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Chemistry
(ABSTRACT)

In the work described in this thesis, the Feynman-Dyson perturbation theory, developed from
quantum field theory, was employed in semiempirical calculations on trans — polyacetylene. A
variety of soliton-like excited states of the molecule were studied by the PPP-UHF-RPA method.
The results of this study provide useful information on the nature of these states, which are thought
to account for the unique electrical conduction properties of trans — polyacetylene and similar

conducting polymers.

Feynman-Dyson perturbation theory was also used to extend Hartree-Fock theory by the
inclusion of time-independent second-order self-energy insertions. The results of calculations on
polyenes show that consideration of this approach is warranted, as the contribution of the second-

order terms is significant.

The computer program, written during the course of the research reported here, is discussed as

well.
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1.0 Introduction

The pioneering work of Feynman (1) and Dyson (2) led to the development of the quantum field
theory used in solid state physics. Although the general theory can be applied to the quantum de-

scription of any many particle system, it has seen only limited use in molecular orbital studies.

The Feynman-Dyson perturbation treatment, which can be developed by application of quantum
field theory to the many-particle Schrodinger equation, has been used extensively for the calculation
of excitation energies in relatively small conjugated systems (3). However, this approach is also
useful in the calculation of the topological and electronic properties of ground and excited states

of all molecular systems.

In the work reported here, the Feynman-Dyson field-theoretical perturbation treatment has been
applied, at various levels, to the ground state and several exotic excited states of the linear polyene,
trans — polyacetylene (TPA). The results of this study show that the field-theoretical approach

can be successfully applied to such systems when more simple-minded approaches fail.

The first phase of this research involved the application of the random phase approximation
(RPA) (4-7), to the semi-empirical Pariser-Pople-Parr (8,9)-unrestricted Hartree-Fock (10,11)

(PPP-UHF) treatment of TPA states. The RPA involves the inclusion of some important terms
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in the Feynman-Dyson perturbation expansion to screen the electron-electron interactions in

many-electron systems.

The Hartree-Fock theory (the first-order approximation in Feynman-Dyson perturbation theory),
was extended in the second phase of the research by the addition of time independent second-order
self-energy terms (TISOSE approach). The TISOSE extended UHF method was used to examine
the kink soliton-like excitation in TPA. This phase of the study included the development of matrix

forms of the second-order perturbation terms which were suitable for use in PPP-UHF calculations.

In addition to a discussion of the theory and results of the two main research topics, this report
also includes a general discussion of the development of the Feynman-Dyson perturbation expan-
sion from quantum-field theory and a desciption of the computer code used in the calculations

performed in this work.
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2.0 The Feynman-Dyson Perturbation Expansion

Molecules and atoms can be viewed as a collection of many interacting particles. In principle,
the Schrodinger equation provides a means of obtaining a wave function which contains all possible
information about a system of interacting particles. However, the solution of this equation is im-
possible directly. Applicaton of quantum-field theory, using Green functions, provides a way to
obtain a great deal of information (total ground state energy and excitation energies, for example),
and to obtain approximations for other types of information (such as electronic structures), from

approximate wave functions.

Beginning with the exact Green function for the non-interacting Schrodinger equation, it is pos-
sible to obtain an approximation to the exact Green function for an interacting system by applica-

tion of Feynman-Dyson perturbation theory.

The Schrodinger equation for a system of non-interacting particles has the ficld-theoretical form

(12)

Hy¥o(x) = Eg¥y(x) (1)

The Feynman-Dyson Perturbation Expansion 3



where ¥,(x), is the wave function of the non-interacting system, E; is the energy of the system and
H, is the Hamiltonian operator. For a system of non-interacting electrons in an atom or molecule,

within the Born-Oppenheimer approximation (12)

~ A — -_— 2 - N -
Hy = [d*xy " G)—2 v2 + UG INGE)s 2
8mn

In equation 2, U(X), is a static external potential which destroys spatial uniformity and m is the

particle (electron), mass. The field-operators, \I/*(Sc')a and \i/(:'c‘),,, in equation 2 are defined as (12)

V(X), = ACWS (3a)

v (@) = AR (38)

where y(x), is the single particle two component wave function (a = 1,2), and the sum is over the
complete set of single particle quantum numbers. In equation 3, ¢/ (c,) is the particle creation
(destruction) operator, that is ¢ (¢,) creates (destroys) a particle with the set of quantum numbers

k.

The exact Green function for equation 1 is (12)

-t -

o Lot - 00 - &) - 0 = 90k - sl (9

iG%xx") = TO)(X)0f(X") " exp{
J

where O(x — y) is the step function and x = (x, ). In equation 4, ¢%x) and € are the

eigenfunctions and eigenvalues of H,

2 — - -
[- ;’i—; V2 + URNYE) = dol(®). )

The single particle eigenfunctions, ¢%(x), form a basis for the field operators defined in equation 3.

The Feynman-Dyson Perturbation Expansion 4



The Schrodinger equation for a system of interacting electrons in an atom or molecule has the

form
f{\y(}') = E¥(x) (6)

where ¥(x) is the wave function for the interacting particle system and E is the corresponding total
energy. The Hamiltonian operator for this system can be separated into interacting and non-

interacting parts

f=fy+ B B
where 1-‘!0 is given by equation 2 and

Hy = Ljaxd ey @yt GV - FNEE ®
The interparticle interaction potential, V(X — x’), may be assumed to be spin independent.

If H, is treated as a perturbation to H,, then a perturbation expansion of the exact Green function
for equation 6 can be developed (1,2,12). The terms in the expansion have been shown (13,14) to
correspond exactly to the infinite set of connected Feynman diagrams. The general rules for cre-

ating and analyzing all n* order diagrams are (12) :

1.  Draw all topologically distinct connected diagrams with n particle interaction lines and 2n+ |

directed Green function (particle) lines.
2.  Label each vertex with a space-time point, x;.

3. A solid line represents the non-interacting (bare) Green function, G%(x,y), running from y to

X.

4. A wavy line represents the interparticle interaction,

The Feynman-Dyson Perturbation Expansion s



UG, e = Vxoha, uedltx = 6).
5.  All internal variables are integrated over space and time.
6.  There is a spin matrix product for each continuous fermion line.
7. A factor of ( — 1) is assigned to each diagram, where F is the number of closed fermion loops.
8. A factor of (2ri/h)" is assigned to each n* order term.
9. A Green function with equal time variables is interpreted as G%(x, ¢ ,y,t*)

The Greek subscripts are fermion spin indices and a connected diagram is one in which all inter-
action and particle lines are somehow connected to the rest of the diagram. Figure la shows a
typical connected diagram and figure 1b shows a typical disconnected diagram. The diagramatic
representation of the Feynman-Dyson perturbation expansion is §hown through second order in

figure 2.
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Figure 1. a) Typical connected diagram b) typical disconnected diagram
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Figure 2. Feynman-Dyson expansion of the exact interacting particle Green function
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3.0 Self-Energy and Polarization Insertion

Representing the terms in the perturbation expansion by Feynman diagrams enables one to notice
certain distinct contributions to each term. Two such contributions are the self-energy insertion
and the polarization part. Analysis of the perturbation terms with respect to these contributions

leads to Dyson’s equation.

3.1 The Self-Energy

Examination of figure 2 shows that the exact interacting Green function is the sum of the bare
Green function and connected diagrams with a bare Green function coming in and another going
out. This observation leads to the definition of the self-energy insertion, which is defined as a part
on a diagram connected to the rest of the diagram by one particle line coming in and one particle

line going out. For example, the boxed-off portion of figure 3 is a typical self-energy insertion.

Defining the self-energy as the sum of the infinite set of self-energy insertions, the compact ana-

lytical expression for the interacting system Green function is obtained

Self-Energy and Polarization Insertion 9



Gapley) = Goplx) + fdxd" %' Galxx)Ea(x1, 1) Gglx'1, ) ©)

where Z, (x,, x')) is the self-energy. Equation 9 is represented by the Feynman diagram in figure

4, where the double cross-hatched bubble represents the self-energy.

A self-energy insertion may be further classified as proper or improper. A proper self-energy in-
sertion is one which cannot be separated into two pieces by cutting a single particle line. A proper
self-energy insertion is illustrated in figure Sa, while the self-energy insertion in figure 5b is improper.
The proper self-energy is the sum of the infinite set of proper self-energy insertions and is denoted
by Z;s(xp). The sum of all possible repetitions of the proper self-energy is equivalent to the self-

energy. This is represented analytically by
Ty, x) = £y, X)) + [dd x5 (0, )G )T (' X)) + o (10)

and is representéd diagramatically as shown in figure 6, where the cross-hatched bubble represents

the proper self-energy. In equation 10, the spin indices have been repressed.

