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Abstract 
For robots to. move out of the lab and into the real-world, they must be 

able to plan routes not only through space but through time as well. The 
introduction of a time factor to the planning process implies that robots 
must reason about other processes and agents that move through space 
independently of the robot's actions. This thesis presents an integrated 
route planner and spatial representation system for planning real-time 
paths through dynamic domains called Robonav. Robonav will find the 
safest9 most efficient route through time and space as described by an 
evaluation function. Due to the design of the spatial representation and 
the mechanics of the algorithm, Robonav has an isomorphic mapping onto 
a machine with a highly parallel SIMD architecture. When Robonav is 
operated in a predictable domain, paths are found in O(p) time (where p is 
the length of a path). In unpredictable domains, where Robonav is 
operated in incremental mode, paths are found and executed in O(p2) time. 

1 This research was supported in part by a grant from the Naval 
Surface Weapons Center, under contract number N60921-83-G-A165. 
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Chapter 1 

Introduction: Dynamic Domain Path Planning 

The research presented in this thesis is directed towards the creation 
of a path planning system capable of reasoning not only about the spatial 
aspects of path planning but also the temporal aspects. Several route 
planning systems have been proposed, each having some degree of 
success in the domain for which tliey were targeted. This research 
represents the first system that begins to adequately address the temporal 
aspect of the route planning problem. 

1.1 The Route Planning Problem 
The problem of planning paths for use in moving robots through a 

given domain is an old one. However, none of the classical systems has 
an adequate definition of path planning. In this thesis the path 
planning task will be defined as finding the optimal path between two 
locations in space. A path is considered optimal if it best satisfies the 
constraints imposed by the domain in which the planner is operating. 
Therefore, a route planning system should be capable of planning paths 
in domains with constraints involving: predictable and unpredictable 
objects moving through space; the quality of space through which the 
robot is to move; the abilities and limitations of the robot executing the 
plans; and the goals and schedules that the robot is to meet. It should also 
be noted that the definition of optimal path is constrained by the 
particular spatial representation used by the path planner. 

Figure 1 shows an abstract example of a path planning problem set 
in a two-dimensional space (or 2-space hereafter). Contained in the 2-
space are three static objects and one dynamic object. The planning 
objective is to move the robot along a path that maintains a safe distance 
from the static objects while avoiding conflict with the dynamic object. 
The figure indicates the timings of a path that satisfies the given 
constraints. Notice that the robot pauses during times t=2 to t=4, allowing 
the dynamic object to move out of its way before continuing on to the 
destination. This example is included simply to give an indication of the 
types of domains in which a robust route planning system should be able 
to operate. 

1 
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Chapter 1. Introduction: Dynamic Domain Path Planning 

The problem of path planning is not constrained to the lab. It has 
many practical real-world applications. Consider the automated space 
stations of the future, where a number of autonomous robots will need to 
plan paths to dock with the orbiting station. On a more tangible level, 
robots working in a job shop require dynamic path planning to 
maximize resource utilization. These represent only two examples but 
should illustrate the need for dynamic path planning. 

1.2 Review of Related Works 
A number of spatial representations and path planning algorithms 

have been proposed to address the robot navigation problem. This section 
will describe some of this work and relate advantages and disadvantages of 
the different approaches taken. 

1.2.1 Voronoi Diagrams 
Voronoi diagrams have been used to find paths through a finite 

space [O'Rourke84]. Given a set of points sl' s2' ... , So in some space, a 
Voronoi diagram is defined as a partitioning of space into regions; one 
region for each of the n points. Each region represents those points in 
the space that are closer to the point associated with a given region than 
any other point in the set of points sl' s2, ... , 80. If the points defining 
the various regions are generalized to lines, the resulting partitioning 
can be used by a path planning algorithm. Figure 2 gives an example of 
how a Voronoi diagram generalized to lines would be defined for a simple 
2-space. Path planning algorithms using this paradigm search over the 
intersections of the regions for a path to the desired location. 

The use of Voronoi diagrams allows paths to be generated that 
maintain a maximal distance from all objects occupying the space. One 
problem with this technique for the representation of space is that it 
provides no information on the quality of the surface that the robot is 
moving across. Another problem is that Voronoi diagrams are not well 
suited for the representation of dynamic objects and therefore will not 
operate in dynamic domains. 

1.2.2 Free Space Representations 
There are a number of systems that approach the path planning 

problem using generalized cones (similar to Voronoi diagrams) to 
represent free space. These systems use traditional heuristic search 
techniques to find collision free paths through the free space 
representation. Among the researchers taking this approach to robot 
navigation are Brooks [Brooks82] and Nguyen [Nguyen84]. 

3 
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Brooks finds paths through 2-space by using a spatial 
representation that views free space as the union of, possibly 
overlapping, generalized cones. This representation is used because the 
cones provide a description of areas swept out by a moving 2-space 
object. Figure 3 illustrates how a few of the cones in the given space 
would appear. The lines bisecting the cones indicate how a robot will 
move through a given cone. Path finding using this spatial 
representation then reduces to comparing the area swept out by an 
object with cones representing free space. Brooks accomplishes the path 
search using a traditional search technique called the A • algorithm 
[Nilsson71]. The upper bound on the time complexity of his system is 
0(n4) (where n is related to the size of the space). 

Among the advantages of Brooks' system is that it deals with the 
rotation and translation of robot movements. The system also finds paths 
that move the robot through the space while maintaining the maximal 
distance from objects occupying the space. The disadvantages of this 
approach are that the shortest path is the only measure of path quality, 
and there is no mechanism for dealing with the temporal aspects of 
movement through space. 

Nguyen's work builds on the work of Brooks and others, providing a 
expedient heuristic to search through the generalized cones 
representing free space. The approach involves first finding local paths 
using experts that compute paths along the links between the cones, 
then applying the A· algorithm. Because the A· algorithm is searching 
over a collection of local paths for the best global path, the complexity of 
the algorithm is reduced as compared to Brooks' system. Despite this 
improvement in the search heuristic, this technique provides no new 
paradigm for performing route planning. 

1.2.3 Knowledge Bases 
The SPAM (SPAtial Module) program developed by McDermott is a 

knowledge base that handles spatial information about a given 
environment [McDermott84]. The system uses two kinds of knowledge; 
positional and relational. Positional knowledge, maintained as an 
assertional data base, represents topological facts such as (in stairway23 
b u i 1 din 9 7 ). The positional knowledge can be seen as a semantic network 
consisting of a predicate calculus encoding of facts. Relational 
knowledge. on the other hand, capturing information such as ( bet wee n 
Illinois . NY California), is represented as a "fuzzy map". The reason 
that the representation of relational information is referred to as "fuzzy 
maps" is that it represents facts as a range of values each of which is 
embedded in a frame of reference. Each frame of reference has its own 
scale, origin and orientation, all stored as ranges of possible values. This 
is done to allow inferences about an object to be made simply by looking 
in the proper map of a given frame of reference. 
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Path planning using such a spatial representation is done by first 
finding a fuzzy vector indicating the path from the current location to 
the destination. The vector is then translated into a list of barriers that 
must be entered or exited in order to reach the destination. Each of these 
barriers in tum is searched for a traversable path. As the route is 
traversed, the original fuzzy vector is refined to provide a better path 
plan. This process is continued until the destination is reached. 

The advantages of this approach include its ability to describe 
objects in a ttfuzzy" manner, thus allowing uncertainty in the position 
and orientations of objects to be accommodated. The system also provides 
a framework for the acquisition and assimilation of data when planning 
in uncertain domains. Another advantage lies in the systems ability to 
answer queries such as "What Chinese restaurants are within a mile of 
the Eiffel tower'r'. The disadvantage of the system is its inability to 
modify a plan if it finds that the original path has become unexpectedly 
blocked. The system also fails to address any of the temporal aspects of 
route planning. 

