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Configurable Architecture for System-Level Prototyping of High-Speed Embedded 

Wireless Communication Systems 
 

Visvanathan Subramanian 
 

(ABSTRACT) 
 
 

Broadband wireless technologies have the potential to provide integrated data and 

multimedia services in several niche areas. There is a growing need to develop high-

performance communication systems that can satisfy high-end data processing 

requirements inherent in these technologies.  The speed and complexity of these systems 

necessitates designers to break away from traditional architectures and design 

methodologies. A more comprehensive and demanding design and verification process 

including both hardware and software is required. Field-programmable gate arrays 

(FPGA) offer an attractive alternative to the low efficiency of Digital Signal Processor 

(DSP) based systems and low flexibility of Application Specific Integrated Circuits 

(ASIC). The availability of high-density, high-performance field-programmable gate 

arrays with several capabilities, like embedded memory and advanced routing, together 

with the adaptability that they offer make them highly desirable for developing hardware 

prototypes of communication systems.  

 

This thesis describes the development of a configurable architecture and FPGA-

based design methodology used in the development of a Local Multipoint Distribution 

Service (LMDS) gateway for a disaster response network. The design of the gateway 

posed several challenges due to high data rates (120 Mbits/sec) and adaptive features like 

variable Forward Error Correction Coding and optional link-level retransmissions. The 

design decisions and simulation results of the verification process are discussed in detail. 

Finally, the aspects of testing and integration of the prototype in the overall system are 

discussed. 



iii 

 

 

 

 

 

Dedication 
 

To my parents and all my teachers  



iv 

Acknowledgements 
 

 

A number of individuals deserve recognition for their role in helping me complete this 

thesis. I would like to acknowledge and offer my gratitude to all of them for their 

constant support and encouragement throughout this process. 

 

To my parents, S.V. Subramanian and Gowri Subramanian, who persuasively encouraged 

me to follow my dreams and aspirations and who bolstered my confidence, during the 

various highs and lows I encountered. For their prayers and blessings, I am eternally 

grateful. 

 

To my Advisor, Dr. Joseph Tront, who afforded me vast amounts of time and latitude 

while completing my studies. I am grateful for his direction and sage advice without 

which this work would not have been possible.  

 

To Dr. Charles Bostian and Dr. Scott Midkiff, for their guidance, support and faith in me 

to complete this work.  

 

To the Center for Wireless Telecommunications (CWT), Virginia Tech for the 

assistantship and support, that enabled me to complete my research and study at Virginia 

Tech. To the CWT faculty, staff and graduate researchers, for their valuable inputs and 

suggestions. I would like to gratefully acknowledge the grant from the National Science 

Foundation (Award #9983463) that made this research possible.  

 

To Lockheed Martin Global Telecommunications (LMGT), and ADI Engineering for the 

technical input and support, during various phases of the design. 

 

To my friends and family, for their constant love and support. 



v 

Table of Contents 
 

CHAPTER 1 ...................................................................................................................... 1 
 Introduction............................................................................................................... 1 

1.1 Overview............................................................................................................. 1 
1.2 Communication Systems Design Challenges ..................................................... 2 
1.3 Research Goals.................................................................................................... 3 
1.4 Application.......................................................................................................... 4 
1.5 Thesis Organization ............................................................................................ 4 

CHAPTER 2 ...................................................................................................................... 6 
 Informal Specification of System Requirements .................................................... 6 

2.1 Overview............................................................................................................. 6 
2.2 Disaster Response Communications ................................................................... 6 

2.2.1 Prototype Network ...................................................................................... 8 
2.2.2 System Components.................................................................................... 9 
2.2.3 Multiple Access Scheme ........................................................................... 11 

2.3 Informal Specifications Summary for the LMDS Gateway Controller ............ 14 
CHAPTER 3 .................................................................................................................... 17 
 Design Methodology for Wireless Embedded Systems ........................................ 17 

3.1 Overview........................................................................................................... 17 
3.2 Relating Abstract Specifications to Implementation ........................................ 17 
3.3 System-level Design Methodologies ................................................................ 18 

3.3.1 Platform-based Design.............................................................................. 18 
3.3.2 Platform-based Design Terminology........................................................ 19 
3.3.3 Platform-based Design Methodology ....................................................... 20 

3.4 Configurable Platform Design Flow for Gateway Controller........................... 21 
3.4.1 Functional Profiling of Gateway Controller ............................................. 21 
3.4.2 Architectural Exploration.......................................................................... 23 
3.4.3 Mapping .................................................................................................... 25 

3.5 Summary........................................................................................................... 28 
CHAPTER 4 .................................................................................................................... 29 
 Gateway Controller Implementation.................................................................... 29 

4.1 Overview........................................................................................................... 29 
4.2 Gateway Controller Hardware Implementation................................................ 29 

4.2.1 Microprocessor Subsystem ....................................................................... 30 
4.2.2 FPGA Co-processor .................................................................................. 31 

4.2.2.1 Transmit Process Flow Overview......................................................... 33 
4.2.2.2 Receive Process Flow Overview........................................................... 35 

4.2.3 Forward Error Correction CODECs ......................................................... 35 
4.2.3.1 Reed-Solomon CODECs ...................................................................... 36 
4.2.3.2 Turbo Product Code CODECs.............................................................. 37 

4.2.4 External Dual-port SRAM ........................................................................ 39 
4.2.5 Network and I/O interfaces....................................................................... 39 

4.3 Software Platform ............................................................................................. 41 
4.3.1 Real-time Operating System..................................................................... 41 
4.3.2 Device Drivers .......................................................................................... 41 



vi 

4.3.3 Software development tools...................................................................... 42 
4.3.4 In-circuit Debug Environment .................................................................. 42 
4.3.5 Board support package.............................................................................. 43 

4.4 Gateway Controller Application Software Modules......................................... 43 
4.4.1 Transmit Process Software Modules ........................................................ 43 

4.4.1.1 Algorithm for Ethernet Segmentation and LMDS MAC Data Payload 
formation 43 
4.4.1.2 Algorithm for LMDS MAC Header formation..................................... 47 
4.4.1.3 LMDS PHY Transmission Scheduler................................................... 49 

4.4.2 Receive Process Modules.......................................................................... 51 
4.4.2.1 Algorithm for LMDS PHY Receive Control Process ........................... 51 
4.4.2.2 Algorithm for LMDS MAC Header Decoding Process........................ 53 
4.4.2.3 Algorithm for Ethernet Re-assembly and Payload Decoding process .. 53 

4.5 Summary........................................................................................................... 54 
CHAPTER 5 .................................................................................................................... 55 
 Hardware and Software Testing ............................................................................ 55 

5.1 Hardware Design Verification.......................................................................... 55 
5.1.1 VHDL Behavioral Description ................................................................. 56 
5.1.2 VHDL Behavioral Simulation .................................................................. 56 

5.1.2.1 Simulation of Embedded memory Interactions .................................... 56 
5.1.2.2 Simulation of External Interfaces ......................................................... 58 
5.1.2.3 Simulation of Processor Interactions .................................................... 63 

5.1.3 FPGA synthesis environment ................................................................... 65 
5.1.4 Post-synthesis Timing Simulation ............................................................ 68 

5.2 Software Design Verification............................................................................ 71 
5.3 Loop-back Testing ............................................................................................ 71 
5.4 System Integration and Trials ........................................................................... 72 
5.5 Summary........................................................................................................... 72 

CHAPTER 6 .................................................................................................................... 73 
 Conclusions and Future Work ............................................................................... 73 

6.1 Conclusions ....................................................................................................... 73 
6.2 Contributions ..................................................................................................... 74 
6.3 Current Status and Future work ........................................................................ 74 

Bibliography .................................................................................................................... 76 
APPENDIX A.................................................................................................................. 79 
A. Gateway-Sounder Interface ...................................................................................... 79 

A.1 Sounder Interface ................................................................................................... 79 
A.2 Modem – Sounder Synchronization....................................................................... 79 
A.3 Interface between the Sounder Transmitter and Hub Modem Controller.............. 80 
A.4 Interface between the Sounder Receiver and Remote Gateway. ........................... 80 

APPENDIX B .................................................................................................................. 82 
B. FPGA Logic Blocks .................................................................................................... 82 

B.1 FPGA Target .......................................................................................................... 82 
B.2 FPGA Design Environment ................................................................................... 82 
B.3 FPGA Logic ........................................................................................................... 82 

B.3.1 Transmit Path Modules ................................................................................... 83 



vii 

B.3.1.1 DMA1 ................................................................................................... 83 
B.3.1.2 DMA2 ................................................................................................... 85 
B.3.1.3 Modulator Interface (MODIF).............................................................. 86 

B.3.2 Receive Path Modules ..................................................................................... 87 
B.3.2.1 Demodulator Interface (DEMODIF) .................................................... 87 
B.3.2.2 DMA4 ................................................................................................... 87 
B.3.2.3 DMA3 ................................................................................................... 88 
B.3.2.4 DMA3o ................................................................................................. 88 

B.3.3 External SRAM Port Arbiter ........................................................................... 91 
B.3.4 Microprocessor Interface................................................................................. 92 
B.3.5 Timing Control................................................................................................ 92 

 



viii 

List of Figures 
 

Figure 2.1 High- level Overview of CWT LMDS Disaster Response System.................... 8 
Figure 2.2 CWT LMDS Disaster Response System: Hub/Remote Unit Components ..... 11 
Figure 2.3 Frequency Division for Hub and Remote Transmission Units ....................... 12 
Figure 2.4 TDMA Data Frame Format [7] ....................................................................... 13 
Figure 2.5 TDMA Super Frame Format [7]...................................................................... 13 
Figure 3.1 Platform-based system design methodology ................................................... 20 
Figure 3.2 Functional blocks in transmit path of the Gateway Controller........................ 22 
Figure 3.3 Functional blocks on the receive path of the Gateway Controller .................. 23 
Figure 3.4 Design B: General purpose processor and FPGA Co-processor ..................... 26 
Figure 3.5 Design C: featuring a memory-centric architecture ........................................ 26 
Figure 4.1Gateway Hardware Computational Resources ................................................. 30 
Figure 4.2  Motorola MPC8255 Power Quicc II Communications Platform Block 

Diagram [13]............................................................................................................. 31 
Figure 4.3 Virtex FPGA Family Architecture .................................................................. 32 
Figure 4.4 FPGA logic - process flow overview .............................................................. 33 
Figure 4.5 TPC Encoder Block Diagram.......................................................................... 38 
Figure 4.6 TPC Decoder Block Diagram.......................................................................... 39 
Figure 4.7 Software Platform Components ...................................................................... 40 
Figure 4.9 Ethernet Packet Receive FIFO in SDRAM ..................................................... 44 
Figure 4.10 Ethernet Frame Fragment Header (EFFH) Format ....................................... 45 
Figure 4.11 LMDS MAC Header ..................................................................................... 47 
Figure 5.1  Hardware Verification steps after each design stage...................................... 55 
Figure 5.2 Simulation waveform view of “Memory Read” with memory models (1 of 2)

................................................................................................................................... 59 
Figure 5.3 Simulation waveform view of “Memory Read” with memory models (2 of 2)

................................................................................................................................... 60 
Figure 5.4 Simulation waveform view of external FPGA interfaces................................ 62 
Figure 5.5 Simulation Waveform View of DMA processor interface and IRQs.............. 64 
Figure 5.6 Synplify synthesis tool .................................................................................... 65 
Figure 5.7 Xilinx ISE Tool performs P&R and generates several reports........................ 66 
Figure 5.8 Xilinx Timing Analyzer Tool screen view - Constraint Compliance.............. 70 
Figure 5.9 Xilinx Timing Analyzer screen view - Timing Errors Summary.................... 71 
Figure A.1 Sounder Transmitter and Hub Modem Controller Interface. ......................... 80 
Figure A.2 Sounder Receiver and Hub Modem Controller Interface. .............................. 81 
Figure B.1 DMA1 State Transition Diagram.................................................................... 84 
Figure B.2 DMA2 State Transition Diagram.................................................................... 85 
Figure B.3 State transition diagram for Modulator Interface ........................................... 86 
Figure B.4 DMA3 State Transition Diagram.................................................................... 89 
Figure B.5 DMA3o State Transition Diagram.................................................................. 90 
Figure B.6 Fair Bus Arbiter for External Dual-port Memory Port ................................... 91 

 



ix 

List of Tables 
 

Table 4.1 Maximum size of data payload ......................................................................... 44 
Table 4.2 Information Required by LMDS MAC Header Formation Process ................. 47 
Table 4.3 Maximum size of data payload ......................................................................... 52 
Table 5.1 Xilinx Mapping Report File summary for design............................................. 68 
Table 5.2 Summary of Verbose Timing Report generated by Trace utility ..................... 69 
Table A.1 Sounder transmitter interface options .............................................................. 80 

 



1 

CHAPTER 1 

 Introduction 
 

 

1.1 Overview 
 

The wireless market place has tremendous growth potential and huge demand for 

solutions as users are discovering that wireless appliances contain increasing 

functionality that makes their jobs and their lives easier. These wireless devices are 

becoming more like true computing platforms that run applications, including Internet 

access, e-mail, multimedia messaging, synchronizing calendars over wireless networks, 

gaming and downloading music. This call for break-through products requires wireless 

system designers to remain at the forefront of technology and convert these expectations 

into reality.  

 

The expanding wireless application space is raising device performance 

requirements, as large streams of voice, data, audio and video need to be processed on 

wireless communication devices. To boost revenues, service providers are also rushing to 

offer more data/application services on wireless devices, e.g., video services are now 

offered on cell phones. To meet the demand for ubiquitous Internet access and the ability 

to access and share information from anywhere, at any time, wireless appliances and the 

supporting networking infrastructure must be equipped with adequate computing and 

signal processing capabilities. For example, third-generation (3G) cell-phone handsets are 

estimated to require several thousands of MIPS of signal-processing horsepower, just to 

capture a signal and extract data packets from it. Increasingly, wireless terminals require 

signal-processing services not just to receive the packets but to act on the payload as well. 

For instance, broadband wireless data networking generally includes forward error 

correction (FEC) and encryption, which requires high-speed data manipulation at both 

ends of the wireless channel. The wide range of signal processing requirements - from 

simple cyclic redundancy checks (CRC) to complex CODECs – can be realized using a 

wide range of implementations from just software to optimized system-on-chip solutions. 
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The signal processing demands are only bound to increase into the future. To fully realize 

the wireless market’s growth potential, wireless system designers need to employ 

emerging technologies that can enable innovative solutions while addressing the 

concomitant issues and risks.  