Insertion of equation 10 in equation 9 yields the expression for the interacting system Green

function in terms of the proper self-energy

Glxy) = Goxy) + [d'xid*x' GOxx)Z (x;, ¥ )GO(x', ) +

. . (11)
[dxd' 5 d %y d %'y G0x, )2 (e X' NGO, )T (X )GO(xp ) + -,

where the spin indices have been suppressed. Equation 11 can be formally summed (2), yielding

Dyson’s equation

0 ’ * ’ ’
Gop(xy) = Goplxy) + jd“x, d*x' G (,31) 3%y, X'1)G (X', ) (12)
The Feynman diagrams of equations 11 and 12 are given in figure 7.

Self-Energy and Polarization Insertion ' 10



Dyson’s equation allows the practical iterative summation of an infinite class of perturbation
terms. This feature will be discussed later in terms of self consistent Hartree-Fock theory and its

extension by the inclusion of the time independent second-order self-energy insertions.

3.2 The Polarization Insertion

Another class of contribution to each diagram is observed upon the examination of the inter-
particle interaction part of the diagrams in figure 2. Each interaction is the sum of the bare inter-
action and all connected diagram parts with particle interaction lines coming in and out. This leads
to the definition of a polarization part. A typical polarization part is illustrated by the boxed-off
part of figure 8. The polarization insertion, IT(x — p),, .. is defined as the sum of the infinite set
of polarization parts. This definition allows for the calculation of an effective interaction,

U(x = p)ap. p in terms of the bare interaction, Uy(x — p)qp, v and the polarization insertion
U(x - y)uﬁ, ot T Uo(x - y)aB, pt + Uo(x - y)aB, uvn(x - y)pv, nkUO(x - y)q},, ot (13)

Figure-9 shows the diagram corresponding to equation 13. The heavy wavy line represents the ef-
fective interaction and the bubble with the double cross-hatched box represents the polarization

insertion.

-

Defining a proper polarization part as one which cannot be separated into two pieces by cutting
a bare interaction line allows the introduction of the proper polarization insertion, IT'(x = )., m»
suitably defined as the sum of the infinite set of proper polarization parts. Figure 10a shows a
proper polarization part and 10b shows an improper polarization part. An é.nalysis similar to that

for the self-energy insertion yields Dyson'’s equation for the effective interaction

Ux = ) = Up(x = ») + Up(u = T (x = p)U(x = ) (14)

Self-Energy and Polarization Insertion 11



Figure 3. Typical self-energy insertion
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Figure 4. Self-energy expansion of the exact Green function for the interacting particle system.
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. Figure 5. a) Typical proper self-energy insertion. b) Typical improper self-energy insertion.
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Figure 6. Proper self-energy expansion of the self-energy.
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Figure 7. Proper self-energy expansion of the exact Green function

tem.

Self-Energy and Polarization Insertion
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where the spin indices have been repressed. The Feyman representation of equation 14 is given in

figure 11.

Dyson’s equation for the effective interparticle interaction again allows for the iterative summa-
tion of an infinite set of terms of a given class. In particular, if the only proper polarization part
retained is the zero-order term, the polarization insertion becomes a sum of ring diagrams. This is
the well-known random phase approximation (RPA) (4-7) and is shown in figure 12. The RPA

will be discussed in more detail in the section on electron screening.

Sclf-Energy and Polarization Insertion 17



Figure 8. Typical polarization part
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Figure 9. Effective interaction

Self-Energy and Polarization Insertion
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Figure 10. a) Typical proper polarization part. b) Typical improper polarization part.
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Figure 11. Dyson equation for the effective interaction

Self-Energy and Polarization Insertion
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Figure 12. RPA polarization insertion

Self-Energy and Polarization Insertion 22



4.0 Previous Experimental and Theoretical Results

on TPA

The simplest example of a class of organic semiconductors is trans — polyactylene (TPA). A
great deal of theoretical (15-21) iaterest in TPA has been generated because of its relative molecular
simplicity and because of the large increase in conductivity exhibited upon chemical doping with
electron donor or acceptor species (22). It has been suggested (15,16,23,24) that electrical con-
duction occurs in doped TPA through the formation of a highly mobile domain wall. This domain
wall can be well described as a topological kink soliton-like excitation (15,16,25). Existence of the

soliton-like state has been strongly supported both experimentally (26-28) and theoretically (15-20).

Pristine TPA is obtained by thermal treatment of a cis — polyacetylene/ trans — polyacetylene
mixture, causing the cis — oriented molecules to isomerize to the energetically more favorable
trans-configuration (22). Theoretical (29-31) and experimental (32-34) results show that TPA
undergoes a Peierls distortion (35), in which pairs of atoms move toward each other. This yields
a dimerized ground state and a gap between the valence and conduction bands. This distortion can
occur in two directions, so that there are two isoenergetic configurations (or phases), possible for
the ground state of TPA. The Peierls distortions leading to each configuration are illustrated in

figure 13.

Previous Experimental and Theoretical Results on TPA 23



The Peierls dimerized ground state for TPA has recieved strong experimental support in studies
by. Fincher, et al. (32), Yannoni and Clarke (33) and Duijvestijn, et al. (34). Fincher and co-
workers performed an X-ray scattering study of stretch oriented TPA films and found a
symmetry-breaking dimerization distortion of % = 0.03A. The parameter 1, is the distance each
carbon atom moves in one direction toward its neighbor in the Peierls distortion. Yannoni and
Clarke and Duijvestijn and co-workers undertook NMR studies of TPA. In both studies it was
determined that TPA was indeed dimerized. Yannoni and Clarke’s nutation-NMR experiment
yielded single and double bond lengths of 1.44A and 1.36A, while the double nuclear polarization-
cross polarization experiment performed by Duijvestijn and co-workers yielded bond lengths of

1.45 + 0.01A and 1.38 = 0.01A.

The existence of the dimerized ground state in infinite chain polyenes had been theoretically
predicted (29,30) before a model system such as polyacetylene existed. More recently, Kirtman and
co-workers (31) performed a minimal basis set ab initio study of polyacetylene. Their theoretical

experiment confirmed that TPA existed in a dimerized ground state.

A domain wall defect will be present on a TPA chain if a structural transition from a region of
one phase to a region of the opposite phase occurs. This defect can arise during the cis/trans
isomerization process. This occurrence phenomenon is supported experimentally by the
observance of random cis — linkages remnant in TPA samples (36). the domain wall defect can
also arise after electron transfer to or from dopant species (22). This effect has been observed ex-
perimentally by Ikehata and co-workers (27), who measured the magnetic susceptibility of
doped-TPA samples as a function of dopant concentration and found the charge carriers to be
spinless, a feature consistent with the predicted electronic structure of the charged domain wall de-

fects.

The domain wall defect is characterized by a geometric defect centered at the domain wall, since
symmetry requires equivalent bonds adjacent to the boundary, and by an unpaired electron centered

at the domain wall due to an interruption in the normal bonding pattern. In a charge-neutral chain,
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the unpaired electron will occupy an orbital approximately mid-way (energetically), between the
valence and conduction bands. In charged chains, this defect orbital will be empty (cation) or
doubly-occupied (anion), so that the net spin in the charged systems will be zero. The neutral and
charged defects are shown in a stylized manner in figure 14, where the arrows represent electrons.

In real chains the defects extend over several carbon atoms.

The presence of paramagnetic sites in undoped TPA has be:n confirmed by electron and nuclear
magnetic resonance experiments (37-41). Motionally narrowed EPR lines (37,38,40) aﬁd the ob-
servation of the Overhauser effect in NMR experiments (39,41) demonstrate the existence of delo-
calized paramagnetic sites, explained as rapidly diffusing domain wall defects (39,42). Localized
paramagnetic sites have been observed in NMR experiments, as evidenced by the observation of
the solid-state effect. The presence of localized sites, explained as domain wall defects trapped by
oxygen impurities, is also required in order to reconcile EPR and NMR results for the defect dif-

fusion rate (39).

Further experimental evidence for the existence of soliton-like domain wall defects in TPA has
been produced in the work of Mele and Rice (26) and Suzuki and co-workers (28). Mele and Rice
used group theory to predict the vibrational modes for a TPA chain containing a soliton-like defect
and found the IR spectra of lightly doped-TPA samples fit their predictions quite well. Suzuki and
co-workers performed an optical absorption study on lightly doped-TPA samples and observed
peaks corresponding to the mid-gap to conduction band transition as well as the valence band to

conduction band transition.

TPA films are generally doped by exposure of the films to vapor containing the dopant molecules
or electrochemically in solutions containing the dopant molecules using TPA films as electrodes.
The most commonly used acceptor dopants include halogens (ClL,Br and I) and arsenic
pentaflouride (4sF;) (43). Donor dopants which have been investigated include the sodium ion

(Na*) and ammoﬁia (NH,) (43). ' /
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The conductivity of pristine TPA is 4.4 x 10-5Q-'cm~1! (43). The conductivity of TPA doped
with the optimum ammount of 4sF; has been measured at 4.0 x 102Q~'cm~! (43), so that an in-
crease in conductivity of seven orders of magnitude can be obtained by doping pure TPA. A
conductivity range of eleven orders of magnitude has been achieved for TPA by doping with am-

monia and subsequent compensation doping with arsenic pentaflouride (43).

