
Spatial and Temporal Path Planning

by

Marc G. Slack

Thesis submitted to the Faculty of the Virginia
Polytechnic Institute and State University in partial

fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In

Computer Science

~ APP~:~U
~~f/ '\

'DaVid P. Miller, Chairman

June 1987

Blacksburg, Virginia

Sallie Henry \

LD
5(P55
\j85S"
\q01
5583
L.2-

Spatial and Temporal Path Planning l

Marc G. Slack

Committee Chairman: David P. Miller

Abstract
For robots to. move out of the lab and into the real-world, they must be

able to plan routes not only through space but through time as well. The
introduction of a time factor to the planning process implies that robots
must reason about other processes and agents that move through space
independently of the robot's actions. This thesis presents an integrated
route planner and spatial representation system for planning real-time
paths through dynamic domains called Robonav. Robonav will find the
safest9 most efficient route through time and space as described by an
evaluation function. Due to the design of the spatial representation and
the mechanics of the algorithm, Robonav has an isomorphic mapping onto
a machine with a highly parallel SIMD architecture. When Robonav is
operated in a predictable domain, paths are found in O(p) time (where p is
the length of a path). In unpredictable domains, where Robonav is
operated in incremental mode, paths are found and executed in O(p2) time.

1 This research was supported in part by a grant from the Naval
Surface Weapons Center, under contract number N60921-83-G-A165.

Acknowledgements
Thanks to David Miller and Catherine Stein, for their support on both a

professional and personal level.

Thanks to my friend Sallie Henry, for her support and my opportunity
do graduate work.

Thanks to Erann Gat, for conversations about this research that
produced some good ideas.

Thanks to Steve and Deb Wake, good friends pass through but twelve
times in a life.

Thanks to Connie and Gary, for their kind grace.

Special thanks to my wife Pam, for her time and effort helping me to
live my life and write this thesis.

111

Contents
Acknowledgements ... iii

Contents ... i v

List of Figures .. vi

Chapter 1 ... 1

1.1 The Route Planning Problem .. 1

1.2 Review of Related Works .. 3

1.2.1 Voronoi Diagrams .. 3

1.2.2 Free Space Representations .. 3

1.2.3 Knowledge Bases .. 5

1.2.4 Potential Fields ... 7

1.2.5 Vertex Graphs .. 8

1.2.6 Configuration Space ... 8

1.2.6 Grid Representations of Space .. 8

1.3 Planning Routes Through Interesting Spaces 9

1.4 An Outline of the Thesis ... 10

Chapter 2 ... 11

2.1 Spatial Representation ... 11

2.2 Finding Paths Through Space ... 14

2.2.1 Phase 1

"Throwing the Stone" .. 17

2.2.2 Phase 2

"The propagating wave front" ... 17

2.2.3 Termination

tt A Wave reaches destination" .. 19

2.3 Finding Paths Through Space and Time .. 21

2.4 Modeling A Robots Continuous Time Actions 24

2.5 Concluding Remarks
Algorithms and Models .. 25

Chapter 3 ... 0 ... 27

IV

3.1 Predictable Objects in n-Space and Time .. 27

3.2 Refining Object Representation ... 31

3.3 Trade-offs Between Resolution and Efficiency 34

Chapter 4 ... 36

4.1 Spatial and Temporal Qualities3 6

4.2 Defining Evaluation Functions ... 37

4.2.1 Using a Single Measure of Quality

"Openness't ... 37

4.2.2 Defining Multi-Variable Evaluation Functions40

4.3 Finding Paths Through Dynamic Spaces .. 42

4.4 Robot Specific Abilities and Limitations ... 45

Chapter 5 ... 49

5.1 Incremental Operation ... 49

S.2 Example in an Unpredictable Domain ... 50

Chapter 6 ... 53

6.1 Conclusions ... 53

6.2 Further Research .. 53

6.3 Implementation ... 54

Bibliography .. 56

Vita ... 58

v

List of Figures
Figure 1 The path planning problem ... 2

Figure 2 Voronoi regions of a given 2-space4

Figure 3 Some generalized cones ... 6

Figure 4 Nodes in 1, 2 and 3-space ... 12

Figure 5 Arbitrary examples of 2 and 3-space .. 13

Figure 6 Links of a simple 2-space 0 ... 15

Figure 7 Searching for the destination in 2-space .. 16

Figure 8 Phase one ... 18

Figure 9 Phase 2 .. 20

Figure 10 Reflexive links of a simple 2-space ... 22

Figure 11 Shortest path through time .. 26

Figure 12 Representing a revolving door ... 28

Figure 13 Path finding through a simple I-space ... 30

Figure 14 Overlapping nodes .. 32

Figure 15 Resolution increasing to match the problem 33

Figure 16 Refining the revolving door .. 35

Figure 17 Openness in a simple 2-space ... 39

Figure 18 Evaluation function using openness41

Figure 19 Ev·aluation functions using multiple qualities43

Figure 20 Path finding through a rich space .. .44

Figure 21 Evaluation functions in dynamic spaces .. .46

Figure 22 F Regions in 2-space .. 47

Figure 23 Evaluation function using F regions .. 48

Figure 24 Operation in an unpredictable domain .. 51

VI

Chapter 1

Introduction: Dynamic Domain Path Planning

The research presented in this thesis is directed towards the creation
of a path planning system capable of reasoning not only about the spatial
aspects of path planning but also the temporal aspects. Several route
planning systems have been proposed, each having some degree of
success in the domain for which tliey were targeted. This research
represents the first system that begins to adequately address the temporal
aspect of the route planning problem.

1.1 The Route Planning Problem
The problem of planning paths for use in moving robots through a

given domain is an old one. However, none of the classical systems has
an adequate definition of path planning. In this thesis the path
planning task will be defined as finding the optimal path between two
locations in space. A path is considered optimal if it best satisfies the
constraints imposed by the domain in which the planner is operating.
Therefore, a route planning system should be capable of planning paths
in domains with constraints involving: predictable and unpredictable
objects moving through space; the quality of space through which the
robot is to move; the abilities and limitations of the robot executing the
plans; and the goals and schedules that the robot is to meet. It should also
be noted that the definition of optimal path is constrained by the
particular spatial representation used by the path planner.

Figure 1 shows an abstract example of a path planning problem set
in a two-dimensional space (or 2-space hereafter). Contained in the 2-
space are three static objects and one dynamic object. The planning
objective is to move the robot along a path that maintains a safe distance
from the static objects while avoiding conflict with the dynamic object.
The figure indicates the timings of a path that satisfies the given
constraints. Notice that the robot pauses during times t=2 to t=4, allowing
the dynamic object to move out of its way before continuing on to the
destination. This example is included simply to give an indication of the
types of domains in which a robust route planning system should be able
to operate.

1

Chapter 1. Introduction: Dynamic Domain Path Planning 2

- =0-2

f1} t=5

Work

m Static Objects • Robot

~ Dynamic Object X Destination

Figure 1 The path planning problem

Chapter 1. Introduction: Dynamic Domain Path Planning

The problem of path planning is not constrained to the lab. It has
many practical real-world applications. Consider the automated space
stations of the future, where a number of autonomous robots will need to
plan paths to dock with the orbiting station. On a more tangible level,
robots working in a job shop require dynamic path planning to
maximize resource utilization. These represent only two examples but
should illustrate the need for dynamic path planning.

1.2 Review of Related Works
A number of spatial representations and path planning algorithms

have been proposed to address the robot navigation problem. This section
will describe some of this work and relate advantages and disadvantages of
the different approaches taken.

1.2.1 Voronoi Diagrams
Voronoi diagrams have been used to find paths through a finite

space [O'Rourke84]. Given a set of points sl' s2' ... , So in some space, a
Voronoi diagram is defined as a partitioning of space into regions; one
region for each of the n points. Each region represents those points in
the space that are closer to the point associated with a given region than
any other point in the set of points sl' s2, ... , 80. If the points defining
the various regions are generalized to lines, the resulting partitioning
can be used by a path planning algorithm. Figure 2 gives an example of
how a Voronoi diagram generalized to lines would be defined for a simple
2-space. Path planning algorithms using this paradigm search over the
intersections of the regions for a path to the desired location.

The use of Voronoi diagrams allows paths to be generated that
maintain a maximal distance from all objects occupying the space. One
problem with this technique for the representation of space is that it
provides no information on the quality of the surface that the robot is
moving across. Another problem is that Voronoi diagrams are not well
suited for the representation of dynamic objects and therefore will not
operate in dynamic domains.

1.2.2 Free Space Representations
There are a number of systems that approach the path planning

problem using generalized cones (similar to Voronoi diagrams) to
represent free space. These systems use traditional heuristic search
techniques to find collision free paths through the free space
representation. Among the researchers taking this approach to robot
navigation are Brooks [Brooks82] and Nguyen [Nguyen84].

3

Chapter 1. Introduction: Dynamic Domain Path Planning 4

Line between two Voronoi regoins

Wall of room to be navigated

Figure 2 Voronoi regions of a given 2-space

Chapter 1. Introduction: Dynamic Domain Path Planning

Brooks finds paths through 2-space by using a spatial
representation that views free space as the union of, possibly
overlapping, generalized cones. This representation is used because the
cones provide a description of areas swept out by a moving 2-space
object. Figure 3 illustrates how a few of the cones in the given space
would appear. The lines bisecting the cones indicate how a robot will
move through a given cone. Path finding using this spatial
representation then reduces to comparing the area swept out by an
object with cones representing free space. Brooks accomplishes the path
search using a traditional search technique called the A • algorithm
[Nilsson71]. The upper bound on the time complexity of his system is
0(n4) (where n is related to the size of the space).

Among the advantages of Brooks' system is that it deals with the
rotation and translation of robot movements. The system also finds paths
that move the robot through the space while maintaining the maximal
distance from objects occupying the space. The disadvantages of this
approach are that the shortest path is the only measure of path quality,
and there is no mechanism for dealing with the temporal aspects of
movement through space.