 

1.2 Communication Systems Design Challenges 
 

Wireless transmission is inherently limited by the available spectrum and impaired by 

path loss, interference, multi-path propagation, which all leads to potential problems like 

delay spread and fading. Consequently, designers of broadband wireless communication 

systems face several intricate issues related to access mechanisms, error rates, 

transmission rates and bandwidth. These challenges are further compounded in the case 

of fixed broadband wireless designs where the influence of wind, vehicular traffic, and 

foliage make for a hostile fading environment [1]. Therefore, the first major challenge is 

to design a wireless link in a fading environment to look like a wire line link so as to 

provide the same or similar quality of service as other competing broadband wired 

technologies. 

 

 An end-to-end approach to error control used in wired networks that ensures 

reliability by mechanisms in the end systems may not be suitable for their wireless 

counterparts. The unsuitability of the end-to-end approach stems from the fact that the 

unreliability of the media in wireless communications is the major cause for dropped 

packets, whereas congestion accounts for most of the packet losses in the wired domain. 

Instead, error recovery mechanisms such as FEC and automatic repeat request (ARQ) are 

used to guarantee reliability in the traversed wireless links. This solution adds additional 

complexity and computational workload to the designs.  

 

The second major challenge is at the Medium Access Control (MAC) layer, where it 

is crucial that future MACs support sophisticated physical layer techniques such as 

adaptive modulation and coding or spatial multiplexing. The adaptive techniques thrust 

significant processing workload on the system implementations. 
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In general, wireless designs offer greater challenges than wired systems. Next-

generation broadband wireless communication applications incorporate several features 

such as high-speed, large-bandwidth network and radio interfaces, complex digital blocks 

that implement multi-layer protocols, and significant amounts of embedded memory. 

High-level protocol descriptions have to be rapidly translated into hardware and software 

that realize the system. Rapid advances in process technology give us the ability, at least 

in theory, to design ever more complex communication systems capable of operating at 

higher speeds. But the design complexities, in conjunction with more involved device 

models that these processes require, create a design crisis where the development cycles 

and iteration times consume more and more effort and time. The designs push the limits 

of current EDA tools and a radical design flow throughput is needed to verify the design 

early in the design process. A thorough test and verification process to achieve timing 

closure and signal integrity must be completed within shrinking time-to-market windows. 

Moreover, the system design must be capable of adapting to late changes in specification 

or emerging standards so as to reduce the risk of costly hardware and software redesigns. 

A design strategy to meet these needs will be described in this thesis. 

 

1.3 Research Goals  
 

The primary goal of this work is to identify and explore configurable architectures 

that aid in rapid system-level prototyping of embedded wireless communication systems 

and is also suitable in the context of modern system level design methodologies. The 

intention here is to tradeoff some measure of density and performance to achieve 

reasonable design times and rapid system level prototyping. Implementation options with 

a high degree of adaptability that allows alterations even late into the design process are 

studied. Configurable devices like FPGAs are the basis for flexibility. Tolerance to 

modifications makes FPGAs highly desirable for developing hardware prototypes or 

marketable products for communication systems. Another implementation option that is 

explored is the trend of moving away from using general-purpose processors [2] in favor 

of custom processors or configurable system-on-chips (SOC). The custom solutions are 
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usually optimized towards a particular domain or constraint, for example, network 

processors for network router applications or low power processors for handheld devices.  

 

Besides exploring the design space, an attempt is made to identify elements of the 

architecture space that are suitable for wireless communication design. In particular, a 

hybrid memory-centric re-configurable architecture is described combining traditional 

field-programmable gate array (FPGA) for low-level network protocols with domain 

specific processors for higher-level packet processing. The architecture offers greater 

design flexibility by simplifying interfaces and allowing the integration of heterogeneous 

hardware blocks. 

 

1.4 Application 
 

This work focuses on the architecture and design of the Gateway Controller for a 

high-speed Local Multi-point Distribution Service (LMDS) broadband wireless 

communication system to aid in emergency response and management. The system is 

described in detail in Chapter 2. 

 

1.5 Thesis Organization 
 

Chapter 2 introduces the concept of disaster response communications. It also 

provides an overview of the rapidly deployable disaster response communication system 

developed by Virginia Tech’s Center for Wireless Telecommunications, in partnership 

with Science Applications International Corporation (SAIC). It then examines the 

components of the system and discusses some of its interesting features. 

 

Chapter 3 addresses the issues for developing the system architecture by examining 

the existing and emerging system design methodologies. It also outlines the architectural 

design space for these systems and describes the design decisions and tradeoffs that were 

encountered. 
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Chapter 4 explains the hardware and software implementation of the design. The 

components of the hardware and software platforms are presented. 

 

Chapter 5 explains the verification, integration and validation of the design. Very 

High Speed Integrated Circuit Hardware Description Language (VHDL) simulation 

results used to verify the hardware implementation early in the design process are 

presented. 

 

Chapter 6 summarizes and concludes the thesis with recommendations for future 

research in this area. 
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CHAPTER 2 

 Informal Specification of System 
Requirements 

 

2.1 Overview 
 

Before embarking on an embedded wireless system design, we begin by examining 

the system requirements for a Local Multi-point Distribution Service (LMDS) broadband 

wireless communication system for disaster response communications. This chapter 

introduces the LMDS disaster response Gateway Controller and the application area of 

this research work, viz., disaster response communications. The intention is to acquaint 

the reader with the disaster response system developed at the Center for Wireless 

Telecommunications (CWT) at Virginia Tech for which the Gateway Controller is being 

designed. This is necessary to identify a set of services and applications that are to be 

supported and also gives an idea of the complexity and problem areas that must be 

addressed during the design. 

 

2.2 Disaster Response Communications 
 

Existing disaster response communications support primarily focuses on voice. 

However, data connectivity is rapidly becoming crucial because of the dependence on 

information technology (IT) based infrastructure integrated into modern disaster response 

systems. Broadband wireless communication technologies have the potential to provide 

the bandwidth necessary to support voice, data and video applications and content that 

are being developed for disaster response. Besides providing high-speed connectivity, the 

system must also be suitable for rapid deployment and remain robust even in adverse 

environmental conditions. 

 

First responders to disasters, both man-made and natural, must be able to gather 

critical data and disseminate it using robust means. It is imperative that decision makers 

be able to request and receive this critical data, so that they may appropriately shape the 
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nature and scale of the disaster response. The field responders would also benefit from 

the knowledge base of archived information about the disaster area available on public or 

agency networks. For example, firefighters responding to a disaster can use Geographical 

Information Systems (GIS) based applications to find the location of fire hydrants that 

may be concealed in the rubble. The applications and possibilities are innumerable. It is, 

therefore, no wonder that governments at all levels are trying to infuse the latest 

information technology (IT) and telecommunications technologies into disaster response 

and management procedures.  

 

As the emergency responders’ reliance on IT-based infrastructure increases, 

providing the means to access this infrastructure becomes significant in organizing an 

effective response. However, ensuring this access is almost always a challenge because 

the existing infrastructure is usually rendered useless or the disaster may take place in an 

area where there was no infrastructure to begin with. To tackle this problem, researchers 

at CWT have been collaborating with industry partner Science Applications International 

Corporation to develop a rapidly deployable wireless communication system for 

emergency response [3, 4]. For a fully functional communications system, three levels of 

hierarchy need to be addressed: (i) local connectivity, e.g., using wired and wireless local 

area network (LAN) technology; (ii) backbone or backhaul connectivity; and (iii) wide 

area network (WAN) connectivity in the form of the global Internet or a private network 

[5]. The system focuses on the second level and is intended to provide a 120-Mbps 

backbone network to link a hub and up to eight remote Disaster Response Gateway 

(DRG) units (or simply a “Gateway” unit). The hub DRG can use surviving network 

infrastructure at the periphery of the disaster area or use a satellite earth station to provide 

a link to the outside world. Alternately, the system can also be used to create localized 

networks within the disaster area. The field DRG units can provide wired Ethernet or 

wireless local area network access to portable or laptop computers as well as other 

network enabled devices like hand-held devices, web cameras or voice-over-IP (VoIP) 

phones. 
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2.2.1 Prototype Network  

 

The network topology, shown in Figure 2.1, consists of a base station (or hub) and 

multiple field Gateway units (or remotes) that are connected to each other by a LMDS 

wireless backbone. The prototype network that is being deployed will consist of a hub 

and from two to eight remotes. Each hub and remote Gateway performs network services 

such as routing. The backbone network is functionally equivalent to a network bridge. 

For example, consider that the hub is connected by a 10/100-Mbps Ethernet connection to 

the external WAN network and a remote unit is connected to the end host through a 

10/100-Mbps Ethernet connection. Then the LMDS backbone network essentially serves 

as a virtual Ethernet bridge, i.e., Ethernet packets coming in and Ethernet packets going 

out of the backbone network. 

 

Figure 2.1 High-level Overview of CWT LMDS Disaster Response System 
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The hub uses a high data rate connection such as 10/100-Mbps Fast Ethernet or a 

SONET STS-3 connection to access a wide area network. The WAN connection may be 

made through the surviving terrestrial network infrastructure. In cases of severe damage 

or absence of any previous network infrastructure, satellite-based network access points 

can be used. The remotes can be scattered across the disaster area to serve a radius of up 

to 5 km from the hub. The remotes can provide personal digital assistants (PDA) or 

laptops, carried by field personnel, with LAN services ranging from 10/100-Mbps 

Ethernet to IEEE 802.11 wireless connectivity. Thus, end hosts can access the network 

servers and applications such as Geographic information system (GIS) on the wide area 

network using the LMDS wireless backbone. 

 

 

2.2.2 System Components 

 

Besides providing a high data rate “pipe” for deploying new disaster response 

applications, the system developed at CWT features several innovations that aid the rapid 

deployment and robust operation of a disaster response communication system. A 

broadband channel sounder [6] is integrated into the hub and field units to allow 

measurement of channel characteristics. Information from the sounder can be used to 

optimize the final placement of the hub and field units. Along with a suite of GIS tools, 

the sounder can be used to enable the system to be quickly and reliably deployed. Since 

the network will be used as a communication backbone during disaster situations and 

since it must maintain communications with possibly varying channel conditions, the 

network should use an adaptive scheme to improve Transport Control Potocol/Internet 

Protocol (TCP/IP) performance. The adaptive data link protocol, described in Section 

2.2.3, adjusts error coding and error recovery schemes during operation. Sounder 

information may also be used to adjust link configuration based on observed channel 

conditions, thus making the system more robust to sub-optimal deployment and a 

changing environment. 
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The disaster response system consists of a hub Gateway and multiple remote 

Gateway units. The hub and remote units are identical except for the way they are 

programmed. The hub units are programmed to transmit during all time slots whereas the 

remote units are programmed to follow the multiple-access scheme. 

 

 Each unit, as shown in Figure 2.2, contains the following subsystems.  

 

1. Gateway Controller subsystem: The gateway controller subsystem forms the 

core of the disaster response system. The subsystem consists of the LMDS 

Gateway Controller and three other modules – Quadrature Phase Shift Key 

(QPSK) Modulator, QPSK Demodulator-Digital, and QPSK Demodulator-

Analog. The QPSK Modulator and the two QPSK Demodulators are 

collectively referred to as the QPSK Modem. The QPSK modem is a 

commercial satellite modem that has been adapted to use for terrestrial LMDS. 

The LMDS Gateway Controller design and implementation forms the focus of 

this work. 

 

2. Radio subsystem: The radio subsystem consists of the 28-GHz LMDS band 

radios and antenna components.  The LMDS radios up-convert the intermediate 

frequency (IF) output (400 MHz) of the QPSK modems to the LMDS band for 

transmission.  

 

3. Sounder subsystem: The Sampling Swept Time Delay Short Pulse (SSTDSP) 

Sounder (or Sounder) is a novel channel measurement tool that can be used to 

profile the channel performance in real time [6].  

 

4. Host computer: The Host computer provides an interface to the Gateway 

Controller and Sounder. It contains GIS and Sounder control software that can 

aid in reliable and rapid deployment of the remote units. The Host computer 

also interfaces to the Gateway Controller using a standard serial interface that 

allows the Gateway Controller monitor software to modify system parameters, 
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such as FEC levels and ARQ, based on Sounder data. The Gateway Controller 

monitor software can also be used to obtain statistics on the error rates, data 

rates, etc. from the Gateway Controller through a formalized command set. 

 

 

 

 

Figure 2.2 CWT LMDS Disaster Response System: Hub/Remote Unit Components 
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remotes can transmit to the hub on the “uplink” frequency (fu) based on a TDMA scheme 

[7]. Each remote is assigned a statically allotted time slot in which it can transmit data. 

The frequency and direction of transmissions between the hub and remotes are shown in 

Figure 2.3. 

 

 

 

 

 Figure 2.3 Frequency Division for Hub and Remote Transmission Units 
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Figure 2.4 TDMA Data Frame Format [7] 
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Each data frame consists of n slots where n is the number of remotes. Each slot is 

separated by a guard time called slot guard time to prevent overlaps in transmission. Each 

frame begins with a synchronization period that allows the hub and remotes to maintain 

relative synchronization. A Frame Start preamble transmitted by the hub during the 

synchronization period allows the transmission time slots to align identically at each 

receiving remote site. Similarly, each Data frame is separated by a frame guard period. 

The Super Frame consists of a synchronization period to allow the sounder to operate for 

a fixed time known as Sounder Frame. During this interval the Sounder will assess the 

quality of the radio transmissions that carry data. This assessment is used by the hub and 

remotes to adjust the transmission rates, coding levels and retransmission characteristics 

of the system. The multiple access scheme is explained in detail in [7]. 

 

2.3 Informal Specifications Summary for the LMDS Gateway 
Controller 

 

The system architecture description forms the basis for defining a set of informal 

specifications, including functional, performance, cost and architectural aspects, for the 

Gateway Controller design. The disaster response system is designed to provide an 

effective bandwidth of up to 10 Mbps per user for eight users distributed over a disaster 

area of radius up to five kilometers [7]. The aim is to provide high data throughput 

associated with providing network connectivity and multimedia applications.  

 

The disaster response system will be used to respond to natural and man-made 

disasters where the unknown nature of the environment and adverse weather conditions 

can lead to high bit error rates. These high error rates can hurt performance, especially for 

TCP because this protocol responds to loss due to congestion in the same manner as it 

responds to loss to due to error. Adaptive protocols that support variable FEC and 

optional ARQ schemes can improve TCP/IP performance in such situations and should 

be employed in the Gateway Controller design. 