Experiments (44) have shown that polaron defects develop upon light doping. As the dopant

concentration increases, pairs of polarons decay into kink-antikink pairs.

A number of theoretical investigations (15-21) of soliton-like excitations in TPA have been con-
ducted. The first such investigation was conducted by Su, Schrieffer and Heeger (SSH) (15,16),
who employed a semi-empirical approach using a tight-binding (Huckel type), Hamiltonian. The
SSH Hamiltonian included electron-phonon interactions for the pi-valence electrons and a quad-
ratic bonding function for the sigma valence electrons. In the SSH study a wave function corre-
sponding to the solitary wave solution from ¢* theory (45,46) was assumed. A Green function
technique was employed to find the wave function parameters which minimized the defect state
formation energy. Kivelson and Heim (17) examined the effect of adding a constant on-site
Coulomb term (U) to the SSH Hamiltonian in a UHF study where the linear polyene was modeled
as a ring with periodic boundaries. Subbaswamy and Grabowski (18) added both on-site and
nearest-neighbor off-site Coulomb terms (U and V, respectively) to the SSH Hamiltonian in a SCF
UHF study of chains ranging from 61 to 101 carbon atoms. These investigators examined the
magnitude of the on-site term and the nearest-neghbor to on-site term ratio to achieve the best
agreement with eXperimentally measured dimerization distortion, band gap and negative to positive
spin density ratio. Hirsch and Grabowski (19) performed a similar experiment using a Monte Carlo
simulation technique on chains of 25 carbon atoms with periodic boundaries. Boudreaux, Chance,
Bredas and Silbey (BCBS) (20) used the all valence electron MNDO method (45) to examine the
ground state and various soliton-like defects on linear polyenes ranging in size from C,H,, to

CyH,; and performed complete geometry optimizations on these systems.
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Figure 13. Peierls distortion
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Figure 14. Neutral and charged domain wall defects. The arrows reprsent electrons.
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5.0 Electron Screening and the RPA

It has long been known (48) that two-electron interactions in atoms and molecules are influenced
by the presence of other electrons in the system. In pi-molecular orbital calculations, such as those
performed within the PPP approximation, the two- electron interactions are modeled by suitable
potential functions (49). Electron screening effects are implicitly included in these functions, as they
are parametrized to give results which are consistent with experiment. However, most commonly
used potential functions were parametrized in calculations on relatively small conjugated systems,

and do not adequately account for the screening present in larger systems.

This shortcoming of common potential functions was exhibited quite clearly by Fukutome and '
Sasai (21), who examined the Mataga-Nishimoto (50) and Ohno (51) potentials in a semi-empirical
UHF study of the ground state of TPA. Those authors found that the ratio between the on-site
and off-site repulsion integrals was a major factor in determining if a dimerized ground state would
arise. Particularly, the ratio of the nearest-neighbor and on-site repulsion integrals should be near
0.68 in order to realize the dimerized ground state. In order to obtain a potential with the required
nearest-neighbor to on-site repulsion integral ratio, they screened the Ohno potential with a con-
stant dielectric factor of 0.5 am\i screened the off-site terms with an exponential factor,
exp{ —7,./2.683A}. Using this screened potential they found a difference between adjacent bond
lengths of 0.140 % 0.02A in tHe ground state of TPA.
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~ Subbaswamy and Grabowski and Hirsch and Grabowski found that a nearest-neighbor to on-site
repulsion integral ratio of 0.5 gave the best agreement with experimentally measured values for

dimerization, band gap and ratio of negative to positive spins.

Mazumdar and Campbell (52) studied the effects of long range Coulomb interactions in a one-
dimensional half-filled band, with particular interest in the ground state of TPA. These authors
found that, for downwardly convex potentials (53), the broken symmetry bond-order wave (BOW)

state would be the ground state if
XV < %U + XV (15)
J J

otherwise, a charge density wave (CDW) ground state would result. The inequality (15) is satisfied

by the potentials employed in the TPA studies mentioned previously (18-20)

Several years prior to the work reported by Fukutome and Sasai, Gutfreund and Little (6,7)
noted the necessity of accounting for electron screening effects in calculations involving large con-
jugated systems. These authors developed a general scheme for obtaining a screened, or effective,
potential which was baséd on the random phase approximation (RPA). Their approach was sim-

ilar to that commonly used to include screening effects in the electron gas model (12).

A simple model of the electrons mn a metallic system is the electron gas. This model is further
simplified by placing the electrons in a uniformly distributed positive field so that charge neutrality
is ensured. For a spin and time independent bare electron interaction potential, the Dyson equation

for the effective particle interaction in an electron gas is

Virwr) = Vo) + SV T (e V(7 1) (16)

\

where V°(r;, r;) is the bare interaction between electrons on sites i and j, V{7, ;) is the effective

interaction between electrons on sites i and j and IT(,, ) is the proper polarization insertion. The
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proper polarization parts, which are summed to yield the proper polarization insertion, are shown

through first order in figure 15.

The RPA is made by retaining only the zero-order proper polarization part, so that the RPA

effective interaction is
V(ri’ "'j) = Vo(rn ’}) +% %Vu(rp rk)no(rlv rl) V(rly ’}’) (17)

where I1°(r,, r)) is the zero-order proper polarization at site k due to site 1. The RPA effective

interaction is shown in figure 16.

If the electron interactions are assumed to be frequency independent, the zero-order proper

polarization is given by (6,12)

(i ) = 2 fy (42961, 1, 0)G7(r1 1y ) (8)

where G°(r,, r,, ®) is the Fourier transformed bare single particle Green function and has the form

(12)

(1 ry o) = E— AU 5 0ulr)eelr)
io—gh +m o —gh  — in

(19

for occupied molecular orbitals, @.(7;) ,with orbital energies, ¢, and unoccupied molecular orbitals,
@{r) ,with orbital energies ¢, where the molecular orbitals and molecular energies are the
eigenvectors and eigenvalues obtained through diagonalization of a Huckel-type Hamiltonian. In

19,
limn - 07 e = lim ¢ — el =0
and the limit n — 0* is implicit and is required to ensure convergence of the time integration.
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Evaluating the integral in equation 18 by performing a contour integration, expressing the mo-
lecular orbitals as linear combinations of atomic orbitals (LCAO approximation) and assuming no

explicit geometry dependence for the LCAO expansion coefficients, the following form is obtained

Y W U ¥
Cr; C; C C
nokl = no("k,rl) = _22 §§ ki “li “ka “la (20)
!

€ T &y
where {c},} and {c}} are sets of expansion coefficients in the LCAO approximation and the sum
over A accounts for different electron spins. For closed shell systems this reduces to the atom-atom

polarizability expression obtained by Coulson and Longuet-Higgins (54).

If the electron-electron interaction is assumed to be spin independent, equation 17 can be solved
to give an expression for the effective interaction in terms of the bare interaction and the zero-order
proper polarization (12). The PPP approximation allows the use of a matrix notation for ex-
pressing the two electron interaction. Using this notation and solving equation 17, the following

expession for the effective interaction is obtained (6,12)
V=v(ad-mnve! (21

where I is the identity matrix, V°; is the bare interaction between electrons on sites i and j, V; is
- the effective interaction between electrons on sites i and j, I, is the polarization at site i due to site

j and all matrices are NxN for N atomic sites.

In Gutfreund and Little’s calculational scheme the polarization matrix is calculated using the
orbital coefficients and energies obtained from an initial Huckel treatment of the system. Then this
polarization matrix is used in equation 21 to find an effective interaction matrix which is used in
the SCF procedure. In our calculations, use of the Huckel orbital coefficients and orbital energies
in calculating the polarization matrix yielded results for the ground state of TPA which were not
consistent with experimental results. The major inconsistency of the results was the lack of

dimerization, with a difference between adjacent bonds in the center of the system of 0.008A. The
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nearest-neighbor to on-site repulsion integral ratio has an average value of 0.45, so a dimerized

ground state would not be expected, according to Fukutome and Sasai’s criteria.

This problem can be rectified by using the orbital coefficients and orbital energies obtained from
the ‘SCF procedure to calculate the polarization matrix. This approach was also employed by
Terasaka and co-workers (55) in the calculation of excitation energies in cyclic and linear polyenes.
The SCF-RPA scheme requires that the effective interaction be calculated iteratively within the
SCF procedure and is thus more time consuming, however this does solve the problems of short
range overscreening and long range antiscreening and is necessary in order to achieve agreement
with experiment. The average value for the repulsion integral ratio for the potential obtained from
this scheme was 0.69, which is sufficiently close to the critical value of 0.68 reported by Fukutome

and Sasai.

Examination of this potential in terms of Mazumdar and Campbell’s inequality, (equation 15),
shows that the BOW ground state should be expected, as the potential is downward convex and the
inequality is met. Interestingly, the inequality in 15 holds only for interactions at sites away from
the ends of the molecule. However, this should be expected since the Mazumdar-Campbell re-

lationship was developed for an infinite system modeled by a finite system with periodic boundaries.

