyenes. 

The SCF-RPA scheme requires that the effective interaction be calculated iteratively within the 

SCF procedure and is thus more time consuming, however this does solve the problems of short 

range overscreening and long range antiscreening and is necessary in order to achieve agreement 

with experiment .. The average value for the repulsion integral ratio for the potential obtained from 

this scheme was 0.69, which is sufficiently close to the critical value of 0.68 reported by Fukutome 

and Sasai. 

Examination of this potential in terms of Mazumdar and Campbell's.inequality, (equation 15), 

shows that the BOW ground state should be expected, as the potential is downward convex and the 

inequality is met. Interestingly, the inequality in 15 holds only for interactions at sites away from 

the ends of the molecule. However, this should be expected since the Mazumdar-Campbell re-

lationship was developed for an infinite system modeled by a finite system with periodic boundaries. 

Use of the SCF orbital coefficients and orbital energies is equivalent to the inclusion of higher 

order polarization ·•erms. This can be shown clearly using diagrams. In equation 17, the bare Green 

function is replaced by the SCF-Hartree-Fock approximation to the exact Green function. The 

HF approximation to the exact Green funtion is shown diagramatically in figure 17. Iterations 

within the SCF procedure yield the SCF-HF approximation to the exact Green function which is 

represented by the diagram in figure 18. Replacement of the bare Green function lines in figure 16 

yields the diagram in figure 19, where the heavy bubble can be expanded as shown in figure 20. 

These diagrams can be identified as higher order polarization terms. 
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Figure 21 shows the effective interaction at site l ( Vij), for a system containing 40 carbon atoms. 

The asterisks represent the values obtained when the bare Green function was used to calculate the 

polarization matrix and the circles represent the values obtained by using the SCF-HF approxi-

mation to the exact Green function to calculate the polarization matrix. The bond alternation 

patterns resulting from both approaches are plotted in figure 22. 

A comparison of the bare Ohno potential, the Ohno potential screened as suggested by 

Fukutome and Sasai, and the Ohno potential screened by our modification of Gutfreund and Lit-

tie's technique is made in figure 23. The calculated differences in adjacent bonds in the ground state 

of TPA (ti.R00 ), which result when these potentials are used are 0.021A, 0.140A and 0.087A re-

spectively. 

Cooper and Linderberg ( 56) developed a technique for the inclusion of screening effects in which 

polarization terms containing exchange interactions were included. According to their scheme, the 

effective interaction is calculated iteratively using the following equations 

(22a) 

(22b) 

Here, V,. is the effective interaction between electrons at sites r and s, V",. is the bare interaction 

between electrons at sites r and s, nu,pq 0 and npq,u• 0 are the zero-order mutual atom-bond md 

b~nd-bond polarizabilities respectively and rpq,t represents the so called Hvertex parts" which are 

terms that when multiplied with the zero-order proper polarization term yield a series of higher 

order polarization terms. 

Equation 22a can be expressed as the diagram shown in figure 24. The shaded area in the bubble 

represents the vertex part, which is shown diagramatically in figure 25. 
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Cooper and Linderberg reported excitation energies and screened repulsion integral values for 

butadiene and azulene. When an attempt was made to repeat their calculations, it was found that, 

in order to match their results, the orbital coefficients and orbital energies from the SCF procedure 

had to be used to calculate the polarizabilities in equations 22a and 22b and that only one iteration 

per SCF cycle of equation 22b could be made so that 

(23) 

The screened potential calculated in this manner is exactly that calculated according to the 

SCF-RPA scheme. This can be seen by replacing the vertex part in equation 22a with the first 

approximation to the vertex part given in equation 23. This yields equation 24, 

(24) 

which is equivalent to equation 17. It should be noted that when equations 22a and 22b were used 

iteratively until the screened potential had converged, the values for all on-site and off-site inter-

actions were essentially the same. This was true when either the bare Green function or the 

SCF-HF approximation to the exact Green function was used. 

The inclusion of polarization terms containing exchange interactions is important in the calcu-

lation of excitation energies, particularly the energies of triplet excitations. However, we found that 

including the diagonal part of the lowest order polarization term containing an exchange interaction 

(represented by the fourth diagram in figure 15) had little effect on the electronic or topological 

structure of the singlet and doublet ground states studied. Gutfreund and Little point out ( 6) that 

the diagonal part of this term gives the major contribution to the polarization, thus it can be con-

eluded that it is not essential that this or higher order polarization terms with exchange interactions 

be included in these calculations. 
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Figure 15. Proper polarization parts. 
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Figure 16. RP A effective interaction. 
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Figure 18. SCF-Hartree-Fock approximation to the exact interacting particle system Green function 
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Figure 19. RPA effective interaction with the bare Green function replaced by the 
SCF-Hartree-Fock approximation to the exact interacting particle system Green 
function 
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Figure 20. RP A polarization insertion with the bare Green function replaced by the 
SCF-Hartree-Fock approximation to the exact interacting particle system Green 
function 
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Figure 24. Cooper and Linderberg effective interaction. 
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Figure 25. Vertex part 
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6.0 Calculational Details 

In the initial stages of the study of soliton-like excitations in TPA, the quantum chemical force 

field (QCFF) method of Warshel and Karplus (57) was used. Use of this approach proved un-

successful in modeling the kink soliton-like state because of the electron interaction potential em-

ployed. However, results of these calculations showed the TPA ground state to be essentially 

planar and that the C-C-C bond angles were close to 120°. Further, values of 122°. and 123°. have 

been found experimentally (34) for the C-C-C bond angles in TPA. Results of the QCFF studies 

of polyenes with and without attached hydrogen atoms showed that the presence of the hydrogen 

atoms had no significant effect on the pi-electronic structure or carbon-backbone geometry. As a 

result of these findings, the systems studied by the PPP· UHF-RP A method consisted only of planar 

carbon skeletons, with bond angles fixed at 120°. 

The pi orbitals in the conjugated system were handled using the PPP Hamiltonian within the 

UHF approximation. The resonance (transfer) integrals, ~(r;), were chosen to have the standard 

exponential distance dependence (47) 

(25) 
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where the constants p0 , o and r0 have the values suggested by Schulten,Ohrnine and Karplus (58) 

of -2.04l9eV, l.2518A- 1 and l.536A respectively. The repulsion integrals, JIO(r;, 7j). were given 

by the bare Ohno interaction potential, screened as described earlier. The distance dependence of 

the bare interaction is given by 

(26) 

The values y 0 = l l.13e V and a0 = l.2935A were used. 

The energy contribution of the sigma valence electrons was calculated by using a Morse bonding 

potential ( 57) 

n n 
Ea= L Ea i = L D[ exp{ -2a(q1 - r0 )}-2 exp{ - a(q1 - r0 )}] 

i=l • i=l 
(27) 

where D = 87.95 kcal mo/- 1, a = 1. 7562 A- 1, r0 = l.5265A, n is the number of sigma bonds and 

Optimization of the energy as a function of bond lengths was carried out using the method of 

steepest descents. According to the method of steepest descents, the shift of the functional param-

eters is chosen so that the value of the function approaches an optimum value along the path of 

steepest descent. The analytical expression for the bond shifts in this work was 

TOTAL 
rnew = 1".~ld _ S( dE ) 
i I di".· 

' 
(28) 

where the step size, S, is 

(29) 

for n bonds. In equation 29, a is 0.75 times its value in the previous iteration if the energy was 

lowered by the previous bond shift and 1.2 times its previous value if the energy went up in the 
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preceding iteration. The initial value of a is 0.002. S has the dimensions of length2 over energy and 

a has the dimensions of length 3 over energy2 • 

The first derivatives of all energy functions with respect to bond length were found analytically. 

The derivative of the energy contribution of the i1h sigma bond with respect to bond i (where bond 

i is the bond between sites i and i + 1) was calculated according to 

dEcr,t --- -2Da[ exp{ -2a(q1 - r0 )} - exp{ - a.(q1 - r0 )}]. (30) 

The energy derivatives of the pi functions were calculated assuming no explicit distance dependence 

in the molecular orbitals. Thus, the first derivative of the one-electron contribution to the pi en-

ergy, £~ , with respect to bond i was approximated as 

(31) 

where P is the total density matrix. The first derivative of the two-electron contribution to the pi 

energy, £; with respect to bond i was approximated by 

(32) 

where the k/1h element of V' is 

V'k1 = [(I+ V0 TI)(V0 ')(I-V0 TI)- 1]k/· (33) 

Here, the k/th element of V0 ' is 

(34) 

In (32), the matrix A is a sum of density matrix products so that the kl'" element is given by 
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where pa and PP are the alpha and beta density matrices and Z* is the charge on atom k. Equation 

33 can be derived directly from equation 21 and equation 32 is obtained by examination of the 

standard PPP-UHF pi energy expression. 

It is well known that the UHF theory yields orbitals which are not pure spin eigenfunctions (59). 

To remedy this, Harriman spin projection (60) was used and all spin densities reported here are 

those of the pure doublet spin states. 
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7.0 Solutions To The Solitary Wave Equation 

The work of Goldstone and Jackiw ( 46) in the quantization of non-linear waves yields the <p4 

-field theory which is derived for a one-dimensional kink such as that observed in TP A. Further, 

the continuum model of TPA can be shown to be in direct correspondence with the model devel-

oped by Goldstone and Jackiw which leads to the <p4 -field theory wave equation. 

One solution to the <p4 -field theory solitary wave equation ( 45,46) 

(36) 

is the kink soliton. The wave function for a TPA chain containing the kink soliton-like domain 

wall defect should consequently have the form (25) 

'l'(n) = N0sech(n/l') (37) 

where N0 = ( 1/2) / '- 112, n is the carbon number away from the defect center and/' is approximately 

half of the defect extent in terms of carbon-carbon bond units. From equation 37, the spin dis-

tribution for this defect state is found to be proportional to sech2(n/ / '). 

The bond length alternation pattern for a TP A chain segment containing a domain wall defect 

has the form (15,25) 
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f:..Rn = f:..RctJ tanh(n/1) (38) 

where t:..R" = ( - 1)"(rn+ 1 - r"). Here, f:..R00 is the difference between the lengths of adjacent bonds 

in regions of normal bond alternation and I is approximately half of the geometric defect extent in 

terms of C-C bond units. 

Another solution to the <p4 -field theory solitary wave equation which is useful in the description 

of TPA defect states is the 2-soliton solution. This solution models the polaron defect in TPA, 

which is described as a local deviation from one of possible dimerized ground states. The bond 

alternation pattern of the soliton-like polaron state has the form (20,25) 

(39) 

where a is a measure of the defect amplitude and I is approximately the half width, in C-C bond 

units, of the topological defect. 
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8.0 PPP-UHF-RPA Results for TPA 

8.1 TP A Ground State 

As described previously, TP A can exist in one of two isoenergetic dimerized configurations in 

the ground state. In this study, the ground state was modeled by even membered carbon chains 

of 26, 40, 60 and 74 atoms. The proper C2h molecular symmetry was ensured during the SCF and 

spin projection procedures by symmetrizing the appropriate orbitals during diagonalization. 

lbese calculations yielded a single bond length of l.456A and a double bond length of l.369A, 

so that ~R00 = 0.087A. This value is in good agreement with the experimental (34) value of 

0.07 ± O.OlA. Suhai (61) applied second-order Moller-Plesset perturbation theory in an ab initio 

study on the ground state of TPA and found dR00 = 0.085A, so that the result of the present study 

is in good agreement with the current best theoretical result as well. 

The MNDO treatment of BCBS yielded a value of !lR00 = 0.106A, while SSH found a value 

of dR00 = 0.146A. 
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It should be noted that the results of the studies on the effects of adding Coulomb repulsion 

terms to the SSH Hamiltonian performed by Kivelson and Heim (17), Subbaswamy and 

Grabowski ( 18) and Hirsch and Grabowski ( 19) should be modified in light of the smaller 

dimerization distortion found experimentally. 

8.2 NeutJ·al Solitons 

A neutral soliton defect on a TPA chain was modeled by inserting a carbon radical into a 4N 

even membered carbon chain, creating an odd membered chain of 4N + 1 carbon atoms. Calcu-

lations on systems ranging from 33 to 73 carbon atoms yielded value3 of I = 14 for the geometric 

defect and /' = 8 for the electronic defect. A projected spin density ratio of - 0.25 ± 0.01. was 

found, in good agreement with the value - 0.33 ± 0.02 reported by Thomann and coworkers 

(38,62). 

Figures 26 and 27 illustrate the bond alternation pattern and spin density distribution for a 57 

carbon atom chain containing a neutral soliton defect. In figure 27 the asterisks represent the spin 

densities calculated from the spin-projected pure-doublet wave function and the plusses represent 

the spin densities calculated from the unprojected wave function. This comparison clearly shows 

the necessity of obtaining wave functions which are pure spin eigenfunctions in UHF studies. 

In their theoretical investigation SSH found the values I= I' = 7 for TPA containing a neutral 

soliton defect. Kivelson and Heim, Subbaswamy and Grabowski and Hirsch and Grabowski found 

defects which were roughly of the same extent as those reported by SSH and BCBS reported values 

of I = 3 and /' = 5 for the geometric and electronic defects. It is interesting to note that the extent 

of the neutral geometric defect in TPA we find is much broader than that reported elsewhere, which 

is consistent with the smaller dimerization found for the ground state. The electronic defect, as 
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evidenced by the spin density distribution, is only slightly broader than that previously reported. 

Further, there is a qualitative difference in the relative extents of the geometric and electronic de-

fects. SSH, Kivelson and Heim, Subbaswamy and Grabowski and Hirsch and Grabowski found 

both defects to be of the same extent, BCBS found the electronic defect to be broader than the 

geometric defect, while we found the geometric defect to be broader than the electronic defect. It 

is clear that the difference lies in the way in which the two-electron interactions were handled in 

each study. 

8.3 Clzarged Solitolls 

The large change in the conductivity of TP A samples upon doping (22) prompts interest in 

systems containing charged soliton-like domain wall defects. As pointed out by BCBS, the ap-

proach employed by SSH does not allow a distinction to be made between neutral and charged 

solitons. This is due to the fact that in their treatment the soliton level is at the Fermi energy and 

is therefore a non-interacting state. Thus, changing the occupation of this level to create charged 

solitons would not cause the change in energy and distribution of electron density which are nec-

essary to have a change in geometry and spin distrbution. The addition of two-electron terms shifts 

the soliton energy level from mid-gap, allowing a distinction to be made between charged and 

neutral soliton defects. 

Systems containing charged soliton defects we~ modeled by removing an electron from the 

highest occupied molecular orbital to create a cationic soliton or adding an electron to the lowest 

unoccupied molecular orbital to create an anionic soliton. 

The bond altemati6n patterns for cationic and anionic soliton defects on 57 carbon atom chains 

are shown in figures 28 and 29. The carbon chain containing the positively charged defect has a 
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bond alternation pattern which fits tanh(n/ 13) with I = 13. The geometric defect on the chain 

con~aining the negative defect is more compact, with I = 10. These results are in qualitative agree-

ment with those reported by BCBS who found I = 5 and I < 3 for chains containing positive and 

negative defects respectively. 

Both charged systems exhibit damped charge density waves (DCDW), with positive to negative 

oscillations of charge density from site to site. The distribution of charge density for the charged 

defect states are shown in figures 30 (cation) and 31 (anion). The charge densities fit a curve which 

is proportional to sech2(n/ I'). In this study the DCDW for the system containing the positive defect 

fit the hyperbolic secant curve with /' = 15 and the DCDW for the system containing the negative 

defect fit with /' = 10. Thus, the DCDW is slightly more diffuse than the geometric defect on the 

chain containing the cationic soliton, while the DCDW is of the same dimension as the geometric 

defect on the chain containing the anionic soliton. This result is greatly different from that reported 

by BCBS who found DCDW's which were much more diffuse than the topological defects in both 

charged systems, with an identical value of I' · = 8 for chains containing either a cationic or anionic 

defect. 

8.4 Polarons 

The polaron defect will arise if an electron is gained or lost from a perfectly dimerized chain, and 

is thought to account for conduction in doped TPA and other organic semiconductors (22,63). 

Chains containing positively and negatively charged polarons were modeled as 40 membered 

polyene radicals with c2h symmetry. 

