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l
The analytical study presented here is concemed with by two types of sensi-

tivity of active vibration control of large space structures (LSS). The first one

required for assessing robustness, is the sensitivity of the performance and sta-

bility of the control system to changes in structure and to model reduction. The

second type is the sensitivity of the optimum design of the control system to

changes in the structure. This sensitivity is of interest in assessing the need for

integrated structure/control design.

. Three direct rate feedback (DRF) control techniques are studied for a labo-

ratory structure which has characteristics of LSS and then compared to standard

linear quadratic (LQ) control. The baseline design of each control system is ob-

tained first and then sensitivity analysis conducted.

An uncoupled DRF control law which minimized the sum of gains subject to

requirements on performance was not robust to structural changes, and small

‘ changes in the structure caused notable increase in performance compared to that

of the baseline design and therefore a potential gain from simultaneous

structure/control design was indicated.



Two coupled DRF techniques are proposed. A Minimum Force DRF

(MF-DRF) law minimized maximum force of any actuator, while a Linear

Quadratic DRF (LQ-DRF) law minimized the standard quadratic performance

index for initial conditions in the shape of the first six natural modes. Both

techniques guaranteed system stability. The LQ control law was found to be only

slightly better than the simpler MF·DRF law in terms of the quadratic perform-

ance index and poorer than the LQ-DRF law. However the LQ control requires

model reduction and was found to be sensitive to errors in that process. For ex-

ample, the LQ design lost its stability when the structure was modified by adding

a non-structural mass to it.

A separate experimental study was conducted simultaneously with this study

to verify theoretical results. Good agreement was found between analytical re-

sults and experimental measurements for the investigated control techniques.
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Chapter 1

Introduction

In the past ten years there has been growing interest in using active control

in construction and operation of large structures in space (LSS) [1]. Because of

the high cost of lifting mass to orbit LSS will be light weight and hence be quite

flexible and have small inherent damping. Also, shape control requirements can

be very severe for some LSS, such as large space antennas [2]. The combination

of light weight and required shape accuracy present new and difficult control

challenges addressed in many recent works.

In general there are three different types of active control of LSS: attitude

control, static shape control, and active vibration suppression to satisfy precision

pointing and alignment requirements. The present work is concerned with the

active vibration control of LSS.

The dynamic behavior of flexible LSS is rigorously described by continuum

theories expressed mathematically by partial differential equations of motion.
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However, except for some simple cases, no closed-form solutions of the continuum

equations of motion can be expected. Therefore, the structure is usually

discretized in space by numerical procedures [3] such as the finite element

method, and an approximate solution is obtained from finite-order model of the

structure.

Many analytical studies of active vibration control are based on a linear

quadratic (LQ) optimal control law [4]. However, this control strategy requires

a controller which is the same order as the model of the structure. It is typically

difficult to design, and impossible to implement a controller which is of the same

order as the finite element model used to model a large space structure. Conse-

quently, the control system is designed based on a reduced order model of the

structure including the first few vibration modes which means further reduction

(and approximation) of the dynamics of the structure for the control design pur-

poses. The modal truncation of the structural model can result in a control sys-

tem which destabilizes higher order residual modes, a phenomenon known as

spillover instability [5]. For this reason there is interest in modifying the LQ de-

sign process to guarantee the stability of the unmodeled dynamics [6-8].

Even with a reduced model of the structure, the LQ control system design

may be difficult to implement. Therefore some recent experimental studies sim-

ulating the control of large space structures have employed suboptimal but simple

control laws [9-13]. A large group of control techniques consider direct output

feedback control [9-10, 12-20], to achieve simpler implementation. Hale [21] at-

tempts to maximize the allowable magnitude of an unknown but bounded dis-
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turbance to the structure while explicitly satisfying specific input and output

constraints thus allowing real physical constraints to drive the solution rather

than vague quadratic penalties in an LQ cost function.

Besides guaranteeing global asymptotic stability, another desirable property

of any control system is its ability to remain stable over a wide range of disturb-

ances and modeling errors. The later quality may be defined by sensitivity of a

control system to small changes in the system (or conversely the robustness). Of

special interest in LSS control problem is sensitivity of closed-loop control system

to small changes in the structure.

Therefore, a fundamental control design problem for large flexible space

structures is designing low-order controllers for continuum (infinite-dimensional)

structures in the presence of disturbances and modeling errors.

Two aspects of such sensitivity may then be identified. The first is the sen-

sitivity of the performance and/or stability of the control system, which is usually

associated with the robustness of the system. lf the performance of closed-loop

system in the face of uncertainties is acceptable then that system is said to possess

performance robustness. lf the control system remains stable in the face of un-

certainties then the system is said to possess stability robustness.

Recently published literature on control system robustness is concerned pri-

marily with the LQ control law formulation and measures of control robustness

are expressed either in frequency-domain analysis or in time—domain analysis.

The importance of robustness of multivariable control systems is discussed by

I—Ioehne [22]. Singular value robustness measures are used in [23] to compare
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performance and stability robustness properties of LQ based control design

techniques in frequency-domain. A positivity concept is applied [6] to feedback

controller design using positive real transfer function, and the minimum singular

value of the return difference matrix was used to examine stability robustness of

the closed loop plant in the presence of unmodeled modes. In [24] the stability

robustness aspect is analyzed in the time-domain and a bound on the perturba-

tion of an asymptotically stable linear system is obtained to maintain stability

using Lyapunov matrix equation solution. Effects of errors in modal frequencies,

„ damping, mode slopes, and moment of inertia on stability, time to null, and con-

trol requirements for decoupled control and LQ control are investigated in [25].

Sensitivity analysis approach is applied to directly calculate derivatives of the

closed·loop performance with respect to given parameters for LQ control [26-28].

Junkins and Rew [29] emphasize an eigenstructure assignment method over the

LQ methods. Their method seeks to maximize system robustness by minimizing

the condition number of the closed loop modal matrix. Similarly, pole placement

techniques and singular value robustness measures are used in Ref. [30]. A study

of the sensitivity of a distributed structure to feedback controls designed on the

basis of a discretized model was performed by Meirovitch and Norris [31].

Robustness was also investigated for output feedback control [32,33] and for

direct rate feedback [15] in which the sensors and actuators are colocated, and for

the independent modal-space control method [34] in which modal feedback forces

are designed for each controlled mode independently of the other.
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The second aspect of sensitivity is the sensitivity of the optimum design of the

control system to changes in the structure, which is important in the assessment

of the need for combined control/structural design. Recently, there has been

considerable interest in simultaneous design of the structure and the control so

as to produce a truly optimum configuration [35-44]. Before one embarks on such

an undertaking, it is important to determine that there is a synergistic effect in

designing a structure and control symultaneously. Several works [43, 45-46] ap-

proached the problem indirectly, by showing that the performance of the control

system may be enhanced by optimizing the structure to improve a structural

performance index such as the overall stiffness or a vibration frequency. Behav-

ior sensitivities for control augmented structure with direct output feedback were

studied in [16]. References [47-48] approach the question of the possible

synergistic effect more directly by showing that minor structural modifications

can have a large effect on the control system performance. They also demon-

strated how the magnitude of the synergistic effect can be predicted from a sen-

sitivity analysis of the control performance.

The present work has three objectives. The first is to study the two aspects

of the sensitivity of a controlled structure to changes in the structure: the sensi-

tivity of the performance and stability, and the sensitivity of the optimum design

of the control system.

The second objective is to develop simple and robust control laws suitable for

laboratory implementation and compare their performance to the LQ design.
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The third goal is to compare accuracy of theoretical results obtained for all

considered control systems against experimental results obtained for a laboratory

structure built to have some characteristics of LSS. However, performance of

experimental measurements was not part of this study.

Sensitivity analysis of optimized systems is used to predict the changes re-

quired in the control system to take full advantage of the structural modifications,

and the ensuing change in performance. Sensitivity calculations are carried out

. analytically and validated experimentally for a flexible cruciform beam supported

by cables. The potential synergistic effect is established when small structural

modiflcations can produce large reductions in the control strength required to

achieve a desired level of active damping.

Control system modeling and calculation of eigenvalues and their derivatives

with respect to the problem parameters is presented in Chapter 2. Structural

model reduction required for design of low·order LQ controller is also discussed

in the same chapter. The theoretical development of each control technique is

given in Chapter 3: the standard LQ control, as well as two new proposed direct

rate feedback control laws. The effects of model reduction are discussed as well

as analytical design optimization and sensitivity derivations. Chapter 4 compares

results obtained for baseline designs of all control systems for the beam structure.

The effects of small structural changes and model reduction on control system

designs and performance are presented in Chapter 5. A summary and conclu-

sions are given in Chapter 6.

Introduction 6



Chapter 2

Analytical Model

2.1 Control System Modeling

The equations of motion for a structure with n,, degrees of freedom (DOF)

and controlled by n, actuators are

MAK!) + C,<l(¢) + KAG) = U,¤(!)- (2~l)

where M,, C,, and K, are the n,,xn„ mass, inherent viscous damping, and stiffness

matrices respectively. We assume that C, does not couple the undamped modes

of vibration. q is an n„,x1 vector of physical or generalized displacement compo-

nents, and U, is an n„xn, applied load distribution matrix relating the n,.xl control

input vector u to the structural DOF.