Nguyen's work builds on the work of Brooks and others, providing a
expedient heuristic to search through the generalized cones
representing free space. The approach involves first finding local paths
using experts that compute paths along the links between the cones,
then applying the A· algorithm. Because the A· algorithm is searching
over a collection of local paths for the best global path, the complexity of
the algorithm is reduced as compared to Brooks' system. Despite this
improvement in the search heuristic, this technique provides no new
paradigm for performing route planning.

1.2.3 Knowledge Bases
The SPAM (SPAtial Module) program developed by McDermott is a

knowledge base that handles spatial information about a given
environment [McDermott84]. The system uses two kinds of knowledge;
positional and relational. Positional knowledge, maintained as an
assertional data base, represents topological facts such as (in stairway23
b u i 1 din 9 7). The positional knowledge can be seen as a semantic network
consisting of a predicate calculus encoding of facts. Relational
knowledge. on the other hand, capturing information such as (bet wee n
Illinois . NY California), is represented as a "fuzzy map". The reason
that the representation of relational information is referred to as "fuzzy
maps" is that it represents facts as a range of values each of which is
embedded in a frame of reference. Each frame of reference has its own
scale, origin and orientation, all stored as ranges of possible values. This
is done to allow inferences about an object to be made simply by looking
in the proper map of a given frame of reference.

5

Chapter 1. Introduction: Dynamic Domain Path Planning

1~1~::l~:j::1~~j~ Generalized Cones

~ Objects

Figure 3 Some generalized cones

6

Chapter 1. Introduction: Dynamic Domain Path Planning

Path planning using such a spatial representation is done by first
finding a fuzzy vector indicating the path from the current location to
the destination. The vector is then translated into a list of barriers that
must be entered or exited in order to reach the destination. Each of these
barriers in tum is searched for a traversable path. As the route is
traversed, the original fuzzy vector is refined to provide a better path
plan. This process is continued until the destination is reached.

The advantages of this approach include its ability to describe
objects in a ttfuzzy" manner, thus allowing uncertainty in the position
and orientations of objects to be accommodated. The system also provides
a framework for the acquisition and assimilation of data when planning
in uncertain domains. Another advantage lies in the systems ability to
answer queries such as "What Chinese restaurants are within a mile of
the Eiffel tower'r'. The disadvantage of the system is its inability to
modify a plan if it finds that the original path has become unexpectedly
blocked. The system also fails to address any of the temporal aspects of
route planning.

Davis implemented a system he called Mercator, which builds on the
work he did with McDermott on the SPAM system [Davis84]. Mercator
overcame shape representation and generality problems of the SPAM
system by representing the exteriors of obstacles as the edges of a highly
connected graph. This allowed detailed knowledge of the environment
and its accompanying uncertainty to be captured, and from this
information, route plans could be generated. Mercator also handles
problems involving spatial containment. For example, consider a house
located on the edge of a large field and the following query about the
location of the house: tlHow far is the house from the field?". The SPAM
system would respond with the distance between the center of the house
and the center of the field, while Mercator would say that the house is in
the field. While Mercator is a powerful system for answering queries
about the spatial relations between objects, its problem as a route
planner are two-fold. First, it is not setup to deal with dynamic situations
in a manner that will allow real-time operation, and second, it cannot
operate on temporally related problems.

1.2.4 Potential Fields
This approach to path planning has been taken by Andrews

[Andrews83] and others. The spatial model used in this approach can be
seen as placing the destination at the bottom of a hill (the point of
minimum potential energy), and all of the space radially around the
destination at increasingly higher locations up the hill. Thus, the space
that is furthest from the destination is highest up the hill This gives rise
to the relationship that the further away from the destination an object
is, the greater its potential energy. Path planning in this spatial model
is then viewed as releasing a ball from the robot's current position and
seeing how the ball reaches the bottom of the destination. There are
some obvious drawbacks to such an approach that make it impractical for
doing general path planning. Besides ignoring all temporal aspects of

7

Chapter 1. Introduction: Dynamic Domain Path Planning

path planning, it will not consider any path that must first move the ball
uphill away from the destination before proceeding down to the
destination. Another disadvantage is the need for special mechanisms
that backtrack when the ball enters a local minimum.

1.2.5 Vertex Graphs
This class of algorithms is based on a graph that connects pairs of

vertices. The vertices usually represent comers of convex hulls that
represent objects that must be navigated. The actual graph is most
commonly constructed by associating an edge between those vertices
pairs that can be connected by a line that does not intersect an object. A
number of local optimizations are available which provide a reasonable
method for pruning the search space of the graph. Among the
researchers that have successfully used this approach are Laumond
[Laumond83], Iyengar [Iyengar85], and ChatHa [Chatila85].

Among the problems associated with this approach to path planning
is that routes will be calculated that move "too close" to an object. These
systems solve this too close problem by enlarging the size of the objects
occupying the space. This method also has a very limited definition of
what constitutes the best path; shortest is best. These systems also fail to
provide a framework for dealing with temporal constraints.

1.2.6 Configuration Space
Configuration space has been used as a spatial representation by a

few path planning systems. Lozano-Perez has given this approach a
thorough mathematical treatment [Lozano-Perez83]. The principle to
this approach is to define each object (rigid solid) as a vector, referred to
as its configuration. The vector contains the pertinent information on
the objects position and orientation in space. In a similar manner, there
is a configuration for the robot. The ways in which the configuration
space of the robot interact with the configurations of the objects yields
information that is used by a path planner to find the shortest path
between two points in the space.

This approach is best suited for calculations involving the
manipulation of a mechanical arm through a cluttered work space. It
can, however, be used for path planning and will successfully deal with
plans involving asymmetric robot dimensions. The approach does not
provide a mechanism for dealing with unpredictable dynamic objects
nor does it provide or use any information about the quality of the space
in which plans are executed.

1.2.6 Grid Representations of Space
Systems that approach spatial representation by using a grid to

model space have spatial representations that most closely resemble the
model of space used by this research. In 2-space, grid representations
are the partitioning of space into equal sized squares upon which path
planning schemes are applied. Among the researchers that have used
this approach productively are Thorpe and Moravec.

8

Chapter 1. Introduction: Dynamic Domain Path Planning

Thorpe's system accomplishes path planning in two steps
[Thorpe84]. The system first does a global search over an eight­
connected 2-space grid of points, to find a rough path to the destination.
The second step then "relaxes" the points on the rough path in order to
improve the path quality. Using this technique, Thorpe's system is able
to find safe paths through a given 2-space containing static objects. A
similar path relaxation technique was also used by Moravec as part of
Fido, the navigational system in the CMU Rover [Moravec82].

The major advantage of this approach to path planning is that it
provides a framework for dealing with time related aspects of spatial
movement. Although not directly addressed in the research, modeling
time in these systems corresponds roughly to the addition of an extra
dimension to the spatial representation. The added dimension is used to
represent the temporal aspect of planning. There is a drawback to
systems that use relaxation techniques for finding paths: If the .rough
path is too rough the system will settle to a local minimum, missing the
true global minimum.

1.3 Planning Routes Through Interesting Spaces
Many of the systems covered in the last section suffer from the

shortest path obsession. The systems are solely concerned with finding
the shortest path while neglecting other qualities that make up the
optimal path. For example, none of the systems accounts for the quality
of the surface upon which the robot travels, relying on the surface
being either traversable or not. This naive treatment of the surface over
which the the robot will travel is simply inadequate in real-world
planning systems. The most severe limitation of the aforementioned
systems is that they assume that the only dynamic object is the robot.
This is totally unrealistic and imposes an unacceptable, lab operation
only, limitation upon the domains in which the system can operate.

In order to function in a dynamic world, a robot needs to consider
the operation of other dynamic processes sharing the space and how
they may affect its operation during path planning. For example, Clyde
the elephant, knows the local train schedule and needs to get to the other
side of the train tracks. He should use that information when planning
to get across the tracks. If Clyde has information predicting that a long
freight train will be coming just before he can reach the tracks, then
given the choice between a short path that involves crossing the train
tracks, and a slightly longer plan to go under the tracks, Clyde should
choose the latter plan. Similarly, if Clyde's task were to jump on a
moving trolly car, then the ability to plot a path that will allow him to
jump onto a moving object is necessary.

Unpredictable dynamic processes must also be accounted for by a
robust route planning system. Clyde the elephant who is a member of
the cavalry and is returning to the safety of the fort. Above all Clyde
"fears" attack by a brutal tribe of Native American mice. Clyde would be
better off planning to get to the fort across the open plain, rather than
traveling through the narrow passageway of Ambush Canyon. The

9

Chapter 1. Introduction: Dynamic Domain Path Planning

primary reason for Clyde's choice is that an attack in the canyon would
effectively block him from his destination, thereby causing the him to
backtrack wasting valuable time.

This thesis describes a route planning system called Robonav, that
can handle the problems described above. The single property that most
distinguishes this work from previous systems is that it deals with both
the spatial and temporal constraints imposed by the domain in which the
system is operating. That is, Robonav considers the time at which a
particular area of space is traversed when determining the optimal path.
Robonav allows the designer to model the quality of space that the robot
is moving through and use this information in determining the best
path. The designer can also model the effects that dynamic objects have
on the definition of the optimal path. Constraints involving the abilities
and limitations of the robot executing generated plans can also be
incorporated into the model. Finally, Robonav has a direct mapping into
a parallel architecture, allowing it to operate in unpredictable domains
in real-time. The ability to operate in real-time in an unpredictable
domain is important for systems operating in a threatening
environment.

1.4 An Outline of the Thesis
Chapter 2 covers the spatial representation and path planning

algorithms. The spatial representation is used to capture the relevant
aspects of space. The spatial representation provides the framework for
algorithms that preform the path planning task.

Chapter 3 deals with object representation using the spatial model
presented in Chapter 2 and how objects affect the operation of the path
planning algorithms. An object is a function of both space and time that
maps into the spatial representation.

Chapter 4 is concerned with finding paths that measure qualities,
other than length, in determining the best path. In this chapter a
number of qualities will be defined along with evaluation functions that
operate on these qualities to find the best path.

Chapter 5 gives a brief explanation of how this model can be used in
domains where there are unpredictable processes to be accommodated for
during actual plan execution. The solution presented alternates between
planning the next best step and updating of the state of the world.