 

Since the disaster response system is designed to take advantage of existing 

network infrastructure whenever possible, the network interfaces must be chosen 
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carefully. The system is to use 10/100-Mbps Ethernet network interfaces due to 

widespread popularity and ubiquity of the Ethernet standard. 

 

 Functionally, the Gateway Controller encapsulates Ethernet packets with the 

LMDS MAC protocol described in Section 2.2.2 on one end and then translates them 

back to Ethernet packets at the other end of the LMDS wireless link.  The LMDS 

Gateway Controller performs the following functions. 

1. Provide Power, Signal and Control interfaces to the QPSK Modulator, QPSK 

Demodulator-Analog, and QPSK Demodulator- Digital modules as required. 

2. Provide  Physical and Data link layer functions for Ethernet Interface  

3. Implement the TDMA scheme for multiple remotes to share the medium in the 

uplink frequency. Maintain timing and synchronization between hub and remotes 

at the bit, packet and frame levels. 

4. Implement Link Layer retransmission and Adaptive FEC to reduce network delay 

due to bit errors  

5. Interface to Network Monitoring/Control and Radio Monitoring/Control Software 

in the host computer and the Sounder. 

 

The Fast Ethernet interface at 100 Mbps and the QPSK wireless interface at 120 

Mbps also place strict processing constraints and result in reduced delay tolerances down 

to the order of microseconds. We believe that these speeds and tolerances are achievable 

by careful component selection, design and programming. 

 

The Gateway Controller is essentially developed in a research environment, and uses 

experimental protocols that aim to improve TCP/IP performance over wireless channels. 

Therefore, the architecture must be flexible enough to accommodate late protocol 

changes and modifications. Also, as a result of academic research environment, cost is 

always an important constraint and at times may be an over-riding one. 



16 

 

2.4 Summary 

 

To meet the functional requirements the Gateway Controller must, in turn, satisfy 

the high performance specifications needed for the signal processing and forward error 

correction. To achieve high-performance and increased flexibility for making protocol 

changes the system architecture should essentially use programmable and configurable 

components. Chapter 3 deals with the architectural issues in more detail.  
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CHAPTER 3 

 

 Design Methodology for Wireless 
Embedded Systems 

 

3.1 Overview 
 

The scope of our design methodology extends from specification to 

implementation. The discussion of the application system in the previous chapter fixes 

the application or service requirements; i.e., it determines the functions, speeds, power 

requirements, form factor, etc., that are required by the applications or higher layers of 

the protocol stack. Once the medium access and link level protocols are defined, the next 

step is to implement them in hardware and software.  

 

3.2 Relating Abstract Specifications to Implementation 
 

Protocol specification must define the services, behavior and formal sequences of 

message exchanges between communicating nodes or layers. The protocol definition 

must define behavior for all possible situations and circumstances. While this in itself can 

be complex, the implementation phase of a protocol poses additional challenges of its 

own. The complexity of the design process is significant in an integrated design 

approach, such as in the case of MAC protocols. MAC implementation solutions consist 

of a mix of hardware and software since they require close interactions with the 

underlying physical layer and require quick responses to events. To improve reaction 

times and power efficiency, it is highly desirable to implement the control logic in 

hardware. On the other hand, easier product upgrades and higher flexibility of a software-

based approach favors implementing as much as possible in software. In practice, most 

implementations consist of a mix of both hardware and software. The challenge of 

designing these hybrid systems is referred to as “hardware-software co-design”. The 

challenge is that hardware and software have inherently different design styles, 
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representation and testing techniques. The hardware-software co-design challenges are 

explored in the following sections. 

 

3.3 System-level Design Methodologies 
 

Hardware-software co-design requires a more comprehensive and cohesive design 

process including both hardware and software in the design to overcome various design 

challenges. Moreover, designers must also contend with rapidly changing or evolving 

standards and specifications. Support for late protocol changes requires that the target 

implementation have enough flexibility to incorporate future design or algorithmic 

changes. The increasing importance that is being given to energy considerations is 

another factor to be dealt with in making architectural choices. All of the above 

requirements necessitate a flexible, low energy, high-speed architecture and a well-

understood general system level design methodology upon which novel communication 

systems can be built. 

 

3.3.1 Platform-based Design 

 

The emergence of a number of wireless standards like Bluetooth, IEEE 802.11 

and IEEE 802.16 has created a market for numerous wireless applications and products. 

However, the rapid emergence of protocols and their successive variations, as in the case 

of IEEE 802.11, have decreased the time-to-market budgets even as the useful lifetime of 

these products are rapidly decreasing. One of the solutions to reduce design times 

suggested by Ferrari, et al. [8] and Kuetzer, et al. [9] is platform-based design by 

“orthogonalization” or separation of design space concerns. Platform-based design aims 

to reduce design time by facilitating reuse using abstractions called “platforms.” One 

example of a platform, called a hardware platform, consists of a set of parameterizable 

architectures that satisfy the constraints and support the functional specification of a 

design. Similarly, a software platform is a software layer consisting of the real-time 

operating system (RTOS) and device drivers that allows for abstraction of the hardware 

platform through an interface called the Application Program Interface (API). The 
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combination of the hardware and software platforms constitutes the system platform. 

Platform-based design helps designers to swiftly design prototypes by re-using readily 

available and tested components from a library, which in this case is called a platform. 

Component re-use will not only significantly reduce design time and effort but also helps 

to reduce time invested in testing those modules. The disadvantage of platform-based 

design is that it may limit the designer to a smaller design space provided by the 

platform.  

 

 
3.3.2 Platform-based Design Terminology 

 

“Platform conception” is the process of developing hardware and software 

platforms. It is imperative that the target application be fully understood before 

embarking on a platform design. The first step in the development of a platform, 

functional profiling, is to identify and extract common functionality and features of the 

application domain. The next step, architecture exploration, is to identify architectures 

for these functions that would deliver adequate performance while satisfying the 

constraints of the application domain. “Platform instantiation” involves mapping 

functionality onto specific system modules that result in optimal performance. The 

mapping process involves the selection of an optimal architecture among the various 

architectures determined to be suitable and identifies components that can adequately 

satisfy the performance requirements. When all the design constraints are satisfied, the 

implementation of an application becomes software based. The application designers only 

need to focus their attention on the application software compilation and hardware 

synthesis to create an application. All of the steps in the platform-based design flow are 

explained in detail in the following sections. 
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3.3.3 Platform-based Design Methodology 

 

The platform-based design methodology can be broadly classified into three 

phases, platform conception, platform instantiation and implementation [10]. The 

platform-based design flow showing the major stages is represented in Figure 3.1.  

 

 

 

Figure 3.1 Platform-based system design methodology 
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3.4 Configurable Platform Design Flow for Gateway Controller 
 

3.4.1 Functional Profiling of Gateway Controller 

 

Functions in communication systems can be broadly classified into data 

processing and control functions [11]. Most communication systems perform “packet 

processing” parallel operations as well as bit-serial data processing operations. Both 

function types can be further classified as operations that modify data and those that 

merely transport them. Control functions include event processing and decision making 

functions. For the design being performed here, these functions are represented as finite 

state machines that can be mapped to either hardware or software. The functions 

identified are helpful in understanding the complexity and the requirements for the 

system.  

 

The functional blocks that form the transmit path and the receive path of the 

Gateway Controller are shown in Figures 3.2 and 3.3, respectively. The transmit path for 

the Gateway Controller refers to data path from the Ethernet PHY receiver to the QPSK 

modulator and radios. Similarly, the receive path refers to the data path from the radio 

and QPSK demodulator to the Ethernet PHY transmitter.  

 

The Fast Ethernet PHY and MAC in the transmit path implement the Carrier 

Sense Multiple Access /Collision Detection (CSMA/CD) algorithm specified in IEEE 

802.3 standard. The Ethernet packets can vary in size from 64 to 1500 bytes. The LMDS 

MAC payload builder uses the Ethernet segmentation block to break the Ethernet packets 

into sizes that are suitable for the LMDS MAC payload. The payload is then encoded 

using Reed-Solomon (RS) FEC code at the appropriate encoding level. Once the payload 

has been built, the LMDS MAC header builder can form the header. The header is then 

encoded at a standard FEC level by the RS header encoder. Finally the payload is 

encoded using the Turbo Product Code (TPC) encoder. The encoded data stream is then 

formatted by a symbol-mapper for transmission using a QPSK modulator and radios. The 

preamble generator is used to generate the bit patterns that denote the beginning of the 
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frame and each data transmission. The transmit path also needs to maintain a timer to 

schedule the order of transmissions between multiple remote Gateway Controller units. 

 

 

Router
Ethernet Receive

PHY
Ethernet MAC

Controller

Preamble/ Frame
Sync Generator

Transmit
Scheduler

Ethernet Packet
Segmentation

LMDS MAC
Payload Builder

 Reed Solomon
Code - Payload

Encoder

LMDS MAC
Header Builder

Reed Solomon
Header Encoder

Turbo Product
Code Encoder

QPSK Modulator

QPSK Symbol
Mapper

 

 

Figure 3.2 Functional blocks in transmit path of the Gateway Controller 

 

The receive path, shown in block diagram of Figure 3.3, performs the same 

functions as the transmit path except in reverse order. The QPSK symbol-demapper 

reformats the QPSK symbols into a bit-stream, which is then decoded by the TPC 

decoder. To obtain information on the RS coding levels of the payload, the RS header 

decoder must first decode the header. The LMDS MAC packet header is then analyzed. 

The MAC packet header decoder gleans information regarding coding levels, 

retransmissions and acknowledgements from the header. Once the coding levels are 

known the RS payload decoder decodes the payload to obtain the transmitted data from 
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the encoded packetized bit-stream. The Ethernet re-assembly block reconstructs the 

segmented Ethernet packets for transmission by the Ethernet MAC and PHY. The 

preamble detector serves to identify bit patterns transmitted that signify events such as 

the beginning of the data frame and super frame. See Section 2.2.3 for an explanation of 

frame characteristics used here. 
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Figure 3.3 Functional blocks on the receive path of the Gateway Controller 

 
Having identified the various functions that are expected of the design we can 

move ahead to survey architectures that would result in efficient implementations of these 

functions. The fact that there are functions such as FEC which tend to be cycle-intensive 

and inefficient in terms of power when implemented in software suggest that the 

architecture should have a good balance of hardware and software. 

 

3.4.2 Architectural Exploration 

 

Before considering any set of architecture topologies, the design space for the 

application domain must be identified and bounded. In this case the design space includes 
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general and specialized microprocessors, digital signal processors, programmable logic 

devices and custom application specific integrated circuits. For a platform-based design 

methodology to be robust, it must be able to adjust to application redesigns and 

improvements without much change to the base platform elements. Therefore, the 

platform must be built on a foundation of configurable architectures and parameterizable 

elements that are flexible enough to allow for easy integration and scaling.  

 

The simplest and most common architecture used in traditional communication 

system designs is to configure a microprocessor or DSP with a set of application specific 

peripherals. In this scenario all the system blocks are mapped to software running on the 

processor or DSP. Though this provides a lot of flexibility, the serial processing model of 

software-based design limits system performance to a great extent. However, ASICs 

yield very high performance, but require significant non-recurring engineering (NRE) 

cost and effort. ASICs offer low flexibility to the designer and require tremendous 

redesign efforts in the face of changing specifications or standard updates. This makes the 

ASIC option unsuitable for the development of products that are based on standards that 

have not yet stabilized or are undergoing development – a trend that is common in 

today’s industry. Given the above requirements programmable logic devices like FPGAs 

offer an excellent alternative. High density FPGAs and readily available configurable IP 

cores provide significant performance improvement by allowing designers to take 

advantage of parallelism and pipelining processing stages.  

 

Designers can also take advantage of hybrid architectures involving a processor 

and a FPGA co-processor to achieve almost triple performance for certain “cycle-

intensive” operations [12]. The choice of the processor is crucial and determines whether 

a system block is implemented as hardware or software. The processor choice also 

determines system parameters like voltage levels, input/output (I/O) standards and most 

importantly the system bus protocol. The new breed of specialized network and 

communication SoC processors are ideally suited for control and some “packet 

processing” operations in high bandwidth applications and have built-in network 

interfaces that simplify design. 
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Once the microprocessor target is identified, the software platform, which 

interfaces the hardware to the programmer through device drivers and the Application 

Program Interface (API), can be developed. RTOS selection and multiple operating 

system support for the target hardware platform must be weighed before developing the 

software platform. Driver support for specific devices included in the hardware 

configuration can strongly influence RTOS selection. 

 

3.4.3 Mapping  

 

Various iterations (Designs A, B and C) produced during the design process, were 

considered for the configurable hardware platform. Their suitability to the application 

domain was studied with an eye toward optimizing the parameter mentioned earlier in 

this report.  

 

Design A consisted of a single general-purpose microprocessor with all 

functionality mapped into software. Even initial analysis of the design suggested that the 

system would not be able to handle high bandwidth data processing requirements. The 

major problem was the processor bus-bottleneck and the serial processing model. A 

series of operational speed calculations, based on possible process clock speeds and 

instruction execution times, were performed. Design A was not analyzed in detail further, 

even though it may have been suitable for lower bandwidth applications, as our goal was 

to identify designs that satisfied high bandwidth requirements. 
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Figure 3.4 Design B: General purpose processor and FPGA Co-processor 

 

Design B, shown in Figure 3.4, consisted of a general-purpose processor along 

with a FPGA co-processor. Various processors, like the i960Jx and PowerPC family, and 

bus protocols were considered. The FPGA co-processor, implemented on a Xilinx Virtex 

FPGA, acted like a DMA controller by moving data and reducing the processor load. The 

control operations are implemented in software running on the processor. Some bit-serial 

operations, like the modulation symbol mapping and radio interface, are moved to 

hardware logic on the FPGA. This simplifies the serial interfaces and also reduces bus 

bottlenecks.  
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Figure 3.5 Design C: featuring a memory-centric architecture 
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The third iteration, Design C, shown in Figure 3.5, was proposed to take greater 

advantage of IP core reuse and further simplifies interfaces to promote easier integration 

of heterogeneous system blocks. To achieve this objective, a “memory-centric” 

architecture with a combination of a specialized processor for packet-level operations and 

programmable logic devices like FPGAs for bit-level operations was implemented. High-

density FPGAs and readily available configurable IP-cores provide significant 

performance improvement by allowing designers to take advantage of parallelism and 

pipelining processing stages. 