We introduce the 2n,,x1 state vector x:
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<1(¢)
x(:) =

{ } (2.2)
<n<¢>

and assume uncertainties and random disturbances in the system by introducing

state excitation noise w,. Then, Eq. (2.1) can be written in state vector form as

x(r) = A x(r) + B u(:) + wl(t) (2.3)

The 2n„.x2r1„ system matrix A is

_ -1 _ -1
A = [

Ms Cs Ms KS
]I0 „

where matrices I and 0 are identity and zero matrices of order rn, and the 2n„xn„

control matrix B is

-1
B = [MS Us] (2.5)

0

where 0 is a zero matrix of order n„.xn,. We assume that the system is time in-

variant, that is A and B are constant.

To prevent numerical ill·conditioning it is desirable that q and q components

of x be of the same order of magnitude. This can be achieved by using the re-

ciprocal of a typical frequency as the time unit. In the present work the time unit

employed was 10** second (cs).

It is either impossible or not desirable, for engineering reasons, to measure

all the structural state variables. Therefore, only rz, states are measured by sen-
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sors and these are represented by a vector y which is subject to contamination

by a vector w, of observation or measurement noise

y(t) = Cx(t) + w2(r) (2.6)

where C is the n,.x2n,, observation matrix.

The control law is assumed to be linear, and if all structural state variables‘ e
are measured and fed back than the control law is given as

u(t) = — Fx(t). (2.7)

with a gain matrix F (rz,x2n„). lf only a few state variables are measurable, and

the same form of control is used, then a state estimator (observer, filter) must be

used to estimate x on the basis of sensor measurements and the analytical model.

An estimate x of x is often obtained from the vector of output measurements y

by using an observer which solves

x(r) = Ax(t) + Bu(t) + K[y(t) — Cx(t)] (2.8)

where filter gain matrix is the K (2rz„xn,). Eq. (2.7) is replaced by

u(z) = - Fx(z) (2.9)

An alternative is to use output feedback which uses only the vector y so that

u is given as

u(t) = — ÄDy(t) (2.10)
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where D is an (n,xn,) gain matrix.

2.2 Calculation ofEigenvalues and Their Derivatives
T

Another form of Eq. (2.1) which will be used in the output feedback analysis

is:

M°x(:) + K°x(r) == 0 (2.11)

where

M° =
Ii

0 Ms
(2.12)/

M, C, + U,DC,

K° =
I:

—M“° 0
(2.13)

0 K,

and the observation matrix in Eq. (2.6) is

C = [C, 0] (2.14)

where C, is the n,xn,, partition of the observation matrix and output is

y(¢) = C„<i(1) (2-15)

Assuming a solution of Eq. (2.11) of the form
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x(r) = e’“<p (2.16)

the associated eigenvalue problem becomes

(uM_
+ K·)q> = 0 (2.17)

For small or moderate values of damping the solution of Eq. (2.17) yields 71,,

complex conjugate eigenvalue pairs

1,1, = 0*, dzjm, r = l,...,rz„ (2.18)

The damping factor of the r-th mode is defined as

Cr =./¤„
+ <¤„

The real and imaginary parts may be written in terms of a nominal frequency

0),,, and Q, as

0, = — Q,0>0,, co, = won/l — Q? (2.20)

For the design of the structure and control system, we require the derivatives

of the eigenvalues |,1, with respect to design parameters s,. These derivatives may

be calculated by tinite difference, but this can become quite expensive. Therefore,

analytical derivatives have been derived (in a manner similar to that of Ref. 49)

and employed.
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Differentiating Eq. (2.11) with respect to a design variable p, for the r·th

eigenpair, one obtains

(221)r 8si Ösi r r

After premultiplying Eq. (2.21) by the transpose of the r·th eigenvector and

rearranging terms, one obtains

_ T 6M' + ax'
(2.22)st <l>„M <v„

Equation (2.22) can also be expressed in the following form,

öl.]-, _ 80, _8co,
8s, “ as, i 2 6.;, (2232

The derivative of the damping ratio for the r-th mode is obtained by differen·

tiating Eq. (2.19) with respect to the design variable s,,

m(¤ 80), -0) 80,)
ag', r r ösir·

<¤„ + w.)

Analytical Model 12



2.3 Structural ll/Iodel Reduction

The number n„ of DOFs of the analytical model may have to be reduced to

nR to meet the physical limitations of the control hardware. A model reduction

scheme [50] based on the first nR undamped modes of the system is used. How-

ever, the reduced vector of degrees of freedom qR is not the modal amplitudes,

but a subset of degrees of freedom in q . The reduced matrices needed for ob-

taining reduced system and control matrices AR and BR are given as

MJJQR = (PR [dia-·;(2C.<¤i)lR ¢>§ 1 A
(2-25)

MJ¤‘K.R
= <PR ld(¤s(<¤?)1R (Pi?

‘
(2-26)

M;.‘¤.„ = <¤„td¤=g<Mi‘>1„ <¤>§¤..„ (2-27)

(DR is the nRxnR partition of the full modal matrix (D containing only DOFs and

modes to be retained in the reduced model. (D is obtained from

M,q(:) + K,q(r) = 0 (2.28)

M,, Q, , and to, are respectively the modal masses, inherent damping ratios and

undamped natural frequencies ( C, = 0 ) of the retained modes. This model re-
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duction preserves exactly the dynamic response of the retained DOFs in the re-

tained modes. The details of the model reduction are presented in Appendix A.
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Chapter 3

Control System Design

3.1 Linear Quadratic Optimal Control

3.1.1 Linear Quadratic Regulator

The commonly used deterministic (i.e. w, = 0 ) linear quadratic regulator

(LQR) has performance index [51] of the form
4

°° r rJ = [ [x(:) Qx(r) + u(r) Ru(z)]dr (3.1)
o

where Q and R are non-negative deünite state weighting matrix (2n,,x2n„) and

positive deünite control weighting matrix (n„.xn„) respectively. By proper selection
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of the elements of these matrices, it is possible to control the magnitudes of the

actuator forces and the rate of decay of vibration amplitudes.

The selection of weighting matrices Q and R represents a compromise be-

tween fast damping of the state x promoted by increasing Q with respect to R,

and small control forces u promoted by increasing R with respect to Q. With

linear control defined by Eq. (2.7), the optimum gain matrix F (rz,.x2n,,) required

for the control input is given as ·

F = R"BTS,, (3-2)

where for steady-state control S, is found by solving an algebraic matrix Riccati

equation

ATS, + S,A — S,13 R"ßTS, + Q = 0, (3.3)

The LQR law is designed using the assumption that there is no uncertainty

(i.e. w, = O and w, = O) in the system. That is, there are no control hardware

errors, no unknown structural disturbances, that we can measure exactly all state

variables (q and q ) and output variables, and that the structural parameters are

known exactly.

The optimum value of the performance index for a given vector xo of initial

conditions is then

Im = xg S, xu (3.4)
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In the present study we choose initial conditions in the shape of one of the first

six open-loop mode shapes ( tp ) normalized so that the maximum element of each

equals one inch

0x,, (2.5)
<P

3.1.2 Linear Quadratic Gaussian Control

If uncertainties are modeled in the system, then w, ¢ 0, wa #= O and the out-

put y from the system is defined in Eq. (2.6). Both state excitation noise (w,) and

observation noise (w,) are assumed to be uncorrelated Gaussian white noise

processes with zero mean and intensities (covariance matrices) V, and V,. The

estimate x of structural state variables is obtained by solving Eq. (2.8). In the

present study a Kalman filter is used as the observer, and then the filter gain

matrix K (2n„.xn,) in Eq. (2.8) is given as

K = s,cTv;‘ (3.6)

where S, is found by solving another Riccati equation

(A + al) Sf + Sf(A + a1)T — s,c"v;‘c Sf + V, = 0, (3.7)

which depends on assumed system and measurement noise intensities, V, and V,

respectively. The positive scalar a represents a prescribed degree of filter stability
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[52,53] (also see Appendix B.), that is the real part of each filter pole is required

to be more negative than — a. The optimal input command u is defineduthen in

Eq. (2.9). We refer to the combination of Kalman filter and regulator as the

controller.

The optimal filter provides a compromise between the speed of state recon-

struction and insensitivity to observation noise. The filter should be sufficiently

fast to reconstruct the regulator state (i.e. filter poles should have more negative

real parts than regulator poles), yet slow enough to be insensitive to high fre-

quency excitation and measurement noise (i.e. filter poles should not be too neg-

ative). This is achieved by adjusting V,, V,, and a. By reducing V, for instance,

we improve the speed of state reconstruction (shifting the observer poles further

left in the complex plane), since lower priority is given to filtering the observation

noise. A similar effect can be achieved by increasing V, or ot .

We assume that elements of the noise vectors are uncorrelated, that is V, and

V, are diagonal matrices. ln the present study the V, matrix was chosen based

on an estimate of system noise, while the V, matrix and ot were selected to achieve

a desired location of the filter poles and separation of the filter poles from the

regulator poles in the complex plane.

