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DEVELOPMENT OF POMME, THE PES7 A.ND O!:\CHARD MANAGEMENT EXPERT 

SYSTEM 

by 

Rajesn S. Virkar 

( ABSTRl\CT) 

Direct dissemination of expert knowledge to agricultural 

producers through computer programs will incre=.se product 

quality as well as profit margin. 7he construction of an 

expert system to help farmers manage apple orchards is 

reported. The. system provides advice regarding specific pest 

management, treatment of winter injuries, drought control 

and general pesticide selection. T:ie knowledge structures 

employed in the construction of the system are explained, 

and some sample interactions are provided. A mcdel of the 

apple scab disease cycle is incorporated into POMME to give 

the sys~em a more fundamental reasoni~g capabili~y than 

available from the use of infection tables. Ex-tension 

experts who have run "trial cases on the system have approved 

its release for use by commercial apple growers. 
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Chapter I 

INTRODUCTION 

In recent years, researchers in artificial intelligence 

have developed programs that reflect the decision making 

strategies of experts in different fields. The pattern of 

thought processes put forth by human experts and interpreted 

by computer scientists is closely followed while creating 

these programs and corresponds to two parts of expert level 

'thinking': an expert level knowledge base, and information 

regarding the use of this knowledge. These programs are 

called "Expert Systems". 

Expert systems have evolved into a major field for re-

search and application. These systems have earned the name 

by demonstrating a capability for performing expert quality 

work in areas previously thought to be the exclusive domain 

of highly trained human beings. Expert systems contain the 

knowledge of a human expert in a narrow domain of endeavor 

SUC:1 as structural elucidation of organic molecules 

(DENDRAL) [ 16], bacteriological infections (MYCIN) [ 30], 

lung disease (PUFF, CENTAUR) [2] and soybean disease diagno-

sis {PLANT) (17]. 

Recently, expert systems have been implemented using a 

technology new to computer science: rule-based prograrn~ing. 

1 
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Programs in this new technology consist entirely of rules 

where an individual rule has two parts, a premise and a con-

clusion. The premise typically consists of patterns that 

must match before the rule "fires. 11 The conclusion may be 

either an action to be performed or an implication that the 

system uses in further reasoning. 

Expert systems are "prescriptive", that is, they suggest 

solutions to problems by reasoning in a manner similar to 

human experts. Simulation modeling systems, with which ex-

pert systems are often confused, are "descriptive"; that is, 

they can describe the relationships between different compo-

nents of a target system without the fundamental knowledge 

of that system required to recommend any solution. Both 

kinds of system incorporate models; in expert systems they 

are of an expert human being while in simulation systems 

they are of a target system under study. Expert systems are 

knowledge-based, and modeling systems are data-driven. 

To focus our attention on a major problem tackled in this 

study, consider the following example and its analysis. Jack 

boards a train and leaves station A at noon. According to 

the time table of the train, it is assumed that Jack will 

reach station B six hours from the tine the train left sta-

tion A. It is past 6:15 now, and Jack has not arrived at 

station 3. Our problem is to determine Jack's whereabouts 

and if possible, predict his arrival at station B. 
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There are many inferences that can be made from the 

reported situation. Some obvious ones can be listed as fol-

lows: 

(a) The t::::ain was delayed owing to rain or a snow-

storm. 

(b) The train has arrived without Jack since he took 

the wrong train. 

(c) Jack took the right train but alighted at a wrong 

station. 

(d) Jack alighted at an intermediate station to run 

some e::::-rands. 

(e) The train met with an accident. 

If we have more knowledge about Jack and his journey, we 

may be able to carry out temporal planning using the cause-

effect analysis and determine Jack's whereabouts. Knowing 

that Jack has been to station 3 before, we can probably rule 

out inferences (b) and (c). Similarly, if we have the weath-

er report of the area through which the train passes, we can 

make a decision on the possibility (a) in determining Jack's 

location and the time of Jack's arrival at B. It is also 

possible to rule out the possibility of (e) -~ l. ... we have the 

t::::-affic reports at our disposal. Knowledge of the nature of 

Jack's errands can also help us project the time of his ar-

rival. 
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Thus, the importance of causal reasoning can be seen in 

predicting the outcome of a sit~ation using multiple know-

ledge sources. The idea of causal models that makes use of 

the fundamental factors affecting a 3ituation is incorporat-

ed in this study to express expert level thought processes. 

The particular application -chat motivated the work re-

ported here is the problem of apple orchard management. In 

remote areas of the country where a human expert cannot al-

ways be reached in time to analyze the situation, predict 

outcomes, recommend solutions, and save the crop, we believe 

that an expert system can be very useful in aiding the orc-

hardist to manage his orchards. The usefulness of an expert 

system is magnified on an international scale, where the 

number of available experts is very small. 

Although orchardists have enough general knowledge about 

fruit-growing to become successful growers, sometimes they 

must turn to technical specialists such as plant patholo-

gists or entomologists for advice. Often such a technical 

specialist (an expert in a specialty area) is approached by 

a grower who describes the crop, its condition (which may 

include the symptoms of a disease or traces of insect infes-

tation), stage of growth, the weather conditions (which may 

include temperature, relative humidity, rain, etc.) and the 

type of help he may be interested in. The task of the expert 
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is to choose a technique (possibly chemical control) that 

solves the problem of the grower. A grower's problems typi-

cally include preventing diseases, insects, weeds, winter 

injury (freeze), drought, frost and other factors from re-

ducing the crop. The supply of food to the populace criti-

cally depends on the availability of such consultations to 

solve agricultural problems. 

The uncertainty involved in the prediction of a disease 

is eliminated by always using the minimum threshold while 

predicting an infection. The reason for this being that the 

growers are interested in preventing an infection rather 

than diagnosing it. 

The degree of difficulty of agricultural problems is 

raised by several factors. One such factor is the compati-

bility between any two chosen pesticides. Residual effect of 

pesticides is another factor that needs some consideration. 

If a certain pesticide is used year after year, then the 

strain of the pathogen (fungus, bacterium, etc.) or the in-

sect tends to develop an immunity toward the pesticide. This 

also makes the problem of pesticide selection hard for agri-

cultural experts. 

POMME, ( Pest and Orchard Management Expert System) has 

been developed as an aid to apple growers in situations whe-

re the expert must travel hund:::-eds of miles to examine an 
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orchard. It selects the appropriai::e pesticide ( or set of 

pesticides) or management technique when required informa-

tion is supplied by the grower. The grower would normally 

consult POMME when unusual conditions exist in the orchard 

such as ten days of continuous rain. 

The knowledge base of POMME has information about fungi-

cides, insecticides, compatibility, freeze damage, frost 

damage and drought damage. A description of the structural 

primitives that make up the foundation of the knowledge base 

is provided in this thesis to facilitate a clear understand-

ing. The knowledge for POMME's knowledge base was gathered 

from C. R. Drake (Department of Plant Pathology, Physiology 

and Weed Science, Virginia Tech) [8] and from Agrios [l] and 

Childers [ 5]. Relevant information was extracted through 

discussions with Dr. Drake and was then transformed into 

rules. Knowledge is represented in frames for the ease of 

access and execution. There are various different types of 

frames in POMME. A limited natural language capability is 

supplemented by a menu system to enhance the interaction 

between the user and the system. 

~he most signifi~ant advance reported in this thesis cor-

responds to the use of causal model of disease in determin-

ing the stage of the disease in its life cycle. The correct 

prediction and appropriate recommendation can be easily made 
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with the help of the fundamental knowledge of the life cycle 

of the fungus. An advantage of using a causal model is ~hat 

it is region-independent; i.e., under similar conditions a 

causal model will give same results when applied in Virgi-

nia, Michigan or Washington. 

GUESS is a general purpose expert system shell developed 

at Virginia Tech (Lee- M.S. in progress) and is continually 

undergoing enhancements. GUESS is a frame-based shell that 

provides different knowledge structures and a natural lan-

guage capability. Currently, an effort is being made to 

transfer POMME to the framework of GUESS. 

This thesis is organized into seven chapters. The next 

chapter gives the literature survey. Chapter three describes 

the use of Prolog and includes a discussion of the knowledge 

base of POMME and its declarative frame representation. 

Chapter four presents the idea of causal models. Chapter 

five describes all the subsystems of POMME and discusses its 

applicability. Chapter six presents GUESS and discusses its 

usefulness through the transfer of POMME to its shell. 

Chapter seven includes the conclusions that can be drawn 

from ~his study. 



Chapter II 

LITERATURE 2EVIEW 

Artificial Intelligence is a relatively new branch of 

computer science. It lends itself to the development of in-

telligent computer systems that reflect intelligent proper-

ties of human behavior such as reasoning, learning, compre-

hension of nat;ural language, etc. The emphasis of current 

research in artificial intelligence is on knowledge repre-

sentations. 

Different search rnethods have been devised in the last 

twenty-five years. Nilsson [21] provided an overview of 

blind search as it can be applied to the state-space problem 

representation and the "and/or" graph. The A*-algorithm used 

for optimal search for an optimal search was presented by' 

Hart, Nilsson and Raphael [ 12, 13 J. For this algorithm, a 

start node and a goal node have to be specified in order to 

determine the minimal-cost path in the state-space problem 

representation. Pohl [23] provided a heuristic algorithm 

that carried out a bi-directional search. The forward search 

and the backward search were ordered, and used functions si-

milar to those of A*. Nilsson [21], also provided an algor-

ithm ;:or neuri stic search of an "and/or" graph. In this al-

gorithm, node expansion is carried out by fi::::-st 

8 
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identifying the most pro~ising potential solution tree, and 

second, choosing a proper node in that tree. 