The bond alternation pattern for 40 membered chains containing positive and negative polaron 

defects are represented in figures 32 and 33, respectively. The solid lines represent 
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LlR00 [1-asech2(n/{)] with I= 14 and a = 0.96 for the positive polaron and I= 10 and a = 1.42 for 

the negative polaron. Values of I= 9 and a = 0.51 (positive polaron) and I= 7 and a = 0.69 

(negative polaron) were reported by BCBS. 

The distribution of charge density (lattice polarization) in a system containing a positive polaron 

defect is shown in figure 34. Figure 35 shows the lattice polarization for a 40 carbon chain con-

taining a negative polaron defect. The features of both curves are in qualitative agrrement with 

those reported by BCBS, however both curves are more diffuse than the BCBS curves. This is 

reasonable in light of the difference in the extent of lattice distortion reported here as compared to 

that reported by BCBS. and is consistent with the results obtained for other defect states. 

8.5 Conclusions fi·om the PPP-UHF-RP A Study of TPA 

The results found in this study present defects which are much more diffuse than those previously 

reported. However, the qualitative characteristics of the defect states are in agreement with exper-

iment and with those predicted in other theoretical studies. While it is currently· impossible to 

measure the extent of the geometric defect experimentally and the exact extent of the electronic 

defect is unclear due to the possibility of soliton diffusion (39,42), such quantities as the measured 

ground state dimerization and ratio of negative to positive spin density can be used as a way of 

comparing the results of theoretical studies. It can be seen that the results of this study are in better 

agreement with the experimentally measured degree of ground state dimerization and ratio of neg-

ative to positive spin density on chains containing domain wall defects than results reported in the 

other studies mentioned. 

While the model employed by SSH, and modified by others (17-19) was useful in characterizing 

the neutral soliton defect in TP A and the MNDO treatment of BCBS yielded results on this and 
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other defect states of interest in TP A, the use of UHF theory and the explicit consideration of 

electron screening effects are necessary steps in the better understanding of soliton defects in TP A. 
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9.0 Theory of the Extended UHF-TISOSE 

Method 

Although the form of the exact interacting particle system Green function is unknown, this 

function can be assumed to have the same form as the bare Green function if the proper self-energy 

is time independent ( 12). Making this assumption, it is possible ( 12) to de_velop a Schrodinger-like 

equation for the single particle wave functions of the interacting particle system 

(40) 

where L'(x1,x2) is the time-independent self energy and <p/x1) and Ej are the orbitals and orbital 

energies of the interacting particle system. 
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9.1 Relation to Hartree-Fock Theo1y 

The first-order approximation in the self-energy Feynman-Dyson perturbation expansion of the 

exact interacting particle system Green function is the retention of the first-order proper self-energy 

insertions, so that l:'(xJJ) = 1l:'(xJJ). The Feynman diagram for this approximation is shown in 

figure 17. The analysis of these diagrams according to Feynman's rules yields 

(4la) 

(4lb) 

These are simplified to 

(42a) 

(42b) 

Inserting the5e into equation 40 yields 

The second term on the left hand side of equation 43 is the Hartree-Fock Coulomb operator, while 

the third term is the Hartree-Fock exchange operator, so that the first order approximation in the 

self-energy Feynman-Dyson perturbation theory is the Hartree-Fock approximation. 
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9.2 Extension of Ha1·tree-Fock Theory with tlze TISOSE 

Terms 

If the self-energy expansion for the interacting system Green function is made with the total 

proper self-energy replaced by the first-order approximation, then the SCF-HF theory develops. 

This is shown diagramatically in figure 18. 

The next order of approximation to the exact Green function for the interacting particle system 

which is consistent with the assumptions leading to equation 40 is the inclusion of the time-

independent second-order self energy insertions. The Feynman diagrams for the four time-

independent second-order self-energy insertions are shown in figure 36. 

The analysis of these diagrams by the Feynman rules yields 

(44a) 

(44b) 

(44c) 

(44d) 

Performing the appropriate contour integrations, assuming the bare Green function to be diag-

onal in spin, making the zero differential overlap approximation (ZDO), expressing molecular or-
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bitals as linear combinations of atomic orbitals (LCAO approximation) and assuming that the 

interparticle potential has the spin independent form 

V(x - x'h.i.:. µµ' = V(x - x')o(t - t')ou .. 'oµµ' (45) 

yields matrix elements appropriate for use in the PPP-UHF treatment of pi-valence electrons. The 

derivation of equation 46a from equation 44a is given in the appendix. The second-order matrix 

elements are 

(u = v) 

(u :;z!: v) 

(u = v) 

(u :;z!: v) 

(46a) 

(46b) 

(46c) 

(46d) 

In equation 46, O' represents particle spin, pa(PP), is the alpha (beta), density matrix, pr is the 

total density matrix, y is the matrix of two-electron repulsion integrals and {ca} and { i,;a} ( { c~} and 

{ i::~} ) are the sets of eigenvectors and eigenvalues of the modified Pock matrices 

(47a) 

(47b) 

The matrix sa in equation 47 may be any of the matrices defined in equation 15, or the sum of 

them. 
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9.3 Results of the Extended PPP-UHF-RPA-TISOSE 

Calculations on TP A 

The pi-valence electrons of the linear polyenes studied were treated using the PPP-UHF 

Hamiltonian, with the time-independent second-order perturbation terms added. 

In this preliminary study, the effects of the time-independent second-order perturbation terms 

on calculations involving the polyene radicals trans - C9Hn and trans - C17H19 were examined, 

and were modeled as planar carbon skeletons with fixed bond angles. The matrix elements in 

equation 46 were added either individually, or as a sum, to the PPP-UHF treatment, as indicated 

in equation 47. 

The results for the change in pi-energy, !!.£ .. , and the total negative to total positive spin density 

ratio, p- / p + , are given in table 1. The pi-energy difference is defined as 

(48) 

where £[/HF is the pi-energy calculated when only the first-order self-energy terms are included 

(Hartree-Fock approximation), and £[/HF+ so is the pi-energy calculated when one, or all, of the time 

independent second-order self-energy terms is included. 

The results of this study show that important many-body contributons can be included in simple 

pi-orbital calculations by the use of the field theory familiar to solid state physicists. Further, the 

time independent second-order self-energy terms considered here have been shown to contribute 

significantly to the electronic structure and energy of the systems studied. 
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Table 1 

C-9 Results-

En( kcal/mo!) D..En - + p /p 

UHF -393.01 0 0.5668 

2-A -393.01 0 0.5668 

2-B -51.28 341.72 0.2544 

2-C -381.62 11.39 0.7000 

2-D -·337.16 55.93 0.4212 

ALL -102.04 290.97 0.3115 

C-17 Results-

En(kcal/mol) D..En - + p /p 

UHF -786.36 0 0.6956 

2-A -786.3 0 0.6956 

2-B -305.47 480.89 0.5108 

2-C -753.83 32.53 0.8216 

2-D -116.42 669.94 0.5427 

ALL 106.55 894.91 0.7872 

RPA -886.49 -100.13 0.4700 
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10.0 Description of the Computer Code 

The calculations performed in this research were carried out using a computer program written 

specifically for the PPP-UHF treatment of polyenes. The program was compiled and executed on 

the VMl system at V. P. I. and S. U. 

The main program reads in the number of atoms in the system, the net charge on the system, 

the net electronic spin in the system and the number of iteration cycles to be carried out. Switches 

controlling the type of calculation are also input as data. The program is able to perform standard 

PPP-UHF calculations, as well as the PPP-UHF-RPA procedure and the extended 

PPP-UHF-TISOSE procedure. The initial bond lengths of the system to be studied are the final 

data required. 

The main program also sets up matrices to symmetrize- antisymmetrize the calculated molec11lar 

orbitals, so that the proper molecular symmetry is assured, calls the energy function controlling 

routine MOLECU, controls the optimization procedure STEEPD and prints the initial and final 

geometry and energy contributions. 

A brief description of the main subroutines follows: 
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BFUNC2- Calculates the sigma bonding energy and sigma bonding energy derivative contributions 

for each sigma bond according to the Morse bonding function, equation 25 and the corresponding 

derivative equation 26. BFUNC2 is called by BONDP. 

VPHI- Sets-up the diagonal elements of the one-electron Hamiltonian matrix using the SOK 

parametrized form of the standard PPP expression, equation 23, and calculates the one-electron 

pi-energy derivative contribution for each bond according to equation 27. VPHI is called by 

BONDP. 

BONDP- Calculates the length of each bond from the Cartesian coordinates of the bonded atoms. 

It also calls the routines BFUNC2 and VPHI. BONDP is called by MOLECU 

STEEPD- Calculates bond shifts leading to minimization according to the steepest descents 

method. STEEPD is called by the main program. 

MOLECU- Controls the calculation of all energy and energy derivative contributions. It also per-

forms an initial Huckel treatment of the system for input into the SCF procedure. It is called by 

the main program. 

SCF- Performs the SCF UHF procedure. It calls routines which set-up and diagon<ilize the alpha 

and beta Fock matrices used in the calculation of the pi-energy contribution. It may also call 

routines which calculate the RPA effective interparticle interaction according to equation 21 or set 

up the second-order self-energy matrices defined by equation 46. This routine controls the output 

of all information about the pi-valence electrons, including density matrices, charge and spin dis-

tributions and molecular orbitals and energies. SCF is called by MOLECU. 

SN2A-SN2D- Set up the matrix elements defined by equation 46. These routines are called by 

SCF, when required. 
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SYDI- Diagonalizes the Pock matrices so thst the molecular orbitals have the proper symmetry. 

It uses the external diagonalization routine RS from the EISPAK package of eigensystem routines. 

SYDI is called by SCP. 

PROJ- Performs Harriman spin projection on the UHF orbitals to find the spin distribution and 

pi-energy of pure spin eigenfunctions. PROJ is called by SCP. 

DENA- Calculates the alpha and beta density matrices. DENA is called by SCP. 

UHFOCK- Sets up the alpha and beta Pock matrices in the UHF and UHF-RPA procedures or 

the modified Pock matrices (according to equatiot?- 36) if the extended UHF-TISOSE procedure is 

used. UHFOCK is called by SCP. 

SYMNAT- Diagonalization routine which produces natural orbitals for spin projection. The or-

bitals are constrained to have the proper symmetry. This routine also uses the EISPAK routine 

RS. SYMNAT is called by PROJ. 

SYMCOR- Diagonalization routine which produces beta-corresponding orbitals for spin 

projection. The orbit:tls are constrained tc h:lvc the proper symmetry. This routine also uses the 

EISPAK routine RS. SYMNAT is called by PROJ. 

VEFF- Calculates the RPA effective particle interaction according to equation 21. This routine 

uses the external LINPAK routines DGECO and DGEDI to find the matrix inverse in equation 

21. VEFF is called by SCF. 

VZERO- Calculates the Ohno (50) bare interaction according to equation (24). It may be called 

by MOLECU or VEFF, as required. 
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VPRIME- Calculates the two-electron pi-energy derivative contribution of each bond according to 

equation (28). It is called by MOLECU. 

In addition to the main program and these nineteen subroutines, there are twelve other sub-

routines and three functions. A listing of the program is included (see appendix), for reference. 
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Appendix A. Derivation of Equation 46a 

Figure 39 shows the complete Feynman diagram of the second-order self energy insertion "2a". 

Starting with equation 45a 

(A 1) 

we first assume the interparticle interaction to be spin and time independent so that 

L;a(X1,X2) = - (21t ~ )2o(X1 - X2) L, L, :E,Jcfx3cfx4cfx5 
µ,µ cr,cr 't,'t 

V(x1 -=-x3)o(t1 - t3)o:u:<>µµ•V(x4 -=-x5)o(t4 - t5)ocrcr'<>n' (A2) 

0 0 0 Gµcr(X3,X4)Gcr·,•(X4,X5)Gtµ'(X5,X3). 

Then, assuming the bare Green function to be diagonal in spin and simplifying yields 

* i 2 .4 L2a(X1,X2) = - (21th) o(x1 - X2)~ Jcfx3cfx4a X5 

V(x1 -=-x3)o(t1 - t3)V(x4 -=-x5)o(t4 - t5) (A3) 
0 0 0 Gµµ(X3,X4)Gµµ(X4,X5)Gµµ(X5,X3). 

Performing the t3 and t5 time integrations yields 
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* i 2s:: JdJ d3 .4 !2a(X1 ,X2) = - (27th) u(X1 - X2)~ X3 X5a X4 
-+ __..,. _,.-+ o-+ ...... o-+ -+ o-+ _,. 

V(x1 -x3) V(x4 -x5)G (x3, t1 , x4, t4)G (x4, t4 , x 5, t4)G (x5, t4 , x 3, t1). 
(A4) 

It is now advantageous to Fourier transform the time component of the Green functions 

• i 2 3 3 .4 dco1 dco2 dco3 
!2a(X1,X2) = - (27th) 8(x1 - X2)~ Jd X3d X5a X4 27t 27t 27t 

V(x1 -=-x3) V(x4 -=-xs)/001(11 - t4)Go(x3, x4, co1) (AS) 

eioo211GO(X4, X5, co2)e -ioo3(t1 - ~)GO(X5, X3, C03) 

which simplifies to 

(A6) 

Inserting the Fourier transformed bare Green function 

+ (A7) 

into (A6) yields 

(A8) 

/00111'( 0(EF - Ek) + 0(Ek - EF) ) 
co1 - Ek27t/h + irt' _co1 - Ek27t/h - irJ' 

0(EF - E1) + 
( C01 - E127t/h + ill' 

Using the integration contour in figure 41, the following expression in terms of the interparticle 

interaction and the molecular orbitals and orbital energies is obtained 
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* occ occ unocc 3 
i:2a(x1,x2) = - (2rt/h)o(x1 - x2):E r r r fd x3, x5, x4 

µ j k I 

v(x1 : x3) v(x4 : x5)<p/x4)<p/xs) 
. -+ -+ -+ -+ -+ -+ -+ -+ -1 
[<Pk(X3)<Pk(X4)<pk(x5)<pt(x3) + <l'k(x4)<pt(x3)<pk(x3)<pt(x5)](E1 - Ek) 

Inserting this into the Schrodinger-like equation 

yields 

...... ...... occ occ unocc 3 ...... ...... ...... ...... 
fix1)<p/x1) - LL L L Jd x3,x5,x4V(x1 -x3)V(x4 -x5) 

~1 k I m 

<Pk(x4)<pk(xs)[cpt(x3)<1>m(x4)<pt(xs)<1>m(x3) + cpt(x4)<1>m(x3)<pt{x3)<1>m(xs)I 

(A9) 

(AlO) 

(A 11) 

where fix1) is the one-electron Fock operator. This allows the definition of a new operator defined 

from 

(Al2) 

The matrix representation of S(x1) in the atomic orbital basis is 

(A13) 

Inserting S(x1) from (AlO) and assuming all orbitals are real yields 

Expanding the molecular orbitals in the atomic orbital basis (LCAO approximation) gives 
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ace ace unacc 3 -+ -+ -+ -+ -+ 

- 2l: l: l: l: l: l: l: L l: l: fd x 1x3, X5, X4 V(x1 -x3) V(x4 -xs)Xu(x1) 
µk / m rsrcbw · 

c,kcskCrf cf bm Cwm x,( X4)Xs( X5) 

Using chemists notation for the two-electron integral, this becomes 

ace ace unacc 
Suv = - 2l: l: l: l: l: l: l: l: l: l:c,kcskcr1 

µk / m rstcbw 

CcfbmCwm(uvltw)(rclsb)(E1 - Ek) - I 

Making the zero-differential overlap approximation: 

(uvjtw) = (uvltw)8uv8tw = Yut 

yields 

ace ace unacc _ I 
Suv = -2l: L L L LL l:c,kcskCtfrftmCsm YutYrsCE1 - Ek) 

µkl m rsr 

0 

finally, using the density matrix definition 

yields the form of equation 46a 
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(u = v) 

(u :;C v) 

(u = v) 

(u :;C v) 

(A 15) 

(A 16) 

(A 17) 

(A 18) 
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Figure 37. Complete Feynman diagram for self-energy insertion "'2a". 
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Appendix B. Computer Program 