The combined system of LQR and Kalman filter is denoted Linear Quadratic

Gaussian (LQG) control.
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3.1.3 Calculation of Performance for LQG Control

For assessing the loss of performance associated with the use of an observer

rather than measuring the entire state vector, we disregard the noise and use the

quadratic performance index (Eq. 3.1) with w, = 0 and w, = 0. The LQG con-

trol system can be described with an augmented state vector Y of dimension 411,,

x(r) = Äx(z) (3.8)

where

— _ A — BF BFA - l„ ..-1C] <A·A>
and the augmented state vector is

x(t)xp) = { } (3.10)
e(t)

where the state reconstruction error vector of order 2n,, is

e(:) = x(z) — §(r) (3.11)

The optimal value of the performance index Eq. (3.1) is given (see Appendix D)

as

°° 1*-J = 1 [x(r) Qx(z)]d: (3.12)
0
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where

- + FTRF — FTRF
Q = [Q

T T (3.13)—F RF F RF

or

Jmin = YÄFY0 ($14)

where the 4fl„.X'4fl„ matrix F is the solution of the Lyapunov equation

KT? + FK + 6 = 0 (3.15)

We assume that the observer initial state estimate is xo = 0 and therefore the

augmented initial state is

X0 '

in = { }
(3.16)

Xo

3.1.4 Effect of Controller using Reduced Order Model

To investigate the effect of model reduction, we analyze a full-order model

of the structure connected to a controller designed for the reduced model. The

combined structure/controller is a linear system of order 2r1„ + 2nR

xE(z) = AExE(r) (3.17)
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where

x<r)
X60) = { „ } (3.18)

XRU)

and

E “
xRc AR - 1<RcR — BRFR (M9)

where AR, BR, CR, FR, and KR are reduced forms of the A, B, C, F , and K matri-

ces.

The quadratic performance index for reduced order control system can be

evaluated as

J = XEU

PEwherethe matrix PE of order 2n,, + 2nR is the solution of the Lyapunov equation

Agpg + PEAE + QE = 0 (3.21)

with

Q 0
= 3.22QE [0 FÄRFR

( )

We assume that the observer initial state estimate is xo = 0 and therefore the

augmented initial state is
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Xo
Xgg = { 0 } (3.23)

3.2 Direct Rate Feedback Optimized Control

3.2.1 Formulation of Design Problem

Direct rate feedback control (DRF) is a special case of direct output feed-

back control. Active vibration damping is effected by pairs of colocated velocity

sensors and force actuators. The number of control pairs (rz,) is typically much

smaller than the order of x, and only a vector y of rz, velocity elements Q of the

state vector is fed back in the closed loop, and is given by Eq. (2.10). The number

of actuators and sensors is the same, so rz, = rz,. System stability is guaranteed if

the active damping matrix D (n,.xrz„) is positive detinite because this form of active

damping can only dissipate energy [9-10, 17-18].

Two designs of DRF are considered here: uncoupled DRF, and coupled

DRF. Several performance indices are investigated in order to select the best

candidate for the further study. In all cases the control system is designed to

achieve a required stability margin while minimizing a measure of the magnitude

of the control gains or the elements of the matrix D.
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3.2.2 Performance Indices for DRF Control

For uncoupled direct rate feedback (UDRF) the active damping matrix is

diagonal. This is a physically uncoupled form of feedback for which each

actuator is controlled by the colocated sensor. The instantaneous control force

at each actuator location is directly proportional, but opposite in sign, to the in-

stantaneous velocity. This is equivalent to the attachment of a viscous dashpot

to the structural DOF of the sensor, with the ratio of controlling force to sensed

velocity being the viscous damping coefficient 4, .

For the uncoupled DRF, Homer [12] suggested that the sum of the gains 4,

is a measure of control strength to be minimized as the performance measure.

f = {E14; (3-24)

Although this performance index does not have clear physical significance, it was

used because it is simple and compatible with uncoupled DRF.

Two quantities are used here as measures of modal control effectiveness or

level of damping in the system. One is the damping ratio Q, and the other is the

real part of eigenvalue 6, as defined in Eq. (2.20). Note that the real part of

eigenvalue 6 is related to the time r required for the amplitude of vibration to be

reduced by the factor of -}:7 as

t = - (3.25)
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The optimum design problem for DRF control cases is formulated as

find D (3.26)

to minimize j(D)

subject either to Lg = Q, — QL 2 O j = 1,..., n„,

‘ ortog=o„—o,20 j=1,...,rz„,

and D > 0 i = 1,...,n,

where QL is minimum required damping ratio, and o„ an upper limit on the real

part. The optimization problem Eq. (3.26) was solved by using a general purpose

software package - NEWSUMT-A [54]. NEWSUMT-A is based on a penalty

function approach which transforms the constrained optimization problem into

a sequence of unconstrained problems. An extended interior penalty function is

used together with Newton’s method for solving the unconstrained problems.

When the sensors and actuators are coupled the matrix D can be full, but

we still require symmetry and positive detiniteness to insure stability. We call this

coupled direct rate feedback (CDRF) control.

A number of performance indices were investigated to obtain the magnitude

of the control gains. The minimization of the Euclidian Norm of the gain ele-

ments, as suggested in [46], is presented in Appendix C. However, because this

performance index does not have a clear physical significance, two new perform-

ance indices are proposed in this work.

The first performance index selected here for obtaining the gain matrix D is

the minimization of the maximum actuator force assuming that each sensor has
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the same velocity bound . This control technique will be named Minimum Force

Direct Rate Feedback (MF·DRF). The choice of this index is motivated by the

fact that the required stability margin limits the response and so the objective

function should try minimize the size of the actuators required to achieve the de-

sired stability margins. The force u, supplied by the i·th actuator is

nt

ui = — jglagyab (3.27)

where qj is the velocity measured by the j-th sensor. If ql is bounded by an upper

bound qm , then the maximum possible actuator force umx is proportional tof

"C

f= hä = max z lcßjl z=1 ,...,a„ (3.28)
qmax l j= 1

The maximum control force ratio f is minimized subject to constraints on the

stability of the closed loop system expressed as lower limits (QL) on the damping

ratios Q, of the first n,„ modes.

Because a maximum function does not have continuous derivatives for

MF-DRF, the performance index is approximated as

"‘ "‘ up/= LZ <_z l«t,l>'1 (3-29)
1=lJ=l

for a large value of p. Furthermore, the absolute value function does not have

continuous derivatives at zero and is replaced by a quartic polynomial near zero

(i.e. for l¢jI S dr ), that is
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hc flc

f (3.30)

where

dr "= "¢ @1 z ii
hd-—=—- 3- ——— f d·~ d, ,Gr! „l S 1 (331)

mq,) = lag! rm Iagjl > 4T.

The optimization has to be repeated with increasing values of p in order to con-

verge to an optimum solution. The optimum solution is assumed to be reached

for some value of p when the following convergence criterion is satisfied:

S ,1 (3.32)
f(pi··1)

Another criterion which is used to define magnitude of p is

||Dmi„ — a|| s 1-:2 (3.33)

Following work of Fiacco and McCormick, as described in Ref. 49 on page 138,

the position of the minimum ofj(D, p) has the asymptotic form

bk . .dümin(p) = ak + T
asp —> 00 k = 1,...,1 +_} (3.34)
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Once optimum has been found for two values of p the vectors a and b may be

estimated and the value of Dm for any other p predicted. To satisfy Eq. (3.34)

elements of a and b are given as

dr · (P·) es
ak = jmlh IC

— 1
]mIHlbk

= [4; „i„(m—i) — dklm-1 (3.36)

= Pr-1where c im.
The aforementioned optimization scheme is rather complex and therefore an

equivalent formulation which avoids discontinuity of the objective function was

also used. A new variable Y is introduced and the optimization problem is now

find D and Y (3.37)

to minimize Y

subject to constraints on Q or 0,

D > O ,

and Jälizjl S Y i = 1,...,n„

A second proposed CDRF control law is called Linear Quadratic Direct

Rate Feedback (LQ-DRF) control and is based on the quadratic performance

index of the LQ design.

The LQ design minimizes the quadratic performance index for all initial

conditions. This is impossible to achieve with direct rate feedback. Instead the
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proposed LQ-DRF law minimizes the quadratic performance index for initial

conditions in the shape of a number n,„ of natural vibration modes. That is

J
_ °° T T . _

LQDRF · I°I1xäX'[ + l * 1,,..,71,,,0

Additionally, it is required that minimum stability margins be met for those

modes by specifying lower limits ( QL ) on their damping ratios, Q,. With LQ de-

sign this is commonly achieved by scaling the Q or R matrices. Because the

maximum function in Eq. (3.38) can have discontinuous derivative, an equivalent

formulation which also includes scaling of the Q matrix is used for the LQ-DRF

design as follows:
U

tind q, ß and the elements of D

to minimize ß

°° T Tsuch that _[ [qx(t) Qx(t) + u(t) Ru(t)]dt S ß (3.39)
0

. 0
Xu =

{ }
i= l,...,n,„

(Pr

Qi 2 QL i = 1,..., nm

and D > 0.

Given a set of initial conditions x„, and q, the quadratic performance index is „

calculated same way as in Eqs. (3.41)-(3.43) below except that matrix is now
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é = qQ + FSRFD (3.40)

and FD is the gain matrix for LQ-DRF containing the elements of D as its only

nonzero elements at the DOFs where control pairs are located.

3.2.3 LQ Performance of DRF Designs

For comparison with the LQG design, the quadratic performance index of

Eq. (3.1) is calculated for the DRF designs, for a given set of initial conditions

xD as:

1 = xZ'Px„ (3.41)

where is obtained from the Lyapunov equation

ÄTF + FA + Q = o (3.42)

where

Ä = Ä — B FD (3.43)

and

Q = Q + FDR FD (3.44)
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3.3 Design Optimization and Sensitivity

It is assumed that a control system is designed for a structure characterized

by a vector s of structural parameters such as mass or stiffness of individual ele-

ments expressed by their thickness. The control system design is assumed to be

a solution of an optimization problem of the form

tind r

to minimize j(r, s)

subject to some constraints g(r, s) 2 O j = 1,..., ns

where r is a vector of control system design variables such as gains D and/or

control pairs locations, and g(r, s) represents behavioral constraints such as sta-

bility limits (i.e. limits on §’s or o’s) or side constraints such as limits on gains (i.e.