Knowledge representation involves a combination of data 

structures and procedures that, when used properly, will ex-

hibit intelligence. Several schemes have been developed to 

represent knowledge. Logic was applied to ar~ificial intel-

ligence by Green [11) in the QA3 system, and by Fikes, Hart 

and Nilsson [ 10) i::1 the STRIPS system. The QA3 system uti-

lized first-order logic, while STRIPS used first-order pred-

icate calculus for knowledge representation. 

Quillian [ 24), Norman and Rumelhart [ 22), and Anderson 

and Bower [ 3) put forth the idea of semantic networks for 

formalizing knowledge representation. A semantic network 

consists of nodes and arcs connecting these nodes. The nodes 

represent objects, concepts, or situations in the problem 

domain, while the arcs represent the relationships between 

the nodes. Meaning is given to a particular network by the 

procedures that are used to manipulate it. 

Production systems that make extensive use of if-then 

type rules have been irnplemen-ced in a number of different 

systems. Waterrnan [ 33] used production system to play the 

game of draw poker. This production system used heuristics 

to learn and play better from experience. Shortliffe [ 30) 

designed the MYCIN system as a production 3ystem. Other pro-
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duction system implementations include Rychener [ 27] who 

reimplemented several systems using production system metho-

dology. 

Wilks (35] used semantic primitives in a natural language 

system for machine translation. He defined a primitive as a 

symbol that is used but not defined within the system. Using 

the foundation of primitive acts, Schank [ 28 J formed the 

conceptual dependency theory. This theory proposes task in-

dependence; i.e., when input text is submitted, the follow-

ing tasks are executed: (1) paraphrasing the text, (2) 

translation to another language, (3) drawing inferences, and 

(4) answering questions. 

Minsky [ 18] presented the idea of fr-ames for knowledge 

representation. Frames provide a facility to organize re-

lated knowledge. A frame has slots to store the expected in-

formation regarding a particular attribute. Frames were or-

iginally used for visual perception and natural language 

dialogues. Schank and Abelson [ 29) put forth the idea of 

scripts to represent knowledge. A given script provides a 

normal or default sequence of events, exceptions, and speci-

,:· t-· ,: _ica _ion o... error situations. Scripts also use static de-

scriptions such as props and roles that may :nake use cf 

frames. 
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As presented by Clark and McCabe [6], Clocksin and Mel-

lish [7], and Roach and Fowler (25], Prolog is a logic pro-

gramming language based on first-order predicate calculus. A 

program written in Prolog consists of axioms in first-order 

logic, and a theorem that is to b~ proved with the help of 

these axioms. The axioms are represented by implications in 

horn-clause form. The system uses automatic backtracking to 

return instantiations of the variables used in the theorem 

to prove the theorem true if possible. This backtracking can 

generally be controlled by the user. Prolog provides an in-

herent foundat:on for rule interpretation, and uses pattern 

matching to execute a chain of rules. With its data struc-

tures and control structures, ?rolog is very useful in arti-

ficial intelligence applications. 

The concept of developing expert systems in certain spe-

cialized areas is not completely new. Shortliffe (30] has 

described the development of MYCIN, an expert system for 

diagnosing bacterial infections in human beings and select-

ing proper therapy. MYCIN was one of the pioneering efforts 

in building expert systems. MYCIN carries on an interactive 

dialogue with a physician and can explain its reasoning if 

the physician so desires. It i:::icludes a knowledge acquisi-

tion and management subsystem called TEIRESIAS which allows 

the expansion or modification of the rule base. This rule 
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base is made up of hundred3 of ?reduction rules. The attri-

butes, objects, and values form a vocabulary of domain-spe-

cific conceptual primitives and these primitives are used to 

formulate inference rules. The system uses a backward 

chaining control structu::::-e that results in an exhaustive 

depth-first search of an "and/or" goal tree, and uses confi-

dence factors to accor.10date inexact reasoning. MYCIN was 

written in LISP, and drew its inferences from a "disease-if-

symptoms" type knowledge base that was encoded in rules. 

This knowledge base was exhaustive but did not include any 

fundamental reasoning. 

Aikins [2] has reported work on two expert systems, PUFF 

and CENTAUR, for diagnosing lung diseases. These two systems 

accomodated the concept of f::::-ames as put forth by Minsky 

(18]. The frames in CENTAUR were called prototypes and were 

supplemented with the property of hierarchical execution. 

Prototypes had slots for the values of attributes of diffe-

rent objects ( as suggested by Minsky) and also had slots 

that worked as pointers to other prototypes. Such a hier-

archy of frames has been implemented in POMME, the pest and 

orchard management expert system reported here. 

Weiss, Kulikowski, and Safi r [ 34] worked on an expert 

system called CASNET that was developed for medical diagno-

sis of glaucoma. The system represents a disease by a dynam-
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ic process that can be viewed as a network of causally 

linked pathophysiological states. The diagnosis is performed 

by checking the pattern of causal pathways present in the 

patient, and matching it with a disease category. 

Lindsay, Buchanan, Feigenbaum and Lederberg (16] were in-

volved in the development of DENDRAL which has been used for 

the structural clarification of organic molecules. DENDRAL 

has a causal r:iodel implemented in it that determines the 

cause-effect relationships between different chemicals and 

uses it to predict chemical reactions. DENDRAL uses know-

ledge about mass-spectrometry, and data acquired from a mass 

spectrometer to define constraints on the number of molec-

ules generated by the structure generator. The knowledge 

about mass-spectrometry is encoded in rules that are applied 

during planning (to interpret mass-spectral data and to in-

fer molecular fragments) and in rules that are applied dur-

ing testing (to simulate the action of the mass spectroneter 

on the proposed structures). This approach to the applica-

tion of a causal model has been modified in the work report-

ed here. We have applied a causal model not only to predict 

the appropriate reaction in a process, but also to determine 

the current stage of that process. Agrios [l] has discussed 

the life cycle o: the apple scab causing fungal pathogen and 

has been used as the basis of the causal model in POMME. 
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Childers [SJ provided ~ther peripheral details of apple crop 

maintenance that have been i~plemen~ed in ?OMME. 

Michalski and Chilausky [17) have designed an expert sys-

tem called PLANT for disease diagnosis in soybean. We have 

not built ?OMME to be a diagnostic system for apples since 

it is believed that diagnosis of a disease implies the exis-

tence of that disease, and existence of a disease can cause 

a lot of damage to the crop. We have changed the focus of 

the expert sys~em to make it a predictive system that sug-

gests preventive maintenance techniques. 

Rudd, Ruesink et. al [26) have presented the systems ap-

proach to solving the insect control problems for soybeans. 

Soybean ecosystem models have been applied with the plant 

growth model and the population dynamics models of insects 

to determine the economic injury levels, and suggest optimal 

control for the insects. Beck, Johnson et. al [ 4] started 

work on FAIRS system that is used in Florida to p:::-ovide 

agricultural advice on soybeans, citrus fruits and tomatoes. 

It is essentially a menu-drive~ information retrieval system 

that uses some knowledge regarding the identification of in-

sects in the fields and provides pesticide selections ac-

cordingly. 

Many tools have been developed to build expert systems. 

Nii and Aiello [ 20] devised an expert system shell called 
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AGE. AGE was used for generatinq and modifying hypotheses in 

CRYSALIS (a system used in the domain of protein crystallog-

raphy by Feigenbaum, Engel~ore, and Johnson [9]). EMYCIN is 

a shell described by van Melle [32] that utilizes the know-

ledge representation and control structure of MYCIN, and can 

be used to create an expert system in any domain. Trigoboff 

and Kulikowski [ 31] developed IRIS as a tool for building 

expert systems in medical domains. It uses semantic nets and 

production rules to represent knowledge. The nodes in the 

semantic net hold information about a patient, while the 

production rules control the information flow between the 

nodes. 

Lee and Roach [15], at Virginia Tech, have reported the 

development of GUESS, a General pUrpose Expert System Shell 

that is modular, frame-oriented and easy to use. Though 

GUESS is built on a smaller scale, it incorporates the ad-

vantages of many earlier shells such as EMYCIN and AGE. An 

attempt has been made in this project to make use of all ad-

vantages of GUESS by recoding ?OMME in the GU2SS framework. 



C:iapter III 

THE KNOWLEDGE i3AS2 AND THE FRAME REPRESENTATION 
OF KNOWLEDGE 

3.1 INTRODUCTION 

Although not suitable for number-crunching, Prolog is an 

ideal language for symbolic manipulation and lends itself 

very credibly to expert systems application. We have written 

POMME in Prolog to make use of its rule-directed abilities. 

The knowledge base of POMME primarily consists of pesti-

cides since they are the most popular means today (as op-

posed to biological control, etc.) to prevent crop damage 

from different pests. The knowledge base also includes some 

non-chemical control techniques. All these techniques are 

broken down into structural primitives for the reasons of 

ease of system control, maintenance and update. System up-

date may be required over a period of time as dictated by 

the Environmental Protection Agency; EPA annually certifies 

chemicals for use in the field. There are many structural 

primitives defined in POMME, and they are used in conj~nc-

tion with each other in Prolog rules. 