Davis implemented a system he called Mercator, which builds on the 
work he did with McDermott on the SPAM system [Davis84]. Mercator 
overcame shape representation and generality problems of the SPAM 
system by representing the exteriors of obstacles as the edges of a highly 
connected graph. This allowed detailed knowledge of the environment 
and its accompanying uncertainty to be captured, and from this 
information, route plans could be generated. Mercator also handles 
problems involving spatial containment. For example, consider a house 
located on the edge of a large field and the following query about the 
location of the house: tlHow far is the house from the field?". The SPAM 
system would respond with the distance between the center of the house 
and the center of the field, while Mercator would say that the house is in 
the field. While Mercator is a powerful system for answering queries 
about the spatial relations between objects, its problem as a route 
planner are two-fold. First, it is not setup to deal with dynamic situations 
in a manner that will allow real-time operation, and second, it cannot 
operate on temporally related problems. 

1.2.4 Potential Fields 
This approach to path planning has been taken by Andrews 

[Andrews83] and others. The spatial model used in this approach can be 
seen as placing the destination at the bottom of a hill (the point of 
minimum potential energy), and all of the space radially around the 
destination at increasingly higher locations up the hill. Thus, the space 
that is furthest from the destination is highest up the hill This gives rise 
to the relationship that the further away from the destination an object 
is, the greater its potential energy. Path planning in this spatial model 
is then viewed as releasing a ball from the robot's current position and 
seeing how the ball reaches the bottom of the destination. There are 
some obvious drawbacks to such an approach that make it impractical for 
doing general path planning. Besides ignoring all temporal aspects of 

7 
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path planning, it will not consider any path that must first move the ball 
uphill away from the destination before proceeding down to the 
destination. Another disadvantage is the need for special mechanisms 
that backtrack when the ball enters a local minimum. 

1.2.5 Vertex Graphs 
This class of algorithms is based on a graph that connects pairs of 

vertices. The vertices usually represent comers of convex hulls that 
represent objects that must be navigated. The actual graph is most 
commonly constructed by associating an edge between those vertices 
pairs that can be connected by a line that does not intersect an object. A 
number of local optimizations are available which provide a reasonable 
method for pruning the search space of the graph. Among the 
researchers that have successfully used this approach are Laumond 
[Laumond83], Iyengar [Iyengar85], and ChatHa [Chatila85]. 

Among the problems associated with this approach to path planning 
is that routes will be calculated that move "too close" to an object. These 
systems solve this too close problem by enlarging the size of the objects 
occupying the space. This method also has a very limited definition of 
what constitutes the best path; shortest is best. These systems also fail to 
provide a framework for dealing with temporal constraints. 

1.2.6 Configuration Space 
Configuration space has been used as a spatial representation by a 

few path planning systems. Lozano-Perez has given this approach a 
thorough mathematical treatment [Lozano-Perez83]. The principle to 
this approach is to define each object (rigid solid) as a vector, referred to 
as its configuration. The vector contains the pertinent information on 
the objects position and orientation in space. In a similar manner, there 
is a configuration for the robot. The ways in which the configuration 
space of the robot interact with the configurations of the objects yields 
information that is used by a path planner to find the shortest path 
between two points in the space. 

This approach is best suited for calculations involving the 
manipulation of a mechanical arm through a cluttered work space. It 
can, however, be used for path planning and will successfully deal with 
plans involving asymmetric robot dimensions. The approach does not 
provide a mechanism for dealing with unpredictable dynamic objects 
nor does it provide or use any information about the quality of the space 
in which plans are executed. 

1.2.6 Grid Representations of Space 
Systems that approach spatial representation by using a grid to 

model space have spatial representations that most closely resemble the 
model of space used by this research. In 2-space, grid representations 
are the partitioning of space into equal sized squares upon which path 
planning schemes are applied. Among the researchers that have used 
this approach productively are Thorpe and Moravec. 

8 
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Thorpe's system accomplishes path planning in two steps 
[Thorpe84]. The system first does a global search over an eight­
connected 2-space grid of points, to find a rough path to the destination. 
The second step then "relaxes" the points on the rough path in order to 
improve the path quality. Using this technique, Thorpe's system is able 
to find safe paths through a given 2-space containing static objects. A 
similar path relaxation technique was also used by Moravec as part of 
Fido, the navigational system in the CMU Rover [Moravec82]. 

The major advantage of this approach to path planning is that it 
provides a framework for dealing with time related aspects of spatial 
movement. Although not directly addressed in the research, modeling 
time in these systems corresponds roughly to the addition of an extra 
dimension to the spatial representation. The added dimension is used to 
represent the temporal aspect of planning. There is a drawback to 
systems that use relaxation techniques for finding paths: If the .rough 
path is too rough the system will settle to a local minimum, missing the 
true global minimum. 

1.3 Planning Routes Through Interesting Spaces 
Many of the systems covered in the last section suffer from the 

shortest path obsession. The systems are solely concerned with finding 
the shortest path while neglecting other qualities that make up the 
optimal path. For example, none of the systems accounts for the quality 
of the surface upon which the robot travels, relying on the surface 
being either traversable or not. This naive treatment of the surface over 
which the the robot will travel is simply inadequate in real-world 
planning systems. The most severe limitation of the aforementioned 
systems is that they assume that the only dynamic object is the robot. 
This is totally unrealistic and imposes an unacceptable, lab operation 
only, limitation upon the domains in which the system can operate. 

In order to function in a dynamic world, a robot needs to consider 
the operation of other dynamic processes sharing the space and how 
they may affect its operation during path planning. For example, Clyde 
the elephant, knows the local train schedule and needs to get to the other 
side of the train tracks. He should use that information when planning 
to get across the tracks. If Clyde has information predicting that a long 
freight train will be coming just before he can reach the tracks, then 
given the choice between a short path that involves crossing the train 
tracks, and a slightly longer plan to go under the tracks, Clyde should 
choose the latter plan. Similarly, if Clyde's task were to jump on a 
moving trolly car, then the ability to plot a path that will allow him to 
jump onto a moving object is necessary. 

Unpredictable dynamic processes must also be accounted for by a 
robust route planning system. Clyde the elephant who is a member of 
the cavalry and is returning to the safety of the fort. Above all Clyde 
"fears" attack by a brutal tribe of Native American mice. Clyde would be 
better off planning to get to the fort across the open plain, rather than 
traveling through the narrow passageway of Ambush Canyon. The 
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primary reason for Clyde's choice is that an attack in the canyon would 
effectively block him from his destination, thereby causing the him to 
backtrack wasting valuable time. 

This thesis describes a route planning system called Robonav, that 
can handle the problems described above. The single property that most 
distinguishes this work from previous systems is that it deals with both 
the spatial and temporal constraints imposed by the domain in which the 
system is operating. That is, Robonav considers the time at which a 
particular area of space is traversed when determining the optimal path. 
Robonav allows the designer to model the quality of space that the robot 
is moving through and use this information in determining the best 
path. The designer can also model the effects that dynamic objects have 
on the definition of the optimal path. Constraints involving the abilities 
and limitations of the robot executing generated plans can also be 
incorporated into the model. Finally, Robonav has a direct mapping into 
a parallel architecture, allowing it to operate in unpredictable domains 
in real-time. The ability to operate in real-time in an unpredictable 
domain is important for systems operating in a threatening 
environment. 

1.4 An Outline of the Thesis 
Chapter 2 covers the spatial representation and path planning 

algorithms. The spatial representation is used to capture the relevant 
aspects of space. The spatial representation provides the framework for 
algorithms that preform the path planning task. 

Chapter 3 deals with object representation using the spatial model 
presented in Chapter 2 and how objects affect the operation of the path 
planning algorithms. An object is a function of both space and time that 
maps into the spatial representation. 

Chapter 4 is concerned with finding paths that measure qualities, 
other than length, in determining the best path. In this chapter a 
number of qualities will be defined along with evaluation functions that 
operate on these qualities to find the best path. 

Chapter 5 gives a brief explanation of how this model can be used in 
domains where there are unpredictable processes to be accommodated for 
during actual plan execution. The solution presented alternates between 
planning the next best step and updating of the state of the world. 

Chapter 6 covers some of the conclusions reached as a result of this 
research. Also in this final chapter are implementational details of the 
system as well as details on further research needed to extend the system's 
abilities. 