 

The architectural elements can be broadly classified as control or data path elements 

[15]. The control elements deal with timing, status and ordering functions. These 

elements are implemented in the processor. The data path elements consist of functions 

that move, alter or add to the data that is transmitted or received. The data path elements 

can be further classified into: 

 

• “Functional Units” (FU) which modify or transform data along the data path, 

• multiple scattered DMA-like “Processing Elements” (PE) that transport or 

relocate data, and 

• “Memory Units” (MU) to store data between stages of the pipeline. 

 

The functional units perform various phases of the data processing before transmission 

and after reception. Forward error correction CODECs or modulation symbol-mappers 

are examples of functional units. The processing elements perform data transfers between 

data processing stages or functional units. The architecture is designed to be memory 

centric in that distributed memory elements like dual-port synchronous Random Access 

Memories (SRAM) exist between each functional stage of the data path. This modular 

architecture permits designers to take greater advantage of IP core reuse and further 

simplifies interfaces to promote easier integration of heterogeneous system blocks. 
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A dual-port memory, accessible by both the microprocessor and the FPGA-based 

processing elements, allows the processor and FPGA logic to read and write data 

simultaneously. Further, embedded dual-port SRAM memory available within the FPGA 

is used to create distributed buffers between various processing stages. Most control 

functions are implemented in software while some critical functions, like timing 

references, are mapped to the FPGA blocks. Also, to take advantage of the optimizations 

in the specialized processor, the packet processing functions are performed in software. 

Among the many communication and network processors considered, the Motorola 

PowerQuicc II SOC platform was found to be most suitable for the application. The 

Motorola PowerQuicc II 8255 communication processor [13] consists of a high 

performance 64-bit, 200-MHz PowerPC core and a 32-bit, 133-MHz communication 

processor that simplifies network interfaces with support for Fast Ethernet, ATM and 

T1/HDLC protocols. The Xilinx Virtex XCV600 FPGA [14] offers high gate densities 

(up to 1M+ gates), 512 I/Os and up to 16 KB of internal single/dual port SRAM 

embedded memory. 

  

 

3.5 Summary  
 
 

The Gateway Controller design implements a TDMA MAC scheme with different 

uplink and downlink frequencies on the wireless link and an Ethernet interface on the 

wire line side. Given the high bandwidth required and the amount of data that needs to be 

transported between blocks, the hybrid architecture of Design C was used with 

processing elements implemented partly as software running on the communication 

processor and partly as FPGA hardware logic blocks. The hardware platform is discussed 

in detail in Section 4.2. The software platform consists of a board support package (BSP) 

developed for VxWorks RTOS from Wind River Systems and device drivers for 

Ethernet, Universal Asynchronous Receive/Transmit (UART) and other common 

functions. This can then be used to generate and compile the application software. The 

software platform is discussed in detail in Section 4.3. 
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CHAPTER 4 

 Gateway Controller Implementation 
 

4.1 Overview 
 

This chapter presents, in detail, the implementation of the data processing modules 

of the LMDS Gateway Controller into physical hardware and software components. The 

chapter is included for completeness and to explain how the data processing modules 

relate to the wireless link protocol. The various design choices and performance tradeoffs 

are also described. 

 

4.2 Gateway Controller Hardware Implementation 
 

Though the data processing modules were designed to operate autonomously, the 

microprocessor was retained in the implementation primarily for the flexibility afforded 

by the processor. Including the processor makes exploration of various networking 

protocols easier, as it allows the exploration to be done in software. The processor 

functionality is particularly suited to performing the following tasks: packet transmission 

scheduling over radio link and support for medium access protocols, including packet 

header processing. The higher-level MAC packet processing functions are more 

efficiently implemented as processor micro-code. However, some bit-level tasks of the 

physical layer, that can be performed by the processor are implemented in the FPGA as 

they offer more efficient processing ability within affordable silicon area. The FPGA-

based interface to the radios allows flexibility to enable greater experimentation with 

physical-layer protocols and take advantage of new radios as they become available. The 

combination of the processor and FPGA logic blocks yields the most efficient 

implementation that accomplishes the tasks at high enough speeds.  
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Figure 4.1Gateway Hardware Computational Resources 

 

 

 

4.2.1 Microprocessor Subsystem  

 

The microprocessor is responsible for system initialization and various high-level 

protocols. As shown in Figure 4.1, the system is controlled by a Motorola MPC8255 

PowerQuicc II communications platform [13]. To perform its varied functions, the SoC 

platform shown in Figure 4.2 integrates a PowerPC 603e reduced instruction set 

computer (RISC) microprocessor running at 200 MHz, a communications processor 

module (CPM) running at 166 MHz, with 16 MB of read/write SDRAM, and 8 MB of 

Flash memory for program storage. The processor micro-code implements the TDMA 

MAC scheme for the LMDS network and closely controls the FPGA logic that 

implements the lower layer functions and interfaces. 
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Figure 4.2  Motorola MPC8255 Power Quicc II Communications Platform Block Diagram [13] 

 

The MPC8255 has a built-in Ethernet MAC controller in its Fast Communication 

Controller (FCC) and connects to an external Ethernet PHY device through the Media 

Independent Interface (MII). The MPC8255 also contains a UART interface, which can 

be connected to an RS232 interface chip. 

 

4.2.2 FPGA Co-processor  

 

The FPGA is a XCV 600 FPGA in a 680-pin fine-pitch ball grid array (FBGA) 

package that belongs to the Xilinx Virtex family of FPGAs. The Virtex-family FPGAs 

offer a wide variety of programmable system features; a rich hierarchy of fast, flexible 

interconnects; and advanced process technology. Virtex family architecture, shown in 

Figure 4.3, delivers high-speed and high-capacity programmable logic solutions that 

enhance design flexibility while reducing time-to-market [14]. Virtex function generators 

are implemented as 4-input look-up tables (LUTs). In addition to operating as a function 
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generator, each LUT can provide a 16 × 1-bit synchronous RAM. Virtex FPGAs also 

incorporate several embedded large block RAM (BRAM) memories, which complement 

the distributed LUT-based memories implemented in combination logic blocks (CLB) 

that provide shallow RAM structures. Block RAM memory blocks are organized in 

columns. All Virtex devices contain two such columns, one along each vertical edge. 

These columns extend the full height of the chip. Each memory block is four CLBs high, 

and consequently, a Virtex device 64 CLBs high contains 16 memory blocks per column, 

and a total of 32 blocks. Another attractive feature of the Virtex family is it’s high I/O pin 

counts and configurable I/O buffers (IOB) that can be programmed into a wide variety of 

standards. This allows the FPGA to interface with multiple IO standards like Low-

voltage TTL, 5V TTL, CMOS and PECL. 

 

 

 

Figure 4.3 Virtex FPGA Family Architecture 

 
 

The FPGA co-processor architecture process flow is shown in Figure 4.4 and the 

processes can be broadly grouped under Transmit or Receive process flows. The transmit 

process flow, shown by a dotted red line in Figure 4.4, refers to the data path from the 

Ethernet PHY receiver to the QPSK modulator. The receive process flow, shown by a 
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solid blue line in Figure 4.4, refers to the data path from the QPSK Demodulators to the 

Ethernet PHY transmitter. 
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Figure 4.4 FPGA logic - process flow overview 

 

4.2.2.1 Transmit Process Flow Overview 
 

The processor reads in data from the Ethernet PHY chip and stores it in the 

external dual-port SRAM memory. Using this data, the processor then builds the wireless 

MAC payload after segmentation of the Ethernet packets to the appropriate size, and 

again stores it in the external dual-port memory. All processor accesses to the memory 
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are through the one port referred to as the “right” port whereas all FPGA accesses are 

through the second port and referred to as the “left” port.  

The processor next builds the header in the external DP SRAM, after looking for 

updates/acknowledgements to add to the header from the receive process. Depending on 

whether the acknowledgement field sequence number requested by the receiver 

transmission of the new payload or a retransmission of the unacknowledged payload is 

scheduled. The updates in the header maybe acknowledgements of received payloads on 

the receive path, requests for retransmissions etc. The processor then passes (writes 

values to a register through IO ports) the beginning address in external DP SRAM and 

the RS coding rate of the payload packet to the first DMA module in the FPGA. After 

that it asserts the DMA1 start (DMA1_START) signal. The DMA1 accesses the payload 

in external DP SRAM through the left port after requesting access to the arbiter in the 

FPGA. The DMA1 process is explained in detail in Appendix B. The arbiter grants the 

request if the left port is not being used by the receive process. If the left port is busy then 

the arbiter waits till the receive process relinquishes control of the left port.  Once DMA1 

has completed writing the payload to the internal transmit memory, it then asserts its 

DONE signal (DMA1_DONE). 

 

When the processor receives an interrupt indicating DMA1 has completed, it can 

then initiate the DMA2 process. The DMA2 process is explained in detail in Appendix B. 

All DMAs have at least a START input and DONE output signal. This is done mainly to 

let the processor keep track of the process flow. The processor also needs to maintain a 

timer, for it to determine the beginning and end of the transmission time slot. It will 

maintain timers to control the beginning of preamble transmission and data transmission. 

The modulator interface begins preamble transmission when it receives the Preamble 

Transmit signal (TX_PRE) and transmits the preamble until the Data Transmit signal 

(TX_DATA) is received and the Data (in the Turbo Encoder’s output buffer) is ready for 

transmission. 
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4.2.2.2 Receive Process Flow Overview 
 

The demodulator “accepts” data only when the DMA3’s LISTEN signal is 

asserted by the processor. The in-phase (I) and quadrature (Q) symbols from the QPSK 

Demodulator are fed directly to the TPC Codec through the Demodulator Interface. The 

TPC Codec is capable of identifying the beginning and end of frame by using the Frame 

Sync patterns inserted at the time of encoding at the transmitter. The Turbo Decoded 

Output is moved to the Receive side internal DP SRAM by DMA4.  

 

The header, which is always coded at a known constant rate, is decoded first to 

determine payload-coding levels. Then the rest of the payload can be decoded. The 

DMA3 process transfers data from the Receive side internal DP SRAM to the RS 

Decoder after the RS decoder has been programmed. The output of the RS decoder is 

written into the external DP SRAM through the left port after requesting access from the 

arbiter. The processor can then access the stored payload and perform Ethernet packet re-

assembly after which the Ethernet driver can send the Ethernet packet to the PHY chip 

through the MII interface. The Host computer issues commands and receives status 

messages through the UART of the processor based on a modem command set defined 

for this purpose. The Receive process elements are explained in detail in Appendix B. 

 

4.2.3 Forward Error Correction CODECs 

 

The Gateway implements adaptive FEC to improve the throughput of good data 

by the channel. The gateway MAC protocol uses a combination of Reed-Solomon and 

Turbo Product Code FEC CODECs. Software implementations of FEC CODECs are 

highly cycle intensive, i.e. they consume a lot of processor cycles. As a result, the 

processor may not be available for other more critical tasks and hence they are not 

suitable for implementation in software. Two options were considered for the 

implementation of the CODECs in hardware. The first option was to implement the 

CODECs as FPGA cores. However, during the early development period of the gateway 
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there were no suitable commercial cores available for the Turbo product codes that 

matched our performance requirements, though there were commercial cores available 

for the Reed Solomon CODECs. The second option was to use commercially available 

ASICs. In the end, the second option was chosen to implement both CODECs to avoid 

any reliability issues with unproven IP cores and, also, due to the lower cost of the 

commercial ASICs. 

 

4.2.3.1 Reed-Solomon CODECs 
 

Reed Solomon (RS) codes are a subset of Bose-Chaudhuri-Hochquenghem (BCH) 

codes and are linear block codes. A Reed-Solomon code is specified as RS(n,k) with s-bit 

symbols. This means that the encoder takes k data symbols of s bits each and adds parity 

symbols to make an n symbol codeword. There are n-k parity symbols of s bits each. A 

Reed-Solomon decoder can correct up to t symbols that contain errors in a codeword, 

where 2t = n-k. 

 

 The Reed Solomon codes are implemented using an integrated RS encoder-

decoder solution on a single chip [16]. The RS CODEC contains both a high data rate 

programmable Reed-Solomon encoder and a separate decoder that will provide Reed-

Solomon forward error correction encoding of blocks of eight bit symbols. The Gateway 

system uses the CODEC to implement adaptive FEC by switching between fixed RS 

coding levels. The CODEC can be programmed to implement the following RS coding 

levels though other codes can also be supported: RS(10,18), RS(200,188), RS(200,192), 

RS(200,196) and RS (200,180). The coding levels are selected based on simulation 

results from [7]. The encoder and decoder units operate independently and each can be 

programmed on the fly to select the desired coding level. 

  

The decoder can operate independently to process blocks of up to 255 eight-bit 

symbols to provide corrections (t) of up to 10 errors per code block at data rates up to 320 

Mbps. The encoder output code block will contain the unaltered original data symbols 

followed by the generated parity symbols. The decoder input contains the received data 
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and parity symbols including errors that may be introduced during transmission. Decoder 

output will be a completely corrected block or will be marked as non-correctable and the 

block will be output as received without any changes. Detailed pin-out and signal 

descriptions are described in [22]. 

 

4.2.3.2 Turbo Product Code CODECs 
 

The Turbo Product Codes (TPC) are implemented using extended Hamming 

codes (or simple parity codes) in a two- dimensional or three-dimensional operation [17]. 

Encoding is performed by placing the data in an (k × k) array, for a two dimensional 

code. Each row and column is then encoded with the appropriate extended Hamming 

code and the Error Correction Code (ECC) parity bits are appended to the end of each 

row. After all rows are encoded, the columns are encoded in the same manner resulting in 

a (n × n) coded array.  

 

The TPC algorithm applies an iterative decoding method to a product array of 

extended Hamming or single parity check codes. ‘Turbo decoding’ of a product code 

array involves individually decoding each row using a technique called soft decision 

correlation decoding [17]. The output of the row decoding is then combined with the 

original data and input to a decoder for each column using soft decision correlation 

decoding. The result of the column decoding is then input back to the row decoding. This 

process continues until the decoder settles on a valid transmitted code array or until the 

maximum number of iterations is reached. All of these operations are performed 

automatically within the TPC chip. 

  

Figure 4.4 shows a block diagram of the TPC encoder and related modules. First, 

the CRC Engine computes and then inserts the CRC of the input data at the end of the 

each data block. The output of the CRC engine is then scrambled by exclusive-ORing it 

with the output of a pseudo-random binary sequence (PRBS) generator so as to ensure 

adequate bit transitions in the transmitted data stream. The scrambled data is then input to 

the TPC Encoder, which computes error correction code bits and inserts them at 
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appropriate locations in the data stream. Frame Sync insertion block inserts a 

programmable synchronization pattern into the bit stream. Finally, the Symbol-mapper 

formats the data stream to produce I and Q outputs for direct connection to the QPSK 

modulator. 