The data structures used in POMME are frames. Frames 

irnplemer.ted to bind related information together. This al-

lows the search in a large knowledge base to l:le well-fo-

cussed and makes the execution of the expert system fast. 

16 
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3.2 USE OF PROLOG 

Prolog, a logic programming language, is suitable for 

building expert syste:ns because it embodies the principle 

that 'computation is . ~ 1n .. erence, not just calculation' . It 

also permits a uniformity in representing facts about the 

subject matter of the expert system and the rules that go-

vern these facts. Knowledge representation is made easier by 

the declarative nature of the Pro log rules. Using Pro log, 

the rules that trigger the execution of others can also be 

· programmed with ease. Modifications of data and the deduc-

tion mechanism can be achieved easily due to Prolog's modu-

larity. Virginia Tech Prolog/Lisp (25] was used to build 

POMME, the Pest and Orchard Management Expert System pre-

sented in this thesis. 

Prolog is a lanquage that is always undergoing develop-

ment and hence, is gaining useful extensions. It is more ap-

plicable than LISP for an expert systems application, be-

cause it inherently provides the infra-structure of rules,. 

while for LISP, a programmer has to build his own foundation 

for the interpretation of his rules. 

The normal control structure of Prolog is used to conduct 

an exhaustive depth-first search of the II and/or" goal tres, 

which is the basic structure of POMME's knowledge space. The 

rules encoding agricultural knowledge are divided into four 
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different pa!:""ti tions !:""elevant to the sub-goals pursued by 

the system. Each partition is responsible for solving a 

class of problems such as pests, freeze, frost, and drought, 

where no two classes overlap. 

3.3 STRUCTURAL PRIMITIVES 

POMME' s knowledge base includes a group of pesticides 

(fungicides and insecticides), their properties such as 

rates and compatibilities, and other non-chemical care tech-

niques for the treatments of freeze, frost, drought, etc. 

All of these are controlled by a set of "Structural Primi-

tives." 

A structural primitive can be defined as the smallest 

piece of knowledge. The structural primitives are used to 

specify the logical relationships in the rules. The proper-

ties of structural primitives are: (a) Independence, (b) 

Non-Circularity, and (c) Primitiveness. Independence proper-

ty states that no structural primitive depends on any other 

structural primi ti •re. Non-circularity suggests that no two 

structural primitives can be defined i~ terms of each other. 

Primitiveness means that a structural primi 'ti ve car.not be 

broken down into smaller pieces. 

The structural primitives used in ?OMME can be explained 

as follows: 
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(1) SITE: This refers to the crop. All of POMME's know-

ledge pertains to apples. Future extensions may cover other 

fruit crops such as peaches and grapes. 

(2) TIME OF SPRAY: The sprays in this set correspond to 

the time of the year (and stage of growth on the tree) and 

usually have a gap of seven days between consecutive sprays, 

according to label requirem~nts and expert knowledge. 

( 3) CONTROL: This indicates the type of pesticide. For 

example, fungicides to prevent diseases, insecticides to 

control insects, herbicides to control weeds (not included 

in POMME), etc. 

(4) RATES OF PESTICIDES: This includes spraying rates for 

all pesticides in the knowledge base. There are many ways of 

expressing spray rate such as pounds per hundred gallons, 

ou~ces per hundred gallons, fluid ounces per hundred gal-

lons, pints per hundred gallons, pounds per acre, gallons 

per acre, pints per acre and ounces per acre. 

(5) COMPATIBILITY: Compatibility of all pesticides is ex-

pressed through negative knowledge by encoding all pairs of 

pesticides that are not compatible with each other. These 

pairs are automatically accessed by the system when :nore 

than one pesticides are chosen by the user. 

( 6) CALIBRATION OF SPRAYER: ~,. 
j,,,,{ll s indicates the cu:::-rent 

spraying properties of a given sprayer. ~his information is 

collected interactively from the user by the system. 
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( 7) EXPECTED TEMPERATURE: T!l.i s is the expected 

temperature in the 24 hours after the proposed time of 

spray. It is advised that pesticides not be sprayed when 

temperature is very low (i.e., less then 35F), or very high 

(i.e., more than BSF). 

(8) RELATIVE HUMIDITY: This is the expected relative hum-

idity in the 24 hours after the proposed time of spray. It 

is advised that pesticides not be sprayed when relative hum-

idity is very high (i.e., more than 90%), or rain is expect-

ed. 

(9) RELATIVE TIME: 

(a) The number of hours of wet foliage since the 

first green apple tissue is exposed in the spring. This in-

formation is used in monitoring apple scab disease develop-

ment and prediction. 

(b) 'I'he number of days passed since the last spray 

application. This information is used to determine the resi-

dual effect of a previous pesticide spray. 

(c) The length of wetting periods during the growing 

season. This information is used to predict the timeframe 

and severity for an infection for diseases such as apple 

scab and cedar apple rust. 

(10) CONDI~IONAL TEMPERATURE: 
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(a) The air temperature during the wet period since 

the first green apple tissue is exposed in the spring. This 

information lends itself to determining the infection period 

and is usually used for apple scab. 

(b) The air temperature during the wet periods of the 

growing season. This information is used for monitoring the 

infection periods during late spring, summer and early fall. 

(11) DAMAGE FROM FROST: These are the different types of 

damage that can be sustained from frost. They are used for 

selecting the appropriate method to reduce the crop damage. 

(12) KINDS OF LAND: These are the different types of land 

(aspect) on which an orchard can be established. This know-

ledge is used to select the proper technique of irrigation. 

(13) KINDS OF SOIL: These are the different types of soil 

in the orchard, such as sand, gravel, clay, etc. This know-

ledge is used for determining the appropriate irrigation 

method. 

(14) GENERAL CLIMA~IC REFERENCE: The general climate of 

the region where the orchard is situated. It can be speci-

fied as arid, humid or moderate, a~d is used for find~ng so-

lution to the drought problem. 

(15) CONDITIONS OF WINTER INJURY: There are several kinds 

of winter injury, and they are expressed by various condi-

tions of bark, cambium and wood. This knowledge is used to 

find ways to take care of the trees. 
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(16) DISEASES: The diseases that cause reduction in apple 

production. The set holds following eleven diseases: apple 

scab, cedar apple rust, quince rust, powdery mildew, black 

rot, bitter rot, fly speck, sooty blotch, Brooks' spot, sto-

rage rot and apple scald. 

(17) INSECTS: The insects that can infest apple orchards. 

The set holds following twelve species: San Jose scale, 

aphids, mites, European red mite eggs, leaf ::::-ollers, leaf 

hoppers, red ba!'lded leaf rollers, codling moth, curculio, 

bud moth, green fruitworm and leaf miner. 

All these structural primitives are used together in 

different combinations (with different values) to form Pro-

log rules. An example rule is given in Figure 1. 

This rule invokes the following rules: Block, Cedar-Ap-

ple-Rust, Quince-Rust and Powdery-Mildew. It means that if 

Block BL3 is satisfied AND at least one of the two Rust 

rules is satisfied (i.e., control is desired for one of the 

two rusts) AND the Powdery-Mildew rule is not satisfied 

(i.e., control is not desired for Powdery Mildew), then as-

sert the name of fungicide Mancozeb into the global database 

fer possible use. Blocks are explained in the next section. 



((USE MANCOZEB-80W) IF 
(BLOCK BL3) 
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( OR (CEDAR-RUST) (QUINCE-RUST)) 
( NOT (POWDERY-MILDEW)) 
(ASSERT ((GLOBAL USE MANCOZEB-80W)) )) 

Figure 1: Example of a rule 
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3.4 FRAMES 

Frames (18) are data structures containing associated in-

formation about an object or a concept. Example frames in-

clude concepts such as "birthday party" (cake, kids, fun and 

games, etc.) and "weather" (temperature, relative hu:nidi ty, 

wind speed, wind direction, etc.). A frame may include in-

formation about how to use the frame; it may contain infor-

mation about reasonable ranges of values of attributes and 

the consequences if attributes have unexpected values. 

Frames typically have slots for values to be determined dy-

namically from the user or from deduction. The use of frames 

in POMME is illustrated below. 

The knowledge structure employed by POMME for ~ . ... ocusing 

the Prolog tree search on the g:::-ower' s problem is that of 

'Blocks'. The concept of blocks can be viewed as a declara-

tive interpretation for the frame concept. Aikins [2), re-

ports research on an expert system for lung disease using 

hierarchical frames. In POMME, there are three types of 

blocks: (a) weather blocks, ( b) infection blocks, and ( c) 

facets. A block contains a group of conditions that the sys-

tem tries to satisfy interactively with the help of the 

user. A block may lead hierarchically to another block. 

The infection blocks determine the validity of apple scab 

infection and depend on the number of hours of wet foliage 
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during early spring and the temperat~re during this wet per-

iod. Once the validity of this infection is determined, the 

facets are used to drive the pesticide selection. Facets 

depend on the type of pest control requested and the number 

of days passed since the last spray application. When the 

first block is not satisfied, the Prolog system automatical-

ly searches for another block that fits the data that are 

provided. The search continues unti 1 a suitable block is 

found. 

3.5 EXAMPLE AND EXPLANATION OF BLOCKS 

An example showing the slots and grouping of related 

knowledge in hierarchical blocks is provided in Fig. 2. An 

example showing the implementation of the hierarchy of in-

fection blocks and facets is in Fig. 3. (variables are de-

noted by asterisks and comments are denoted by semi-colons). 