C PPP-UHF WITH RPA AND TISOSE C SUBROUTINE CONF 
IMPLICIT REAL*8 (A-H,P-Z) 
REAL*8 LENGTH 
CHARACTER OCH(60),0SYMB 
COMMON/ISEC/ISOA,ISOB,ISOC,ISOD,IDMP 
COMMON /HH/H( 60,60),R( 60,60),PT( 60,60),Z( 60) 
COMMON/MAT/BMAT(60,60),GMAT(60,60),HCORM(60,60) 
COMMON/FINAL/B(60),X(l80),AL(60),NC(60) 
COMMON/CONTRO/NATOM,NBOND,NAP,NAO,NAT3 
COMMON/ENSTOR/ENS(20),STEPS(20),ITH 
COMMON/UHF/PA(60,60),PB(60,60) 
COMMON/Pll/JCHG,NALPH,NBET,NPIE,JSPIN,JUHF 
COMMON/SW/ISW,IPR,ISCR 
COMMON /SYM/S( 60,60),ST( 60,60),NSM(2),NOCC(2) 
COMMON/DER/D1(60),D2(60),D3(60),VOP(60,60),D(60) 
COMMON/EXCI/IEX 
COMMON/SELF /DMP1,DMP2 
DIMENSION ITITLE(lO) 
DIMENSION DX(J) 
DATA OSYMB/'A'/ C IEX= 1 
IEX = 0 

PI= 3.141592635898DO 
DMP1=70.DO 
DMP2=0.DO 

. DO IO I= 1,60 
OCH(I) = OSYMB 

IO NC(I)= I 
CALL ERRSET(207,256,-1,l,l,209) 
READ 9, (ITITLE(l),I= 1,IO) 
PRINT 19, (ITITLE(I),I = l, 10) 
ISW= 1 

READ (5,29) NATOM 
NAP=NATOM 
NBOND= NAP-1 
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NAT3= 3"'NATOM 
DO 20 I= l,NATOM 

20 Z(I) = l.DO C ... FORM S = SYMM. TRANSFORMATION. 
CALL INIT (S) 
KOC= MOD(NAP,2) 
IF (KOC .EQ. 0) GO TO 40 C ... ODD SYSTEM 
NSMS=(NAP+ 1)/2 
NSMA= (NAP-1)/2 
NSM(l)= NSMS 
NSM(2) = NSMA 
KOC= MOD(NSMS,2) 
IF (KOC .EQ. 0) GO TO 50 
NOC 1 = (NSMS + 1)/2 
GO TO 55 

50 CONTINUE 
NOCl = NSMS/2 

55 CONTINUE 
KOC= MOD(NSMA,2) 
IF (KOC .EQ. 0) GO TO 60 
NOC2=(NSMA+ 1)/2 
GO TO 65 

60 CONTINUE 
NOC2 = NSMA/2 

65 CONTINUE 
NOCC(l)=NOCl 
NOCC(2) := NOC2 
CN = l.DO/DSQRT(2.DO) 
NSMSM = NSMS-1 
DO 70 K= l,NSMSM 
KA= NAP+ 1-K 
Il=K 
IS= NAP+ 1-11 
S(ll,K)=CN 
S(IS,K)=CN 
S(Il,KA) = CN 

70 S(IS,KA) = -CN 
S(NSMS,NSMS) = l.DO 
GO TO 80 

40 CONTINUE C ... EVEN SYSTEM 
N02=NAP/2 
NSM(l)=N02 
NSM(2)=N02 
IOC = MOD(N02,2) 
IF (IOC .EQ. 0) GO TO 90 
NOCl = (N02+ 1)/2 
NOC2= (N02-l)/2 
GO TO 95 

90 NOC 1 = N02/2 
NOC2=N02/2 

95 CONTINUE 
NOCC(l)= NOCl 
NOCC(2) = NOC2 
CN = l.DO/DSQRT(2.DO) 
DO 100 K= l,N02 
KA=NAP+ 1-K 
ll=K 
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IS= NAP+ 1-11 
S(Il,K)=CN 
S(IS,K)=CN 
S(ll,KA)=CN 

100 S(IS,KA) = -CN 
80 CONTINUE 

DO 110 I= l,NAP 
DO 110 J = l ,NAP 

110 ST(I,J) = S(J,I) C .. 
PRINT 49,NAP,NSM( l),NOCC( l),NSM(2),NOCC(2) 
READ (5,29) NSTEEP,INEW,JCHG,JSPIN,ISCR 
READ (5,29) ISOA,ISOB,ISOC,ISOD,IDMP C 
DO 6098 I= l,NBOND 

6098 READ(5,6099) B(I) 
6099 FORMAT(Fl2.5) 

AL60 = DACOS(0.5DO) 
DO 6000 I= l,NBOND 
AL(I)=O.DO 
IK= 2*(I/2) 

6000 IF(IK.EQ.I) AL(I) = AL60 
CALL CART(B,X,AL,NAT3,NATOM) 
CALL ALPH(X,AL,NBOND) 
DO 207 I= l,NAP 
READ (5,69) (PA(I,J),J= l,NAP) 

207 CONTINUE 
DO 217 I= l,NAP 
READ (5,69) (PB(I,J),J = l,NAP) 

217 CONTINUE CCC 
NPIE = NAP-JCHG 
NALPH = (NPIE + JSPIN)/2 
NBET = (NPIE-JSPIN)/2 
NTOT= NALPH + NBET 
WRITE(6,79) NTOT,NPIE,NALPH,NBET 
IF(NTOT .NE. NPIE) STOP 
NAO= NALPH CC 
PRINT 89,NATOM C 
IPR= 1 
CALL MOLECU( l, l,E,50,EB,EPI,EDCOR,OCH,ESOD) 
IPR=O 
IF(NSTEEP.LT.l) GO TO 150 CC STEEPEST DESCENT MINI'.\1IZATION C 

DO 160 ITH= l,NSTEEP 
CALL MOLECU(l,l,E,75,EB,EPI,EDCOR,OCH,ESOD) 
PRINT 99 
IF(ITH.GT.l) GO TQ 170 C 
PRINT 109 . 
PRINT 119,(ITITLE(I),I = 1,9) C 
PRINT 129,E,EDCOR,EB,EPI,ESOD 
CALL INTERO (NBOND,B,D) 
IPR=O 

170 CONTINUE 
CALL STEEPD(NBOND,D,B,E,STEP) 
CALL CART(B,X,AL,NAT3,NATOM) 

DO 180 IAT= l,NATOM 
180 WRITE(7,39) (X((IAT-1)*3+J),J= 1,3) 
160 CONTINUE C 
150 CONTINUE 
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IF (NSTEEP .EQ. 0) ITH= 1 
IPR= 1 
CALL MOLECU(-l,l,E,70,EB,EPI,EDCOR,OCH,ESOD) C DO 190 I= l,NAP C 

WRITE (7,59) (R(I,J),J = l,NAP) 
190 CONTINUE 

DO 200 I= l,NAP 
WRITE (7,69) (PA(l,J),J= l,NAP) 

200 CONTINUE 
DO 210 I= l,NAP 
WRITE (7,69) (PB(l,J),J = l,NAP) 

210 CONTINUE 
IPR=O 
EFIN=E 
PRINT 139 
PRINT 119,(ITITLE(I),I = 1,9) 
CALL INTERO (NBOND,B,D) 
PRINT 129,E,EDCOR,EB,EPI,ESOD 
PRINT 149 
DO 220 I= l,NSTEEP 

. PRINT 159,1,ENS(I),STEPS(I) 
220 CONTINUE C C 

RETURN C 
9 FORMAT(20A4) 

19 FORMAT(1Hl,20A4) 
29 FORMAT(9I5) 
J9 FORMAT(JF8.4) 
49 FORMAT(/,JX,'NAP=',13,' NS=',13,' NSO=',IJ,' NA=',13,' NA0=',13) 
59 FORMAT (8F 10.6) 
69 FORMAT (8F10.8) 
79 FORMAT(/,JX,'NTOT= ',I4,' NPIE= ',I4,' NALPH= ',I4,' NBET= ',14) 
89 FORMAT ( JOX, 18HNUMBER OF ATOMS = ,16) 
99 FORMAT(//) 
109 FORMAT (lHl , 6X, JOH INITIAL RESULTS, I 6X, JOH 

*------------------------------,Ill ) 
119 FO RMA T(24X, l 8A4) 
129 FORMAT (4(/),lOX, 19H TOTAL ENERGY = ,F20.10, I KCAL' 

+ ,ll,lX,'DIAGONAL CORE CONTRIBUTION = ',F20.10,' KCAL' 
+ 'I 5X' 25H BOND CONTRIBUTION = 'F20.10, I KCAL' 
+ ,l,4X,' PI CONTRIBUTION = ',F20.10,' KCAL' 
+ ./,2X,'SECOND ORDER CONTRIBUTION = ',F20.10,' KCAL',//) 

139 FORMAT (lHl , 5X, 26H FIN AL RESULTS, I 7X, 25H----
*------------------- , Ill) 

149 FORMAT(/,lOX,'ITERATION HISTORY',/,5X,'ITER',5X,'ENERGY',10X,'STEP 
*',/) 

159 FORMAT(5X,I4,2(Fl5.6,1X)) 
END C---------------------------------------------------------·-------------
SUBROUTINE BFUNC2(11,Jl,BI,F,DF) 
IMPLICIT REAL*8 (A-H,P-Z) C MORSE TYPE BOND ENERGY FUNCTION C 
CB 1=87.948DO 
BO 1 = 1.52645DO 
CA= 1.7562DO 
DR= BI-BOl 
A2= DEXP(-1.DO*CA *DR) 
Al= A2"'*2 
F =CB 1*(A1-2.DO* A2) 
DF =-CBI *CA *(2.DO*Al-2.DO*A2) 
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RETURN 
END C:----------------------------------------------·-----------------------
SUBROUTINE VPHl(Il,Jl,D,H,Bl,DX) 
IMPLIC:IT REAL"'8 (A-H,P-Z) C: THIS SUBROUTINE BUILDS THE MATRIX EL-

EMENTS OF H WHIC:H ARE OF C: THE PPP FORM BETAO*EXP(DELTA*X), WITH 
SOK PARAMETRIZATION. 

DIMENSION D(l),H(60,60) 
Dll'v1ENSION DB(60),DX(l) 
C:OMMON/FINAL/B(60),X(l80),AL(60),Nq60) 
C:OMMON/C:ONTRO/NATOM,NBOND,NAP,NAO,NAT3 
C:OMMON/MAT/BMAT(60,60),GMAT(60,60),HC:ORM(60,60) 
C:OMMON/Pil/JC:HG,NALPH,NBET,NPIE,JSPIN,JUHF C:. .... SET C:ONSTANTS 

C: ..... SOK PARAMETERS 
BO= -2.0419DO 
DEL= l.2518DO 
RO= l .536DO 
C:ON = 23.062DO C: 

DRl =RO-BI 
BEXP= DEXP(DEL*DRl) 
VBB = BO*BEXP 
PC:ON = 2.DO*BMAT(Il,Jl) 
VPB = C:ON*PC:ON 
H(Il,Jl) = H(ll,Jl) + VBB 
H(Jl,11) = H(Il,Jl) 
13=(11-1)*3 
13= (Jl-1)*3 
DVPBDB = -DEL*VBB 
DF = DVPBDB*VPB C: C:ALL DFBON(DX,DB,Bl,AL,Il,Jl) C: C:ALL 

DBD(I 1,J l ,DF ,DB,D,NBOND) 
D(Il) = DF 
RETURN 
END C:----------------------------------------------------------------------
FUNC:TION LENGTH(DX) 
IMPLic:IT REAL*8 (A-H,P-Z) C: THIS FUNC:TION EQUALS THE LENGTH OF 

VEC:TOR DX 
DIMENSION DX(3) 
REAL *8 LENGTH C: 
S=O.ODO 
DO 10 I = 1 , 3 

10 S = S + DX< I ) • DX < I ) 
LENGTH= DSQRT(S) , , 
RETURN 
END C:----------------------------------------------------------------------
SUBROUTINE BONDP(E,H) 
IMPLic:IT REAL*8 (A-H,P-Z) C: C: THIS SUBROUTINE C:OMPUTES THE BOND 

C:ONTRIBUTIONS TO E , D AND DD C: 
C:OMl\10N/FINAL/B(60),X(l80),AL(60),Nq60) 
C:OMMON /DER/D( 60),D R( 60),DV( 60),VOP( 60,60),DT( 60) 
C:OMMON/C:ONTRO/NATOM,NBOND,NAP,NAO,NAT3 
DIMENSION H(60,60) 
DIMENSION DB(60),DX(3) 
REAL *8 LENGTH C: 
DO 10 II= 1,NBOND 

Jl=Il+l 
13 = (11-1)11'3 
13= (Jl-1)*3 
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DO 20 J= 1,3 
20 DX(J) = X(J3+J)-X(l3+ J) C 

BI= LENGTH(DX) 
B(ll)=BI 
CALL DFBON(DX,DB,BI,AL,Il,Jl) C C ... CALL BOND ENERGY FUNCTION 

CALL BFUNC2(Il,Jl,BI,F,DF) C C ... ADD DIAGONAL CONTRBUTIONS TO 
H-MATRIX 

CALL VPHl(Il,Jl,DV,H,Bl,DX) C PACK IST DERIVATIVE VECTOR D AND 
TOT AL ENERGY E 

E=E+F C 
D(Il)= DF C 

10 CONTINUE C 
RETURN 
EJ\iD C----------------------------------------------------------------------
S UBRO UTINE DFBON (X,DB,R,AL,l,J) 
IMPLICIT REAL+8 (A-H,P-Z) C THIS SUBROUTINE RETURNS THE lST AND 

2ND DERIVATIVES OF R(I,J) C 
DIMENSION X(3),DB(l),AL(l) CC lST DERIVATIVES CC 

• R l = l.ODO/R 
R3=Rl**3 
Il = I-1 
M=J-I 
DO 10 K= l,M 

10 DB(K)= RI +(X(I)+DCOS(AL(Il + K))+ X(2)+DSIN(AL(Il + K))) 
RETURN 
END C----------------------------------------------------------------------
S UBRO UTINE DBD(l3,J3,DF,DB,D,NB) 
IMPLICIT REAL+8 (A-H,P-Z) C CONSTRUCTION OF THE D VECTOR AND THE 

DD MATRIX FOR ATOM PAIR C 
DIMENSION D(l),DB(l) CC PACK IST DERIVATIVES VECTOR D 
II= 13-1 
M=B-13 
DO 10 K= l,M 

DBX = DB(K)+DF 
10 D(Il + K) = D(Il + K) + DBX 

RETURN 
END C----------------------------------------------------------------------
S UBRO UTINE INTERO (NB,B,D) 
IMPLICIT REAL"'8 (A-H,P-Z) 
COMMON/CONTRO/NATOM,NBOND,NAP,NAO,NAT3 CC THIS SUBROUTINE 

PRINTS OUT THE INTERNAL COORDINATES C 
DIMENSION B(l),D(l) C 
PRINT 9 
PRINT 19 
DO 10 I = I, NB 
Il =I-I 
IF(ll) 20,20,30 

30 DELR = B(I)-B(Il) 
GO TO 40 

20 DELR = O.OOOODO 
40 CONTINUE 

PRINT 29, B(I) ,DELR,D(I),I 
10 CONTINUE C 

PRINT 19 C 
RETURN 

9 FORMAT( 2X,'BOND LENGTHS',5X,'DELTA R',5X,'DERIVATIVE',3X,'BOND', 
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&/) 
19 FORMAT( lH ) 
29 FORMAT( 3(2X,Fl0.4),9X,I4) 

E:t'-1]) C:----------------------------------------------------------------------
SUB ROUTINE STEEP]) (N,]),B,E,STEP) 
IMPLIC:IT REAL*8 (A-H,P-Z) C: STEEP]) C:ALC:ULATES THE BON]) SHIFTS US-

ING THE METHO]) OF C: STEEPEST ])ESC:ENT 
C:OMMON/ENSTOR/ENS(20),STEPS(20),ITH 
DIMENSION D(l),B(l) C: 
ENS(ITH) = E 
IF(ITH.NE.l) GO TO 10 C: 
STEP= 0.002DO 
GO TO 40 C: 

