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Configurable Architecturefor System-L evel Prototyping of High-Speed Embedded
Wireess Communication Systems

Visvanathan Subramanian

(ABSTRACT)

Broadband wirdless technologies have the potentid to provide integrated data and
multimedia services in severd niche aress. There is a growing need to develop high-
peformance communication sysems tha can sdisfy highrend data processing
requirements inherent in these technologies. The speed and complexity of these systems
necesstates designers to bresk away from traditiona architectures and design
methodologies. A more comprehensve and demanding design and verification process
including both hardware and software is required. Fdd-programmable gate arrays
(FPGA) offer an dtrective dterndtive to the low efficiency of Digitd Sgnd Processor
(DSP) based sysems and low flexibility of Applicaiion Specific Integrated Circuits
(ASIC). The avaldbility of high-dengty, high-performance fidd-programmable gate
arays with severad capabilities, like embedded memory and advanced routing, together
with the adaptability that they offer make them highly desrable for developing hardware
prototypes of communication systems.

This thess describes the devdlopment of a configurable architecture and FPGA-
based design methodology used in the development of a Locd Multipoint Didribution
Service (LMDS) gateway for a disaster response network. The design of the gateway
posed severa challenges due to high data rates (120 Mbits/sec) and adaptive features like
variable Forward Error Correction Coding and optiond link-level retransmissons. The
design decisons and smulation results of the verification process are discussed in detail.
Findly, the aspects of testing and integration of the prototype in the overdl sysem are
discussed.
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CHAPTER 1

| ntroduction

1.1 Overview

The wirdess market place has tremendous growth potentid and huge demand for
solutions as usas ae discovering tha wirdess appliances contan  increasing
functiondity that mekes ther jobs and ther lives esser. These wirdess devices are
becoming more like true computing platforms that run applications, including Internet
access, e-mail, multimedia messaging, synchronizing cadendars over wirdess networks,
gaming and downloading mudc. This cdl for bresk-through products requires wireless
system designers to remain at the forefront of technology and convert these expectations
into redlity.

The expanding wirdess gpplication space is rasng device peformance
requirements, as large streams of voice, data, audio and video need to be processed on
wireless communication devices. To boost revenues, service providers are aso rushing to
offer more datalgpplication services on wirdess devices, eg., video sarvices are now
offered on cdl phones. To meet the demand for ubiquitous Internet access and the ability
to access and share information from anywhere, a any time, wiredess gppliances and the
supporting networking infrestructure must be equipped with adequate computing and
sgna processng capabilities. For example, third-generation (3G) cell-phone handsets are
estimated to require severd thousands of MIPS of dgnd-processing horsepower, just to
capture a dgnal and extract data packets from it. Increasingly, wirdess terminds require
ggna-processing services not just to receive the packets but to act on the payload as well.
For instance, broadband wirdess data networking generdly includes forward error
correction (FEC) and encryption, which requires high-speed data manipulation a both
ends of the wirdess channd. The wide range of Sgnd processng reguirements - from
smple cydic redundancy checks (CRC) to complex CODECs — can be redized usng a
wide range of implementations from just software to optimized system-on-chip solutions.



The sgnd processing demands are only bound to increase into the future. To fully redize
the wirdess market's growth potentid, wirdess sysem designers need to employ
emerging technologies that can endble innovaive solutions while addressing the

concomitant issues and risks.

1.2 Communication Systems Design Challenges

Wirdless transmisson is inherently limited by the avalable spectrum and impared by
path loss, interference, multi-path propagetion, which al leads to potentid problems like
dday spread and fading. Consequently, designers of broadband wireless communication
gysdems face sevard intricate issues related to access mechanisms, error  rates,
transmisson rates and bandwidth. These chdlenges are further compounded in the case
of fixed broadband wirdess designs where the influence of wind, vehicular traffic, and
foliage make for a hogtile fading environment [1]. Therefore, the fird mgor chdlenge is
to desgn a wirdess link in a fading environment to look like a wire line link o as to
provide the same or smilar qudity of service as other competing broadband wired

technologies.

An end-to-end approach to error control used in wired networks that ensures
reliability by mechanians in the end sysems may not be suitable for their wirdess
counterparts. The unsuitability of the end-to-end agpproach stems from the fact that the
unrdiability of the media in wirdess communications is the mgor cause for dropped
packets, whereas congestion accounts for most of the packet losses in the wired domain.
Instead, error recovery mechanisms such as FEC and automatic repesat request (ARQ) are
used to guarantee reliability in the traversed wirdess links. This solution adds additiond

complexity and computational workload to the designs.

The second magor chalenge is a the Medium Access Control (MAC) layer, where it
is crucid that future MACs support sophidicated physical layer techniques such as
adeptive modulation and coding or spatiad multiplexing. The adaptive techniques thrust

sgnificant processing workload on the system implementations.



In generd, wirdess desgns offer greater chdlenges than wired systems. Next-
generation broadband wirdless communication applications incorporate severa features
such as high-speed, large-bandwidth network and radio interfaces, complex digita blocks
tha implement multi-layer protocols, and dgnificant amounts of embedded memory.
High-level protocol descriptions have to be rapidly trandated into hardware and software
that redize the sysem. Rapid advances in process technology give us the ahility, at least
in theory, to design ever more complex communication systems cgpable of operating at
higher speeds. But the desgn complexities, in conjunction with more involved device
models that these processes require, create a design crisis where the development cycles
and iteration times consume more and more effort and time. The designs push the limits
of current EDA tools and a radicad design flow throughput is needed to verify the design
ealy in the design process. A thorough test and verification process to achieve timing
closure and sgnd integrity must be completed within shrinking time-to-market windows.
Moreover, the sysem desgn must be capable of adapting to late changes in specification
or emerging standards so as to reduce the risk of costly hardware and software redesigns.
A design gtrategy to meet these needs will be described in this thesis.

1.3 Research Goals

The primary god of this work is to identify and explore configurable architectures
that ad in rgpid sysem-level prototyping of embedded wirdess communication systems
and is dso suitable in the context of modern sysem levd desgn methodologies. The
intention here is to tradeoff some measure of dendty and performance to achieve
reasonable design times and rapid system leve prototyping. Implementation options with
a high degree of adaptability that alows dterations even late into the design process are
dudied. Configurable devices like FPGAs ae the bads for flexibility. Tolerance to
modifications makes FPGAs highly desrable for developing hardware prototypes or
marketable products for communication sysems. Ancther implementation option that is
explored is the trend of moving away from using generd-purpose processors [2] in favor

of custom processors or configurable system-on-chips (SOC). The custom solutions are



usudly optimized towards a particular doman or condraint, for example, network

processors for network router applications or low power processors for handheld devices.

Beddes exploring the design space, an atempt is made to identify eements of the
architecture space that are suitable for wirdess communication desgn. In particular, a
hybrid memory-centric  re-configurable architecture is described combining traditiond
fidd-programmable gate aray (FPGA) for low-level network protocols with domain
gpecific processors for higher-level packet processng. The architecture offers greater
desgn flexibility by smplifying intefaces and dlowing the integration of heterogeneous
hardware blocks.

1.4 Application

This work focuses on the architecture and design of the Gateway Controller for a
high-speed Locd Multi-point Didribution Service (LMDS) broadband wirdess
communication system to ad in emergency response and management. The system is
described in detail in Chapter 2.

15 ThesisOrganization

Chapter 2 introduces the concept of disaster response communications. It aso
provides an overview of the rapidly deployable disaster response communicetion system
developed by Virginia Tech's Center for Wirdess Teecommunications, in partnership
with Science Applications International Corporation (SAIC). It then examines the

components of the system and discusses some of its interesting features.

Chepter 3 addresses the issues for developing the system architecture by examining
the exiging and emerging sysem desgn methodologies. It aso outlines the architecturd
design space for these systems and describes the design decisions and tradeoffs that were

encountered.



Chapter 4 explains the hardware and software implementation of the design. The

components of the hardware and software platforms are presented.

Chapter 5 explains the verificaion, integration and vdidation of the desgn. Vey
High Speed Integrated Circuit Hardware Description Language (VHDL) smulation
results used to verify the hardware implementation early in the design process are

presented.

Chapter 6 summarizes and concludes the thess with recommendations for future
rescarch in this area.



CHAPTER 2

|nformal Specification of System
Requirements

21 Overview

Before embarking on an embedded wirdless syssem design, we begin by examining
the system requirements for a Locd Multi-point Digtribution Service (LMDS) broadband
wirdess communication sysem for diseser response communications. This chapter
introduces the LMDS disaster response Gateway Controller and the application area of
this research work, viz.,, disaster response communications. The intention is to acquaint
the reader with the disaster response system developed at the Center for Wirdess
Tdecommunications (CWT) a Virginia Tech for which the Gateway Controller is being
designed. This is necessary to identify a sat of services and agpplications that are to be
supported and aso gives an idea of the complexity and problem areas that must be
addressed during the design.

2.2 Disaster Response Communications

Existing dissster response communications support primarily focuses on  voice
However, data connectivity is rgpidly becoming crucia because of the dependence on
information technology (IT) based infrastructure integrated into modern disaster response
sysems. Broadband wirdess communication technologies have the potentid to provide
the bandwidth necessary to support voice, data and video applications and content that
are being developed for disaster response. Besides providing high-speed connectivity, the
sysem must dso be suitable for rgpid deployment and remain robust even in adverse
environmenta conditions.

Firg responders to disasters, both manr-made and natural, must be able to gather
critical data and disseminae it usng robust means. It is imperative that decison makers
be able to request and receive this critical data, so that they may appropriately shape the



nature and scae of the disaster response. The fidd responders would aso benefit from
the knowledge base of archived information about the disaster area available on public or
agency networks. For example, firefighters responding to a disaster can use Geographica
Information Systems (GIS) based applications to find the location of fire hydrants that
may be concealed in the rubble. The gpplications and posshilities are innumerable. It s,
therefore, no wonder tha governments a dl levds ae trying to infuse the latest
information technology (IT) and telecommunications technologies into disaster response

and management procedures.

As the emegency responders reliance on 1T-based infrastructure increases,
providing the means to access this infradructure becomes sgnificant in organizing an
effective response. However, ensuring this access is dmost dways a chdlenge because
the exiging infragtructure is usudly rendered usdess or the disaster may take place in an
area where there was no infrastructure to begin with. To tackle this problem, researchers
a CWT have been collaborating with industry partner Science Applications Internaiond
Corporation to develop a rapidly deployable wirdess communication system for
emergency response [3, 4]. For a fully functiond communications system, three levels of
hierarchy need to be addressed: (i) locd connectivity, eg., usng wired and wireless loca
aea network (LAN) technology; (ii) backbone or backhaul connectivity; and (iii) wide
area network (WAN) connectivity in the form of the globd Internet or a private network
[5]. The sysem focuses on the second level and is intended to provide a 120-Mbps
backbone network to link a hub and up to eight remote Disaster Response Gateway
(DRG) units (or smply a “Gaeway” unit). The hub DRG can use surviving network
infrastructure at the periphery of the disaster area or use a satellite earth station to provide
a link to the outsde world. Alternady, the system can aso be used to create locdized
networks within the dissster area. The fidd DRG units can provide wired Ethernet or
wirdess loca area network access to portable or laptop computers as well as other
network enabled devices like hand-held devices, web cameras or voice-over-IP (VolP)

phones.



221 Prototype Networ k

The network topology, shown in Figure 2.1, conssts of a base gtation (or hub) and
multiple fiedld Gateway units (or remotes) that are connected to each other by a LMDS
wirdess backbone. The prototype network that is being deployed will consst of a hub
and from two to eight remotes. Each hub and remote Gateway performs network services
such as routing. The backbone network is functionaly equivdent to a network bridge.
For example, consder that the hub is connected by a 10/100-Mbps Ethernet connection to
the externa WAN network and a remote unit is connected to the end host through a
10/100-Mbps Ethernet connection. Then the LMDS backbone network essentidly serves
as a virtuad Ethernet bridge, i.e, Ethernet packets coming in and Ethernet packets going

out of the backbone network.
Surviving Network
Infrastructure )50

High Data Rate
Connection

Remote GIS
and other services

Hub

( “Virtual Eth‘jrnet”
f LMDS

Remote Remote

IEEE “( i .)b

802.11bN H

‘%@

Figure 2.1 High-level Overview of CWT LM DS Disaster Response System




The hub uses a high data rate connection such as 10/100-Mbps Fast Ethernet or a
SONET STS-3 connection to access a wide area network. The WAN connection may be
made through the surviving terrestrid network infrastructure. In cases of severe damage
or absence of any previous network infrastructure, satellite-based network access points
can be used. The remotes can be scattered across the disaster area to serve a radius of up
to 5 km from the hub. The remotes can provide persond digitd assstants (PDA) or
laptops, caried by fidd personnd, with LAN sarvices ranging from 10/100-Mbps
Ethernet to IEEE 802.11 wirdess connectivity. Thus, end hosts can access the network
sarvers and applications such as Geographic information system (GIS) on the wide area
network using the LM DS wireless backbone.

222 System Components

Beddes providing a high data rate “pipe’ for deploying new disaster response
goplications, the sysem developed at CWT features severd innovations that aid the rapid
deployment and robust operation of a disaster response communication system. A
broadband channd sounder [6] is integrated into the hub and fiedd units to adlow
measurement of channd characteristics. Information from the sounder can be used to
optimize the find placement of the hub and field units. Along with a suite of GIS tools,
the sounder can be used to enable the system to be quickly and rdiably deployed. Since
the network will be used as a communication backbone during disester Stuations and
gnce it mus maintan communications with possbly varying channd conditions, the
network should use an adaptive scheme to improve Transport Control Potocol/Internet
Protocol (TCP/IP) performance. The adaptive data link protocol, described in Section
223, adjusts error coding and eror recovery schemes during operation. Sounder
information may adso be used to adjust link configuration based on observed channd
conditions, thus meking the sysem more robust to sub-optima deployment and a

changing environment.