D). The particular form of the above optimization formulation for different op-

timality criteria is given in the previous sections. The solution r*P'(s„) of the opti-

mization problem for a nominal structure characterized by s = so is called herein

the "DRF Baseline Design". We are interested in the sensitivity of the baseline

design to structural moditications, i.e. to changes in the vector s.

Two types of sensitivity may be considered. The first is the sensitivity of the

baseline design to structural modiücations when the control design r·P* is frozen.

This type of sensitivity is a measure of the robustness of the design, and is given

by partial derivatives
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Ü opt opt

where s,, is a component of s.

The second type of sensitivity derivative measures the change in the optimum

design of the control system as the structure is modified. Denoting
f>P‘

= j(r·*P*, s), we are interested in the derivatives and E?. For the case
n Sk

where the number of active constraints is equal to the number of design variables

[49].

ör°’”
7* -1 ögai= — N —— 3.45ask ( ) ask ( )

. öga} .
where the matrix N has components rz,] = -57-. The vector g, consists of con-

straints g,} which are active [that is,
g„,(r°P‘,

so) = 0] for the baseline design. Simi-

larly, the change in optimized performance is

P!
" äg-.. f ;[]..L (3_46)

ösk ösk j=1 ösk

where 2., are Lagrange multipliers obtained at the optimum design of the control

system (see below).

To estimate whether a given set of parameter changes As will make an inac-

tive constraint g become active, a first order Taylor series expansion around the

optimum control is used
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HP ög~
. =

Pp!
+ .§g. g. kgl ösk Ask (3-47)

The sensitivity of the optimum control design is a measure of the interaction

between the design of the structure and the design of the control system. Large

values of indicate that there is a potential for enhancing the control system
11

performance by minor structural modifications.

The Lagrange multipliers 2, can be found from

f, — N2 = 0 (3.48)

. ög . . .where f, IS a vector of
ör

, and 2 1S a vector of 2, Lagrange multipliers. If the
1

number (I) of control system design variables (i.e. elements of D) is larger than

the number of active constraints (j) then the system of linear equations (i.e. Eq.

[3.48]) is overdetermined in 2. One may find

2 = (NTN)_lNTf, (3.49)

by minimizing the system residue rg = N2 — f, (i.e. min of' ||rE||2). The change in

performance index due to small change in the structural parameter (As,,) can be

estimated by the first order Taylor series expansion around its value for optimal

baseline design

pr

f==j°’” + E-LAsk (3.50)
ösk
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Chapter 4

Baseline Designs of Control System for a Laboratory

Structure

4.1 Analytical Model ofLaboratory Structure

The control laws described in the previous sections have been applied to a

small laboratory structure. The structure consists of a vertical beam and an at-

tached horizontal crosspiece, with the vertical beam suspended by four cables in

tension at its top and bottom (Fig. 1). The crosspiece was designed so that the

structure would have third and fourth vibration modes with relatively close na-

tural frequencies. The vertical beam is a uniform steel beam 80 inches long, with

a rectangular cross section 2 x 1/8 inch. The crosspiece is an aluminum beam 32

inches long, with a rectangular cross section 2 x 1 /8 inch. Small masses consisting
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of two ceramic magnets are located at both ends of the crosspiece, which is se-

cured to the vertical beam by a clamp. Each stranded steel suspension cable is

0.09 inch in diameter. ‘

Eight 10-inch beam finite elements with out-of·plane translations and bend-

ing rotations as DOFs are used to model the vertical beam. The crosspiece is

symmetrical relative to the vertical beam, and only symmetrical out-of-plane

motion of the crosspiece is represented in the modeling. The flexible portion of

the crosspiece is modeled by two·DOF Rayleigh-Ritz analysis and is shown as

spring-mass system in Fig. 2. Therefore, the full-order model has n„ = 19 DOFs.

A single string-in-tension finite element represents each cable. The model in-

cludes geometric stiffness matrices accounting for tension in the beam elements.

The tension in the beam is proportionally reduced down the beam by the effect

of gravity. Small lumped masses representing the control system coils, cable

clamps, and the crosspiece clamp are added to the model. lnherent damping

equivalent to the measured open loop damping of the structure was included in

the analysis of the structure. The lowest six open loop damping ratios are:

0.0045, 0.0020, 0.0039, 0.0019, 0.0029, 0.0012, and the remaining damping ratios

are modeled to be zero. Complete details of the modeling are given in Ref. 55.

Because of control hardware limitations for LQG a reduced model of the system

was also required. Only the ten translation DOFs and the lowest ten modes (i.e.

nk = 10 ) were retained.
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The six lowest modes of the laboratory structure are of primary interest.

Their calculated and measured natural frequencies and calculated mode shapes

are shown in Fig. 2.

Control of the structure is effected by feedback involving three force
F

actuators, each colocated with a velocity sensor (i.e. n, = n, = 3) as indicated by

coil pairs shown on Figs. 1 and 2. The instantaneous control force at each

actuator location is dependent on the control scheme being implemented.

4.2 Experimental Apparatus and Procedure

Experiments were conducted to test the accuracy of the theoretical pred-

ictions against laboratory measurements of the control system performance. All

the control schemes (DRF and LQG) described in the previous sections were

tested on the structure using identical control hardware. Displacement frequency

response functions (DFRFs) were measured at three positions along the beam

and compared with theoretical DFRFs for the same locations.

· The basic experimental apparatus and procedures are described in detail in

Ref. 55. A summary of the apparatus used and the procedure relevant to this

study is provided here.

Each noncontacting velocity sensor and force actuator consists of a small

structure-bome coil which moves within an annular magnetic field generated by

an externally supported magnetic üeld assembly. Movement of a velocity sensing
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coil through the magnetic field produces a voltage proportional to the velocity,

and application of a current to a force actuator coil produces a proportional

control force. A Systolic Systems Inc. PC-1000 digital analyzer is used as a

controller, and is operated through a host IBM-PC personal computer. The per-

sonal computer is also used to load discretized form of control design to the con-

troller. The PC·l000’s array processor performs one specific operation --

multiplication of a constant 48 x 48 coefficient matrix by a time—varying 48 x l

vector ·- at the specified sampling rate. The constant matrix contains discretized

information about the control system design and the time varying vector consists

of discretized sensed output and internal state variables. The product of two is

a vector containing control command and updated reconstructed state. An

STI·l l/23 data acquisition and analysis system developed by Synergistic Tech-

nology Inc. generated excitation signals, received measurement sensor signals, and

performed all data analysis.

DFRFs were measured at grid points 4, 6, and 8 on the vertical beam. The

displacement sensors used were noncontacting inductive-type proximity probes.

Random excitation was used. Fast Fourier transforms of the response and

excitation signals were calculated, and the former was divided by the latter to

produce a DFRF.
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4.3 Analytical Results for UDRF Control

The control system was designed for the cruciform beam so as to minimize

the sum of the ci, supplied by the three actuators (see Eq. [3.24]). The design

variables were the values of individual cl, and the locations of the sensor-actuator

pairs. The requirements imposed on the control system were Q} 2 0.03 for the

first six modes, j= 1,...,6. The control optimization procedure produced the

baseline design [r°P'(s„)] shown in Table 1 with the sensor·actuator locations al-

most exactly at grid points 5, 7 and 9. The fourth, fifth and sixth damping ratios

(Q, Q, Q) were at the lower limit of 0.03 while the first three damping ratios were

above this value.

Instead of imposing constraints on damping ratios, i.e. on the number of cy-

cles required for decay of vibration, one can possibly impose constraints on time

1:, of vibration decay by constraining the real parts of eigenvalues o',. Required

upper limit on real part of eigenvalues for first six lowest frequency modes was

o, = 0.03056 = -4.28 s" . This is equivalent to the decay time of 1:, = 0.23 s .

Two designs are shown in Table 2: one with three control pairs at grid points 5,

7 and 9, and the other with two control pairs at grid points 5 and 9. In the first

design, the optimizer has eliminated completely control pair at grid point 7 and

therefore design with two control pairs was performed there after. Grid points 7

and 9 are also optimal location for control pairs. In both designs the upper limit

on o, was the active constraint, which means that the fourth mode is controlling

the design.
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4.4 Analytical Results for CDRF and LQG Control

Two CDRF control systems, i.e. the MF-DRF system and the LQ-DRF

system, were designed with the requirement that the lowest six closed loop modes

have damping ratios of at least 0.03 (i.e. rz,„ = 6 and <;,_ = 0.03). This stability

margin requirement was applied in the case of LQ-DRF design through selection

of qQ and R matrices. Two optimization problems (see Eqs. [3.37] and [3.39]) for

the respective control systems were solved by using NEWSUMT-A. The control

optimization procedure produced the designs D shown in Table 3 for the

MF-DRF control, and in table Table 4 for the LQ-DRF control. Damping ratios

of the six lowest closed loop modes are shown in columns MF·DRF and

LQ-DRF of Table 5. For the fixed values of Q = I and R = 0.221 , the optimum

value of q was 0.0001 and the maximum value of J was realized for the sixth

mode (LQ-DRF control). The small value of q indicates that the LQ-DRF sys-

tem was designed to minimize control effort (the u' R u term in the quadratic

performance index) with system response bounded by the required stability

margin.