 

 

 

Figure 4.5 TPC Encoder Block Diagram 

 

 

The TPC decoder path has a counterpart for every block on the TPC encoder path 

as shown in Figure 4.5. The channel interface formats the received channel data for 

decoding by the Turbo Product Code decoder. Since QPSK modulation is used, the soft 

(confidence) information comes directly from the in-phase (I) or quadrature (Q) 

component of the received symbol. The synchronization marks inserted at the transmitter 

end allows the TPC Decoder to determine the location of the first bit of the encoded 

block. After the TPC Decoder decodes the data stream, it is descrambled using a Pseudo 

Random Binary Sequence (PRBS) Descrambler. The CRC Engine then computes the 

CRC for each block and compares it to that appended to the data. The appropriate packet 

error signals are generated if there is a mismatch, and if no errors are detected, the 

decoded block is output. 
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Figure 4.6 TPC Decoder Block Diagram 

 

 The TPC codec also has a microprocessor interface through which the processor 

can directly initialize it or change certain parameters such as block size, sync patterns, 

etc. The TPC Codec is programmed to implement a fixed (128,120)×(128,126) code. 

 

4.2.4 External Dual-port SRAM  

 

The external Dual-port SRAM allows simultaneous access by the processor and 

FPGA. The Dual-port SRAM can operate in either pipelined or flow through mode. In the 

pipelined mode, the read data access has a one-cycle latency while the flow through 

mode does not have the latency. However, the maximum frequency for the flow through 

mode is 50 MHz. Therefore, the FPGA port which reads/writes data at 40 MHz operates 

in the flow through mode whereas the processor port which reads/writes data at 66 MHz 

operates in the pipelined mode. 

 

4.2.5 Network and I/O interfaces 
 

The Gateway Controller is closely integrated with the other components of the 

gateway. The Gateway Controller uses standard well-defined network and I/O interfaces 

to communicate with the rest of the system consists of the following interfaces. 
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a) Modulator/Demodulator: The Gateway Controller provides control and power 

signals besides a QPSK-symbol mapped data interface. The modems connect to 

the Gateway Controller through custom back plane connectors [18].  

b) Host Computer: The Gateway Controller communicates with the host/monitor 

Personal Computer (PC) using a customized ASCII Command set defined in [7]. 

The command set includes instructions to the Controller to change system 

parameters and to provide status information. 

c) Fast Ethernet Interface: The gateway has a fast Ethernet wire-line interface and 

uses a RJ-45 connector. 

d) Sounder Interface: The Sounder interface has not been fully defined for the initial 

stage of the controller specification. However, PECL outputs are available for use 

at a later stage. A possible Sounder interface is proposed in Appendix A. 

 

 

Figure 4.7 Software Platform Components 
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4.3 Software Platform 
 

The software platform complements the hardware platform and consists of pre-

integrated software tools, real-time operating system, and a design/development 

environment.  The software platform is designed to be flexible and allow for rapid 

development and experimentation with different protocols and communication schemes.  

This thesis addresses a basic platform configuration to demonstrate the capabilities of the 

prototype hardware platform.  

The components of a basic software platform and the interactions of the software 

platform with the Hardware platform is shown in Figure 4.7. The software platform 

consists of two types of components: Hardware Dependent and Hardware Independent. 

Some of the major components of the basic Software platform are given below and 

explained in detail in the following sections. 

 

1. RTOS Kernel : VxWorks 

2. I/O Drivers for peripherals: UART, Ethernet, etc.  

3. Software Design Environment: Software Tools, Host IDE, MPC8260 ADS 

4. In-Circuit Debug environment: JTAG/COP port, In-circuit emulator 

5. Board Support Package 

 

4.3.1 Real-time Operating System 

 

The VxWorks RTOS is one of the most popular choices for embedded system 

designs. VxWorks [19] is a high-performance real-time operating system from Wind 

River Systems. The heart of the VxWorks RTOS consists of a multi-tasking kernel with 

interrupt-based, pre-emptive priority scheduling support, watchdog timers, and memory 

management. 

 

4.3.2 Device Drivers  

 

Device drivers are low-level software components that forge the actual connection 

between the microprocessor "engine" of the communications processor, and higher-level 
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software such as application tasks, communication protocol software and real-time 

operating systems. Many of these connections are unique to the target hardware and 

highly critical for system operation. The low-level software components that implement 

them are tedious to build because of the complexity and intricacy of the software-

hardware interfaces specified by chip manufacturers. However, device driver templates 

that only require the software designer to modify the driver to suit the application are 

readily available for target systems such as the MPC8255 processor. This helps in 

reducing device driver development time by reuse of software elements designed by the 

chip manufacturer. 

 

4.3.3 Software development tools 

 

The development environment includes a full range of features from editors, 

compilers, simulators and source level debuggers to aid in efficient software 

development. The Tornado 2.0 [20] integrated design environment (IDE) from Wind 

River Systems has been chosen as the development environment. The Tornado IDE 

components execute on a host system with access to the Gateway controller target 

system. Application software modules written in C/C++ can be compiled with cross-

compilers available in Tornado Host IDE for the MPC8255 CPU target systems. These 

application modules can take advantage of RTOS run-time libraries to reduce 

development times.  An MPC8260ADS development board allows software developers 

to start software design before the hardware platform is completely developed.  

 

4.3.4 In-circuit Debug Environment 

 

The MPC8255 processor core has an internal common on-chip (COP) debug 

processor [13]. This processor allows access to internal scan chains through a JTAG/COP 

port for debugging purposes. It is also used as a serial connection to the core for emulator 

support. The JTAG/COP emulator running on the host system provides the developer 

with remote control and monitoring of target hardware to assist in board and system 

debugging. 
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4.3.5 Board support package 

 

A board support package (BSP) is a collection of C and assembly routines that 

provide the RTOS with an interface to hardware. The VxWorks BSP [21] routines for the 

MPC8260ADS board are used as a template to create the BSP for the Gateway controller 

hardware. The BSP software is dependent on the hardware platform and directly interacts 

with the hardware. 

 

 

4.4 Gateway Controller Application Software Modules 
 

The Software platform provides a starting point for the development of the software. 

The Software platform allows for efficient reuse of code by providing pre-verified code 

for commonly used tasks. The application software development creates a unique 

instance of the Software platform. The Gateway Controller implements most MAC layer 

packet processing functions in software. This includes Ethernet packet processing and 

LMDS MAC packet processing. The Gateway Controller software modules are explained 

in detail in the following sections. 

 

4.4.1 Transmit Process Software Modules 

 

4.4.1.1 Algorithm for Ethernet Segmentation and LMDS MAC Data Payload 

formation 

 

The Ethernet Segmentation process encapsulates the Ethernet packets into the LMDS 

MAC data payload for transmission over the LMDS wireless link.  

 

1. Wait for IRQ from Ethernet PHY indicating the arrival of an Ethernet packet. 
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2.  The Ethernet packet is moved from the Ethernet MAC buffer to the SDRAM 

memory. The newly arrived Ethernet packets enter at the end of an Ethernet 

packet FIFO in SDRAM memory from which the data payload is to be built. 

Update the size of the FIFO (ETHFIFO_Size) and number of Ethernet packets 

(ETHPKTNUM). 

 

 
 

ETHFIFO_Size 
ETHPKTNUM 

PKT1_FRAG_OFFSET 
ETH PKT ADDR1 ETH PKT SIZE 1 
ETH PKT ADDR2 ETH PKT SIZE 2 
ETH PKT ADDR3 ETH PKT SIZE 3 

. . 

. . 

. . 
ETH PKT ADDRn ETH PKT SIZE n 

Figure 4.9 Ethernet Packet Receive FIFO in SDRAM 

 

 
3. Determine maximum data payload size (MAX_PAYLD) to fix the data payload 

buffer size in external dual-port SRAM memory where the data payload is to be 

built. Depending on the RS Coding level the maximum size of the data payload 

will vary. Use Table 4.1 for maximum payload size for each coding level. The 

size of the Ethernet packets can vary from 64 to 1518 bytes. The data payload is 

formed by filling the data payload buffer with multiple Ethernet packets and/or 

Ethernet packet fragments.  

 

Coding 
Level 

RS Code 
RS (n, k) 

Maximum Data 
(bytes) 

RSMODE (0:2) 
register value  

1 RS (200,188) 1692 001 
2 RS (200, 192) 1728 010 
3 RS (200, 196) 1764 011 
4 RS (200, 180) 1620 100 
5 No Coding 1800 111 

Table 4.1 Maximum size of data payload 
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4. In case the Ethernet packets are fragmented, an Ethernet Frame Fragment Header 

(EFFH) must precede each Ethernet fragment. To build the EFFH, the position of 

the first byte of the Ethernet fragment in the original Ethernet packet 

(EFFH_Offset) and the number of bytes in the fragment (EFFH_Size) must be 

calculated. The information must be included for the packet to be correctly re-

assembled at the receiving end. If the fragment contains the last byte of the 

original Ethernet packet then the FIN bit of the EFFH (EFFH_FIN) is to be set. 

 

 

 
Figure 4.10 Ethernet Frame Fragment Header (EFFH) Format 

 
5. If 200 bytes < ETHFIFO_Size < {MAX_PAYLD – (ETHPKTNUM * 4)}, i.e. all 

Ethernet packets and their Ethernet Frame Fragment Headers (EFFH) can fit in 

one data payload buffer of MAX_PAYLD size, then 

 

 

(i) If ETHPKTNUM = 1, i.e. only one Ethernet packet is in the queue. Then insert 

one EFFH with EFF_FIN=1. Pad with (MAX_PAYLD – ETHFIFO_Size + 4) 

bytes of zeroes. Delete entry corresponding to the inserted packet from the FIFO. 

Update ETHFIFO_Size and ETHPKTNUM. 

 

(ii) If ETHPKTNUM >1, then build EFFHs for each Ethernet Packet. Insert Ethernet 

packet/fragment and EFFHs alternately till the data payload buffer is full or all the 

packets/fragments have been inserted. The last EFFH must have EFF_FIN=1. Pad 

with {MAX_PAYLD – ETHFIFO_Size + (4* ETHPKTNUM)} bytes of zeroes. 

Delete entry corresponding to the inserted packets from the FIFO. Update 

ETHFIFO_Size and ETHPKTNUM. 
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6. If ETHFIFO_Size > MAX_PAYLD, i.e. all Ethernet packets in the FIFO will not 

fit within one data payload buffer. Identify the first ‘k’ packets of the Ethernet 

FIFO of size ‘n’ (i.e. ETHPKTNUM=’n’), such that the sum of their sizes is as 

close to [MAX_PAYLD –(k*4)] as possible without exceeding it.  

 

(i) If Σ ETH PKT SIZE(i=1 to k) = MAX_PAYLD – (k * 4). The first k packets and 

corresponding EFFHs are inserted and no padding is necessary. Set EFF_FIN=1 

for the kth EFFH.  PKT1_FRAG_OFFSET should be cleared. 

 

(ii) If Σ ETH PKT SIZE(i=1 to k) < {MAX_PAYLD – [(k+1) * 4]} < Σ ETH PKT 

SIZE (i=1 to k+1). Same as Step 6a) but now pad the payload buffer with a 

fragment the (k+1)th Ethernet packet and its EFFH. Update ETHFIFO Size and 

ETHPKTNUM. Set top of FIFO to (k+1)th packet and PKT1_FRAG_OFFSET to 

indicate the position from which the next payload must begin reading the first 

Ethernet packet in the queue. 

 

7. If ETHFIFO_Size < 200 bytes then 

 

(i) If PKT1_FRAG_OFFSET is set then, insert the fragment of the first packet and 

all remaining packets into the data payload buffer and pad the rest of the buffer 

with zeroes. 

 

(ii) If PKT1_FRAG_OFFSET is cleared then Goto Step 1 

 

8. The data payload of size MAX_PAYLD is now completely formed and resides in 

the data payload buffer in external dual-port SRAM. The Beginning Address of 

the buffer must be written to the DMA1 register (DMA1_BEGADDR). Set 

RSMODE Register values based on the coding level according to Table 4.1.  

 

9. Inform the Transmit Control Process that the data payload is ready. 
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4.4.1.2 Algorithm for LMDS MAC Header formation 

 

The LMDS MAC Header consists of several fields as shown in Figure 4.10. To 

build the header the information related to these fields, listed in Table 4.2, must first be 

collected from or updated by various sources. The fields relating to acknowledgements 

need to be updated by the Receive process. The transmission time slots on the uplink are 

statically distributed among ‘n’ remotes during initialization and remain fixed. The hub is 

allocated all time slots on the downlink. A Data frame consists of ‘n’ time slots one for 

each remote. 

 

 
Information Source 
Acknowledgement Service ON/OFF? System Parameters from Monitor PC 
Time Slot number System Parameters from Monitor PC 
FEC Level System Parameters from Monitor PC/ 

LMDS Data Payload formation process 
Sequence Nos. for Acknowledgement Timing and Control Process 
Acknowledgement Updates Receive Process 

Table 4.2 Information Required by LMDS MAC Header Formation Process 

 
1. Set the Time Slot (TM_SLOT) field to indicate the time slot at which the packet is 

transmitted. 

 

 
Figure 4.11 LMDS MAC Header 

 

2. For a normal time slot, set the Frame Border (FB) field shown in Fig 10.3 to (0) 2. 
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3. Sequence Number (SEQ NO) is required for Acknowledgement Service. If the 

Acknowledgement Service is turned on, then the field can contain a value between 0 

and 3. If the Acknowledgement service is turned off, then the field must be filled with 

zeroes. 

 

4. The Type of Service (TOS) indicates if the Acknowledgement service is to be turned 

on or off. (00)2 indicates Acknowledged Service and (11)2 indicates Unacknowledged 

Service. Values of (01) 2 and (10) 2 are invalid. 

 

5. The FEC Level field contains the coding level of the data payload (same as RSODE 

register values). This is required to correctly program the RS Decoder at the receiver 

to decode the data payload. For the valid RSMODE register values refer Table 4.1.  

 

6. Acknowledgement Number (ACK NO) and Valid (V) fields are used to piggyback 

acknowledgements of LMDS MAC packets received by the receive process. The 

ACK NO field is the sequence number of the next expected transmission slot. There 

are eight optional ACK NO and V fields. The ACKNO fields are valid only if the V 

fields are set to 1. 