The disager response system consss of a hub Gateway and multiple remote
Gateway units. The hub and remote units are identicd except for the way they ae
programmed. The hub units are programmed to transmit during dl time dots whereas the

remote units are programmed to follow the multiple-access scheme.

Each unit, as shown in Figure 2.2, contains the following subsystems.

1. Gateway Controller subsysem: The gateway controller subsysem forms the
core of the disaster response system. The subsystem conssts of the LMDS
Gateway Controller and three other modules — Quadrature Phase Shift Key
(QPSK) Modulator, QPSK Demodulator-Digitd, and QPSK Demodulator-
Andog. The QPSK Modulator and the two QPSK Demodulators are
collectively referred to as the QPSK Modem. The QPSK modem is a
commercia satdlite modem that has been adapted to use for terrestrid LMDS.
The LMDS Gateway Controller desgn and implementation forms the focus of

this work.

2. Radio subsysem: The radio subsysem consgts of the 28-GHz LMDS band
radios and antenna components. The LMDS radios up-convert the intermediate
frequency (IF) output (400 MHz) of the QPSK modems to the LMDS band for

transmisson.

3. Sounder subsystem: The Sampling Swept Time Dday Short Pulse (SSTDSP)
Sounder (or Sounder) is a nove channd measurement tool that can be used to
profile the channd performanceinred time[6].

4. Host computer: The Host computer provides an interface to the Gateway
Controller and Sounder. It contains GIS and Sounder control software that can
ad in relidble and rapid deployment of the remote units. The Host computer
dso interfaces to the Gateway Controller usng a standard serid interface that
dlows the Gaeway Controller monitor software to modify sysem parameters,
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such as FEC levels and ARQ, based on Sounder data. The Gateway Controller
monitor software can also be used to obtain datistics on the error rates, data
rates, etc. from the Gateway Controller through aformalized command set.

H Wireless Link

Radi Antenna Antenna
adio .
Subsystem | uinieiuls innluiufnieluinls  infaluiel
Radio Sounder
Radio Sounder
I | | Subsystem
— Sounder
Modem QPSK Modem (with GPS)
Subsystem i
Monitor
Computer
Router/
Switch

- GIS
Host Host - Other applications

Figure2.2 CWT LMDSDisaster Response System: Hub/Remote Unit Components

223 Multiple Access Scheme

The network supports bi-directiona treffic between the hub Gateway and the
remote units. The sysem uses a TDMA — FDM (time divison multiple access —
frequency divison multiplexing) scheme, to dlow full duplex connection between a hub
and up to eght remotes The hub broadcags its transmissons on the “downlink”

frequency (fg) so that dl remotes recave the same transmisson a the same time. The
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remotes can tranamit to the hub on the “uplink” frequency (fy) based on a TDMA scheme
[7]. Each remote is assgned a daticdly alotted time dot in which it can tranamit data
The frequency and direction of transmissons between the hub and remotes are shown in
Figure 2.3.

Hub

Figure 2.3 Frequency Divison for Hub and Remote Transmission Units

The TDMA multiple access scheme [7], developed a CWT, dlocates the
transmisson time dots to the hub and remotes and dlows for the integration of other
sysem components such as the sounder. A “Data Frame’ congdting of time dot divisons
is shown in Figure 24 and the “Super Frame’ condgting of 512 Data Frames and a
Sounder operating time is shown in Figure 2.5.
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Figure2.5 TDMA Super Frame Format [7]
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Each data frame conssts of n dots where n is the number of remotes. Each dot is
separated by a guard time called dot guard time to prevent overlaps in transmission. Each
frame begins with a synchronization period that alows the hub and remotes to maintain
relative synchronization A Frame Stat preamble transmitted by the hub during the
gynchronization period dlows the transmisson time dots to dign identicadly a each
receiving remote dte. Smilarly, each Data frame is separated by a frame guard period.
The Super Frame congists of a synchronization period to alow the sounder to operate for
a fixed time known as Sounder Frame. During this intervd the Sounder will assess the
qudity of the radio transmissions that carry data. This assessment is used by the hub and
remotes to adjust the transmisson rates, coding levels and retransmisson characterigics

of the sysem. The multiple access scheme is explained in detall in [7].

2.3 Informal Specifications Summary for the LM DS Gateway
Controller

The sysem architecture description forms the bass for defining a st of informd
specifications, including functiona, performance, cost and architecturd aspects, for the
Gateway Controller design. The dissster response system is desgned to provide an
effective bandwidth of up to 10 Mbps per user for eight users didtributed over a disaster
aea of radius up to five kilometers [7]. The am is to provide high data throughput
associated with providing network connectivity and multimedia applications,

The disaster response system will be used to respond to natural and man-made
disssters where the unknown nature of the environment and adverse weether conditions
can lead to high bit error rates. These high error rates can hurt performance, especialy for
TCP because this protocol responds to loss due to congestion in the same manner as it
responds to loss to due to eror. Adaptive protocols that support variable FEC and
optiond ARQ schemes can improve TCP/IP performance in such Stuations and should
be employed in the Gateway Controller design.

Since the disaster response system is designed to take advantage of existing
network infrastructure whenever possble, the network interfaces must be chosen
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caefully. The system is to use 10/100-Mbps Ethernet network interfaces due to
widespread popularity and ubiquity of the Ethernet standard.

Functiondly, the Gateway Controller encapsulates Ethernet packets with the
LMDS MAC protocol described in Section 2.2.2 on one end and then trandates them
back to Ethernet packets at the other end of the LMDS wirdess link. The LMDS
Gateway Controller performs the following functions.

1. Provide Power, Signd and Control interfaces to the QPSK Modulator, QPSK
Demodulator- Analog, and QPSK Demodulator- Digital modules as required.

2. Provide Physica and Datalink layer functions for Ethernet Interface

3. Implement the TDMA scheme for multiple remotes to share the medium in the
uplink frequency. Maintain timing and synchronization between hub and remotes
at the bit, packet and frame levels.

4. Implement Link Layer retransmisson and Adaptive FEC to reduce network delay
dueto bit errors

5. Interface to Network Monitoring/Control and Radio Monitoring/Control Software
in the host computer and the Sounder.

The Fast Ethernet interface a 100 Mbps and the QPSK wirdess interface at 120
Mbps dso place drict processing condiraints and result in reduced delay tolerances down
to the order of microseconds. We believe that these speeds and tolerances are achievable

by careful component sdection, design and programming.

The Gateway Controller is essentidly developed in a research environment, and uses
experimental protocols that am to improve TCP/IP performance over wirdess channds.
Therefore, the architecture must be flexible enough to accommodate late protocol
changes and modifications. Also, as a result of academic research environment, cost is

aways an important congtraint and at times may be an over-riding one.
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2.4 Summary

To meet the functiond requirements the Gateway Controller mugt, in turn, satisfy
the high performance specifications needed for the signd processng and forward error
correction. To achieve high-performance and increased flexibility for making protocol
changes the system architecture should essentidly use programmable and configurable
components. Chapter 3 deds with the architecturd issuesin more detall.
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CHAPTER 3

Design Methodology for Wireless
Embedded Systems

3.1 Oveview

The scope of our desgn mehodology extends from  specification to
implementation. The discusson of the gpplication sysem in the previous chapter fixes
the application or service requirements, i.e, it determines the functions, speeds, power
requirements, form factor, etc., that are required by the applications or higher layers of
the protocol stack. Once the medium access and link level protocols are defined, the next

gep isto implement them in hardware and software.

3.2 Relating Abstract Specificationsto I mplementation

Protocol specification must define the services, behavior and forma sequences of
message  exchanges between communicating nodes or layers. The protocol definition
must define behavior for dl possble Stuations and crcumgances. While this in itsdf can
be complex, the implementation phase of a protocol poses additiona chalenges of its
owvn. The complexity of the desgn process is dgnificat in an integraied design
gpproach, such as in the case of MAC protocols. MAC implementation solutions consist
of a mix of hadware and software snce they require close interactions with the
underlying physica layer and require quick responses to events. To improve reaction
times and power efficiency, it is highly dedrable to implement the control logic in
hardware. On the other hand, easier product upgrades and higher flexibility of a software-
based gpproach favors implementing as much as possble in software. In practice, most
implementations condst of a mix of both hardware and software. The chdlenge of
desgning these hybrid systems is referred to as “hardware-software co-desgn”. The
chdlenge is tha hadwae and software have inherently different desgn gyles,
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representation and testing techniques. The hardware-software co-design chdlenges are
explored in the following sections.

33 System-level Design M ethodologies

Hardware-software co-design requires a more comprehensve and cohesve design
process including both hardware and software in the design to overcome various design
chalenges. Moreover, desgners mugst dso contend with rgpidly changing or evolving
sandards and specifications. Support for late protocol changes requires that the target
implementation have enough flexibility to incorporate future desgn or dgorithmic
changes. The increesng importance tha is being given to energy condderaions is
another factor to be dedt with in making architectura choices. All of the above
requirements necessitate a flexible, low energy, high-speed architecture and a wadll-
undersood generd sysem level desgn methodology upon which novel communication
systems can be built.

331 Platform-based Design

The emergence of a number of wirdess standards like Bluetooth, IEEE 802.11
and IEEE 802.16 has created a market for numerous wireless gpplications and products.
However, the rapid emergence of protocols and their successive variations, as in the case
of IEEE 802.11, have decreasad the time-to-market budgets even as the useful lifetime of
these products are rapidly decreasing. One of the solutions to reduce design times
suggested by Ferrari, e d. [8] and Kuetzer, e d. [9] is platformbased design by
“orthogondization” or separation of design space concerns. Platformrbased design ams
to reduce desgn time by facilitating reuse usng abdractions cdled “platforms” One
example of a platform, cdled a hardware platform, conssts of a set of parameterizable
architectures that satisfy the condraints and support the functiond specification of a
desgn. Smilaly, a software plaiform is a software layer consgding of the red-time
operating system (RTOS) and device drivers that dlows for abgtraction of the hardware
plaform through an inteface caled the Application Program Interface (AP). The
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combination of the hardware and software plafforms conditutes the system platform.
Matform-based desgn helps designers to swiftly design prototypes by re-usng readily
avalable and tested components from a library, which in this case is cdled a plaform.
Component re-use will not only ggnificantly reduce design time and effort but dso helps
to reduce time invested in testing those modules. The disadvantage of platformbased
desgn is that it may limit the desgner to a smdler desgn space provided by the
platform.

332 Platform-based Design Ter minology

“Matform conception” is the process of developing hardware and software
platforms. It is imperative that the target application be fully undersood before
embarking on a plaform dedgn. The fird gep in the devdopment of a plaform,
functional profiling, is to identify and extract common functiondity and features of the
goplication domain. The next sep, architecture exploration, is to identify architectures
for thee functions that would ddiver adequate peformance while saisfying the
condrants of the agpplication doman. “Paform indantiagion” involves mapping
functiondity onto specific sygsem modules that result in optima peformance. The
mapping process involves the sdection of an optima architecture among the various
architectures determined to be suitable and identifies components that can adequately
satisfy the performance requirements. When dl the desgn condraints are satisfied, the
implementation of an application becomes software based. The application designers only
need to focus ther atention on the application software compilation and hardware
gynthess to creste an agpplication. All of the steps in the platform-based design flow are
explained in detail in the following sections.
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333 Platform-based Design M ethodology

The platformbased design methodology can be broadly classfied into three
phases, plaform conception, plaform indantistion and implementation [10]. The
platform-based design flow showing the mgjor stagesiis represented in Figure 3.1.

Functional Design /

Protocol Specification Architecture Exploratio

PLATFORM
CONCEPTION

System Behavioral
Simulation using Networ|
Simulation Tools

(OPNET)
: PLATFORM
Mapping INSTANTIATION
Communication
Refinement
PLATFORM
\ IMPLEMENTATION
Flow to Implementatio

Application

Hardware
Top Level

[Hardware Verificatioﬂ

Software Verification

Prototype

Figure 3.1 Platfor m-based system design methodology
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34 Configurable Platform Design Flow for Gateway Controller

34.1 Functional Profiling of Gateway Controller

Functions in communication sysems can be broadly dassfied into data
processing and control functions [11]. Mot communication systems peform “packet
processng” pardld operaions as wel as bit-seria data processng operations. Both
function types can be further classfied as operations that modify data and those that
merely trangport them. Control functions include event processng and decison making
functions. For the design being performed here, these functions are represented as finite
date machines that can be mapped to ether hardware or software. The functions
identified are hepful in underdanding the complexity and the reguirements for the
system.

The functiond blocks that form the transmit path and the receive path of the
Gateway Controller are shown in Figures 3.2 and 3.3, respectively. The tranamit path for
the Gateway Controller refers to data path from the Ethernet PHY receiver to the QPSK
modulator and radios. Similarly, the receive path refers to the data path from the radio
and QPSK demodulator to the Ethernet PHY transmitter.

The Fast Ethenet PHY and MAC in the tranamit path implement the Carier
Sense Multiple Access /Collison Detection (CSMA/CD) dgorithm specified in IEEE
802.3 gsandard. The Ethernet packets can vary in sze from 64 to 1500 bytes. The LMDS
MAC payload builder uses the Ethernet segmentation block to bresk the Ethernet packets
into szes that are suitable for the LMDS MAC payload. The payload is then encoded
usng Reed-Solomon (RS) FEC code at the appropriate encoding level. Once the payload
has been built, the LMDS MAC header builder can form the header. The header is then
encoded a a standard FEC level by the RS header encoder. Findly the payload is
encoded using the Turbo Product Code (TPC) encoder. The encoded data stream is then
formatted by a symbol-mapper for transmission usng a QPSK modulator and radios. The
preamble generator is used to generate the bit patterns that denote the beginning of the
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frame and each data trangmisson. The tranamit path aso needs to maintain a timer to
schedule the order of transmissons between multiple remote Gateway Controller units.