Next, the LQR control system was designed with Q selected to be the identity

matrix, and R a scalar matrix (R = 0.22I) selected to be just large enough to

achieve at least 3% damping in the lowest six modes of vibration. The filter de-

sign was obtained for V, = l0*‘I , V, = 5xl0"I , and a = 0.2 cs" Table 5

shows the damping ratios for both the full-order LQR design and for the reduced

model regulator/filter design (obtained from the eigenvalues of AE, Eq. [3.19]).
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lt is seen that for the lowest six modes with the imposed stability margin, the

model reduction and the Kalman filter have very little effect on the damping ra-

tios. The LQR damping ratios are greater than the corresponding values for the

CDRF designs, indicating that more control effort is supplied by the LQ regula-

tor than by the CDRF controllers.

The effect of model reduction on the dynamics of the unmodeled modes is

explored next. Table 6 compares the roots of the regulator for the full-model and

reduced-model designs. Also given in Table 6 are the roots of the filter for the

full-order design and the roots of the CDRF designs. Comparing the roots of the

full·order and the reduced-order designs, we note that the differences in the

modeled modes (first ten) are very small. However, the unmodeled modes lose

almost all of their stability margins, and we were fortunate that these modes did

not become unstable (the spillover instability). The CDRF designs, by compar-

ison, provided all the modes with significant stability margins, some comparable

to those of the controlled modes. This is a major advantage of the CDRF design

over the LQG design, an advantage likely to be more dramatic for real-life sys-

tems for which the ratio of modeled to unmodeled modes is much smaller.

It is also seen from Table 6 that all the filter roots had real parts of approxi-

mately -40 srl indicating good separation of filter poles from the regulator ones

and fast state variables restoration. This held for the reduced-order design except

that the reduced-order filter had only ten roots. The value of -40 srl is equal to

2a (a = 0.2 cs -1) . instead to a because ot is large compared to V, (see Appen-

dix B).
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The quadratic performance index (see Eqs. [3.4], [3.14], and [3.41]) was cal-

culated using the qQ = I and R é 0.22 I obtained for the LQ design and for in-

itial conditions in the shape of the first six open loop mode shapes, and the results

are presented in Table 7. Results are presented only for the full model because

the effect of model reduction for the controlled modes is minimal. The compar-

ison of the LQR and LQG columns shows that the deterioration in performance

due to the need for an observer is significant only for the higher modes. Com-

parison of the LQG and MF-DRF columns shows that the optimal control law

is better for the first four modes and poorer for the fifth and sixth mode. The

maximum value of the index is almost the same for the two control laws. Com-

parison of the LQG and LQ-DRF columns shows that even though the compar-

ison is made for the LQ index (qQ = I, R = 0.22 I) the LQ-DRF design is

comparable or better, with the maximum value of the index being substantially

lower. Basically, the loss of performance due to state reconstruction for the LQG

outweighs the loss due to a suboptimal (and simpler) LQ-DRF design.

The displacements and velocities (controlled by the LQG and MF-DRF

control) at the midpoint of the vertical beam for the first and fifth mode initial

conditions are shown in Figs. 3-6, and the actuator forces are compared in Figs.

7-10. In general it is observed that the optimal control law results in smaller
‘

displacements but also larger forces. This is expected as the optimum control law

minimizes an index which depends on both displacements and forces while the

MF·DRF law minimizes only the control-force ratio.
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Finally, the optimization problem of minimizing maximum actuator force (see

Eqs. [3.26] and [3.30]) was performed with constraints placed on the first six real

parts of the lowest eigenvalues (with t = 0.23s), and the optimizer produced the

baseline design matrix D (with p = 9 in Eq. [3.30]) shown in Table 8. The per-

formance index for this design is equal to 0.1655 lb-s/in. The real parts of the

second, fourth and fifth pair of eigenvalue values reached upper limit.

4.5 Comparison ofAnalytical and Experimental Results

CDRF vs. LQG Control

Representative DFRF magnitudes, for the open·loop system and the closed-

loop system using the MF·DRF, LQ-DRF and LQG control laws, are plotted

on Fig. ll (A, C, E and G) for experimental measurements at grid point 6 and

excitation at grid point 9. The corresponding theoretical DFRF magnitudes ob-

tained for the full-order model are plotted on Fig. 11 (B, D, F and H). The open

loop theoretical results and measurements (Fig. ll B and A) verify the natural

frequencies of the theoretical model (i.e. 1.9 Hz, 4.8 Hz, and so on), and show

realistic modeling of structural damping (which was based on experimental

measurements). Good agreement of theoretical and experimental MF·DRF

control response is observed by comparing Fig. ll D and C. For example, at 1.76

Hz (first peak) the theoretical DFRF magnitude is 0.88 (in/lb) and the exper-

iment shows magnitude of 0.86 (in/lb), for 4.8 Hz (second peak) the respective
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DFRF magnitudes are 0.11 and 0.13 (in/lb), for 8.6 Hz (third peak) the DFRF

magnitudes are both 0.16 (in/lb), and for 19.5 Hz (antiresonance) they are 0.022

and 0.020 (in/lb) respectively. The theoretical and experimental LQ-DRF control

response also compare well (Fig. ll E and F). At 1.51 Hz the theoretical DFRF

magnitude is 0.88 (in/lb) and so is the experimental one, for 5.21 Hz the respec-

tive DFRF magnitudes are 0.077 and 0.085 (in/lb), for 8.4 Hz DFRF magnitudes

are 0.099 and 0.098 (in/lb) respectively, and for 18.9 Hz are same 0.021 (in/lb).

The agreement for the LQG design (Fig. 11 F and E) is as good. For example,

for 5.6 Hz (second peak) the DFRF magnitudes are 0.82 and 0.9 (in/lb), and for

22.7 Hz (last peak) they are 0.044 and 0.054 (in/lb).

Comparison of the open loop system plots with closed loop plots shows that

the closed loop DFRF magnitude peaks are at least one order of magnitude

smaller than respective open loop peaks indicating heavy control damping in the

system. A magnitude of control damping per controlled mode may be inferred

from a resonant peak roundness and matches with values of respective damping

ratios shown in Table 5.
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Table 1. Controller gains (1b-s/in) and perfonnance index for UDRF designs
with constraints on damping ratios

Gain * Uniform Baseline Added Variable
Gain Design (node 8) Thickness
Design Mass Design

Design

du 0.01188 0.06289 0.06248 0.05378
du 0.01 188 0.01 165 0.00000 0.00000
d„ 0.01 188 0.02870 0.03272 0.03134
Z4, 0.03564 0.10324 0.09520 0.08512

* With sensor·actuator pairs located at grid points 5, 7 and 9

Baseline Designs of Control System for a Laboratory Structure 43



Table 2. Controller gains (lb-s/in) and perfonnance index for two UDRF
designs with constraints on decay time

Gain Three Two
Contro1* Contro1**
Pairs Pairs
Design Design

du 0.2322 0.2324
dz, 0.0001
d„ 0.1195 0.1195
Zei, 0.3517 0.3519

* With sensor-actuator pairs located at grid points 5, 7 and 9

** With Sensor-aCtuat0r pairs located at grid points 5 and 9
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Table 3. Gain matrix D for MF·DRF control (1b-s/in)

Actuator Sensor Grid Pt. No. ‘

Grid Pt.
No.

5 7 9

5 0.0500 0.0000 0.0000
7 0.0000 0.0359 -0.0139
9 0.0000 -0.0139 0.0222

Baseline Designs of Control System for a Laboratory Structure 45



Table 4. Gain matrix D for LQ-DRF control (1b-s/in)

Actuator Sensor Grid Pt. No.
Grid Pt.
No.

5 7 9

5 0.0581 0.0261 -0.001 1
7 0.0261 0.1018 -0.0014

_ 9 -0.001 1 -0.0014 0.0448
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Table 5. Closed Loop Damping Ratios

Mode LQR LQG MF·DRF LQ·DRF
No. Reduced·mode1

Design

1 0.6221 0.6216 0.1830 0.5589
2 0.2270 0.2270 0.0304 0.0695
3 0.1441 0.1437 0.0600 0.1151
4 0.0666 0.0666 0.0301 0.0428
5 0.0567 0.0563 0.0454 0.0613
6 0.0301 0.0298 0.0300 0.0300

Baseline Designs ol' Control System for a Laboratory Structure 47



>•
hn
=¤_E

—Nf'\VV\¤¤¢\NV30\<f©t'$~0W E__g_ ———N¢•\¢*\•'\

Q
O
J

-¢?OM N5:gg
"?‘T"?‘T"¢?l’T'T"T"!?‘??T’€’T?T?

¤""
-·«··1vw•nc~v•·n-

-QE ..¤.
?N•f$|*-5:gg
‘T"?"PT‘T‘¥‘?'T"?‘7"?'T‘?T?T???

¤
9

s.3
>•
¤§

·§
__QE

•-• ,.ß, ---NMMM
I'U

5
8 600ä °‘

zmgmzammo0 QvO«I~¢~0M N
-'-" 5: ··z<~e=e¤:-:·-e·-z'«$··z‘:··°Ü$i?-:=a$Ü<°$•Ü$$§

8
gg §'T°?'?"PY‘?‘?‘?‘??€°?‘?€’??‘??