Use of the SCF orbital coefficients and orbital energies is equivalent to the inclusion of higher
order polarization ierms. This can be shown clearly using diagrams. In equation 17, the bare Green
function is replaced by the SCF-Hartree-Fock approximation to the exact Green function. The
HF approximation to the exact Green funtion is shown diagramatically in figure 17. Iterations
within the SCF procedure yield the SCF-HF approximation to the exact Green function which is
represented by the diagram in figure 18. Replacement of the bare Green function lines in figure 16
yields the diagram in figure 19, where the heavy bubble can be expanded as shown in figure 20.

These diagrams can be identified as higher order polarization terms.
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Figure 21 shows the effective interaction at site 1 (¥})), for a system containing 40 carbon atoms.
The asterisks represent the values obtained when the bare Green function was used to calculate the
polarization matrix and the circles represent the values obtained by using the SCF-HF approxi-
mation to the exact Green function to calculate the polarization matrix. The bond alternation

patterns resulting from both approaches are plotted in figure 22.

A comparison of the bare Ohno potential, the Ohno potential screened as suggested by
Fukutome and Sasai, and the Ohno potential screened by our modification of Gutfreund and Lit-
tle’s technique is made in figure 23. The calculated differences in adjacent bonds in the ground state
of TPA (AR,), which result when these potentials are used are 0.021A, 0.140A and 0.087A re-

spectively.

Cooper and Linderberg (56) developed a technique for the inclusion of screening effects in which
polarization terms containing exchange interactions were included. According to their scheme, the

effective interaction is calculated iteratively using the following equations

Vis = Vors +§ %‘4 Vrl(%: %rlu,pqo pq,t) Vous (22a)
- 1 o ‘
rpq,l - 8ptaqt - (3) qu% %npq,uv I‘uv,t (22b)

Here, V,, is the effective interaction between electrons at sites r and s, V°,, is the bare interaction

° and IT _° are the zero-order mutual atom-bond and

between electrons at sites r and s, IT paway

upq
bond-bond polarizabilities respectively and I,,. represents the so called “vertex parts” which are
terms that when multiplied with the zero-order proper polarization term yield a series of higher

order polarization terms.

Equation 22a can be expressed as the diagram shown in figure 24. The shaded area in the bubble

represents the vertex part, which is shown diagramatically in figure 25.
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Cooper and Linderberg reported excitation energies and screened repulsion integral values for
butadiene and azulene. When an attempt was made to repeat their calculations, it was found that,
in order to match their results, the orbital coefﬁcients and orbital energies from the SCF procedure
had to be used to calculate the polarizabilities in equations 22a and 22b and that only one iteration

per SCF cycle of equation 22b could be made so that

r

pat =9

pidqr - (23)

The screened potential calculated in this manner is exactly that calculated according to the
SCF-RPA scheme. This can be seen by replacing the vertex part in equation 22a with the first

approximation to the vertex part given in equation 23. This yields equation 24,
s = VistZ % Vrtnu,to Vous » (249

which is equivalent to equation 17. It should be noted that when equations 22a and 22b were used
iteratively until the screened potential had converged, the values for all on-site and off-site inter-
actions were essentially the same. This was true when either the bare Green function or the

SCF-HF approximation to the exact Green function was used.

The inclusion of polarization terms containing exchange interactions is important in the calcu-
lation of excitation energies, particularly lthe energies of triplet excitations. However, we found that
including the diagonal part of the lowest order polarization term containing an exchange interaction
(represented by the fourth diagram in figure 15) had little effect on the electronic or topological
structure of the singlet and doublet ground states studied. Gutfreund and Little point out (6) that
the diagonal part of this term gives the major contribution to the polarization, thus it can be con-
cluded that it is not essential that this or higher order polarization terms with exchange interactions

be included in these calculations.
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Figure 15. Proper polarization parts.
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Figure 16. RPA effective interaction.
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Figure 17. Hartree-Fock approximation to the exact interacting particle system Green function
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Figure 18. SCF-Hartree-Fock approximation to the exact intera;:ting particle system Green function
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Figure 19. RPA effective interaction with the bare Green function replaced by the
SCF-Hartree-Fock approximation to the exact interacting particle system Green
function
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Figure 20. RPA polarization insertion with the bare Green function replaced by the
SCF-Hartree-Fock approximation to the exact interacting particle system Green
function
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Figure 21. Effective interaction at site 1 for a 40 carbon chain. Asterisks are for RPA and plusses
for SCF-RPA.
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Figure 22. bond alternation pattern for a 40 carbon chain. Asterisks are result with RPA
screening and plusses are result with SCF-RPA screening.
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Figure 23. Interaction potential at site 1 where: plusses-bare Ohno Asterisks-SCF-RPA screened
Ohno and circles- Fukutome-Sasai screened Ohno.
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Figure 24. Cooper and Linderberg effective interaction.
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Figure 25. Vertex part
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6.0 Calculational Details

In the initial stages of the study of soliton-like excitations in TPA, the quantum chemical force
field (QCFF) method of Warshel and Karplus (57) was used. Use of this approach proved un-
successful in modeling the kink soliton-like state because of the electron interaction potential em-
ployed. However, results of these calculations showed the TPA ground state to be ;:ssentiany
planar and that the C-C-C bond angles were close to 120°. Further, values of 122°. and 123°. have
been found experimentally (34) for the C-C-C bond angles in TPA. Results of the QCFF studies
of polyenes with and without attached hydrogen atoms showed that the presence of the hydrogen
atoms had no significant effect on the pi-electronic structure or carbon-backbone geometry. As a
result of these findings, the systems studied by the PPP-UHF-RPA mcthod consisted only of planar

carbon skeletons, with bond angles fixed at 120°.

The pi orbitals in the conjugated system were handled using the PPP Hamiltonian within the
UHF approximation. The resonance (transfer) integrals, (r;), were chosen to have the standard

exponential distance dependence (47)

Biry) = B exp(3(* = ;) | (29)
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where the constants B°, 8 and r° have the values suggested by Schulten,Ohmine and Karplus (58)
of —2.0419¢V, 1.2518A! and 1.536A respectively. The repulsion integrals, V%(r, r;), were given
by the bare Ohno interaction potential, screened as described earlier. The distance dependence of

the bare interaction is given by
7

Vo) = vl + (=72 (26)
a

The values y° = 11.13eV and a° = 1.2935A were used.

The energy contribution of the sigma valence electrons was calculated by using a Morse bonding

potential (57)

E,-
i

IMs

Eey= % Dlexp{ ~2alq ~ )~ 2exp( ~ alg; = )] @

where D = 87.95 kcal mol~!, a. = 1.7562 A-1, r° = 1.5265A, nis the number of sigma bonds and

q; = lii+r-

Optimization of the energy as a function of bond lengths was carried out using the method of
steepest descents. According to the method of steepest descents, the shift of the functional param-
eters is chosen so that the value of the function approaches an optimum value along the path of

steepest descent. The analytical expression for the bond shifts in this work was

TOTAL
rinew = riold — S( dE dri (28)
where the step size , S, is
TOTAL
4

for n bonds. In equation 29, a is 0.75 times its value in the previous iteration if the energy was

lowered by the previous bond shift and 1.2 times its previous value if the energy went up in the
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preceding iteration. The initial value of a is 0.002. S has the dimensions of length? over energy and

a has the dimensions of length?® over energy?.

The first denivatives of all energy functions with respect to bond length were found analytically.
The derivative of the energy contribution of the i* sigma bond with respect to bond i (where bond
i is the bond between sites i and i+ 1) was calcdlat:d according to

Eci

2o = ~2Dolexp( ~2u(q =) = exp( ~ alg ~ )] - G0

The energy derivatives of the pi functions were calculated assuming no explicit distance dependence
in the molecular orbitals. Thus, the first derivative of the one-electron contribution to the pi en-

ergy, E! , with respect to bond i was approximated as

OE}
aq;

= —20B° exp{3(r° — 4} Pii+1 3D

where P is the total density matrix. The first derivative of the two-electron contribution to the pi

energy, E2 with respect to bond i was approximated by

OE>
— =3 VA 32
6 Sk MM (32)

where the k/* element of V' is
Vi = [T+ VII)(VYI—-V°IT) l]k,. (33)

Here, the k/* element of V°' is

or oy Tkl Tkt 2,32 dry
Vo', = — yo(=29)[1 + (== K 34
&l Y(a°)[ (a°)1 a (34)

In (32), the matrix A is a sum of density matrix products so that the k/* element is given by
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A= = SIPLPi— (PR’ + PRP— PRy + PP+ PiPE, — (PL + Pi+ PR+ Pi-2,2)] (39)

where P2 and P? are the alpha and beta density matrices and Z, is the charge on atom k. Equation
33 can be derived directly from equation 21 and equation 32 is obtained by examination of the

standard PPP-UHF pi energy expression.

It is well known that the UHF theory yields orbitals which are not pure spin eigenfunctions (59).
To remedy this, Harriman spin projection (60) was used and all spin densities reported here are

those of the pure doublet spin states.
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7.0 Solutions To The Solitary Wave Equation

The work of Goldstone and Jackiw (46) in the quantization of non-linear waves yields the ¢*
-field theory which is derived for a one-dimensional kink such as that observed in TPA. Further,
the continuum model of TPA can be shown to be in direct correspondence with the model devel-

oped by Goldstone and Jackiw which leads to the ¢* -field theory wave equation.