10 C:ONTINUE 
IF ( ENS ( ITH) - ENS( ITH - l ) ) 30, 20, 20 C: 

20 C:ONTINUE 
STEP = 0.75])0+STEP 
GO TO 40 C: 

30 C:ONTINUE 
STEP = STEP + l.2DO 

40 C:ONTINUE 
STEPS( ITH ) = STEP 
S=O.ODO 
DO 50 I = 1, N 

50 S = S + D( I ) + D( I ) C 
S = SJN 
S=DSQRT( S) 
S = STEP/S 
])O 60 I = l, N 

60 B( I ) = B( I ) - S + ])( I ) 
RETURN 
EN]) C:----------------------------------------------------------------------
SUB ROUTINE MOLEC:U(IHF,ISF,E,MXIT,EB,EPI,EDC:OR,OC:H,ESOD) C: THIS 

SUBROUTINE C:ALLS ALL THE ENERGY FUNC:TIONS 
IMPLIC:IT REAL"'8 (A-H,P-Z) 
C:HARAC:TER OC:H( 60) 
C:OMMON/UHF/PA(60,60),PB(60,60) 
C:OMMON/Pll/JC:HG,NALPH,NBET,NPIE,JSPIN,JUHF 
C:OMMON/SW/ISW,IPR,ISC:R 
COMMON/POL/Rl(60,60),P(60,60) 
C:OMMON/DER/DBN])(60),DREP(60),DVPH(60),VOP(60,60),])(60) 
C:O MMO N /HH/H( 60,60),R( 60,60),PT( 60,60),Z( 60) 
C:OMMON/MAT/BMAT(60,60),GMAT(60,60),HC:ORM(60,60) 
C:OMMON/FINAL/B(60),X(l80),AL(60),Nc:(60) 
C:OMMON/C:ONTRO/NATOM,NBON]),NAP,NAO,NAT3 
COMMON/SC:R/S 1( 60,60),S2( 60,60),S3( 60,60),S4( 60) 
C:OMMON/EIS/FV1(60),FV2(60),MATZ 
])ATA C:ON/23.062])0/ 
])ATA ALPHAl/-11.13])0/ 
])AT A ZER0/0.])0/ 
MATZ= 1 
E=ZERO 
EB=ZERO 
EPI=ZERO 
EDC:OR=ZERO 
])MAX= l.])-05 
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KMAX=3C 
DO 10 I= l,NBOND 

DBND(I) =ZERO 
DREP(I) =ZERO 
DVPH(I) =ZERO 
IF (DABS(D(I)) .GT. DMAX) DMAX = DABS(D(I)) 

10 D(I) =ZERO 
IF (DMAX .LT. IO.DO) KMAX= 5 

IF (IHF .NE. 0 ) GO TO 20 C ... DO A RUCKEL CALCULATION 
CALL INIT (Sl) 
DO 30 I= l,NAP 

IMl=I-1 
S 1(1,IM 1) = -2.384800 
S l(IM I ,I)= -2.3848DO 
S 1(1,I) = -9.8 IDO 

30 CONTINUE 
CALL RS( 60,NAP ,S l ,S4,MA TZ,S2,FV1,FV2,IERR) 
CALL DENA(S2,PA,NAP,NALPH,l) 
CALL DENA(S2,PB,NAP,NBET,2) 
DO 50 I= !,NAP 

DO 60 J= l,I 
BMAT(I,J)= PA(I,J)+ PB(l,J) 
BMAT(J,I)= BMAT(l,J) 
GMAT(l,J) = 0.5DO+(PA(I,I)"'PA(J,J)-PA(l,J)u2 

X + PB(I,l)"'PB(J,J)-PB(I,J)U2 
X + PA(l,I)"'PB(J,J) + PA(J,J)"'PB(l,I) 
X -(PA(l,I)+ PA(J,J)+ PB(l,I)+ PB(J,J)-Z(l)"'Z(J))) 

GMA T(J ,I)= GMAT(I,J) 
60 CONTINUE 

GMAT(l,I) =ZERO 
50 CONTINUE C CALL VEFF(NAP,NBOND,2) 

CALL VZERO(NAP,R,O) C IF (IPR .NE. 1 ) GO TO 20 C WRITE (6,9) C CALL 
OUTPUT (Sl,NAP,2,NC,OCH) 

20 CONTINUE 
IF (IHF .NE. 0) CALL VZERO(NAP,R,O) 

DO 80 I= l,NAP 
Z(I)= I.DO 
DO 90 J= !,NAP 

H(I,J) =ZERO 
90 CONTINUE 

H(I;I) = ALPHAl 
80 CONTINUE 

DO 100 I= l,NAP 
EDCOR = EDCOR + CON"'H(I,l)"'(-Z(I)) 

100 CONTINUE 
CALL BONDP(EB,H) 
CALL SCF(IHF ,ISF ,MXIT,EPl,KMAX,OCH,ESOD) 
CALL VPRIME(NAP,NBOND) 
DO 110 IB= l,NBOND 

D(IB) = DREP(IB) + DBND(IB) + DVPH(IB) · 
110 CONTINUE 

IF (IPR .NE. 1) GO TO 120 
PRINT 19 
DO 130 ID= l,NBOND 

PRINT 29,ID,DBND(ID),DREP(ID),DVPH(ID),D(ID) 
130 CONTINUE 
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120 CONTINUE 
E = EDCOR +EB+ EPI + ESOD 
RETURN 

9 FORMAT (//,3X,'UNMODIFIED REPULSION INTEGRAL MATRIX',//) 
19 FORMAT(/,1X,'BOND',7X,'DBND',7X,'DREP',7X,'DVPHl',6X,'DTOT',/) 
29 FORMAT(2X,I4,2X,4(Fl0.3,2X)) 
39 FORMAT (//,3X,'F.S. SCREENED REPULSION INTEGRAL MATRIX',//) 

END C---------------------------------------------------------------------
SUBROUTINE SCF(IHF,ISF,MXIT,EPI,KMAX,OCH,ESOD) 
IMPLICIT REAL*8 (A-H,P-Z) 
CHARACTER OCH(60) 
COMMON/ISEC/ISOA,ISOB,ISOC,ISOD,IDMP 
COMMON /MAT /BMA T( 60,60),GMA T( 60,60),HCO RM( 60,60) 
COMMON/FINAL/B(60),X(l80),AL(60),NC(60) 
COMMON/CONTRO/NATOM,NBOND,NAP,NAO,NAT3 
COMMON/Pil/JCHG,NALPH,NBET,NPIE,JSPIN,JUHF 
COMMON/SW/ISW,IPR,ISCR 
COMMON/UHF/PA(60,60),PB(60,60) 
COMMON/HH/H(60,60),R(60,60),PT(60,60),Z(60) 
COMMON/POL/RI(60,60),P(60,60) 
COMMON/EIG/V(60,60),EA(60),VB(60,60),EB(60) 
DIMENSION FB( 60,60),F A( 60,60),PP( 60),SP( 60),S(60,60),SB( 60,60) 
DIMENSION A1(60,60),A2(60,60),Sl(60) 
DATA CON/23.062DO/ 
DAT A ZER0/0.DO/ 
IF(NAP.LE.l) GO TO 65 
MMS=2 
IF (NALPH .EQ. NBET) MMS = 1 
CF= I.DO 
KONT=O 

5 CONTINUE 
KONT=KONT+ 1 
DO 10 I= !,NAP 

DO 20 J= l,I 
HCORM(I,J) = H(I,J) 
HCORM(J,I) = H(I,J) 

20 CONTINUE 
Xl=ZERO 

DO 30K=1,NAP 
IF(K.NE.I) XI= XI+ R(I,K) 

30 CONTINUE 
HCORM(I,I) = HCORM(I,I)-Xl 
Sl(I)=ZERO 

10 CONTINUE 
KOUNT=l 

15 CONTINUE C C .. .INITIALIZE ARRAYS AND ENERGIES C 
CALL INIT(S) 
CALL INIT(SB) 
CALL INIT(Al) 
CALL INIT(A2) 
ISND=O 
EOLD=ETOT 
ETOT=ZERO 
ESOD=ZERO 
ESODA=ZERO 
ESODB=ZERO 
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DO 140 I= l,NAP 
Sl(I)=ZERO 

140 CONTINUE C ..... C .... 
IF (KOUNT .LT. 2) GO TO 75 
IF (ISOA.NE.0.0R.ISOB.NE.O) ISND= 1 
IF (ISOC.NE.O.OR.ISOD.NE.O) ISND = 2 
IF (ISOA.NE.O) CALL SN2A(R,NAP,Sl) 
IF (ISOB.NE.O) CALL SN2B(R,PT,NAP,Sl) 
IF (ISOC.NE.O) CALL SN2C(NAP,NALPH,S,V,EA,R,PA) 
IF (ISOC.NE.O) CALL SN2C(NAP,NBET,SB,VB,EB,R,PB) 
IF (ISOD.NE.O) CALL SN2D(NAP,NALPH,S,V,EA,R) 
IF (ISOD.NE.O) CALL SN2D(NAP,NBET,SB,VB,EB,R) 
DO 120 I= 1,NAP 

S(l,I) = S(l,I) + S 1(1) 
SB(l,I) = SB(l,I) + S 1(1) 

120 CONTINUE 
75 CONTINUE 

DO 1 I= l,NAP 
DO 2J=1,1 
PAl(l,J) = PA(l,J) 
PAl(J,I) = PA(J,I) 
PA2(1,J)= PB(l,J) 
PA2(J,I)= PB(J,I) 

2 CONTINUE 
1 CONTINUE C C ... ALPHA ORBITALS C 

CALL UHFOCK(R,PA,PB,FA,NAP,S) 
IF(ISND.NE.O.AND.IDMP .NE. 0) CALL EDAMP(V,FA,NAP,NALPH,Al,CF,1) 
CALL SYDl(NAP,FA,V,EA,1) 
CALL DENA(V,PA,NAP,NALPH,l) C C ... BETA ORBITALS C 
CALL UHFOCK(R,PB,PA,FB,NAP,SB) 
IF(ISND.NE.O.AND.IDMP .NE. 0) CALL EDAMP(VB,FB,NAP,NBET,A2,CF,2) 
CALL SYDI(NAP,FB,VB,EB,MMS) 
CALL DENA(VB,PB,NAP,NBET,2) 

115 CONTINUE C C .. CALCULATE TOTAL DENSITY MATRIX C 
DO 40 I= l,NAP 

DO 50 J = l,NAP 
PT(I,J)= PA(l,J)+ PB(l,J) 
PT(J,I) = PT(l,J) 
BMAT(I,J) = PT(l,J) 
BMA T(J ,I)= DMA T(l,J) 

50 CONTINUE 
40 CONTINUE C C ... CALCULATE SECOND ORDER SELF ENERGY CONTRIB-

UTION C 
IF (ISND .EQ. 0) GO TO 125 
CALL SECE(NAP,PA,S,ESODA) 
CALL SECE(NAP,PB,SB,ESODB) 
ESOD=-0.5DO"'(ESODA + ESODB) 
WRITE (6,169) ESOD 

125 CONTINUE C C .. CALCULATE UHF ELECTRONIC ENERGY C 
DO 60I=1,NAP 

DO 70J=1,NAP 
F A(l,J) = FA(l,J)-S(l,J) 
FB(l,J) = FB(l,J)-SB(l,J) 
ETOT= ETOT+ 0.5DO"'(PT(J,l)"'HCORM(l,J) + PA(J,l)"'(FA(I,J)-Al(l,J)) 

+ + PB(J,l)"'(FB(l,J)-A2(1,J))) 
70 CONTINUE 
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60 CONTINUE 
ETOT = ETOT + ESOD C C .. TEST ENERGY FOR SCF CONVERGENCE C 
IF (KOUNT .EQ. 1) EOLD= 2.D03 
DEV= (ETOT-EOLD)/EOLD 
IF (DABS(DEV).LT.5.D-06) GO TO 25 
IF(KOUNT.GE.MXIT) GO TO 25 
KOUNT = KOUNT + 1 

2600 IF (KOUNT .LT. MXIT) GO TO 15 
25 CONTINUE C C ... TEST ENERGY FOR'R-MATRIX CONVERGENCE C 

IF (KONT .EQ. 1) EPAST=2.D03 
DEVI= (EPAST-ETOT)/EPAST 
IF (DABS(DEVl) .LT. 1.D-05) GO TO 85 
IF (KONT .GE. KMAX) GO TO 85 
IF (ISCR.NE.O) CALL VEFF(NAP,NBOND,l) 
EPAST=ETOT 
GOTO 5 

85 CONTINUE C C ... PERFORM SPIN PROJECTION C 
CALL PROJ(HCORM,EPil,OCH,NC,R) C C. .. ADD Z(l)"'Z(J)+R(l,J) TO PI ENERGY 

c 
EP=ZERO 
DO 80 I= 2,NAP 
II= I-1 

DO 90 J= 1,11 
EP = EP + Z(I)"'Z(J)"'R(I,J) 

90 CONTINUE 
80 CONTINUE CC EPI=CON"'(ETOT-ESOD+EP) 

EPI = CON"'(EPII + EP) 
ESOD= CON*ESOD C 
PRINT 39,KOUNT,DEV CC GO TO 451 

452 IF(IPR.EQ.O) GO TO 45 C C ... PRINT DENSITY MATRICES,EIGENVECTORS AND 
EIGENFUNCTIONS C C WRITE(6,179) C CALL OUTPUT (S,NAP,2,NC,OCH) C 
WRITE(6,189) C CALL OUTPUT (SB,NAP,2,NC,OCH) 

WRITE ( 6, 19) 
CALL OUTPUT (R,NAP,2,NC,OCH) C WRITE (6,29) C CALL OUTPUT 

(H,NAP,2,NC,OCH) 
PRINT 49 
CALL OUTPUT (PT,NAP,2,NC,OCH) 
PRINT 59 
CALL OUTPUT (PA,NAP,2,NC,OCH) 
PRI~JT 69 
CALL OUTPUT (PB,NAP,2,NC,OCH) 
PRINT 79 
WRITE (6,89) (EA(I),I= l,NAP) 
PRINT 99 
CALL OUTPUT (V,NAP,2,NC,OCH) 
PRINT 109 
WRITE (6,89) (EB(I),I= l,NAP) 
PRINT 119 
CALL OUTPUT (VB,NAP,2,NC,OCH) CC 

451 DO 100 I= l,NAP 
SP(I) = PA(l,1)-PB(I,I) C PP(I) = PT(l,I) 

100 CONTINUE 
WRITE (6,129) 
WRITE (6,139) (l,SP(I), I= l,NAP) C C ... CALCULATE SPIN DENSITY RATIO C 
SPOS=ZERO 
SNEG=ZERO 
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DO 110 I= l,NAP 
IF(SP(I) .LT. ZERO) GO TO 55 
SPOS = SPOS + SP(I) 
GO TO 110 

55 SNEG=SNEG+SP(I) 
110 CONTINUE 

SRA T = DABS(SNEG/SPOS) 
WRITE(6,149) SRAT C WRITE(6,159) C WRITE (6,139) (l,PP(I), I= l,NAP) C 

45 CO~TINUE 
65 CONTINUE 

RETURN C 
9 FORMAT (/,2X,'ITERATION ',13,/) 
19 FORMAT (//,2X,'REPULSION MATRIX',//) 
29 FORMAT (//,2X,'H-MATRIX',//) 
39 FORMAT(//,lX,' AFTER ',13,' ITERATIONS, SCF DEVIATION ',D15.9,/) 
49 FORMAT (///5X,'TOTAL DENSITY MATRIX',/) 
59 FORMAT (///5X,'ALPHA-MATRIX',/) 
69 FORMAT (///5X,'BETA-MATRIX',/) 
79 FORMAT (/,2X,'ALPHA EIGENVALUES',/) 
89 FORMAT (5(2X,F8.4)) 
99 FORMAT (/,2X,'ALPHA ORBITALS',/) 

109 FORMAT (/,2X,'BETA EIGENVALUES',/) 
119 FORMAT (/,2X,'BETA ORBITALS',/) 
129 FORMAT (//,2X,'DIAGONAL SPIN DENSITY') 
139 FORMAT (5(13,3X,Fl2.6,6X)) 
149 FORMAT(/,IOX,'NEG. TO POS. S.D. RATIO= ',Fl2.8) C 159 FORMAT 

(//,2X,'DIAGONAL CHARGE DENSITY') 
169 FORMAT (/,23X,'SECOND ORDER ENERGY IS ',Fl2.6,' EV') 
179 FORMAT (/,3X,'ALPHA 2ND ORDER MATRIX ELEMENTS',/) 
189 FORMAT (/,3X,'BETA 2ND ORDER MATRIX ELEMENTS',/) C 