Ethernet Receive Ethernet MAC
PHY " Controller

Router >

Reed Solomon
Code - Payload
Encoder

Reed Solomon Turbo Product QPSK Symbol
Header Encoder Code Encoder Mapper

Preamble/ Frame
Sync Generator

QPSK Modulator |« A

Figure 3.2 Functional blocksin transmit path of the Gateway Controller

The receive path, shown in block diagram of Figure 3.3, peforms the same
functions as the transmit path except in reverse order. The QPSK symbol-demapper
reformats the QPSK symbols into a bit-stream, which is then decoded by the TPC
decoder. To obtain information on the RS coding levels of the payload, the RS header
decoder must first decode the header. The LMDS MAC packet header is then andyzed.
The MAC packet header decoder gleans information regarding coding levels,
refransmissons and acknowledgements from the header. Once the coding leves are
known the RS payload decoder decodes the payload to obtain the transmitted data from
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the encoded packetized bit-stream. The Ethernet re-assembly block reconstructs the
segmented  Ethernet packets for transmisson by the Ethernet MAC and PHY. The
preamble detector serves to identify bit petterns transmitted that signify events such as
the beginning of the data frame and super frame. See Section 2.2.3 for an explanation of
frame characteristics used here.

Reed Solomon
Code - Header
Decoder

QPSK QPSK Symbol Turbo Product
Demodulator Demapper Code - Decoder

A
A
y

Preamble/ Frame
Sync Detector

Reed Solomon

Code - LMDS

MAC Payload
Decoder

Ethernet Ethernet MAC

Router < Transmit PHY Controller

y

Figure 3.3 Functional blocks on thereceive path of the Gateway Controller

Having identified the various functions that are expected of the design we can
move ahead to survey architectures that would result in efficient implementations of these
functions. The fact that there are functions such as FEC which tend to be cycle-intensve
and inefficient in terms of power when implemented in software suggest thet the
architecture should have a good baance of hardware and software.

34.2 Architectural Exploration

Before congdering any set of architecture topologies, the design space for the
gpplication domain must be identified and bounded. In this case the design space includes

23



generd and specidized microprocessors, digitd sgnal  processors, programmable logic
devices and custom agpplication specific integrated circuits. For a platform-based design
methodology to be robudt, it must be able to adjust to application redesigns and
improvements without much change to the base plaform dements Therefore, the
platform must be built on a foundation of configurable architectures and parameterizable
eements that are flexible enough to dlow for easy integration and scding.

The smplex and most common architecture used in traditiond communication
system designs is to configure a microprocessor or DSP with a set of gpplication specific
peripherds. In this scenario dl the system blocks are mapped to software running on the
processor or DSP. Though this provides a lot of flexibility, the serid processng modd of
software-based design limits system peformance to a great extent. However, ASICs
yidd very high peformance, but reguire ggnificant nonrrecurring engineering (NRE)
cos and effort. ASICs offer low flexibility to the designer and require tremendous
redesgn efforts in the face of changing specifications or standard updates. This makes the
ASIC option unsuitable for the development of products that are based on standards that
have not yet dabilized or are undergoing development — a trend that is common in
today’s industry. Given the above requirements programmable logic devices like FPGAS
offer an excdlent dternative. High dendty FPGAs and readily avalable configurable 1P
cores provide dgnificant performance improvement by dlowing desgners to take

advantage of pardlelism and pipdining processing stages.

Dedgners can dso take advantage of hybrid architectures involving a processor
and a FPGA co-processor to achieve dmogt triple peformance for certan “cycle-
intensve’ operations [12]. The choice of the processor is crucid and determines whether
a sysem block is implemented as hardware or software. The processor choice adso
determines system parameters like voltage levels, input/output (I/O) standards and most
importantly the system bus protocol. The new breed of gpecidized network and
communication SoC processors ae idedly suited for control and some *packet
processing” operations in high bandwidth applications and have built-in - network
interfaces that amplify design.
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Once the microprocessor target is identified, the software platfform, which
interfaces the hardware to the programmer through device drivers and the Application
Program Interface (APl), can be developed. RTOS sdection and multiple operating
system support for the target hardware platform must be weighed before developing the
software  plaform. Driver support for specific devices included in the hardware
configuration can srongly influence RTOS sdlection.

34.3 Mapping

Various iterations (Designs A, B and C) produced during the design process, were
conddered for the configurable hardware platform. Ther suitability to the gpplication
domain was dudied with an eye toward optimizing the parameter mentioned earlier in
this report.

Desgn A condged of a dngle generd-purpose microprocessor  with  dl
functiondity mapped into software. Even initid andyss of the desgn suggested that the
system would not be able to handle high bandwidth data processng requirements. The
magjor problem was the processor bus-bottleneck and the serid processng modd. A
series of operationa speed calculations, based on possble process clock speeds and
indruction execution times, were performed. Design A was not andyzed in detall further,
even though it may have been suitable for lower bandwidth applications, as our goad was
to identify designs that satisfied high bandwidth requirements.

25



CPU Memory Peripherals

A A

< A4 1 \4 >
A

A 4

FPGA
Coprocesor

<«—p| Peripherals

Figure 3.4 Design B: General purpose processor and FPGA Co-processor

Desgn B, shown in Figure 34, condsted of a generd-purpose processor aong
with a FPGA co-processor. Various processors, like the 1960Jx and FowerPC family, and
bus protocols were considered. The FPGA co-processor, implemented on a Xilinx Virtex
FPGA, acted like a DMA controller by moving data and reducing the processor load. The
control operations are implemented in software running on the processor. Some bit-serid
operations, like the modulation symbol mapping and radio interface, are moved to

hardware logic on the FPGA. This smplifies the serid interfaces and dso reduces bus
bottlenecks.
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Figure 3.5 Design C: featuring a memory-centric ar chitecture
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The third iteration, Design C, shown in Figure 3.5, was proposed to take greater
advantage of IP core reuse and further smplifies interfaces to promote easier integration
of heterogeneous system blocks. To achieve this objective, a “memory-centric’
architecture with a combination of a specidized processor for packet-level operations and
programmable logic devices like FPGASs for hit-level operations was implemented. High-
densty FPGAs and readily avalable configurable IP-cores provide dgnificant
peformance improvement by adlowing desgners to take advantage of pardldism and

pipelining processing stages.

The architectura dements can be broadly classfied as control or data path eements
[15]. The control dements ded with timing, Satus and ordering functions. These
eements are implemented in the processor. The data path dements consst of functions
that move, dter or add to the data that is transmitted or received. The data path eements
can be further classfied into:

“Functiona Units’ (FU) which modify or transform data aong the data path,

multiple scattered DMA-like “Processng Elements’ (PE) that transport or
relocate data, and

“Memory Units’ (MU) to store data between stages of the pipeline.

The functional units perform various phases of the data processng before transmisson
and after reception. Forward error correction CODECs or modulation symbol-mappers
are examples of functiond units. The processng eements perform data transfers between
data processng stages or functional units. The architecture is desgned to be memory
centric in that distributed memory dements like dud-port synchronous Random Access
Memories (SRAM) exist between each functional stage of the data path. This modular
architecture permits designers to take grester advantage of IP core reuse and further

amplifies interfaces to promote easier integration of heterogeneous system blocks.
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A dua-port memory, accessble by both the microprocessor and the FPGA-based
processng elements, alows the processor and FPGA logic to read and write data
smultaneoudy. Further, embedded dua-port SRAM memory avalable within the FPGA
is used to create distributed buffers between various processng stages. Most control
functions ae implemented in software while some criticd functions, like timing
references, are mapped to the FPGA blocks. Also, to take advantage of the optimizations
in the specialized processor, the packet processng functions are performed in software.
Among the many communication and network processors conddered, the Motorola
PowerQuicc Il SOC plaiform was found to be most suiteble for the application. The
Motorola PowerQuicc Il 8255 communication processor [13] condsts of a high
performance 64-bit, 200-MHz PowerPC core and a 32-bit, 133-MHz communication
processor that smplifies network interfaces with support for Fast Ethernet, ATM and
TYHDLC protocols. The Xilinx Virtex XCV600 FPGA [14] offers high gate dengties
(up to 1M+ gates), 512 I/Os and up to 16 KB of interna single/dua port SRAM
embedded memory.

35 Summary

The Gateway Controller design implements a TDMA MAC scheme with different
uplink and downlink frequencies on the wirdess link and an Ethernet interface on the
wire line sde. Given the high bandwidth required and the amount of data that needs to be
trangported between blocks, the hybrid architecture of Design C was used with
processng dements implemented patly as software running on the communication
processor and partly as FPGA hardware logic blocks. The hardware platform is discussed
in detall in Section 4.2. The software platform consists of a board support package (BSP)
developed for VxWorks RTOS from Wind River Sysems and device drivers for
Ethernet, Universd  Asynchronous Recave/Transmit (UART) and other common
functions. This can then be used to generate and compile the application software. The
software platform is discussed in detail in Section 4.3.
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CHAPTER 4

Gateway Controller | mplementation

41 Oveview

This chapter presents, in detall, the implementation of the data processng modules
of the LMDS Gateway Controller into physicad hardware and software components. The
chapter is included for completeness and to explan how the data processng modules
relae to the wireless link protocol. The various design choices and performance tradeoffs

are also described.

4.2 Gateway Controller Hardware Implementation

Though the data processing modules were designed to operate autonomoudy, the
microprocessor was retained in the implementation primarily for the flexibility afforded
by the processor. Including the processor makes exploration of various networking
protocols essier, as it dlows the exploration to be done in software. The processor
functiondity is paticulaly suited to peforming the following tasks packet transmission
scheduling over radio link and support for medium access protocols, including packet
header processng. The higher-levd MAC packet processing functions are more
effidently implemented as processor micro-code. However, some bit-leve tasks of the
physicd layer, that can be performed by the processor are implemented in the FPGA as
they offer more efficient processng ability within affordable dlicon area The FPGA-
based interface to the radios dlows flexibility to enable grester experimentation with
physica-layer protocols and take advantage of new radios as they become available. The
combination of the processor and FPGA logic blocks yidds the mogst efficient
implementation that accomplishes the tasks at high enough speeds.
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4.2.1 Microprocessor Subsystem

The microprocessor is responsble for system initidization and various high-leve
protocols. As shown in Figure 4.1, the system is controlled by a Motorola MPC8255
PowerQuicc 1l communications platform [13]. To perform its varied functions, the SoC
plaform shown in Figure 4.2 integrates a PowerPC 603e reduced indruction set
computer (RISC) microprocessor running a 200 MHz, a communications processor
module (CPM) running & 166 MHz, with 16 MB of read/write SDRAM, and 8 MB of
Flash memory for program storage. The processor micro-code implements the TDMA
MAC scheme for the LMDS network and closdy controls the FPGA logic that
implements the lower layer functions and interfaces.
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Figure4.2 Motorola MPC8255 Power Quicc Il Communications Platform Block Diagram [13]

The MPC8255 has a built-in Ethernet MAC controller in its Fast Communication
Controller (FCC) and connects to an external Ethernet PHY device through the Media
Independent Interface (MIl). The MPC8255 dso contains a UART interface, which can
be connected to an RS232 interface chip.

4.2.2 FPGA Co-processor

The FPGA is a XCV 600 FPGA in a 680-pin fine-pitch bal grid aray (FBGA)
package that belongs to the Xilinx Virtex family of FPGAs The Virtex-family FPGAs
offer a wide variety of programmable sysem feaiures a rich hierarchy of fadt, flexible
interconnects, and advanced process technology. Virtex family architecture, shown in
Figure 4.3, ddivers high-speed and high-capacity programmable logic solutions that
enhance dedgn flexibility while redudng time-to-market [14]. Virtex function generators
are implemented as 4-input look-up tables (LUTS). In addition to operating as a function
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generator, each LUT can provide a 16 ~ 1-bit synchronous RAM. Virtex FPGAs dso
incorporate severa embedded large block RAM (BRAM) memories, which complement
the digributed LUT-based memories implemented in combination logic blocks (CLB)
that provide shdlow RAM dructures. Block RAM memory blocks are organized in
columns. All Virtex devices contan two such columns, one adong each vertica edge.
These columns extend the full height of the chip. Each memory block is four CLBs high,
and consequently, a Virtex device 64 CLBs high contains 16 memory blocks per column,
and a total of 32 blocks. Another attractive feature of the Virtex family is it's high 1/0 pin
counts and configurable 1/0 buffers (I0OB) that can be programmed into a wide variety of
dandards. This dlows the FPGA to inteface with multiple 10 dandards like Low-
voltage TTL, 5V TTL, CMOS and PECL.
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Figure4.3 Virtex FPGA Family Architecture

The FPGA co-processor architecture process flow is shown in Figure 4.4 and the
processes can be broadly grouped under Transmit or Receive process flows. The transmit
process flow, shown by a dotted red line in Figure 4.4, refers to the data path from the
Ethernet PHY recelver to the QPSK modulator. The receive process flow, shown by a
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solid blue line in Figure 4.4, refers to the data path from the QPSK Demodulators to the
Ethernet PHY transmitter.
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Figure 4.4 FPGA logic - processflow overview

4221 Transmit Process Flow Overview

The processor reads in data from the Ethernet PHY chip and stores it in the
externa dud-port SRAM memory. Using this data, the processor then builds the wireless
MAC payload after segmentation of the Ethernet packets to the appropriate size, and

agan dores it in the externa dud-port memory. All processor accesses to the memory
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are through the one port referred to as the “right” port whereas al FPGA accesses are
through the second port and referred to asthe “left” port.