10 



Chapter 2 

Path Planning in Dynamic Domains 

This section will discuss three similar, yet computationally distinct, 
message passing algorithms. The algorithms, when combined with the 
proper spatial-temporal representation, are able to find paths through 
static and dynamic domains. The basis of the message passing techniques 
lies in the choice of the proper spatial representation. The spatial 
representation views space in a discrete manner, as if it were composed of 
equally sized particles of space. Once the spatial representation has been 
presented, the three message passing techniques will be described. The 
first simply finds the shortest path through n-space between two points 
(source and destination). The second makes modifications to this 
approach, allowing the destination to be described as a function of time. 
The final algorithm makes a further modification, allowing the real-time 
movement capabilities of the robot to . be considered in path generation. 

2.1 Spatial Representation 
For a route planning technique to be effective, it must use a spatial 

model capable of capturing the essential aspects of the space through 
which paths are planned. To represent space, this research uses 
uniformly shaped n-dimensional hyper-cubes called "nodes". Each of 
the nodes represents a small element of space in a given dimension. For 
example, in one dimension the nodes are line segments; in two 
dimensions the nodes are squares; and in three dimensions the nodes are 
cubes (see Figure 4). This approach to spatial representation has been 
taken in many previous works. In particular, Thorpe used it as a basis 
for path planning in two-dimensional static domains [Thorpe84]. Thorpe 
used the representation in combination with a relaxation algorithm to 
find locally optimal paths. 

Arbitrarily shaped n-dimensional spaces are defined by spatially 
concatenating nodes along common (n-1 dimensional) surfaces. The 
collective area occupied by the nodes is called "space", while the remain­
ing area is referred to as Itvoid". For example, Figure 5 shows examples of 
arbitrarily shaped two and three-dimensional spaces constructed from 
squares and cubes respectively. In general, the size of the nodes will be 
of at least sufficient size to subsume the size of the robot. This size 
restriction is based on how objects in n-space are represented. 

11 
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To provide a mechanism for message passing, each of the nodes 
making up space has a unidirectional link connecting it with each of its 
2 n possible neighboring nodes (Le. diagonals not included). For 
example, consider the links that are associated with the two-dimensional 
space shown below in Figure 6. Notice in the figure that the nodes at the 
edge of space have fewer connecting links than nodes that are oriented 
towards the middle of the space. To capture spatial and temporal 
"quality", each of the links has a cost associated with it. The cost is a 
function of .time and n-space, used to determine the quality of paths 
through space and time. For example, consider Clyde the commuting 
elephant: Clyde may plan different paths to the office depending on the 
time of day (e.g., the freeways are always backed up from 7am to 9am and 
4pm to 6pm Monday through Friday t so he takes the back streets if going 
to or from the office at these times). In general, the links will be used to 
represent the relative cost of making a transition from one node to 
another at a particular time. 

2.2 Finding Paths Through Space 
Using nodes, spatial concatenation, and links, a message passing 

algorithm will be defined that finds the shortest path through n-space 
between two given points (ignoring the temporal aspects for the 
moment). The algorithm is quite similar in nature to the technique used 
in [Hillis85] for finding the shortest path through a graph. The basic 
principal used in finding paths by message passing can be visualized as 
waves moving across a body of water (see Figure 7). 

Picture a stone thrown into a pond. The location on the surface of 
the pond where the stone impacts with the water, represents the current 
location of the robot or the "source" point. The impacting stone starts a 
disturbance on the surface of the pond, sending waves out from the 
source point in all directions. The propagating waves represent a search 
over the surface of the pond for the desired "destination II point, located 
somewhere on the surface of the pond. Eventually one of the waves 
passes over the destination point indicating the existence of a path from 
the source to the destination. 

This symbolizes a message passing algorithm for finding paths over 
the surface of the pond. The algorithm described in this section operates 
in a similar fashion, exploiting a message passing scheme to model the 
movement of a wave through a given n-space. The objective of the 
algorithm -is simply to find the shortest path from the source to the 
destination. For the model to operate properly, the representation must 
capture aspects of the path's length and feasibility. To capture the path 
length, each link between nodes of the space, representing a transition 
that the robot is capable of making, is assigned a cost of 1.0. The 
remaining links reflect transitions between nodes that cannot be made 
by the robot are assigned an infinite cost (e.g., there may be a ledge 
between the nodes), Using this link cost assignment the necessary 
spatial aspects are captured. When combined with the path planning 
algorithm the shortest path through space can be found. 

14 
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Figure 6 Links of a simple 2-space 
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Destination: 
Somewhere on the 
surface of the pond. 

Figure 7 Searching for the destination in 2-space 
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Each message is a bundle of information that is passed from the 
node that creates it to one of its connected neighboring nodes. Messages 
have associated with them an energy value and a "genesis-pointer". The 
energy value is used to determine the relative value of a particular path 
through the space. The genesis-pointer points to the node where the 
message originated and is used to reclaim the path from the 
representation. Starting at the source node (Le. the robot's current 
location), the algorithm uses a synchronous step-wise process of passing 
messages from node to node as it searches the n-space for a path to the 
destination. At each step in the process, nodes of the space receive a set 
of messages from their neighbors and create a new set of messages based 
on the received messages. The messages of this new message set are sent 
to the nodes neighboring nodes during the next time step. Using such a 
process, all possible paths that the robot could take through n-space in 
attaining the desired destination are considered. To reclaim the path 
generated by the propagation of the messages through n-space, each 
node in the given n-space has a "best-message" slot associated with it. 
This slot contains the message received by the node with the lowest 
energy value of all the messages it has received during the operation of 
the algorithm. The actual path planning algorithm is described by its 
two phases and bounding condition. 

2.2.1 Phase 1: "Throwing the Stone" 
The first phase sets up the initial message set. At the source node 

(associated with the robots current location), a set of messages are 
created. The set contains one message for each link the source node has 
with its neighboring nodes (Le. up to 2 n messages). Figure 8 shows a 
source node in 3-space and its connected neighbors; in this case six 
message are created for the initial message set. The energy value 
associated with each message takes on the value of the cost of the link 
that the message is to travel over. The genesis-pointer of each of the 
nodes is set to point to the source node. To initialize the model, the best­
message slot of the source node gets a nil message set with an energy 
level of 0.0. Finally t each of the messages in the created set is sent over a 
link to its intended neighboring node. 

2.2.2 Phase 2: "The propagating wave front" 

This is the operational phase of the algorithm and consists of 
having each node in the n-space repetitively perform the following set 
of tasks in a synchronous step-wise manner: 

First, gather together all of the incoming messages sent to it 
during the last step. 

Second, identify the base-message as the incoming message with 
the minimum energy. All other messages are discarded out 
because they represent equivalently long or longer paths that at­
tain the same location in space. Note, if there is no incoming mes­
sage, the node does nothing during the current synchronous step. 
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~ ...... -_ Source node and 
its connected 
neighbors in 3-Space. 

Figure 8 Phase one 
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Third, do one of the following two actions depending on whether 
the energy in the base-message greater than or equal to the 
energy of the message in the best message slot of the node. If the 
condition is fulfilled, then nothing is done and the node waits for 
the next step. If the condition fails, or the best message slot is 
empty, then a new set of messages is created in a manner similar 
to that described in the first phase. Each message in the new set is 
assigned an energy that is the sum of the energy in the base­
message plus the cost of the link that the message is to be sent 
over. After the creation of the new message list, the base-message 
is placed into the best-message slot of the node, thereby replacing 
any message that might have been there. Finally, the node sends 
the newly created messages out along their respective links. 

The process described in this phase is repeated until the bounding 
condition is met. Figure 9 shows the spreading node activation in some 
given 3-space. The figure shows the shape of the expanding wave of 
messages as they move out into 3-space. 

2.2.3 Termination: "A Wave reaches destination" 
If the algorithm operates in phase two long enough, it will find a 

minimum energy path from the source node to every node in the n­
space. In this case, the bounding condition is defined as the state of the 
system when there is no remaining message activity_ It should be noted 
that, as defined, for a finite space inactivity of messages is guaranteed to 
occur in a finite number of steps. While this will provide a path to the 
destination, it may operate for many more steps than is necessary for 
finding such a path. Therefore, to bound the running time of the 
algorithm, a more restrictive bounding condition must be employed. The 
bounding condition is defined as the state of the system when the energy 
associated with each of the messages currently being processed in the 
system is greater than or equal to the tI global bound tl

• The global bound 
is equal to the energy of the message in the best-message slot of the 
destination node (similar to zorch decay [Charniak86]). Note, if such a 
message does not exist then the current bound is considered to be 
infini te. 