E!'-JD C-----------------------------------------------------------------------
SUBR O UTINE EDAMP(C,FA,NAP,NOC,A,CF,IA) 
IMPLICIT REAL*8 (A-H,P-Z) C .... SUBROUTINE ADDS CONSTANT TO UNOCCU-

PIED ORBITAL TO MIN. MIXING 
COMMON/SELF /DMP,CON 
DIMENSION C( 60,60),F A( 60,60),A(60,60) 
NOCl=NOC+ l 
IF (IA .EQ. 2) GO TO 5 
CON=DMP+CF 

5 CONTINUE 
DO 10 I= l,NAP 

DO 10 J= l,NAP 
DELA=O.DO 

DO 20 K= NOCl,NAP 
20 DELA= DELA 1: C(l,K)*C(J,K) 
10 A(l,J) = CON+DELA *CF 

DO 30 I= l,NAP 
DO 30 J= l,NAP 

30 FA(l,J)=FA(l,J)+A(I,J) 
IF (IA .EQ. 2) GO TO 15 
CF= 0.65DO*CF 

15 CONTINUE 
WRITE (6,9) CON 

9 FORMAT(3X,'CON= ',Fl2.6) 
RETURN 
END C----------------------------------------------------------------------
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SUBROUTINE SN2A(V,N,S) 
IMPLICIT REAL"'8 (A-H,P-Z) C ... SUBROUTINE CALCULATES SECOND ORDER 

SELF-ENERGY MATRIX ELEMENTS FOR C ... DIAGRAM 2A 
COMMON/EIG/CI(60,60),EA(60),C2(60,60),EB(60) 
COMMON/lJHF/PA(60,60),PB(60,60) 
COMMON/PII/JCHG,NA,NB,NPIE,JSPIN,JUHF 
COMMON/SELF /DMP I ,DMP2 
DIMENSION V(60,60),S(l) 
NAP= NA+ I 
NBP =NB+ I C ... FOR ODD ELECTRON SYSTEMS ONLY 
N2= (N + I)/2 
DO 5 I= I,N2 
TEMP4=S(I) 
DO IO IR= I,N 

DO IO IS= l,N 
PVA = PA(IR,IS)"'V(IR,IS) 
PVB = PB(IR,IS)"'V(IR,IS) 

DO 10 IT= l,N 
Vl = V(I,IT) 

DO 20 L= l,NA 
TEMPl = Cl(IR,L) 
TEMP2= Cl(IT,L) 
TEMP3= EA(L) 

DO 20 M = NAP,N 
DELE = TEMP3-(EA(M)-DMP2) 
CS= TEMPI "'CI(IS,M) 
C= cs+PVA "'VI "'TEMP2"'CI(IT,M)/DELE 
TEMP4 = TEMP4-C 

20 CONTINUE 
DO 2I L= l,NB 
TEMPl = C2(IR,L) 
TEMP2 = C2(IT,L) 
TEMP3 = EB(L) 

DO 2I M=NBP,N 
DELE = TEMP3-(EB(M)-DMP2) 
CS= TEMPI "'C2(1S,M) 
C = CS"'PVB"'VI "'TEMP2"'C2(IT,M)/DELE 
TEMP4 = TEMP4-C 

21 CONTINUE 
IO CONTINUE 

S(I) '= 2.DO"'TEMP4 
IP=N+I-I 
S(IP) = S(I) 

5 CONTINUE 
RETURN 
El'\D C----------------------------------------------------------------------
S UBRO UTINE SN2B(V,PT,N,S) 
IMPLICIT REAL"'8 (A-H,P-Z) C. .. SUBROUTINE CALCULATES SECOND ORDER 

SELF-ENERGY MATRIX ELEMENTS FOR C. .. DIAGRAM 2B 
COMMON/EIG/CI(60,60),EA(60),C2(60,60),EB(60) 
COMMON/Pil/JCHG,NA,NB,NPIE,JSPIN,JUHF 
COMMON/SELF/DMPI,DMP2 
DIMENSION V(60,60),PT(60,60) 
DIMENSION S(I) 
NAP= NA+ I 
NBP=NB+ I C ... FOR ODD ELECTRON SYSTEMS ONLY 
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N2= (N + 1)/2 
DO 5 I= l,N2 

TS= S(I) 
DO 10 IR= l,N 

Ul = V(I,IR) 
DO 10IS=1,N 
PVA = PT(IS,IS)*U 1 

DO 10 IT= l,N 
Vl = V(IS,IT) 

DO 20 L= l,NA 
Tl= Cl(IR,L) 
T2= Cl(IT,L) 
T3=EA(L) 
DO 20 M=NAP,N 
DELE = T3-(EA(M)-DMP2) 
CS =Tl *Cl(IR,M)*T2*Cl(IT,M) 
C = CS*PVA *Vl/DELE 
TS=TS+C 

20 CONTINUE 
DO 21 L= l,NB 
Tl= C2(IR,L) 
T2= EB(L) 
T3= C2(1T,L) 

DO 21 M = NBP,N 
DELE = T2-(EB(M)-DMP2) 
CS= Tl *C2(IR,M)*T3*C2(1T,M) 
C=CS*PVA*Vl/DELE 
TS=TS+C 

21 CONTINUE 
10 CONTINUE 

S(I) = 2.DO*TS 
IP= N + 1-1 
S(IP),;,, S(I) 

5 CONTINUE 
RETURN 
El\!D C----------------------------------------------------------------------
S UBRO UTINE SN2C(N,NOCC,S,Cl,EA,V,PA) C. .. SUBROUTINE CALCULATES 

SECOND ORDER MATRIX ELEMENTS FOR DIAGRAM C 2C 
IMPLICIT REAL*8 (A-H,P-Z) 
COMMON/HH/H(60,60),R(60,60),PT(60,60),Z(60) 
COMMON/Pil/JCHG,NA,NB,NPIE,JSPIN,JUHF 
COMMON/SELF/DMP1,DMP2 
DIMENSION S(60,60),V(60,60),Cl(60,60),EA(60),PA(60,60) 
DATA TW0/2.DO/ 
DATA ZER0/0.DO/ 
NOCCP=NOCC+ I 
DO 5 I= l,N 

DO 5 J= l,I 
Vl =V(I,J) 
TS= S(I,J) 

DO 10 IR= l,N 
DO 10 IT= l,N 
PAVY= PA(IR,IT)*V(IR,IT)*Vl 

DO 20 L= l,NOCC 
Xl=EA(L) 
X2= Cl(IR,L)*PA VY 
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X4=Cl(J,L) 
XS= Cl(I,L) 

DO 20 M = NOCCP,N 
DELE= Xl-(EA(M)-DMP2) 
CR= X2*Cl(IT,M) 
C =CR *(X5"'C l(J ,M) + X4*C l(I,M))/DELE 
TS=TS+C 

20 CONTINUE 
10 CONTINUE 

S(I,J)= TS 
S(J,I) =TS 

5 CONTINUE 
RETURN 
END C-----------------------------------------------------------------------
S UBRO UTINE SN2D(N,NOCC,S,C,E,V) C. .. SUBROUTINE CALCULATES SECOND 

ORDER MATRIX ELEMENTS FOR DIAGRAM C 2D 
IMPLICIT REAL*8 (A-H,P-Z) 
COMMON /HH/H( 60,60),R( 60,60),PT( 60,60),Z( 60) 
COM.;'v10N/SELF /DMP1,DMP2 
DIMENSION S( 60,60) ,C( 60,60),E( 60),V( 60,60) 
DAT A TIV0/2.DO/ 
DA TA ZER0/0.DO/ 
NOCCP=NOCC+ 1 
DO 10 I= l,N 

DO 10 J= 1,1 
TS= S(l,J) 
Vl =V(l,J) 

DO 20 L= l,NOCC 
Tl= C(l,L) 
T2=C(J,L) 
T3=E(L) 

DO 20 M = NOCCP,N 
CJ= Tl *C(J,M) + C(l,M)*T2 
DELE = T3-(E(M)-DMP2) 
DO 30 IR= l,N 

DO 30 IS= l,N 
CT= C(IS,L)*C(IS,M)*Cl 
TS= TS-CT*PT(IR,IR)*Vl *V(IR,IS)/DELE 

30 CONTINUE 
20 CONTINUE 

S(I,J) =TS 
S(J,I)=TS 

10 CONTINUE 
RETURN 
END C-----------------------------------------------------------------------
SUBROUTINE SNDE (N,P,S,E) C C ... ENERGY ROUTINE USED IF SELF-ENERGY 

MATRIX IS DIAGONAL C 
IMPLICIT REAL*8 (A-H,P-Z) C ... SUBROUTINI;: CALCULATES ENERGY CON-

TRIBUTION OF SECOND ORDER SELF- C. .. ENERGY FOR DIAGRAMS 2A & 2B 
DIMENSION P(60,60),S(l) 
DO 10 I= l,N 

E = E + S(I)*P(I,I) 
10 CONTINUE 

RETURN 
END C-----------------------------------------------------------------------
S UBRO UTINE SECE(N,P,S,EA) 
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IMPLICIT REAL*8(A-H,P-Z) 
DIMENSION P(60,60),S(60,60) 
DO IO I= 1,N 

DO 10 J= l,N 
EA= EA+ S(l,J)*P(l,J) 

10 CONTINUE 
RETURN 
I:,ND C-----------------------------------------------------------------------
S UBR O UTINE SYDl(NAP,FA,V,EA,MMS) 
IMPLICIT REAL*8(A-H,P-Z) 
COMMON/EIS/FY 1( 60),FV2( 60),MA TZ 
COMMON/AAA/ED(60),FD(60,60),FVD(60,60),CD(60,60) 
COMMO N/SYM/S( 60,60),ST( 60,60),NSM(2),NOCC(2) 
DIMENSION FA(60,60),V(60,60),EA(60),El(60),E2(60) C .. BLOCK FACTOR 
CALL MMULT(FA,S,CD,NAP) 
CALL MMULT(ST,CD,FVD,NAP) 
NSl = NSM(l) 
CALL INIT (FA) 
DO 10 I= 1,NSl 

DO IO J= 1,NSl 
F A(l,J) = FVD(l,J) 

IO CONTINUE 
CALL RS(60,NS 1,FA,El,MATZ,FD,FVl,FV2,IERR) 
NS2= NSM(2) 
CALL INIT (FA) 
DO 20 I= 1,NS2 
11 =I+ NSl 

DO 20 J = 1,NS2 
JI =J + NSl 

FA(l,J)= FVD(ll,Jl) 
20 CONTINUE 

CALL RS( 60,NS2,F A,E2,MATZ,CD,FV 1,FV2,IERR) 
CALL INIT (FVD) 
NOCl = NOCC(I) 

IF(MMS.EQ.2) NOCI = NOCl-1 
NOCll=NOCl+ 1 
DO 30 I= l,NSI 

DO 30 K=NOCll,NSI 
KP=NS2+K 
EA(KP) = El(K) 
FVD(l,KP) = FD(l,K) 

30 CONTINUE 
DO 40 K= l,NOCl 

DO 40 I= l,NSl 
EA(K) = El(K) 
FVD(l,K) = FD(l,K) 

40 CONTINUE 
NOC2 = NOCC(2) 
DO 50 K= l,NS2 
KP=K+NOCl 

DO 60 I= l,NS2 
IP= I+ NSl 
EA(KP) = E2(K) 
FVD(IP,KP) = CD(l,K) 

60 CONTINUE 
50 CONTINUE C .. BACK TRANSFORM 
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CALL MMULT(S,FVD,V,NAP) 
RETURN 
END C---------------------------------------------------------------------

S UBROUTINE PROJ(HCORE,EPI,OCH,NC,GAM) 
IMPLICIT REAL+8 (A-H,P-Z) 
CHARACTER OCH(60) 
DIMENSION HCORE(60,60) 
COMMON/UHF /RHOA(60,60),RHOB(60,60) 
COMMON/CONTRO/NATOM,NBOND,NAP,NAO,NAT3 
COMMON/MAT/BMAT(60,60),GMAT(60,60),HCORM(60,60) 
COMMON/AAA/ED(60),FD(60,60),FVD(60,60),CD(60;60) 
COMMON/Pil/JCHG,NALPH,NBET,NPIE,JSPIN,JUHF 
COMMON/SW/ISW,IPR,ISCR 
COMMON/SYM/S(60,60),ST(60,60),NSM(2),NOCC(2) 
COMMON/BLK5/N,M,NA,NB,NM,NPP,NAM,NBP,KIK 
DIMENSION FA(61,61),CC(60,60),GAM(60,60) 
DIMENSION CA( 60,60),CB( 60,60),EB( 60),EA( 60) 
DIMENSION NC(60) 
DIMENSION AX(60),BE(60),BX(60) 
DIMENSION DELW(60),SPIN(61) 
DIMENSION A21J(60),B(61),A(61),Q(60),SOMEGA(60) 
DIMENSION T(60),U(60) 
DIMENSION CSK(30,2),C0(2) 
DATA ZER0/0.DO/ C C CALCULATION OF BETA-ELECTRON CORRE-

SPON_DING ORBITALS. C REFERRED TO IN REF. (1) AS THE SET OF B(I). C 
EIGENVALUES ARE D(I)++2 OF REF. (1). C 

CALL MMUL T(RHOA,RHOB,CD,NAP) 
CALL MMULT(RHOB,CD,CC,NAP) 
CALL SYMCOR(NAP,CC,CB,EB) CC SET CONSTANTS C 
NA=NALPH 
NB=NBET 
NBP=NB+ 1 
NAM=NA-1 
NBM=NB-1 
XNA= DFLOAT(NA) 
XNB = DFLOAT(NB) 
XM = 0.5DO+(XNA-XNB) 
XN = 0.5DO+(XNA + XNB) 
M=NA+NB 
MP=M+ 1 
S2=XM 
MU=NA-NB+ 1 
MO=NA-NB 
XAOl-=ZERO 
XATl=ZERO 
XATOT=ZERO 
TOTSP=ZERO 
N=NAP C C INITIALIZE ARRAYS AND INVERT ORDER OF BETA 

EIGENVALUES(EB'S) C 
DO 10 I= l,N C SOMEGA(I)=EB(N-I+ 1) 

10 A(I)=ZERO 
DO 20 I= l,N 
IF(EB(I) .LT. ZERO) EB(I)=ZERO 

20 IF(EB(I) .GT. I.DO) EB(I)= 1.DO CC THE EB(I) ARE THE D(I) 0 2 OF REF. (1). 
C THE EA(I) ARE EQUAL TO E(I) 0 2 OF REF. (1). C 

DO 30 I= l,NB 
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B(l)=ZERO 
30 EA(I) = l.DO-EB(I) 

I= 1 
B(I)= l.DO 
A(I)= l.DO 
B(NBP) = 1.DO 
A(NBP) = l.DO 
IF (IPR .EQ. 0) GO TO 716 
WRITE(6,9) 
WRITE(6,19)(EB(l),I= l,N) 

716 CONTINUE CC CALCULATE SUMS OF CONTINUING PRODUCTS C 
FA(l,l) = EB(l) 
FA(2,l)=ZERO 
IF(NB.LE.l)GO TO 135 
DO 501=2,NB 
JM=J-1 
FA(l,J) = FA(l,JM) + EB(J) 
DO 40 K=2,J 

40 FA(K,J)= FA(K,JM)+ EB(J)•FA(K-1,JM) 
FA(J + l,J)=ZERO 

50 CONTINUE 
135 DO 60 I= l,NB 
60 A(I+ l)=FA(I,NB) CC THESE ARE HARRIMAN'S ASUBK. SEE EQN. (21) 

OF REF. (2) C 
FA(l,1) = EA(l) 
FA(2,l)=ZERO 
IF(NB.LE.l)GO TO 145 
DO 80 J=2,NB 
JM=J-1 
FA(l,J) = FA(l,JM) + EA(J) 
DO 70 K=2,J 