The processor next builds the header in the externd DP SRAM, after looking for
updates/acknowledgements to add to the header from the receive process. Depending on
whether the acknowledgement fiedld sequence number requested by the recever
transmisson of the new payload or a retransmisson of the unacknowledged payload is
scheduled. The updates in the header maybe acknowledgements of received payloads on
the receive path, requests for retransmissons etc. The processor then passes (writes
vaues to a regiger through 10 ports) the beginning address in externd DP SRAM and
the RS coding rate of the payload packet to the firs DMA module in the FPGA. After
that it asserts the DMAL start (DMAL1 START) sgnal. The DMA1L accesses the payload
in externd DP SRAM through the left port after requesting access to the arbiter in the
FPGA. The DMAL1 process is explained in detall in Appendix B. The arbiter grants the
request if the left port is not being used by the recelve process. If the left port is busy then
the arbiter waits till the recelve process rdinquishes control of the left port. Once DMA1
has completed writing the payload to the internd transmit memory, it then assarts its
DONE signad (DMA1_DONE).

When the processor receives an interrupt indicating DMAL has completed, it can
then initiate the DMA2 process. The DMAZ2 process is explained in detall in Appendix B.
All DMAs have a least a START input and DONE output sgnd. This is done mainly to
let the processor keep track of the process flow. The processor adso needs to maintain a
timer, for it to determine the beginning and end of the transmisson time dot. It will
maintan timers to control the beginning of preamble transmisson and data transmisson.
The modulator interface begins preamble transmisson when it recelves the Preamble
Tranamit sgnd (TX_PRE) and transmits the preamble until the Data Transmit sgnd
(TX_DATA) is received and the Data (in the Turbo Encoder’s output buffer) is ready for
transmission.



4222 Receive Process Flow Overview

The demodulator “accepts’ data only when the DMA3s LISTEN dgnd is
asserted by the processor. The in-phase (1) and quadrature (Q) symbols from the QPSK
Demodulator are fed directly to the TPC Codec through the Demodulator Interface. The
TPC Codec is cgpable of identifying the beginning and end of frame by usng the Frame
Sync patterns inserted a the time of encoding at the transmitter. The Turbo Decoded
Output is moved to the Recelve sdeinternal DP SRAM by DMA4.

The header, which is aways coded a a known congtant rate, is decoded firgt to
determine payload-coding levels. Then the rest of the payload can be decoded. The
DMA3 process transfers data from the Recelve sde internd DP SRAM to the RS
Decoder after the RS decoder has been programmed. The output of the RS decoder is
written into the externa DP SRAM through the left port after requesting access fom the
arbiter. The processor can then access the stored payload and perform Ethernet packet re-
assembly after which the Ethernet driver can send the Ethernet packet to the PHY chip
through the MII inteface. The Host computer issues commands and receives datus
messages through the UART of the processor based on a modem command set defined
for this purpose. The Receive process e ements are explained in detail in Appendix B.

423 Forward Error Correction CODECs

The Gateway implements adaptive FEC to improve the throughput of good data
by the channd. The gateway MAC protocol uses a combination of Reed-Solomon and
Turbo Product Code FEC CODECs. Software implementations of FEC CODECs are
highly cycle intensve, i.e. they consume a lot of processor cycles. As a reault, the
processor may not be available for other more critical tasks and hence they are not
uiteble for implementation in software. Two options were conddered for the
implementation of the CODECs in hardware. The fird option was to implement the
CODECs as FPGA cores. However, during the early development period of the gateway
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there were no suitable commercid cores available for the Turbo product codes that
matched our performance requirements, though there were commercid cores avalable
for the Reed Solomon CODECs. The second option was to use commercidly available
ASICs. In the end, the second option was chosen to implement both CODECs to avoid
any rdiability issues with unproven IP cores and, dso, due to the lower cost of the
commercial ASICs.

4231 Reed-Solomon CODECs

Reed Solomon (RS) codes are a subset of Bose-Chaudhuri-Hochquenghem BCH)
codes and are linear block codes. A Reed- Solomon code is specified as RS(n,k) with s-hit
symbols. This means that the encoder takes k data symbols of s bits each and adds parity
symbols to make an n symbol codeword. There are n-k parity symbols of s bits each. A
Reed-Solomon decoder can correct up to t symbols that contain errors in a codeword,

where 2t = n-k.

The Reed Solomon codes are implemented usng an integrated RS encoder-
decoder solution on a single chip [16]. The RS CODEC contains both a high data rate
programmable Reed-Solomon encoder and a separate decoder that will provide Reed-
Solomon forward error correction encoding of blocks of eight bit symbols. The Gateway
sysem uses the CODEC to implement adaptive FEC by switching between fixed RS
coding leveds The CODEC can be programmed to implement the following RS coding
levels though other codes can also be supported: RS(10,18), RS(200,188), RS(200,192),
RS$(200,196) and RS (200,180). The coding levels are sdected based on smulation
results from [7]. The encoder and decoder units operate independently and each can be
programmed on the fly to sdlect the desired coding level.

The decoder can operate independently to process blocks of up to 255 eight-bit
symbols to provide corrections (t) of up to 10 errors per code block at data rates up to 320
Mbps. The encoder output code block will contain the undtered origina data symbols
followed by the generated parity symbols. The decoder input contains the received data
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and parity symbols including errors that may be introduced during transmisson. Decoder
output will be a completely corrected block or will be marked as non-correctable and the
block will be output as receved without any changes. Detaled pin-out and sgnd

descriptions are described in [22].

4232 Turbo Product Code CODECs

The Turbo Product Codes (TPC) are implemented using extended Hamming
codes (or smple parity codes) in a two- dimensond or three-dimensond operation [17].
Encoding is performed by placing the data in an (k © k) aray, for a two dimensond
code. Each row and column is then encoded with the appropriate extended Hamming
code and the Error Correction Code (ECC) parity bits are appended to the end of each
row. After al rows are encoded, the columns are encoded in the same manner resulting in

a(n” n) coded array.

The TPC dgorithm agpplies an iterative decoding method to a product array of
extended Hamming or single parity check codes. ‘Turbo decoding’ of a product code
aray involves individudly decoding each row using a technique cdled soft decison
corrdaion decoding [17]. The output of the row decoding is then combined with the
origind data and input to a decoder for each column using soft decison correation
decoding. The result of the column decoding is then input back to the row decoding. This
process continues until the decoder settles on a vaid transmitted code array or until the
maximum number of iteraions is reached. All of these operations ae performed
automeatically within the TPC chip.

Figure 4.4 shows a block diagram of the TPC encoder and related modules. Firs,
the CRC Engine computes and then insarts the CRC of the input data at the end of the
each data block. The output of the CRC engine is then scrambled by exclusve-ORing it
with the output of a pseudo-random binary sequence (PRBS) generator so as to ensure
adequate bit trandtions in the transmitted data stream. The scrambled data is then input to
the TPC Encoder, which computes eror correction code bits and inserts them at
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gopropriate locations in the data dream. Frame Sync insertion block insarts a
programmable synchronization paitern into the bit stream. Findly, the Symbol-mapper
formats the data stream to produce | and Q outputs for direct connection to the QPSK
modulator.

User Encoded

Data SYROL Data
rﬂj_”ﬂ]:)_l_ MAPPER >
k

CRC ENCODER & | ocpamLER FRAME SYNC

TPC
PACKET SYNC
INSERTION PRBES ENCODER INSERTION

Figure4.5 TPC Encoder Block Diagram

The TPC decoder path has a counterpart for every block on the TPC encoder path
as shown in Figure 4.5. The channd interface formats the received channd data for
decoding by the Turbo Product Code decoder. Since QPSK modulation is used, the soft
(confidence) information comes directly from the in-phase (I) or quadrature (Q)
component of the received symbol. The synchronization marks inserted a the tranamitter
end dlows the TPC Decoder to determine the location of the first bit of the encoded
block. After the TPC Decoder decodes the data stream, it is descrambled using a Pseudo
Random Binary Sequence (PRBS) Descrambler. The CRC Engine then computes the
CRC for each block and compares it to that appended to the data. The appropriate packet
eror dgnas are generated if there is a mismatch, and if no erors are detected, the
decoded block is outpui.
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Figure 4.6 TPC Decoder Block Diagram

The TPC codec aso has a microprocessor interface through which the processor
can directly initidize it or change certan parameters such as block size, sync patterns,
etc. The TPC Codec is programmed to implement a fixed (128,120)" (128,126) code.

4.2.4 External Dual-port SRAM

The externd Dud-port SRAM dlows smultaneous access by the processor and
FPGA. The Dud-port SRAM can operae in ether pipelined or flow through mode. In the
pipelined mode, the read data access has a one-cyde laency while the flow through
mode does not have the latency. However, the maximum frequency for the flow through
mode is 50 MHz. Therefore, the FPGA port which reads/writes data at 40 MHz operates
in the flow through mode whereas the processor port which readswrites data at 66 MHz
operatesin the pipelined mode.

425 Network and 1/O interfaces

The Gateway Controller is closdy integrated with the other components of the
gateway. The Gateway Controller uses standard well-defined network and /O interfaces

to communicate with the rest of the system conggts of the following interfaces.
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b)

d)

Modulator/Demodulator: The Gateway Controller provides control and power
sgnds besdes a QPSK-symbol mapped data interface. The modems connect to
the Gateway Controller through custom back plane connectors [18].

Host Computer: The Gaeway Controller communicates with the host/monitor
Persond Computer (PC) using a customized ASCII Command set defined in [7].
The command st includes indructions to the Controller to change system

parameters and to provide status information.

Fast Ethernet Interface: The gateway has a fast Ethernet wire-line interface and

uses a RJ-45 connector.

Sounder Interface: The Sounder interface has not been fully defined for the initid
dage of the controller specification. However, PECL outputs are available for use
at alater stage. A possible Sounder interface is proposed in Appendix A.

Tools- Application

Hardware- 1 ndependert

Software
I/O System VxWorks Libraries
Y 7 !
RTOSKemd Hardware-Dependent
i \ 4 ) 4 i Software
| I/ODriver [ BSP [¢—| Network |
i Y _»|  Driver !
| GPIO Serid Ethenet |} Hardware Platform
I Controller Controller |t

Figure 4.7 Softwar e Platform Components
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4.3 Software Platform

The software platform complements the hardware platform and conssts of pre-
integrated  software tools, red-time opeaing sysem, and a desgn/development
environment. The software plaform is desgned to be flexible and dlow for rapid
devdlopment and experimentation with different protocols and communication schemes.
This thess addresses a basc platform configuration to demongrate the capabilities of the
prototype hardware platform.

The components of a basc software platform and the interactions of the software
plaform with the Hardware platform is shown in Figure 4.7. The software platform
congsts of two types of components. Hardware Dependent and Hardware Independent.
Some of the mgor components of the basic Software platform are given beow and
explained in detall in the following sections.

RTOSKernd : VxWorks

|/O Driversfor peripherds UART, Ethernet, etc.

Software Design Environment: Software Tools, Host IDE, MPC8260 ADS
In-Circuit Debug environment: JTAG/COP port, In-circuit emulator

Board Support Package

o » 0 NP

43.1 Real-time Operating System

The VxWorks RTOS is one of the most popular choices for embedded system
desgns. VxWorks [19] is a high-performance red-time operaing sysem from Wind
River Systems. The heart of the VxWorks RTOS conssts of a multi-tasking kernd with
interrupt-based, pre-emptive priority scheduling support, watchdog timers, and memory
management.

432 DeviceDrivers

Device drivers are low-levd software components that forge the actua connection

between the microprocessor "enging’ of the communications processor, and higher-leve
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software such as application tasks, communication protocol software and red-time
operating systems. Many of these connections are unique to the target hardware and
highly criticd for sysem operation. The low-levd software components that implement
them are tedious to build because of the complexity and intricacy of the software-
hardware interfaces specified by chip manufacturers. However, device driver templates
that only require the software desgner to modify the driver to suit the gpplication are
readily avalable for target sysems such as the MPC8255 processor. This helps in
reducing device driver development time by reuse of software dements designed by the
chip manufacturer.

4.3.3 Softwar e development tools

The deveopment environment includes a full range of features from editors
compilers, smulators and source levd debuggers to ad in  eficient software
devdlopment. The Tornado 2.0 [20] integrated design environment (IDE) from Wind
River Sysems has been chosen as the development environment. The Tornado IDE
components execute on a host sysem with access to the Gateway controller target
sysem. Application software modules written in C/C++ can be compiled with cross
compilers avalable in Tornado Host IDE for the MPC8255 CPU target systems. These
goplication modules can teke advantage of RTOS run-time libraries to reduce
development times. An MPC8260ADS development board dlows software developers
to Start software design before the hardware platform is completely devel oped.

4.3.4 I n-cir cuit Debug Environment

The MPC8255 processor core has an internd common on-chip (COP) debug
processor [13]. This processor alows access to internal scan chains through a JTAG/COP
port for debugging purposes. It is dso used as a serid connection to the core for emulator
support. The JTAG/COP emulaor running on the host sysem provides the developer

with remote control and monitoring of target hardware to assst in board and system

debugging.

42



4.35 Board support package

A board support package (BSP) is a collection of C and assembly routines that
provide the RTOS with an interface to hardware. The VxWorks BSP [21] routines for the
MPC8260ADS board are used as a template to create the BSP for the Gateway controller
hardware. The BSP software is dependent on the hardware platform and directly interacts
with the hardware.

44 Gateway Controller Application Software Modules

The Software platform provides a starting point for the development of the software.
The Software plaform dlows for efficient reuse of code by providing pre-verified code
for commonly used tasks. The applicaion software development crestes a unique
ingance of the Software platform. The Gateway Controller implements most MAC layer
packet processng functions in software. This includes Ethernet packet processng and
LMDS MAC packet processing. The Gateway Controller software modules are explained
in detall in the following sections.