Chapter 6 covers some of the conclusions reached as a result of this
research. Also in this final chapter are implementational details of the
system as well as details on further research needed to extend the system's
abilities.

10

Chapter 2

Path Planning in Dynamic Domains

This section will discuss three similar, yet computationally distinct,
message passing algorithms. The algorithms, when combined with the
proper spatial-temporal representation, are able to find paths through
static and dynamic domains. The basis of the message passing techniques
lies in the choice of the proper spatial representation. The spatial
representation views space in a discrete manner, as if it were composed of
equally sized particles of space. Once the spatial representation has been
presented, the three message passing techniques will be described. The
first simply finds the shortest path through n-space between two points
(source and destination). The second makes modifications to this
approach, allowing the destination to be described as a function of time.
The final algorithm makes a further modification, allowing the real-time
movement capabilities of the robot to . be considered in path generation.

2.1 Spatial Representation
For a route planning technique to be effective, it must use a spatial

model capable of capturing the essential aspects of the space through
which paths are planned. To represent space, this research uses
uniformly shaped n-dimensional hyper-cubes called "nodes". Each of
the nodes represents a small element of space in a given dimension. For
example, in one dimension the nodes are line segments; in two
dimensions the nodes are squares; and in three dimensions the nodes are
cubes (see Figure 4). This approach to spatial representation has been
taken in many previous works. In particular, Thorpe used it as a basis
for path planning in two-dimensional static domains [Thorpe84]. Thorpe
used the representation in combination with a relaxation algorithm to
find locally optimal paths.

Arbitrarily shaped n-dimensional spaces are defined by spatially
concatenating nodes along common (n-1 dimensional) surfaces. The
collective area occupied by the nodes is called "space", while the remain­
ing area is referred to as Itvoid". For example, Figure 5 shows examples of
arbitrarily shaped two and three-dimensional spaces constructed from
squares and cubes respectively. In general, the size of the nodes will be
of at least sufficient size to subsume the size of the robot. This size
restriction is based on how objects in n-space are represented.

11

Chapter 2. Path Planning in Dynamic Domains 12

D
Figure 4 Nodes in 1, 2 and 3-space

Chapter 2. Path Planning in Dynamic Domains 13

-

/' / /'
/' / /' /' /' /' /'

/' /'
L /'

/' l.I /' / /'
1/ 1/ 1/ ,/ /' /' / :/ /' /'

/' / / /'
/' /' /' ./

1/ /' /' l/ l.I
1/ 1/ 1/ 1/ 1/ 1/

/' /' l/
'/ /'

1/ 1/
l.I /' l.I '/

'/ '/

l/ /'

Figure 5 Arbitrary examples of 2 and 3-space

Chapter 2. Path Planning in Dynamic Domains

To provide a mechanism for message passing, each of the nodes
making up space has a unidirectional link connecting it with each of its
2 n possible neighboring nodes (Le. diagonals not included). For
example, consider the links that are associated with the two-dimensional
space shown below in Figure 6. Notice in the figure that the nodes at the
edge of space have fewer connecting links than nodes that are oriented
towards the middle of the space. To capture spatial and temporal
"quality", each of the links has a cost associated with it. The cost is a
function of .time and n-space, used to determine the quality of paths
through space and time. For example, consider Clyde the commuting
elephant: Clyde may plan different paths to the office depending on the
time of day (e.g., the freeways are always backed up from 7am to 9am and
4pm to 6pm Monday through Friday t so he takes the back streets if going
to or from the office at these times). In general, the links will be used to
represent the relative cost of making a transition from one node to
another at a particular time.

2.2 Finding Paths Through Space
Using nodes, spatial concatenation, and links, a message passing

algorithm will be defined that finds the shortest path through n-space
between two given points (ignoring the temporal aspects for the
moment). The algorithm is quite similar in nature to the technique used
in [Hillis85] for finding the shortest path through a graph. The basic
principal used in finding paths by message passing can be visualized as
waves moving across a body of water (see Figure 7).

Picture a stone thrown into a pond. The location on the surface of
the pond where the stone impacts with the water, represents the current
location of the robot or the "source" point. The impacting stone starts a
disturbance on the surface of the pond, sending waves out from the
source point in all directions. The propagating waves represent a search
over the surface of the pond for the desired "destination II point, located
somewhere on the surface of the pond. Eventually one of the waves
passes over the destination point indicating the existence of a path from
the source to the destination.

This symbolizes a message passing algorithm for finding paths over
the surface of the pond. The algorithm described in this section operates
in a similar fashion, exploiting a message passing scheme to model the
movement of a wave through a given n-space. The objective of the
algorithm -is simply to find the shortest path from the source to the
destination. For the model to operate properly, the representation must
capture aspects of the path's length and feasibility. To capture the path
length, each link between nodes of the space, representing a transition
that the robot is capable of making, is assigned a cost of 1.0. The
remaining links reflect transitions between nodes that cannot be made
by the robot are assigned an infinite cost (e.g., there may be a ledge
between the nodes), Using this link cost assignment the necessary
spatial aspects are captured. When combined with the path planning
algorithm the shortest path through space can be found.

14

Chapter 2. Path Planning in Dynamic Domains 15

Figure 6 Links of a simple 2-space

Chapter 2. Path Planning in Dynamic Domains

Destination:
Somewhere on the
surface of the pond.

Figure 7 Searching for the destination in 2-space

16

Chapter 2. Path Planning in Dynamic Domains

Each message is a bundle of information that is passed from the
node that creates it to one of its connected neighboring nodes. Messages
have associated with them an energy value and a "genesis-pointer". The
energy value is used to determine the relative value of a particular path
through the space. The genesis-pointer points to the node where the
message originated and is used to reclaim the path from the
representation. Starting at the source node (Le. the robot's current
location), the algorithm uses a synchronous step-wise process of passing
messages from node to node as it searches the n-space for a path to the
destination. At each step in the process, nodes of the space receive a set
of messages from their neighbors and create a new set of messages based
on the received messages. The messages of this new message set are sent
to the nodes neighboring nodes during the next time step. Using such a
process, all possible paths that the robot could take through n-space in
attaining the desired destination are considered. To reclaim the path
generated by the propagation of the messages through n-space, each
node in the given n-space has a "best-message" slot associated with it.
This slot contains the message received by the node with the lowest
energy value of all the messages it has received during the operation of
the algorithm. The actual path planning algorithm is described by its
two phases and bounding condition.

2.2.1 Phase 1: "Throwing the Stone"
The first phase sets up the initial message set. At the source node

(associated with the robots current location), a set of messages are
created. The set contains one message for each link the source node has
with its neighboring nodes (Le. up to 2 n messages). Figure 8 shows a
source node in 3-space and its connected neighbors; in this case six
message are created for the initial message set. The energy value
associated with each message takes on the value of the cost of the link
that the message is to travel over. The genesis-pointer of each of the
nodes is set to point to the source node. To initialize the model, the best­
message slot of the source node gets a nil message set with an energy
level of 0.0. Finally t each of the messages in the created set is sent over a
link to its intended neighboring node.

2.2.2 Phase 2: "The propagating wave front"

This is the operational phase of the algorithm and consists of
having each node in the n-space repetitively perform the following set
of tasks in a synchronous step-wise manner:

First, gather together all of the incoming messages sent to it
during the last step.

Second, identify the base-message as the incoming message with
the minimum energy. All other messages are discarded out
because they represent equivalently long or longer paths that at­
tain the same location in space. Note, if there is no incoming mes­
sage, the node does nothing during the current synchronous step.

17

Chapter 2. Path Planning in Dynamic Domains

~ -_ Source node and
its connected
neighbors in 3-Space.

Figure 8 Phase one

18

Chapter 2. Path Planning in Dynamic Domains

Third, do one of the following two actions depending on whether
the energy in the base-message greater than or equal to the
energy of the message in the best message slot of the node. If the
condition is fulfilled, then nothing is done and the node waits for
the next step. If the condition fails, or the best message slot is
empty, then a new set of messages is created in a manner similar
to that described in the first phase. Each message in the new set is
assigned an energy that is the sum of the energy in the base­
message plus the cost of the link that the message is to be sent
over. After the creation of the new message list, the base-message
is placed into the best-message slot of the node, thereby replacing
any message that might have been there. Finally, the node sends
the newly created messages out along their respective links.

The process described in this phase is repeated until the bounding
condition is met. Figure 9 shows the spreading node activation in some
given 3-space. The figure shows the shape of the expanding wave of
messages as they move out into 3-space.

2.2.3 Termination: "A Wave reaches destination"
If the algorithm operates in phase two long enough, it will find a

minimum energy path from the source node to every node in the n­
space. In this case, the bounding condition is defined as the state of the
system when there is no remaining message activity_ It should be noted
that, as defined, for a finite space inactivity of messages is guaranteed to
occur in a finite number of steps. While this will provide a path to the
destination, it may operate for many more steps than is necessary for
finding such a path. Therefore, to bound the running time of the
algorithm, a more restrictive bounding condition must be employed. The
bounding condition is defined as the state of the system when the energy
associated with each of the messages currently being processed in the
system is greater than or equal to the tI global bound tl

• The global bound
is equal to the energy of the message in the best-message slot of the
destination node (similar to zorch decay [Charniak86]). Note, if such a
message does not exist then the current bound is considered to be
infini te.

After the bounding condition is met, the path through n-space that
has the lowest energy associated with it can be retrieved from the space
of nodes. This is done by starting at the message in the best-message slot
of the destination node and recursively following the genesis-pointer of
the current node's best-message until the nil message at the source
location is encountered.