After the bounding condition is met, the path through n-space that 
has the lowest energy associated with it can be retrieved from the space 
of nodes. This is done by starting at the message in the best-message slot 
of the destination node and recursively following the genesis-pointer of 
the current node's best-message until the nil message at the source 
location is encountered. 

Some observations should be made at this point that will clarify the 
functioning of the algorithm. The algorithm has an obvious isomorphic 
mapping onto an appropriately connected SIMD (Single Instruction 
Multiple Data) machine architecture. This gives rise to pragmatic 
concerns such as the extensive waste of computing power. The waste is 
easier to visualize when realizing that the propagating messages only 
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Step = 0 

Step = 2 

Figure 9 Phase 2 
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move away from the source and never back up over previously visited 
nodes. Thus, nodes sit idle for all but 2 of the p steps in the path length. 
The reason for this is, any message created will have an energy value 
that is one greater or infinitely greater (all link costs are 1.0 or infinite) 
than the energy of the message that generated it. Therefore, the 
message passing activity of the messages sent to any previously active 
nodes will die out. A further concern is how the path length is acquired. 
Intuitively, it can be seen that any message reaching the destination will 
have an energy value that is simply 1.0 times the length of the path that 
the message represents. Thus, by observing how the bounding condition 
is defined, one can see that when the first message reaches the 
destination all messages in the system will have an energy value equal to 
1.0 times the minimum path length (messages that go over links with an 
infinite cost die out immediately). This, however, is exactly the 
definition of the bounding condition and the system will halt. 

2.3 Finding Paths Through Space and Time 
The previous section discussed an algorithm that finds the shortest 

path between two spatial locations. While a useful algorithm, there have 
been many systems designed that are capable of finding paths between 
two static points in space. In this section, the current algorithm will be 
modified in such a way as to enable it to find paths through time as well 
as n-space. This will enable the destination to be described as a function 
of both time and n-space. For example, consider Clyde Cassidy robot. For 
Clyde to be successful he needs to have the ability to plan routes through 
n-space allowing him to seek a moving destination (e.g. a moving train). 
Immediately it becomes clear that the paths must consider the value of 
not moving; it may be advantageous for the robot to wait in one location 
for the destination to move closer before moving toward the destination. 

To provide these new capabilities, the following modifications will 
be made to both the current spatial representation and algorithm. First, 
the concept of time must be defined; a unit of time is represented by each 
synchronous step in the second phase of the algorithm. This assumes 
that the robot can make a transition from any node to anyone of its con­
nected neighbors in one unit of time regardless of the robot's current 
state. Note, this simplifying assumption will be removed in the next sec­
tion where modeling continuous time is considered. Second, in order to 
consider paths that involve non-moves as a step in a route plan, each 
node must have a reflexive relationship with itself. To accomplish this, a 
link pointing back to the node is added to each node in n-space (see 
Figure 10). The reflexive link has all of the same characteristics as the 
links previously described. Third, the best-message slot of each node is 
changed to a stack of best-messages. The stack exists so paths involving 
steps that remain in one location can be reclaimed from the nodes after 
the bounding condition has been met. The stack also minimizes the 
amount of inter-node (inter-processor) communication, for without the 
stack, a list representing the ancestry of each message would have to be 
passed along with each message in the system. 
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Figure 10 Reflexive links of a simple 2-sp.ace 
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Now that these modifications have been made to the spatial 
representation, an algorithm that finds paths through this new domain 
will be defined. As in the previous section, this algorithm is defined by 
its two phases and bounding condition. The definitions of the phases and 
the bounding condition are taken from the previously described 
algorithm and modified to extend the algorithm's power in this new 
domain. 

Phase one is defined almost exactly as in the previous algorithm. 
There is one new aspect worth noting, however, namely that in addition 
to the messages previously prepared, there is also a message created and 
sent out over the reflexive link. This is done to check whether not 
moving during the first step is more profitable than making a move into 
one of the source nodes connected neighbors. 

Phase two is also a modification of the previous algorithm. In the 
previous algorithm, if the base-message was not of a lower energy value 
than the message in the node's best message slot, it was thrown out and 
the node did not perform any further action during that time step. In 
the new definition, if the base-message energy is less than the current 
global bound, the node will always create a new set of messages from the 
base-message (including one for the reflexive link). The messages in 
the new set are then sent out over their respective links, initiating the 
subsequent time step. The reason for a node taking no action when the 
base-message energy is greater than or equal to the current global 
bound is because message energies are strictly increasing. In other 
words, the cost on each of the links is greater than zero. Therefore, any 
path generated from the node of concern to any of the destination points 
will provide a path that is of greater energy than the best path known at 
the current time. Finally, if the base-message has an energy less than 
that of the global bound, then after the new message set is created the 
base-message is pushed on the top of the best-message stack. However, if 
the base-message has an energy value greater than or equal to the 
global bound or if there were no messages processed at all during the 
current time step, a place-holding nil message is pushed on the top of the 
stack. 

The bounding condition is changed from that previously defined, 
enabling the system to consider the destination location as a function of 
both time and n-space. This is accomplished by simply redefining the 
global bound to be the minimum energy of all messages that have 
reached any of the destination nodes. The destination node is no longer 
simply a' location in n-space; it is a location in n-space during a given 
time period. It should be noted that there can easily be more than one 
destination location defined during the same time period. For example, 
consider Clyde who must get to the post office to mail a package to his 
mother. Clyde's problem is that he lives in a city with two post offices 
that are each open from Sam to 5pm Monday through Friday. Therefore, 
Clyde plans a path considering the trade-offs between the two 
destination locations. 
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In order to retrieve the path from the stacks of the nodes, the node 
containing the globally bounding message is identified. Then, until the 
message associated with the global bound appears at the top of the 
identified node's stack, all of the nodes in n-space pop their best-message 
stacks and discard the popped message. At this point, the best path is 
encoded in the ancestry of this message. So, in an iterative manner, the 
message's ancestry is found by following genesis-pointers back node by 
node. At each step in the process, all nodes in the space pop their stacks 
revealing the next message on the stack. The process of following 
pointers and popping stacks is continued until all of the stacks are 
empty, indicating that the source location has been encountered. Note 
that due to the use of nil messages as place holders, all of the stacks will 
al ways have the same depth. 

Using this modified algorithm, the system can solve the following 
problem: Find the optimal time to leave home in order to catch the 4:30 
bus at the comer of 1st and Elm streets? This is accomplished by assign­
ing a link cost of 0.0 between all of the links inside the house and a cost 
of 1.0 to all of the links outside of the house. Thus, the shortest path from 
the house to the bus stop will result, with the further restriction that the 
path will not leave the house until the last possible moment. Note that 
when a node has incoming messages of equivalent values, the selection 
of the base-message will affect the robot's movements within the house. 

2.4 Modeling A Robots Continuous Time Actions 
This section will show how the robot's locomotion capabilities can 

be considered when finding paths through n-space and time. In the last 
section the fundamentals of time modeling were described. However, an 
absolute and restrictive assumption was made about the representation of 
time. Namely, all node to node transitions made by the robot take single 
uniform units of time. By making a modification to the messages being 
passed from node to node, the assumption can be removed. The 
modification involves placing a real-time field in each of the messages. 
The time field allows messages to contain local times, thus removing the 
temporal restriction about the robot's abilities to move through space. 

The ability to effectively represent the time required by a robot to 
navigate through space allows plans to be generated that take advantage 
of the robot's abilities. For example, the transition from one node to 
another when starting from a resting state should take longer than the 
same transition when movement has already been initiated in that 
direction. This is significantly different from the scheme used up to this 
point, where all moves were considered to take one unit of time. The 
ability to consider the capabilities of the robot in generated paths has 
been incorporated into the Robonav system by operating it in a more 
asynchronous manner. Asynchrony is accomplished by associating a 
real-time with each message in the system. The time value of created 
messages is set by summing together the time in the base-message and 
the time required for the robot to make the move represented by the new 
message. This process must account for the current state of the robot in 
determination of the time required to make the next transition. The 
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ability to effectively predict the performance of the robot is bounded by 
the precision with which the real-time actions of the robot moving 
through space-time can be modeled. To model the robot's actions with 
any precision, each message must keep some representation of its 
history (e.g., the current state of the robot as reflected by the given 
messages ancestry). For example, a message must "known if the robot is 
currently turning, moving or stationary in determining the time to 
associate with it. There are many ways to represent this information, all 
of which are dependent on the robot being modeled. The history can also 
be represented by a list of attributes tagged onto each message indicating 
the current state of the robot as defined by a particular message. The 
stacks must also be modified to push and pop sets of best messages, this is 
done because the message times are no longer synchronized. 