44.1 Transmit Process Software M odules
4411 Algorithm for Ethernet Segmentation and LM DS MAC Data Payload
formation

The Ethernet Segmentation process encapsulates the Ethernet packets into the LMDS
MAC data payload for transmission over the LMDS wirdless link.

1. Wait for IRQ from Ethernet PHY indicating the arriva of an Ethernet packet.
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2. The Ethernet packet is moved from the Ethernet MAC buffer to the SDRAM
memory. The newly arived Ethernet packets enter a the end of an Ethernet
packet FIFO in SDRAM memory from which the daa payload is to be built.
Update the size of the FIFO (ETHFIFO_Size) and number of Ethernet packets
(ETHPKTNUM).

ETHFIFO Size
ETHPKTNUM
PKTL FRAG OFFSET
ETH PKT ADDR1 ETH PKT SIZE 1
ETH PKT ADDR2 ETH PKT SIZE 2
ETH PKT ADDR3 ETH PKT SIZE 3
ETH PKT ADDRn ETH PKT SIZEn

Figure 4.9 Ethernet Packet Receive FIFO in SDRAM

. Determine maximum data payload sze (MAX_PAYLD) to fix the data payload
buffer gze in externd dua-port SRAM memory where the data payload is to be
built. Depending on the RS Coding leve the maximum sze of the data payload
will vary. Use Table 4.1 for maximum payload sze for each coding leved. The
sgze of the Ethernet packets can vary from 64 to 1518 bytes. The data payload is
formed by filling the data payload buffer with multiple Ethernet packets and/or
Ethernet packet fragments.

Coding RS Code Maximum Data | RSMODE (0:2)
L evel RS (n, k) (bytes) register value
1 RS (200,188) 1692 001

2 RS (200, 192) 1728 010

3 RS (200, 196) 1764 011

4 RS (200, 180) 1620 100

5 No Coding 1800 111

Table4.1 Maximum size of data payload



4.

In case the Ethernet packets are fragmented, an Ethernet Frame Fragment Header
(EFFH) must precede each Ethernet fragment. To build the EFFH, the postion of
the fire byte of the Ethenet fragment in the origind FEthernet packet
(EFFH_Offsat) and the number of bytes in the fragment (EFFH_Size) must be
cdculated. The informaion must be included for the packet to be correctly re-
assembled a the recelving end. If the fragment contains the last byte of the
origind Ethernet packet then the FIN bit of the EFFH (EFFH_FIN) isto be st.

4 8 12 15

FIN Fragnllent Dffsat
Fraq;ment Length
Figure 4.10 Ethernet Frame Fragment Header (EFFH) Format
5. If 200 bytes < ETHFIFO_Size < {MAX_PAYLD — (ETHPKTNUM * 4)}, i.e. dl

Ethernet packets and their Ethernet Frame Fragment Headers (EFFH) can fit in
one data payload buffer of MAX_PAYLD sze, then

If ETHPKTNUM = 1, i.e. only one Ethernet packet is in the queue. Then insert
one EFFH with EFF FIN=1. Pad with (MAX_PAYLD — ETHFIFO Size + 4)
bytes of zeroes. Delete entry corresponding to the inserted packet from the FIFO.
Update ETHFIFO_Size and ETHPKTNUM.

(i) If ETHPKTNUM >1, then build EFFHSs for each Ethernet Packet. Insert Ethernet

packet/fragment and EFFHSs dternatdy till the data payload buffer is full or al the
packets/fragments have been inserted. The last EFFH must have EFF_FIN=1. Pad
with {MAX_PAYLD — ETHFIFO Size + (4 ETHPKTNUM)} bytes of zeroes.
Delete entry corresponding to the inserted packets from the FIFO. Update
ETHFIFO_Size and ETHPKTNUM.
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6.

If ETHHIFO _Size > MAX _PAYLD, i.e al Ethernet packets in the FIFO will not
fit within one data payload buffer. Identify the first ‘k’ packets of the Ethernet
FIFO of sze ‘n’ (i.e. ETHPKTNUM="n"), such that the sum of their dzes is as
closeto [MAX_PAYLD —(k*4)] as possible without exceeding it.

If S ETH PKT SIZE(i=1 to k) = MAX_PAYLD — (k * 4). The first k packets and
corresponding EFFHs are inserted and no padding is necessary. Set EFF FIN=1
for the k™ EFFH. PKT1 FRAG_OFFSET should be cleared.

(i) If S ETH PKT SIZE(i=1 to K) < {MAX_PAYLD — [(k+1) * 4]} < S ETH PKT

()

SIZE (i=1 to k+1). Same as Step 6a) but now pad the payload buffer with a
fragment the (k+1)"" Ethernet packet and its EFFH. Update ETHFIFO Size and
ETHPKTNUM. Set top of FIFO to (k+1)™ packet and PKT1 FRAG_OFFSET to
indicate the pogtion from which the next payload must begin reading the firgt
Ethernet packet in the queue.

If ETHFIFO_Size < 200 bytes then
If PKT1 FRAG OFFSET is set then, insart the fragment of the first packet and

dl remaning packets into the data payload buffer and pad the rest of the buffer

with zeroes.

(i) If PKT1 FRAG_OFFSET iscleared then Goto Step 1

The data payload of sze MAX_PAYLD is now completely formed and resdes in
the data payload buffer in externd dud-port SRAM. The Beginning Address of
the buffer must be written to the DMA1 regiser (DMA1 BEGADDR). Set
RSMODE Register values based on the coding level according to Table 4.1.

Inform the Transmit Control Process that the data payload is ready.
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4412 Algorithm for LMDS MAC Header formation

The LMDS MAC Header consgts of severd fields as shown in Figure 4.10. To
build the header the information related to these fidds, lisged in Table 4.2, mus first be
collected from or updated by various sources. The fidds relating to acknowledgements

need to be updated by the Receive process. The transmission time dots an the uplink are
daticdly didributed among ‘N’ remotes during initidization and remain fixed. The hub is
dlocated dl time dots on the downlink. A Daa frame conddgts of ‘n’ time dots one for

each remote,

I nfor mation

Source

Acknowledgement Service ON/OFF?

System Parameters from Monitor PC

Time Sot number

System Parameters from Monitor PC

FEC Levd

Sysem Parameters from  Monitor  PC/
LMDS Data Payload formation process

Sequence Nos. for Acknowledgement

Timing and Control Process

Acknowledgement Updates

Receive Process

Table 4.2 Information Required by LMDSMAC Header Formation Process

1. Set the Time Sot (TM_SLOT) fidd to indicate the time dot a which the packet is

trangmitted.

12 15

FEC

FB | Seq No TS Lol

T™M_SLOT PADDING

Vv ACK No v ACK N

0

Vv ACK No Vv ACK No

\' ACK No Vv ACK N

0

Vv ALK No Vv ACK No

325

Header Padding

Figure4.11 LMDSMAC Header

2. For anormd time dot, set the Frame Border (FB) field shownin Fig 10.3to (0) 2.
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. Sequence Number (SEQ NO) is required for Acknowledgement Service. If the
Acknowledgement Service is turned on, then the field can contain a vaue between O
and 3. If the Acknowledgement service is turned off, then the fiddld must be filled with

ZEXY0Oes.

. The Type of Service (TOS) indicates if the Acknowledgement service is to be turned
on or off. (00), indicates Acknowledged Service and (11), indicates Unacknowledged
Service. Vdues of (01) » and (10) » areinvdid.

. The FEC Levd fidd contains the coding level of the data payload (same as RSODE
register values). This is required to correctly program the RS Decoder at the receiver
to decode the data payload. For the valid RSMODE register values refer Table 4.1.

. Acknowledgement Number (ACK NO) and Vaid (V) fieds are used to piggyback
acknowledgements of LMDS MAC packets received by the receive process. The
ACK NO fidd is the sequence number of the next expected transmisson dot. There
are eight optiond ACK NO and V fidds. The ACKNO fidds are vdid only if the V
fidldsare set to 1.

. Since the FEC Levd field is to be updated based on the coding to be used on the data
payload, the header formation should be peformed only after data payload formation
parameters are fixed or preferably after the payload formation process. This aso
dlows more time for the Acknowledgement updates from the receive process to be
added.

. The header fidd bits from 13 tol5 are reserved for future use and must be padded
with zeroes. The RS Encoder requires a minimum of 10 bytes for Encoding. So the

header is padded with 4 bytes of zeroes to make the header size equal to 10 bytes.

. The completdly formed MAC header is dored in the externd dud-port SRAM
memory. The beginning address of the MAC header is programmed into the
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DMA1 BEGADDR regiger and RSMODE regigter vadue is st a “000" for the
Header RS Encoding. The Heeder is dways encoded a a fixed coding level using
RS(10,18) code.

4413 LMDSPHY Transmisson Scheduler

Although the hardware modules implemented in the FPGA can operate independently
without supervison from the processor, the processor keeps close tabs on the PHY layer
processing. The processor initistes every sage of the PHY processng usng a
DMA_START ggnd. At the end of the processing stage the hardware processng stage
issues an IRQ (DMA_END) to the processor. The hardware modules dso notify the

processor if any errors were generated during the processing stage.

1. Wait until payload datais available a the dua-port SRAM.

2. S&¢ M1 BEGADDR with the beginning address location of the data payload
buffer in externd dud-port SRAM (DPSRAM). Set M2 BEGADDR Regiger
with the beginning address of the internd DPSRAM (M2) where the RS Encoded
Dataisto be stored. Set RSMODE register based on FEC Coding level to be used.

3. Assart DMAL1 START GPIO signd. For a description of the DMAL process refer
to Section C.31.1. Wait untl the DMA1 DONE (DMADONE_IRQ1) is
generated.

4. Check if any erors were generated by reading DMAL error register
(DMA1 ERROR). If errors were present, fix error source and repeat Step 2. If no
errors were received proceed to Step 5.

5. Se¢ M1 BEGADDR with the beginning address location of the MAC header

buffer. Set M2 BEGADDR so tha the header and payload are <tored in
contiguous locations in the internal DPSRAM. Set RSMODE regigter to (000),.
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10.

11.

12.

13.

Asst DMAL START GPIO sgnd. Wat untl the DMAL DONE
(DMADONE_IRQ1) is generated.

Check if any erors were generated by reading DMAL eror register
(DMA1 ERROR). If errors were present, fix error source and repeat Step 5. If no

errors were received proceed to Step 6.

Veify if the Turbo Product Code (TPC) Encoder has been initidized. Assert
DMAZ2_START GPIO. For adescription of the DMA2 process refer to C.3.1.2.

Wait until the Transmission Timer indicates the beginning of the trangmit dot.

Asset TXPRE START dgnd of the Preamble Generator process to dart
transmisson of the preamble. The preamble is a 1000 symbol sequence with
dternate Os and 1s. This is necessary to guarantee that the Demodulators at the
receiver are synchronized with the Modulators at the transmitter. Refer to Section
C.3.1.3 for adescription of the Modulator interface process (MODIF).

Wait for preamble transmisson to complete (16.66 ns), and then assert
TXDAT_START to sgnd beginning of LMDS PHY frame.

Wait for TX_DONE interrupt request (IRQ) or TX_ERR IRQ sgnds. TX_DONE
is assarted then the data was transmitted successfully. Schedule next payload for

trangmission.

If the TX ERR dgnd is assarted then the data payload must be scheduled for

retransmisson.
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442 Receive Process M odules
4421 Algorithm for LMDSPHY Receive Control Process

The Receive control process peforms functions that are smilar to that of the
Transmisson Scheduler.  The receive control process keeps track of the receiver

hardware processing stages.
1. Initidize the TPC Decoder regisers Activate the Demodulators and other

hardware receiver modules by asserting the LISTEN signd. For a description of
the Demodulator interface (DEMODIF) process refer to Section C.3.2.1.

2. Program the M3 BEGADDR Regiser with the darting address location where
the received packet isto be stored in internad DPSRAM (M3).

3. Wait until TPC Decoder issues an IRQ to dgnd that data is avalable a the
decoder outputs. Check TCDECDONE _ERR and TCDECDONE _NOERR IRQs.

If TCDECDONE_ERR packet is asserted then the packet is lost.

4. If TCDECDONE NOERR is asserted, check the TPC Decoder Error Register for
uncorrectable errorsin the received LMDS PHY packet.

5. Assert DMA3 _START GPIO to initiate the RS Decoding of the MAC header by
DMA3.

6. Notify Header Decoding process of arriva of new packet header.

7. Wait until header is decoded and the Header Decoding process provides
information on the payload FEC leve.
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Coding RS Code DMA3 DATMODE(0:2)
Level RS (n, k) register value

1 RS (200,188) 001

2 RS (200, 192) 010

3 RS (200, 196) 011

4 RS (200, 180) 100

5 No Coding 111

Table4.3 Maximum size of data payload

8. If Step 4 indicated uncorrectable errors and the RS coding leve is 5 (no RS
coding), then discard packet. Notify Ethernet Re-assembly process.

9. If Step 4 indicated uncorrectable errors but RS coding levels are between 1 and 4,

then program DMA3 DATMODE regigers to indicate FEC leve. The vaues for
DMA3 DATMODE regigers are shown in Table 4.3

10. Assat DATA_START GPIO to initiate payload RS Decoding. See section
C.3.2.3 for details on the DMA3 process.

11. Wait untii DMADONE_IRQ3 (DMA3_DONE) is asserted.

12. Progran M1 DMA3 BEGADDR Regiger with the dating address of the
receive data payload buffer. Assert DMA3O_START GPIO. See Section C.3.2.4
for details on the DMA3 process.

13. Wait until DMA30_DONE is asserted. Read RSDEC_STATUS Registers.

14. If the payload contains uncorrectable errors after RS Decoding, discard packet.
Notify the Payload decoding process.

15. If dl errors were corrected after RS Decoding then, notify the payload decoding
process to start after providing the starting address of the data payload buffer.
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4422 Algorithm for LMDS MAC Header Decoding Process

1. Wait until Receive Control Process indicates that a new packet has arrived.

2. Read fird bit of the payload. For a norma payload header the bit should be 0. Go to
Step 4.

3. |If firgt bit is 1 then, stop processing. Notify Frame Control Header Decoding process.
Goto Step 1.