 

7. Since the FEC Level field is to be updated based on the coding to be used on the data 

payload, the header formation should be performed only after data payload formation 

parameters are fixed or preferably after the payload formation process. This also 

allows more time for the Acknowledgement updates from the receive process to be 

added. 

 

8. The header field bits from 13 to15 are reserved for future use and must be padded 

with zeroes. The RS Encoder requires a minimum of 10 bytes for Encoding. So the 

header is padded with 4 bytes of zeroes to make the header size equal to 10 bytes.  

 

9. The completely formed MAC header is stored in the external dual-port SRAM 

memory. The beginning address of the MAC header is programmed into the 
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DMA1_BEGADDR register and RSMODE register value is set at “000” for the 

Header RS Encoding. The Header is always encoded at a fixed coding level using 

RS(10,18) code. 

 

4.4.1.3 LMDS PHY Transmission Scheduler  

 

Although the hardware modules implemented in the FPGA can operate independently 

without supervision from the processor, the processor keeps close tabs on the PHY layer 

processing. The processor initiates every stage of the PHY processing using a 

DMA_START signal. At the end of the processing stage the hardware processing stage 

issues an IRQ (DMA_END) to the processor. The hardware modules also notify the 

processor if any errors were generated during the processing stage. 

 

1. Wait until payload data is available at the dual-port SRAM.  

 

2. Set M1_BEGADDR with the beginning address location of the data payload 

buffer in external dual-port SRAM (DPSRAM). Set M2_BEGADDR Register 

with the beginning address of the internal DPSRAM (M2) where the RS Encoded 

Data is to be stored. Set RSMODE register based on FEC Coding level to be used.  

 

3. Assert DMA1_START GPIO signal. For a description of the DMA1 process refer 

to Section C.3.1.1. Wait until the DMA1_DONE (DMADONE_IRQ1) is 

generated. 

 

4. Check if any errors were generated by reading DMA1 error register 

(DMA1_ERROR). If errors were present, fix error source and repeat Step 2. If no 

errors were received proceed to Step 5. 

 

5. Set M1_BEGADDR with the beginning address location of the MAC header 

buffer. Set M2_BEGADDR so that the header and payload are stored in 

contiguous locations in the internal DPSRAM. Set RSMODE register to (000)2. 
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6. Assert DMA1_START GPIO signal. Wait until the DMA1_DONE 

(DMADONE_IRQ1) is generated. 

 

7. Check if any errors were generated by reading DMA1 error register 

(DMA1_ERROR). If errors were present, fix error source and repeat Step 5. If no 

errors were received proceed to Step 6. 

 

8. Verify if the Turbo Product Code (TPC) Encoder has been initialized. Assert 

DMA2_START GPIO. For a description of the DMA2 process refer to C.3.1.2. 

 

9. Wait until the Transmission Timer indicates the beginning of the transmit slot. 

 

10. Assert TXPRE_START signal of the Preamble Generator process to start 

transmission of the preamble. The preamble is a 1000 symbol sequence with 

alternate 0s and 1s. This is necessary to guarantee that the Demodulators at the 

receiver are synchronized with the Modulators at the transmitter. Refer to Section 

C.3.1.3 for a description of the Modulator interface process (MODIF). 

 

11. Wait for preamble transmission to complete (16.66 µs), and then assert 

TXDAT_START to signal beginning of LMDS PHY frame. 

 

12. Wait for TX_DONE interrupt request (IRQ) or TX_ERR IRQ signals. TX_DONE 

is asserted then the data was transmitted successfully. Schedule next payload for 

transmission. 

 

13.  If the TX_ERR signal is asserted then the data payload must be scheduled for 

retransmission. 

 



51 

4.4.2 Receive Process Modules 

4.4.2.1 Algorithm for LMDS PHY Receive Control Process 

 

The Receive control process performs functions that are similar to that of the 

Transmission Scheduler.  The receive control process keeps track of the receiver 

hardware processing stages. 

 

1. Initialize the TPC Decoder registers. Activate the Demodulators and other 

hardware receiver modules by asserting the LISTEN signal. For a description of 

the Demodulator interface (DEMODIF) process refer to Section C.3.2.1.  

 

2. Program the M3_BEGADDR Register with the starting address location where 

the received packet is to be stored in internal DPSRAM (M3). 

 

3.  Wait until TPC Decoder issues an IRQ to signal that data is available at the 

decoder outputs. Check TCDECDONE_ERR and TCDECDONE_NOERR IRQs. 

If TCDECDONE_ERR packet is asserted then the packet is lost. 

 

4. If TCDECDONE_NOERR is asserted, check the TPC Decoder Error Register for 

uncorrectable errors in the received LMDS PHY packet.  

 

5. Assert DMA3_START GPIO to initiate the RS Decoding of the MAC header by 

DMA3. 

 

6. Notify Header Decoding process of arrival of new packet header. 

 

7. Wait until header is decoded and the Header Decoding process provides 

information on the payload FEC level. 
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Coding 
Level 

RS Code 
RS (n, k) 

DMA3_DATMODE(0:2) 
register value  

1 RS (200,188) 001 
2 RS (200, 192) 010 
3 RS (200, 196) 011 
4 RS (200, 180) 100 
5 No Coding 111 

Table 4.3 Maximum size of data payload 

 

8. If Step 4 indicated uncorrectable errors and the RS coding level is 5 (no RS 

coding), then discard packet. Notify Ethernet Re-assembly process. 

 

9. If Step 4 indicated uncorrectable errors but RS coding levels are between 1 and 4, 

then program DMA3_DATMODE registers to indicate FEC level. The values for 

DMA3_DATMODE registers are shown in Table 4.3 

 

10. Assert DATA_START GPIO to initiate payload RS Decoding. See section 

C.3.2.3 for details on the DMA3 process. 

 

11.  Wait until DMADONE_IRQ3 (DMA3_DONE) is asserted.  

 

12. Program M1_DMA3_BEGADDR Register with the starting address of the 

receive data payload buffer. Assert DMA3O_START GPIO. See Section C.3.2.4 

for details on the DMA3 process. 

 

13. Wait until DMA3O_DONE is asserted. Read RSDEC_STATUS Registers. 

 

14. If the payload contains uncorrectable errors after RS Decoding, discard packet. 

Notify the Payload decoding process. 

 

15.  If all errors were corrected after RS Decoding then, notify the payload decoding 

process to start after providing the starting address of the data payload buffer. 
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4.4.2.2 Algorithm for LMDS MAC Header Decoding Process 

 

1. Wait until Receive Control Process indicates that a new packet has arrived.   

 

2. Read first bit of the payload. For a normal payload header the bit should be 0. Go to 

Step 4. 

 

3. If first bit is 1 then, stop processing. Notify Frame Control Header Decoding process. 

Go to Step 1. 

 

4. Read first byte of the payload header. Forward bits 5-8 (FEC level field) of the first 

byte to the Receive control process. 

 

5. Read all other fields. If Acknowledge service is specified in TOS field, notify Header 

Formation process and provide it with SEQ NO, TM_SLOT information. 

 

6. Check V field values. If V field value is 1 then read the corresponding ACK NO 

field. Send updates on the acknowledgements to the Transmission Scheduling 

process. 

 

4.4.2.3 Algorithm for Ethernet Re-assembly and Payload Decoding process 
 

The Ethernet Re-assembly process reads the payload stored in the external DP SRAM 

memory into Ethernet packet transmit buffers in the SDRAM memory. A new Ethernet 

packet transmit buffer is created for every Ethernet packet. Once the Ethernet packet is 

completely reassembled then the packet is moved to the Ethernet packet transmit FIFO 

and schedule for transmission by the Ethernet MAC driver. 

 
1. Wait until the Receive Control process indicates that a payload has arrived in the data 

payload receive buffer. Create an Ethernet packet buffer and an Ethernet packet 

transmit FIFO. 
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2. Read the EFFH field.  

 

(i) If Fragment Offset (EFFH_Offset) field is 0, create a new Ethernet packet buffer, 

Update the Ethernet transmit FIFO. 

 

(ii) If EFFH_Offset is non-zero then continue to store in the same Ethernet buffer. 

 

(iii) Read the next EFFH_Size bytes of data and store it in the Ethernet buffer with 

appropriate offset (EFFH_Offset). 

 

(iv)   If EFFH_FIN is set to 1 stop processing payload.  Go to Step 3. 

 

(v)  If EFFH_FIN is 0 then read next EFFH. Repeat Step 2. 

 

 

(vi)  If Ethernet Packet transmit FIFO contains an Ethernet packet then notify Ethernet 

driver to schedule a transmission. 

 

4.5 Summary 
 

The Hardware platform is designed using configurable hardware components to 

allow maximum flexibility and to help exploration of the protocols. The tradeoffs in 

implementing the processing modules in hardware or software are presented. The 

Software platform simplifies the application development by providing tools and 

software code libraries. The software developer can reuse the hardware independent 

components of the Software platform and only needs to port the hardware dependent 

components of the system for new applications or designs. The porting of the hardware 

dependent platforms such as the BSP is also simplified as the developer already has a 

basic framework from which he can work and does not have to start from scratch.  
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CHAPTER 5 

 Hardware and Software Testing 
 

5.1 Hardware Design Verification 
 

Overall hardware implementation of the controller design consists of the entry of 

the conceptual design into electronic description format (design entry), conversion of the 

design into a logic level form (synthesis), and translation of the design into the physical 

FPGA specific component placement and signal routing (implementation). The design 

verification process consists of testing the design for conformity at several intermediate 

stages. The verification steps performed after each major stage of the design are shown in 

Figure 5.1 and include: behavioral or functional simulations, synthesis checks, post-

synthesis timing verification, and post-implementation timing verification. All of these 

steps are done using simulation tools like Synopsys’ VHDL Compiler and tool suite [23] 

and synthesis tools like Synplicity’s Synplinfy [24] and Xilinx’s Foundation ISE Tools 

[25]. 

Funct iona l
S imulat ion

Post -Synthesis
Simulat ion

Post-
Implementat ion

Timing
Veri f icat ion

Design Entry

Synthes is

Implementa t ion

Design Steps Veri f icat ion
S t e p s  

 

Figure 5.1  Hardware Verification steps after each design stage 
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5.1.1 VHDL Behavioral Description 

 

The FPGA logic is designed employing behavioral VHDL that can be used for 

behavioral simulation as well as FPGA synthesis. The VHDL descriptions are built based 

on finite state machine (FSM) descriptions of the logic modules. The designs are based 

on a hierarchical structure. The FSM descriptions are provided in Appendix B. A test 

bench “wrapper” that abstracts some of the higher-level processor-based software 

interactions is used to functionally simulate the top-level VHDL module. This test bench 

provides the simulated status and control stimuli that are provided by the processor in the 

physical implementation of the controller.   

 
5.1.2 VHDL Behavioral Simulation 

 

The first step in the FPGA hardware verification process is to devise high-level 

language-based verification models and methodologies. A VHDL-based behavioral 

model for the system architecture was developed with high-level system behavioral 

modules, including: “Bus-Functional” processor modules, DRAMs, SRAMs, etc. The 

VHDL behavioral model helps to create exhaustive HDL-based methodologies to verify 

bus and chip-level specifications. A rudimentary Bus Functional Model for the MPC8255 

60x bus and Local Bus is used in the system model to verify the bus interface functions in 

the FPGA and peripheral chips.  

 

5.1.2.1 Simulation of Embedded memory Interactions 
 

The simulation system model consists of synchronous memory in the form of 

dual-port SRAMs. The Virtex FPGAs have built-in embedded memory that can be 

tailored to the required configuration. The embedded memory can be synthesized on the 

FPGA using programmable, but pre-configured, IP cores in the form of EDIF files. The 

CORE Generator tool from the Xilinx 2.1i Alliance Series software suite was used to 

design and generate the memory modules. By default, RAM cores have all their contents 

initialized to zero by the CORE Generator. However, sometimes the RAM module is 
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required to have specific data stored in it for simulation. There are two ways of 

specifying memory contents with the CORE Generator. 

 
• Memory Initialization File (.MIF) file – The .MIF file is an ASCII file in which 

each line of text specifies the content of a RAM location. The memory contents 

are specified as binary digits with one line of text corresponding to every address 

location in memory. By default the Xilinx Core Generator creates a .MIF file to 

specify the RAM contents and initializes all locations with zeroes. 

 

• Coefficient (.COE) File - Allows the RAM locations to be specified in 

hexadecimal format. The .COE format is closer to Intel hex format used for 

ROMs. The .COE format was not used for the simulations. 

 

For purposes of simulation, a behavioral model of the embedded dual-port SRAM 

is selected from a library of Xilinx Virtex primitives. The primitives are VHDL 

behavioral models that mimic the behavior of the gates in the EDIF net list of the IP core. 

The SRAM model can then be instantiated in the simulation system model just as any 

other module of the system.  

 

Shown in Figures 5.2 and 5.3 are the beginning and end, respectively, of a 

memory read transaction by DMA1. The dual-port RAM Memory (M1) being accessed is 

synchronous, i.e. all control signals and data signals are valid at the rising edge of the 

clock. The clock signal is added to the simulation waveform to show the beginning 

instant of each clock cycle. The SRAM is four bytes or 32 bits wide. But the DMA1 

accesses only a byte or eight bits at a time as it directly transfers the read byte to the 8-bit 

input bus of the RS Encoder. To read one byte per clock cycle the Byte Enable 

(M1L_nBE[3:0]) control signal is used. The data bus will contain only the bytes that 

were selected by de-asserting the corresponding Byte Enable bit, i.e. a value of  (0111)2 

or (7)16 will select only the first byte, a value of (1011)2 or (E)16 will select the second 

byte and so on.  



58 

The BYTCOUNT and PARCNT_TEMP counters keep track of the number of 

cycles for which data is to be read from memory.  In this simulation a RS (200,186) code 

was used, hence a block of 186 data bytes are to be read from memory. This process is 

repeated nine times till eight blocks of data are input to the RS Encoder. The memory 

data bus shows (FFFF)16 since the memory model is initialized to all ones. Note that the 

address is loaded at the beginning of the DMA1 process (at ~310 ns in Figure 5.2) by de-

asserting M1L_nADS. After this the internal address counter in the memory is used. The 

address counter is incremented by de-asserting M1L_nCNTEN after every four read 

cycles.  

 

By using these control signals all four data bytes stored in every location is read. 

The simulation waveforms show that the appropriate memory control signals are 

generated accurately and that the memory read cycles are in turn performed correctly. 