Although this algorithm has an increased message passing 
complexity, it also has an increased computational power over the 
previous algorithms. For example, consider the 2-space shown in Figure 
11. The figure shows a situation where there are two paths that lead 
from the robot's location to the desired destination. Using the previous 
schemes, both of the paths would have equivalent value (assuming that 
the link weights are all 1.0). With the new scheme, however, each 
message has a real-time associated with it. Consider the following time 
complexity assignments: Messages representing the start of motion in 
some direction from a rest position or a change in the direction of 
motion have a time complexity of 2.0. Messages representing continuous 
movement in one direction are given a time complexity of 1.0. Using 
these assignments, messages from path one will reach the destination at 
time t=7 and messages from path two will reach the destination at time 
t=9. The information provided by such a system is necessary for any 
system that must meet scheduling constraints (e.g .. , factory automation). 

2.5 Concluding Remarks: Algorithms and Models 
This chapter presented the concept of message passing and 

introduced three different path planning algorithms operating on three 
different spatial models. The first algorithm, operating on the simplest 
spatial model. is easy to visualize but fairly trivial in its expressive 
power. This limitation is caused by the algorithm's inability to 
effectively operate in dynamic domains. The second algorithm, 
operating on a modified spatial model has considerably more power, able 
to utilize both spatial and temporal constraints in planning paths. While 
this is a vast improvement to the first algorithm, it has discretely 
uniform robot movements. This simplifying assumption was made at the 
loss of considerable power. The third algorithm is able to consider the 
real-time movement capabilities of the robot. However, this 
expressiveness sacrifices descriptive clarity. 

Henceforth, all examples and discussions presented will be set in the 
frame of the second algorithm and associated spatial model. It should be 
noted that all of the modeling techniques that follow will operate equally 
well on the third algorithm and spatial model, with minor modifications 
made to account for the asynchronous operation of the third algorithm. 
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Chapter 3 

Representing Objects 

Object representation is a critical aspect of an effective route 
planning algorithm expected to operate in real-world domains. This 
chapter will describe how objects within the defined space are modeled. It 
will show how the planning algorithm uses the object representation to 
plan paths that account for the temporal aspects of object interactions. 
The objects presented in this chapter are predictable; objects are both 
static and dynamic with fully defined behavior in both time and space. 
The spatial model and path-finding algorithm developed in the last 
chapter will provide the basis for the spatial and temporal aspects of object 
representation. 

3.1 Predictable Objects in n-Space and Time 
Objects are represented as functions having a given n-space and 

time in their domain 9 and are mapped into some subset of the nodes 
making up n-space during a given period of time. The set of nodes 
generated by an object's function consists of those nodes in the given 
space that are occupied (fully or partially) by the object during the 
given time period. For example, Figure 12 shows how a model of a simple 
two-dimensional revolving door can be generated. The revolving door is 
defined by a function that has four nodes forming a square in its range. 
The function maps onto two of the diagonally adjacent nodes during odd 
time units and onto the other two diagonally adjacent nodes during even 
time units. 

To find paths through spaces that have predictable objects moving 
through them, the operation of the message passing algorithm must be 
modified in its second phase. The modification simply makes any node 
occupied by an object become inactive during the time period that the 
object occupies the node. This keeps paths that pass through an object 
from being generated by the Robonav system. 

Consider the example I-space shown in Figure 13 consisting of 
three nodes (referred to as left, middle and right nodes). The fact that 
this example comes from I-space makes moving right or moving left the 
only allowable moves, with the appropriate restrictions made at the ends 
of the I-space. The objective is to find a path through I-space that allows 
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Odd Time Units 

• Occupied Node 

Even Time Units 

D Unoccupied Node 

Figure 12 Representing a revolving door 
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the robot to move from one end of the space to the other in the shortest 
possible amount of time. Consider the cost on all seven of the links (four 
neighbor and three reflexive links) in the space to be assigned a value of 
1.0. Also shown in the figure are the best-message stacks of each of the 
nodes and the state of these stacks during the different time periods. 
Observe that there are two predictable objects whose behavior must be 
planned for if a safe path is to be found. The first enters the I-space 
occupying the left node at the start of time t= 1. This causes all messages 
received by the left node at time t= 1 to be ignored. This is indicated in 
the stack of the left node at time t= 1 by the box around the message on 
the top of the stack. The object leaves the left node before the start of 
time t=2. The other object starts out occupying the right node at the start 
of time t=2, thus preventing the robot from attaining the destination. 
Now the object moves to the middle node, forcing the robot back to the 
left node at time t=3. At time t=4 the object moves back to the right node 
leaving the middle node before the onset of time t=5. The figure shows 
the actual robot movements instantiated. Actually the robot would not 
move until the entire path was planned; after time t=6 was planned. 

First observe that nodes occupied during some time period send no 
messages into the next time period. This is the mechanism behind 
finding paths through space and time that avoid objects. Second, observe 
that figure 13 provides another example of why the stack is needed to 
store the path. If there was no stack, then paths that need to move back 
upon themselves could not be generated. Clearly, as the example 
illustrates, some path planning problems must use this backtracking 
tactic to find paths. Lastly, the 'example shows how the generated path 
can be retrieved from the stacks of the nodes, as indicated by the stacks 
associated with the state of the space at time t=5. 

The following question now logically arises; where does object 
representation actually lie? One answer places the functions for the 
objects outside of the model. This approach introduces an external 
communication requirement to get the information about object location 
to the proper nodes in n-space. This has the disadvantage of introducing 
a sequential aspect to the otherwise parallel planner. Another approach 
is to have each node in the n-space maintain a map of times during 
which the node is occupied. This allows for all required external 
communication to be accomplished during setup time, thus maintaining 
a closed system during the algorithm's operation. 
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3.2 Refining Object Representation 
Consider the problem depicted in 2-space of Figure 14. The top 

portion of the figure shows a situation that cannot be solved with the 
system as it is currently defined. The objective in this situation is to 
move the robot from the top left comer to the bottom right comer of the 
space. But, the objects in the top right and bottom left comers will not 
allow any paths to be generated that reach the destination. This is due to 
the way in which objects are represented. Namely, any object that 
partially occupies a node during a given time is considered to entirely 
fill the node. However, in this example there should be a path to allow 
the robot to move to the destination. To overcome this problem, a 
technique that increases the resolution of the space by varying powers 
(2, 3, 4, • • .) is used. The principle of the technique lies in the addition 
of overlapping nodes. By using such a resolution technique, continuous 
n-space can be represented to varying degrees of precision. This 
resolution technique is similar to the course coding of state spaces used 
by Hinton [Hinton86]. For the given example, five new nodes, each the 
same size as the original nodes, are added to the spatial definition as 
shown in the bottom portion of the figure (note the inter-connection 
graph). As a result, there are now four possible paths that move the 
robot from the top left comer to the bottom right comer of the space. 
All of the resulting paths have a length of two standard node widths but 
require four half node width moves. 