One solution to the ¢* -field theory solitary wave equation (45,46)
Pxx = O = £ (9 — ¢7) (36)

is the kink soliton. The wave function for a TPA chain containing the kink soliton-like domain

wall defect should consequently have the form (25)
w(n) = Nosech(n/l") (37)

where N, = (1/2) /'~12, n is the carbon number away from the defect center and /’ is approximately
half of the defect extent in terms of carbon-carbon bond units. From equation 37, the spin dis-

tribution for this defect state is found to be proportional to sech?(n/l").

The bond length alternation pattern for a TPA chain segment containing a domain wall defect

has the form (15,25)
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AR, = ARy tanh(n/]) (38)

where AR, = ( — 1)(r,+, — r,). Here, AR, is the difference between the lengths of adjacent bonds
in regions of normal bond alternation and / is approximately half of the geometric defect extent in

terms of C-C bond units.

Another solution to the ¢* -field theory solitary wave equation which is useful in the description
of TPA defect states is the 2-soliton solution. This solution models the polaron defect in TPA,
which is described as a local deviation from one of possible dimerized ground states. The bond

alternation pattern of the soliton-like polaron state has the form (20,25)

AR, = ARy[1 — asech*(n/D)] (39)

where a is a measure of the defect amplitude and / is approximately the half width, in C-C bond

units, of the topological defect.
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8.0 PPP-UHF-RPA Results for TPA /

8.1 TPA Ground State

As described previously, TPA can exist in one of two isoenergetic dimerized configurations in
the ground state. In this study, the ground state was modeled by even membered carbon chains
of 26, 40, 60 and 74 atoms. The proper C,, molecular symmetry was ensured during the SCF and

spin projection procedures by symmetrizing the appropriate orbitals during diagonalization.

These calculations yielded a single bond length of 1.456A and a double bond length of 1.3694,
so that AR, = 0.087A. This value is in good agreement with the experimental (34) value of
0.07 = 0.01A. Suhai (61) applied second-order Moller-Plesset perturbation theory in an ab initio
study on the ground state of TPA and found AR, = 0.085A, so that the result of the present study |

is in good agreement with the current best theoretical result as well.

The MNDQO treatment of BCBS yielded a value of AR, = 0.106A, while SSH found a value

of AR, = 0.146A.
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It should be noted that the results of the studies on the effects of adding Coulomb repulsion
terms to the SSH Hamiltonian performed by Kivelson and Heim (17), Subbaswamy and
Grabowski (18) and Hirsch and Grabowski (19) should be modified in light of the smaller

dimerization distortion found experimentally.

8.2 Neutral Solitons

A neutral soliton defect on a TPA chain was modeled by inserting a carbon radical inté a 4N
even membered carbon chain, creating an odd membered chain of 4N+ 1 carbon atoms. Calcu-
lations on systems ranging from 33 to 73 carbon atoms yielded values of / = 14 for the geometric
defect and /' = 8 for the electronic defect. A projected spin density ratio of —0.25 = 0.01. was
found, in good agreement with the value —0.33 + 0.02 reported by Thomann and coworkers

(38,62).

Figures 26 and 27 illustrate the bond alternation pattern and spin density distribution for a 57
carbon atom chain containing a neutral soliton defect. In figure 27 the asterisks represent the spin
densities calculated from the spin-projected pure-doublet wave function and the plusses represent
the spin densities calculated from the unpreojected wave function. This comparison clearly shows

the necessity of obtaining wave functions which are pure spin eigenfunctions in UHF studies.

In their theoretical investigation SSH found the values / = /’ = 7 for TPA containing a neutral
soliton defect. Kivelson and Heim, Subbaswamy and Grabowski and Hirsch and Grabowski found
defects which were roughly of the same extent as those reported by SSH and BCBS reported values
of / = 3 and /” = 5 for the geometric and electronic defects. It is interesting to note that the extent
of the neutral geometric defect in TPA we find is much broader than that reported elsewhere, which

is consistent with the smaller dimerization found for the ground state. The electronic defect, as
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evidenced by the spin density distribution, is only slightly broader than that previously .reported.
Further, there is a qualitative difference in the relative extents of the geometric and electronic de-
fects. SSH, Kivelson and Heim, Subbaswamy and Grabowski and Hirsch and Grabowski found
both defects to be of the same extent, BCBS found the electronic defect to be broader than the
geometric defect, while we found the geometric defect to be broader than the electronic defect. It
is clear that the difference lies in the way in which the two-electron interactions were handled in

each study.

8.3 Charged Solitons

The large change in the conductivity of TPA samples upon doping (22) prompts interest in
systems containing charged soliton-like domain wall defects. As pointed out by BCBS, the ap-
proach employed by SSH does not allow a distinction to be made between neutral and charged
solitons. This is due to the fact that in their treatment the soliton level is at the Fermi energy and
is therefore a non-interacting state. Thus, changing the occupation of this level to create charged
solitons would not cause the change in energy fmd distribution of electron density which are nec-
essary to have a change in geometry and spin distrbution. The addition of two-electron terms shifts
the soliton energy level from mid-gap, allowing a distinction to be made between charged and

neutral soliton defects.

Systems containing charged soliton defects were modeled by removing an electron from the
highest occupied molecular orbital to create a cationic soliton or adding an electron to the lowest

unoccupied molecular orbital to create an anionic soliton.

The bond alternation patterns for cationic and anionic soliton defects on 57 carbon atom chains

. are shown in figures 28 and 29. The carbon chain containing the positively charged defect has a
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bond alternation pattern which fits tanh(n/13) with / = 13. The geometric defect on the chain
containing the negative defect is more compact, with / = 10. These results are in qualitative agree-
ment with those reported by BCBS who found / = 5 and / < 3 for chains containing positive and

negative defects respectively.

Both charged systems exhibit damped charge density waves (DCDW), with positive to negative
oscillations of charge density from site to site. The distribution of charge density for the charged
defect states are shown in figures 30 (cation) and 31 (anion). The charge densities fit a curve which
is proportional to sech*(n/!’). In this study the DCDW for the system containing the positive defect

| fit the hyperbolic secant curve with /’ = 15 and the DCDW for the system containing the negative
defect fit with /’ = 10. Thus, the DCDW is slightly more diffuse than the geometric defect on the
chain containing the cationic soliton, while the DCDW is of the same dimension as the geometric
defect on the chain containing the anionic soliton. This result is greatly different from that reported
by BCBS who found DCDW's which were much more diffuse than the topological defects in both
charged systems, with an identical value of /' = 8 for chains containing either a cationic or anionic

defect.

8.4 Polarons

The polaron defect will arise if an electron is gained or lost from a perfectly dimerized chain, and
is thought to account for conduction in doped TPA and other organic semiconductors (22,63).
Chains containing positively and negatively charged polarons were modeled as 40 membered

polyene radicals with C,, symmetry.

The bond alternation pattern for 40 membered chains containing positive and negative polaron

defects are represented in figures 32 and 33, respectively.  The solid lines represent
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AR [1 —asech?(n/l)] with I = 14 and o = 0.96 for the positive polaron and / = 10 and a = 1.42 for
the negative polaron. Values of /= 9 and a = 0.51 (positive polaron) and /= 7 and a = 0.69

(negative polaron) were reported by BCBS.

The distribution of charge density (lattice polarization) in a system containing a positive polaron
defect is shown in figure 34. Figure 35 shows the lattice polarization for a 40 carbon chain con-
taining a negative polaron defect. The features of both curves are in qualitative agrrement with
those reported by BCBS, however both curves are more diffuse than the BCBS curves. This is
reasonable in light of the difference in the extent of lattice distortion reported here as compared to

that reported by BCBS. and is consistent with the results obtained for other defect states.

8.5 Conclusions from the PPP-UHF-RPA Study of TPA

The results found in this study present defects which are much more diffuse than those previously
reported. However, the qualitative characteristics of the defect states are in agreement with exper-
iment and with those predicted in other theoretical studies. While it is currently impossible to
measure the extent of the geometric defect experimentally and the exact extent of the electronic
defect is unclear due to the possibility of soliton diffusion (39,42), such quantities as the measured
ground state dimerization and ratio of negative to positive spin density can be used as a way of
comparing the results of theoretical studies. It can be seen that the results of this study are in better
agreement with the experimentally measured degree of ground state dimerization and ratio of neg-
ative to positive spin density on chains containing domain wall defects than results reported in the

other studies mentioned.