This example shows that when the frame FACET F3 is in-

voked, it checks first to see if eradicative control is re-

quested. Then it invokes the frame INFECTION IN2 which goes 

into its knowledge base to match the corresponding number of 

hours of wet foliage and the air temperature during that wet 

period. If frame INFEC':'ION IN2 is satisfied, the number of 

days passed since the last protective pesticide spray appli-

cation is determined. If this nu~~er is less than 8.5, frame 
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FACET $ INFECTION BLOC:< 

CONTROL NUMBER OF HOURS OF 
WET FOLIAGE 

TYPE OF PRES?ECIFIED RANGE 
INFECTION FOR HOURS PASSED 

DAYS PASSED SINCE TEMPERATURE DURING 
LAST SPRAY WET PERIOD 

PRESPECIFIED RANGE PRES?ECIFIED RANGE 
FOR DAYS PASSED. FOR IEM?~RATURE 

="i.gure 2: Sc~e~~e fa:- :..:r.ple!":le:1~ati·:>n o: ~!"' .. e ,-..; 0 ~:,r-~y of 
blocks 
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( (FACET F3) IF 
(CONTROL ERADICANT) 
(INFECTION IN2) 
; Days passed since last spray application 
(DAYS *C) 
(<= *C 8.5)) 

((INFECTION-BLOCK IN2) IF 
; Number of hours of wet foliage 
(NUMHRS *A) 
(>= *A 30) 
; Temperature during the wet period 
(TEMP *B) 
(>= *B 40) (< *B 42)) 

Figure 3: Hierarchy of blocks 
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FACET F3 is satisfied and is able to drive the selection for 

applicable pesticides. 

POMME keeps track of the questions it asks a user so that 

the question need not be repeated when the system is explor-

ing a part of the knowledge base needing a solution to the 

same problem. For example, when the system fails at 

INFECTION while satisfying a facet block, it does not ask 

the user questions about CONTROL while attempting to satisfy 

the next hypothesized block. 

Blocks are also used in rules that choose the applicable 

pesticides. 'T'" .. nese rules are valid if the blocks are satis-

fied. The design of blocks is such that only one block will 

be satisfied in a given case. This focuses the search for 

applicable pesticides, helps prune the search tree and saves 

time. 

3.6 KNOWLEDGE OF POMME 

The knowledge of POMME is stored in several different 

fashions. Some of the knowledge is stored in assertions, 

some of it is stored in blocks, some of the knowledge is 

represented by functions, while some of it is stored in the 

rules that govern the other three knowledge sources. No at-

tempt has been made to separate the knowledge from the cont-

rolling rules. 
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As mentioned before, the rules control the total struc-

ture of all the knowledge bases. Figure 4 shows the struc-

ture of these knowledge bases, and how they interact with 

each other. 

There are different types of knowledge in the assertions. 

These types correspond to knowledge regarding the rates of 

pesticides, lack of compatibility between pesticides, effi-

cacy ( or efficiency) of insecticides against different in-

sects, etc. Each of these knowledge bases has a different 

format, and a sample of assertions is provided in Figure 5. 

Sections 3. 4 and 3. 5 provide detailed di scussio!'l about 

knowledge stored in blocks. Reference to Figure 3 is sug-

gested for another glance at blocks. 

Functions are used in different places in POMME. Si tua-

tions where use of functions can be found are computing mix-

ing ratios for pesticides to be mixed in spray tank, comput-

i!'lg the number of days before spraying begins against San 

Jose scale, etc. Figure 6 gives sample function.;; used £or 

mixing purposes. 

Rules also are a source of knowledge. Knowledge in rules 

is seen through their power and flexibility to execute in a 

manner suitable to the gathered information. Many different 

examples can be provided here from each subsystem t:o show 

how rules represent k::~owledge. E"igure 7 gives examples of 

rules that are chosen from the San Jose scale subsystem. 
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Rates of pesticides 

(( invpest 

(( invpest 

rnancozeb SOw "Mancozeb BOW" 
(("Mancoieb SOW" lb 6.5) . nil) )) 
cap_thi "Captan and Thirarn" 
(("Captan" lb 5.0) 

("Thiram" lb 3.5). nil))) 

Non-compatibility 

(( dodine_65w rnethomyl )) -----
(( polyrarn_SOw funginex_lS2ec )) 
(( dikar 76 7w phospharnidon )) 

Efficacy of insecticides 

(( control carzol a E )) -----
(( control cygon a G )) -----
(( control diazinon a G )) -----

[Note: "a" stands for Rosy Apple Ahids 
E stands for Excellent 
G stands for Good 

Figure 5: Knowledge stored in Assertions 
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; compute volume of pesticide 

( ( begin4 *a *ac *c (( *p *q *r).*t) if 

unit for the pes~icide is 'pints' 

( == *q pt 

convert it to gallons 

( = *m ( * *ac *r )) 
( = *z ( / *m 8 )) 
( = *n ( + *c *z )) 
( invunit *q *u ) 
( write *p " ---> " *m " " *u ) 
( begin4 *a *ac *n *t) ) 

no more pesticides to be mixed 

( begin2 *ac *c ) if 
( NOT ( adam use *a)) 
( global tank size *x) 
( write "The volume of chemicals=" *c "gallons.") 
( = *y ( - * X *c ) ) 
( write "Water occupies" *y" gallons." ) ) 

Figure 6: Knowledge stored in Functions 
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; check the recently read temperature; if it is 
; in the range 20-100, then assert it and proceed 

( ( cktemp *y *temp *x) if 
( <= *temp 100) 
( > *temp 20) 
( assert ({global temps *y *temp)) ) 
{ = *z ( + *y 1 )) -
{ ask_temps *z *x )) 

if it is out of range, make sure that there is 
no error made in entering the temperature, assert 
the temperature and proceed 

( ( cktemp *y *temp *x) if 
{ OR { > *temp 100 ) 

{ <= *temp 20 )) 
{ app_temp) 
{ assert {{global temps *y *temp)) ) 
{ = *z { + *y 1 )) -
( ask_temps *z *x )) 

; if there is an error, prompt for the same 
temperature 

( ( cktemp *y *temp *x) if 
( OR ( > *temp 100 

( <= *temp 20 )) 
{ NOT ( app temp)) 
( ask temps-*y *x )) 

question to be asked 

{ ( app_temp) if 
( findit app_temp "Is this temperature correct?'')) 

Figure 7: Knowledge in Rules 



Chapter IV 

CAUSAL MODELS FOR ENHANCING EXPERT REASONING 

4.1 INTRODUCTION 

The fundamental factors that react with each other during 

the execution of a process are much more important than the 

average environmental conditions that exist during the 

course of the process. We have developed a causal model of 

apple scab disease that reflects this interaction between 

fundamental factors such as the development of the fungal 

pathogen and reaction of the host. 

A causal model is more precise than the data tables that 

are generally used to determine infection periods. The rea-

son being that tables are created from averages of very few 

variables that represent the environmental conditions af-

fecting the disease process. The causal model is region in-

dependent since these fundamental factors always interact in 

the same fashion. 

The causal model for apple scab implemented in POMME 

shows a second, deeper level of reasoning. It is invoked 

only when the data tables expressed in rules and blocks fail 

to achieve a satisfactory conclusion. 

34 
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4.2 CAUSAL MODEL DEFINITICN 

Human experts typically have fundamental knowledge of 

their domain, including causal knowledge. This causal know-

ledge lets the expert interpolate and extrapolate on the 

state of any process in his or her domain. In the domain of 

this expert system, however, plant physiology and the devel-

opment of diseases constitute that fundamental knowledge. 

We have supplemented the knowledge base of POMME with a 

causal model of apple scab disease. By "causal model" we 

mean knowledge that captures the fundamental factors deter-

mining the course of the disease in a plant (or an entire 

orchard under study). For POMME, this knowledge is derived 

from field studies of the interaction between a host and a 

fungal pathogen. 

The causal model simulates the growth of the pathogen un-

der given conditions and the physiological reaction of the 

host. Simulation is important because it allows the know-

ledge of exceptional conditions to be used in determining 

the progress of a disease. 

Application of the causal model is significant because 

the model is useful in deducing the validity of infection 

for particular rather than average conditions, and in case 

of uncertainty, it can lead the user by asking more specific 

questions and come to a conclusion. The causal model of di-
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sease is applied whenever rules do not cover for the ailment 

of a plant. That is, if the symptoms and the weather condi-

tions do not lead to a diagnosis, then the disease model is 

consulted for a prediction. 

In contrast to disease models of POMME, MYCIN, an expert 

system developed for diagnosis of bacterial infections in 

humans, has a shallow representation of the disease process. 

Rules of MYCIN cannot solve problems not covered by its di-

sease-if-symptoms knowledge base, nor can it account for new 

diseases such as Legionnaire's disease. 

4.3 PROBLEMS WITH DATA TABLES 

Data tables are products of field studies. When field 

studies are reduced to tables, exceptional conditions are 

left out: tables only capture knowledge about "average" con-

ditions. These average conditions, nonetheless, are estab-

lished over a long period of time and are valid for a parti-

cular area (which bears the orchard under study). 

The inherent problem that lies with the averages can be 

seen from the following example. Consider the set S = 

{l,3,5,7}. The average of the values in set Sis 4 which, of 

course, does not belong to the set S. Also, it does not sup-

ply any information about the set S itself. In a case where 

the data points follow a normal distribution (an example in 
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agriculture would be the temperature on a particular day), a 

range containing the average value can be specified to give 

more information about the set. This solution, however, is 

not very accurate because of the non-constancy of variables 

representing the conditions in an orchard. 