70 FA(K,J) = FA(K,JM) + EA(J)•FA(K-1,JM) 
F A(J + l,J) =ZERO 

80 CONTINUE 
145 DO 90 I= 1,NB 
90 B(I + 1) = FA(l,NB) C C THESE ARE BSUBK OF REFS. (1), (2), AND (3). C C 

CALCULATION OF WEIGHTS FROM EQN. (26) OF REF. (1). C 
DO 110 I= l,NBP 
SI= XM + 1-1.DO 
XZ=XN-SI 
MM=XZ+ 1.01 
IS= 2. *SI+ 0.01 
MS=SI+XM+0.01 
NS= SI-XM + 0.01 
XS= DFLOAT(IS) 
SO MEGA( I)= ZERO 
DO 100 J= l,MM 
JM=J-1 

100 SOMEGA(I) = SOMEGA(I) + (-1.DO)••JM•(F(NS + JM,1) 0 2•B(NS + J))/(F(IS + J,l) 
1 •F(JM,l)) 
SO MEGA( I)= (XS+ 1.DO)•F(MS, l)•SOMEGA(l)/F(NS, 1) 
IM=I-1 
IF (IPR .NE. 1 .OR. I .GT. 5) GO TO 110 
WRITE(6,39)Sl,SOMEGA(I) 

110 CONTINUE CC CALCULATE NATURAL ORBITALS OF CHARGE DENSITY 
c 
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DO 7 IL= l,N 
DO 7 J= l,N 
CC(IL,J) = RHOA(IL,J) + RHOB(IL,J) 

7 FA(IL,J)=ZERO 
CALL SYMNAT(NAP,CC,CA,EA) 
DO 120 I= l,N 
IF (EA(I) .GT. 2.DO) EA(I) = 2.DO 

120 IF (EA(I) .LT. ZERO) EA(l)=ZERO CC CALCULATION OF A(K+ l)'S FROM 
RECURSION RELATION C 

DO 150 I= l,N 
150 FA(l,I)= l.DO 

FD(l,l) = FA(l,l) 
DO 180 I= 2,NB 
IM= I-1 
DO 170 J= l,NB CC EQN. (31) OF REF. (2) C 
FA(l,J) = A(I)-EB(J)*FA(IM,J) 

170 FD(I,J) = FA(l,J) 
180 CONTINUE CC FA(K,L) IS ASUBK(L) OF REF. (2) CCC CORRECT 

PHASES OF NATURAL ORBITALS TO INSURE THAT TSUBI AND C USUBI ARE 
POSITIVE. SEE EQNS. (14), AND (15) OF REF. (1). C 

NBMM=NBM · 
IF(NA.NE.NB)NBMM =NB 
DO 210 I= l,NB 
JI=M-1+1 
IF(Jl.GT.N)GO TO 210 
XV= 1.D:-06 
KK=l 

1875 IF(DABS(CA(KK,l)).GE.XV.AND,DABS(CA(KK,Jl)).GE.XV.AND. 
1 DABS(CB(KK,I)).GE.XV) GO TO 1900 
KK=KK+ 1 
GO TO 1875 

1900 LL= KK + 1 
1905 IF(DABS(CA(LL,l)).GE.XV.AND.DABS(CA(LL,JI)).GE.XV.AND. 

1 DABS(CB(LL,l)).GE.XV) GO TO 1910 
1906 LL= LL+ 1 . 

GO TO 1905 
1910 XXV = CA(LL,JI) *CA(KK,1)-CA( LL,I) *CA( KK,JI) 

IF(DABS(XXV).LT.l.D-06)GO TO 1906 
XV= CA(LL,Jl)/CA(KK,JI) 
AX(I) = (CB(LL,l)-CB(KK,l)*XV)/(CA(LL,1)-CA(KK,l)*XV) 
XV= CA(LL,l)/CA(KK,I) 
BX(I) = (CB(LL,1)-CB(KK,I) *XV)/(CA(KK,JI)*XV-CA(LL,JI)) 
IF(AX(I).GT. ZERO) GO TO 15 
DO 190 J= l,N 
FVD(J,I) =-FVD(J,I) 

190 CA(J,I)=-1.DO*CA(J,I) 
15 IF(BX(l).GE. ZERO)GO TO 210 

DO 2001= l,N 
FVD(J,JI) = -FVD(J,JD 

200 CA(J ,JI)= -1.DO*CA(J ,JI) 
210 CONTINUE CC NATURAL ORBITALS OF SPIN CALCULATION C 

IF (IPR .EQ. 0) GO TO 717 
WRITE( 6, 119) 
WRITE(6,19)(EA(I),I= l,N) 
WRITE( 6,49) 
CALL OUTPUT(CA,NAP,2,NC,OCH) 
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717 CONTINUE 
DO 213 I= 1,M 
BX(l)=ZERO 

213 AX(I)=ZERO 
AD= l.DO/DSQRT(2.DO) 
DO 220 I= l,NB 
Nl=M-1+1 
DO 220 J= 1,N 
IF(N l.GT.N)GO TO 25 
CC(J,Nl) = AD+(CA(J,I)-CA(J,Nl)) 
CC(J,I) = AD+(CA(J,I) + CA(J,N 1)) 
GO TO 220 

25 CC(J,I) = CA(J,I) 
220 CONTINUE 

IF(NA.EQ.NB)GO TO 35 
DO 230 I= NBP,NA 
DO 230J=1,N 

230 CC(J,I) = CA(J,I) 
35 CONTINUE 

DO 240 I= l,N 
DELW(I)= DSQRT(l.DO-EB(I)) 

240 BE(I) = DSQRT(EB(I)) 
MNM=M-N+ 1 CC ATOMIC SPIN DENSITIES CALCULATION C SEE 

TABLE II IN REF. (2) C 
KIK= l.DO 
XKIK = KIK-1.DO 
S2= XM + XKIK C NEW CALCULATION OF SANIBEL COEFFICIENTS 
YM= DFLOAT(NA-NB)/2.DO 
YMS=YM*YM 
S2S = S2*(S2 + l.DO) 
DO 800NLM=1,2 
YNP = DFLOAT(NA + NB-2+NLM)/2.DO 
LLl = YNP+ YM + O.OlDO 
LL2= YNP+ S2+ O.OlDO 
LL3= YNP-YM +O.OlDO 
LL4 = YNP-S2 + 0.0 l DO 
CO(NLM) = (2.DO+S2 + l.DO)/(YNP + S2 + l.DO)+F(LL3,LL4 + 1 )/F(LL2,LL1 + l) 
CSK(l,NLM) = CO(NLM)+(YNP+ YMS-S2S)/(YMS-YNP+YNP) 
GG= 2.DO+(YNP-1.DO)+ YNP+ YMS-S2S 
CSK(2,NLM) = -(CSK(l,NLM)+GG+ CO(NLM))/((YNP-1.D0)++2-YMS) 
JUP= NB-2 
IF(NLM.EQ.2) JUP = NB-3 
DO 8021=2,JUP 
YJ=J 
JM=J-l 
JP=J +I 
GG = 2.DO+YJ+(YNP-YJ) + YNP + YMS-S2S 
GD= (YNP-YJ) ++2-YMS 

802 CSK(JP,NLM)=-(CSK(J,NLM)+GG+ CSK(JM,NLM)+YJ++2)/GD 
800 CONTINUE 

WRITE(6,59)S2 
IF(MU.EQ.l)GO TO 65 
P = -CO(l) + A(2) 
DO 250 K = 2,NB 
KM= K-1 

250 P= P+ (-1.DO)++K*CSK(KM,l)+A(K + l)+K 
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Q(l)=ZERO 
IF(NB.LE.l)GO TO 45 
DO 260 I= l,NB 
Q(I) = -C0(2)*FA(2,I) 
DO 260 K = 2,NBM 
KP=K+ 1 
KM=K-1 

260 Q(I) = Q(I) + (-1.DO)**K *CSK(KM,2)*FA(KP,l)*K 
45 CONTINUE 

DO 270 I= l,NB 
BX(I) =CO( 1) *FA( 1,1) 
DO 270 K = 2,NB 
KM=K-1 

270 BX(I) = BX(I) + (-1.DO)**KM"'CSK(KM, l)*FA(K,I) 
DO 290 I= l,NA 
JI=M-1+1 
IF(Jl.GT.N)GO TO 61 
SS= XM/(S2*(S2 + I.DO)) 
IF(l.GT.NB)GO TO 55 
AA= SS+ SS*(XN*SOMEGA(KIK) + P-XN*BX(I)-Q(I))/SOMEGA(KIK) 
BB= SS*XM*BX(l)*DELW(l)/SOMEGA(KIK) 
EA(l)=AA+ BB 
EA(Jl)=AA-BB 
GO TO 290 

55 EA(I) = SS*(XM + 1.) 
DO 280 J= l,NB 

280 EA(I) = EA(I) + SS*(l.DO-BX(J)/SOMEGA(KIK)) 
GO TO 290 

61 EA(I)=ZERO 
290 CONTINUE 

DO 301 I= l,N 
SPIN(I) =ZERO 
DO 300 K= l,M 
IF(K.GT.N.OR.K.LT.MNM)GO TO 300 
SPIN(I) = SPIN(I) + EA(K)*CC(I,K)**2 

300 CONTINUE 
301 TOTSP= TOTSP+ SPIN(I) 

IF (IPR .EQ. 0) GO TO 65 
WRITE( 6,69)S2 
WRITE(6,19)(S·PIN(I),I= l,N) 
WRITE(6,309) TOTSP 

65 CONTINUE 
SPOS=ZERO 
SNEG=ZERO 
DO 373 I= l,N 
IF(SPIN(I) .LT. ZERO) GO TO 374 
SPOS = SPOS + SPIN(I) 
GO TO 373 

374 SNEG= SNEG+ SPIN(I) 
373 CONTINUE 

SRA T = DABS(SNEG/SPOS) 
WRITE(6,308) SRAT 

308 FORMAT(/,lOX,'NEG. TO POS. S.D. RATIO= ',Fl2.8) 
309 FORMAT(/,IOX,'TOTAL SPIN DENSITY = ',Fl2.8,/) C IF (IPR .EQ. 20) GO TO 

375 C RETURN CC CALCULATION OF D PARAMETERS C FD(l,J)= DO(I,J); 
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CD(I,J)=D2(1,J); FVD(I,J)=Dl(I,J); C ED(I)=Dl(I); AX(I)=DO(I) C SEE REF. 
(3), TABLE V AND EQN. (9) OF REF. (4) C 
375 DO 360 I= l,NB 

AX(I)=ZERO 
ED(I)=ZERO 
DO 310 J= l,NB 
JM=J-1 
AX(I) = AX(I) + (-1.DO)++JM+CK(JM,O)•FA(J,I) 

310 CONTINUE 
AX(I) = AX(I)/SOMEGA(KIK) 
IM= I-1 
DO 320 K = l,NB 

320 ED(l) = ED(I) + (-1.DO)++K •CK(K,O)•FA(K,I) 
ED(I) = ED(I)/SOMEGA(KIK) 
IF(l.EQ.l)GO TO 360 
DO 350 J = l,IM 
A2IJ(l)= I.DO 
IF(NB.LE.l)GO TO 165 
DO 324 K = 2,NB 

324 A2IJ(K) = FA(K,I)-EB(J)+A2U(K-1) CC A2IJ(K) IS ASUBK(I,J) OF REF. (2) C 
165 FD(I,J)=ZERO 

IF(NB.LE.l)GO TO 175 
DO 330 K= l,NBM 
KM=K-1 

330 FD(I,J) = FD(I,J) + (-1.DO)++KM•CK(KM,O)+ A2IJ(K) 
175 FD(I,J) = FD(I,J)/SOMEGA(KIK) 
340 FD(J ,I)= FD(I,J) 

FVD(l,J) = (AX(l)-FD(I,J))/EB(J) 
CD(I,J) = (ED(I)-FVD(I,J))/EB(J) 

67 FVD(J,I)= FVD(I,J) 
350 CD(J,I) = CD(I,J) 
360 CONTINUE CC PROJECTED CHARGE DENSITY CALCULATION .. PUT IN 

BMAT C SEE TABLE II OF REF. (2) C 
DO 380 I= l,N 
DO 380 J= l,I 
RHOU=ZERO 
DO 370 K= l,M 
IF(K.LE.NB)GO TO 75 
IF(K.LE.NA)GO TO 85 
IF(K.GT.N)GO TO 370 
IF(K.GT.NA)GO TO 95 

75 RHOIJ= RHOIJ +(I.+ DSQRT(EB(K))•(AX(K)+ ED(K)))•CA(I,K)•CA(J,K) 
GO TO 370 

85 RHOIJ = RHOIJ + CA(I,K)•CA(J,K) 
GO TO 370 

95II=M-K+l 
RHOIJ = RHOIJ + (l.DO-DSQRT(EB(II))•(AX(II) + ED(II)))•CA(I,K)•CA(J,K) 

370 CONTINUE 
BMAT(I,J) = RHOIJ 

380 BMAT(J,I)= RHOIJ 
CALL TRACAB(BMAT,HCORE,EPO,NAP) 
IF (IPR .EQ. 1) WRITE(6,89)EPO 
TRA =ZERO C C CALCULATION OF SECOND ORDER DENSITY COMPO-

NENTS C SEE TABLE I OF REF. (1). C 
EP2=ZERO 
DO 460 KM= l,N 
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DO 460 KN= l,KM 
QM=ZERO 
DO 430 K = l,NB 
KP=M-K+ 1 C CALCULATE 1111 
GX = 0.25DO*(( 1.DO + BE(K))**2)*(AX(K) + ED(K)) 
P= (CA(KM,K)*CA(KN,K))**2 
QM=QM+GX*P 
IF(K.LT.MNM)GO TO 115 C CALCULATE I'I'I'I' 
GX = 0.25D0"'(( 1.DO-BE(K))**2)*(AX(K) + ED(K)) 
P= (CA(KM,KP)*CA(KN,KP))**2 
QM=QM+GX*P C CALCULATE IJl'I' 
GX = -0.25DO*(DELW(K)**2)*(AX(K) + ED(K)) 
P= (CA(KM,K)*CA(KN,K)*CA(KM,KP)+CA(KN,KP))*2.00 
QM=QM+GX*PC CALCULATE 11'11' 
GX = 0.2500*(DELW(K)**2)*(AX(K)-ED(K)) 
P = ((CA(KM,K)*CA(KN ,KP))**2 + (CA(KM,KP)*CA(KN,K))**2) 
QM=QM+GX*P C CALCULATE Il'I'I 
GX:::; -0.25DO*(DELW(K)**2)*(AX(K)-ED(K)) 
P = CA(K~1.K) *CA(KN ,KP)*CA(KM,KP)*CA(KN ,K)*2.00 
QM=QM+GX*P 

115 IF(K.EQ.NB)GO TO 125 
KAND=K+ 1 
DO 410 LN=KANO,NB 
LP=M-LN+ 1 C CALCULATE IJIJ 
GX= 0.5DO*(l.DO+ BE(K))*(l.DO+ BE(LN))*(FO(K,LN)+ (BE(K)+ BE(LN))*FVO(K 
1,LN) + BE(K)*BE(LN)*CD(K,LN)) 
P = ((CA(KM,K)*CA(KN ,LN))**2 + (CA(KM,LN)*CA(KN ,K))**2) 
QM=QM+GX*P C CALCULATE IJJI 
GX = -0.2500*( l.DO + BE(K))*( l.DO + BE(LN))*(FD(K,LN)-FVD(K,LN) + 2.00*(BE 
l(K) + BE(LN))*FVD(K,LN)-BE(K)*BE(LN)*(FVD(K,LN)-CD(K,LN))) 
P= CA(KM,K)*CA(KM,LN)*CA(KN,K)*CA(KN,LN)*2.DO 
QM=QM+GX*P 
IF(LN.LT.MNM)GO TO 116 C CALCULATE IJ'IJ' 
GX = 0.5DO*(l.DO+ BE(K))*(l.DO-BE(LN))*(FD(K,LN) + (BE(K)-BE(LN))*FVD(K 
l,LN)-BE(K)*BE(LN)*CD(K,LN)) 
P = ((CA(KM,K)*CA(KN,LP))**2 + (CA(KM,LP)*CA(KN,K))**2) 
QM= QM+ GX*P C CALCULATE IJ'J'I 
GX = -0.25DO*(l.DO+ BE(K))*(l.DO-BE(LN))*(FD(K,LN)-FVD(K,LN) + 2.DO*(BE 
l(K)-BE(LN))*FVD(K,LN) + BE(K)*BE(LN)*(FVD(K,LN)-CD(K,LN))) 
P= CA(KM,K)*CA(KM,LP)*CA(KN,K)*CA(KN,LP)"'2.DO 
QM=QM+GX*P 