Some observations should be made at this point that will clarify the
functioning of the algorithm. The algorithm has an obvious isomorphic
mapping onto an appropriately connected SIMD (Single Instruction
Multiple Data) machine architecture. This gives rise to pragmatic
concerns such as the extensive waste of computing power. The waste is
easier to visualize when realizing that the propagating messages only

19

Chapter 2. Path Planning in Dynamic Domains

Step = 0

Step = 2

Figure 9 Phase 2

20

Step = 1

Chapter 2. Path Planning in Dynamic Domains

move away from the source and never back up over previously visited
nodes. Thus, nodes sit idle for all but 2 of the p steps in the path length.
The reason for this is, any message created will have an energy value
that is one greater or infinitely greater (all link costs are 1.0 or infinite)
than the energy of the message that generated it. Therefore, the
message passing activity of the messages sent to any previously active
nodes will die out. A further concern is how the path length is acquired.
Intuitively, it can be seen that any message reaching the destination will
have an energy value that is simply 1.0 times the length of the path that
the message represents. Thus, by observing how the bounding condition
is defined, one can see that when the first message reaches the
destination all messages in the system will have an energy value equal to
1.0 times the minimum path length (messages that go over links with an
infinite cost die out immediately). This, however, is exactly the
definition of the bounding condition and the system will halt.

2.3 Finding Paths Through Space and Time
The previous section discussed an algorithm that finds the shortest

path between two spatial locations. While a useful algorithm, there have
been many systems designed that are capable of finding paths between
two static points in space. In this section, the current algorithm will be
modified in such a way as to enable it to find paths through time as well
as n-space. This will enable the destination to be described as a function
of both time and n-space. For example, consider Clyde Cassidy robot. For
Clyde to be successful he needs to have the ability to plan routes through
n-space allowing him to seek a moving destination (e.g. a moving train).
Immediately it becomes clear that the paths must consider the value of
not moving; it may be advantageous for the robot to wait in one location
for the destination to move closer before moving toward the destination.

To provide these new capabilities, the following modifications will
be made to both the current spatial representation and algorithm. First,
the concept of time must be defined; a unit of time is represented by each
synchronous step in the second phase of the algorithm. This assumes
that the robot can make a transition from any node to anyone of its con­
nected neighbors in one unit of time regardless of the robot's current
state. Note, this simplifying assumption will be removed in the next sec­
tion where modeling continuous time is considered. Second, in order to
consider paths that involve non-moves as a step in a route plan, each
node must have a reflexive relationship with itself. To accomplish this, a
link pointing back to the node is added to each node in n-space (see
Figure 10). The reflexive link has all of the same characteristics as the
links previously described. Third, the best-message slot of each node is
changed to a stack of best-messages. The stack exists so paths involving
steps that remain in one location can be reclaimed from the nodes after
the bounding condition has been met. The stack also minimizes the
amount of inter-node (inter-processor) communication, for without the
stack, a list representing the ancestry of each message would have to be
passed along with each message in the system.

21

Chapter 2. Path Planning in Dynamic Domains 22

Figure 10 Reflexive links of a simple 2-sp.ace

Chapter 2. Path Planning in Dynamic Domains

Now that these modifications have been made to the spatial
representation, an algorithm that finds paths through this new domain
will be defined. As in the previous section, this algorithm is defined by
its two phases and bounding condition. The definitions of the phases and
the bounding condition are taken from the previously described
algorithm and modified to extend the algorithm's power in this new
domain.

Phase one is defined almost exactly as in the previous algorithm.
There is one new aspect worth noting, however, namely that in addition
to the messages previously prepared, there is also a message created and
sent out over the reflexive link. This is done to check whether not
moving during the first step is more profitable than making a move into
one of the source nodes connected neighbors.

Phase two is also a modification of the previous algorithm. In the
previous algorithm, if the base-message was not of a lower energy value
than the message in the node's best message slot, it was thrown out and
the node did not perform any further action during that time step. In
the new definition, if the base-message energy is less than the current
global bound, the node will always create a new set of messages from the
base-message (including one for the reflexive link). The messages in
the new set are then sent out over their respective links, initiating the
subsequent time step. The reason for a node taking no action when the
base-message energy is greater than or equal to the current global
bound is because message energies are strictly increasing. In other
words, the cost on each of the links is greater than zero. Therefore, any
path generated from the node of concern to any of the destination points
will provide a path that is of greater energy than the best path known at
the current time. Finally, if the base-message has an energy less than
that of the global bound, then after the new message set is created the
base-message is pushed on the top of the best-message stack. However, if
the base-message has an energy value greater than or equal to the
global bound or if there were no messages processed at all during the
current time step, a place-holding nil message is pushed on the top of the
stack.

The bounding condition is changed from that previously defined,
enabling the system to consider the destination location as a function of
both time and n-space. This is accomplished by simply redefining the
global bound to be the minimum energy of all messages that have
reached any of the destination nodes. The destination node is no longer
simply a' location in n-space; it is a location in n-space during a given
time period. It should be noted that there can easily be more than one
destination location defined during the same time period. For example,
consider Clyde who must get to the post office to mail a package to his
mother. Clyde's problem is that he lives in a city with two post offices
that are each open from Sam to 5pm Monday through Friday. Therefore,
Clyde plans a path considering the trade-offs between the two
destination locations.

23

Chapter 2. Path Planning in Dynamic Domains

In order to retrieve the path from the stacks of the nodes, the node
containing the globally bounding message is identified. Then, until the
message associated with the global bound appears at the top of the
identified node's stack, all of the nodes in n-space pop their best-message
stacks and discard the popped message. At this point, the best path is
encoded in the ancestry of this message. So, in an iterative manner, the
message's ancestry is found by following genesis-pointers back node by
node. At each step in the process, all nodes in the space pop their stacks
revealing the next message on the stack. The process of following
pointers and popping stacks is continued until all of the stacks are
empty, indicating that the source location has been encountered. Note
that due to the use of nil messages as place holders, all of the stacks will
al ways have the same depth.

Using this modified algorithm, the system can solve the following
problem: Find the optimal time to leave home in order to catch the 4:30
bus at the comer of 1st and Elm streets? This is accomplished by assign­
ing a link cost of 0.0 between all of the links inside the house and a cost
of 1.0 to all of the links outside of the house. Thus, the shortest path from
the house to the bus stop will result, with the further restriction that the
path will not leave the house until the last possible moment. Note that
when a node has incoming messages of equivalent values, the selection
of the base-message will affect the robot's movements within the house.

2.4 Modeling A Robots Continuous Time Actions
This section will show how the robot's locomotion capabilities can

be considered when finding paths through n-space and time. In the last
section the fundamentals of time modeling were described. However, an
absolute and restrictive assumption was made about the representation of
time. Namely, all node to node transitions made by the robot take single
uniform units of time. By making a modification to the messages being
passed from node to node, the assumption can be removed. The
modification involves placing a real-time field in each of the messages.
The time field allows messages to contain local times, thus removing the
temporal restriction about the robot's abilities to move through space.

The ability to effectively represent the time required by a robot to
navigate through space allows plans to be generated that take advantage
of the robot's abilities. For example, the transition from one node to
another when starting from a resting state should take longer than the
same transition when movement has already been initiated in that
direction. This is significantly different from the scheme used up to this
point, where all moves were considered to take one unit of time. The
ability to consider the capabilities of the robot in generated paths has
been incorporated into the Robonav system by operating it in a more
asynchronous manner. Asynchrony is accomplished by associating a
real-time with each message in the system. The time value of created
messages is set by summing together the time in the base-message and
the time required for the robot to make the move represented by the new
message. This process must account for the current state of the robot in
determination of the time required to make the next transition. The

24

Chapter 2. Path Planning ln Dynamic Domains

ability to effectively predict the performance of the robot is bounded by
the precision with which the real-time actions of the robot moving
through space-time can be modeled. To model the robot's actions with
any precision, each message must keep some representation of its
history (e.g., the current state of the robot as reflected by the given
messages ancestry). For example, a message must "known if the robot is
currently turning, moving or stationary in determining the time to
associate with it. There are many ways to represent this information, all
of which are dependent on the robot being modeled. The history can also
be represented by a list of attributes tagged onto each message indicating
the current state of the robot as defined by a particular message. The
stacks must also be modified to push and pop sets of best messages, this is
done because the message times are no longer synchronized.

Although this algorithm has an increased message passing
complexity, it also has an increased computational power over the
previous algorithms. For example, consider the 2-space shown in Figure
11. The figure shows a situation where there are two paths that lead
from the robot's location to the desired destination. Using the previous
schemes, both of the paths would have equivalent value (assuming that
the link weights are all 1.0). With the new scheme, however, each
message has a real-time associated with it. Consider the following time
complexity assignments: Messages representing the start of motion in
some direction from a rest position or a change in the direction of
motion have a time complexity of 2.0. Messages representing continuous
movement in one direction are given a time complexity of 1.0. Using
these assignments, messages from path one will reach the destination at
time t=7 and messages from path two will reach the destination at time
t=9. The information provided by such a system is necessary for any
system that must meet scheduling constraints (e.g .. , factory automation).

2.5 Concluding Remarks: Algorithms and Models
This chapter presented the concept of message passing and

introduced three different path planning algorithms operating on three
different spatial models. The first algorithm, operating on the simplest
spatial model. is easy to visualize but fairly trivial in its expressive
power. This limitation is caused by the algorithm's inability to
effectively operate in dynamic domains. The second algorithm,
operating on a modified spatial model has considerably more power, able
to utilize both spatial and temporal constraints in planning paths. While
this is a vast improvement to the first algorithm, it has discretely
uniform robot movements. This simplifying assumption was made at the
loss of considerable power. The third algorithm is able to consider the
real-time movement capabilities of the robot. However, this
expressiveness sacrifices descriptive clarity.

Henceforth, all examples and discussions presented will be set in the
frame of the second algorithm and associated spatial model. It should be
noted that all of the modeling techniques that follow will operate equally
well on the third algorithm and spatial model, with minor modifications
made to account for the asynchronous operation of the third algorithm.

25

Chapter 2. Path Planning in Dynamic Domains 26

~ Path #1

~ Path #2

@ Robot

Figure 11 Shortest path through time

Chapter 3

Representing Objects

Object representation is a critical aspect of an effective route
planning algorithm expected to operate in real-world domains. This
chapter will describe how objects within the defined space are modeled. It
will show how the planning algorithm uses the object representation to
plan paths that account for the temporal aspects of object interactions.
The objects presented in this chapter are predictable; objects are both
static and dynamic with fully defined behavior in both time and space.
The spatial model and path-finding algorithm developed in the last
chapter will provide the basis for the spatial and temporal aspects of object
representation.