Let us expand the given example as it is applied to our 

specific domain of plant diseases. A typical data table is 

formed with columns of 'average' values of temperature and 

corresponding relative humidities with number of hours of 

wet foliage required for a particular infection (e.g. apple 

scab). Now, a situation frequently encountered by a grower 

is that of unmatched columns. The grower may not have the 

temperature that matches the hours of wet foliage, or the 

number of hours of wet foliage to match the relative humidi-

ty or the temperature; and he/she may still wind up with an 

infected orchard. 

It is obvious that if there exist any conditions not cov-

ered by the tables or rules, prediction becomes impossible. 

We propose to use a causal model when the application of 

data tables fails. The data tables are created for superfi-

cial management of diseases and insects. MYCIN, with its di-

sease-if-symptoms cross correlation rules, reflects the 

strength of data tables and thus, shows a superficial know-

ledge of bacterial infections. 
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The advantage of usi!'lg a causal model is evident since 

the data tables contain observatic~s that pertain to specif-

ic geographical regions and a causal model does not differ 

from one geographical region to another. For example, the 

apple scab fungus will always take the same path of develop-

ment in its life cycle even though the data tables required 

for its monitoring will be different in Virginia than in Mi-

chigan or Washington State. 

4.4 EXAMPLE AND EXPLANATION 

Apple scab is the most important disease afflicting ap-

ples, and it exists in all apple producing· parts of the 

world. It affects the apples by reducing the quality of 

fruit, the fruit size and the length of storage time for in-

fected fruits. Other effects include premature fruit drop as 

a result of an infected stem, and defoliation as a result of 

severe leaf infections. 

The symptoms of infection occur on leaves as well as 

fruits. At first, they appear as small, irregular, olive-co-

lored spots on young leaves of the flower buds. Later, these 

spots are turned into lesions that are reore circular in out-

line, metallic black in color and slightly raised. After in-

fection, leaves may become curled and fall off. Because of 

early infection, the fruit may become misshapen and cracked. 
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The lesions on fruit rupture the cuticle of the fruit at 

their margins. 

These symptoms represent the growth of the fungal patho-

gen (Venturia inaequalis) in its life cycle. This life cycle 

is shown in Figure 8. There are different stages in the 

life cycle of this fungus and they are grouped into sexual 

and asexual stages. The sexual stages take the fungus from 

the decaying leaves on the ground to the production of as-

cospores that germinate on the leaves and on the fruits. The 

asexual stages include the formation of conidiophores on the 

leaves and the fruits, and the germination of conidia on the 

leaves and on the C , .._ .._ rui ... s. 

The transcript of an interaction in Figure 9 shows the 

causal model of disease for apple scab in action. Most grow-

ers would need assistance for some of the below-listed ques-

tions. 

When a comparison is made between the interaction above 

and the data table given in Figure 10, it can be seen that 

more variables play a part in the causal model than are in-

cluded in the normal rule knowledge base or in infection ta-

bles [SJ. While determining whether the primary apple scab 

infection has taken place, if conditions put forth (e.g., 

eight hours of wet foliage) do not lead to an exact diagno-

sis, then the causal model is invoked. The causal model 
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##### APPLE SCAB SUBSYSTEM##### 
Have you had a primary apple scab infection? 
yes/no/unknown>>> unknown 

##### DETERMINATION OF PRIMARY SCAB INFECTION##### 
Please enter the number of consecutive hours of wet 
foliage since the infection period began ..... 

>>> 8 

##### ENTER THE CAUSAL MODEL##### 
Please enter the period of year : 

>>> spring 
Have the spores started germinating? 

(Yes/No) >>> no 
Has any leaf or fruit been infected yet? 

(Yes/No) >>> no 
Have the ascospores landed on any tree? 
(Yes/No) >>> no 
Have the ascospores been released into air yet? 
(Yes/No) >>> no 
Are the dead leaves on ground thoroughly soaked? 
(Yes/No) >>> yes 
Are the fruit buds open? 
(Yes/No) >>> yes 
Have the perithecia matured yet? 
(Yes/No) >>> yes 

In this stage, the ascospores are 
released into the air. 

Thoroughly soaked perithecia lead to elongation 
of asci. The asci come out through the ostiole 
and discharge the ascospores into the air. 

Release of these matured ascospores into the 
air is necessary for the next stage. 

The probability of an apple scab infection has 
increased at the conditions you have specified, 
and hence, a protective spray application must 
be made. 

Figure 9: A sample interaction with the causal model 
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represents the life cycle of the apple scab fungus, "Ventu-

ria inaequalis (Cke.) Wint." 8) ' and asks questions 

regarding visual signs depending upon the period of the 

year. The responses given by the user lets POMME determine 

the stage of the fungus in its life cycle. POMME then dis-

plays this stage as well as the conditions that must occur 

for the growth and the progress of the fungus. 

The generalized model of the disease states that there 

are three essential factors for disease development: 

(a) a SU$Ceptible host, 

(b) an environment ideal for the fungus, and 

(c) presence of the pathogen. 

For example, a host is susceptible to apple scab during the 

early period of spring when the fruit buds are immature; an 

environment ideal for the apple scab fungus is the one that 

lacks preventive fungicides (or has fungicides that are ren-

dered ineffective because of rain over a period of time); 

· and the presence of the apple scab fungus is guaranteed when 

the foliage is wet due to rain for over twelve hours at a 

temperature of about 50F (lOC). This model has been enhanced 

by including transformations in the plant and the fungus at 

the cellular level. These transformations include stages 

such as overwintering of the pathogen in dead leaves on the 

ground, ascospore maturation, ascospore germination and con-

idial infection [l]. 
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The st:ages in the life cycle of the fungus Venturia 

inaequalis can be roughly divided according to the season of 

their occurrence. This division is 'rough' because often 

there is an overlap of stages in a given season. The user is 

first asked about the period of the year; this helps in det-

ermining the stage of the fungus in its life cycle since 

there are only a few stages that may be found in a given 

period. The mechanism of backward- li:1.king is used to pin-

point a specific stage. This means that the user is asked 

questions that satisfy the preconditions for a given stage, 

and if the preconditions are not satisfied then the life cy-

cle is traced backward until the resolution is made regard-

ing some stage. When the preconditions are satisfied, a de-

scription of the current stage is also prepared, and with 

this description, further conditions are determined for the 

advancement of the fungus in the life cycle (this advance-

ment is viewed from the disease point) . Examples of rules 

that implement the causal model are given below. 

The top level rule that fires when the causal model is 

invoked is called 'derive'. It calls 'period', which deter-

mines the period of the year, and 'stage', which matches the 

preconditions and determines the current stage and further 

conditions (see Fig. 11). 
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( ( derive ) if ( print " " 11 11 ) 

( print "###ENTER THE CAUSAL MODEL###") 
( print II II II II ) 

( period *p) 
( stage *st *pcf *prenext) 
( *st) 
( *pcf) 
( *prenext) ) 

Figure 11: The DERIVE rule 
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There are ten 'stage' rules that are used for matching 

the seasons and also :or matchir.g the preconditions. One of 

them is provided below; the equivalence statements in the 

rule are used to establish the conditions that are already 

satisfied (*st), the current stage (*pcf), and the condi-

tions that have to be satisfied for the fungus growth 

(*prenext) (see Fig. 12). 
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( ( stage *st *pcf *prenext ) if 
( per stlO ) 
( pre stlO ) 
( -- *st ( stalO )) 
( -- *pcf ( pcflO )) 
( -- *prenext ( prenextlO )) ) 

Figure 12: The STAGE rule 



Chapter V 

ILLUSTRATION AND DISCUSSION OF POMME 

5.1 INTRODUCTION 

POMME is an expert system whose top level is a menu dri-

ven structure. It is divided into various subsystems that 

can be accessed through this menu. The division of the sub-

systems is functional and reflects the goals all subsystems 

are trying to achieve. Some of the s~bsystems start execu-

tion automatically, depending on the user's responses but 

without the user's knowledge, and hence, do not appear on 

the menu. 

The other subsystems can roughly be grouped into two sec-

tions; one for weather-damage recovery subsystems and the 

other for pest management subsystems. The first section 

takes care of winter injury, drought and frost problems, 

while the second section advises on the pesticide selections 

for apple scab, cedar apple rust, San Jose scale, and other 

diseases and insects. 

This chapter also provides a sample interaction that 

shows the working of POMME. 

48 
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5.2 ORGANIZATION OF POMME 

POMME is divided into several subsystems that the user 

can access through a menu. These subsystems are for the 

treatment of apple scab, cedar apple rust, other biotic and 

abiotic (winter injury, drought) diseases, San Jose scale, 

and combinations of insects. 

Apple scab, cedar apple rust and San Jose scale have been 

given more consideration since they are major causes for 

concern in the eastern U. S. apple belt. All of the subsys-

tems are shown in Figure 4. 