4. Read first byte of the payload header. Forward bits 58 (FEC leve fidd) of the first

byte to the Receive control process.

5. Read dl other fidds If Acknowledge service is specified in TOS fidd, notify Header
Formation process and provide it with SEQ NO, TM_SL OT information.

6. Check V fidd vdues. If V fidd vdue is 1 then read the corresponding ACK NO
fidd. Send updates on the acknowledgements to the Transmisson Scheduling

process.

4423 Algorithm for Ethernet Re-assembly and Payload Decoding process

The Ethernet Re-assembly process reads the payload stored in the externd DP SRAM
memory into Ethernet packet tranamit buffers in the SDRAM memory. A new Ethernet
packet transmit buffer is created for every Ethernet packet. Once the Ethernet packet is
completely reassembled then the packet is moved to the Ethernet packet transmit FIFO
and schedule for transmission by the Ethernet MAC driver.

1. Wait until the Recelve Control process indicates that a payload has arived in the data
payload receive buffer. Creste an Ethernet packet buffer and an Ethernet packet
transmit FIFO.
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2. Readthe EFFH fidd.

(i) If Fragment Offset (EFFH_Offset) fidd is O, creste a new Ethernet packet buffer,
Update the Ethernet transmit FIFO.

(i) If EFFH_Offset is non-zero then continue to store in the same Ethernet buffer.

(i) Read the next EFFH_Size bytes of data and dore it in the Ethernet buffer with
appropriate offset (EFFH_Offset).

(iv) If EFFH_FIN isset to 1 stop processing payload. Go to Step 3.

(v) If EFFH_FIN is0 then read next EFFH. Repeat Step 2.

(vi) If Ethernet Packet transmit FIFO contains an Ethernet packet then notify Ethernet
driver to schedule atransmisson.

45 Summary

The Hardware platform is desgned usng configurable hardware components to
dlow maximum flexibility and to help exploration of the protocols. The tradeoffs in
implementing the processng modules in hardware or software are presented. The
Software platform  amplifies the application devdopment by providing tools and
software code libraries. The software developer can reuse the hardware independent
components of the Software platform and only needs to port the hardware dependent
components of the system for new gpplications or designs. The porting of the hardware
dependent platforms such as the BSP is dso amplified as the developer dready has a

basic framework from which he can work and does not have to start from scratch.



CHAPTER S

Hardware and Software Testing

51 Hardware Design Verification

Oved| hadware implementation of the controller desgn conssts of the entry of
the conceptua design into eectronic description format (design entry), converson of the
desgn into a logic levd form (synthesis), and trandaion of the design into the physica
FPGA specific component placement and sgnd routing (implementation). The design
verification process condsts of tesing the desgn for conformity a severd intermediate
stages. The verification steps performed after each mgor stage of the design are shown in
Figure 51 and include behaviord or functiond sSmulations, synthess checks, pod-
gynthess timing veification, and post-implementation timing verification. All of these
deps are done using smulation tools like Synopsys VHDL Compiler and tool suite [23]
and synthesis tools like Synplicity’'s Synplinfy [24] and XilinK's Foundation ISE Tools
[25].

Verification
Steps

Design Steps

Figure5.1 HardwareVerification stepsafter each design stage
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511 VHDL Behavioral Description

The FPGA logic is desgned employing behaviord VHDL that can be used for
behaviord smulation as well as FPGA synthess. The VHDL descriptions are built based
on finite gate machine (FSM) descriptions of the logic modules. The designs are based
on a hierarcchica dructure. The FSM descriptions are provided in Appendix B. A test
bench “wrapper” that abdracts some of the higher-level processor-based software
interactions is used to functiondly smulate the top-levd VHDL module. This test bench
provides the smulated status and control stimuli that are provided by the processor in the
physica implementation of the controller.

512 VHDL Behavioral Simulation

The fird sep in the FPGA hardware verification process is to devise high-leve
languege-based  verification models and methodologiess A VHDL-based behaviora
model for the system architecture was developed with high-levd sysem behaviord
modules, induding: “Bus-Functiona” processor modules, DRAMs, SRAMs, ec. The
VHDL behaviord modd helps to creaste exhaustive HDL-based methodologies to verify
bus and chip-levd specifications. A rudimentary Bus Functional Modd for the MPC8255
60x bus and Loca Bus is usad in the sysem modd to verify the bus interface functions in
the FPGA and peripherd chips.

51.2.1 Simulation of Embedded memory Interactions

The dmulation sysem modd condsts of synchronous memory in the form of
dud-port SRAMs. The Virtex FPGAs have built-in embedded memory that can be
tallored to the required configuration. The embedded memory can be syntheszed on the
FPGA using programmable, but pre-configured, IP cores in the form of EDIF files The
CORE Generator tool from the Xilinx 2.1i Alliance Series software suite was used to
design and generate the memory modules. By default, RAM cores have al their contents
initidized to zero by the CORE Generator. However, sometimes the RAM module is
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required to have specific data stored in it for smulaion. There are two ways of
gpecifying memory contents with the CORE Generator.

Memory Initidization Fle (MIF) file — The .MIF file is an ASCII file in which
eech line of text specifies the content of a RAM location. The memory contents
are specified as binary digits with one line of text corresponding to every address
location in memory. By default the Xilink Core Generator crestes a .MIF file to
gpecify the RAM contents and initidizes dl locations with zeroes.

Coefficient ((COE) Fle - Allows the RAM locdtions to be gspecified in
hexadecima forma. The .COE format is closer to Intd hex format used for
ROMs. The .COE format was not used for the smulations.

For purposes of amulation, a behaviord mode of the embedded dua-port SRAM
is sdected from a libray of Xilink Virtex primitives The primitives ae VHDL
behaviord modes that mimic the behavior of the gates in the EDIF net ligt of the IP core.
The SRAM modd can then be ingantiated in the smulation sysem modd just as any
other module of the system.

Shown in Figures 52 and 53 ae the beginning and end, respectivey, of a
memory read transaction by DMAL. The dud-port RAM Memory (M1) being accessed is
synchronous, i.e. dl control sgnds and data Sgnds are vaid a the risng edge of the
clock. The cdock sgnd is added to the smulation waveform to show the beginning
ingant of each clock cycde. The SRAM is four bytes or 32 bits wide. But the DMA1
accesses only a byte or eight bits at a time as it directly transfers the read byte to the 8 bit
input bus of the RS Encoder. To read one byte per clock cycle the Byte Enable
(M1L_nBE[3:0]) control sgnd is used. The data bus will contan only the bytes tha
were selected by de-asserting the corresponding Byte Enable hit, i.e. a vdue of (0111);
or (7)1 will sdect only the first byte, a vaue of (1011), or (E)1s will sdect the second

byte and so on.
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The BYTCOUNT and PARCNT_TEMP counters keep track of the number of
cydes for which data is to be read from memory. In this smulation a RS (200,186) code
was used, hence a block of 186 data bytes are to be read from memory. This process is
repeated nine times till eight blocks of data are input to the RS Encoder. The memory
data bus shows (FFFF)is since the memory modd is initidized to al ones. Note tha the
address is loaded at the beginning of the DMA1L process (at ~310 ns in Figure 5.2) by de-
assating M1L_nADS. After this the internd address counter in the memory is used. The
address counter is incremented by de-asserting M1L _NCNTEN &fter every four read
cycles.

By using these control signas al four data bytes stored in every location is reed.
The dmulaion waveforms show tha the gppropriste memory control sSgnds are

generated accurately and that the memory read cycles are in turn performed correctly.

5122 Simulation of External I nterfaces

Several processes on the test bench wrapper VHDL module are used to represent
each of the non-FPGA hardware modules or interfaces. The test bench is designed to
behavioraly respond for the externd modules such as the Reed Solomon Codec and TPC
Codec. For example, though the Reed-Solomon encoder process module does not
actudly perform Reed Solomon encoding, it generates the appropriate control signd
responses and correct number of random data outputs based on the input control signals
of the physical Reed Solomon CODEC chip. The test bench provides an abstract interface
to the logic externa to the FPGA, which is adequate to verify the functiondity of the
FPGA modules and interfaces.
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Figure 5.2 Simulation waveform view of “Memory Read” with memory models (1 of 2)
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Shown in Figs. 54 is an example of an interaction of FPGA DMA with the Reed
Solomon Encoder that is implemented as an externd ASIC. The DMA provides the RS
Encoder with latency configuration information usng RSENC TA[3:.0]. The
RSENC RESET ggnd resats dl the RS Encoder configuration and internd registers.
The RSENC _CLK is a 40 MHz clock input to the RS Encoder. All signds are read or
written at the risng edge of RSENC _CLK. The RS Encoder mugt firg be initidized
before the Encoding process can begin. The initidization process condsts of two seps
and begins immediatdy after the processor assarts the DMAL START dgnd. The firg
step consists of de-asserting RSENC _ENIN and RSENC_RESET for four clock cycles.
The second step conssts of asserting RSENC RESET for two clock cycles. The
RSINITCOUNT counter is used to keep track of the initidization steps.

When the initidization process is complete, the RSENC ENIN and
RSENC ENOUT dgnds are assarted smultaneoudy indicating to the RS Encoder that
the first byte of data is available a the input. The RSENC DINJ[7:0] is the data input bus
to feed data bytes from memory for RS encoding. The memory locations are filled with
al ones. Hence the inputs to the RS Encoder is dways (11111111), or (FF)is. The RS
Encoder process as mentioned earlier does not perform actua RS Encoding. It merely
generates the handsheke sgnds and inverts every dternate bit input to it and the
RSENC_DOUT][7:0] contains (01010101), or (55)16. This is used to distinguish the input
and output to the dummy RS Encoder process and verify that it acted upon the data. The
RS Encoder process correctly introduces a latency of three clock cycles before asserting
RSENC RDY and making the data output availdble on RSENC DOUT. Since the
gmulation ams to verify the DMA inteface functiondity rather than the functiondity of
the RS Encoder this arrangement is found to be sufficient.
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5123 Simulation of Processor I nteractions

The processor initiates a DMA process with a DMA Start signal and then keeps
track of the progress of each DMA packet processng stage. Each DMA in turn notifies
the processor upon completion of its task with a DMA Done sgnd. The processor then
requests the next DMA processng stage to Sart its operations. The notification to the
processor is in the form of a processor Interrupt Request (IRQ). The processor notifies
DMAs through its generd-purpose 1/0 (GPIO) ports and through registers on its local
bus. To smulate the entire transmit and recelve paths as one continuous process the
processor genera-purpose inputs and outputs stimulus must be generated by some other
means. A VHDL functiond block that mimics the behavior of the relevant processor
module, the processor GPIO controller in this case, is created in the test bench wrapper.

The test bench process is used to provide the generd-purpose 1/0 (GPIO) sgnds
that would be generated by the I/O control software running on the processor. An
exanple of a DMA Stat and a DMA Done dgnd ae the DMAL1l START and
DMAL1 DONE sgnds respectively. Both signals beong to the DMAL process and are
shown shown underlined in red in the waveform in Figure 55. The test bench process
assrts the DMAL START dgnd to initiste the DMAL process and then de-asserts it.
The assartion of the DMAL START is shown in Figure 54 from the 90ns to 150 ns
marker.

On receiving the DMAL1 START dgnd the DMA1 begins to input deata to the RS
Encoder. The DMA1 must transfer 9 blocks of data for encoding and maintains a counter
(RSPKTCNT _INT). After dl the tranders are completed successfully the DMAL
process generates a DMA1 DONE signal that is connected to a processor IRQ. The
generation of the processor IRQ is marked by the circled portion of the waveform in
Figure 5.5. Normaly the IRQ would require some processing time in the software. But to
keep smulations low, the test bench process issues the next DMA dat sgnd
immediately.
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5.1.3 FPGA synthesis environment

Synplify v7.0 [24] synthess tool from Synplicity and ISE Foundation Tools v4.2i
[25] from Xilinx were used for synthess The synthess condrants for the design
modules were setup in condraint definition files (SDF). The physica pat targeted was
the XCV600FG680. Fig.5-7 shows the Synplify synthess tool interface tha reads in
VHDL source files and Electronic Data Interchange Format (EDIF) files and then
successfully placed and routed the FPGA VHDL-specified modules, IP cores, and the
memory modules into a sngle EDIF netlis. The EDIF file format provides a common
format for porting the design across multiple synthesis tools. The EDIF file for the FPGA
co-processor design (Modem _top.edf), produced by the Synplify Tool after completing
the synthesis process, is used as an input to the Xilinx |SE Foundetion tools.

Synplify - [D:\Synplify_71\Modem2,Modem2.prj] : =10/l

@Eile Edit Yiew Project Run HDL Analyst ©ptions Window Help =& 5||

PESHGE ¢t B8O a|O>02 | D000 1 & & = -

Synplify’ <>

Source Files Synplzczty

Add | D:ASynplify_714Modem2iey_2 I re\ui_Z : : Type Modified Simply Better Results
E-62F Modem2 [project] | o IS time_sim.sdf file 04:10:04  07-0ct-2002
@ constraint | e [B] modem_top.sr log file 026514 07-0ct-2002
Changel mvd | 5] modem_top.vhm fle 038512 070ct2002  Frequency (MHz) I?D Hj
#-[ ] other | e [S] modem_top.edf edif 025510 07-Oct-2002 _ )
Edit | . pili rev 2 (modem_top] | o 5] modem_top.nef P&R Constraints 035510 07-Oct2002  Symbolic FSM Compiler @
Gate Metlist 03:55:08 07-Oct-2002
RTL Natst 035430 07-0ct2002  Flesource Sharing 2
file 03:54:30 07-0ct-2002
file 12:58:24  27-5ep-2002
file 15:38:22  18-5ep-2002
file 00:24:56  24-Jun-2002
file 00:24:56  24-Jun-2002
| 0

ResultFile
Change | maodem_top. e

Target
Change | Xilinx Yirtex : XCWB00 : FGES0 : -6, maxfan: 30

Pur == Ready ...