J

¤ ...................c •'•¢•6¢-IGt*I¤O6I•l'•-• QM \DN

ß EQ
—-—N<•‘••*'s«•$

1-• ¤- °'¤'
ur Q0, g .-

*"
·! LL__°

ä es: q°t°€°é°‘!Q‘1‘·Q"f°!"’£"t°§"?“‘7f"f°9"‘!"!Vu__
Z; VFWGMNQQVVVVVVVVVWVY

°
I I I I l I I I I I I I I I I I I I I

¤. 8
°

E
Eu. E

¤'§ ¤ .5 6 .66 . . .6...........•• IGN Nlh- B IG N
nn

2
_¤_ ———~e-1«··1«··-•

zu
¤60

__
cv-r~vcr~~o-oomcaoon-c~ovs~n

¤:Q
VN V|*®!*\•hQNf'1NF\-N—N—N-NQ
xn-

T••••••¤¤•¤¤••nr••¤

Q
E- v

Z

Baseline Designs of Control System for a Laboratory Structure 48



Table 7. Quadratic Performance Index

Initial LQR LQG MF·DRF LQ·DRF
Conditions
Mode No.

1 43. 56. 97. 63.
2 39. 44. 144. 72.
3 27. 34. 45. 32.
4 38. 48. 57. 46.
5 62. 78. 65. 69.
6 108. 145. 113. 110.
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Table 8. Gain matrix D for MF·DRF control (lb-s/in) constraints imposed
on decay time

Actuator Sensor Grid Pt. No.
Grid Pt.
No.

5 7 9

5 0.1460 0.0001 0.0146
7 0.0001 0.0943 0.0443
9 0.0146 0.0443 0.0561
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Chapter 5

Effects of Small Structural Changes and Model

Reduction on Control System Design and

Performance

5.1 Serzsitivity Considerations
D

Two aspects of the sensitivity of the control system to minor structural mod-

ifications are investigated. The first is the sensitivity of the performance/stability

of the control system, which is associated with the robustness of the system. The

second is the sensitivity of the optimum design of the control system, which is

important in the assessment of the need for combined control/structural design.

Here, it is assumed that the control system is first optimized for maximum per-
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formance for the original structural configuration, and then sensitivity analysis

of optimized system is used to predict the changes in the performance or stability

due to structural modification.

In addition to performance/stability sensitivity to changes in structure, sensi-

tivity of control system to structural model reduction (or stability robustness) is

investigated. One of the fundamental problems in the Large Space Structures

control is how to control an infinite-dimensional structure with a low-order con-

troller. Structural model reduction in control system design is imposed by phys-

ical and hardware limitations of the controller. Consequently, the control system

is designed based on a reduced order model of the structure including a first few

vibration modes. The modal truncation of the structural model can result in a

control system which destabilizes higher order modes, a phenomenon known as

spillover instability [5].

5.2 Sensitivity of UDRF Control

The structural design parameter vector s was chosen to represent small addi-

tional masses mk at the nine grid points of the finite element model. This choice

was motivated by the ease of implementing the change experimentally. The

robustness type sensitivity -;§%(r°P', s,,) was calculated by computing the deriva-

tives of the three critical damping ratios (JE-, E-, -E-C-E-) with respect to the
ömk öm,„ dm,

additional mass. The results are presented in Table 9, normalized to show the
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expected change in damping ratios AQ, effected by adding a concentrated mass

m,„ which is 1% of the total mass of the structure. The results in Table 9 indicate

that adding the small mass at grid point 1 can reduce Q, from 0.03 to 0.02 so that

the control system is not at all robust.

Next, the optimum sensitivity calculations (gif;) were performed. Here Eq.

(3.46) becomes
k

t 5 . 5 .3% (5.1)

The sensitivity of the objective function to the additional 1% mass

[A(E¢,)°P‘ = gg-mk] is given in Table 10. It shows that an additional mass at

grid point l haskthe most detrimental effect, increasing the objective function by

23%, while an added mass at grid point 8 has the most beneficial effect, reducing

the objective function by 3.9%.

The results of the sensitivity prediction were checked by redesign of the con-

trol system for a modified structure. A mass corresponding to O.86°/0 of the total

mass of the structure was added at grid point 1. Table ll compares the sensi-

tivity analysis predictions to results obtained by reoptimizing the control system

for the modified structure. The agreement between the sensitivity predictions and

the reoptimized results is very good.

In enhancing the control system performance the sensitivity calculation

showed that the gain of the second actuator is reduced as the mass is added

to grid point 8. The mass that was added to this grid point was chosen to make

this gain equal to zero and corresponds to 2.0°/o of the total mass of the structure.

meets or Small sttoetotu Changes and Model Reduction oo Control System Design om: Petrotmeoee 64



lt is predicted to improve the objective function by 7.7% (see Table 1). Increas-

ing the mass further is not helpful because the gain of the second actuator cannot

be reduced below zero. However, the improvement of 7.7% is considered to be

substantial for such a minor change in the mass.
V

Re-optimization was performed with constraints on the sum of nine masses

to be equal to or less than 2.0% of mass of the structure, and the results showed

good agreement with the sensitivity prediction given in Table l. Increasing the

limits of the permitted mass change was also tried, but brought only small addi-

tional improvements in performance.

The beam thickness of t,, of the eight tinite elements were chosen next to be

structural design parameters s. The Lagrange multipliers were calculated for the

three active constraints, and was evaluated using equation analogous to Eq.
k

(5.1).

ÄÖÖ = — äxjéi (5.2)
ötk j=1 J ötk

The sensitivity derivatives of the performance index with respect to the thickness

of each element are shown in Table 12. Changes in control gains d, (i = 1,2,3) due

to changes in design parameters t,, were also calculated from Eq. (3.45) in order

to estimate limits to the sensitivity analysis predictions. It was found that the

most critical constraint limiting the range of application of the sensitivity analysis

was the requirement that dz, remain positive, see Table 13 for the sensitivity of

dz, to changes in thickness.

Effects er Small Structural Changes und Moden Reduction on Control System Design and Peernnnsnee 65



lt can be seen from Table 12 that the thickness of the topmost element has

the largest sensitivity derivative of the performance index, and therefore changes

in this thickness produce the greatest improvement of the performance index for

a given structural change. However by using the linear approximation [Eq.

(3.47)], the constraint that dz, must remain positive limits the maximum reduction

in t, to = 7.44xl0'* inch or 5.9% relative to its baseline design. This de-

Ti?
crease in thickness of the first element would bring reduction in total gain by only

6.2% and indicates that thickness of other elements have to be changed in order

to achieve further reductions in the performance index.

The structure~control system was reoptimized with control gaius and thick·

ness used as the design variables and with changes in thickness limited to 10%

of the baseline values. The optimization results are shown in Table 14 and the

controller gaius are listed in Table 1. The performance index was reduced to

0.08512 lb-s/in or 17.5% compared to the baseline design control gain, while the

sensitivity analysis based on the thickness changes given in Table 14 and the de-

rivatives in Table 12 predicts a value of 0.08760 lb-s/in, which is quite close. The

total reduction of the mass of the structure is less than 3.7%. Lower limits (0.03)

were reached on the fourth, tifth, and sixth damping ratios and dz, 2 0.0 also

becomes an active constraint.

These results iudicate that the potential for harmful interaction is very large,

but there is also a signiticant potential for beneficial interaction. Thus, the results
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indicate that for this case simultaneous structures/control design may be indi-

cated.

Sensitivity of the UDRF Control to small structural changes with eigenvalue

real parts (time decay) constrained was investigated for two control pairs design.

Table 15 shows mass sensitivity The grid point 9 has the most negative

derivative and sensitivity analysis pifedicts 1.8% change in performance index for

1% added mass at that location. The reoptimization process shows drop of 2.2%

in the performance index. Table 16 shows thickness sensitivity Using the

first order Taylor series expansion around the optimal point, one finds that 6%

reduction in thickness of finite element 7 would cause reduction of 3.8% in the

performance index. The reoptimization program for the same conditions

produced reduction of 3.2% of performance index. If all eight elements were al-

lowed to change no more than :1: 5% the optimization would produce the design

shown in Table 17 and reduction of 9.7% in performance index. This design has

reduction of 2.3% in the total mass of the structure.

5.3 Experimental Results and Comparison with Theory for

UDRF Control _

An experimental study was done to check effect of small structural changes

on the UDRF control design. Three control gains are shown in Table 1: uniform

gain design, baseline design, and added mass at node l or 8 design. First, an
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unoptimized control design consisting of the uniform gains was tested to validate

the theoretical model before any optimization was performed. Second, the

baseline case was tested, and third, the baseline with added mass designs was

tested.

The prediction that a small mass at grid point 1 has a large detrimental effect

on the performance of the system was checked by adding 1.31% of the total mass

of the structure at that location. The choice of the magnitude of the mass was

based on convenience in the experimental verification. Table 18 compares the

analytical predictions and experimental measurements of the effects of the added

mass. There are substantial differences between predictions and measurements

for the third and tifth modes, but in general the agreement is good. In particular

it is clear that the additional mass severely reduces the damping ratio for the

fourth mode as predicted by the analysis. These results validate the theoretical

prediction of the large detrimental effect of a small mass on the performance of

the UDRF control system.

Table 19 compares the analytical predictions and experimental measurements

for the other three designs. The agreement is very good for the uniform·gain de-

sign and is fairly good for the other two designs. The poorer agreement of the

optimized designs may be expected because the optimization process tends to

capitalize on second order effects that are more poorly modeled. However, the

agreement is close enough to validate the analytical predictions.
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5.4 Eßect ofSmall Structural Changes on CDRF

(MF-DRF) Control Design

An investigation of influence of small structural changes on the performance

of th_e MF-DRF control system was done similar to one done for UDRF control.