116 IF(K.LT.MNM)GO TO 410 C CALCULATE JI'JI' 
GX = 0.5DO*(l.DO+ BE(LN))*(l.00-BE(K))*(FO(LN,K) + (BE(LN)-BE(K))*FVD(L 
lN,K)-BE(LN)*BE(K)*CD(LN,K)) 
P= ((CA(KM,LN)*CA(KN,KP))**2+ (CA(KM,KP)*CA(KN,LN))**2) 
QM=QM+GX*P C CALCULATEJI'I'J 
GX = -0.2500*(1.DO+ BE(LN))*(l.00-BE(K))*(FD(LN,K)-FVO(LN,K) + 2.00*(BE 
l(LN)-BE(K))*FVD(LN,K) + BE(LN)*BE(K)*(FVD(LN,K)-CD(LN,K))) 
P = CA(KM,LN) *CA(KM,KP) *CA(KN ,LN) *CA(KN ,KP)*2.DO 
QM=QM+GX*P C CALCULATE l'J'I'J' 
GX = 0.5DO*(l.DO-BE(K))*(l.DO-BE(LN))*(FD(K,LN)-(BE(K) + BE(LN))*FVD(K 
l,LN)+ BE(K)"'BE(LN)*CD(K,LN)) 
P = ((CA(KM,KP)*CA(KN,LP))**2 + (CA(KM,LP)*CA(KN,KP))**2) 
QM=QM+GX*P C CALCULATE I'J'J'I' 
GX =-0.25DO*(l.OO-BE(K))*(l.DO-BE(LN))*(FD(K,LN)-FVO(K,LN)-2.00*(BE 
l(K) + BE(LN))*FVO(K,LN)-BE(K)*BE(LN)*(FVD(K,LN)-CD(K,LN))) 
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P= CA(KM,KP)"'CA(KN,LP)"'CA(KM,LP)"'CA(KN,KP)"'2.DO 
QM=QM+GX"'P C CALCULATE IJJT 

GX = -0.25DO"'DELW(K)"'DELW(LN)"'(FD(K,LN) + FVD(K,LN) + BE(K)"'BE(LN)"'(FVD( 
lK,LN) + CD(K,LN))) 
P = (CA(KM,K)"'CA(KN,LN)"'CA(KM,LP)"'CA(KN,KP) + CA(KM,LN)"'CA(KN,K 
l)*CA(KM,KP)*CA(KN,LP))*2.DO 
QM=QM+GX*P C CALCULATE IJ'JI' . 
GX = -0.25DO*DELW(K)"'DELW(LN)"'(FD(K,LN) + FVD(K,LN)-BE(K)*BE(LN)"'(FVD( 
lK,LN) + CD(K,LN))) 
P = (CA(KM,K)*CA(KN,LP)"'CA(KM,LN)*CA(KN,KP) + CA(KM,LP)*CA(KN,K 

l)*CA(KM,KP)"'CA(KN,LN))*2.DO 
QM=QM+GX*P 

410 CONTINUE 
125 IF(MO.LE.O)GO TO 430 

DO 425 LQ = l,MO 
LN = LQ +NB C CALCULATE ITIT 
GX= 0.5DO*(l.DO+ BE(K))*(AX(K) + BE(K)*ED(K)) 
P= ((CA(KM,K)"'CA(KN,LN))"'"'2+ (CA(KM,LN)"'CA(KN,K))**2) 
QM=QM+GX"'P C CALCULATE ITTI 
GX = -0.5D0"'( l.DO + BE(K))"'(O.SDO*(AX(K)-ED(K)) + BE(K)"'ED(K)) 
P= CA(KM,K)*CA(KN,LN)"'CA(KM,LN)"'CA(KN,K)"'2.DO 
QM=QM+GX+P 
IF(K.LT.MNM) GO TO 425 C CALCULATE I'TI'T 
GX = O.SDO*( l.DO-BE(K))"'(AX(K)-BE(K)*ED(K)) 
P = ((CA(KM,KP)*CA(KN,LN))"'"'2+ (CA(KM,LN)"'CA(KN,KP))"'"'2) 
QM=QM+GX*P C CALCULATE I'TTI' 
GX = -0.5D0"'(1.DO-BE(K))"'(0.5DO"'(AX(K)-ED(K))-BE(K)"'ED(K)) 
P= CA(KM,KP)"'CA(KN,LN)"'CA(KM,LN)"'CA(KN,KP)"'2.DO 
QM=QM+GX"'P C CALCULATE ITTI' 
GX = -0.25DO"'(DELW(K)"'(AX(K) + ED(K))) 

420 P= (CA(KM,K)"'CA(KN,LN)"'CA(KM,LN)"'CA(KN,KP)+CA(KM,LN)"'CA(KN,K 
l)*CA(KM,KP)*CA(KN,LN))"'2.DO 
QM=QM+GX+P 

425 CONTINUE 
430 CONTINUE 
421 IF(MO.LE.l)GO TO 441 

DO 440 KQ = l,MO 
K=KQ+NB 
IF(KQ.EQ.MO)GO TO 440 
KQl=KQ+ l 
DO 435 LQ=KQI,MO 
LN = LQ + NB C CALCULATE TUTU 
QM= QM+ 0.50DO"'((CA(KM,K)"'CA(KN,LN))"'*2+ (CA(KM,LN)"'CA(KN,K))"'*2) C 

CALCULATE TUUT 
435 QM=QM-0.50DO"'CA(KM,K)*CA(KN,LN)*CA(KM,LN)"'CA(KN,K)"'2.DO 
440 CONTINUE 
441 CONTINUE 

IF(KM.EQ.KN)EP2 = EP2 + QM"'GAM(KM,KN) 
GMAT(KM,KN) =QM+ 0.5D0-0.5DO"'(BMAT(KM,KM) + BMAT(KN,KN)) 
TRA=TRA+QM 
IF(KM.NE.KN) TRA=TRA+QM 
GMAT(KN ,KM)= GMAT(KM,KN) 

460 1F(KM.NE.KN)EP2 = EP2 + 2.DO"'QM*GAM(KM,KN) 
IF (IPR .EQ. 1) WRITE(6,99) S2,EP2 
EPI = EPO + EP2 
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IF (IPR .EQ. 1) WRITE(6,169) EPI 
9 FORMAT(/,3X,'EB',/) 
19 FORMAT(1X,5(1PD15.~,2X)) 
39 FORMAT(3X,'THE WEIGHTING FACTOR FOR THE S=',F6.4,' STATE =',1PD15 

1.7) 
49 FORMAT(/,3X,'NATURAL ORBITALS OF CHARGE',/) 
59 FORMAT(/,25X,'RESULTS OF PROJECTION FOR S=',F6.4,/) 
69 FORMAT(/,3X,'ATOMIC SPIN DENSITIES FOR S=',F6.4,/) 
79 FORMAT(/,3X,'CORRESPONDING ORBITALS',/) 
89 FORMAT(/,3X,'ONE-ELECTRON PART OF ENERGY =',1PD15.8,/) 
99 FORMAT(/,3X,'FOR S= ',F8.4,5X,'2 ELECTRON ENERGY = ',1PD15.8,/) 

119 FORMAT(/,3X,'NATURAL ORBITAL OCCUPATION NUMBERS',/) 
139 FORMAT(/,3X,'THE WEIGHTED ENERGY FOR THIS PROJECTION =',1PD14.6,/) 
169 FORMAT(/,3X,'PROJECTED ENERGY FOR S=O STATE ... ',Dl5.6,/) 

RETURN 
E!\iD C---------------------------------------------------------------------
SUBRO UTINE DENA(V,PA,NAP,NOC,IS) 
IMPLICIT REAL*8 (A-H,P-Z) 
COMMON /SYM/S( 60,60),ST( 60,60),NSM(2),NOCC(2) 
COMMON/EXCl/IEX 
DIMENSION V(60,60),PA(60,60) 
DAT A ZER0/0.DO/ 
IF (IEX .NE. 0) GO TO 5 

1 CONTINUE C C ... EVEN SYSTEM GROUND STATE CALCULATION C 
DO 10 I= 1,NAP 

DO 20J=1,I 
SI=ZERO 

DO 30 K= l,NOC 
SI= SI+ V(I,K)*V(J,K) 

30 CONTINUE 
PA(l,J)=SI 
PA(J,I) =SI 

20 CONTINUE 
10 CONTINUE 

RETURN 
5 CONTINUE 

IF (IEX .NE. 1) GO TO 35 
2 CONTINUE C C ... CALCULATION FOR ODD STATES C 

NOCM=NOC-1 
KOCC= Noc~! 
KS=NOCC(l) 
11=(NAP+1)/2 
12= MOD(ll,2) 
IF (I2 .EQ. 0) IS= 1 
DO 40 I= l,NAP 

DO 50 J= 1,1 
SI=ZERO 
IF (IS .EQ. 2) GO TO 15 

DO 60K=1,NOC 
SI= SI+ V(l,K)*V(J,K) 

60 CONTINUE 
GO TO 25 

15 CONTINUE 
NOCP=NOC+ 1 

DO 70K=1,NOCP 
SI= SI+ V(I,K)*V(J,K) 
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70 CONTINUE 
SI= Sl-V(l,KS)"'V(J,KS) 

25 CONTINUE 
PA(l,J)=SI 
PA(J,l)=SI 

50 CONTINUE 
40 CONTINUE 

RETURN 
35 CONTINUE C C ... CALCULA TION FOR EXCITED SYSTEMS C 

KOCC=NOC+ l 
DO 80 I= l,NAP 

DO 90 J= l,I 
SI=ZERO 

DO 100 K = l,NOC 
SI= SI+ V(l,K)"'V(J,K) 

100 CONTINUE 
IF (IS .EQ. 2) GO TO 45 

SI= SI+ V(l,KOCC)"'V(J,KOCC)-V(l,NOC)"'V(J,NOC) 
45 CONTINUE 

PA(l,J)= SI 
PA(J,I)=SI 

90 CONTINUE 
80 CONTINUE 

RETURN 
E1'!D C---------------------------------------------------------------------
SUBROUTINE MMULT(A,B,C,N) 
IMPLICIT REAL"'8 (A-H,P-Z) 
DIMENSION A( 60,60),B( 60,60),C( 60,60) 
DATA ZER0/0.DO/ 
DO 10 I= l,N 

DO 10 J= l,N 
X=ZERO 

DO 20 K= l,N 
X= X + A(l,K)"'B(K,J) 

20 CONTINUE 
C(I,J)=X 

10 CONTINUE 
RETURN 
END C---------------------------------------------------------------------
SUBROUTINE TRACAB(A,B,T,NAP) 
IMPLICIT REAL"'8 '(A-H,P-Z) 
DE\1ENSION A(60,60),B(60,60) 
DAT A ZER0/0.DO/ 
T=ZERO 
DO 10 I= l,NAP 
X=ZERO 

DO 20 K= l,NAP 
X = X + A(l,K)*B(K,I) 

20 CONTINUE 
T=T+X 

10 CONTINUE 
RETURN 
END C---------------------------------------------------------------------

SUBROUTINE UHFOCK(GAM,RA,RB,FA,NAP,S) 
IMPLICIT REAL"'8 (A-H,P-Z) 
DIMENSION GAM( 60,60),RA( 60,60),RB( 60,60),F A( 60,60),S( 60,60) 
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COMMON/MAT/BMAT(60,60),GMAT(60,60),HCORM(60,60) 
DAT A ZER0/0.DO/ 
DO 10 I= l,NAP 

DO 201= l,I 
EXC =ZERO C IEX = I-1 C IF(IEX .EQ. 1 .OR. IEX .EQ. 0) 

EXC = RA(1 ,I) +GAM(I,J) 
EXC= RA(1,I)+GAM(I,1) 
F A(l,1) = HCORM(I,1)-EXC + S(I,J) 
FA(l ,I)= FA(l,J) 

20 CONTINUE 
Xl=ZERO 

DO 30 K= l,NAP 
Xl = Xl + (RA(K,K) + RB(K,K))+GAM(K,I) 

30 CONTINUE 
F A(I,I) = F A(I,I) + X 1 

10 CONTINUE 
RETURN 
El\1D C----------------------------------------------------------------------

S UBRO UTINE OUTPUT (B,N,IDI,NC,OCH) 
IMPLICIT REAL +g (A-H,P-Z) 
CHARACTER OCH(60) C PRINTS THE SCP MATRICES 
DIMENSION B(60,60) ,NC(l) CC 
IF(IDl.GT.2) GO TO 5 C 
11=1 
12= 10 
DO 10 I= l,N,10 

IF(J2.GT.N) 12= N 
PRINT 9,(0CH(J),NC(J),J = Jl,J2) 
DO 20 K= l,N 

PRINT 19,0CH(K),NC(K),(B(K,1),1 = Jl,J2) 
20 CONTINUE C 

J1=12+1 
12= 12+ 10 

10 CONTINUE C 
RETURN 

5 CONTINUE 
11=1 
12= 10 
DO 30 I= l,N,10 

IF(12.GT.N) 12= N 
PRINT 9,(0CH(J),NC(J),J = J l,J2) 
DO 40 K= l,N 

PRINT 29,K,(B(K,J),1=J1,12) 
40 CONTINUE C 

11=12+1 
12=12+ 10 

30 CONTINUE C 
RETURN C 

9 FOR:YIAT(7X,10(5X,Al,I2,4X),/) 
19 FORMAT(2X,Al,12,10(2X,F10.4)) 
29 FORMAT(3X,12,10(2X,Fl0.4)) 

El'jD C---------------------------------------------------------------------
SUBRO UTINE ALPH(X,AL,NB) C C THIS SUBROUTINE CALCULATE ANGLE 

BOND MAKES WITH X-AXIS 
IMPLICIT REAL"'8 (A-H,P-Z) 
DIMENSION X(l),AL(l) 
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DAT A ZERO JO.DO/ 
DO 10 I= 1,NB 

13= 3+(1-1) + 1 
13=13+3 
A= X(J3)-X(l3) 
B=X(J3+ l)-X(l3+ 1) 
DB=DABS(B) 
IF (DB.LT.l.OD-04) GO TO 20 
AL(I) =DAT AN(B/ A) 
GO TO 10 

20 CONTINUE 
AL(I)=ZERO 

10 CONTINUE 
RETURN 
EJ\iD C-----------------------------------------------------------------------
SUBROUTINE CART(B,X,AL,NAT3,NATOM) C C CART CALCULATES NEW 

COORD. AFTER BOND SHIFTS 
IMPLICIT REAL+8 (A-H,P-Z) 
DIMENSION X(l),B(l),AL(l) 
DAT A ZER0/0.DO/ 
E=ZERO 
F=ZERO 
DO 10 I= l,NAT3 

10 X(I)=ZERO 
DO 20 I= 2,NA TOM 

I1=1-1 
J = 3+1-2 
K=3"'1-l 
E = E + B(ll)+DCOS(AL(ll)) 
F = F + B(ll)+DSIN(AL(Il)) 
X(J)=E 
X(K)=F 

20 CONTINUE 
RETURN 
ENI) C---------------------------------------------------------------------
FUNCTION CK(I,NLM) CC SUMS FACTORIALS USING EQUATION (20) OF 

REFERENCE (2) C CSUBK(S,M,NP) WHERE K =I, 2S =NA-NB+ 2+(KIK-l), 
2M =NA-NB, C 2+NP= NA+ NB-NLM+2 C 

IMPLICIT REAL+8 (A-H,P-Z) 
COMMON/BLK5/N,M,NA,NB,NM,NPP,NAM,NBP,KIK 
DA TA ZER0/0.DO/ 
IB = NB-KIK + 2-NLM 
IS=KIK-1 
JS= NA-NB+ KIK-1 
NS=NB-NLM 
IS2= NA-NB+ 2+KIK-2 
XSX = DFLOAT(IS2) 
WY=ZERO 
IF(IB.LE.O)GO TO 45 
IF((NS-1).LT.O)GO TO 45 
DO 10 J= l,IB 
JM=J-1 
IF((IB-JM-1).LT.O)GO TO 10 
11 =J 
12= IS+JM 
IF(IS.GT.O)GO TO 5 
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ZZ= l.DO 
GO TO 15 

5 ZZ= F(l2,11) 
15 11 = IS + J- I 

12=IS+JM 
IF((ll-1).LT.O)GO TO 10 
IF(l.EQ.O)GO TO 25 
YY = F(I2,ll) 
GO TO 35 

25 YY= l.DO 
35 WY= (-l.DO)++JM*ZZ*YY*F(NS-I,2)/(F(IB-JM-1,2)*F(IS2+ J,2)) +WY 
10 CONTINUE 

CK= (XSX + 1.DO)*F(JS,l)/F(IS,l)*WY 
RETURN 

45 CK=ZERO 
RETURN 
:E:ND C---------------------------------------------------------------------
FUNCTION F(INM,MNR) C C CALCULATES 

FACTORIAL(INM)/FACTORIAL(MNR-1) C 
IMPLICIT REAL*8 (A-H,P-Z) 
XF= I.DO 
IF(INM.LE.l) GO TO 5 
DO 10 J = MNR,INM 
XJ=J 

10 XF=XF*XJ 
5 F=XF 

RETURN 
El\TD C-----------------------------------------------------------------------
SUBRO UTINE SYMNAT(NAP,FA,V,EA) 
IMPLICIT REAL*8(A-H,P-Z) 
COMMON/EIS/FV1(60),FV2(60),MATZ 
COMMON/AAA/ED(60),FD(60,60),FVD(60,60),CD(60,60) 
COMMON/SYM/S(60,60),ST(60,60),NSM(2),NOCC(2) 
COMMON/EXCl/IEX 
DIMENSION FA(60,60),V(60,60),EA(60),E1(60),E2(60) C..BLOCK FACTOR 
CALL MMULT(FA,S,CD,NAP) 
CALL MMULT(ST,CD,FVD,NAP) 
NSI = NSM(l) 
CALL INIT (FA) 
DO !O I= !,NS! 