While the model employed by SSH, and modified by others (17-19) was useful in characterizing
the neutral soliton defect in TPA and the MNDO treatment of BCBS yielded results on this and
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other defect states of interest in TPA, the use of UHF theory and the explicit consideration of

electron screening effects are necessary steps in the better understanding of soliton defects in TPA.
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Figure 26. Bond alternation pattern for a 57 membered chain containing a neutral soliton. The solid
line represents 0.087tanA(n/14).
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Figure 27. Spin distribution for a 57 membered chain containing a neutral soliton. The solid line
represents 0.156sech?(n/8), the asterisks represent the projected spin densities and
the plusses represent the unprojected spin densities.
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, Figure 28. Bond alternation pattern for a 57 membered chain containing a positive soliton. The
solid line represents 0.087tanA(n/13).
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Figure 29. Bond alternation pattern for a 57 membered chain containing a negative soliton. The
solid line represents 0.087tanA(n/10).
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Figure 30. Charge density distribution for a 57 membered chain containing a positive soliton. The
solid line represents 0.139sech?(n/15).
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Figure 31. Charge density distribution for a 57 membered chain containing a negative soliton. The
solid line represents 0.192sech?(n/10).
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Figure 32. Bond alternation pattern for a 40 membered chain containing a positive polaron. The
solid line represents 0.087[1 — 0.89sech?(n/14)].
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Figure 33. Bond alternation pattern for a 40 membered chain containing a negative polaron. The

solid line represents 0.087[1 — 1.42sech?(n/10)).
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Figure 34. Charge density distribution for a 40 membered chain containing a positive polaron.
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Figure 35. Charge density distribution for a 40 membered chain containing a negative polaron.
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9.0 Theory of the Extended UHF-TISOSE

Method

Although the form of the exact interacting particle system Green function is unknown, this
function can be assumed to have the same form as the bare Green function if the proper self-energy
is time independent (12). Making this assumption, it is possible (12) to develop a Schrodinger-like

equation for the single particle wave functions of the interacting particle system
— 2 - — = — - )
1;—”7 Vi UGofE) + [dixph/2nZ (xy, x)06%,) = e0%) (40)
mn

where Z'(x;,x;) is the time-independent self energy and ¢,(X,) and ¢, are the orbitals and orbital

energies of the interacting particle system.
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9.1 Relation to Hartree-Fock Theory

The first-order approximation in the self-energy Feynman-Dyson perturbation expansion of the
exact interacting particle system Green function is the retention of the first-order proper self-energy
insertions, so that X'(x,y) =,X°(xp). The Feynman diagram for this approximation is shown in

figure 17. The analysis of these diagrams according to Feynman's rules yields

16 (X1, %) = — 2rilh)3(x, — x,) Z,jddx3U(x1 - x3)63u: (4la)
Mo

1 (xp, %) = (27::'/;1)3;,(/(::1 — x3)Gyyy (415)
» B

These are simplified to

* - -1 — oce 3 — _ - Ou g ou —_ %
1a2 (X1, x3) = (A/2m) "8(x xz)%: ? fd'x3Vixy = x3)0;" (x1)9;" (x3) (42a)
Z" - _ -1 —b——ooccol—;'op—ot
e (X1, x3) = — (A/2m) " V(x) — x3)Z ;7 (x))0; (x2) (42b)
J

Inserting these into equation 40 yields

- K 2 P a P,
V1" + Ux)lgjix) +
[dx204 () V(x) = x)0p(x2)0;(x1) + [d"x30,(xx) V(xX) = X)0(X2)04(X1) = £0;(x,)-
The second term on the left hand side of equation 43 is the Hartree-Fock Coulomb operator, while

the third term is the Hartree-Fock exchange operator, so that the first order approximation in the

self-energy Feynman-Dyson perturbation theory is the Hartree-Fock approximation.
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9.2 Extension of Hartree-Fock Theory with the TISOSE

Terms

If the self-energy expansion for the interacting system Green function is made with the total
proper self-energy replaced by the first-order approximation, then the SCF-HF theory develops.

This is shown diagramatically in figure 18.

The next order of approximation to the exact Green function for the interacting particle system
which is consistent with the assumptions leading to equation 40 is the inclusion of the time-
independent second-order self energy insertions. The Feynman diagrams for the four time-

independent second-order self-energy insertions are shown in figure 36.

The analysis of these diagrams by the Feynman rules yields

Toalxxy) = = (2n—) 8x, = x) T T T fdixydix,d’xs
TR R A 0 (44a)
V(x, —x3)M.', iy V(x4 xS)oc tr'Gpc(x3 x4)Go 1 (x4’x5)Gtu (xs5,%3)

Top(X1,%p) = (2n—) 8x, = x) T T 3 fdixydix,d’xs
wpoo (44b)
V(x _xJ)MJ, Ty V(x, xS)oo T’ O"t('x3 x4)G‘t c (xd’xB)Guu (x5:X5)

Selnxy) = ' 3 T3 [dixd'x
Moo Tt 0 0 0 ( 446)
Vixy =X,y V(X3 =~ Xa)oo’, 1 Gae(X1:X3) Gro(X3,X4) Gy (X4:%7)

D) = = (2n0y Iz [d*xyd'x, »
V(xr =X, V%3~ Zaoo!, v Gro(%1,%3) Goy(X3,%,) Grr(Xa.%s)

Performing the appropriate contour integrations, assuming the bare Green function to be diag-

onal in spin, making the zero differential overlap approximation (ZDO), expressing molecular or-
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bitals as linear combinations of atomic orbitals (LCAQO approximation) and assuming that the

interparticle potential has the spin independent form
Vix = Xy = V(x — X"8(t — )3, (45)

yields matrix elements appropriate for use in the PPP-UHF treatment of pi-valence electrons. The
denivation of equation 46a from equation 44a is given in the appendix. The second-order matrix

elements are

P h -
PR 223 D LA AL AT AR (R o
2 = a
aSuy . (% %)
P h c c o0 © 0, C c\—1
S = - 20 2,: ? % % %P ssYurYstCriCrmCriCm €l —~ €m) (u=v (465)
2b -
uv (1 % )
c _ P h o o0 OO0, C o\ 1
265y = 2; % %%P rsYrsYuvCriCsmCutovm(El — €m) (46¢)
c __ P A T. 0,00 c C c oy—1
2dSuv = - ; ? 21: %P rrYrsYquslcsm(culcvm + cvlcum)(sl - 8m) . (464d)

In equation 46, o represents particle spin, P%(P?), is the alpha (beta), density matrix, P7 is the
total density matrix, y is the matrix of two-electron repulsion integrals and {¢*} and {€%} ( {c?} and

{€"} ) are the sets of eigenvectors and eigenvalues of the modified Fock matrices
FY = Foyp + S° (47a)
= + s (470)

The matrix S° in equation 47 may be any of the matrices defined in equation 15, or the sum of

them.
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9.3 Results of the Extended PPP- UHF-RPA-TISOSE

Calculations on TPA

The pi-valence electrons of the linear polyenes studied were treated using the PPP-UHF
Hamiltonian, with the time-independent second-order perturbation terms added.

In this preliminary study, the effects of the time-independent second-order perturbation terms
on calculations involving the polyene radicals trans — C,H,, and trans — C;H,, were examined,
and were modeled as planar carbon skeletons with fixed bond angles. The matrix elements in
equation 46 were added either individually, or as a sum, to the PPP-UHF treatment, as indicated
in equation 47.

The results for the change in pi-energy, AE,, and the total negative to total positive spin density

ratio, p~/p*, are given in table 1. The pi-energy difference is defined as
AE, = ErfJHF+SO _ E:IHF (48)

where EUHF is the pi-energy calculated when only the first-order self-energy terms are included
(Hartree-Fock approximation), and EVHF+S0 is the pi-energy calculated when one, or all, of the time
independent second-order self-energy terms is included.

The results of this study show that important many-body contributons can be included in simple
pi-orbital calculations by the use of the field theory familiar to solid state physicists. Further, the
time independent second-order self-energy terms considered here have been shown to contribute

significantly to the electronic structure and energy of the systems studied.
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Table 1

C-9 Results-
E™(kcal/mol)

UHF  -393.01
2-A -393.01

2-B -51.28

2-C -381.62

2-D  -337.16
ALL  -102.04

C-17 Results-

UHF
2-A
2-B
2-C
2-D
ALL

RPA

E "(kcal/mol)

-786.36

-786.3

-305.47

-753.83

-116.42

106.55

-886.49

AE,

341.72
11.39
55.93

290.97

AE,

480.89
32.53
669.94
894.91

-100.13

p /p
0.5668
0.5668
0.2544
0.7000
0.4212

0.3115

p /p
0.6956
0.6956
0.5108
0.8216
0.5427
0.7872

0.4700
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Figure 36. TISOSE insertions
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10.0 Description of the Computer Code

The calculations performed in this research were carried out using a computer program written
specifically for the PPP-UHF treatment of polyenes. The program was compiled and executed on
the VM1 system at V. P. I. and S. U.

The main program reads in the number of atoms in the system, the net charge on the system,
the net electronic spin in the system and the number of iteration cycles to be carried out. Switches
controlling the type of calculation are also input as data. The program is able to perform standard
PPP-UHF calculations, as well as the PPP-UHF-RPA procedure an;i the extended
PPP-UHF-TISOSE procedure. The initial bond lengths of the system to be studied are the final

data required.