A user's access rights are checked when he enters the 

system. As the user proceeds to the menu, he is provided 

with a selection of eight different subsystems and the 

choice of exiting POMME. The chosen subsystem focuses atten-

tion on the given problem. The focusing mechanism used here 

is that of ( 1) hypothesize a solution subgraph from the 

AND/OR knowledge space that corresponds to the chosen sub-

system, (2) conduct an exhaustive depth-first search of this 

subgraph, and (3) if the hypothesized solution is accepta-

ble, then present it, otherwise go back to (1). The subsys-

tem asks specific questions to determine the scope of the 

problem and the range of the solutions. After solving that 

particular problem the user is taken back to the menu sys-

tem. 
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There are two other subsystems that are not mentioned in 

the menu, but work at a lower level and present themselves 

only when appropriate. One such subsystem is the "compati-

bility check" that executes on the non-compatibility know-

ledge base. Whenever a user is trying to solve a pest prob-

lem, POMME determines the selection of applicable pesticides 

and displays these pesticides one-by-one and lets the user 

make a three-way choice: (a) take a look at the next pesti-

cide selection, (b) reserve a particular selection for in-

tended use if the user is satisfied with it, and (c) quit. 

If the user chooses (b), then this subsystem is invoked to 

check the compatibility of this pesticide selection with all 

previously reserved selections. 

The second subsystem is used for determining the mixing 

ratios. After reserving a pesticide selection and checking 

its compatibility, the user is asked if he/she is interested 

in finding out the mixing ratios for all the reserved pesti-

cide selections. POMME gathers the information regarding the 

size of the spray tank and the rate of spraying from the 

user, queries its own knowledge base regarding the rates of 

the reserved pesticides, and returns with the mixing ratios 

of those pesticides, for the given spray tank with known 

spraying rate. 
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5.3 WEATHER-DAMAGE RECOVERY SUBSYSTEMS 

There are three different subsystems that are used for 

recovery from weather damage. These correspond to the con-

trol of damage from frost, drought and freeze (winter inju-

ry). 

When the "freeze" subsystem is chosen by the user ( to 

treat freeze-related ailments), POMME asks questions regard-

ing the state of the tree in the orchard and the weather to 

determine the validity and the extent of the injury, and 

then suggests ways for mending. 

The state of the tree is defined by the condition of cam-

bium, wood ( sapwood and heartwood) and bark, and hence, 

questions regarding these variables are asked of the user. 

This subsystem has a top level rule called 'treat freeze' 

that invokes 'caretake', which finds out the injury to the 

tree, and 'explore', which determines and presents a techni-

que to salvage the tree accordingly. 'Initialize' clears the 

memory before going back to the menu. 'Treat freeze' is giv-

en in Figure 13. 

The structure of this subsystem is shown in Figure 14. 

The "frost" subsyste!n, when selected, determines the 

causes of the damage and then proposes techniques to prevent 

and/or reduce the damage accordingly. 
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( ( treat freeze ) i: ( global choice 1 ) 
( screen) 
( print "###FREEZE SUBSYSTEM###") 
( caretake ) 
( explore ) 
( initialize) 
( menu ) ) 

Figure 13: The TREAT FREEZE rule 
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Suggestions provided by this subsystem depend on various 

factors. These factors are radiation frost, layers of air 

with varying degree of temperature, robustness of trees, ap-

plicability of wind machines, and feasibility of a large 

number of heaters. The top level rule is 'treat frost' (see 

Fig.15), and it invokes 'utilize', which in turn determines 

the solution, and 'present', which presents it. 

The structure of the "frost" subsystem is given in Figure 

16. 

The "drought" subsystem, on the other hand, gathers in-

formation about the geography/topography of the orchard and 

then selects a method for preventing drought damage best 

suited for the particular orchard. Although trickle irrig~-

tion is the most popular method of watering today, it is not 

the best method for all situations. Here, knowledge regard-

ing the proper use of the techniques is indicated. 

'Treat_drought' is the top level rule here (Fig. 17) that 

calls 'make_it', which hypothesizes one solution at a time, 

and accepts or rejects it according to the topography it 

supports (and is presented at a given time). Factors such as 

general climate of the area and capability of soil to hold 

water are also taken into consideration. 

The structure of this subsystem is presented in Figure 

18. 
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( ( treat frost} if ( global choice 2 
( screen} 
( print "###FROST SUBSYSTEM###"} 
(utilize} 
(present} 
( initialize} 
( menu } } 

Figure 15: The TREAT FROST rule 
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) if ( global choice 3 ) 
( screen) 
( print "###DROUGHT 
( make it) 
(prepare) 
( initialize) 
( menu ) ) 

I 
I 
I 

SUBSYSTEM###") I 
I 
I 
I 
I 
I 

Figure 17: The TREAT DROUGHT rule 
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5.4 PEST MANAGEMENT SUBSYSTEMS 

The subsystem devoted to apple scab determines whether 

information regarding the validity of primary infection is 

known, and if it is, whether primary infection has occurred. 

If the information about primary infection is not known, 

POMME determines the validity of primary infection, and from 

its conclusion goes on to predict secondary infection. The 

prediction capability of the system has been discussed in 

the chapter on causal models. ·If, on the other hand, the 

primary infection is known to have occurred, the user is 

taken directly to the prediction section. 

The top level rule is called 'detas'. It invokes 'ask as-

prim' to gain some knowledge of primary infection, and then 

invokes 'detasstage' ( determine apple scab stage) to deter-

mine infection and suggest appropriate fungicides. The top 

level rule is shown in Figure 19. 

The structure of the apple scab subsystem is shown in 

Figure 20. 

The cedar-apple rust subsystem is structured to deter~ine 

the validity and predict the severity· of the infection. A 

severe infection is defined as one that may cause economic 

loss against which a grower should have safety measures; a 

light infection is one that will not occur to a large extent 

and, hence, will not cause economic loss. Regular fungicide 
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( ( detas ) if ( global choice 4) 
( screen) 
( print "###APPLE SCAB SUBSYSTEM###") 
( ask asprim) 
( detasstage ) 
( initialize ) 
( menu ) ) 

Figure 19: The DETAS rule 
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sprays are viewed as a sufficient precautionary measure if a 

light infection is predicted; the prediction is followed by 

a selection of useful fungicides. 

The highest rule that initiates this subsystem is called 

'detcar' (determine cedar apple rust infection). It invokes 

other rules such as 'getmonth' and 'ginfo' to gather rele-

vent information on current month and growth of the apples 

from the user. 'Chktimin' works like a function to deter-

mine the severity of the cedar apple rust infection. 'Spill-

car' presents the advice on fungicides. 

in Figure 21. 

'Detcar' is shown 

The structure of the cedar apple rust subsystem is shown 

in Figure 22. 

The subsystem for San Jose scale collects information 

about time and temperature, and passe 9 it on to its predic-

tion section, where it is used to predict a timeframe during 

which an insecticide should be sprayed in order to prevent 

the insect from causing economic damage to the crop. 

The top level rule here is called 'treat scale'. It in-

vokes 'use_traps' to determine the use of pheromone traps, 

and 'catch male' to determine the activity of the male of 

the species in the orchard area. 'Comp_sc_dd' works like a 

function in determining the timeframe for effective spraying 

against the San Jose scale, while 'take scale' suggests the 

insecticides. 'Treat scale' is shown in Figure 23. 
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( ( detcar) if ( global choice 5 
( screen) 
( print "###CEDA.R APPLE RUST###") 
( getrnonth) 
( ginfo) 
( chktirnin) 
( spillcar) 
( initialize) 
( menu ) ) 

Figure 21: The DETCAR rule 
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( ( treat scale } if ( global cr.oice 6 } 
( screen ) 
( print "###SAN JOSE SCALE###") 
( use_traps ) 
( catch male - ) 
( comp_sc_ dd ) 
( scale _days ) 
( take scale ) 
( initialize ) 
( menu ) ) 

Figure 23: The TREAT SCALE rule 
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The complete structure of this subsystem is provided in 

Figure 24. 

Another subsystem is used to handle the day-to-day prob-

lems faced by growers, including precautionary measures for 

multiple diseases and/or insect combinations. This subsystem 

not only suggests chemical solutions, but also accepts or 

rejects timeframe of spraying depending on the known weather 

forecast. 

The highest rule in this subsystem is called 'pesti-

cidesl' and asks questions regarding the time of the spray 

and the desired control (for example, fungicides, insecti-

cides, or both). Then the subsystem is driven by the rule 

'mixed', which uses information gathered by 'control'. 'Pes-
< 

ticidesl' is given in Figure 26 for examination by the read-

ers. 

The general structure of the rules in this subsystem is 

given in Figure 25. 

5.5 SAMPLE INTERACTIONS 

Some sample interactions with POMME are given below. 

### CEDAR APPLE RUST SUBSYSTEM### 

Please enter the current month 
>>> march 
Have the cedar rust galls reached golf ball stage? 
(yes/no) >>> yes 
Have apple trees reached green-tip? 
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global choice 7 ) 
screen) 
print "###GENERAL 
spray *spray) 
control *control 
mixed ) ) 

I 
I 
I 

PESTICIDES###")! 
I 
I 
I 
I 

Figure 26: 'The PESTICIDESl rule 
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(yes/no) >>> yes 
Please enter the length of wetting period 
(in hours) >>> 15 
Please enter the average temperature during 
the wetting period 
>>> 68 

SEVERE Cedar Apple Rust infection can be 
predicted. Use an eradicative spray as quickly 
as possible in a time-frame with sunshine and 
low humidity. 

Would you like to have any recommendations for 
cedar apple rust? 
(yes/no) >>> yes 

Here are a few fungicides used against cedar apple 
rust---

Bayleton SOW should be used 
1.5-2 oz./100 gal. dilute. 