DO 10 J= l,NSI 
FA(I,J) = FVD(I,J) 

IO CONTINUE 
CALL RS( 60,NS l,FA,E l ,MATZ,FD,FVl ,FV2,IERR) 
CALL INIT (FA) 
NS2= NSM(2) 
DO 20 I= l,NS2 

11 =I+ NSl 
DO 20 J= l,NS2 

Jl=J+NSI 
FA(l,J)= FVD(Il,Jl) 

20 CONTINUE 
CALL RS(60,NS2,FA,E2,MATZ,CD,FV1,FV2,IERR) 
CALL INIT (FVD) 
K=O 
KS=O C ... CHECK FOR SYM. OCC. NUMBERS>= 2 

Appendix B. Computer Program 113 



DO 40 LL= l,NSl 
L= NSl + 1-LL 
DE= 2.DO-El(L) 
IF(DE.GT.l.OD-08) GO TO 5 
K=K+ 1 
KS= KS+ 1 
EA(K) = El(L) 

DO 50 I= l,NSl 
FVD(I,K) = FD(l,L) 

50 CONTINUE 
40 CONTINUE 
5 KSP= KS+ 1 

KA= 0 c ... CHECK FOR ANTISYM. acc. NUMBERS > = 2 
DO 60 LL= 1,NS2 

L= NS2+ 1-LL 
DE= 2.DO-E2(L) 
IF(DE.GT.l.OD-08) GO TO 15 
K=K+l 
KA=KA+l 
EA(K) = E2(L) 

DO 70 I= l,NS2 
IP= I+ NSl 
FVD(IP,K) = CD(I,L) 

70 CONTINUE 
60 CONTINUE 
15 KAP= KA+ 1 c. .. CHECK FOR SYM ace NUMBERS > 1 '< 2 

DO 80 LL= KSP,NSl 
L= NSl + 1-LL 
DE= 1.0lDO-El(L) 
IF(DE.GT.1.0D-06) GO TO 25 
K=K+ 1 
KS=KS+ 1 
EA(K) = El(L) 

DO 90 I= 1,NSl 
FVD(I,K) = FD(I,L) 

90 CONTINUE 
80 CONTINUE 
25 KSP =KS+ 1 c ... CHECK FOR ANTISYM ace NUMBERS > 1 '< 2 

DO 100 LL= KAP,NS2 
L= NS2+ 1-LL 
DE= 1.0DO-E2(L) 
IF (DE .GT. 1.0D-08) GO TO 35 
K=K+ 1 
KA=KA+ 1 
EA(K) = E2(L) , 

DO 110I=1,NS2 
IP= I+ NSl 
FVD(IP,K) = CD(l,L) 

110 CONTINUE 
100 CONTINUE 
35 KAP= KA+ 1 c ... CHECK FOR SYM ace NUMBERS= 1 

DO 120 LL= KSP,NSl 
L= NSl + 1-LL 
DE= 0.99999999DO-El(L) 
IF(DE.GT.1.0D-08) GO TO 55 
K=K+l 
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KS=KS+ 1 
EA(K) = El(L) 

DO 130 I= 1,NSl 
FVD(I,K) = FD(I,L) 

130 CONTINUE 
120 CONTINUE 
55 KSP=KS+ 1 
45 CONTI.'\UE 

DO 140 LL= KAP,NS2 
L= NS2+ 1-LL 
IF(E2(L).LT.1.0D-08) GO TO 65 
K=K+I · 
KA=KA+ I 
EA(K) = E2(L) 

DO I50 I= I,NS2 
IP=I+NSI 
FVD(IP,K) = CD(I,L) 

I50 CONTINUE 
I40 CONTINUE 
· 65 KAP= KA+ I 

DO I60 LL= KSP,NSl 
L= NSI +I-LL 
K=K+ I 
EA(K)=EI(L) 

DO I70 I= I,NSI 
FVD(I,K) = FD(I,L) 

I70 CONTINUE 
I60 CONTINUE 

IF(KAP.GT.NS2) GO TO 75 
DO I80 LL= KAP,NS2 

L= NS2+ I-LL 
K=K+ I 
EA(K) = E2(L) 

DO 190 I= l,NS2 
IP= I+ NSl 
FVD(IP,K) = CD(l,L) 

I90 CONTINUE 
180 CONTINUE C .. BACK TRANSFORM 
75 CALL MMULT(S,FVD,V,NAP) 

RETURN 
END C-----------------------------------------------------------------------

SCB ROUTINE SYMCOR(NAP,FA,V,EA) 
IMPLICIT REAL +8(A-H,P-Z) 
COMMON/EIS/FVI(60),FV2(60),MATZ 
COMMON/AAA/ED(60),FD(60,60),FVD(60,60),CD(60,60) 
.COMMON/SYM/S(60,60),ST(60,60),NSM(2),NOCC(2) 
DIMENSION FA(60,60),V(60,60),EA(60),El(60),E2(60) C .. BLOCK FACTOR 
CALL MMUL T(F A,S,CD,NAP) 
CALL MMULT(ST ,CD,FVD,NAP) 
NSl=NSM(l) 
CALL INIT (FA) 
DO IO I= l,NSl 

DO IO J= 1,NSl 
F A(l,J) = FVD(I,J) 

IO CONTINUE 
CALL RS(60,NS1,FA,El,MATZ,FD,FV1,FV2,IERR) 
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NS2=NSM(2) 
CALL INIT (FA) 
DO 20 I= l,NS2 

11 =I+ NSl 
DO 20 J = l,NS2 

Jl=J+ NSl 
FA(l,J) = FVD(ll,Jl) 

20 CONTINUE 
CALL RS(60,NS2,FA,E2,MATZ,CD,FVI,FV2,IERR) 
CALL INIT (FVD) 
K=O 
KS=O 
DO 40 LL:= l,NSI 

L= NSI + 1-LL 
DE= l.DO-El(L) 
IF(DE.GT.l.OD-08) GO TO 5 
K=K+ 1 
KS=KS+ 1 
EA(K) = El(L) 

DO 50 I= l,NSl 
FVD(I,K) = FD(I,L) 

50 CONTINUE 
40 CONTINUE 
5 KSP=K+l 

KA=O 
DO 60 LL= l,NS2 

L= NS2+ 1-LL 
DE= l.DO-E2(L) 
IF(DE.GT.l.OD-08) GO TO 15 
K=K+ 1 
KA=KA+ 1 
EA(K) = E2(L) 

DO 70 I= l,NS2 
IP= I+ NSl 
FVD(IP,K) = CD(I,L) 

70 CONTINUE 
60 CONTINUE 
15 KAP=KA+ l 

DO 80 LL=KSP,NSI 
L= NSl + 1-LL 
IF(El(L).LT.1.0D-08) GO TO 25 
K=K+l 
KS=KS+ 1 
EA(K) = El(L) 

DO 90 I= l,NSI 
FVD(l,K) = FD(I,L) 

90 CONTINUE 
80 CONTINUE 
25 KSP= KS+ l 

DO 100 LL= KAP,NS2 
L=NS2+ 1-LL 
K=K+l 
EA(K) = E2(L) 

DO 110 I= l,NS2 
IP= I+ NSl 
FVD(IP,K) = CD(I,L) 
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110 CONTINUE 
100 CONTINUE 

IF(KSP.GT.NSI) GO TO 35 
KAP= KA+ I 
DO 120 LL= KSP,NSI 

L= NS!+ 1-LL 
K=K+l 
EA(K) = El(L) 

DO 130I=l,NSI 
FVD(I,K) = FD(I,L) 

130 CONTINUE 
120 CONTINUE C .. BACK TRANSFORM 
35 CALL MMULT(S,FVD,V,NAP) 

RETURN 
EI'!D C----------------------------------------------------------------------

SUBROUTINE VEFF(N,NBOND,IE) 
IMPLICIT REAL*8 (A-H,P-Z) 
INTEGER *4 LDA,IPVT(60),JOB 
COMMON/PII/JCHG,NALPH,NBET,NPIE,JSPIN,JUHF 
COMMON/EIG/Cl(60,60),E1(60),C2(60,60),E2(60) 
COMMON /POL/RI( 60,60),P( 60,60) 
COMMON/FINAL/BN(60),X(l80),AL(60),NC(60) 
COMMON/HH/H(60,60),V(60,60),PT(60,60),ZZ(60) 
COMMON/DER/DB(60),DR(60),DV(60),VOP(60,60),D(60) 
COMMON/SCR/A(60,60),B(60,60),C(60,60),E(60) 
DIMENSION DET(2),WORK(60),Z(60),V0(60,60) 
DATA ZER0/0.DO/ C ... SET CONSTANTS 
KOC= MOD(N,2) 
NALP = NALPH + 1 
NBETP= NBET+ I C .. .INITIALIZE PI-MATRIX 
CALL INIT (P) c .. .IF SCF ORBITALS ARE USED, IE= 1 c ... ALPHA CONTRIB-

·UTION 
DO 20 I= l,N 

DO 20J=1,I 
DO 30IO=1,NALPH 

DO 30 IU=NALP,N 
DEL= El(IU)-El(IO) 
CO= -2.DO*C l(I,IU) *C l(I,IO)*C l(J ,IU)*C l(J ,IO) 
P(l,J) = P(I,J) +CO/DEL 

30 CONTINUE 
DO 40 IO= 1,NBET 

DO 40 IU=NBETP,N 
DEL= E2(IU)-E2(IO) 
CO= -2.DO*C2(I,IU)*C2(I,IO)*C2(J,IU)*C2(J,IO) 
P(I,J) = P(I,J) +CO/DEL 

40 CONTINUE 
P(J,I) = P(I,J) 

20 CONTINUE 
CALL VZERO(N,VO,O) 
CALL MMULT(P,VO,B,N) C ... CALCULATE R MATRIX (CALLED 'A' HERE) 
DO 50I=1,N 

DO 50 J= l,N 
DEL=ZERO 
IF(I .EQ. J) DEL= 1.DO 
A(l,J) = DEL-B(l,J) 

50 CONTINUE C ... FIND R INVERSE 
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CALL DGECO(A,60,N,IPVT,RCOND,Z) 
JOB= 1 
CALL DGEDI(A,60,N,IPVT,DET,WORK,JOB) 
DO 60 I= l,N 

DO 60 J= l,N 
RI(I,J) = A(I,J) 

60 CONTINUE c ... CALCULATE V-EFFECTIVE AS vo+R-INV 
CALL MMUL T (VO,RI,V,N) 
RETURN 
END C-----------------------------------------------------------------------
SUBROUTINE VZERO(N,VO,ISC) C ... CALCULATES BARE POTENTIAL USING 

OHNO FORM 
IMPLICIT REAL+8 (A-H,P-Z) 
COMMON/DER/Dl(60),D2(60),D3(60),D(60,60),DT(60) 
COMMON/FINAL/B(60),X(l80),AL(60),NC(60) 
DIMENSION V0(60,60),DX(3) 
DATA ZER0/0.DO/ C ... SET CONSTANTS 
ESQ= 14.397DO 
GAMO = l l.13DO 
CON= 23.062DO 
AO= ESQ/GAMO 
PF= .5DO 
DO IO I= l,N 

DO IO J= l,I 
IF (J .NE. I) GO TO 20 
VO(I,I) = GAMO 
GO TO IO 

20 CONTINUE 
B=J+(I-1) 
13= J+(J-1) 
BI=ZERO 

DO 30K=1,3 
DX(K) = X(J3 + K)-X(I3 + K) 
BI= BI+ DX(K)+DX(K). 

30 CONTINUE 
BI= DSQRT(BI) 
BR=Bl/AO 
Cl= I.DO+ BR ++2 
C2= DSQRT(Cl) 
GIJ = GAMO/C2 
VO(l,J) = GIJ 
VO(J,I) = VO(l,J) 
DFR= (-GIJ+BR)/(AO +Cl) 
D(I,J)= DFR 
D(J,1) = D(I,J) 

IO CONTINUE 
RETURN 
END C-----------------------------------------------------------------------
SUBROUTINE VPRIME(N,NBOND) C ... SUBROUTINE CALCULATES 

DVEFF/DBOND 
IMPLICIT REAL+8(A-H,P-Z) 
COMMON/SW/ISW,IPR,ISCR 
COMMON/MAT/BMAT(60,60),GMAT(60,60),HCORM(60,60) 
COMMON /HH/H{ 60,60), V( 60,60),PT( 60,60),Z( 60) 
COMMON/DER/Dl(60),D(60),D3(60),VOP(60,60),DT(60) 
COMMON/POL/Rl(60,60),P(60,60) 
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COMMON /FINAL/BN( 60),X( 180),AL( 60),NC( 60) 
DIMENSION VP( 60,60),DV( 60,60),A( 60,60),B( 60,60) 
DIMENSION DB(60),DX(3) 
DA TA CON/23.062DO/ 
DATA ZER0/0.DO/ C. .. CALCULATE (I+ V*PI) 
CALL MMULT(V,P,A,N) 

DO IO I= l,N 
DO IO J= l,N 
DEL= l.DO 
IF (I .NE. J) DEL= ZERO 
B(l,J) =DEL+ A(I,J) 

10 CONTINUE 
DO 20 K = l,NBOND 

CALL INIT (DV) 
DO 40 I= l,K 
KP=K+ l 

DO 40 J=KP,N 
I3=(I-1)+3 
13= (J-1)*3 

DO 50L=1,3 
DX(L) = X(J3 + L)-X(I3 + L) 

50 CONTINUE 
BI= LENGTH(DX) 
CALL DFBON(DX,DB,Bl,AL,I,J) 
KMI= K-I + l 
IF (KMI .LE. 0) GO TO 40 
DV(I,J) = VOP(l,J)*DB(KMI) 
DV(J ,I)= DV(I,J) 

40 CONTINUE 
CALL MMULT(B,DV,A,N) 
CALL MMULT(A,RI,VP ,N) 

DO 60 I= l,N 
DO 60 J= l,N 
IF (I .EQ. J) GO TO 60 
Y = VP(I,J)*GMAT(l,J)•CON 
D(K) = D(K) + Y 

60 CONTINUE 
20 CONTINUE 

RETURN 
E:'l'JI) C::-----------------------------------------------------------------------
SUBROUTINE INIT (A) C ... THIS SUBROUTINE ZEROES 2-D ARRAYS 
IMPLICIT REAL*8 (A-H,P-Z) 
DIMENSION A(60,60) 
DA TA ZER0/0.DO/ 
DO IO I= 1,60 

DO 10J=1,1 
A(I,J) =ZERO 
A(J ,I)= ZERO 

IO CONTINUE 
RETURN 
END 
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