This part of the study was performed with slightly suboptimal MF-DRF baseline

design obtained using p= ll in formulation of Eq. (3.30). D shown in Table 20

is not much different from the truly optimal one shown in the Table 3. Active

constraints were Q = Q = Q = 0.03.

The effect on the control system performance of small mass added at one of

nine possible grid points was investigated first using the sensitivity analysis. ln

our case, number of control system design variables is I = 1,...,6 (i.e. elements of

D) and the number of active constraints is j= 1,2,3. This leads to the overdeter-

mined system of linear equations (i.e. Eq. [3.48]) in 2.. The change in performance

index due to small change in the structural parameter (Am,) can be estimated by

Eq. (3.50). Sensitivities for nine possible locations of a lumped mass are

given in Table 21. 1% added mass of whole structure (0.00022236 1b·s*/in) at

grid point 3 would cause reduction of the performance index from 0.0519 to

0.0502 (lb-s/in) or by 3.4%. The sensitivity prediction result was checked by

adding the same lumped mass at grid point 3 and letting optimizer find minimum

value of the performance index for the same set of constraints as before. The

performance index was reduced by 2.9% which is fairly close to 3.4% predicted
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reduction by the sensitivity analysis. This change in performance is not dramatic,

but depending on whether one could accept 3.4% improvement in the system

performance due to increase in 1% of the mass as signiticant, it may indicate a

synergetic effect if structure and control were designed simultaneously.
I

Robustness type sensitivity analysis (7%) shows that 1% added mass at the

top of the beam would reduce Q from 0.03 to 0.022 (see Table 22) which indicates

that MF-DRF control design is more robust than UDRF control design where

Q, was reduced to 0.020.

The sensitivity of the design with constraints on the decay time 1:, was inves-

tigated next. Required upper limit on real part of eigenvalues for first six lowest

frequency modes was -4.28
s*‘.

This is equivalent to the decay time of 0.23 s.

The design with added masses was investigated. The sensitivity analysis pre-

dicted that the most beneficial effect on control system performance would have

small mass added at grid point 9. However, this effect is very small, 1% added

mass would result in 1.05% reduction in the performance index. Similar re-

duction of 1.09% was obtained in optimization process used for checking the e

sensitivity prediction with 1% of total structural mass added to the bottom of the

beam (i.e. grid point 9).

The above results indicate that small change in the structural design variables

had no practical effect on control and that the synergistic effect is not significant.
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5.5 Performance Robustness of the LQG Control

The sensitivity of the baseline design performance to small changes in the

structure was investigated considering two alternatives.

The first alternative, called the Updated Model (UM) approach considers

how the control system will perform if the controller is designed for the baseline

. model but the observer works with knowledge of changes in the structure (i.e.

structural changes are accounted for in the filter equation). See control system

block diagram on Fig. 12 a.

We represent minor changes in the structure by adding a small lumped mass

to the vertical beam and we evaluate consequent changes in the quadratic per-

formance index. This effects change in the system and control matrices

A,„=A+AA B,„=B+AB (5.6)

or

Am
(MS + AMS)-ICS —(MSI

0

and

-1BM = [avi, + AM,) U} (SB)
0

The joint system and control equations of motion are now
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YU) = Km YU) (5.9)

where

- A,„ — B,„F B,„FAM 0 A,„ — KC (5*10)

The quadratic performance index Eq. (3.14) is evaluated for different locations

of the lumped mass on the vertical beam and for six mode shapes as initial con-

ditions. The added mass is 1% of the total mass of the structure. For the case

when the mass is located at the bottom of the beam and the fifth mode shape is

used as the initial condition the performance index changed from 77.92 to 87.48

or by 12.2%. Results for other locations of the lumped mass and initial condi-

tions are similar, and those with higher percentage changes in the quadratic per-

formance index are shown in Table 23.

The second alternative is a Fixed Model (FM) approach where the observer

works in the absence of information about the structural change (See control

system block diagram on Fig. 12b.). This case represents changes or errors in the

structural model which are not known. The Ä„, matrix in the joint equation of

motion is now:

-
’ A — B B FA,„ = [ M MF M ] (5.11)

AA—ABF A+ABF—KC

Results of change in performance index are given in Table 23. The change in the

system performance for the FM alternative are generally smaller than for the UM
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alternative. For instance, 5.8% change for 1% mass added at grid point 9 and

tifth mode initial condition compared with 12.2% for UM. We thus get the in-

triguing result that the LQG design is more robust if changes in the structure are

not accounted for in the filter model.

5.6 Comparison of the CDRF and LQG Control Stability

Sensitivity due to Structural Changes and Model Reduction

The stability sensitivity of the LQG fixed model to model reduction and

comparison with two CDRF control techniques is performed. The changes in the

structure are represented with a lumped mass located at one of the model grid

points. The LQG reduced model system matrix is now

A — B FAMR = '" "' R (6.12)
KRC AR - KRCR - BRFR

A new form of the joint equation of motion , i.e. Eq. (5.17), is required here be- _

cause of the reduced-model design of controller (see Eq. [3.19] for unmoditied

structure). lt is found that adding 1% of the total structural mass at the bottom

of the beam would cause 54% shift of the pole of the eighth residual mode toward

the unstable region. See Table 24 and columns for 1% added mass of three

controls. This table shows the most critical cases of stability loss for the respec-

tive masses. The same addition of the mass would cause 28% positive shift of the
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eighteenth system mode for both MF-DRF and LQ-DRF control design.

Therefore, higher percentage in one of the po1e’s movement of the LQG reduced

design will further worsen system stability and one could expect that at some

point of structural modification the system will loose its stability completely. In-

deed, if 10% of the total structural mass is added to grid point 8 it would cause

fourth residual mode to lose stability causing the spillover instability (see 10%

added mass columns in Table 24).
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Table 9. Change in damping ratios for three critical modes due to a concen-
trated mass equal to 1% of mass of the structure

Location Change in Change in Change in
of Mass, in Fourth in Fifth in Sixth
Grid Pt. Damping Damping Damping
No. Ratio Ratio Ratio

1 -0.0100 -0.0090 0.0018
2 -0.0033 0.0002 -0.0003
3 0.0000 -0.0009 0.0014
4 -0.002 1 -0.0004 -0.0004
5 -0.0055 0.0003 -0.0020
6 -0.0044 -0.0003 -0.0005
7 -0.0007 0.0007 -0.0002
8 0.0016 0.0000 0.0001
9 0.0026 -0.0029 -0.0015
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Table 10. Sensitivity of the minimum sum of control gains with respect to 1%
added mass for the baseline design * (lb-s/in)

Location A(ZcL,)°P'
of Mass,
Grid Pt.
No.

1 0.02395
2 0.00745
3 0.00124
4 0.00585
5 0.01347
6 0.01141
7 -0.00011
8 -0.00402
9 0.00285

* 24, = 0.10324 (lb-s/in)
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Table 11. The comparison between sensitivity analysis prediction results and
reoptimization for 0.86% added mass (at grid point l) design (lb-
s/in)

Gain Sensitivity by
Analysis Reoptimization
from „
Eq. (3.45)

dn 0.05735 0.05779
dz, 0.04992 0.05185
d„ 0.01663 0.01595
Zi, 0.12390 0.12559
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Table 12. Sensitivity derivatives of the stun of control gains with respect to
the beam element thickness for the baseline design

Element Sensitivity Derivative
(lb-s/ini)

I 0.869
II 0.059
III -0.065
IV 0.218
V 0.098
VI 0.404
VII 0.393
VIII 0.009
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Table I3. Sensitivity derivatives of the second controller gain with respect to
the beam element thickness for the baseline design

Element 861;;*/6:,,
(1b-s/in!)

.I 1.565
II 0.075
III -0.280
IV -0.106
V -0.498
VI 0.707
VII 0.832
VIII -0.201
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Table 14. Results of re-optimization of control system using control gains
and thickness as the design variables and baseline design as starting
point

Element Percentage change
of thickncss
with respect
to baseline
thickness

I -10
II 8
III -10
IV -10
V -10
V1 -10
VII 6
VIII -10
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Table 15. Sensitivity of perfonnance to added mass for two control couple
UDRF design with constraint on time decay

Location Sensitivity (s-
‘)

of Mass
Grid Pt. öf*P'/öm,„
No.

1 -23.40
2 -17.60
3 -1.53
4 14.45
5 30.24
6 52.00
7 42.37
8 28.93
9 -28.43
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Table 16. Sensitivity of performance index to change in thickness for the
UDRF control with constraint on time decay

Element Sensitivity (1b-s/inz)
No. öf**P'/öt,„

I -0.2771
II -0.1147
III 0.1462
IV 1.2638
V 1.0917
VI 1.5354
VII 1.7660
VIII 0.1071
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Table 17. Final UDRF control design with constraint on time decay

Element New Normalized .
No. Thickness

I 0.95
II 0.96
III 0.95
IV 0.95
V 0.95
VI 0.95
VII 0.95
VIII 1.05
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Table 18. Theoretical and experimental modal damping ratlos for 1.31%
added mass design (at grid point 1) '

Mode No. Theory Experiment

l 0.218 0.187
—

2 0.043 0.038
3 0.085 0.059
4 0.017 0.020
5 0.029 0.021
6 0.032 0.031
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Table 20. Approximate gain matrix D for MF·DRF control (1b-s/in)

Actuator Sensor Grid Pt. No.
Grid Pt.
No.