Cancel

E=—al [ [«

Figure5.6 Synplify synthesistool
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The Xilinx ISE Foundation tool suite contains many utilities and programs that
are used for mapping, place and route (P&R), timing smulation etc. The tools and ther
outputs are explained below. The Xilinx Desgn Manager utility shown in Figure 5.8 is
used to mantan verson information and to track changes for each iteration of the
synthesis process. It adso provides a Report Browser interface that organizes the various

output report filesin an easly readable format.

=100 x|

==
T g
5]
ar
&

File Design  Tools ie

SEEEEERE Al £l

= @ rmaodem_kap

[—H--- ﬁ“ werl

[—i—j ﬁ“ WErZ :

1 ‘ Report Browser - modem_top(ver9-revl)

[~ ] vErE

[ﬂ ﬁ’ werd i @ ]

E| ﬁ’ werS Translation Report Mavigation Report tap Repart Logic Lewel Timing

: : Feport
[+ R, werf

E ﬁ" wer? ®

Logic Level Timing  Place & Route Fad Feport Azpnchronous
Feport Feport Delay Report

©

St RN el Fost Layout Timing
Repart Repaort

For Help, press F1 Imodemn_top |><C'\-'GDD-6-FG§D_ lverd-srevl

Figure5.7 Xilinx | SE Tool performs P& R and gener ates several reports

The FPGA device utilization figures we achieved are detalled in the output file
from the “Mapper” program. A summary of the map report is tabulated in Table 5.1. The
Mapper report caculates the propagation delays of the mapped design and reports any
violaions of the setup and hold time congtraints. The report file indicated no errors in the

design.
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The map report dso contains device information and design summary details. The
device information specifies the target devices characterisics for which the desgn
mapping process was performed. In this case a XCV600 FG680 with a speed grade of —6
was used. The speed grade of the FPGA is specified by the manufacturer and is messure
of FPGA gae dday times. The high-speed grade was chosen in consderation of the use
of high-speed clocks in the system.

The device utilization summary shown in Table 5.1 is usgful to determine if the
FPGA resources are used efficiently. The tota equivalent gate count for the design and
|OBs are close to 290K gates.

The LUT and Slice utilization factors are low at 5% and 8% respectively. It was
decided not to scale down to a smdler FPGA based on the application considerations.
The Gateway Controller is desgned to dlow flexibility in exploration of different
wirdess MAC protocols. Later versions of the protocol may require additiona |P cores to
be implemented in the design. Another advantage of the low utilization factors is the low
usage of interconnect resources. This affords a lot of flexibility in redesigning the FPGA
logic without causng costly board redesgns. Also note that the 10B utilization is
currently 54%. This dlows for expanson of newer sgnds to be added to later design
revisons by activating the unused pins of the FPGA connected to the unused processor
GPIO.

Since the architecture is desgned to be memory-centric,c most of the internd
BlockSRAM resources were utilized resulting in a high utilization factor of 66%. Mogt of
these resources were used as internal dua-port SRAMs dong the transmit and receive
paths. Also al the clock buffers @ CLKIOBs are utilized in the design. This is because of
the use of severd clocks in the desgn. In fact some of the dower clocks had to be
digtributed by ordinary 10Bs so that the high speed CLKIOBs can be reserved for
digributing high-speed clocks.
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Design Information

Target Device XV600
Target Package FG680
Target Speed -6
Mapper Version Virtex Revison 1.58
Number of Errors 0
Design Summary
Resour ce Utilization Utilization %
Number of Sices 620 out of 6,912 8%
Number of Slices containing unrdated logic 0 out of 620 0%
Number of Slice Hip Hops 640 out of 13,824 4%
Totad Number 4 input LUTS 819 out of 13,824 5%
Number used as LUTS 782
Number used as a route-thru 37
Number of bonded I0Bs 278 out of 512 54%
IOB Fip Flops 257
Number of Thufs 291 out of 7,104 4%
Number of Block RAMs 16 out of 24 66%
Number of GCLKs 4outof 4 100%
Number of GCLKIOBs 4 out of 4 100%
Tota equivaent gate count for design 276,157
Additiond JTAG gate count for IOBs 13,536

Table5.1 Xilinx Mapping Report Filesummary for design

514 Post-synthesis Timing Simulation

The Xilinx Foundation utility “ngdanno” produces the sandard dday format
(SDF) file, which must be Dback-annotated with the FPGA netlis for gate-leve
gmulation. The “ngd2vhdl” progran produces a VHDL nelig of the SmPrims
primitives for vhdl gaelevd gmulaion. In addition to producing an EDIF file of the
synthesized wrapper for place and route, synthess aso produced a vendor specific logic
condrant (NCF) file which Xilinx place and route uses to determine the timing
condraints of the circuit. The “trace’ program report provides datic timing information
and congraints applied for place and route. An abridged verson of the “trace’ report file
isgivenin Table5.2.
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Timing Summary

Timing Errors 0
Condtraints coverage 90.5%
Number of Paths covered by constraints 20,980
Number of connections covered by congraints 5,195
Design Statistics
Minimum period (Maximum Freguency) 17.281 ns (57.867 MHz)
Minimum input arriva time before clock 14.251 ns
Maximum output required time before clock 15.179 ns

Table5.2 Summary of Verbose Timing Report generated by Trace utility

The Pogt synthess timing andyss results can be viewed usng the Xilink Timing
Anayzer tool. The tool can be used to determine if the timing condraints were met
successfully. Figure 59 shows a streen view of the Timing Andyzer tool indicating al

timing condraints were met for the design.

If the process indicates the presence of timing erors then the timing report is
andyzed to determine which condraint was not met. The mapping process is re-run after
placing dricter condraints on the net or sgnd, which faled to meet the condraint. Some
sgnds or nets that are criticd for the timing condraints to be sdtisfied can be manualy
mapped to higher speed intercomects avalable in the FPGA. This is done by setting
atributes in the condraint file that force the synthesis tool to map the net to a particular
type of interconnect.The maximum frequency obtained as a result of the timing andyss
is found to be 57.867 MHz, which is close to the 60 MHz design congraint. However
though the minimum period (17.281 ns) is 1.281 ns more than the intended 16 ns, the
difference was not found to be large enough to create any timing errors in the design. The
high vdue of maximum frequency was achieved by introducing condraints on the set-up
and hold times of the signals. The condraints were st up to ensure up to 90% coverage

of the entire design. Criticd paths were associated with more dringent condraints to
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yied better results in the mapping. The mapping process is repeated until al congraints
are satisfied.

Figure 510 shows the timing summary of the find routed desgn. The timing
andyss did not generate any timing errors.

Xilinx Timing Analyzer - [modem_top.twx] - |I:I|£|
| File Edit Wiew Analyze ‘Window Help _|5’|5|

D] »| 2| #[%=e| Blo|mE 2%
Timing Report Description eyt (g aselys) = g
[+ Warnings

B+ Tirning Constraints

Zonstraint compliance ;I
[+ Data Sheet report: 411 constraints were mnet.
- Tirnirg sUrnmarsy
Data Sheest rel:u:lrlt :
All walues displlagred in nanoseconds (ns)
Setup-Hold to clock 1CLE30
i Setup to i Hold to i
Source Pad | 2lk (edge) | clk (=dge) |
iDEM P TTL I 1.?2EI|ZR}|I 2.4EI‘.:JIZE]|I
iDEM 0 TTL 1.5Z26(R) 2. 696 (R}
1MOD ATARM 3.4836(R) 2. 910(R)
1STOP_TX L. 936(R) a.373(R)
iTCENC EDATA(D) —-0.671(R) 2.074(R)
1TCENC EDATA(1) —0.507 (R} J.0600R)
1TCENC _EDATAC(Z) —-0.668({R) 3.2900R)
1TCENC _EDATAC(3) 0. 787 (R} J.228(R)
1TCEHC_ERDY 3.826(R) 1. 907 (R}
1TEDAT START 3.338(R) 2. 061(R) |
iTXPRE START 1. 332(R) 2. 202(R)
iTH_TEST 4. .898(R) O.000¢R)
< [« I _'>|_I
For Help, press F1 Im v

Figure 5.8 Xilinx Timing Analyzer Tool screen view - Constraint Compliance
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Figure 5.9 Xilinx Timing Analyzer screen view - Timing Errors Summary
52 Software Design Verification

Application software developed for the Gateway controller board aso has to be
tested. The Tornado tool offers severa debugging options that can be used in the
verification process. VisonWARE tools that are part of the Tornado suite of tools can be
used to develop software that directly interfaces with hardware. The diagnogtic tool
accderates and amplifies the testing process by providing generic as well as processor-

specific tedts.

53 Loop-back Testing

The Gateway controller is designed to support testing using a loop-back test feature,
which dlows the output of the QPSK Modulator to be directly input to the QPSK
Demodulator — thus bypassng the radio links. This loop-back test feature can be used to
test the operations of the Gateway controller independent of the system and isolate design
faults in the Gateway controller from the rest of the sysem. The loop-back tests dlow the
testing of the entire transmit and receive paths independent of the physica radio link.
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54 System Integration and Trials

The Gateway controller is carefully designed to interface with the rest of the Disaster
Response System components using standard 1/0 interfaces or protocols such as Ethernet,
RS 232 s=id port, Positive Emitter-coupled Logic (PECL) 1/Os, etc. The interfaces to the
Sounder are described in Appendix A. The 1/O interfaces are described in detail in [22].

55 Summary

The Gateway controller logic was Smulated and verified after each design step. After
the synthesis of the logic the synthesis tools were used to verify that dl timing condraints
are satisfied. The next chapter provides some conclusions and areas for future work.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

This work focuses on the problem of dSmultaneoudy designing and implementing
data link and media access wirdess protocols. The chdlenge is that of rapidly trandating
the informa system requirements into a forma specification that can be used to prove the
effectiveness of the protocol usng a prototype hardware and software. Ultimately, the
gpecifications must be mapped onto an implementation, and it is a this point that the
work in this dissartation ams to add vdue The technicd chdlenge is primarily that of
ba ancing various conflicting or competing design objectives.

We propose a configurable architecture for embedded communication sysems. The
proposed architecture is a memory-centric hybrid architecture that employs a
communications processor SOC platform and a FPGA based co-processor. The proposed
configurable architecture is modular and can be cdlassfied into three digtinct types of
components. Processing Elements, Functiond Units and Memory Elements. The
Functiond Units perform various data processing operaions dong transmit and receive
data paths. The Processng Elements peform data transfers between data processing
dages or functiond units. Memory Elements act as buffers for processing eements
moving data between Functiond units. The control path eements condst of timing, satus

and control dements.

The FPGA logic was then mapped to combination logic blocks on FPGAS using a
gynthess tool. The implemented FPGA logic was found to stisfy dl timing condraints
based on the detalled timing reports generated by the synthesis tool. The configurable
prototype architecture dlowed the use of a combination of FPGA IP cores and custom
ASICs. Since some components like the Turbo Product Code CODECs did not have

73



readily available IP cores, commercid ASICs were used. The modular nature of the
architecture is suiteble for a component-based bottomrup design as in the case of
Platformbased Dedgn. The architecture dso dlows for rapid prototyping by dlowing
reuse of components and IP cores. The use of a Platform-based design methodology aso
helped to reduce design time by increasng design reuse. The hardware platform was
dmulated usng behaviord VHDL dmulaiors Based on the smulaion the desgn was
found to conform to the design specifications and satisfy the timing criteria

6.2 Contributions

A configurable architecture for prototyping embedded wirdess communication
sysems was proposed. A hardware platform was desgned to verify the design of the
LMDS Gateway controller for disaster response networks. The scope of this work
extended from deveoping specifications to component-level board design. The schematic
and the printed circuit board (PCB) layout desgn were peformed by externd
contractors. The VHDL code for synthess of the FPGA logic was dso developed and
tested. Algorithms were developed for the application software to implement the TDMA
MAC protocol.

6.3 Current Status and Future work

At the time of writing this thess, the hardware platform desgn and verification
has been completed. The software platform is 4ill in the conception phase and is being
developed at the Center for Wirdess Tdecommunications. System tests and triads will be
conducted to verify the effectiveness of the TDMA medium access and lower leve

protocols.

One of the interesting avenues for future work is to use the new generation of
“platform FPGAS’ tha have a built-in processor cores such as the Virtex Il series which
have programmable logic gates and a processor on the same dlicon chip. Another

interesting design avenue is to use IP cores instead of the various external ASICs as when
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they become avalable. This would open up interesting areas of research in re
configurable computing. For example, a Reed-Solomon IP core can be dynamicdly re-
configured to change the coding levd and may result in a more efficient solution. This
would dso ad in the study of the adaptive protocols and techniques. The dynamicaly re-
configurable property may aso be useful in the context of rapid deployment. The system
can use configurable IP network interfaces that can dynamically reconfigure the network
interfaces to be compatible to those on the ground or to suit the needs of different

response agencies.

Another logica extenson of the research would be the development of a system
platform, i.e. a combination of a hardware platform and software platform tat dlows for
hardware-software co-smulation. New tools that alow hardware smulators and software
emulators to co-operate, for example, by creating and alowing access to read and modify
virtud “memory regions’ can smplify the desgn veification aspects which continues to
be a huge chdlenge for complex wirdless sysem designs.
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APPENDIX A

A. Gateway-Sounder I nterface

A.1 Sounder Interface

This document discusses the interface between the Modem controller and Sounder
units a the hub and remotes.