3.1 Predictable Objects in n-Space and Time
Objects are represented as functions having a given n-space and

time in their domain 9 and are mapped into some subset of the nodes
making up n-space during a given period of time. The set of nodes
generated by an object's function consists of those nodes in the given
space that are occupied (fully or partially) by the object during the
given time period. For example, Figure 12 shows how a model of a simple
two-dimensional revolving door can be generated. The revolving door is
defined by a function that has four nodes forming a square in its range.
The function maps onto two of the diagonally adjacent nodes during odd
time units and onto the other two diagonally adjacent nodes during even
time units.

To find paths through spaces that have predictable objects moving
through them, the operation of the message passing algorithm must be
modified in its second phase. The modification simply makes any node
occupied by an object become inactive during the time period that the
object occupies the node. This keeps paths that pass through an object
from being generated by the Robonav system.

Consider the example I-space shown in Figure 13 consisting of
three nodes (referred to as left, middle and right nodes). The fact that
this example comes from I-space makes moving right or moving left the
only allowable moves, with the appropriate restrictions made at the ends
of the I-space. The objective is to find a path through I-space that allows

27

Chapter 3. Representing Objects

enter

Odd Time Units

• Occupied Node

Even Time Units

D Unoccupied Node

Figure 12 Representing a revolving door

28

Chapter 3. Representing Objects 29

the robot to move from one end of the space to the other in the shortest
possible amount of time. Consider the cost on all seven of the links (four
neighbor and three reflexive links) in the space to be assigned a value of
1.0. Also shown in the figure are the best-message stacks of each of the
nodes and the state of these stacks during the different time periods.
Observe that there are two predictable objects whose behavior must be
planned for if a safe path is to be found. The first enters the I-space
occupying the left node at the start of time t= 1. This causes all messages
received by the left node at time t= 1 to be ignored. This is indicated in
the stack of the left node at time t= 1 by the box around the message on
the top of the stack. The object leaves the left node before the start of
time t=2. The other object starts out occupying the right node at the start
of time t=2, thus preventing the robot from attaining the destination.
Now the object moves to the middle node, forcing the robot back to the
left node at time t=3. At time t=4 the object moves back to the right node
leaving the middle node before the onset of time t=5. The figure shows
the actual robot movements instantiated. Actually the robot would not
move until the entire path was planned; after time t=6 was planned.

First observe that nodes occupied during some time period send no
messages into the next time period. This is the mechanism behind
finding paths through space and time that avoid objects. Second, observe
that figure 13 provides another example of why the stack is needed to
store the path. If there was no stack, then paths that need to move back
upon themselves could not be generated. Clearly, as the example
illustrates, some path planning problems must use this backtracking
tactic to find paths. Lastly, the 'example shows how the generated path
can be retrieved from the stacks of the nodes, as indicated by the stacks
associated with the state of the space at time t=5.

The following question now logically arises; where does object
representation actually lie? One answer places the functions for the
objects outside of the model. This approach introduces an external
communication requirement to get the information about object location
to the proper nodes in n-space. This has the disadvantage of introducing
a sequential aspect to the otherwise parallel planner. Another approach
is to have each node in the n-space maintain a map of times during
which the node is occupied. This allows for all required external
communication to be accomplished during setup time, thus maintaining
a closed system during the algorithm's operation.

Chapter 3. Representing Objects

Time = 0
Node # 0

IRI
Stacks:

Nil·

Time = 2
Node # 0

1 2

IDI
Nil· Nil·

1 2

1 RIIIIIIIIII
Stacks:

1 12 1/ 2 l:rJJt~)~]
I:Qitltl 0 11 B I a n k
Nil· Nil· Nil·

Time = 4
Node # 0 1 2

1 R IIIIIII~I
Stacks:

0/4 0/4 Blank

! ~ ~ 1~~~'1 I:~~A k

I~O:kttl 011 B Ian k
Nil· Nil· Nil·

Time = 1
Node # 0 1 2

1111111111111111111 RID 1

Stacks:
IO~l:lta 0 11 B I an k
Nil· Nil· Nil·

Time = 3
Node # 0 1 2

1 R 1111111111111111111111111111

Stacks:
11 3 l,tW3t:1 B I a n k
1/2 1/2 UJt2~tl

Uftt~:;::1 0 11 B lank
Nil· Nil· Nil·

Time = 5
Node # 0

Stacks:
1/5
0/4

rfm
1/2
/(, ::::: ~Oilml""'»'

1

0/5

~.T3;:;:
~
Nil·

2

H2E1
Blank
Blank

1,'tM=2:d
Blank
Nil·

11~ml~il~ji;f] Messages not producing decendents

~ Messages producing route plan
Message format:

From / Energy
node # / Value D Open Node mmJ Occupied Node

R Robot's location D Destination location

Figure 13 Path finding through a simple I-space

30

Chapter 3. Representing Objects

3.2 Refining Object Representation
Consider the problem depicted in 2-space of Figure 14. The top

portion of the figure shows a situation that cannot be solved with the
system as it is currently defined. The objective in this situation is to
move the robot from the top left comer to the bottom right comer of the
space. But, the objects in the top right and bottom left comers will not
allow any paths to be generated that reach the destination. This is due to
the way in which objects are represented. Namely, any object that
partially occupies a node during a given time is considered to entirely
fill the node. However, in this example there should be a path to allow
the robot to move to the destination. To overcome this problem, a
technique that increases the resolution of the space by varying powers
(2, 3, 4, • • .) is used. The principle of the technique lies in the addition
of overlapping nodes. By using such a resolution technique, continuous
n-space can be represented to varying degrees of precision. This
resolution technique is similar to the course coding of state spaces used
by Hinton [Hinton86]. For the given example, five new nodes, each the
same size as the original nodes, are added to the spatial definition as
shown in the bottom portion of the figure (note the inter-connection
graph). As a result, there are now four possible paths that move the
robot from the top left comer to the bottom right comer of the space.
All of the resulting paths have a length of two standard node widths but
require four half node width moves.

As a further example of the overlapping node solution to the object
representation problem, consider the situation depicted in the top
portion of Figure 15. Again the objective is to move the robot from the
top left to the bottom right comer of the space. Once again there are
objects in the top right and bottom left hand comers of the space (notice
the different size of the objects). The objects prevent the algorithm from
finding any path for the robot to take. As depicted in the middle portion
of the figure, if the space is only resolved by a factor of two, there still is
no object-free path available. Therefore, the space must be resolved by a
factor of three, as shown in the bottom portion of the figure. When this
is done, the system introduces twelve new nodes into the spatial
representation (as compared with the original situation, which uses four
nodes). By doing this, the system will find one of the many possible
paths to the destination. The paths found will move through six nodes,
each of one third width, resulting in a path that still only covers the
distance of two standard width nodes. It should be noted that, while the
resolution of the space remains finite, the total length of a path that
moves between two diagonally adjacent nodes is two standard node widths
(width of nodes at lowest resolution). However, as the resolution of the
space approaches infinity, the length of a path between two diagonally
adjacent nodes approaches sqrt(2)12 times the length of a standard node
width. This, however, is only of theoretical interest as there is no direct
way to provide the infinite resolution required to realize this savings in
path length.

31

Chapter 3. Representing Objects 32

, , , , ...

...... " ... " ... " ," ," ... ",
R

..... , , , , , , ... , , , ,
",",",",",",

.... ' " , , " " , , , , , - , " , , , " , , , , " " , , "
~~ .~

Node Links " " ,",",',',", , , " " " , " , " " , " , " , ,
D " " , " , ,

, I' " I' , , " " , , , ... " , , , I'

D
r' , , " , ,
" " " , " ..

, , " ... " ...

• Physical Objects I~~ ~1 Logical Objects e Robot Size

... ... ,

R - -1''','','',: ' , , , ... ,
",. " " , , , ,

.. ~ 4~ 4~

" " "
",.

.. ~ 4~ A~
Node Links

" " " , , , , , " - D ' , , , , ,
...... , " ,

",",", ",. --
Figure 14 Overlapping nodes

walQo..ld aqt q=>tBW Ot ~U!SBa..lJU! UO!tnlosali ST a..ln~!.~

S~Ul' ~poN

filii

... , , ,
a ...- - , , , " ' , , , , , -- I"'" f' , ,

~~ ~l ~~

~r ,r
" , , , , ... " , , " , , " , " -i' , , , , " , , ~ if , , ,

~ i' ' , , , " " , " , , , ,
!~

S~U!' ~poN

filii
~~ 4~ ~ ..

,~ ~~ ,~

r~,,",", ,'" " ..JIoo. " ' , , ~',,',,', - H ' , , " ' , , ' , , .. , , , , , ,
r- ' , , , , ,

~

,' ',' ' ', ... , , , " , ,
-- " , , " , , a ' , " , ,

~' , , , , , , , , , , " , , , , , , , , , , ... 1'" , , , , , , , , , ,
.... , , , , , a

~~ 4~ S'lU!'l ~poN

filii
" ,~

i'" , ... , ... , , ... ,

""" ,',',',',','
}I " , , , , ,

.... ,',',',',',
',',,'I.,,',','
"',»~,»

....

££ SJ:Ja!qo 8UJluaSaJdaH . £" Ja1dvlf:J

Chapter 3. Representing Objects

The revolving door introduced in the previous section has an
anomaly,. there is no way to represent the direction in which the door is
turning (see Figure 13). This is critical, however, because it is "bad" to
plan paths that go the wrong way through a revolving door. To resolve
this problem, consider the solution represented in Figure 16 below. The
solution simply increases the resolution of the space by two in the area
around the revolving door. Then, as is shown in the figure, there exists
a path through space-time that will adequately consider the direction in
which the door is turning. This figure also indicates how the node
overlapping technique can be used in a local manner. This allows
features that do not fall precisely onto the grid of the spatial map to be
accurately represented.