5 7 9

5 0.0508 0.0000 0.0003
7 0.0000 0.031 1 -0.0129

V 9 0.0003 -0.0129 0.0223
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Table 21. Sensitivity of perfonnance index with respect to added mass for
baseline design

Location Sensitivity (s/111)*
of Mass
Grid Pt. öf*P'/ömk
No.

1 21.57
2 11.12
3 -7.84
4 6.59
5 27.94
6 14.61
7 3.35
8 -3.59
9 11.08
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Table 22. Change in the fourth damping ratio due to a concentrated mass
equal to 1% of mass of the structure for MF-DRF design

Location AQ
of Mass
Grid Pt.
No.

l -0.0078
2 -0.0023
3 0.0001
4 -0.0021
5 -0.0046
6 -0.0034
7 -0.0003 _
8 0.0007
9 -0.0003
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Table 23. Percentage change of quadratic performance index due to 1%
added mass

Location Initial LQG Full-order Model
of Mass Conditions
Grid Pt. Mode No. Updated Fixed
No. Model Model

1 2 1.0 2.5
1 4 5.6 2.9
l 5 -3.1 1.7
1 6 -2.8 -1.8
2 2 0.8 1.7
3 5 1.6 1.5
4 4 2.3 1.4
5 1 0.9 0.6
5 2 -2.0 -0.6
5 4 2.6 2.6
6 4 3.1 2.3
8 3 4.2 0.7
9 5 12.2 5.8
9 6 8.6 4.2
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Table 24. Pole move percentage toward unstable region for three control de-
signs and 1% and 10% added mass

Location LQG-FM MF·DRF LQ·DRF
of Mass Design Design Design
Grid Pt. 1%* lO°/0* 1%* lO°/0* 1%* 1()°/0*
No. I

1 small 22 (4) 46 13 21
2 ll (15**) 39 17 (15) 47 12 33
3 small 16 (9) 49 9 37
4 12 (15) 38 17 (15) 50 13 40
5 15 (16) 59 16(l0) 72 13 61
6 small 11 (4) 59 7 43
7 11 (14) 78 small
8 40 (14) spill small
9 54 (18) 48 28 (18) 77 28 79

* Percent of total mass added
** C1osed·loop mode for which pole move occurred
Small - percent change is less than 10%
Spill - spillover occurred °
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Chapter 6

Summary and Conclusions

The analytical study presented here was motivated by two key problems fac-

ing designers of active control for vibration suppression in large space structures.

The first problem is the robustness of the feedback control system and is related

to the sensitivity of the performance and stability of control system to changes in

structure and to model reduction. The second problem is the need for integrated

structure/control design, and the assessment of that need can be hclped by sensi-

tivity analysis of the optimum control design.

Three direct rate feedback control techniques were studied on the structural

model which had similar characteristics to a LSS and then compared to standard

LQG control. The baseline design of each control system was obtained first, and

after that sensitivity analysis was conducted.

The simplistic uncoupled DRF control law which minimized sum of gains

subject to requirements on performance of the system was not robust to structural
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changes. However, some small changes in the structure caused a notable increase

in performance compared to that of the baseline design and therefore indicated

potential for simultaneous structure/control design.

Two coupled DRF techniques were proposed and compared with standard

LQG control. The Minimum Force DRF law minimized maximum force of any

actuator, while the Linear Quadratic DRF law minimized the standard quadratic

performance index for initial conditions in the shape of the first six natural
‘

modes. Both techniques guaranteed system stability.

Results for the baseline design showed that LQ-DRF law minimized control

effort with system response bounded by the required stability margin. The

MF·DRF optimum design was not sensitive to changes in the structure, and

therefore the synergistic effect was not significant for this control law. The per-

formance analysis using the same quadratic performance index for evaluation

showed that the LQG design was marginally better than the MF·DRF design

and poorer than the LQ-DRF design. However the two DRF control laws which

do not require model reduction while the LQG control required it and exhibited

spillover instability when a lumped mass was added to the structure.

A separate experimental study was conducted simultaneously with this study

to verify theoretical results. Good agreement was found between analytical re-

sults and experimental measurements for the investigated control techniques.

Better robustness to structural changes, no need for model reduction, and

simpler experimental implementation of coupled DRF control together with
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comparable or better performance favored these techniques in this study over the

model reduction sensitive LQG technique.
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Appendix A

Model Reduction

Given the full-order model (rz,,xn,,) of a system

M,(i(¢) + K,(l(¢) = 0 (AJ)

we can find an :1,, order modal matrix 0, natural frequency matrix diag(o>§) and

the modal mass matrix diag(M,) .

Next, we select :1,, degrees of freedom and number of modes that we wish to

retain in the reduced order model. Reordering the modal matrix and partitioning

it

"’R
<¤„=¤„> ¢12(¤n¤l¤„ — ~„1>

0 = Q Q
(A.2)

21 <I¤„ · ¤Rl=¤R> 22 (Im. ·· ¤Rl¤=l¤„ · ¤nD
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We use only the reduced modal matrix <DR and corresponding reduced frequency

and modal mass matrices

diag(M,) = diag(M1, ..., M„R)

and define reduced physical damping, stiffness, and mass matrices respectively

as

CSR = $1; T[di¤8(2CS<¤1Mr)]R $1; 1 (A-3)

rt a>‘T d· ZM o" 4RR = R [ ¢a8($r t)]R R (A- )

MSR = <¤RT[df¤s(M1>lR <¤R
‘

(A-5)

Premultiplying Eqs. (A.3)·(A.4) by the inverted reduced modal mass matrix,
and.

postmultiplying inverted reduced modal mass matrix with reduced applied load

distribution matrix U,R , we obtain the following matrices required in the reduced

state space equations of the system:

M.s;R1CsR = $1: ldi¢8(2C„<·>r)]R $1; I (A-6)

M.;R‘r<SR = <¤>„ tdt¤g<«>?>1„ @1;* tm

Ms;{lUsR = <¤>R tdt«g<M;‘>1R<¤„€vS„ <4.8>
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Appendix B

The Alpha-shifted Performance Index

The exponentionally weighted quadratic performance index is one way to

achieve a control law that gives not merely an asymptotically stable closed-loop

system, but one with a degree of stability at least some prescribed value a. The

alpha-shift theory is presented here (based on [52]) for the regulator problem but

it may be implemented in the observer design due to duality between the regula-

tor and the observer.

Given the system

x(t) = A x(:) + B u(z) (B.1)

and control

u(r) = — Fx(r). (B.2)

the exponentially weighted performance index has the form

The Alphvshiüed Performance Index mg



°° zw 1 1*
J =j' e [x(t) Qx(r) + u(t) Ru(t)]dt (B.3)

0

This problem can be converted to a ’standard’ one by introducing the trans-

formation

i(z) = e°‘x(:) (B.4)

ü(t) == e°“u(t) (B.5)

Differentiating Eq. (B.4) with respect to time and using Eq. (B.l) one can reach

the transformed sytem equation

7k'(t) = (A + al) Y(t) + Bü(t) (B.6)

and introducing transformation Eqs. (B.4)·(B.5) into integral of Eq. (B.3), a

standard form of quadratic performance index is obtained

°° 1 - - 1 -J = j KU) Qx(t) + u(t) Ru(t)]dt (B.7)
0

The requirement that x(t) will decay faster than
e·“

is equivalent to requiring

that ii is stable. The solution of the transformed problem is obtained by solving

Riccati equation:

(A + aI)TS, + S, (A + al) - S,B R”1BTS, + Q = 0, (B.8)
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For relatively large valuesuof a the stability margin becomes close to — 2a.

This can easily be shown for a single DOF system. The original system is de-

scribed by

X(t) = ax(t) + u (B.9)

and the control as

u(t) = -fx(t) = — sx(t) (B.10)

The performance index is

°° 2m 2 2J=_[ e (qx +u)dt · (B.11)
0

The transformed problem is

:?(t) = (a + a)5c'(t) + 17 (B.l2)

°° 2 2J (qu'? + 17 )dt (B.13)
0

Riccati equation for this system is

(a+a)s+s(a+a)—s2+q=0 (B.l4)

The positive root of this equation is

s=(a+a) +„/(a+a)2 +q (B.15)

Original closed-loop system is

The Alpha-shilled Performance Index [05



$(0 = (¤ ·· S)$(0 (B.16)

and its single root is equal to a + „/(a + cz)! + q . For large values of ot this root

approaches 2a.
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Appendix C

Minimum Euclidian Norm

The optimum design problem for the Minimum Euclidian Norm [46] control

cases is formulated as

ünd D (C.l)

to minimize j(D) = ||D|| = (§Uä¢§)‘/2

subject to gj = Q, · QL 2 0 j = 1,..., rz„,

and D > 0 i = 1,..., nc
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Appendix D

Performance Index

For the determination of the performance indices, all the system equations

will be represented in the following form

x(:) = A x(:) (D.1)

with the initial state x(t0). For the solution of this equation we write

x(:) = d>(z, z0)x(r0) A (D.2)

where

a>(:, :0) =
:^"‘ '<=l (ns)

is the transition matrix of the time·invariant system Eq. C.l.
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The performance index that represents some quadratic measure of the state

x in time can expressed as

°° 1*J = [ x(:) Qx(r)dr (D.4)
'0

This performance index becomes equal [51] to

J =- x(ro)T P x(t0) (D.4)

where for t„ = O

p = [°°„»^T'Qe^‘ dz (0.6)
0

satisfying Lyapunov matrix equation

ATP + PA + Q = 0 (D.5)
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