As a further example of the overlapping node solution to the object 
representation problem, consider the situation depicted in the top 
portion of Figure 15. Again the objective is to move the robot from the 
top left to the bottom right comer of the space. Once again there are 
objects in the top right and bottom left hand comers of the space (notice 
the different size of the objects). The objects prevent the algorithm from 
finding any path for the robot to take. As depicted in the middle portion 
of the figure, if the space is only resolved by a factor of two, there still is 
no object-free path available. Therefore, the space must be resolved by a 
factor of three, as shown in the bottom portion of the figure. When this 
is done, the system introduces twelve new nodes into the spatial 
representation (as compared with the original situation, which uses four 
nodes). By doing this, the system will find one of the many possible 
paths to the destination. The paths found will move through six nodes, 
each of one third width, resulting in a path that still only covers the 
distance of two standard width nodes. It should be noted that, while the 
resolution of the space remains finite, the total length of a path that 
moves between two diagonally adjacent nodes is two standard node widths 
(width of nodes at lowest resolution). However, as the resolution of the 
space approaches infinity, the length of a path between two diagonally 
adjacent nodes approaches sqrt(2)12 times the length of a standard node 
width. This, however, is only of theoretical interest as there is no direct 
way to provide the infinite resolution required to realize this savings in 
path length. 
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The revolving door introduced in the previous section has an 
anomaly,. there is no way to represent the direction in which the door is 
turning (see Figure 13). This is critical, however, because it is "bad" to 
plan paths that go the wrong way through a revolving door. To resolve 
this problem, consider the solution represented in Figure 16 below. The 
solution simply increases the resolution of the space by two in the area 
around the revolving door. Then, as is shown in the figure, there exists 
a path through space-time that will adequately consider the direction in 
which the door is turning. This figure also indicates how the node 
overlapping technique can be used in a local manner. This allows 
features that do not fall precisely onto the grid of the spatial map to be 
accurately represented. 

3.3 Trade-orfs Between Resolution and Efficiency 

34 

With increasing resolution there is a degradation in the 
performance of the algorithm's efficiency. For example, if the 
resolution of n-space is increased to 2x, then the paths that are 
generated will, on the average, visit twice as many nodes as paths 
generated in the original scheme. To minimize this cost varying 
resolutions can be used. In other words higher resolutions can be used 
on a local level. This will more effectively utilize the computation power 
of the computer on which the algorithm is running. The use of 
overlapping nodes also causes problems with the timing of message 
passing in a second level model (section 2.3) due to the discreteness of 
time steps. Synchronization is, however, not a problem for the model of 
section 2.4, where there is a real-time field associated with the messages 
in the system. 
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Chapter 4 

Evaluation Functions: Planning in Rich Spaces 

The key feature to planning the best path through time and space 
with this model is the creation of properly defined evaluation functions. 
Evaluation functions provide a means of determining the quality of space 
and the abilities and limitations of a given robot. Evaluation functions 
manifest themselves by determining the cost that should be placed on the 
links in the space. Up until this point, the only evaluation function used 
to define the best path simply determined the shortest spatial or temporal 
path available. This section will explore more complicated evaluation 
functions. Before the evaluation functions can be discussed, the 
parameters on which they operate will be described. Presented below are 
three parameters used by evaluation functions to reflect the qualities of 
space: traversability, openness and topology. This is not to say that they 
are the only parameters available, but they do comprise three of the more 
significant ones with respect to robot navigation. Each of the parameters 
assigns a value in the range of 0.0 to 1.0 to each of the nodes comprising 
the given n-space. Note that these values are not a the same as the costs 
assigned to the links. The values are determined by functions of both n­
space and time and are used by the evaluation functions which determine 
the cost assignment made on the links between nodes. 

4.1 Spatial and Temporal Qualities 
There are many qualities that can be used to describe a given space: 

e.g., climate, political boundaries and terrain. This research focuses on 
traversabiIity, openness and topology as three qualities of space which 
allow rich spatial descriptions to be generated. These qualities will in 
tum be used by evaluation functions to make cost assignments to the 
links connecting the nodes of a given n-space allowing paths through 
complicated spaces to be planned. 

Traversability is used as a means of measuring the quality of the 
space through which the robot is moving. Consider, for example, a robot 
that has the choice of traveling over a paved road or a gravel road in 
attaining a desired destination. Clearly t if all other factors are equal (e.g. 
path length), a robust route planning system should choose the paved 
path over the gravel path. As a further example, a dirt road might have 
a traversability of O.S when it is dry and a traversability of 0.1 when wet 
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and muddy. 

The openness of n-space is used to find paths that move the robot at 
safe distances from objects as well as finding paths that are least likely to 
become blocked. For example, if a robot is navigating the streets of New 
York, it would be advantageous to plan paths that avoid narrow alley 
ways where its path might become blocked by a garbage truck or other 
sufficiently impassable obstacle. In the case where routes are being 
planned through a space occupied by moving obstacles, it is the 
openness value that allows paths to be planned that maximize the 
clearance between the moving obstacles. 

Finally t topological features are also of concern when routes are 
being planned. Topology refers to how the spatial relationship between 
nodes is represented. In 3-space, topology can refer to the modeling of 
hills. To see how this parameter can be used, consider the following 
route planning objective. Plan a route to move the robot from one side of 
mount Everest to the other. In this case it is most certainly best to plan a 
much longer path that goes around the mountain than the shorter path 
that goes over the top of the mountain. 

4.2 Defining Evaluation Functions 
Now that some of the parameters of evaluation functions have been 

defined, specific examples of how evaluation functions translate the 
qualitative parameters into a quantitative measure of path quality are in 
order. First, evaluation functions operating on the value of a single 
quality parameter will be defined. The openness will be used as the 
measure of quality to present an evaluation function that operates on the 
values produced by a function that describes the openness of the space. 
The evaluation function finds paths through 2-space that move the robot 
through the most open areas to attain the desired destination. After 
evaluation functions that operate on a single measure of quality have 
been presented, an evaluation function that operates on multiple 
qualities will be discussed. Evaluation functions that operate on more 
than one parameter have special problems that involve interactions 
between the different measures of quality. Note, unless otherwise 
specified, all discussion of this section will assume that the space is static; 
only static objects in the spatial definition. 

4.2.1 Using a Single Measure of Quality: "Openness" 
Openness is the quality that describes the relative distance that a 

node is from other nodes representing objects. As defined here, it is the 
assigning to each node in the space a value in the range of 0.0 to 1.0 (this 
is different form link costs). This assignment is done in a manner so that 
nodes furthest from any object (static or dynamic) are assigned values 
close to 1.0 and nodes close to objects are assigned values closer to 0.0. 
Consider the following algorithm for assigning openness values to the 
nodes in a given space. 
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Step 1: for each node in the space that is currently occupied by an 
object (static or dynamic) assign it a value of 0.0 and assign a 
value of 1.0 to the remaining nodes. 

Step 2: each node in the space sends its current openness value out 
over each of its links (including itself) to its connected 
neighboring nodes. 

Step 3: each node having an openness value greater than 0.0 
(nodes not occupied) takes the sum of the openness values being 
passed into the node (2 n + 1 possible). This value is then divided by 
2 n + 1 and becomes the new openness value. 

Step 4: the node in the space with the greatest openness value is 
found. The difference between this node's openness value and 1.0 
is added to the openness values of all the nodes in the space. 

Step 5: if the old openness value differs from the new openness 
value by more than some percentage in any node in the space 
(e.g., 0.1 %) go to step 2, else halt. 

Using a scheme such as this, the openness value associated with the 
nodes will quickly converge to a stable node value pattern. Figure 17 
shows the results of this algorithm when it is applied to a 2-space with 
static objects in it. The left portion of the figure gives the definition of 
the 2-space showing the location of the static objects. The right portion 
of the figure shows the node openness value pattern that results if the 
above openness definition is used. Openness values are indicated 
through the use of varying levels of gray; lighter shades indicate values 
close to 1.0 while the darker ones indicate values closer to 0.0. The 
algorithm in this case converged . in only ten iterations. 

The ability to consider the openness of a node as a spatial relation 
between it and the surrounding nodes allows more complex evaluation 
functions to be written. In particular, evaluation functions that account 
for trade-offs between path length and spatial path quality can be 
written. That is, a longer path that avoids moving the robot through 
tight spaces may be better than a shorter path moving the robot through 
the tight space. This is true because, in moving through the tight space, 
the robot may become blocked by an unpredictable object and have to 
backtrack out and plan again. 