Please enter <a> for more 
<b> if you choose the selection 
<c> to quit 
>>> a 

Funginex 18.2% EC should be used 
10 fl. oz./100 gal. dilute. 

Please enter <a> for more 
<b> if you choose the selection 
<c> to quit 
>>> a 

Zineb 75W should be used 
2 lb./100 gal. dilute. 

Please enter <a> for more 
<b> if you choose the selection 
<c> to quit 
>>> b 

###SANJOSE SCALE SUBSYSTEM### 

Do you use pheromone traps in your orchard? 
(yes/no) >>> yes 
Have you caught any males in flight so far? 
(yes/no) >>> yes 
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How many days ago did you first catch San Jose 
scale in flight? 
>>> 7 
The average temperatures (in degrees Fahrenheit) 
for these days were ---
1 >>> 68 
2 >>> 67 
3 >>> 70 
4 >>> 63 
5 >>> 59 
6 >>> 58 
7 >>> 71 

The crawler emergence can be estimated to begin 
in 16 days. That will be the right time to spray 
eradicative insecticides. 
This estimation would be more accurate if 
temperature data is supplied for more days. 

Would you like to know about insecticides that can 
be used against scale? 
(yes/no) >>> yes 

Here are a few insecticides 

Chlorpyrifos should be used 
1.0 pt./100 gal. dilute and 
2.5 pt. per acre. 

Please enter <a> for more 
<b> if you choose the selection 
<c> to quit 
>>> a 

Parathion SE should be used 
4.0 oz./100 gal. dilute and 
12.0 oz. per acre, while 
Superior Oil should be used 
2.0 gal./100 gal. dilute and 
6.0 gal. per acre. 

Please enter <a> for more 
<b> if you choose the selection 
<c> to quit 
>>> b 

Are you interested in tank-mix ratio? 
(yes/no) >>> yes 
Spray tank size (in gallons) 
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>>> 100 
Total spraying rate (i~ gallons per acre) 
>>> 250 

Parathion---> 0.3 pounds 
Superior Oil---> 2.4 gallons 
Zineb 75W ---> 2 pounds 
The total volume of the chemicals is 
2.4 gallons. Water occupies 97.6 gallons. 

### FREEZE SUBSYSTEM### 

Is the heartwood darkened to a shiny brown color? 
(yes/no) >>> no 
Is the bark in the crotch area in dead state? 
(yes/no) >>> yes 
Is the cambium in crotch area in dead state? 
(yes/no) >>> yes 
Is the sapwood in crotch area in dead state? 
(yes/no) >>> yes 
Is the tree in a healthy state otherwise? 
(yes/no) >>> no 
Is the bark at or near the ground surface in 
dead state? 
(yes/no) yes 

The tree is suffering from CROWN INJURY. Use 
a 16-16-100 bordeaux mixture spray when buds 
are swelling in spring at the delayed dormant 
stage. 

### GENERAL PESTICIDE SUBSYSTEM### 

Determine the spray needed ---
Enter For 

a first pre-bloom spray 
b second pre-bloom spray 
c third pre-bloom spray 
d fourth pre-bloom spray 
e bloom-period spray 
f petal fall spray 
g 1st cover spray 
h 2nd cover spray 
i 3rd cover spray 
j 4th cover spray 
k 5th cover spray 
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Please enter 
>>> a 

Determine the 
Enter 

a 
b 
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6th cover spray 
7th cover spray 
8th cover spray 
post harvest spray 

the spray 

type of control needed 
For Controlling 

Diseases 
Insects 

c Diseases and Insects 
Please enter the type of control 
>>> a 

What is the expected extreme temperature in the 
24 hours following the proposed time of spray? 
Please enter the low temperature if the high 
temperature is not expected to exceed 85 deg. F. 
>>> 75 
Is the relative humidity expected to stay below 
95% in the next 24 hours? 
(yes/no) >>> yes 
Do you need protection against cedar apple rust? 
(yes/no) >>> yes 
Do you need protection against quince rust? 
(yes/no) >>> no 
Do you need protection against powdery mildew? 
(yes/no) >>> no 

This is the first pre-bloom spray. 
The timing of the first spray is the 
green-tip stage, i.e., when the first 
green tissue shows on the opening buds. 
Here is a list of pesticides you can 
use under the conditions you have 
provided ---

Mancozeb SOW should be used 
2.0 lb./100 gal. dilute and 
6.5 lb. per acre. 

Please enter <a> for more 
<b> if you choose the selection 
<c> to quit 
>>> C 



Chapter VI 

TRANSFER TO GUESS - GENERAL PURPOSE EXPERT 
SYSTEM SHELL 

6.1 INTRODUCTION 

GUESS is an expert system building tool developed at Vir-

ginia Tech. Its knowledge base consists of knowledge tables, 

knowledge trees and knowledge frames and provides for a com-

munication blackboard. The inference strategies in GUESS are 

driven by action frames, programmer-defined functions and 

built-in library routines. 

To make use of all the capabilities of GUESS, POMME was 

reorganized to fit the framework of GUESS. Knowledge stored 

in various different formats (including rules) in POMME was 

channeled into knowledge frames, trees and tables, and was 

separated from the control (represented by rules). The con-

trol was established through action frames and functions. 

As a result of this experiment, new additions were made 

to the library routines of GUESS. Support was also provided 

for new data structures such as causal nets and bi-direc-

tional graphs. Dynamic creation and deletion of trees and 

tables had to be added to the routines of GUESS. POMME re-

ceived features such as natural language support and consis-

tent knowledge representations. 
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6.2 STRUCTURE OF GUESS 

GUESS is a frame-based expert system building tool. It is 

projected that using GUESS's library routines and input/out-

put environment, an expert system can be built with less ef-

fort, in less amount of time and with less problems regard-

ing the modification ( changing the logic or the knowledge 

base) of the system without introducing data errors or logi-

cal inconsistency. GUESS is continually undergoing enhance-

ments. We will describe some background and the structure of 

GUESS before discussing the transfer of POMME to GUESS. 

GUESS has been developed at Virginia Tech by Dr. John 

Roach and Newton Lee (Reference). The design of GUESS ac-

complishes many purposes such as system modularity, data in-

tegrity, data independence, localization of controls, expli-

cit control flows, higher speed of execution and a framework 

for expertise modeling, and they are described below. 

(1) System modularity: Implementation of information 

hiding is achieved and the system is made very adaptable to 

any modifications. 

(2) Data integrity: The data integrity for all data 

bases is achieved through the implementation of a built-in 

security system. 

(3) Data independence: Data independence is achieved 

through the separation of control from data. This permits 
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the modification of logic: without affecting the data, and 

vice versa. 

(4) Localization of controls: By supplying the prop-

erty of readability, the localization of controls can be ac-

hieved since the control can be traced easily. 

(5) Explicit control flows: The behavior of the sys-

tem is made more obvious, predicatable, and hence, easily 

controllable. 

(6) Reasonable speeds of execution: The turn-around 

time and the response time of the system are made relatively 

short. 

( 7) Framework for modeling expertise: This is ac-

hieved by providing a user-friendly, self-sufficient input/ 

output environment for executing expert systems and frame-

based representations of knowledge. 

The knowledge base of GUESS is divided into four parts 

for information storage and communication. These parts are 

(a) knowledge tables, ( b) knowledge trees, ( c) knowledge 

frames, and (d) communication blackboard. 

Knowledge tables are used for storing tabulated informa-

tion. A knowledge table contains a set of tuples grouped to-

gether under a defined relation. Values in a tuple are ac-

cessed by keys defined uniquely in that table. The GUESS 

library routine TABLE_lookup is provided to access data 

stored in a table. 
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Knowledge trees are used for storing knowledge that shows 

natural hierarchy. A knowledge tree is a multi-way tree whe-

re each node contains a piece of a data element. A data ele-

ment can be an atom or a list of atoms. TREE lookup and 

TREE expand are the GUESS library routines provided for ma-

nipulating data stored in trees. 

Knowledge frames represent the knowledge of using and or-

ganizing knowledge stored in knowledge tables and knowledge 

trees as well as related knowledge gathered interactively 

from a user. It is called a frame because it is a data 

structure that contains associated information about an ob-

ject or a concept. A knowledge frame typically has slots for 

values (as suggested by Minsky [18]) determined dynamically 

from the user or from deduction. There are five basic meth-

ods to fill in these slots: (1) looking up a table, (2) 

looking up a tree, (3) asking the user, (4) requesting 

another knowledge frame, and ( 5) using the default value. 

The fourth method listed above reflects the hierarchical 

structure of the knowledge frames. 

The communication blackboard is a global area provided 

for the data communication among different processes. ~hese 

processes include two types of frames, and assume seque~tial 

mode of execution. The blackboard has facilities for dynamic 

update and lookup, and is divided into three segments. The 
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knowledge frame segment stores information obtained by know-

ledge frames, the action frame segment stores information 

obtained by action frames (discussed ahead), and the object 

list segment stores the objects of interest referenced to by 

other processes. 

A classification tuple that includes a security level and 

a category is applied to each knowledge base to implement 

the adapted security policy. The security levels are Top 

secret, Secret, Confidential and Unclassified. The catego-

ries include combinations of Read and Write accesses. 