3.3 Trade-orfs Between Resolution and Efficiency

34

With increasing resolution there is a degradation in the
performance of the algorithm's efficiency. For example, if the
resolution of n-space is increased to 2x, then the paths that are
generated will, on the average, visit twice as many nodes as paths
generated in the original scheme. To minimize this cost varying
resolutions can be used. In other words higher resolutions can be used
on a local level. This will more effectively utilize the computation power
of the computer on which the algorithm is running. The use of
overlapping nodes also causes problems with the timing of message
passing in a second level model (section 2.3) due to the discreteness of
time steps. Synchronization is, however, not a problem for the model of
section 2.4, where there is a real-time field associated with the messages
in the system.

Chapter 3. Representing Objects 35

Revol ving Door
Entrance Exit

Interconnection graph

Time = t Time = t + 0.5 Time = t + 1.0

Time = 1.5 Time = t + 2.0 Time = t + 2.5

Time= t + 3.0

• Represents Occupied Nodes

Figure 16 Refining the revolving door

Chapter 4

Evaluation Functions: Planning in Rich Spaces

The key feature to planning the best path through time and space
with this model is the creation of properly defined evaluation functions.
Evaluation functions provide a means of determining the quality of space
and the abilities and limitations of a given robot. Evaluation functions
manifest themselves by determining the cost that should be placed on the
links in the space. Up until this point, the only evaluation function used
to define the best path simply determined the shortest spatial or temporal
path available. This section will explore more complicated evaluation
functions. Before the evaluation functions can be discussed, the
parameters on which they operate will be described. Presented below are
three parameters used by evaluation functions to reflect the qualities of
space: traversability, openness and topology. This is not to say that they
are the only parameters available, but they do comprise three of the more
significant ones with respect to robot navigation. Each of the parameters
assigns a value in the range of 0.0 to 1.0 to each of the nodes comprising
the given n-space. Note that these values are not a the same as the costs
assigned to the links. The values are determined by functions of both n­
space and time and are used by the evaluation functions which determine
the cost assignment made on the links between nodes.

4.1 Spatial and Temporal Qualities
There are many qualities that can be used to describe a given space:

e.g., climate, political boundaries and terrain. This research focuses on
traversabiIity, openness and topology as three qualities of space which
allow rich spatial descriptions to be generated. These qualities will in
tum be used by evaluation functions to make cost assignments to the
links connecting the nodes of a given n-space allowing paths through
complicated spaces to be planned.

Traversability is used as a means of measuring the quality of the
space through which the robot is moving. Consider, for example, a robot
that has the choice of traveling over a paved road or a gravel road in
attaining a desired destination. Clearly t if all other factors are equal (e.g.
path length), a robust route planning system should choose the paved
path over the gravel path. As a further example, a dirt road might have
a traversability of O.S when it is dry and a traversability of 0.1 when wet

36

Chapter 4. Evaluation Functions: Planning in Rich Spaces

and muddy.

The openness of n-space is used to find paths that move the robot at
safe distances from objects as well as finding paths that are least likely to
become blocked. For example, if a robot is navigating the streets of New
York, it would be advantageous to plan paths that avoid narrow alley
ways where its path might become blocked by a garbage truck or other
sufficiently impassable obstacle. In the case where routes are being
planned through a space occupied by moving obstacles, it is the
openness value that allows paths to be planned that maximize the
clearance between the moving obstacles.

Finally t topological features are also of concern when routes are
being planned. Topology refers to how the spatial relationship between
nodes is represented. In 3-space, topology can refer to the modeling of
hills. To see how this parameter can be used, consider the following
route planning objective. Plan a route to move the robot from one side of
mount Everest to the other. In this case it is most certainly best to plan a
much longer path that goes around the mountain than the shorter path
that goes over the top of the mountain.

4.2 Defining Evaluation Functions
Now that some of the parameters of evaluation functions have been

defined, specific examples of how evaluation functions translate the
qualitative parameters into a quantitative measure of path quality are in
order. First, evaluation functions operating on the value of a single
quality parameter will be defined. The openness will be used as the
measure of quality to present an evaluation function that operates on the
values produced by a function that describes the openness of the space.
The evaluation function finds paths through 2-space that move the robot
through the most open areas to attain the desired destination. After
evaluation functions that operate on a single measure of quality have
been presented, an evaluation function that operates on multiple
qualities will be discussed. Evaluation functions that operate on more
than one parameter have special problems that involve interactions
between the different measures of quality. Note, unless otherwise
specified, all discussion of this section will assume that the space is static;
only static objects in the spatial definition.

4.2.1 Using a Single Measure of Quality: "Openness"
Openness is the quality that describes the relative distance that a

node is from other nodes representing objects. As defined here, it is the
assigning to each node in the space a value in the range of 0.0 to 1.0 (this
is different form link costs). This assignment is done in a manner so that
nodes furthest from any object (static or dynamic) are assigned values
close to 1.0 and nodes close to objects are assigned values closer to 0.0.
Consider the following algorithm for assigning openness values to the
nodes in a given space.

37

Chapter 4. Evaluation Functions: Planning in Rich Spaces

Step 1: for each node in the space that is currently occupied by an
object (static or dynamic) assign it a value of 0.0 and assign a
value of 1.0 to the remaining nodes.

Step 2: each node in the space sends its current openness value out
over each of its links (including itself) to its connected
neighboring nodes.

Step 3: each node having an openness value greater than 0.0
(nodes not occupied) takes the sum of the openness values being
passed into the node (2 n + 1 possible). This value is then divided by
2 n + 1 and becomes the new openness value.

Step 4: the node in the space with the greatest openness value is
found. The difference between this node's openness value and 1.0
is added to the openness values of all the nodes in the space.

Step 5: if the old openness value differs from the new openness
value by more than some percentage in any node in the space
(e.g., 0.1 %) go to step 2, else halt.

Using a scheme such as this, the openness value associated with the
nodes will quickly converge to a stable node value pattern. Figure 17
shows the results of this algorithm when it is applied to a 2-space with
static objects in it. The left portion of the figure gives the definition of
the 2-space showing the location of the static objects. The right portion
of the figure shows the node openness value pattern that results if the
above openness definition is used. Openness values are indicated
through the use of varying levels of gray; lighter shades indicate values
close to 1.0 while the darker ones indicate values closer to 0.0. The
algorithm in this case converged . in only ten iterations.

The ability to consider the openness of a node as a spatial relation
between it and the surrounding nodes allows more complex evaluation
functions to be written. In particular, evaluation functions that account
for trade-offs between path length and spatial path quality can be
written. That is, a longer path that avoids moving the robot through
tight spaces may be better than a shorter path moving the robot through
the tight space. This is true because, in moving through the tight space,
the robot may become blocked by an unpredictable object and have to
backtrack out and plan again.

Defining an evaluation function that uses this information to find
the most open paths through a space can be accomplished as indicated in
Figure 18. The first part of the figure gives the evaluation function's
link cost definition, which is a recurrence relation based on the
openness values of the nodes. For the recurrence relation to be defined,
the openness values of the nodes have been broken into 20 equal units in
steps of 0.05. In particular, the recurrence relation assigns a cost of 1.0
to the links leaving the particular node if the openness value in that
node is greater than 0.95 and less than or equal to 1.0. Links of nodes not
in this range are assigned a cost that is determined by the following
recurrence relation based on that node's openness value c (0 pen n es s
value)= c(openness value + 0.5) * 2. The recurrence relation
makes paths of length x, moving through nodes with an openness value

38

Chapter 4. Evaluation Functions: Planning in Rich Spaces 39

•
:11

-. • •• ---- -------- • • I
I

• •

-•
Figure 17 Openness in a simple 2-space

Chapter 4. Evaluation Functions: Planning in Rich Spaces

262,144
65,536

16,384

4096

1024

256
Cost 64

16

4

1

C(l.O) = 1.0

C(x) =
C(x+0.5) * 2

WWiifJii8B',t%:niCll=iI:::t:·:l:·:I:·:r·.! : 1·'·1
0.0 0.2 0.4 0.6 0.8 1.0

Openness Val ue

U Shortest Path

~ Most Open Path

Figure 18 Evaluation function using openness

40

Chapter 4. Evaluation Functions: Planning in Rich Spaces

of v, equivalent to paths of length 2 x moving through nodes with an
openness value of v - 0.5. In general, the number of parts into which
the step function is broken and recurrence relation should be chosen so
that the proper trade-off between path length and path quality is
established. The bottom ponion of the figure shows two different paths:
One results from the evaluation function that finds the most open path,
as defined above. The other is chosen when the shortest path evaluation
function of the previous chapter is used.

4.2.2 Defining Multi-Variable Evaluation Functions
The previous subsection showed how evaluation functions

involving one measure of quality are defined. In particular an
evaluation function that finds a path to the destination using the nodes
with a high degree of openness was presented. To a certain extent the
previous subsection already addressed this, in that it dealt with the trade­
offs between a path's length and the openness of that path. This section
will discuss how the simultaneous use of multiple measures of quality is
incorporated into the model.

To define evaluation functions involving more than one measure of
quality, the relative significance of each of the quality measures must
first be established. That is, at what point does the cost associated with
one quality dominate the others. If an evaluation function is written for
each of the qualities with this in mind, then an overall evaluation
function that is simply the sum of the single evaluation functions can be
defined. Figure 19 shows a graph of the relative costs of two evaluation
functions, f and g; based on two measures of quality, ql and q2 respec­
tively. The overall evaluation function is then defined as c(q 1, q2) =
f(ql) + g(q2). In this way, paths will be generated that utilize the
relative significance of the two measures of quality in determining the
best path. For example, if the value of both q 1 and q2 is about 0.4 at a
given node, then each of the quality measures will equally affect paths
moving through that node. If, on the other hand, quality q 1 at a
particular node is in the range 0.8 to 1.0 while at the same time quality q2
is in the range 0.5 to 1.0, then quality q 1 will dominate the cost of paths
moving through the given node. This approach can be extended for
evaluation functions involving any number of qualities.