Defining an evaluation function that uses this information to find 
the most open paths through a space can be accomplished as indicated in 
Figure 18. The first part of the figure gives the evaluation function's 
link cost definition, which is a recurrence relation based on the 
openness values of the nodes. For the recurrence relation to be defined, 
the openness values of the nodes have been broken into 20 equal units in 
steps of 0.05. In particular, the recurrence relation assigns a cost of 1.0 
to the links leaving the particular node if the openness value in that 
node is greater than 0.95 and less than or equal to 1.0. Links of nodes not 
in this range are assigned a cost that is determined by the following 
recurrence relation based on that node's openness value c (0 pen n es s 
value)= c(openness value + 0.5) * 2. The recurrence relation 
makes paths of length x, moving through nodes with an openness value 
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of v, equivalent to paths of length 2 x moving through nodes with an 
openness value of v - 0.5. In general, the number of parts into which 
the step function is broken and recurrence relation should be chosen so 
that the proper trade-off between path length and path quality is 
established. The bottom ponion of the figure shows two different paths: 
One results from the evaluation function that finds the most open path, 
as defined above. The other is chosen when the shortest path evaluation 
function of the previous chapter is used. 

4.2.2 Defining Multi-Variable Evaluation Functions 
The previous subsection showed how evaluation functions 

involving one measure of quality are defined. In particular an 
evaluation function that finds a path to the destination using the nodes 
with a high degree of openness was presented. To a certain extent the 
previous subsection already addressed this, in that it dealt with the trade­
offs between a path's length and the openness of that path. This section 
will discuss how the simultaneous use of multiple measures of quality is 
incorporated into the model. 

To define evaluation functions involving more than one measure of 
quality, the relative significance of each of the quality measures must 
first be established. That is, at what point does the cost associated with 
one quality dominate the others. If an evaluation function is written for 
each of the qualities with this in mind, then an overall evaluation 
function that is simply the sum of the single evaluation functions can be 
defined. Figure 19 shows a graph of the relative costs of two evaluation 
functions, f and g; based on two measures of quality, ql and q2 respec­
tively. The overall evaluation function is then defined as c(q 1, q2) = 
f(ql) + g(q2). In this way, paths will be generated that utilize the 
relative significance of the two measures of quality in determining the 
best path. For example, if the value of both q 1 and q2 is about 0.4 at a 
given node, then each of the quality measures will equally affect paths 
moving through that node. If, on the other hand, quality q 1 at a 
particular node is in the range 0.8 to 1.0 while at the same time quality q2 
is in the range 0.5 to 1.0, then quality q 1 will dominate the cost of paths 
moving through the given node. This approach can be extended for 
evaluation functions involving any number of qualities. 

Figure 20 gives an example of how the use of an evaluation function 
defined over two qualities, traversability and topology, can be used to 
affect plan generation. The figure shows a simple 2-space (or if you like 
3 .. space) in which there are two paths that can be planned to attain the 
destination. One of the paths moves the robot over the hill, while the 
other avoids the hill but must traverse nodes that have a lower 
traversability than the others in the space. Moving through a node up 
hill adds a cost of 1.5 to the cost of the path. Moving down hill through a 
node, on the other hand adds a cost of only 1.0 to the path's cost. Moving 
through a level node adds a cost of either 1.0 or 2.0, depending on the 
traversability of the node. Using this description of the space, it turns 
out that moving the robot over the hill yields a path that costs 9.0, while 
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avoiding the hill yields a path of cost 11.0. So clearly, the preferred path 
moves the robot over the hill. The various costs used on the links of the 
example were arrived at in the following way: Nodes with a light 
shading have a traversability cost of 1.0, while the links of the darker 
nodes have traversability cost of 2.0. Node links representing movement 
in the plane or along a down grade have a topological cost of 0.0. Links 
representing an upgrade, on the other hand, have a topological cost of 
0.5. 

The particular evaluation functions presented in this section are 
defined more or less independently of each other. In other words, the 
evaluation function of one measure of quality does not depend on the 
value of the other measures of quality being used. If in the above 
example the traversability of the node was a parameter used by the 
evaluation function to determine how the topology of the node affects 
the cost of paths then the qualities of traversability and topology would 
not be independent. In which case, more complex evaluation functions 
would need to be written to account for the qualitative interactions 
between the various measures of quality being used by the evaluation 
function. This is a topic for funher research. 
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4.3 Finding Paths Through Dynamic Spaces 
This chapter has discussed how measures of quality are 

incorporated into the system providing a path planning algorithm that 
deals with static spaces. What has not yet been discussed is how dynamic 
objects moving in the space affect evaluation functions. How the system 
deals with evaluation functions in dynamic domains is the subject of this 
section. 

The key to evaluation functions defined in dynamic domains is that 
any quality that is affected by the movement of objects must be updated 
after each time step of the algorithm. Consider the openness function; it 
represents a measure of quality that is affected by the movement of 
dynamic objects. Objects affect a node's openness value because the 
relative openness of a node changes as an object moves close to it. For 
example, Figure 21 shows a simple 2-space in which the planning 
objective is to move the robot from the top center node through the 
space to the bottom center node. The figure depicts a dynamic object that 
moves through the space during times t=1 through t=5. The evaluation 
function used by this example is the one described above for dealing 
with openness. The figure gives a lighter shade to the nodes with the 
highest openness values and a darker shade to the nodes with the lower 
openness values. Interestingly enough, the introduction of dynamic 
objects does not necessarily affect the evaluation function or the 
algorithm at all. The only new requirement of the system is that the 
openness values of the nodes must be recalculated after each time step of 
the simulation in which there is a change in the position of an object. 
Note evaluation functions that consider time and distance constraints of 
high priority will need to be modified to handle dynamic objects. 
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Figure 21 Evaluation functions in dynamic spaces 
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Thus, the introduction of more complex evaluation functions 
dealing with various measures of quality has no detrimental effects on 
the overall system except for performance. The only modification to the 
system occurs when, in a dynamic environment, one or more of the 
measures of quality being used is affected by the movements of dynamic 
objects. The modification to the system is relatively minor, requiring the 
measures of qualities affected by the movement of objects to recalculate 
their node values after each time step of the algorithm. 

4.4 Robot Specific Abilities and Limitations 
There are aspects of the robot's performance that must be accounted 

for during the planning of paths. Different robots will have different 
abilities and limitations that must be incorporated in the evaluation 
functions. For example, consider a robot that has a very small battery 
and should plan paths that have the robot charging as long as possible. 
To a first approximation, this can be accomplished by placing zero cost 
on the reflexive links at the' nodes representing charging ports and a 
high cost on the links of the nodes that are farthest from any charging 
port. 

Consider the more complicated concept of F regions introduced by 
Miller [Miller85]. F regions are used to define areas in a space that 
represent the number of positional degrees of freedom that a mobile 
robot outfitted with sonar can eliminate. This information can be used to 
find paths that stay within the limits of the robots abilities to handle 
uncertainty. In this scheme, paths that attain the destination while 
moving the robot through the space with as high an average F region as 
possible are considered the best or safest paths. For example, Figure 22 
shows an example 2-space indicating the various F regions in which the 
highest possible F region for a robot is three (two planar and one 
rotational). The Dmax of the figure refers to the maximum distance over 
which the sonar can reliably be used. 

To use this concept of F regions in finding ttsafe tf paths, a relatively 
simple evaluation function can be defined. First, determine how many 
three-F region nodes should be traversed in order to avoid moving 
through one two-F node, call this number kt. Then, in a similar manner, 
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determine the relationship between two-F nodes and one-F nodes (k2) as 
well as between one-F nodes and zero-F nodes (k3)' Each node in a three­
F region is assigned a cost of 1.0 to the links leaving the node. A cost of 
k t is assigned to the links of nodes in two-F regions. The nodes of the 
one and zero-F regions are assigned costs of kt*k2 and kt*k2 *k3 to their 
links respectively. In this manner, the safest path will be found. If, for 
example, the values of kl =3, k2=6 and k3=4 are chosen for the situation 
depicted in figure 22, the resulting path shown in Figure 23 will be 
generated. Using schemes such as the F region concept, evaluation 
functions can easily be defined to find paths that remain within the 
abilities of the robot to navigate through a given space. 
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Chapter 5 

Incremental Route Planning 

Thus far, only the generation of plans that involve predictable objects 
have been considered. To move autonomous robots in the real-world, a 
route planning system must be able to handle the unpredictability that the 
real-world has to offer, as in the case of a robot that must walk across a 
busy street. The process of incremental route planning has been 
identified to handle this problem. 