A.2 Modem — Sounder Synchronization

All the Modem controllers maintain synchronization information regarding the
super-frame and sounder gep. The hub unit mantains the timing reference regarding the
Super-frame commencement and transmits a specid 32-bit “Sync Preamble’ sequence.
When the remotes detect this sequence, they update their timing references to dign with
that of the hub unit, thus maintaining synchronization.

The sounder is composed of a trangmitter and recelver unit. The sounder
trangmitter unit is present a the hub and the sounder receiver unit is present at the
remote. At present the sounder is being operated in a stand-done fashion. The sounder
operation is darted and stopped manudly through the PC interface at the sounder
recever unit. But on integration with the sysem the Sounder must operate only for the
duration of the sounder gap S0 as to not interfere with the data transmission. For this to
happen the sounder must dso be synchronized with the rest of the system. The sounder
trangmitter and recalver units must be given an indication of the sounder gap beginning
and end times by the modem controllers at the hub and remotes respectively.
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A.3Interface between the Sounder Transmitter and Hub M odem

Controller.
Hub Sounder
Modem Tranamitter
Controller OPERATE—SNDR
(LO= Active, HI= Stop)

Figure A.1 Sounder Transmitter and Hub Modem Controller Interface.

The interface will be a smple levd sendtive sgnd origingting from the modem.
The sounder cantrangmit as long as the Sgnd is low but must remain slent if the sgnd
is high. Many options, listed in Table A.1, were consdered and a PECL interface was
findly sdected. The signd details are yet to be determined.

/O Type Benefits

LVTTL/CMOS Standard 1/0

ECL/PECL Noise immunity for high freg, good drive capability
Opto-Isolator Vey high noise immunity

TableA.1 Sounder transmitter interface options

A.4|nterface between the Sounder Recelver and Remote Gateway.

In the current manua configuration, the sounder communicates with the host PC
though a pardld port. The sounder board adso has a serid port and a host port. Both these
interfaces are designed to connect the DSP to microprocessors and other peripherals. The
controller could use one of these interfaces to communicate with the sounder. The exact
nature of the PC-sounder communication needs to be studied before we can decide an the

interface.
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A possible solution is to move a part of the sounder control software on the PC to
the modem controller. In this configuration the sounder would be connected to the PC
through the parale port and to the modem controller through ether the serid or the host
port. The modem controller would sgnd the sounder to start collecting samples a the
beginning of the sounder gep and provide any configuration detals if necessary. This
configuration may be changed if necessry through the PC-Modem controller interface.
When the end of the sounder gap is signaled by the Modem, the sounder indicates to the
PC that it has collected samples and the PC can then collect the samples through the
pardld port. This is one possble scenario provided that the requiste Sounder interfaces
are available and the nature of the PC- Sounder communications dlows this.

RS232 Port 1 RS232 Port

Remote Remote

Modem l Host PC

Controller

RS232 2 Interf
S232 Port 2 Inter Parald Port
Serid Interf
'a Intertace Paallel Port

Sounder
Receiver

Figure A.2 Sounder Receiver and Hub Modem Controller Interface.
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APPENDIX B

B. FPGA Logic Blocks

B.1 FPGA Target

The board conggts of a680 pin Xilinx Virtex FPGA (XCV 600). The Virtex family
was chosen for its higher pin counts and compatibility with 5V outputs. The FPGA logic
was designed usng synthesizable VHDL. Two different environments were used to for
design verification and synthesis respectively. For design verification a Test bench
wrapper was written which had instances of the Modem logic and behaviora models of
the processor, memory and FEC ASIC s. This design was functiondly verified usng the
Synopsys VHDL Design Compiler.

B.2 FPGA Design Environment

For Synthess of the desgn, the VHDL files were Mapped using Synplicity 7 and
then Xilinx Foundation Tools ver 2.1 is used for Place and Route and to create the FPGA
Configurationfiles.

B.3 FPGA Logic

The VHDL desgn entities in the transmit path namely, DMA1, DMA2, Modulator
Interface (MODIF), Address Generator for DMAL1 (M1ADDRGEN) are organised under
Transmit top block (TX_TOP). Smilaly the Receive Top block (RX_TOP) contains
DMA3 (DMA3DMA30), DMA4, and the Demodulator Interface which conditute the
receive path. In addition the TX_TOP and RX_TOP blocks each contain a 4Kx8 Dual-
port SRAM Core EDIF file crested usng the Xilinx Coregen utility. The Modem Top
block dso contains a bus arbiter (M1BUSARB) to arbitrate access to the externa DP
SRAM’s “left* port and a Microprocessor Interface (MPCIF) for communication between
the FPGA and processor. Each sub-block is explained in greater detall in the following

ub-sections.
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B.3.1 Tranamit Path M odules

The trangmit path refers to the data path from Ethernet to the Modulator. As
mentioned earlier the Transmit path consss of DMA 1, DMA2 and the Modulator

Interface.

B.3.11 DMA1

The DMAL1 is responsble for providing data from the externd dud-port memory to
the Reed Solomon Encoder for encoding and then storing the encoded data in the transmit
dde internad dud-port SRAM. The DMAL reads the MAC packet in 180-200 byte
sessions depending on the RS Coding leve. The Reed Solomon encoder performs nine
such sessions to aways obtain 1800 bytes of RS Encoded data.

The processor provides the beginning address of the data packet and the RS Coding
level tha is being used through the generd-purpose I/O ports. Once the appropriate
regigers have been written the values for the Beginning address (DMA1 BEGADDR)
and Coding levd (RSMODE), the processor asserts the DMAL START Sgnd. The
DMAL then initidizes the Reed Solomon Encoder based on the vaue in the RSMODE
regiger. Once the initidization deps are complete, the data transfer can begin. The
DMA1 then requests access to the left port of the Dua-port SRAM from the arbiter by
aserting the DMAL1 BUSREQ dgnd. After it recelves a DMAL1 BUSGNT from the
arbiter the DMA1 has complete access over the memory port. It begins to read data in
bytes and places them at the data input of the RS Encoder. The transfers are synchronous
to the 40 MHz clock RSENC _CLK. The data is available a the output of the encoder
after a latency of 3 clock cycdes and is indicated by the encoder by asserting the
RSENC _RDY dgnd. The DMA1 maintains three counters CNT_TEMP, PAR_CNT and
PKT CNT to keep track of the number of data bytes, parity bytes and sessons
repectively. The date trangtion diagram for the DMA1 is shown in Figure C.1.
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DMA1_START =0

PKT_CNT =0
9 Sessions Complete)

DMA1_ST
(Read RSMODE an
M1BEGADDR)

RSMODESET=0

(Set RS Encpder
Initialization Parameters
if valid RSMODESET=1)

CNT|_TEMP=0

RSINITCOMP =0

(RS Initialisation Steps
1 and 2 complete)

(DMA1_BUSREQ=1)
DMA1l BUSGNT=1

(Initisjise Counters)

FigureB.1 DMA1 State Transition Diagram



B.3.1.2 DMAZ2

DMA2 transfers data from the interna dud-port SRAM to the Turbo Encoder
input. The processor initidizes the Turbo Encoder at start up. Once the Turbo Codec is
reedy to recelve the input, it asserts TCENC UACPT. The DMAZ2 indicates the
beginning of a trandfer by asserting TCENC _URDY during the first byte of the transfer.
The number of bytes to be transferred is 1816 bytes that include the RS encoded header
and data. The TC_IN_COUNT counter keeps track of the number of bytes transferred.

The State trangtion diagram for DMA2 isshown in Fig. C.2.

/IN_COUNT=0

TCENC_UACPT=1

FigureB.2 DMA2 State Transition Diagram
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(TX_DATCNT=0)
OR
(MOD_ALARM=1
OR STOP_TX=
OR

&& STOP =16)

ENC_ERDY=1

PRE_CNT#1016

TGO DY =0

FigureB.3 Statetransition diagram for Modulator I nterface
B.3.1.3 Modulator Interface (M ODIF)

The processor keeps track of the dot times and gives the indication to the FPGA
logic as to when to dat or sop transmisson. The assation of the TX PRE sgnd
indicates that the preamble transmisson must begin. The Modulator interface outputs
dternate Os and 1s for the preamble. A minimum of 1000 symbols and a maximum of
1016 symbols of preamble can be transmitted. If the MODIF does not receive a TX_DAT
or TCENC ERDY sd€gnad within 1016 symbol cycles of the TX CLK then the
transmission is aborted. The assartion of TX_DAT sgnd by the processor indicates that

the data transmisson should begin. At the end of the daa transmisson, TX_DONE is
assarted to indicate successful transmission.
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The processor can hdt the transmisson by assating the STOP TX sgnd.
Alternately if there is an eror in the Modulator indicated by MOD_ALARM then the
tranamisson would sop. These conditions result in the assertion of TX ERR s€gnd
indiceting a transmit error condition. The State trandtion diagram for the Modulator
interface moduleis shown in Fig. C.3.

B.3.2 Recave Path Modules

The receive path refers to the data path from the Demodulator to Ethernet. As
mentioned earlier the receve path consss of DMA3, DMA3o, DMA4 and the
Demodulator Interface.

B.3.2.1 Demodulator Interface (DEM ODIF)

| and Q inputs are input directly to the Turbo decoder on the risng edge of
TCENC _CCLK when TCENC CRDY=1. Therefore in this case when the LISTEN
ggnd is asserted the TCENC_CRDY is to be tied high. The turbo CODEC assumes
every cock has vdid data and determines the beginning of the frame by looking for
Frane Sync sequences inseted by the turbo Encoder before transmission.
TCENC _CACPT =1 indicates Buffer overflow which may have been caused by incorrect
configuration.

B.3.2.2 DMA4

Decoded Data is output from the decoder on the rising edge of TCEDEC DCLK
when TCDEC DACPT=1. TCEDEC DACPT is to be tied high when LISTEN =1
indicating that the DMAA4 is aways ready. The turbo decoder asserts TCDEC DRDY for
vaid daa TCDEC DSTART and TCDEC_ DEND indicate sat and end of daa
respectively. The decoded datais stored in the receive side interna dual-port SRAM.
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TCDEC DERR when asserted indicates an error that could not be corrected. At
this point the processor can decide to drop the packet or if RS Encoding is turned on then
it can continue processing it.

B.3.2.3 DMAS

DMA3 moves data from the internd dua-port SRAM to the inputs of the Reed
Solomon decoder. The assartion DMA3_START dgnd causes the initidization of the RS
Decoder for the header RS Code. DMAA4 then reads the first 16 bytes and inputs t to the
RS Decoder. It then waits for the information about the payload coding before proceeding
to decode them. Once the information is received the RS Decoder is initidized the
specific code and the payload is decoded. The State transtion diagram for the DMA3
module is shown in Fig. CA4.

B.3.24 DMA3o

DMA3o transfers data at the output of the RS decoder to the external dua-port
SRAM. When it receves the DMA3 START dgnd it asserts the DMA3 BUSREQ
sgnd to indicate to the arbiter that it needs access to the external DP SRAM. Once it
receives the DMA3 BUSGNT it can begin the trandfer. The State trandtion diagram for
the DMA30 moduleis shown in Fig. C.5.
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DMA3_STARI=1
(Initialise RS Decodex to
decode header)

AKT COUNT=9
PKT LOUNT/< 9

(Beginf Payload Decode)

(Begin RS Init Btepl)

(RS Payload Decode
Init\Step 3)

(Begin RS In\t Step 2)

(RS Pgyload Decode
Init Step2) (Begin RS InitStep 3)

(R Re o
Init Stepl)

DATA_START=1 (Begin Decoding
(Begin Data Decoding) Heade

D
Q\Vait Until Header is decoded
DAY AR () amd-Rayload Coding levefis
known)

Figure B.4 DMA3 State Transition Diagram
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RSDEC_EQB='0'
RYDEC_EOB=0

RSDEC_EOBg'1"
and PKT_CNTN9

_EOBZ'1
_CNT!=9

(DMA3_BUSREQ=1)

RSDEC-EOB=’
&&PKT_CNT!=9

WRBYT4

RSPEC_EOB=0

RSDEC_EOB=1'
&R PKT_CNT1=9 =
RSDEC_EQB=0 " -0

DMA3_BUSGNT =0

. _ OR
DMA3—;&SGNT‘1 RSDEC_DATARDY
RSDEC_DATARDY =0 DMA3_BUSGNT=1
=1
DMA3_BUSGNT =1
&& DATA_TRAN
RSDEC DATARDY
=1

Figure B.5 DMA3o State Transition Diagram
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B.3.3 External SRAM Port Arbiter

The Externd SRAM port arbiter implements a far abitration agorithm. When DMAL1
and DMAG3 request the bus at the same time then the person who held the bus last has the

lower preference. Figure C.6 shows the state trangition diagram for the Arbiter

DMA3_BUSREQ=0 &&
DMA1 A& 0-0

DMA3_BUSREQ=0 &&
DMAZ_BUSREQ=0

DMA1_BUSREQx1
DMA3_BUSREQZ1 &&
DMA1_BUSREQ=0
DMA3_BUSREQ
DMA3_BUSREQ=0 &&

DMA1_BUSREQ=0 DMAL BUSREQ=1

DMA3OWNS

DMA3_BUSREQ=1 && D
DMA1_BUSREQ=0

DMA3,/BUSREQ=0 &&
DMA1 BUSREQ=1
DMA3_BUSREQ=1
DMA3_BUSREQ=0 &&

DMA1_BUSREQ=0

FigureB.6 Fair BusArbiter for External Dual -port Memory Port
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B.3.4 Microprocessor Interface

The Microprocessor Interface conssts of the Locd Bus interface and the generd

purpose 10 ports.

B.3.5 Timing Control

The timing control logic condsts of a bit corrdator to detect the Super Frame sync

bits and timers to keep track of the tranamission time dots.
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