Figure 20 gives an example of how the use of an evaluation function
defined over two qualities, traversability and topology, can be used to
affect plan generation. The figure shows a simple 2-space (or if you like
3 .. space) in which there are two paths that can be planned to attain the
destination. One of the paths moves the robot over the hill, while the
other avoids the hill but must traverse nodes that have a lower
traversability than the others in the space. Moving through a node up
hill adds a cost of 1.5 to the cost of the path. Moving down hill through a
node, on the other hand adds a cost of only 1.0 to the path's cost. Moving
through a level node adds a cost of either 1.0 or 2.0, depending on the
traversability of the node. Using this description of the space, it turns
out that moving the robot over the hill yields a path that costs 9.0, while

41

Chapter 4. Evaluation Functions: Planning in Rich Spaces

f(ql) & g(q2)

Relative
costs

, , , , , , , , ,
: M .. ·A V.v_.~-n

: f(ql) quality 1 , , , , :----.--r;._....Ji g(q2) quality 2

0.0 0.2 0.4 0.6 0.8 1.0

Value of quality at a given node

Figure 19 Evaluation functions using multiple qualities

42

Chapter 4. Evaluation Functions: Planning in Rich Spaces

---.
Cost on links = 1.0

....-..­
Cost on links = 1.5

} ron links = 2.0

---.-.-
Cost on links = 1.0

Figure 20 Path finding through a rich space

43

Chapter 4. Evaluation Functions: Planning in Rich Spaces

avoiding the hill yields a path of cost 11.0. So clearly, the preferred path
moves the robot over the hill. The various costs used on the links of the
example were arrived at in the following way: Nodes with a light
shading have a traversability cost of 1.0, while the links of the darker
nodes have traversability cost of 2.0. Node links representing movement
in the plane or along a down grade have a topological cost of 0.0. Links
representing an upgrade, on the other hand, have a topological cost of
0.5.

The particular evaluation functions presented in this section are
defined more or less independently of each other. In other words, the
evaluation function of one measure of quality does not depend on the
value of the other measures of quality being used. If in the above
example the traversability of the node was a parameter used by the
evaluation function to determine how the topology of the node affects
the cost of paths then the qualities of traversability and topology would
not be independent. In which case, more complex evaluation functions
would need to be written to account for the qualitative interactions
between the various measures of quality being used by the evaluation
function. This is a topic for funher research.

44

4.3 Finding Paths Through Dynamic Spaces
This chapter has discussed how measures of quality are

incorporated into the system providing a path planning algorithm that
deals with static spaces. What has not yet been discussed is how dynamic
objects moving in the space affect evaluation functions. How the system
deals with evaluation functions in dynamic domains is the subject of this
section.

The key to evaluation functions defined in dynamic domains is that
any quality that is affected by the movement of objects must be updated
after each time step of the algorithm. Consider the openness function; it
represents a measure of quality that is affected by the movement of
dynamic objects. Objects affect a node's openness value because the
relative openness of a node changes as an object moves close to it. For
example, Figure 21 shows a simple 2-space in which the planning
objective is to move the robot from the top center node through the
space to the bottom center node. The figure depicts a dynamic object that
moves through the space during times t=1 through t=5. The evaluation
function used by this example is the one described above for dealing
with openness. The figure gives a lighter shade to the nodes with the
highest openness values and a darker shade to the nodes with the lower
openness values. Interestingly enough, the introduction of dynamic
objects does not necessarily affect the evaluation function or the
algorithm at all. The only new requirement of the system is that the
openness values of the nodes must be recalculated after each time step of
the simulation in which there is a change in the position of an object.
Note evaluation functions that consider time and distance constraints of
high priority will need to be modified to handle dynamic objects.

Chapter 4. Evaluation Functions: Planning in Rich Spaces 45

Figure 21 Evaluation functions in dynamic spaces

Chapter 4. Evaluation Functions: Planning in Rich Spaces

Thus, the introduction of more complex evaluation functions
dealing with various measures of quality has no detrimental effects on
the overall system except for performance. The only modification to the
system occurs when, in a dynamic environment, one or more of the
measures of quality being used is affected by the movements of dynamic
objects. The modification to the system is relatively minor, requiring the
measures of qualities affected by the movement of objects to recalculate
their node values after each time step of the algorithm.

4.4 Robot Specific Abilities and Limitations
There are aspects of the robot's performance that must be accounted

for during the planning of paths. Different robots will have different
abilities and limitations that must be incorporated in the evaluation
functions. For example, consider a robot that has a very small battery
and should plan paths that have the robot charging as long as possible.
To a first approximation, this can be accomplished by placing zero cost
on the reflexive links at the' nodes representing charging ports and a
high cost on the links of the nodes that are farthest from any charging
port.

Consider the more complicated concept of F regions introduced by
Miller [Miller85]. F regions are used to define areas in a space that
represent the number of positional degrees of freedom that a mobile
robot outfitted with sonar can eliminate. This information can be used to
find paths that stay within the limits of the robots abilities to handle
uncertainty. In this scheme, paths that attain the destination while
moving the robot through the space with as high an average F region as
possible are considered the best or safest paths. For example, Figure 22
shows an example 2-space indicating the various F regions in which the
highest possible F region for a robot is three (two planar and one
rotational). The Dmax of the figure refers to the maximum distance over
which the sonar can reliably be used.

To use this concept of F regions in finding ttsafe tf paths, a relatively
simple evaluation function can be defined. First, determine how many
three-F region nodes should be traversed in order to avoid moving
through one two-F node, call this number kt. Then, in a similar manner,

46

determine the relationship between two-F nodes and one-F nodes (k2) as
well as between one-F nodes and zero-F nodes (k3)' Each node in a three­
F region is assigned a cost of 1.0 to the links leaving the node. A cost of
k t is assigned to the links of nodes in two-F regions. The nodes of the
one and zero-F regions are assigned costs of kt*k2 and kt*k2 *k3 to their
links respectively. In this manner, the safest path will be found. If, for
example, the values of kl =3, k2=6 and k3=4 are chosen for the situation
depicted in figure 22, the resulting path shown in Figure 23 will be
generated. Using schemes such as the F region concept, evaluation
functions can easily be defined to find paths that remain within the
abilities of the robot to navigate through a given space.

Chapter 4. Evaluation Functions: Planning in Rich Spaces

Zero-F Region

One-F Region

Two-F Region

Three-F Region

[l]
I I
D max

Figure 22 F Regions in 2-space

47

Chapter 4. Evaluation Functions: Planning in Rich Spaces

."",. Best Path

Shortest Path

Figure 23 Evaluation function using F regions

48

Chapter 5

Incremental Route Planning

Thus far, only the generation of plans that involve predictable objects
have been considered. To move autonomous robots in the real-world, a
route planning system must be able to handle the unpredictability that the
real-world has to offer, as in the case of a robot that must walk across a
busy street. The process of incremental route planning has been
identified to handle this problem.

5.1 Incremental Operation
An incremental route planner can be viewed as the repeated use of

a route planner that executes in a predictable dynamic environment.
After each step, the state of the world is tested and updated· with any new
information. In this way any unpredictable objects that have changed
their position since the last plan step was generated are identified and
can be accommodated for by the route planner. Because Robonav is
structured to operate on a parallel architecture it can be easily modified
to function as an incremental route planning system. This is because
incremental route planners must operate in real-time.

To have Robonav operate in an incremental fashion a simplifying
modification must be made to the algorithm. By making an addition to
the messages being passed around the system, the stack is eliminated
from the processors. The reason that the stack can be eliminated is, the
planner is no longer interested in finding an entire path from
beginning to end it simply needs to find the next step in the plan. Thus,
there is no reason to keep the entire ancestry of the messages active in
the system. The modification made to the messages involves the addition
of a field indicating the link over which the messages oldest ancestor
traveled. More precisely, the headers of the messages created in phase
one of the algorithm, are set to a value reflecting the link along which
that particular message is to be sent. The header, of the messages created
during phase two, is copied from the header of base-message. Thus, the
messages active in the system represents both the viability of a path (the
messages energy) and the direction of the first step along that path.
There is one more modification that must be made in order for Robonav
to operate in an incremental mode. The bounding condition is modified
to keep track of the message representing the current global message

49

Chapter 5. Incremental Route Planning

energy bound. Thus, when the system halts, the header of the global
message energy bound will indicate the direction of the next best move.

Robonav was initially intended to be operated in an incremental
fashion. The reason is that if the system is not operated in this manner,
the growth of the stacks containing the ancestries of the messages is
potentially unbounded. For example, consider a robot that is locked
inside a vault. Its task is to plan a route that gets it outside of the vault.
If there is no scheduled opening of the door the system will continue
searching for a plan to move the robot out of the vault until the heat
death of. the universe. This situation would in effect cause the stacks to
grow in an unbounded manner. This situation could be eliminated by
introducing a supervisory system that maintained a queue of scheduled
events and could alert the planner if there is no chance of a new state of
the world occurring. Such a system would be complex and need to detect
cyclic events like that of a revolving door and predict how events
interact with each other. This is a very hard problem and probably
semi-solvable at best. So even if such a system did exist at best it would
only help some of the time.

5.2 Example in an Unpredictable Domain
Consider the problem for an incremental planner depicted in

Figure 24. The figure shows that there are two paths that will lead the
robot to the desired destination location. One takes the robot over the
railroad tracks. The other, being substantially longer, uses the tunnel
going under the tracks to get to the destination. The robot's goal is to
reach the destination in the shortest amount of time. Assume that
Robonav is operating in the incremental mode as described above. Given
the situation depicted in the left portion of the figure and no oncoming
train, Robonav would plan a path that takes the robot over the tracks.
But, if a train unexpectedly arrived and blocked the short path over the
tracks, Robonav would replan the next best step and start down the path
to the tunnel. If the situation depicted in the left portion of the figure
were to persist the planner would eventually reach the destination via
the tunnel. However, if before the robot started through the tunnel the
train had moved and unblocked the path over the tracks, Robonav would
once again take advantage of the situation and move to go over the tracks
instead of finishing its path through the tunnel.

There is an anomaly that is produced by operating Robonav in an
incremental fashion. It represents Robonav's need for a supervisory
system to monitor the operation of the path planner. Consider the
exampie presented above. What if before the robot started under the
tunnel the train that was blocking the optimal path left clearing the
original path? In this case, the robot would change direction and move
toward the original path over the tracks. Now consider the situation
where just before the robot started over the tracks, another train
arrived. The robot would once again start to move along the path that
takes it under the tracks. If it turns out that this train length and train
frequency is a constant then Robonav will get stuck, never reaching the
destination when there is clearly a path available.