5.1 Incremental Operation 
An incremental route planner can be viewed as the repeated use of 

a route planner that executes in a predictable dynamic environment. 
After each step, the state of the world is tested and updated· with any new 
information. In this way any unpredictable objects that have changed 
their position since the last plan step was generated are identified and 
can be accommodated for by the route planner. Because Robonav is 
structured to operate on a parallel architecture it can be easily modified 
to function as an incremental route planning system. This is because 
incremental route planners must operate in real-time. 

To have Robonav operate in an incremental fashion a simplifying 
modification must be made to the algorithm. By making an addition to 
the messages being passed around the system, the stack is eliminated 
from the processors. The reason that the stack can be eliminated is, the 
planner is no longer interested in finding an entire path from 
beginning to end it simply needs to find the next step in the plan. Thus, 
there is no reason to keep the entire ancestry of the messages active in 
the system. The modification made to the messages involves the addition 
of a field indicating the link over which the messages oldest ancestor 
traveled. More precisely, the headers of the messages created in phase 
one of the algorithm, are set to a value reflecting the link along which 
that particular message is to be sent. The header, of the messages created 
during phase two, is copied from the header of base-message. Thus, the 
messages active in the system represents both the viability of a path (the 
messages energy) and the direction of the first step along that path. 
There is one more modification that must be made in order for Robonav 
to operate in an incremental mode. The bounding condition is modified 
to keep track of the message representing the current global message 
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energy bound. Thus, when the system halts, the header of the global 
message energy bound will indicate the direction of the next best move. 

Robonav was initially intended to be operated in an incremental 
fashion. The reason is that if the system is not operated in this manner, 
the growth of the stacks containing the ancestries of the messages is 
potentially unbounded. For example, consider a robot that is locked 
inside a vault. Its task is to plan a route that gets it outside of the vault. 
If there is no scheduled opening of the door the system will continue 
searching for a plan to move the robot out of the vault until the heat 
death of. the universe. This situation would in effect cause the stacks to 
grow in an unbounded manner. This situation could be eliminated by 
introducing a supervisory system that maintained a queue of scheduled 
events and could alert the planner if there is no chance of a new state of 
the world occurring. Such a system would be complex and need to detect 
cyclic events like that of a revolving door and predict how events 
interact with each other. This is a very hard problem and probably 
semi-solvable at best. So even if such a system did exist at best it would 
only help some of the time. 

5.2 Example in an Unpredictable Domain 
Consider the problem for an incremental planner depicted in 

Figure 24. The figure shows that there are two paths that will lead the 
robot to the desired destination location. One takes the robot over the 
railroad tracks. The other, being substantially longer, uses the tunnel 
going under the tracks to get to the destination. The robot's goal is to 
reach the destination in the shortest amount of time. Assume that 
Robonav is operating in the incremental mode as described above. Given 
the situation depicted in the left portion of the figure and no oncoming 
train, Robonav would plan a path that takes the robot over the tracks. 
But, if a train unexpectedly arrived and blocked the short path over the 
tracks, Robonav would replan the next best step and start down the path 
to the tunnel. If the situation depicted in the left portion of the figure 
were to persist the planner would eventually reach the destination via 
the tunnel. However, if before the robot started through the tunnel the 
train had moved and unblocked the path over the tracks, Robonav would 
once again take advantage of the situation and move to go over the tracks 
instead of finishing its path through the tunnel. 

There is an anomaly that is produced by operating Robonav in an 
incremental fashion. It represents Robonav's need for a supervisory 
system to monitor the operation of the path planner. Consider the 
exampie presented above. What if before the robot started under the 
tunnel the train that was blocking the optimal path left clearing the 
original path? In this case, the robot would change direction and move 
toward the original path over the tracks. Now consider the situation 
where just before the robot started over the tracks, another train 
arrived. The robot would once again start to move along the path that 
takes it under the tracks. If it turns out that this train length and train 
frequency is a constant then Robonav will get stuck, never reaching the 
destination when there is clearly a path available. 
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The control anomily is a situation that is common in execution 
systems. For the Robonav system to operate in these domains.. the system 
must incorporate a form of supervisory system to provide execution 
monitoring. As this problem is not solvable in general it must be done in 
a very domain specific manner in order to provide reliable guidance. It 
should be noted that this is a very hard problem and one that is not 
addressed in this thesis. 
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Chapter 6 

Conclusions, Further Research and Implementation 

6.1 Conclusions 
Moving robots through dynamic environments mandates that the 

other dynamic processes of the environment be modeled to a reasonable 
level of detail. This thesis has presented Robonav, a spatial 
representation and temporal reasoning system that plans paths through 
space and time. Robonav models the dynamic aspects of the environment 
as well as creating path plans through the environment that consider 
the performance characteristics of the robot executing the plans. The 
particular algorithm that operates on the representation is optimal when 
functioning in an incremental mode. This mode of operation allows 
Robonav to perform tactical planning in real-time for operation in the 
real-world. 

It is becoming apparent that spatial representation and path 
planning is an inherently computationally expensive task. To this end, 
parallel processing becomes one solution to the computational needs. 
Researchers like Rao, are beginning to address path planning from 
parallel processing point of view [Ra086]. The Robonav system 
approaches parallel computation by providing a spatial representation 
and path planning algorithms with an isomorphic mapping onto a 
parallel architecture. Thus, by exploiting massive parallelism, Robonav 
is able to provide real-time operation in unpredictable dynamic domains. 
This ability is one that has not been approached by any other path 
planning system. 

6.2 Further Research 
There are several possible extensions to this model that would 

increase its representational power. Among the most useful and 
interesting are: 

-Integrating the system with sensors. Ultimately, any system 
that does robot navigation must be integrated with the 
sensors that provide the robot with information about the 
environmental situation. This problem has been addressed 
by Moravec [Moravec85]. His approach to sensor integration 
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is compatible with the spatial and temporal model presented 
here. 

-Refining generated paths. The paths generated by the 
system tend to have a stair-stepping effect that results from 
the system only allowing movement in four directions. 

-Planning for robots with asymmetric dimensions. The 
problem of asymmetric robot dimensions can be addressed by 
the use of an extra dimension to deal with the rotational 
aspects that enter into planning under this condition. 

-Introducing an object typing system. The use of object types 
would allow queries such as "What Moose clubs are within a 
mile of your house?" to be answered by the system. 

-Modeling of unpredictable processes. The power of an 
incremental route planner can be increased for a particular 
domain with some model of the typical behavior of the 
unpredictable objects in that domain. For example, the route 
planner could provide more useful plans for a robot crossing 
busy street if the system had a model of the speed, 
maneuverability, and direction of travel for the autos 
traveling the road [Sanbom87]. This might be approached 
from a neural net modeling point of view [Poggi087]. 

-Representing and coordinating multiple robots. The message 
passing algorithms could be changed to handle the 
coordination of multiple robots seeking competing or 
cooperating goals. 

-Implementing the algorithm to operate in a hierarchial 
fashion. This is similar to that found in [Moravec87] and 
would allow time efficient heuristics to be defined that would 
drastically prune the size of the search space. 

6.3 Implementation 
The algorithm, when fully implemented on an SIMD machine, 

operates in predictable domains in O(p) time, where p is the length of the 
longest path through space-time that is bounded by the global message 
energy bound. In unpredictable domains, the time complexity analysis is 
less clear. If, however, the incremental approach is taken in a 
predictable domain, the algorithm will operate in O(p2) time. This is 
derived from the following: If the first step of the incremental 
algorithm takes O(p) time then the second step will take O(p-l) This is 
continued, with each step reducing the complexity by one. Solving this 
recurrence relation yields an O(p2) time complexity. In a truly 
unpredictable domain the time complexity of operation will vary with 
the behavior of the objects moving through the space. 

A version of the algorithm, written in NISP [McDermott83), is 
currently up and running on a VAX 11-785. It has been transported onto 
an Explorer and modified to include a graphics interface. It functions 
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on the examples given herein, as well as others involving more complex 
spatial definitions and unpredictable dynamic environments. The 
implementation includes software for simulating the SIMD architecture 
needed to operate the system in real-time. 
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