Action frames and programmer-defined functions are used 

in GUESS with the help of library routines to establish 

problem solving strategies. An action frame represents a 

goal to be accomplished. Actions performed inside an action 

frame are perceived as sub-goals and can be a combination of 

the following: (1) invoke another action frame, (2) invoke a 

knowledge frame, ( 3) invoke a programmer-defined function, 

and (4) invoke a GUESS library routine. Sub-goal (1) above 

reflects the hierarchy of action frames. A programmer is al-

lowed to write his/her own routines to supplement the given 

library routines. These programmer-defined functions can be 

invoked from action frames or other functions. 

The input/output environment is concerned with the pro-

cessing of input strings; this includes tasks such as con-
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version of all characters to upper case, removal of punctua-

tion marks, performing spelling corrections, and so on. It 

is also concerned with providing interactive input/output 

facility. 

6.3 TRANSFERRING POMME TO GUESS 

After thoroughly understanding the frame-oriented capa-

bilities of GUESS, POMME was reformed to suit the framework 

of GUESS. A primary task was that of separating the control 

from data because the original version of POMME was built on 

its knowledge base and no effort was made to keep the con-

trol flow independent of the information. 

Hundreds of rules make up the backbone of POMME's con-

trol. These rules were reorganized and rewritten to meet the 

requirements of GUESS. Some rules were changed into action 

frames, while some were absorbed into knowledge frames and 

programmer-defined functions. 

Action frames of level one represent different goals pur-

sued by the system because they are called by the syntax-se-

mantic action maps corresponding to the queries of the user. 

The new version of POMME has action frames for goals such as 

freeze treatment, drought treatment, determination of rates 

of pesticides, determination of compatibilities, finding 

pests controlled by a certain pesticide, and so on. A sample 
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action frame from the new version of POMME is given in Fig-

ure 27. 

Knowledge tables in POMME represent things such as the 

rates of different pesticides and the uni ts of different 

pesticides. This tabulated information was originally stored 

in a data base that employed a data structure of table with 

lists. A sample knowledge table of POMME is given in Figure 

28. 

A knowledge tree is employed in POMME to store informa-

tion regarding the pesticide use. In the implemented two-

level hierarchy, all the nodes in the upper level are pesti-

cides while the nodes in the lower level are controlled 

pests. A part of this tree is shown in Figure 29. 

Knowledge frames are generally used to gather information 

interactively from the user. A knowledge frame accornodates 

several question-asking rules (from the older version) that 

relate to the same goal. An example of a knowledge frame is 

given in Figure 30. 

While recreating POMME, some functions were defined to 

manipulate the rates of pesticides. These functions were co-

pied in semantic from the previous version, though the GUESS 

syntax was used. A part of a function is given in Figure 31. 

Although the given facilities were able to handle most of 

the tasks, some problems needed more support. These problems 
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( (AF "the mixing ratio") 
-> 

(USAGE "find out the mixing quantities" LEVEL 1) 
(GETALL OBJECT_of_interest *a) 
(listlen *a *x) 
(>= *x 1) 
(KF "spray equipment parameters") 
{BLACKBOARD lookup 

KF is "spray equipment parameters" 
OBJECT is nil 
KEY is tank-size 
VALUE is *sp_t) 

{BLACKBOARD lookup 
KF is "spray equipment paramters" 
OBJECT is nil 
KEY is spray-rate 
VALUE is *sp_r) 

(:= *c 0) 
(print " ") 
(FUNC "start computing ratios" *a *c *sp_t *sp_r) 
(cut) ) 

Figure 27: An action frame 
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( (TABLE "rates of pesticides" UNCLASSIFIED (READ) 
( 

(MANCOZEB-SOW 6.5) 
(DODINE-65W 1.5) 
(POLYRAM-80W 6.5) 
(THIOPHANATE-METHYL-70W 1. 25) 
(CHLORPYRIFOS 2.5) 

(ZOLONE-3EC 16.0) 

) ) 

Figure 28: A knowledge table 
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( (TREE "pesticides and pests" UNCLASSIFIED (READ) 
( 

) ) 

(MANCOZEB-SOW CEDAR-APPLE-RUST internal 
QUINCE-RUST internal) 

(CEDAR-APPLE-RUST nil) 
(QUINCE-RUST nil) 
(DODINE-65W APPLE-SCAB internal) 
(APPLE-SCAB nil) 

(DICHLONE APPLE-SCAB internal) 

Figure 29: A knowledge tree 
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( (KF "topography") 
-> 

(USAGE "find out the topography of orchard" 
LEVEL ANY) 

( or ( ASK user 

I 
I 
I 
I 
I 
I 

qu~stion is "what is the structure of 
object is nil 

land"! 

) 
(cut) 

(cut) 

expect (leveled sloped rolling unknown) 
useless unknown 
answer is *l_a) 

(DEFAULT_of *la is unknown) 

(BLACKBOARD update 
KF is "topography" 
OBJECT is nil 
CONTENT is ( (land *l_a) 

(type *s_a) 
(climate *c_a) 
(distribution *d a) 
(hold *h_a) 

Figure 30: A knowledge frame 
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( (FUNC "step 2 for ratios" *a *b *c *q *r *t *s) 
-> 

(USAGE "step 2 for ratios" LEVEL 2) 
(or (and(== *q pt) 

) 
(cut) ) 

(:= *ac (/ *t *s)) 
(:= *m (* *ac *r)) 
(:=*z(/*m8)) 
(:= *n (+ *c *z)) 
(write *a"----->" *m" pints.") 
(FUNC "start computing ratios" *b *n *t *s) 

Figure 31: A function 
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include manipulation of lists and implementation of the cau-

sal model. These problems were solved by supporting causal 

nets and graphs, and providing new list manipulation rout-

ines. 

6.4 REMARKS 

Transporting POMME to an expert system shell such as 

GUESS was a good exercise because it increased the applica-

bility of POMME. As control and data were separated from 

each other, it became more obvious that POMME could be moved 

to any shell for testing the shell or POMME. 

The most important task of knowledge engineering had been 

completed since POMME was already developed before this pro-

ject began. Thus, the problem of testing the applicability 

(especially, the ease of use) of. GUESS on a completely new 

venture still remains to be solved. 

This transfer gave POMME some very important features. 

These features are a new format for knowledge representa-

tion, independence of control from data to aid in updating 

POMME, and a desired natural language capability. For GUESS 

also, this project brought some advancements as new features 

increasing its applicability were added to it. 



Chapter VI I 

CONCLUSIONS 

Agricultural products are grown throughout the world whe-

re growers need expert advice. Extension specialists typi-

cally provide individual consultations when possible. On an 

international scale, however, expert advice is limited be-

cause of the small number of experts available. Construction 

of computerized tools could help alleviate the problem of 

disseminating expert advice. The work reported here has been 

aimed at providing expert level guidance for maintaining ap-

ple orchards in remote areas. Apples are a valuable crop; 

the cash value of apples in the state of Virginia for 1984 

alone was forty-eight million dollars. 

Experts in plant pathology and entomology, who have 

closely watched the development of the system and have run 

trial cases on it, have testified to the accuracy of the 

system and agree that the system, when made accessible to 

the growers, will considerably reduce their workload. 

Although trial cases have been run on POMME, true valida-

tion of POMME by growers and extension agents in the state 

has not been carried out because of some technical difficul-

ties. The major roadblock is that of allowing growers and 

extension agents to access POMME. POMME currently resides on 
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a VAX 11/780 that is marked for research by the department 

of Computer Science, while extension agents and growers are 

generally permitted to access data bases on the IBM 370 on 

campus. Distribution of POMME on diskettes is ruled out be-

cause of POMME's size (the current executable code alone oc-

cupies over 250 KB of memory), and the problem of updating 

the system. 

POMME is an expert system because it captures the know-

ledge of experts: plant pathologists, entomologists and 

others. POMME's ability to diagnose, predict infections and 

suggest solutions or pesticides shows expert care of orch-

ards. Care has been taken to construct a system that orchard 

growers will find friendly and easy to use. 

Prolog has been used to build POMME. This effort proves 

that Prolog is suitable for expert system application. The 

current system has well over five hundred rules and has 

reached a stage where it can be made accessible to the apple 

growers. 

Breaking down the knowledge base into various structural 

primitives has proved to be a very helpful strategy in main-

taining and updating POMME from time to time. Application of 

frames makes it easy to manage the grouped knowledge and fo-

cus the tree search. Dynamic creation and destruction of 

frames is an important area that could be looked into as 

further research. 
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Causal model application has been successful in 

determining the stage of growth in the life cycle of apple 

scab fungus. POMME makes an advance in expert system con-

struction because it incorporates a causal model of disease 

not present in medical systems such as MYCIN. The model used 

here concerns itself with a well-defined process that has 

been studied for a number of years. Extension of the causal 

model concept will have an impact on determining which model 

an expert will choose under given conditions. Future re-

search may involve causality as a function in modeling ex-

pertise. 

Transferring POMME to the framework of GUESS has been an 

important project for POMME as well as for GUESS. It in-

creased POMME' s ability to modify and to incorporate new 

knowledge easily. POMME was also supplemented with natural 

language capability through this project. Many additions 

were implemented on GUESS as a result of this transfer. 

These improvements increased the applicability of GUESS. 

Future work on POMME may include adding specific apple 

varieties, their uses, and eventually, extension to other 

crops. Dissemination of expert level knowledge to farmers 

will increase the quality of agriculture in the United 

States. POMME is one of the first of a new kind of computer 

program that will aid growers in the future. Expert systems 
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will realize the promise of revolutionizing the care of 

crops and farms. 
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