50

Chapter 5. Incremental Route Planning

1111111 Railroad Tracks

f:::~ Path Going Under the Tracks (Tunnel)

m Original Route Going On the Tracks

~ Alternative Route Going Under the Tracks

• Occupied Node

Figure 24 Operation in an unpredictable domain

51

Chapter 5. Incremental Route Planning

The control anomily is a situation that is common in execution
systems. For the Robonav system to operate in these domains.. the system
must incorporate a form of supervisory system to provide execution
monitoring. As this problem is not solvable in general it must be done in
a very domain specific manner in order to provide reliable guidance. It
should be noted that this is a very hard problem and one that is not
addressed in this thesis.

52

Chapter 6

Conclusions, Further Research and Implementation

6.1 Conclusions
Moving robots through dynamic environments mandates that the

other dynamic processes of the environment be modeled to a reasonable
level of detail. This thesis has presented Robonav, a spatial
representation and temporal reasoning system that plans paths through
space and time. Robonav models the dynamic aspects of the environment
as well as creating path plans through the environment that consider
the performance characteristics of the robot executing the plans. The
particular algorithm that operates on the representation is optimal when
functioning in an incremental mode. This mode of operation allows
Robonav to perform tactical planning in real-time for operation in the
real-world.

It is becoming apparent that spatial representation and path
planning is an inherently computationally expensive task. To this end,
parallel processing becomes one solution to the computational needs.
Researchers like Rao, are beginning to address path planning from
parallel processing point of view [Ra086]. The Robonav system
approaches parallel computation by providing a spatial representation
and path planning algorithms with an isomorphic mapping onto a
parallel architecture. Thus, by exploiting massive parallelism, Robonav
is able to provide real-time operation in unpredictable dynamic domains.
This ability is one that has not been approached by any other path
planning system.

6.2 Further Research
There are several possible extensions to this model that would

increase its representational power. Among the most useful and
interesting are:

-Integrating the system with sensors. Ultimately, any system
that does robot navigation must be integrated with the
sensors that provide the robot with information about the
environmental situation. This problem has been addressed
by Moravec [Moravec85]. His approach to sensor integration

53

Chapter 6. Conclusions, Further Research and Implementation 54

is compatible with the spatial and temporal model presented
here.

-Refining generated paths. The paths generated by the
system tend to have a stair-stepping effect that results from
the system only allowing movement in four directions.

-Planning for robots with asymmetric dimensions. The
problem of asymmetric robot dimensions can be addressed by
the use of an extra dimension to deal with the rotational
aspects that enter into planning under this condition.

-Introducing an object typing system. The use of object types
would allow queries such as "What Moose clubs are within a
mile of your house?" to be answered by the system.

-Modeling of unpredictable processes. The power of an
incremental route planner can be increased for a particular
domain with some model of the typical behavior of the
unpredictable objects in that domain. For example, the route
planner could provide more useful plans for a robot crossing
busy street if the system had a model of the speed,
maneuverability, and direction of travel for the autos
traveling the road [Sanbom87]. This might be approached
from a neural net modeling point of view [Poggi087].

-Representing and coordinating multiple robots. The message
passing algorithms could be changed to handle the
coordination of multiple robots seeking competing or
cooperating goals.

-Implementing the algorithm to operate in a hierarchial
fashion. This is similar to that found in [Moravec87] and
would allow time efficient heuristics to be defined that would
drastically prune the size of the search space.

6.3 Implementation
The algorithm, when fully implemented on an SIMD machine,

operates in predictable domains in O(p) time, where p is the length of the
longest path through space-time that is bounded by the global message
energy bound. In unpredictable domains, the time complexity analysis is
less clear. If, however, the incremental approach is taken in a
predictable domain, the algorithm will operate in O(p2) time. This is
derived from the following: If the first step of the incremental
algorithm takes O(p) time then the second step will take O(p-l) This is
continued, with each step reducing the complexity by one. Solving this
recurrence relation yields an O(p2) time complexity. In a truly
unpredictable domain the time complexity of operation will vary with
the behavior of the objects moving through the space.

A version of the algorithm, written in NISP [McDermott83), is
currently up and running on a VAX 11-785. It has been transported onto
an Explorer and modified to include a graphics interface. It functions

Chapter 6. Conclusions, Further Research and Implementation 55

on the examples given herein, as well as others involving more complex
spatial definitions and unpredictable dynamic environments. The
implementation includes software for simulating the SIMD architecture
needed to operate the system in real-time.

Bibliography
[Andrews83] Andrews, R. J., Impedance control and a framework for

implementing obstacle avoidance in a manipulator, Masters thesis,
Massachusetts Institute of Technology, 1983.

[Brooks82] Brooks, R. A., Solving the find path problem by a good
representation of free space, in Proceedings of AAAI 82, AAAI, pp.
381-386, 1982.

[Charniak86] Charniak, E., A neat theory of marker passing, in
Proceedings of AAAI 86, AAAJ. pp. 584-588, 1986.

[Chatila85] Chatila, R., Position referencing and consistent world
modeling for mobile robots, in Proceedings of the International
Conference on Robotics and Automation, IEEE, pp. 138-145, 1985.

[Davis84] Davis, E., Representing and acquiring geographic knowledge,
Pitman Publishing Limited, 1986.

[Hillis85] Hillis, W. D., The connection machine, MIT press, 1985.

[Hinton86] Hinton, G .E., Distributed Representations, in P arall e 1
Distributed Processing, MIT press, pp. 91-94, 1986.

[Laumond83] Laumond, J. P., Model structuring and concept recognition:
Two aspects of learning for a mobile robot, in Proceedings of the 8th
IICAI, IJCAI, pp. 839-841, 1983.

[Lozano-Perez83] Lozano-Perez, T., Spatial planning: a configuration
space approach, IEEE transactions on computing, c'32, pp. 681-698,
1983.

[McDermott83] McDermott, D. V., The nisp manual, technical report 274,
Yale University Computer Science Department, 1983.

[McDermott84] McDermott, D. V., Davis, E., Planning routes through
uncertain territory, Artificial intelligence, v22, pp. 107-156, 1984.

[Miller85] Miller, D. P., A spatial representation system for mobile robots,
in Proceedings of the International Conference on Robotics and
Automation, IEEE, pp. 122-127, 1985.

[Moravec82] Moravec, H. P., The CMU rover, in Proceedings of AAAI 82,
AAAI, pp. 377-380, 1982.

[Moravec85] Moravec, H. P., Elfes, A. E., High resolution maps from wide
angle sonar, in Proceedings of the International Conference on
Robotics and Automation, IEEE, pp. 116-121, 1985.

56

Bibliography

[Moravec87] Moravec, H. P., Certainty grids for mobile robots, in
Proceedings of the Workshop on Space Tele-Robotics, JPL Pasadena
California 1987.

[Nguyen84] Nguyen, V., The find-path problem in the plane, A.1.
technical report 760, Massachusetts Institute of Technology
Artificial Intelligence Laboratory, 1984.

[Nilsson71].Nilsson, N. J .. Problem-solving methods in artificial
intelligence, New York: McGraw-Hill, 1971.

[Iyengar85] Iyengar, S. S., Jorgensen, C. C., Rao, S. V. N., Weisbin, C. R.,
Robot navigation algorithms using learned spatial graphs, in
Robitica, 1985.

[O'Rourke] O'Rourke, J., Convex hulls, Voronoi diagrams, and terrain
navigation, in Proceedings of the ninth William T. Pecora Memorial
Remote Sensing Symposium, IEEE, USGS, NASA, ASP, Sioux Falls, South
Dakoda, pp 358-360, 1984

[Poggio87] Poggio, T., Koch, C., Synapses that compute motion, in
Scientific American, v256 # 5, pp 46-52, 1987.

[Rao86] Rao S. V. N., Iyengar, S. S. , Jorgensen, C. C., Weisbin, C. R.,
Concurrent algorithms for autonomous robot navigation in an
unexplored terrain, technical report 85-048, Louisiana State
University Computer Science Depanment, 1986.

[Sanborn87] Sanborn, J C., Hendler J. A., Towards dynamic planning,
technical report 1785, Maryland University Computer Science
Department, 1987.

[Thorpe84] Thorpe, C. E., Path relaxation: Path planning for a mobile
robot, in Proceedings of AAAI 84, AAAI, pp. 318-321, 1984.

57

Vita
Education
M. S. --Computer Science, VPI Blacksburg, VA. June 1987

Thesis title; Spatial and Temporal Path Planning.

B. S --Computer Science, VPI Blacksburg, VA. June 1985
Mathematics minor.

Professional Experience
Computer Science Dept., Va. Tech 6/86-present

Employed as a GRA (Graduate Research Assistant) to carry out research
funded by a grant from the Naval Surface Weapons Center investigating
the uses of AI (Artificial Intelligence) in their defense systems. This
project culminated in a report detailing the recommendations made.

Computer Science Dept., Va. Tech 8/85 -present
Employed by the department as a graduate teaching assistant.

Responsibilities included acting as undergraduate course advisor, teaching
assistant to a number of different undergraduate courses and instructor to
an introductory level course.

Agronomy Dept., Va. Tech 12/84-8/85
Employed by the Research Laboratory of the University Agronomy

Dept. as an Applications Programmer. The programs developed are
currently supplementing classroom education and are in practical use in
other laboratories around the country.

Professional Affiliations
American Association for Artificial Intelligence
Artificial Intelligence Society fo the Mid-Atlantic States
Association for Computing Machinery-SIGART

Publications
[Slack87] Slack, M. G., Miller D. P., Path Planning Through Time and Space

in Dynamic Domains, in the forthcoming Proceedings of the 10th
IICAI, IlCAI, printing pending, 1987.

[Slack87] Slack, M. G., Miller D. P., Route Planning in a Four Dimensional
Environment, in Proceedings of the Workshop on Space Tele-Robot+ • ""I

JPL Pasadena California 1987.

58