The main program also sets up matrices to symmetrize- antisymmetrize the calculated molecnular
orbitals, so that the proper molecular symmetry is assured, calls the energy function controlling
routine MOLECU, controls the optimization procedure STEEPD and prints the initial and final

geometry and energy contributions.

A brief description of the main subroutines follows:
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BFUNC2- Calculates the sigma bonding energy and sigma bonding energy derivative contributions
for each sigma bond according to the Morse bonding function, equation 25 and the corresponding

- derivative equation 26. BFUNC?2 is called by BONDP.

VPHI- Sets-up the diagonal elements of the one-electron Hamiltonian matrix using the SOK
parametrized form of the standard PPP expression, equation 23, and calculates the one-electron
pi-energy derivative contribution for each bond according to equation 27. VPHI is called by

BONDP.

BONDP- Calculates the length of each bond from the Cartesian coordinates of the bonded atoms.

It also calls the routines BFUNC2 and VPHI. BONDP is called by MOLECU

STEEPD- Calculates bond shifts leading to minimization according to the steepest descents

method. STEEPD is called by the main program.
MOLECU- Controls the calculation of all energy and energy derivative contributions. It also per-
forms an initial Huckel treatment of the system for input into the SCF procedure. It is called by

the main program.

SCF- Performs the SCF UHF procedure. It calls routines which set-up and diagonalize the alpha

and beta Fock matrices used in the calculation of the pi-energy contribution. It may also call
routines which calculate the RPA effective interparticle interaction according to equation 21 or set
up the second-order self-energy matrices defined by equation 46. This routine controls the output
of all information about the pi-valence electrons, including density matrices, charge and spin dis-

tributions and molecular orbitals and energies. SCF is called by MOLECU.

SN2A-SN2D- Set up the matrix elements defined by equation 46. These routines are called by

SCF, when required.
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SYDI- Diagonalizes the Fock matrices so thst the molecular orbitals have the proper symmetry.
It uses the external diagonalization routine RS from the EISPAK package of eigensystem routines.

SYDI is called by SCF.

PROJ- Performs Harriman spin projection on the UHF orbitals to find the spin distribution and

pi-energy of pure spin eigenfunctions. PROJ is called by SCF.
DENA- Calculates the alpha and beta density matrices. DENA is called by SCF.

UHFOCK- Sets up the alpha and beta Fock matrices in the UHF and UHF-RPA procedures or
the modified Fock matrices (according to equation 36) if the extended UHF-TISOSE procedure is
used. UHFOCK is called by SCF.

SYMNAT- Diagonalization routine which produces natural orbitals for spin projeciion. The or-
bitals are constrained to have the proper symmetry. This routine also uses the EISPAK routine

RS. SYMNAT is called by PROJ.

SYMCOR- Diagonalization routine which produces beta-corresponding orbitals for spin
projecticn. The orbitals are constrained tc have the proper symmetry. This routine also uses the

EISPAK routine RS. SYMNAT is called by PROJ.

VEFF- Calculates the RPA effective particle interaction according to equation 21. This routine
uses the external LINPAK routines DGECO and DGEDI to find the matrix inverse in equation

21. VEFF is called by SCF.

VZERO- Calculates the Ohno (50) bare interaction according to equation (24). It may be called
by MOLECU or VEFF, as required.
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VPRIME- Calculates the two-electron pi-energy derivative contribution of each bond according to

equation (28). It is called by MOLECU.

In addition to the main program and these nineteen subroutines, there are twelve other sub-

routines and three functions. A listing of the program is included (see appendix), for reference.
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Appendix A. Derivation of Equation 46a

Figure 39 shows the complete Feynman diagram of the second-order self energy insertion “2a”.

Starting with equation 45a

Taal,%y) = (2n—) Sx; ~x) L T T [dxdixdxs

B o0t
0 0 !
U(x _x3)},}.', up'U(x4 xS)oc 124 uo(x3’x4)Go (x4'xS)th'(xS»x3)

we first assume the interparticle interaction to be spin and time independent so that

SoalxX) = — (2n—) (x; = x)T T X J'da x3d*xyd s

wu'o,0' Tt
VX, —x3)8(t) — 3)8 pu'V(xfl» —%5)8(ty = t5)8558er
G (X3,4) G (4,05 ) G (x5, %3).

Then, assuming the bare Green function to be diagonal in spin and simplifying yields

Z;a(xl‘,x2) = - (271:—;;—)25(% - X2)% Id4X3d4X4ddx5
V(X —x3)8(t; — )V (xy —x5)8(ty — t5)

Gp3,%4) Gi(Xass) Gy (%5, X3).
Performing the ¢ and ¢ time integrations yields
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Toa(xXxy) = — (zn%)zsu1 - % [’ xyd’xsd"xs 4
V(E, = x3) V(% =%5)G %y by, Xy 43)GO(Ky, g, Xs, 1)GO(Xs, by 1 X3, )

It is now advantageous to Fourier transform the time component of the Green functions

do, do, do;
2r 2n 2n
V(Z) =x;) V(X —x5)e™ ~ WG60(%;, 3y, o)) (45)

Zaleig) = = Qe = )X [dxd xsd'x,

eom GO(J—C’4, ;5, wy)e iyt = '4)G0(;5, §3, ®3)

which simplifies to

. do, do,
“on 21
V(X “x) V(% =x5)e™MGO (%, X5, ) (46)

5 pxy) = = (2n—;;—)28(x1 - %)% [d*x3d’x5d’

i '0,— - 0,— -
e G(x;, X4, ©1)G (X5, X3, ®)

Inserting the Fourier transformed bare Green function

O(er — gp) + O, — €p)

T (v - A7
- aan/h + m » - 8k27t/h - i J\Pk(x)%(y) ( )

G (xp) = 3
k

into (A6) yields

doy do,

Z;a(xl X) = — (2n%)28(x1 - xz)E, %‘, IO .[ d3x3,x5,x4—2n——57-t—

k1

Vix, —x3) V(% _“xs)eimzn[

Oer — &) Oe; — €f) R o
T+ ! —Jp,(%4)0;(Xs)
w, = g2n/h + in ©, = g2n/h — i
(48)

®) = g2n/h+ i’ ) — g2n/h— in’
OCr—e) . O —¢p

10,(63)0 %) (Xs5)O A
o ek + i oy = ek - in,l\Pk( 3)0AX2)0u(X5)0Lx3)

Using the integration contour in figure 41, the following expression in terms of the interparticle

interaction and the molecular orbitals and orbital energies is obtained
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0CC 0cC unocc

Toa(x1x) = = (2n/R)d(x, — xz)%: z % % J'd3x3,x5,x4
J
V(X) —x3) V(X = %5)0[(%a)0,(Xs) (49)

[0k ORX)OXPAXS) + Pp)OAX)OR(K3)AXS(E, — )

Inserting this into the Schrodinger-like equation

R g2 ot WPy
[- P Vit Uxplefx) + (A10)
[d’xy(hi2m)E" (F) K)oy(%y) = £04%)),
yields
FEDoE) — %? oéc S x5, 2 VE Tr)VE, xs)
OX)PRXNOLT)OmZ)OAXS)Om(X3) + PAXLIOm(K3)OLX3)Ppm(Xs)] (A11)

(&= e 'ofX)) = g0/X)

where f{x,) is the one-electron Fock operator. This allows the definition of a new operator defined

from

SED0AX) + SEDofx)) = £0/%)). | (A12)
The matrix representation of S(X,) in the atomic orbital basis is

Sw = [ %0 SE 1) (413)

Inserting S(x,) from (A10) and assuming all orbitals are real yields

0ce 0CC unoce

Sw=IX X T [dxix;xs5x0F)VE “x)V(E —x5)
0 1(xg)P (X)L X3)P (X4 )PAX5)Pm(X3) + OAXG)P;(X3)PAX3)Om(X5)I(E; — €1) " %y(Xy)-

Expanding the molecular orbitals in the atomic orbital basis (LCAO approximation) gives
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occ occ unoce

Sw=~2% DR Z%«%Ez%fd3x1x3’x5v X V(%) =x3) V(X =xs)0ul%1)

m T c
CrkCskCtiCetComCwmXr(Xa)Xs(Xs)

LA Fa)Er = ) ™ X))

Using chemists notation for the two-electron integral, this becomes

OCC OCC unoce
Sp=-22%3 ¥ SIITT Loty
Wk I M rsitcpw
ColComCumVW)(relsb)(e; — £) !