 
 

5.1.2.2 Simulation of External Interfaces 
 
 

Several processes on the test bench wrapper VHDL module are used to represent 

each of the non-FPGA hardware modules or interfaces. The test bench is designed to 

behaviorally respond for the external modules such as the Reed Solomon Codec and TPC 

Codec. For example, though the Reed-Solomon encoder process module does not 

actually perform Reed Solomon encoding, it generates the appropriate control signal 

responses and correct number of random data outputs based on the input control signals 

of the physical Reed Solomon CODEC chip. The test bench provides an abstract interface 

to the logic external to the FPGA, which is adequate to verify the functionality of the 

FPGA modules and interfaces. 
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Figure 5.2 Simulation waveform view of “Memory Read” with memory models (1 of 2) 
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Figure 5.3 Simulation waveform view of “Memory Read” with memory models (2 of 2) 
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Shown in Figs. 5.4 is an example of an interaction of FPGA DMA with the Reed 

Solomon Encoder that is implemented as an external ASIC. The DMA provides the RS 

Encoder with latency configuration information using RSENC_TA[3:0]. The 

RSENC_RESET signal resets all the RS Encoder configuration and internal registers. 

The RSENC_CLK is a 40 MHz clock input to the RS Encoder. All signals are read or 

written at the rising edge of RSENC_CLK. The RS Encoder must first be initialized 

before the Encoding process can begin. The initialization process consists of two steps 

and begins immediately after the processor asserts the DMA1_START signal. The first 

step consists of de-asserting RSENC_ENIN and RSENC_RESET for four clock cycles. 

The second step consists of asserting RSENC_RESET for two clock cycles. The 

RSINITCOUNT counter is used to keep track of the initialization steps.  

 

When the initialization process is complete, the RSENC_ENIN and 

RSENC_ENOUT signals are asserted simultaneously indicating to the RS Encoder that 

the first byte of data is available at the input. The RSENC_DIN[7:0] is the data input bus 

to feed data bytes from memory for RS encoding. The memory locations are filled with 

all ones. Hence the inputs to the RS Encoder is always (11111111)2 or (FF)16. The RS 

Encoder process as mentioned earlier does not perform actual RS Encoding. It merely 

generates the handshake signals and inverts every alternate bit input to it and the 

RSENC_DOUT[7:0] contains (01010101)2 or (55)16. This is used to distinguish the input 

and output to the dummy RS Encoder process and verify that it acted upon the data. The 

RS Encoder process correctly introduces a latency of three clock cycles before asserting 

RSENC_RDY and making the data output available on RSENC_DOUT. Since the 

simulation aims to verify the DMA interface functionality rather than the functionality of 

the RS Encoder this arrangement is found to be sufficient. 
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Figure 5.4 Simulation waveform view of external FPGA interfaces 
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5.1.2.3 Simulation of Processor Interactions  
 

 

The processor initiates a DMA process with a DMA Start signal and then keeps 

track of the progress of each DMA packet processing stage. Each DMA in turn notifies 

the processor upon completion of its task with a DMA Done signal. The processor then 

requests the next DMA processing stage to start its operations. The notification to the 

processor is in the form of a processor Interrupt Request (IRQ). The processor notifies 

DMAs through its general-purpose I/O (GPIO) ports and through registers on its local 

bus. To simulate the entire transmit and receive paths as one continuous process the 

processor general-purpose inputs and outputs stimulus must be generated by some other 

means. A VHDL functional block that mimics the behavior of the relevant processor 

module, the processor GPIO controller in this case, is created in the test bench wrapper. 

 

The test bench process is used to provide the general-purpose I/O (GPIO) signals 

that would be generated by the I/O control software running on the processor. An 

example of a DMA Start and a DMA Done signal are the DMA1_START and 

DMA1_DONE signals respectively. Both signals belong to the DMA1 process and are 

shown shown underlined in red in the waveform in Figure 5.5. The test bench process 

asserts the DMA1_START signal to initiate the DMA1 process and then de-asserts it. 

The assertion of the DMA1_START is shown in Figure 5.4 from the 90ns to 150 ns 

marker.  

 

On receiving the DMA1_START signal the DMA1 begins to input data to the RS 

Encoder. The DMA1 must transfer 9 blocks of data for encoding and maintains a counter 

(RSPKTCNT _INT). After all the transfers are completed successfully the DMA1 

process generates a DMA1_DONE signal that is connected to a processor IRQ. The 

generation of the processor IRQ is marked by the circled portion of the waveform in 

Figure 5.5. Normally the IRQ would require some processing time in the software. But to 

keep simulations low, the test bench process issues the next DMA start signal 

immediately.  
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Figure 5.5 Simulation Waveform View of DMA processor interface and IRQs 
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5.1.3 FPGA synthesis environment 

 

Synplify v7.0 [24] synthesis tool from Synplicity and ISE Foundation Tools v4.2i 

[25] from Xilinx were used for synthesis. The synthesis constraints for the design 

modules were setup in constraint definition files (.SDF). The physical part targeted was 

the XCV600FG680. Fig.5-7 shows the Synplify synthesis tool interface that reads in 

VHDL source files and Electronic Data Interchange Format (EDIF) files and then 

successfully placed and routed the FPGA VHDL-specified modules, IP cores, and the 

memory modules into a single EDIF netlist. The EDIF file format provides a common 

format for porting the design across multiple synthesis tools. The EDIF file for the FPGA 

co-processor design (Modem_top.edf), produced by the Synplify Tool after completing 

the synthesis process, is used as an input to the Xilinx ISE Foundation tools.  

 

 
 

Figure 5.6 Synplify synthesis tool 
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The Xilinx ISE Foundation tool suite contains many utilities and programs that 

are used for mapping, place and route (P&R), timing simulation etc. The tools and their 

outputs are explained below. The Xilinx Design Manager utility shown in Figure 5.8 is 

used to maintain version information and to track changes for each iteration of the 

synthesis process. It also provides a Report Browser interface that organizes the various 

output report files in an easily readable format. 

 

 

 

Figure 5.7 Xilinx ISE Tool performs P&R and generates several reports 

 

  

The FPGA device utilization figures we achieved are detailed in the output file 

from the “Mapper” program. A summary of the map report is tabulated in Table 5.1. The 

Mapper report calculates the propagation delays of the mapped design and reports any 

violations of the setup and hold time constraints. The report file indicated no errors in the 

design.  
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The map report also contains device information and design summary details. The 

device information specifies the target devices characteristics for which the design 

mapping process was performed. In this case a XCV600 FG680 with a speed grade of –6 

was used. The speed grade of the FPGA is specified by the manufacturer and is measure 

of FPGA gate delay times. The high-speed grade was chosen in consideration of the use 

of high-speed clocks in the system.  

 

The device utilization summary shown in Table 5.1 is useful to determine if the 

FPGA resources are used efficiently. The total equivalent gate count for the design and 

IOBs are close to 290K gates. 

 
 The LUT and Slice utilization factors are low at 5% and 8% respectively. It was 

decided not to scale down to a smaller FPGA based on the application considerations. 

The Gateway Controller is designed to allow flexibility in exploration of different 

wireless MAC protocols. Later versions of the protocol may require additional IP cores to 

be implemented in the design. Another advantage of the low utilization factors is the low 

usage of interconnect resources. This affords a lot of flexibility in redesigning the FPGA 

logic without causing costly board redesigns. Also note that the IOB utilization is 

currently 54%. This allows for expansion of newer signals to be added to later design 

revisions by activating the unused pins of the FPGA connected to the unused processor 

GPIO. 

 

Since the architecture is designed to be memory-centric, most of the internal 

BlockSRAM resources were utilized resulting in a high utilization factor of 66%. Most of 

these resources were used as internal dual-port SRAMs along the transmit and receive 

paths. Also all the clock buffers or CLKIOBs are utilized in the design. This is because of 

the use of several clocks in the design. In fact some of the slower clocks had to be 

distributed by ordinary IOBs so that the high speed CLKIOBs can be reserved for 

distributing high-speed clocks.  
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Design Information 
 
Target Device XV600 
Target Package FG680 
Target Speed -6 
Mapper Version Virtex Revision 1.58 
Number of Errors 0 
  
Design Summary 
Resource  Utilization Utilization % 
Number of Slices 620 out of 6,912 8% 
Number of Slices containing unrelated logic 0 out of 620 0% 
Number of Slice Flip Flops 640 out of 13,824 4% 
Total Number 4 input LUTs 819 out of 13,824  5% 
      Number used as LUTs                 782  
      Number used as a route-thru 37  
Number of bonded IOBs 278 out of 512 54% 
     IOB Flip Flops                              257  
Number of Tbufs 291 out of 7,104 4% 
Number of Block RAMs 16 out of 24  66% 
Number of GCLKs 4 out of 4  100% 
Number of GCLKIOBs 4 out of 4  100% 
Total equivalent gate count for design 276,157  
Additional JTAG gate count for IOBs 13,536  
 

Table 5.1 Xilinx Mapping Report File summary for design 

 
 
5.1.4 Post-synthesis Timing Simulation 

 
The Xilinx Foundation utility “ngdanno” produces the standard delay format 

(.SDF) file, which must be back-annotated with the FPGA netlist for gate-level 

simulation. The “ngd2vhdl” program produces a VHDL netlist of the SimPrims 

primitives for vhdl gate-level simulation. In addition to producing an EDIF file of the 

synthesized wrapper for place and route, synthesis also produced a vendor specific logic 

constraint (.NCF) file which Xilinx place and route uses to determine the timing 

constraints of the circuit. The “trace” program report provides static timing information 

and constraints applied for place and route. An abridged version of the “trace” report file 

is given in Table 5.2.  
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Timing Summary 
Timing Errors 0 
Constraints coverage 90.5% 
  Number of Paths covered by constraints 20,980 
  Number of connections covered by constraints 5,195 
Design Statistics 
Minimum period (Maximum Frequency) 17.281 ns (57.867 MHz) 
    Minimum input arrival time before clock 14.251 ns 
    Maximum output required time before clock 15.179 ns 

Table 5.2 Summary of Verbose Timing Report generated by Trace utility 

 
 

The Post synthesis timing analysis results can be viewed using the Xilinx Timing 

Analyzer tool. The tool can be used to determine if the timing constraints were met 

successfully. Figure 5.9 shows a screen view of the Timing Analyzer tool indicating all 

timing constraints were met for the design.  

 

If the process indicates the presence of timing errors then the timing report is 

analyzed to determine which constraint was not met. The mapping process is re-run after 

placing stricter constraints on the net or signal, which failed to meet the constraint. Some 

signals or nets that are critical for the timing constraints to be satisfied can be manually 

mapped to higher speed interconnects available in the FPGA. This is done by setting 

attributes in the constraint file that force the synthesis tool to map the net to a particular 

type of interconnect.The maximum frequency obtained as a result of the timing analysis 

is found to be 57.867 MHz, which is close to the 60 MHz design constraint. However 

though the minimum period (17.281 ns) is 1.281 ns more than the intended 16 ns, the 

difference was not found to be large enough to create any timing errors in the design. The 

high value of maximum frequency was achieved by introducing constraints on the set-up 

and hold times of the signals. The constraints were set up to ensure up to 90% coverage 

of the entire design. Critical paths were associated with more stringent constraints to 
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yield better results in the mapping. The mapping process is repeated until all constraints 

are satisfied.  

 

Figure 5.10 shows the timing summary of the final routed design. The timing 

analysis did not generate any timing errors.  

 

 
Figure 5.8 Xilinx Timing Analyzer Tool screen view - Constraint Compliance 
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Figure 5.9 Xilinx Timing Analyzer screen view - Timing Errors Summary 

 
5.2 Software Design Verification 
 

Application software developed for the Gateway controller board also has to be 

tested. The Tornado tool offers several debugging options that can be used in the 

verification process. VisionWARE tools that are part of the Tornado suite of tools can be 

used to develop software that directly interfaces with hardware. The diagnostic tool 

accelerates and simplifies the testing process by providing generic as well as processor-

specific tests. 

 

 
5.3 Loop-back Testing 
 

The Gateway controller is designed to support testing using a loop-back test feature, 

which allows the output of the QPSK Modulator to be directly input to the QPSK 

Demodulator – thus bypassing the radio links. This loop-back test feature can be used to 

test the operations of the Gateway controller independent of the system and isolate design 

faults in the Gateway controller from the rest of the system. The loop-back tests allow the 

testing of the entire transmit and receive paths independent of the physical radio link.  
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5.4 System Integration and Trials 
 

The Gateway controller is carefully designed to interface with the rest of the Disaster 

Response System components using standard I/O interfaces or protocols such as Ethernet, 

RS 232 serial port, Positive Emitter-coupled Logic (PECL) I/Os, etc. The interfaces to the 

Sounder are described in Appendix A. The I/O interfaces are described in detail in [22]. 

 

5.5 Summary 
 

The Gateway controller logic was simulated and verified after each design step. After 

the synthesis of the logic the synthesis tools were used to verify that all timing constraints 

are satisfied. The next chapter provides some conclusions and areas for future work. 
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CHAPTER 6 

 Conclusions and Future Work 
 

 

6.1 Conclusions 
 

 

This work focuses on the problem of simultaneously designing and implementing 

data link and media access wireless protocols. The challenge is that of rapidly translating 

the informal system requirements into a formal specification that can be used to prove the 

effectiveness of the protocol using a prototype hardware and software. Ultimately, the 

specifications must be mapped onto an implementation, and it is at this point that the 

work in this dissertation aims to add value. The technical challenge is primarily that of 

balancing various conflicting or competing design objectives.  

 

We propose a configurable architecture for embedded communication systems. The 

proposed architecture is a memory-centric hybrid architecture that employs a 

communications processor SOC platform and a FPGA based co-processor. The proposed 

configurable architecture is modular and can be classified into three distinct types of 

components: Processing Elements, Functional Units and Memory Elements. The 

Functional Units perform various data processing operations along transmit and receive 

data paths. The Processing Elements perform data transfers between data processing 

stages or functional units. Memory Elements act as buffers for processing elements 

moving data between Functional units. The control path elements consist of timing, status 

and control elements.  

 

 The FPGA logic was then mapped to combination logic blocks on FPGAs using a 

synthesis tool. The implemented FPGA logic was found to satisfy all timing constraints 

based on the detailed timing reports generated by the synthesis tool. The configurable 

prototype architecture allowed the use of a combination of FPGA IP cores and custom 

ASICs. Since some components like the Turbo Product Code CODECs did not have 
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readily available IP cores, commercial ASICs were used. The modular nature of the 

architecture is suitable for a component-based bottom-up design as in the case of 

Platform-based Design. The architecture also allows for rapid prototyping by allowing 

reuse of components and IP cores. The use of a Platform-based design methodology also 

helped to reduce design time by increasing design reuse. The hardware platform was 

simulated using behavioral VHDL simulators. Based on the simulation the design was 

found to conform to the design specifications and satisfy the timing criteria. 