Making the zero-differential overlap approximation:

(wvltw) = (wv[tw)d,,0,, = Yyur

yields
occ occ unoce -1
Suv ==-233YY Y XX 2CrkcskctlcrlctmCsmYutYrs(SI - sk) (u=v)
Wikt m rsi
0 (u #v)

finally, using the density matrix definition
Pl = T8
yields the form of equation 46a

P h -
R R PR LA WAL LT AR CR )

(u#v)
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(416)

(417)

(418)
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Figure 37. Complete Feynman diagram for self-energy insertion “2a”.
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Appendix B. Computer Program

C  PPP-UHF WITH RPA AND TISOSE C SUBROUTINE CONF

IMPLICIT REAL*S (A-H,P-Z)
REAL*$ LENGTH
CHARACTER OCH(60),0SYMB
COMMON/ISEC/ISOA,ISOB,ISOC,ISOD,IDMP
COMMON/HH/H(60,60),R(60,60),PT(60,60),Z(60)
COMMON/MAT/BMAT(60,60),GMAT(60,60), HCORM(60,60)
COMMON/FINAL/B(60),X(180),AL(60),NC(60)
COMMON/CONTRO/NATOM,NBOND,NAP,NAO,NAT3
COMMON/ENSTOR/ENS(20),STEPS(20),ITH
COMMON/UHF/PA(60,60),PB(60,60)
COMMON/PII/JCHG,NALPH,NBET,NPIE JSPIN,JUHF
COMMON/SW/ISW,IPR,ISCR
COMMON/SYM/S(60,60),ST(60,60),NSM(2),NOCC(2)
COMMON/DER/D1(60),D2(60),D3(60), VOP(60,60),D(60)
COMMON/EXCI/IEX
COMMON/SELF/DMP1,DMP2
DIMENSION ITITLE(10)
DIMENSION DX(3)
DATA OSYMB/A’/ C  IEX=1
IEX = 0
PI=3.141592635898D0
DMP1=70.D0
DMP2=0.D0

. DO 10 I=1,60
OCH(I)=0SYMB

10 NC() =1
CALL ERRSET(207,256,-1,1,1,209)
READ 9, (ITITLE(I),I = 1,10)
PRINT 19, (ITITLE(I),I= 1,10)
ISW=1
READ (5,29) NATOM
NAP=NATOM
NBOND = NAP-1
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NAT3=3*NATOM
DO 20 I= 1,NATOM
20 Z(I)= 1.D0 C...FORM S=SYMM. TRANSFORMATION.
CALL INIT (S)
KOC=MOD(NAP,2)
IF (KOC .EQ. 0) GO TO 40 C...ODD SYSTEM
NSMS = (NAP + 1)/2
NSMA = (NAP-1)/2
NSM(1)= NSMS
NSM(2) = NSMA
KOC =MOD(NSMS,2)
IF (KOC .EQ. 0) GO TO 50
NOCI1=(NSMS+ 1)/2
GO TO 55
50 CONTINUE
NOC1 = NSMS/2
55 CONTINUE
KOC = MOD(NSMA,2)
IF (KOC .EQ. 0) GO TO 60
NOC2=(NSMA + 1)/2
GO TO 65
60 CONTINUE
NOC2= NSMA/2
65 CONTINUE
NOCC(1)=NOCl
NOCC(2)=NOC2
CN = 1.D0/DSQRT(2.D0)
NSMSM = NSMS-1
DO 70 K = 1,NSMSM
KA=NAP+1-K
1=K
IS= NAP+ 1-11
S(I1,K)=CN
S(IS,K)=CN
S(I1,KA)=CN
70 S(IS,KA)=-CN
S(NSMS,NSMS) = 1.D0
GO TO 80
40 CONTINUE C..EVEN SYSTEM
NO2=NAP/2
NSM(1)= NO2
NSM(2)= NO2
I0C = MOD(N02,2)
IF (I0C .EQ. 0) GO TO 90
NOCI1=(NO2+ 1)/2
NOC2=(NO2-1)/2
GO TO 95
90 NOCI=N02/2
NOC2=N02/2
95 CONTINUE
NOCC(1)=NOCl
NOCC(2)= NOC2
CN = 1.D0/DSQRT(2.D0)
DO 100 K= 1,NO2
KA=NAP+1-K
1=K
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IS=NAP+ 111
S(I1,K)=CN
S(IS,K)=CN
S(I11,KA)=CN
100 S(IS,KA)=-CN
80 CONTINUE
DO 110 [=I,NAP
DO 110 J=1,NAP
110 ST(LJ)=SJ.I) C..
PRINT 49,NAP,NSM(1),NOCC(1),NSM(2),NOCC(2)
READ (5,29) NSTEEP,INEW,JCHG,JSPIN,ISCR
READ (5,29) ISOA,ISOB,ISOC,ISOD,IDMP C
DO 6098 I=1,NBOND
6098 READ(5,6099) B(I)
6099 FORMAT(F12.5)
AL60= DACOS(0.5D0)
DO 6000 1= 1,NBOND
AL(I)=0.D0
IK = 2*(1/2)
6000 IF(IK.EQ.I) AL(I)= AL60
CALL CART(B,X,AL,NAT3,NATOM)
CALL ALPH(X,AL,NBOND)
DO 207 I=1,NAP
READ (5,69) (PA(LJ),J = 1,NAP)
207 CONTINUE
DO 217 I=1,NAP
READ (5,69) (PB(1,J),J = 1,NAP)
217 CONTINUE C CC
NPIE = NAP-JCHG
NALPH = (NPIE + JSPIN)/2
NBET = (NPIE-JSPIN)/2
NTOT=NALPH + NBET
WRITE(6,79) NTOT,NPIE,NALPH,NBET
IF(NTOT .NE. NPIE) STOP
NAO=NALPH CC
PRINT 89,NATOM C
IPR=1
CALL MOLECU(1,1,E,50,EB,EPL,EDCOR,0CH,ESOD)
IPR=0
IF(NSTEEP.LT.1) GO TO 150 CC  STEEPEST DESCENT MINIMIZATION C
DO 160 ITH= |,NSTEEP
CALL MOLECU(1,1,E,75,EB,EP,EDCOR,0CH,ESOD)
PRINT 99
IF(ITH.GT.1) GO TO 170 C
PRINT 109 )
PRINT 119,(ITITLE(]),I=1,9) C
PRINT 129,E,EDCOR EB,EPI,ESOD
CALL INTERO (NBOND,B,D)
IPR=0
170 CONTINUE
CALL STEEPD(NBOND,D,B,E,STEP)
CALL CART(B,X,AL,NAT3,NATOM)
DO 180 IAT = 1,NATOM
180 WRITE(7,39) (X((IAT-1)*3+J),J=1,3)
160 CONTINUE C
150 CONTINUE
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IF (NSTEEP .EQ. 0) ITH=1
IPR=1
CALL MOLECU(-1,1,E,70,EB,EPIEDCOR,OCH,ESOD) C DO 190 I=1,NAP C
WRITE (7,59) (R(1J),J = 1,NAP)
190 CONTINUE
DO 200 I=1,NAP
WRITE (7,69) (PA(LJ),J= 1,NAP)
200 CONTINUE
DO 210 I=1,NAP
WRITE (7,69) (PB(LJ),J = 1,NAP)
210 CONTINUE
IPR=0
EFIN=E
PRINT 139
PRINT 119,(ITITLE(I),I= 1,9)
CALL INTERO (NBOND,B,D)
PRINT 129,E,EDCOR,EB,EPL,ESOD
PRINT 149
DO 220 I= 1,NSTEEP
~ PRINT 159, ENS(I),STEPS(I)
220 CONTINUE C C
RETURN C
9 FORMAT(20A4)
19 FORMAT(1H1,20A4)
29 FORMAT(91S5)
39 FORMAT(3F8.4)
49 FORMAT(/,3X,’NAP=",I3 NS=",I3, NSO=",13,” NA="13, NAO=",I3)
59 FORMAT (8F10.6)
69 FORMAT (8F10.8)
79 FORMAT(/,3X,’NTOT =",14,” NPIE=",14" NALPH=",14, NBET =",14)
89 FORMAT ( 30X, ISHNUMBER OF ATOMS = ,I6)
99 FORMAT(//)
109 FORMAT (1H1, 6X,30HINITIAL RESULTS,/ 6X,30H
*

)

119 FORMAT(24X,18A4)

129 FORMAT (4()),10X, 19H TOTAL ENERGY =,F20.10, ’ KCAL'
* //,1X, DIAGONAL CORE CONTRIBUTION = *,F20.10,’ KCAL’
*./ 5X,25H BOND CONTRIBUTION = , F20.10,” KCAL'

+ /4X’  PICONTRIBUTION = ’,F20.10, KCAL’
* 12X SECOND ORDER CONTRIBUTION = ,F20.10, KCAL",/)

)
149 FORMAT(/,10X, ITTERATION HISTORY",/,5X, ITER",5X,,ENERGY",10X,"STEP
*I

159 FORMAT(5X,14,2(F15.6,1X))
END C
SUBROUTINE BFUNC2(I1,J1,BL,F,DF)

IMPLICIT REAL*8 (A-H,P-Z) C MORSE TYPE BOND ENERGY FUNCTION C
CB1=_87.948D0

BO1=1.52645D0

CA=1.7562D0

DR =BI-BO1

A2=DEXP(-1.D0*CA*DR)

Al= A2**2

F=CBI*(A1-2.D0*A2)

DF =-CBI1*CA*(2.D0*A1-2.D0*A2)
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RETURN
END C
SUBROUTI<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>