 

6.2 Contributions 
 
 

A configurable architecture for prototyping embedded wireless communication 

systems was proposed. A hardware platform was designed to verify the design of the 

LMDS Gateway controller for disaster response networks. The scope of this work 

extended from developing specifications to component-level board design. The schematic 

and the printed circuit board (PCB) layout design were performed by external 

contractors. The VHDL code for synthesis of the FPGA logic was also developed and 

tested. Algorithms were developed for the application software to implement the TDMA 

MAC protocol.  

 

 
6.3 Current Status and Future work 
 
 At the time of writing this thesis, the hardware platform design and verification 

has been completed. The software platform is still in the conception phase and is being 

developed at the Center for Wireless Telecommunications. System tests and trials will be 

conducted to verify the effectiveness of the TDMA medium access and lower level 

protocols.  

 

 One of the interesting avenues for future work is to use the new generation of 

“platform FPGAs” that have a built-in processor cores such as the Virtex II series which 

have programmable logic gates and a processor on the same silicon chip. Another 

interesting design avenue is to use IP cores instead of the various external ASICs as when 
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they become available. This would open up interesting areas of research in re-

configurable computing. For example, a Reed-Solomon IP core can be dynamically re-

configured to change the coding level and may result in a more efficient solution. This 

would also aid in the study of the adaptive protocols and techniques. The dynamically re-

configurable property may also be useful in the context of rapid deployment. The system 

can use configurable IP network interfaces that can dynamically reconfigure the network 

interfaces to be compatible to those on the ground or to suit the needs of different 

response agencies. 

 

 Another logical extension of the research would be the development of a system 

platform, i.e. a combination of a hardware platform and software platform that allows for 

hardware-software co-simulation. New tools that allow hardware simulators and software 

emulators to co-operate, for example, by creating and allowing access to read and modify 

virtual “memory regions” can simplify the design verification aspects which continues to 

be a huge challenge for complex wireless system designs. 
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APPENDIX A 

A. Gateway-Sounder Interface 
 

A.1 Sounder Interface 
 

 This document discusses the interface between the Modem controller and Sounder 

units at the hub and remotes. 

 

A.2 Modem – Sounder Synchronization 
 

All the Modem controllers maintain synchronization information regarding the 

super-frame and sounder gap. The hub unit maintains the timing reference regarding the 

Super-frame commencement and transmits a special 32-bit “Sync Preamble” sequence. 

When the remotes detect this sequence, they update their timing references to align with 

that of the hub unit, thus maintaining synchronization. 

 

 The sounder is composed of a transmitter and receiver unit. The sounder 

transmitter unit is present at the hub and the sounder receiver unit is present at the 

remote. At present the sounder is being operated in a stand-alone fashion. The sounder 

operation is started and stopped manually through the PC interface at the sounder 

receiver unit. But on integration with the system the Sounder must operate only for the 

duration of the sounder gap so as to not interfere with the data transmission. For this to 

happen the sounder must also be synchronized with the rest of the system. The sounder 

transmitter and receiver units must be given an indication of the sounder gap beginning 

and end times by the modem controllers at the hub and remotes respectively. 
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A.3 Interface between the Sounder Transmitter and Hub Modem 
Controller. 

 

Figure A.1 Sounder Transmitter and Hub Modem Controller Interface. 

 

 

The interface will be a simple level sensitive signal originating from the modem. 

The sounder can transmit as long as the signal is low but must remain silent if the signal 

is high. Many options, listed in Table A.1, were considered and a PECL interface was 

finally selected. The signal details are yet to be determined. 

 

 

I/O Type Benefits 

LVTTL/CMOS Standard I/O 

ECL/PECL Noise immunity for high freq, good drive capability 

Opto-Isolator Very high noise immunity 

Table A.1 Sounder transmitter interface options 

 

 

A.4 Interface between the Sounder Receiver and Remote Gateway. 
 

 In the current manual configuration, the sounder communicates with the host PC 

though a parallel port. The sounder board also has a serial port and a host port. Both these 

interfaces are designed to connect the DSP to microprocessors and other peripherals.  The 

controller could use one of these interfaces to communicate with the sounder. The exact 

nature of the PC-sounder communication needs to be studied before we can decide on the 

interface. 

 

Hub 
Modem 
Controller 

Sounder 
Transmitter 

OPERATE_SNDR 
(LO= Active, HI= Stop) 
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 A possible solution is to move a part of the sounder control software on the PC to 

the modem controller. In this configuration the sounder would be connected to the PC 

through the parallel port and to the modem controller through either the serial or the host 

port. The modem controller would signal the sounder to start collecting samples at the 

beginning of the sounder gap and provide any configuration details if necessary. This 

configuration may be changed if necessary through the PC-Modem controller interface. 

When the end of the sounder gap is signaled by the Modem, the sounder indicates to the 

PC that it has collected samples and the PC can then collect the samples through the 

parallel port. This is one possible scenario provided that the requisite Sounder interfaces 

are available and the nature of the PC-Sounder communications allows this.  

 

 

  

 

 

 

 

 

 

 

 

 

Figure A.2 Sounder Receiver and Hub Modem Controller Interface. 
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APPENDIX B 

B. FPGA Logic Blocks 
 

B.1 FPGA Target 
 

The board consists of a 680 pin Xilinx Virtex FPGA (XCV 600). The Virtex family 

was chosen for its higher pin counts and compatibility with 5V outputs. The FPGA logic 

was designed using synthesizable VHDL. Two different environments were used to for 

design verification and synthesis respectively. For design verification a Test bench 

wrapper was written which had instances of the Modem logic and behavioral models of 

the processor, memory and FEC ASIC s. This design was functionally verified using the 

Synopsys VHDL Design Compiler.  

 
B.2 FPGA Design Environment 
 

For Synthesis of the design, the VHDL files were Mapped using Synplicity 7 and 

then Xilinx Foundation Tools ver 2.1 is used for Place and Route and to create the FPGA 

Configuration files.  

 

B.3 FPGA Logic 
 

The VHDL design entities in the transmit path namely, DMA1, DMA2, Modulator 

Interface (MODIF), Address Generator for DMA1 (M1ADDRGEN) are organised under 

Transmit top block (TX_TOP). Similarly the Receive Top block (RX_TOP) contains 

DMA3 (DMA3,DMA3o), DMA4, and the Demodulator Interface which constitute the 

receive path. In addition the TX_TOP and RX_TOP blocks each contain a 4Kx8 Dual-

port SRAM Core EDIF file created using the Xilinx Coregen utility. The Modem Top 

block also contains a bus arbiter (M1BUSARB) to arbitrate access to the external DP 

SRAM’s “left“ port and a Microprocessor Interface (MPCIF) for communication between 

the FPGA and processor. Each sub-block is explained in greater detail in the following 

sub-sections. 
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B.3.1 Transmit Path Modules 

 

The transmit path refers to the data path from Ethernet to the Modulator. As 

mentioned earlier the Transmit path consists of DMA 1, DMA2 and the Modulator 

Interface. 

 

B.3.1.1 DMA1 
 

The DMA1 is responsible for providing data from the external dual-port memory to 

the Reed Solomon Encoder for encoding and then storing the encoded data in the transmit 

side internal dual-port SRAM. The DMA1 reads the MAC packet in 180-200 byte 

sessions depending on the RS Coding level. The Reed Solomon encoder performs nine 

such sessions to always obtain 1800 bytes of RS Encoded data.  

 

The processor provides the beginning address of the data packet and the RS Coding 

level that is being used through the general-purpose I/O ports. Once the appropriate 

registers have been written the values for the Beginning address (DMA1_BEGADDR) 

and Coding level (RSMODE), the processor asserts the DMA1_START signal. The 

DMA1 then initializes the Reed Solomon Encoder based on the value in the RSMODE 

register. Once the initialization steps are complete, the data transfer can begin. The 

DMA1 then requests access to the left port of the Dual-port SRAM from the arbiter by 

asserting the DMA1_BUSREQ signal. After it receives a DMA1_BUSGNT from the 

arbiter the DMA1 has complete access over the memory port. It begins to read data in 

bytes and places them at the data input of the RS Encoder. The transfers are synchronous 

to the 40 MHz clock RSENC_CLK. The data is available at the output of the encoder 

after a latency of 3 clock cycles and is indicated by the encoder by asserting the 

RSENC_RDY signal. The DMA1 maintains three counters CNT_TEMP, PAR_CNT and 

PKT_CNT to keep track of the number of data bytes, parity bytes and sessions 

respectively. The state transition diagram for the DMA1 is shown in Figure C.1. 
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Figure B.1 DMA1 State Transition Diagram 
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B.3.1.2 DMA2 
 

DMA2 transfers data from the internal dual-port SRAM to the Turbo Encoder 

input. The processor initializes the Turbo Encoder at start up. Once the Turbo Codec is 

ready to receive the input, it asserts TCENC_UACPT. The DMA2 indicates the 

beginning of a transfer by asserting TCENC_URDY during the first byte of the transfer. 

The number of bytes to be transferred is 1816 bytes that include the RS encoded header 

and data. The TC_IN_COUNT counter keeps track of the number of bytes transferred. 

 

The State transition diagram for DMA2 is shown in Fig. C.2. 
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Figure B.2 DMA2 State Transition Diagram 

 

 



86 

IDLE

TXPRE_START =0

TXPRE

BKOFF

TXPRE_START =1

TCENC_ERDY=1

TCENC_ERDY=0
&& TXDAT=1 &&
PRE_CNT>1016

TCENC_ERDY=1
&& TXDAT=1 &&
PRE_CNT<1000

TCENC_ERDY =0

(STOP_TX =1) OR
(TCENC_ERDY=0
&&TXABORT_CNT

=16)

TXDAT

(TX_DATCNT=0)
OR

((MOD_ALARM=1
OR STOP_TX=1

OR
TCENC_ERDY=0)
&&TXDAT_CNT

!=0)

MOD_ALARM='0'
&& TXDAT_CNT!=0

&& STOP_TX='0'

TCENC_ERDY=1
&& TXDAT=1 &&
PRE_CNT>1000

 

Figure B.3 State transition diagram for Modulator Interface 

 

B.3.1.3 Modulator Interface (MODIF) 
 

The processor keeps track of the slot times and gives the indication to the FPGA 

logic as to when to start or stop transmission. The assertion of the TX_PRE signal 

indicates that the preamble transmission must begin. The Modulator interface outputs 

alternate 0s and 1s for the preamble. A minimum of 1000 symbols and a maximum of 

1016 symbols of preamble can be transmitted. If the MODIF does not receive a TX_DAT 

or TCENC_ERDY signal within 1016 symbol cycles of the TX_CLK then the 

transmission is aborted. The assertion of TX_DAT signal by the processor indicates that 

the data transmission should begin. At the end of the data transmission, TX_DONE is 

asserted to indicate successful transmission. 
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The processor can halt the transmission by asserting the STOP_TX signal. 

Alternately if there is an error in the Modulator indicated by MOD_ALARM then the 

transmission would stop. These conditions result in the assertion of TX_ERR signal 

indicating a transmit error condition. The State transition diagram for the Modulator 

interface module is shown in Fig. C.3. 

 

 

B.3.2  Receive Path Modules 

 

The receive path refers to the data path from the Demodulator to Ethernet. As 

mentioned earlier the receive path consists of DMA3, DMA3o, DMA4 and the 

Demodulator Interface. 

 

B.3.2.1 Demodulator Interface (DEMODIF) 
 

I and Q inputs are input directly to the Turbo decoder on the rising edge of 

TCENC_CCLK when TCENC_CRDY=1. Therefore in this case when the LISTEN 

signal is asserted the TCENC_CRDY is to be tied high. The turbo CODEC assumes 

every clock has valid data and determines the beginning of the frame by looking for 

Frame Sync sequences inserted by the turbo Encoder before transmission. 

TCENC_CACPT =1 indicates Buffer overflow which may have been caused by incorrect 

configuration. 

 

B.3.2.2 DMA4 
 

Decoded Data is output from the decoder on the rising edge of TCEDEC_DCLK 

when TCDEC_DACPT=1. TCEDEC_DACPT is to be tied high when LISTEN =1 

indicating that the DMA4 is always ready. The turbo decoder asserts TCDEC_DRDY for 

valid data. TCDEC_DSTART and TCDEC_ DEND indicate start and end of data 

respectively. The decoded data is stored in the receive side internal dual-port SRAM. 
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TCDEC_DERR when asserted indicates an error that could not be corrected. At 

this point the processor can decide to drop the packet or if RS Encoding is turned on then 

it can continue processing it. 

 

B.3.2.3 DMA3 
 

DMA3 moves data from the internal dual-port SRAM to the inputs of the Reed 

Solomon decoder. The assertion DMA3_START signal causes the initialization of the RS 

Decoder for the header RS Code.DMA4 then reads the first 16 bytes and inputs it to the 

RS Decoder. It then waits for the information about the payload coding before proceeding 

to decode them. Once the information is received the RS Decoder is initialized the 

specific code and the payload is decoded. The State transition diagram for the DMA3 

module is shown in Fig. C.4. 

 

 

B.3.2.4 DMA3o 
 

DMA3o transfers data at the output of the RS decoder to the external dual-port 

SRAM.  When it receives the DMA3_START signal it asserts the DMA3_BUSREQ 

signal to indicate to the arbiter that it needs access to the external DP SRAM. Once it 

receives the DMA3_BUSGNT it can begin the transfer. The State transition diagram for 

the DMA3o module is shown in Fig. C.5. 
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Figure B.4 DMA3 State Transition Diagram 
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Figure B.5 DMA3o State Transition Diagram 
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B.3.3 External SRAM Port Arbiter 

 

The External SRAM port arbiter implements a fair arbitration algorithm. When DMA1 

and DMA3 request the bus at the same time then the person who held the bus last has the 

lower preference. Figure C.6 shows the state transition diagram for the Arbiter 
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Figure B.6 Fair Bus Arbiter for External Dual-port Memory Port 
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B.3.4 Microprocessor Interface 

 

The Microprocessor Interface consists of the Local Bus interface and the general 

purpose IO ports. 

  

 

B.3.5 Timing Control 

 

The timing control logic consists of a bit correlator to detect the Super Frame sync 

bits and timers to keep track of the transmission time slots. 
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